WO2023063286A1 - 構造体及び摺動部材、並びに、それらの製造方法 - Google Patents
構造体及び摺動部材、並びに、それらの製造方法 Download PDFInfo
- Publication number
- WO2023063286A1 WO2023063286A1 PCT/JP2022/037770 JP2022037770W WO2023063286A1 WO 2023063286 A1 WO2023063286 A1 WO 2023063286A1 JP 2022037770 W JP2022037770 W JP 2022037770W WO 2023063286 A1 WO2023063286 A1 WO 2023063286A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fullerene
- iron oxide
- immersion
- fullerenes
- structure according
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- 238000000034 method Methods 0.000 title claims description 10
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims abstract description 116
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical compound C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 claims abstract description 97
- 229910003472 fullerene Inorganic materials 0.000 claims abstract description 95
- 238000007654 immersion Methods 0.000 claims abstract description 40
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 claims abstract description 23
- 239000012964 benzotriazole Substances 0.000 claims abstract description 23
- 230000007423 decrease Effects 0.000 claims abstract description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 29
- 238000001179 sorption measurement Methods 0.000 claims description 29
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 28
- 229910052742 iron Inorganic materials 0.000 claims description 12
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 2
- 238000005406 washing Methods 0.000 claims description 2
- 235000013980 iron oxide Nutrition 0.000 description 41
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 21
- 239000000243 solution Substances 0.000 description 19
- 239000007788 liquid Substances 0.000 description 16
- 230000000052 comparative effect Effects 0.000 description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 238000005259 measurement Methods 0.000 description 9
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000010410 layer Substances 0.000 description 6
- 239000012046 mixed solvent Substances 0.000 description 6
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 6
- 239000000203 mixture Substances 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000003795 desorption Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- LIKBJVNGSGBSGK-UHFFFAOYSA-N iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Fe+3].[Fe+3] LIKBJVNGSGBSGK-UHFFFAOYSA-N 0.000 description 2
- 239000010687 lubricating oil Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 229910052595 hematite Inorganic materials 0.000 description 1
- 239000011019 hematite Substances 0.000 description 1
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 239000010721 machine oil Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910021392 nanocarbon Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/152—Fullerenes
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C26/00—Coating not provided for in groups C23C2/00 - C23C24/00
Definitions
- the present invention relates to structures, sliding members, and manufacturing methods thereof.
- Patent Document 1 discloses a processed part or the like in which nanometer-order fullerenes are present on the processed surface (new surface of metal) at a coverage rate of 1.0 area% or more and 90.0 area% or less. It is said that fullerenes once adsorbed on the surface do not detach easily.
- a brush is applied to the surface of an object such as a mold coated with a carbon film containing at least one kind of nanocarbons selected from the group consisting of carbon nanocoils, carbon nanotubes and carbon nanofilaments. is used to form a coating containing fullerenes on the surface by applying alcohol containing fullerenes.
- fullerenes are effective in improving surface properties, but have the disadvantage of being easily dropped from the mold surface. It is said that by trapping the fullerenes between them, it is possible to suppress the fullerenes from dropping off from the mold surface.
- An object of the present invention is to provide a structure and a sliding member that solve the above problems, and a method of manufacturing them.
- the present invention provides the following means.
- [1] A structure containing iron oxide and fullerene, wherein the fullerene is adsorbed on the surface of the iron oxide.
- [2] The structure according to [1] above, wherein the adsorption is chemisorption.
- [3] The structure according to the preceding item [1] or [2], wherein the iron oxide is magnetite.
- [4] The structure according to any one of [1] to [3] above, wherein the fullerene covers the entire surface of the iron oxide.
- [5] The structure according to any one of [1] to [4] above, further comprising metallic iron, wherein the iron oxide is a film formed on the surface of the metallic iron.
- a sliding member arranged so that the surface of the iron oxide having fullerenes of the structure according to any one of [1] to [5] above serves as a sliding surface.
- the slidability of the iron oxide surface can be improved.
- At least the surface portion or surface layer portion of the structure of the present embodiment is made of iron oxide, and contains iron oxide and fullerene.
- the structure of the present embodiment is preferably a structure in which at least the surface portion or surface layer portion is made of iron oxide, and the fullerene is adsorbed on the surface of the iron oxide.
- the adsorption may be, for example, physical adsorption or chemisorption. However, chemisorption in which desorption forms an irreversible chemical bond is preferable to physical adsorption in which reversible desorption is performed, from the viewpoint of difficulty in desorbing fullerenes from the iron oxide surface.
- iron oxide examples include FeO, Fe 3 O 4 (magnetite), Fe 2 O 3 (hematite), and the like. From the viewpoint of ease of adsorption of fullerenes, which will be described later, iron having a higher oxidation number is preferred. Magnetite is more preferable and more preferable from the viewpoint of a wide range of uses such as formation of a passive film.
- the fullerenes may be C 60 , C 70 , higher fullerenes, fullerene derivatives, or mixtures thereof.
- C60 or C70 is preferred, and C60 is more preferred, from the viewpoint of availability.
- the fullerene is a mixture, it is preferable that C60 is contained in 50% by mass or more.
- the adsorption amount of the fullerene is preferably as large as possible, and the number of fullerene molecules per 1 ⁇ m 2 of the iron oxide surface can be adsorbed up to about 10 6 molecules/ ⁇ m 2 at maximum. This corresponds to a state in which the fullerene covers the entire surface of the iron oxide, that is, a state in which a single layer of fullerene molecules is arranged on the surface in a close-packed manner.
- the lower limit of the adsorption amount is preferably 1/ ⁇ m 2 or more, more preferably 10 2 / ⁇ m 2 or more, from the viewpoint of reducing the coefficient of friction, and considering long-term stability such as desorption of adsorbed molecules. 10 4 / ⁇ m 2 or more is more preferable, and 10 5 / ⁇ m 2 or more is particularly preferable.
- the iron oxide may be a film formed on the surface of metallic iron.
- the structure of this embodiment contains not only iron oxide and fullerene, but also metallic iron that constitutes a part of the structural member.
- the film is preferably a passive film from the viewpoint of protecting the metal iron portion.
- the sliding member of the present embodiment has the structure, and is arranged so that the iron oxide surface having fullerenes of the structure serves as the sliding surface.
