WO2023063114A1 - Fender liner and manufacturing method therefor - Google Patents

Fender liner and manufacturing method therefor Download PDF

Info

Publication number
WO2023063114A1
WO2023063114A1 PCT/JP2022/036696 JP2022036696W WO2023063114A1 WO 2023063114 A1 WO2023063114 A1 WO 2023063114A1 JP 2022036696 W JP2022036696 W JP 2022036696W WO 2023063114 A1 WO2023063114 A1 WO 2023063114A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonwoven fabric
fender liner
foam layer
tire
liner according
Prior art date
Application number
PCT/JP2022/036696
Other languages
French (fr)
Japanese (ja)
Inventor
圭介 ▲高▼木
鷹典 下坂
崇志 ▲高▼田
幸宏 藤原
孝太郎 兒玉
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to JP2023555116A priority Critical patent/JPWO2023063114A1/ja
Publication of WO2023063114A1 publication Critical patent/WO2023063114A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/08Front or rear portions
    • B62D25/16Mud-guards or wings; Wheel cover panels
    • B62D25/18Parts or details thereof, e.g. mudguard flaps

Definitions

  • the present disclosure relates to a fender liner and a manufacturing method thereof.
  • the sheet for automobile interior and exterior materials described in Patent Document 1 includes a nonwoven fabric layer and an olefin resin layer laminated on one side of the nonwoven fabric layer.
  • a highly water-repellent olefin resin layer is exposed on the surface, and the surface has a fine uneven surface with a rough feeling, so it is used as an exterior material for automobiles such as a fender liner. In some cases, it is described that snow and ice are less likely to adhere and that the anti-icing properties are excellent.
  • the fine uneven surface of the olefin resin layer is exposed toward the tire of the automobile.
  • Patent Document 1 the olefin resin layer is exposed toward the vehicle tire, but the nonwoven fabric may be exposed toward the vehicle tire.
  • the inventors of the present application have found that the rougher the surface of the non-woven fabric facing the tire, the higher the icing force.
  • One aspect of the present disclosure provides a technique that reduces the icing force and improves the drainage performance when the nonwoven fabric is exposed toward the tires of the vehicle.
  • a fender liner includes a nonwoven fabric exposed toward a tire of a vehicle along the outer circumference of the tire. A surface of the nonwoven fabric facing the tire is smooth.
  • the flow resistance in the thickness direction of the nonwoven fabric measured by the DC method in accordance with ISO 9053-1:2018 is 1.0 ⁇ 10 4 N ⁇ s/m 4 to 5.0 ⁇ 10 5 N ⁇ s/m 4 . be.
  • the surface of the nonwoven fabric facing the tire is smooth, so that the icing force can be reduced, and the flow resistance of the nonwoven fabric is 1. 0 ⁇ 10 4 N ⁇ s/m 4 to 5.0 ⁇ 10 5 N ⁇ s/m 4 can improve drainage performance.
  • FIG. 1 is a cross-sectional view showing the lower structure of a vehicle equipped with a fender liner according to one embodiment.
  • FIG. 2 is a sectional view showing the lower structure of the vehicle before the fender liner of FIG. 1 is mounted.
  • 3 is a cross-sectional view of the fender liner of FIG. 1;
  • FIG. 4 is a cross-sectional view showing a fender liner according to a modification.
  • FIG. 5 is a cross-sectional view showing part of a fender liner according to another modification.
  • Non-woven fabric is defined as follows in Japanese Industrial Standards JIS L0222:2001. A fibrous sheet, web or batt in which the fibers are unidirectionally or randomly oriented and are bonded together by entanglement and/or fusion and/or adhesion. However, paper, woven fabrics, knitted fabrics, tufts and crepe felts are excluded.
  • FIG. 1 the white arrow indicates the traveling direction of the vehicle, with the left side being the front side of the vehicle and the right side being the rear side of the vehicle.
  • the fender liner 1 is arranged inside the tire house 31 .
  • the tire house 31 is a space that accommodates the tire 2 of the vehicle body 3 .
  • the fender liner 1 is curved along the outer periphery of the tire 2 .
  • the fender liner 1 forms a certain or more gap with the tire 2 so as not to contact the tire 2. ⁇
  • the fender liner 1 prevents foreign objects such as pebbles thrown up while the vehicle is running from colliding with the vehicle body 3 .
  • the fender liner 1 absorbs running noise of the vehicle, collision noise of foreign objects, and the like.
  • the fender liner 1 is attached to the vehicle body 3 with fasteners 4 .
  • the fixture 4 includes, for example, pins.
  • the fender liner 1 includes, for example, a nonwoven fabric 11 and a foam layer 12.
  • the nonwoven fabric 11 is exposed toward the tire 2.
  • the foam layer 12 is provided on the side opposite to the tire 2 with respect to the nonwoven fabric 11 .