- the sliding member of the present embodiment one may be the sliding member of the present embodiment, but both are the sliding members of the present embodiment from the viewpoint of reducing frictional resistance.
- the sliding surface may be coated with lubricating oil, lubricating grease, or the like.
- the method for producing a structure according to the present embodiment includes a step of immersing an iron oxide in a benzotriazole solution containing fullerenes, and the immersion is performed until the fullerene concentration in the benzotriazole solution is reduced compared to before the immersion. .
- This concentration decrease occurs due to the adsorption of fullerenes to the iron oxide surface. That is, it can be considered that the fullerene corresponding to the decrease in the fullerene concentration is adsorbed on the iron oxide surface.
- the immersion should be performed so that the surface of the iron oxide is covered with the benzotriazole solution.
- the immersion may be performed using a method such as spraying or coating, but from the viewpoint of ease of grasping the fullerene concentration, which will be described later, it is preferable to immerse the entire iron oxide in the benzotriazole solution.
- the amount of fullerene contained in the benzotriazole solution may be an amount that can sufficiently supplement the adsorption amount of fullerene, and is preferably 1.1 times or more of the adsorption amount. More preferably 100 times or more, more preferably 100 times or more. In either case, the upper limit is the amount of fullerenes in the benzotriazole solution in which saturated fullerenes are dissolved. However, from the viewpoint of increasing the analysis accuracy of the decrease in the fullerene concentration, it is preferably 1.1 to 100 times the adsorption amount, more preferably 1.1 to 20 times.
- Such a fullerene content range is usually easily achieved by setting the fullerene concentration in the benzotriazole solution to preferably 10 mass ppm to 500 mass ppm, more preferably 30 mass ppm to 100 mass ppm.
- benzotriazole Since benzotriazole is solid at room temperature, it may be heated to its melting point (approximately 100° C.) or more before use. may be used as a mixed solvent. From the viewpoint of availability, the alcohol is preferably at least one selected from methanol, ethanol, 1-propanol and 2-propanol. For example, if one mass ratio of ethanol is added to benzotriazole, it can be treated as a liquid at room temperature.
- the fullerene concentration in the solution decreases due to adsorption of fullerenes on the iron oxide surface.
- the immersion may be terminated when the desired amount of fullerene is adsorbed. It is preferable to do this until there is no change.
- the structure may be preserved by being coated with or immersed in machine oil in the same manner as general mechanical parts, but from the viewpoint of ease of handling, it is preferable to wash with alcohol and dry.
- the alcohol is preferably at least one selected from methanol, ethanol, 1-propanol and 2-propanol.
- Fullerene is adsorbed on the iron oxide surface of the structure obtained in this way. Even if this structure is washed with a good solvent for fullerenes such as toluene, almost no fullerenes are eluted, and most of the adsorbed fullerenes are thought to be chemically adsorbed. Chemisorption is believed to bind iron oxides and fullerenes via oxygen atoms.
- the iron oxide surface having fullerenes of the structure is arranged on the sliding surface.
- the sliding member is formed by forming an oxide film on the surface of an iron member having the shape of the sliding member and adsorbing fullerene to the surface of the iron member. good too.
- mixed solvent A solution of benzotriazole and ethanol at a mass ratio of 1:1 (hereinafter referred to as “mixed solvent”) was prepared.
- immersion liquid a solution (hereinafter referred to as "immersion liquid") was prepared by adding fullerene to a mixed solvent so as to have a concentration of 56.9 ppm by mass.
- Measuring method (Measurement of concentration of fullerene) Using a high-performance liquid chromatograph (prominence-i LC-2030C 3D manufactured by Shimadzu Corporation), a solution such as an immersion liquid was used as a sample under the following conditions, and the concentration of fullerene in the sample was quantified.
- sample contained oxidized fullerene, it was converted to unoxidized fullerene and added to the fullerene concentration. This is to avoid mistaking the fullerene oxide produced by the side reaction between the iron oxide and the fullerene as the adsorbed fullerene.
- Total adsorption amount (particles/ ⁇ m 2 ) K ⁇ (C 0 ⁇ C 1 ) ⁇ V 1 /(S ⁇ M) (1) however, K: constant, 6.02 ⁇ 10 9
- C 0 Fullerene concentration in the immersion liquid before immersion (mass ppm)
- C 1 fullerene concentration in the immersion liquid after immersion (mass ppm)
- V 1 Volume of immersion liquid (ml)
- S surface area (cm 2 ) of the iron oxide portion of the structure
- M Molecular weight of fullerene used, for example 720 for C60
- C 2 Concentration of fullerene in toluene after immersion in toluene (mass ppm)
- V 2 volume of toluene (ml)
- S surface area (cm 2 ) of the iron oxide portion of the structure
- M Molecular weight of fullerene used, for example 720 for C60
- Amount of chemisorption (number/ ⁇ m 2 ) Aa ⁇ Ap (3) however, Aa: total adsorption amount (pieces/ ⁇ m 2 ) Ap: Amount of physical adsorption (number/ ⁇ m 2 )
- Example 1 0.500 g of iron (II) oxide powder (FeO, specific surface area of 100 cm 2 /g, surface area of 50 cm 2 ) was used as the iron oxide, and 10 g of the immersion liquid was added thereto and immersed with shaking for about 30 minutes. . After that, the iron oxide powder was taken out from the immersion liquid, washed with ethanol, air-dried, and then dried on a hot plate at 50° C. to obtain a structure. Using the obtained structure as a sample, the total amount of adsorption, the amount of physical adsorption and the amount of chemical adsorption were measured. Table 1 shows the results.
- Example 2 The procedure was carried out in the same manner as in Example 1, except that 0.425 g of iron (III) oxide powder (Fe 2 O 3 , specific surface area: 118 cm 2 /g, surface area: 50 cm 2 ) was used instead of iron (II) oxide powder. and measured. Table 1 shows the results.
- Comparative Example 1 The operation and measurement were performed in the same manner as in Example 1, except that 0.655 g of iron powder (Fe, specific surface area 76 cm 2 /g, surface area 50 cm 2 ) was used instead of iron (II) oxide powder. Table 1 shows the results.
- Comparative Example 2 Operation and measurement were performed in the same manner as in Example 1, except that ethanol was used instead of the mixed solvent. Table 1 shows the results.
- Comparative Example 3 The operation and measurement were performed in the same manner as in Example 1, except that a mixed solvent (that is, a fullerene concentration of 0) was used instead of the immersion liquid. Table 1 shows the results.
- Example 1 From the results of Examples 1 and 2 and Comparative Examples 1 to 3, it can be seen that when benzotriazole and fullerene are included in the components of the immersion liquid, fullerene is chemisorbed to iron oxide.
- Example 1 An increase in the total adsorption amount of fullerenes was observed when the immersion time was 25 minutes compared to 30 minutes. From this, it is considered that in Example 2, the adsorption amount reached the upper limit.
- Example 3 A 5 mm thick test substrate made of steel (material SUJ2) having a 13 mm square mirror-finished surface on one side was immersed in an 11% by mass sodium hydroxide aqueous solution at 80 ° C. for 3 minutes to form an iron oxide layer on the surface. . Under these conditions, the iron oxide layer is considered to be a mixture of oxides of iron (II) and iron (III).
- test substrate on which the iron oxide layer was formed was washed with water and ethanol in that order, and then immersed in 10 mL of the immersion liquid for 35 minutes. During the immersion, ultrasonic agitation was performed for the first 5 minutes, and then the mixture was allowed to stand.
- the substrate was taken out of the immersion liquid, washed with ethanol, and the ethanol on the surface of the substrate was removed by blowing nitrogen gas, and dried on a hot plate at 50°C for 10 minutes to obtain a structure.
- the coefficient of friction of the obtained structure was measured using the mirror-finished surface as a test surface. Table 2 shows the results.
- Comparative Example 4 The same operation and measurement as in Example 3 were performed except that a mixed solvent (that is, a fullerene concentration of 0) was used instead of the immersion liquid. Table 2 shows the results.
- Comparative Example 5 The same operations and measurements as in Example 3 were performed except that the sample was not immersed in the aqueous sodium hydroxide solution. Table 2 shows the results.
- Example 3 since the oxide layer was treated in substantially the same manner as in Examples 1 and 2, it is considered that fullerene is chemically adsorbed on the oxide layer. Further, from Table 2, the coefficient of friction of Example 3 is about 5% lower than that of Comparative Examples 4 and 5. In Comparative Example 4, fullerene was not adsorbed, and in Comparative Example 5, an iron oxide layer was not formed on the test surface of the substrate.
- the structure of the present invention can be usefully applied to sliding members and the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Nanotechnology (AREA)
- Inorganic Chemistry (AREA)
- Lubricants (AREA)
Abstract
フラーレンを含むベンゾトリアゾール溶液に鉄酸化物を浸漬する工程を有し、前記浸漬は、前記ベンゾトリアゾール溶液中のフラーレン濃度が浸漬前に比べ減少するまで行うことにより、鉄酸化物表面にフラーレンを有する構造体を得る。この構造体のフラーレンを有する鉄酸化物表面を摺動面に配置した摺動体を用いる。
Description
本発明は、構造体及び摺動部材、並びに、それらの製造方法に関する。
表面にフラーレンが存在することにより、摺動特性や離型性が改善されることが知られている。
例えば、特許文献1では、ナノメートルオーダーのフラーレンが被覆率1.0面積%以上90.0面積%以下で加工面(金属の新生面)に存在している加工部品等が開示され、また、新生面に一旦吸着したフラーレンは容易には脱離しないとされる。
また、特許文献2では、カーボンナノコイル、カーボンナノチューブおよびカーボンナノフィラメントからなる群から選ばれる少なくとも1種のナノカーボン類を含む炭素膜が被膜された金型等の物体の表面に、はけを用いて、フラーレン類を含有するアルコールを塗布することによって、表面にフラーレン類を含む被膜を形成することが開示されている。また、特許文献2では、フラーレン類は、表面特性の向上に有効であるものの、金型表面から脱落しやすいという短所があるが、この発明によれば、表面から繊維状に伸びるナノカーボン類の間にフラーレン類が捕縛されることによって、フラーレン類が金型表面から脱落することを抑制することができるとされている。
このように、特定の表面にフラーレンを被覆することは行われてきた。しかし、より一般的な不働態膜などが形成された鉄部材表面(すなわち酸化鉄表面)を直接フラーレンで被覆するものではなかった。
本発明の目的は、上記を解決する構造体及び摺動部材、並びに、それらの製造方法を提供することにある。
本発明は、上記課題を解決するため、以下の手段を提供する。
[1]鉄酸化物とフラーレンとを含み、前記フラーレンは前記鉄酸化物表面に吸着している構造体。
[2]前記吸着が化学吸着である前項[1]に記載の構造体。
[3]前記鉄酸化物はマグネタイトである前項[1]または[2]に記載の構造体。
[4]前記フラーレンは、前記鉄酸化物表面の全面を被覆している前項[1]~[3]のいずれかに記載の構造体。
[5]さらに金属鉄を含み、前記鉄酸化物は前記金属鉄表面に形成された皮膜である前項[1]~[4]のいずれかに記載の構造体。
[6]前項[1]~[5]のいずれかに記載の構造体のフラーレンを有する鉄酸化物表面が摺動面となるように配置されている摺動部材。
[7]前項[1]~[5]のいずれかに記載の構造体の製造方法であって、
フラーレンを含むベンゾトリアゾール溶液に鉄酸化物を浸漬する工程を有し、
前記浸漬は、前記ベンゾトリアゾール溶液中のフラーレン濃度が浸漬前に比べ減少するまで行う
鉄酸化物表面にフラーレンを有する構造体の製造方法。
[8]前記ベンゾトリアゾール溶液は、さらにアルコールを含む前項[7]に記載の構造体の製造方法。
[9]前記浸漬は、前記ベンゾトリアゾール溶液中のフラーレン濃度が、浸漬前に比べ減少後、変化しなくなるまで行う前項[7]または[8]に記載の構造体の製造方法。
[10]さらに、前記浸漬後、構造体をアルコールで洗浄し、乾燥する工程を含む前項[7]~[9]のいずれかに記載の構造体の製造方法。
[11]前項[7]~[10]のいずれかに記載の方法で構造体を得、前記構造体のフラーレンを有する鉄酸化物表面を摺動面に配置する摺動部材の製造方法。
[1]鉄酸化物とフラーレンとを含み、前記フラーレンは前記鉄酸化物表面に吸着している構造体。
[2]前記吸着が化学吸着である前項[1]に記載の構造体。
[3]前記鉄酸化物はマグネタイトである前項[1]または[2]に記載の構造体。
[4]前記フラーレンは、前記鉄酸化物表面の全面を被覆している前項[1]~[3]のいずれかに記載の構造体。
[5]さらに金属鉄を含み、前記鉄酸化物は前記金属鉄表面に形成された皮膜である前項[1]~[4]のいずれかに記載の構造体。
[6]前項[1]~[5]のいずれかに記載の構造体のフラーレンを有する鉄酸化物表面が摺動面となるように配置されている摺動部材。
[7]前項[1]~[5]のいずれかに記載の構造体の製造方法であって、
フラーレンを含むベンゾトリアゾール溶液に鉄酸化物を浸漬する工程を有し、
前記浸漬は、前記ベンゾトリアゾール溶液中のフラーレン濃度が浸漬前に比べ減少するまで行う
鉄酸化物表面にフラーレンを有する構造体の製造方法。
[8]前記ベンゾトリアゾール溶液は、さらにアルコールを含む前項[7]に記載の構造体の製造方法。
[9]前記浸漬は、前記ベンゾトリアゾール溶液中のフラーレン濃度が、浸漬前に比べ減少後、変化しなくなるまで行う前項[7]または[8]に記載の構造体の製造方法。
[10]さらに、前記浸漬後、構造体をアルコールで洗浄し、乾燥する工程を含む前項[7]~[9]のいずれかに記載の構造体の製造方法。
[11]前項[7]~[10]のいずれかに記載の方法で構造体を得、前記構造体のフラーレンを有する鉄酸化物表面を摺動面に配置する摺動部材の製造方法。
本発明によれば、鉄酸化物表面の摺動性等を改善することができる。
以下、本発明の実施形態について詳細に説明する。なお、以下に示す実施形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。また、本明細書において数値範囲を示す「~」は、別段の断わりがない限り、その前後に記載された数値を下限値及び上限値として含むことを意味する。
(構造体)
本実施形態の構造体は、少なくともその表面部または表層部が鉄酸化物からなり、鉄酸化物とフラーレンとを含む。本実施形態の構造体は、少なくともその表面部または表層部が鉄酸化物からなり、前記フラーレンは前記鉄酸化物表面に吸着している構造体であることが好ましい。前記吸着は、例えば、物理吸着であっても、化学吸着であってもよい。ただし、可逆的に脱着する物理吸着よりも、脱着が不可逆的な化学結合を形成する化学吸着の方が、鉄酸化物表面からのフラーレンの脱離し難さの観点から好ましい。
本実施形態の構造体は、少なくともその表面部または表層部が鉄酸化物からなり、鉄酸化物とフラーレンとを含む。本実施形態の構造体は、少なくともその表面部または表層部が鉄酸化物からなり、前記フラーレンは前記鉄酸化物表面に吸着している構造体であることが好ましい。前記吸着は、例えば、物理吸着であっても、化学吸着であってもよい。ただし、可逆的に脱着する物理吸着よりも、脱着が不可逆的な化学結合を形成する化学吸着の方が、鉄酸化物表面からのフラーレンの脱離し難さの観点から好ましい。
前記鉄酸化物は、例えば、FeO、Fe3O4(マグネタイト)、Fe2O3(ヘマタイト)などが挙げられ、後述するフラーレンの吸着させやすさの観点からは鉄の酸化数が多い方がより好ましく、不働態膜の形成などで用途が広いという観点からはマグネタイトがより好ましい。
前記フラーレンは、C60、C70、さらに高次のフラーレン、フラーレン誘導体、あるいはそれらの混合物であってもよい。フラーレンの中でも、入手性の観点から、C60またはC70が好ましく、C60がより好ましい。前記フラーレンが混合物の場合は、C60が50質量%以上に含まれることが好ましい。
前記フラーレンの吸着量は、多い方が好ましく、鉄酸化物表面1μm2あたりフラーレン分子数として、最大106個/μm2程度まで吸着させることができる。これは、フラーレンが前記鉄酸化物表面の全面を被覆している状態、すなわち、フラーレン分子が表面に最密充填で1層並ぶ状態に相当する。また、前記吸着量の下限として、摩擦係数の低減の観点から1個/μm2以上が好ましく、102個/μm2以上がより好ましく、吸着した分子の脱離など長期の安定性も考慮して104個/μm2以上がさらに好ましく、105個/μm2以上が特に好ましい。
前記鉄酸化物は金属鉄表面に形成された皮膜であってもよい。この場合、本実施形態の構造体は、鉄酸化物及びフラーレンだけでなく、さらに構造部材の一部を構成する金属鉄を含む。また、前記皮膜は、前記金属鉄部分を保護する観点から、不働態膜であることが好ましい。
(摺動部材)
本実施形態の摺動部材は、前記構造体を有し、該構造体のフラーレンを有する鉄酸化物表面が摺動面となるように配置されている。摺動部を形成する一対の摺動部材の内、一方が本実施形態の摺動部材であってもよいが、両方が本実施形態の摺動部材であることが、摩擦抵抗を低減する観点から好ましい。また、摺動面には、潤滑油や潤滑グリースなどが塗布されていてもよい。
本実施形態の摺動部材は、前記構造体を有し、該構造体のフラーレンを有する鉄酸化物表面が摺動面となるように配置されている。摺動部を形成する一対の摺動部材の内、一方が本実施形態の摺動部材であってもよいが、両方が本実施形態の摺動部材であることが、摩擦抵抗を低減する観点から好ましい。また、摺動面には、潤滑油や潤滑グリースなどが塗布されていてもよい。
(構造体の製造方法)
本実施形態の構造体の製造方法は、フラーレンを含むベンゾトリアゾール溶液に鉄酸化物を浸漬する工程を有し、前記浸漬は、前記ベンゾトリアゾール溶液中のフラーレン濃度が浸漬前に比べ減少するまで行う。この濃度減少は、フラーレンが酸化鉄表面に吸着するために生じる。すなわち、前記フラーレン濃度の減少分に相当するフラーレンが酸化鉄表面に吸着したとみなせる。
本実施形態の構造体の製造方法は、フラーレンを含むベンゾトリアゾール溶液に鉄酸化物を浸漬する工程を有し、前記浸漬は、前記ベンゾトリアゾール溶液中のフラーレン濃度が浸漬前に比べ減少するまで行う。この濃度減少は、フラーレンが酸化鉄表面に吸着するために生じる。すなわち、前記フラーレン濃度の減少分に相当するフラーレンが酸化鉄表面に吸着したとみなせる。
前記浸漬は、前記鉄酸化物表面が前記ベンゾトリアゾール溶液で覆われる状態にできればよい。前記浸漬は、噴霧や塗布等の方法を用いて行ってもよいが、後述するフラーレン濃度の把握しやすさの観点から、前記ベンゾトリアゾール溶液中に前記鉄酸化物全体を沈めることが好ましい。
前記ベンゾトリアゾール溶液に含まれるフラーレン量は、フラーレンの吸着量を十分補える量であればよく、前記吸着量の1.1倍以上にすることが好ましく、複数回浸漬を可能とする観点から、10倍以上がより好ましく、100倍以上がさらに好ましい。いずれの場合も飽和濃度のフラーレンが溶解したベンゾトリアゾール溶液におけるフラーレン量が上限となる。ただし、前記フラーレン濃度の減少量の分析精度を高くする観点からは、前記吸着量の1.1倍~100倍とすることが好ましく、1.1倍~20倍とすることがより好ましい。
このようなフラーレン量の範囲は、通常、ベンゾトリアゾール溶液中のフラーレン濃度を、好ましくは10質量ppm~500質量ppm、より好ましくは30質量ppm~100質量ppmとしておくと実現しやすい。
ベンゾトリアゾールは室温で固体であるため、その融点(約100℃)以上に加熱して用いてもよいが、扱いやすさの観点から、室温などで取り扱いやすい温度で液体となるようアルコールを添加して、混合溶媒にしてもよい。前記アルコールは、入手しやすさの観点から、メタノール、エタノール、1-プロパノール及び2-プロパノールから選ばれる少なくとも1種が好ましい。例えば、ベンゾトリアゾールに対しエタノールを質量比で1倍量添加すれば、十分に室温で液体として扱え、さらに1倍量~3倍量添加すれば、より低温でも液体として扱うことができる。
フラーレンを含むベンゾトリアゾール溶液に鉄酸化物を浸漬すると、鉄酸化物表面にフラーレンが吸着するため、同溶液中のフラーレン濃度が減少する。前記浸漬は、所望するフラーレン量が吸着した時点で浸漬を終了してもよいが、吸着するフラーレン量をできるだけ多くする観点から、前記ベンゾトリアゾール溶液中のフラーレン濃度が、浸漬前に比べ減少後、変化しなくなるまで行うことが好ましい。
前記浸漬後、構造体は、一般的な機械部品と同様に機械油を塗布または浸漬して保存してもよいが、取扱いのしやすさの観点から、アルコールで洗浄し乾燥することが好ましい。前記アルコールは、入手しやすさの観点から、メタノール、エタノール、1-プロパノール及び2-プロパノールから選ばれる少なくとも1種が好ましい。
このように得られた構造体の鉄酸化物表面にはフラーレンが吸着している。この構造体をトルエン等のフラーレンに対する良溶媒で洗浄してもほとんどフラーレンが溶出せず、吸着したフラーレンの大部分は化学吸着していると考えられる。化学吸着では、酸素原子を介して鉄酸化物とフラーレンとが結合すると考えられる。
(摺動部材の製造方法)
本実施形態の摺動部材は、前記構造体のフラーレンを有する鉄酸化物表面を摺動面に配置する。複数の前記構造体を摺動面の形状に合わせて並べてもよいが、摺動部材の形状をした鉄部材の表面に酸化膜を形成しその表面にフラーレンを吸着させた摺動部材であってもよい。
本実施形態の摺動部材は、前記構造体のフラーレンを有する鉄酸化物表面を摺動面に配置する。複数の前記構造体を摺動面の形状に合わせて並べてもよいが、摺動部材の形状をした鉄部材の表面に酸化膜を形成しその表面にフラーレンを吸着させた摺動部材であってもよい。
以上、本発明の好ましい実施形態について詳述したが、本発明は特定の実施の形態に限定されるものではなく、特許請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形あるいは変更が可能である。
以下、実施例および比較例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
溶液:
ベンゾトリアゾールとエタノールとの質量比1:1の溶液(以下、「混合溶媒」と言う。)を作製した。
ベンゾトリアゾールとエタノールとの質量比1:1の溶液(以下、「混合溶媒」と言う。)を作製した。
フラーレンを含むベンゾトリアゾール溶液として、混合溶媒にフラーレンを56.9質量ppmとなるように添加した溶液(以下、「浸漬液」と言う。)を作製した。
測定方法:
(フラーレンの濃度の測定)
高速液体クロマトグラフ(島津製作所製 prominence-i LC-2030C 3D)を用い、以下の条件で、浸漬液等の溶液を試料とし、試料中のフラーレンの濃度を定量した。
(フラーレンの濃度の測定)
高速液体クロマトグラフ(島津製作所製 prominence-i LC-2030C 3D)を用い、以下の条件で、浸漬液等の溶液を試料とし、試料中のフラーレンの濃度を定量した。
カラム:株式会社ワイエムシィ製 YMC-Pack ODS-AM(150mm×4.6mm)
展開溶媒:トルエンとメタノールの1:1(体積比)混合物
検出:吸光度(波長309nm)
試料は、希釈が必要な場合はあらかじめ上記展開溶媒で希釈した。また、検量線は、試料作製に用いたフラーレンにより作成した。
展開溶媒:トルエンとメタノールの1:1(体積比)混合物
検出:吸光度(波長309nm)
試料は、希釈が必要な場合はあらかじめ上記展開溶媒で希釈した。また、検量線は、試料作製に用いたフラーレンにより作成した。
なお、試料中に酸化フラーレンが含まれる場合は、未酸化のフラーレンに換算して、フラーレン濃度に合算した。これは、鉄酸化物とフラーレンとの副反応で生じた酸化フラーレンを吸着したフラーレンと見誤らないようにするためである。
(全吸着量の測定)
浸漬前の浸漬液中のフラーレン濃度と、浸漬後の浸漬液中のフラーレン濃度とを測定し、両者のフラーレンの濃度の差から下記式(1)によりフラーレンの全吸着量を算出した。
浸漬前の浸漬液中のフラーレン濃度と、浸漬後の浸漬液中のフラーレン濃度とを測定し、両者のフラーレンの濃度の差から下記式(1)によりフラーレンの全吸着量を算出した。
全吸着量(個/μm2)=K×(C0-C1)×V1/(S×M) ・・・(1)
ただし、
K:定数、6.02×109
C0:浸漬前の浸漬液中のフラーレン濃度(質量ppm)
C1:浸漬後の浸漬液中のフラーレン濃度(質量ppm)
V1:浸漬液の体積(ml)
S:構造体の鉄酸化物部分の表面積(cm2)
M:用いたフラーレンの分子量、例えばC60であれば720
ただし、
K:定数、6.02×109
C0:浸漬前の浸漬液中のフラーレン濃度(質量ppm)
C1:浸漬後の浸漬液中のフラーレン濃度(質量ppm)
V1:浸漬液の体積(ml)
S:構造体の鉄酸化物部分の表面積(cm2)
M:用いたフラーレンの分子量、例えばC60であれば720
(物理吸着量及び化学吸着量の測定)
各実施例で得られた構造体等の1質量部の試料を、2質量部のトルエンに浸漬し約30分間攪拌した。この浸漬後のトルエン中のフラーレンの濃度から下記式(2)により物理吸着量を算出した。
各実施例で得られた構造体等の1質量部の試料を、2質量部のトルエンに浸漬し約30分間攪拌した。この浸漬後のトルエン中のフラーレンの濃度から下記式(2)により物理吸着量を算出した。
物理吸着量(個/μm2)=K×C2×V2/(S×M) ・・・(2)
ただし、
K:定数、6.02×109
C2:トルエンに浸漬後のトルエン中のフラーレンの濃度(質量ppm)
V2:トルエンの体積(ml)
S:構造体の鉄酸化物部分の表面積(cm2)
M:用いたフラーレンの分子量、例えばC60であれば720
ただし、
K:定数、6.02×109
C2:トルエンに浸漬後のトルエン中のフラーレンの濃度(質量ppm)
V2:トルエンの体積(ml)
S:構造体の鉄酸化物部分の表面積(cm2)
M:用いたフラーレンの分子量、例えばC60であれば720
また、下記式(3)の通り、全吸着量と物理吸着量との差を化学吸着量とした。
化学吸着量(個/μm2)=Aa-Ap ・・・(3)
ただし、
Aa:全吸着量(個/μm2)
Ap:物理吸着量(個/μm2)
ただし、
Aa:全吸着量(個/μm2)
Ap:物理吸着量(個/μm2)
(摩擦係数の測定)
構造体を試料として、ボールオンディスク摩擦試験装置を用いて、ボール(材質SUJ2、直径6mm)、潤滑油(ダイアナフレシアP-46、出光興産社製)、荷重45N、直径8mmの円軌道にて、回転数30rpm(線速度13mm/秒)の条件で、摺動回数180~220回の範囲(摺動距離4.5m相当~5.5m相当)で構造体摺動面の平均摩擦係数を測定した。
構造体を試料として、ボールオンディスク摩擦試験装置を用いて、ボール(材質SUJ2、直径6mm)、潤滑油(ダイアナフレシアP-46、出光興産社製)、荷重45N、直径8mmの円軌道にて、回転数30rpm(線速度13mm/秒)の条件で、摺動回数180~220回の範囲(摺動距離4.5m相当~5.5m相当)で構造体摺動面の平均摩擦係数を測定した。
実施例1:
鉄酸化物として0.500gの酸化鉄(II)粉(FeO,比表面積100cm2/g、表面積50cm2)を用い、これに10gの浸漬液を加え、約30分間振盪しながら浸漬を行った。その後、浸漬液より酸化鉄粉を取り出し、エタノールで洗浄し、風乾後、50℃のホットプレート上で乾燥し、構造体を得た。得られた構造体を試料として、全吸着量、物理吸着量及び化学吸着量の測定を行った。結果を表1に示す。
鉄酸化物として0.500gの酸化鉄(II)粉(FeO,比表面積100cm2/g、表面積50cm2)を用い、これに10gの浸漬液を加え、約30分間振盪しながら浸漬を行った。その後、浸漬液より酸化鉄粉を取り出し、エタノールで洗浄し、風乾後、50℃のホットプレート上で乾燥し、構造体を得た。得られた構造体を試料として、全吸着量、物理吸着量及び化学吸着量の測定を行った。結果を表1に示す。
実施例2:
酸化鉄(II)粉の代わりに0.425gの酸化鉄(III)粉(Fe2O3,比表面積118cm2/g、表面積50cm2)を用いたことを除き、実施例1と同様に操作及び測定を行った。結果を表1に示す。
酸化鉄(II)粉の代わりに0.425gの酸化鉄(III)粉(Fe2O3,比表面積118cm2/g、表面積50cm2)を用いたことを除き、実施例1と同様に操作及び測定を行った。結果を表1に示す。
比較例1:
酸化鉄(II)粉の代わりに0.655gの鉄粉(Fe,比表面積76cm2/g、表面積50cm2)を用いたことを除き、実施例1と同様に操作及び測定を行った。結果を表1に示す。
酸化鉄(II)粉の代わりに0.655gの鉄粉(Fe,比表面積76cm2/g、表面積50cm2)を用いたことを除き、実施例1と同様に操作及び測定を行った。結果を表1に示す。
比較例2:
混合溶媒の代わりにエタノールを用いたことを除き、実施例1と同様に操作及び測定を行った。結果を表1に示す。
混合溶媒の代わりにエタノールを用いたことを除き、実施例1と同様に操作及び測定を行った。結果を表1に示す。
比較例3:
浸漬液の代わりに混合溶媒(すなわちフラーレン濃度0)を用いたことを除き、実施例1と同様に操作及び測定を行った。結果を表1に示す。
浸漬液の代わりに混合溶媒(すなわちフラーレン濃度0)を用いたことを除き、実施例1と同様に操作及び測定を行った。結果を表1に示す。
実施例1,2及び比較例1~3の結果より、浸漬液の成分にベンゾトリアゾールとフラーレンとが含まれると、鉄酸化物にフラーレンが化学吸着することが分かる。なお、実施例1では浸漬時間25分に対し同30分ではフラーレンの全吸着量の上昇が見られたが、実施例2では浸漬時間25分と30分とで差はほとんど無かった。このことより、実施例2では、ほぼ吸着量の上限に達していたと考えられる。
実施例3:
鋼製(材質SUJ2)の13mm角の鏡面加工面を一面に持つ厚さ5mmの試験基板を、80℃の11質量%水酸化ナトリウム水溶液に3分間浸漬し、表面に鉄酸化物層を形成した。この条件では鉄酸化物層は鉄(II)と鉄(III)との酸化物の混合物が生じていると考えられる。
鋼製(材質SUJ2)の13mm角の鏡面加工面を一面に持つ厚さ5mmの試験基板を、80℃の11質量%水酸化ナトリウム水溶液に3分間浸漬し、表面に鉄酸化物層を形成した。この条件では鉄酸化物層は鉄(II)と鉄(III)との酸化物の混合物が生じていると考えられる。
鉄酸化物層を形成した試験基板を、水、エタノールの順で洗浄し、次に、10mLの浸漬液に35分間浸漬した。浸漬中は、最初の5分間超音波攪拌し、以後、静置した。
その後、基板を浸漬液から取り出し、エタノールで懸洗したのち、基板表面のエタノールを窒素ガスの吹付により除去し、50℃のホットプレート上で10分間乾燥させ、構造体を得た。得られた構造体について、鏡面加工面を試験面として、摩擦係数の測定を行った。結果を表2に示す。
比較例4:
浸漬液の代わりに混合溶媒(すなわちフラーレン濃度0)を用いたこと以外は実施例3と同様の操作及び測定を行った。結果を表2に示す。
浸漬液の代わりに混合溶媒(すなわちフラーレン濃度0)を用いたこと以外は実施例3と同様の操作及び測定を行った。結果を表2に示す。
比較例5:
水酸化ナトリウム水溶液に浸漬しなかったことを除き実施例3と同様の操作及び測定を行った。結果を表2に示す。
水酸化ナトリウム水溶液に浸漬しなかったことを除き実施例3と同様の操作及び測定を行った。結果を表2に示す。
実施例3では、酸化物層が実施例1及び2とほぼ同様な処理をされたことより、フラーレンは酸化物層に化学吸着していると考えられる。また、表2より、実施例3では比較例4及び5に比べ5%程度摩擦係数が小さくなっている。比較例4では、フラーレンを吸着させなかったため、比較例5では、基板の試験面に鉄酸化物層を形成しなかったため、フラーレンによる摩擦低減効果が表れなかったと考えられる。
本出願は、2021年10月13日に日本国特許庁に出願した特願2021-168395号に基づく優先権を主張するものであり、特願2021-168395号の全内容を本出願に援用する。
本発明の構造体は、摺動部材などに有用に適用できる。
Claims (11)
- 鉄酸化物とフラーレンとを含み、前記フラーレンは前記鉄酸化物表面に吸着している構造体。
- 前記吸着が化学吸着である請求項1に記載の構造体。
- 前記鉄酸化物はマグネタイトである請求項1または2に記載の構造体。
- 前記フラーレンは、前記鉄酸化物表面の全面を被覆している請求項1~3のいずれかに記載の構造体。
- さらに金属鉄を含み、前記鉄酸化物は前記金属鉄表面に形成された皮膜である請求項1~4のいずれかに記載の構造体。
- 請求項1~5のいずれかに記載の構造体のフラーレンを有する鉄酸化物表面が摺動面となるように配置されている摺動部材。
- 請求項1~5のいずれかに記載の構造体の製造方法であって、
フラーレンを含むベンゾトリアゾール溶液に鉄酸化物を浸漬する工程を有し、
前記浸漬は、前記ベンゾトリアゾール溶液中のフラーレン濃度が浸漬前に比べ減少するまで行う
鉄酸化物表面にフラーレンを有する構造体の製造方法。 - 前記ベンゾトリアゾール溶液は、さらにアルコールを含む請求項7に記載の構造体の製造方法。
- 前記浸漬は、前記ベンゾトリアゾール溶液中のフラーレン濃度が、浸漬前に比べ減少後、変化しなくなるまで行う請求項7または8に記載の構造体の製造方法。
- さらに、前記浸漬後、構造体をアルコールで洗浄し、乾燥する工程を含む請求項7~9のいずれかに記載の構造体の製造方法。
- 請求項7~10のいずれかに記載の方法で構造体を得、前記構造体のフラーレンを有する鉄酸化物表面を摺動面に配置する摺動部材の製造方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280082167.XA CN118382721A (zh) | 2021-10-13 | 2022-10-11 | 结构体和滑动构件以及它们的制造方法 |
JP2023554512A JPWO2023063286A1 (ja) | 2021-10-13 | 2022-10-11 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-168395 | 2021-10-13 | ||
JP2021168395 | 2021-10-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023063286A1 true WO2023063286A1 (ja) | 2023-04-20 |
Family
ID=85987929
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/037770 WO2023063286A1 (ja) | 2021-10-13 | 2022-10-11 | 構造体及び摺動部材、並びに、それらの製造方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JPWO2023063286A1 (ja) |
CN (1) | CN118382721A (ja) |
WO (1) | WO2023063286A1 (ja) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006306010A (ja) * | 2004-08-16 | 2006-11-09 | Frontier Carbon Corp | 膜形成用品および膜形成方法ならびに離型剤 |
JP2007031744A (ja) * | 2005-07-22 | 2007-02-08 | Kobe Steel Ltd | 粉末冶金用混合粉末 |
JP2010120806A (ja) * | 2008-11-19 | 2010-06-03 | Honda Motor Co Ltd | 摺動部材およびその製造方法 |
JP2010137155A (ja) * | 2008-12-10 | 2010-06-24 | Toyota Motor Corp | 表面処理方法 |
JP2012166969A (ja) * | 2011-02-10 | 2012-09-06 | Katsuyoshi Kondo | 被膜付き基材およびその製造方法 |
JP2017043801A (ja) * | 2015-08-25 | 2017-03-02 | 富士電機株式会社 | 摺動構造、めっき浴及び摺動部材の製造方法 |
WO2020054523A1 (ja) * | 2018-09-11 | 2020-03-19 | 株式会社ダイセル | 初期なじみ用潤滑剤組成物、摺動部材、および摺動部材の製造方法 |
CN111117726A (zh) * | 2019-12-27 | 2020-05-08 | 珠海美合科技股份有限公司 | 一种防锈、环保的润滑油组合物 |
-
2022
- 2022-10-11 CN CN202280082167.XA patent/CN118382721A/zh active Pending
- 2022-10-11 WO PCT/JP2022/037770 patent/WO2023063286A1/ja active Application Filing
- 2022-10-11 JP JP2023554512A patent/JPWO2023063286A1/ja active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006306010A (ja) * | 2004-08-16 | 2006-11-09 | Frontier Carbon Corp | 膜形成用品および膜形成方法ならびに離型剤 |
JP2007031744A (ja) * | 2005-07-22 | 2007-02-08 | Kobe Steel Ltd | 粉末冶金用混合粉末 |
JP2010120806A (ja) * | 2008-11-19 | 2010-06-03 | Honda Motor Co Ltd | 摺動部材およびその製造方法 |
JP2010137155A (ja) * | 2008-12-10 | 2010-06-24 | Toyota Motor Corp | 表面処理方法 |
JP2012166969A (ja) * | 2011-02-10 | 2012-09-06 | Katsuyoshi Kondo | 被膜付き基材およびその製造方法 |
JP2017043801A (ja) * | 2015-08-25 | 2017-03-02 | 富士電機株式会社 | 摺動構造、めっき浴及び摺動部材の製造方法 |
WO2020054523A1 (ja) * | 2018-09-11 | 2020-03-19 | 株式会社ダイセル | 初期なじみ用潤滑剤組成物、摺動部材、および摺動部材の製造方法 |
CN111117726A (zh) * | 2019-12-27 | 2020-05-08 | 珠海美合科技股份有限公司 | 一种防锈、环保的润滑油组合物 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023063286A1 (ja) | 2023-04-20 |
CN118382721A (zh) | 2024-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Surya et al. | A silver nanoparticle-anchored UiO-66 (Zr) metal–organic framework (MOF)-based capacitive H 2 S gas sensor | |
Yang et al. | Mesoporous materials–based electrochemical biosensors from enzymatic to nonenzymatic | |
Morris et al. | Chemically modifying the mechanical properties of core–shell liquid metal nanoparticles | |
Wang et al. | In situ polymerized poly (acrylic acid)/alumina nanocomposites for Pb2+ adsorption | |
Smith et al. | Polyaniline-gold nanocomposite system | |
Song et al. | Dynamics and extent of ligand exchange depend on electronic charge of metal nanoparticles | |
Yu et al. | Porous-layered stack of functionalized AuNP–rGO (gold nanoparticles–reduced graphene oxide) nanosheets as a sensing material for the micro-gravimetric detection of chemical vapor | |
Wang et al. | Single-walled carbon nanotube/cobalt phthalocyanine derivative hybrid material: preparation, characterization and its gas sensing properties | |
Ali et al. | Thiol surfactant assembled on gold nanoparticles ion exchanger for screen-printed electrode fabrication. Potentiometric determination of Ce (III) in environmental polluted samples | |
Travlou et al. | N-doped polymeric resin-derived porous carbons as efficient ammonia removal and detection media | |
Clément et al. | Deep Cavitand Self‐Assembled on Au NPs‐MWCNT as Highly Sensitive Benzene Sensing Interface | |
Hossain et al. | Amperometric glucose biosensor based on Pt‐Pd nanoparticles supported by reduced graphene oxide and integrated with glucose oxidase | |
Bai et al. | Hydrophobic interface controlled electrochemical sensing of nitrite based on one step synthesis of polyhedral oligomeric silsesquioxane/reduced graphene oxide nanocomposite | |
Lai et al. | In situ deposition of Prussian blue on mesoporous carbon nanosphere for sensitive electrochemical immunoassay | |
Pietrzak et al. | Comparative study of nitrate all solid state ion-selective electrode based on multiwalled carbon nanotubes-ionic liquid nanocomposite | |
Nugraha et al. | Block‐Copolymer‐Assisted Electrochemical Synthesis of Mesoporous Gold Electrodes: Towards a Non‐Enzymatic Glucose Sensor | |
Gan et al. | Construction of portable electrochemical immunosensors based on graphene hydrogel@ polydopamine for microcystin-LR detection using multi-mesoporous carbon sphere-enzyme labels | |
Meenakshi et al. | Simultaneous voltammetry detection of dopamine and uric acid in pharmaceutical products and urine samples using ferrocene carboxylic acid primed nanoclay modified glassy carbon electrode | |
Zito et al. | Palladium‐Loaded Hierarchical Flower‐like Tin Dioxide Structure as Chemosensor Exhibiting High Ethanol Response in Humid Conditions | |
Farooq et al. | Synthesis of core‐shell magnetic molecularly imprinted polymer for the selective determination of imidacloprid in apple samples | |
Rofouei et al. | A sensitive electrochemical sensor for the determination of carvedilol based on a modified glassy carbon electrode with ordered mesoporous carbon | |
Xuan et al. | A biosensing interface based on Au@ BSA nanocomposite for chiral recognition of propranolol | |
Mirzajani et al. | Construction and evaluation of a graphene oxide functionalized aminopropyltriethoxy silane surface molecularly imprinted polymer potentiometric sensor for dipyridamole detection in urine and pharmaceutical samples | |
Wintzheimer et al. | Indicator supraparticles for smart gasochromic sensor surfaces reacting ultrafast and highly sensitive | |
Li et al. | Facile synthesis of ionic liquid functionalized silica-capped CdTe quantum dots for selective recognition and detection of hemoproteins |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22880981 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2023554512 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22880981 Country of ref document: EP Kind code of ref document: A1 |