  • the fender liner 1 may include the nonwoven fabric 11 and may not include the foam layer 12 .
  • the nonwoven fabric 11 has a curved shape along the outer circumference of the tire 2 .
  • the nonwoven fabric 11 has a surface 11a facing the tire 2 and a back surface 11b opposite to the surface 11a.
  • the front surface 11 a is a radially inward surface of the tire 2
  • the back surface 11 b is a radially outward surface of the tire 2 .
  • the surface 11a of the nonwoven fabric 11 is smooth. If the surface 11a of the nonwoven fabric 11 is smooth, the interface between the nonwoven fabric 11 and the ice film is smooth, so the ice film is easily peeled off and the ice adhesion is low. The easier the ice film flakes off, the better the steering of the vehicle.
  • the method of manufacturing the fender liner 1 may include smoothing the surface 11a of the nonwoven fabric 11 in order to reduce the icing force. Smoothing includes, for example, pressing the nonwoven fabric 11 at a temperature of 30° C. or higher and a pressure of 0.1 MPa or higher. The nonwoven fabric 11 is pressed separately from the foam layer 12 , but may be pressed after being laminated with the foam layer 12 .
  • the pressing temperature is preferably 30°C to 260°C, more preferably 80°C to 250°C, even more preferably 100°C to 240°C. If the pressing temperature is 30° C. or higher, the thermoplastic resin contained in the surface 11a of the nonwoven fabric 11 is deformed and the surface 11a becomes smooth.
  • the pressing pressure is preferably 0.1 MPa to 50 MPa.
  • the pressing time is preferably 5 seconds to 5 minutes.
  • the surface 11a of the nonwoven fabric 11 has an Sdr (development area ratio of interface) defined by ISO 25178-2:2012 of, for example, 200 or less. If the Sdr of the surface 11a is 200 or less, the smoothness of the surface 11a is good.
  • the Sdr of the surface 11a is preferably 150 or less, more preferably 100 or less, still more preferably 50 or less, and particularly preferably 25 or less. Sdr of surface 11a is greater than or equal to zero.
  • the surface 11a of the nonwoven fabric 11 has an Sdq (root mean square slope) defined by ISO 25178-2:2012 of, for example, 30 or less. If the Sdq of the surface 11a is 30 or less, the smoothness of the surface 11a is good.
  • the Sdq of the surface 11a is preferably 20 or less, more preferably 15 or less, even more preferably 10 or less. Sdq of surface 11a is greater than or equal to zero.
  • the surface 11a of the nonwoven fabric 11 has an Spc (arithmetic mean curvature at peak points) defined by ISO 25178-2:2012 of, for example, 8000 mm ⁇ 1 or less. If the Spc of the surface 11a is 8000 mm ⁇ 1 or less, the smoothness of the surface 11a is good.
  • the Spc of the surface 11a is preferably 6000 mm -1 or less, more preferably 5000 mm -1 or less, and even more preferably 4000 mm -1 or less.
  • the Spc of the surface 11a is 0 mm ⁇ 1 or more.
  • Sdr, Sdq, and Spc are measured based on ISO 25178-2:2012. Specifically, Sdr, Sdq, and Spc use a laser microscope (for example, Keyence: VK-X200) to measure the surface profile at intervals of 1.346 ⁇ m in an area of 2.8 mm in the horizontal direction and 1.8 mm in the vertical direction. After that, a cross-sectional shape profile is taken in the horizontal and vertical directions passing through the center of the area, plane inclination correction is performed, and the surface properties are analyzed. At this time, cutoff by the S filter and the L filter is not performed. Sdr, Sdq, and Spc are average values when the above operation is repeated four times.
  • a laser microscope for example, Keyence: VK-X200
  • the surface 11a of the nonwoven fabric 11 has an R ⁇ q (root mean square gradient) defined by JIS B0601:2001 of, for example, 20 or less. If R ⁇ q of the surface 11a is 20 or less, the smoothness of the surface 11a is good. R ⁇ q of the surface 11a is preferably 15 or less, more preferably 10 or less, still more preferably 7 or less, and particularly preferably 5 or less. R ⁇ q of the surface 11a is 0 or more. R ⁇ q is measured using a laser microscope (eg, VK-X200 manufactured by Keyence Corporation) at intervals of 1.346 ⁇ m in an area of 2.8 mm in the horizontal direction and 1.8 mm in the vertical direction, and then measuring the center of the area.
  • a laser microscope eg, VK-X200 manufactured by Keyence Corporation
  • a cross-sectional shape profile is taken in the horizontal and vertical directions passing through, plane tilt correction is performed, and line roughness analysis is performed for arbitrary 21 points in the horizontal direction in this area.
  • Line roughness measurement is performed based on JIS B0601:2001 (ISO 4287:1997). At this time, ⁇ s and ⁇ c are not cut off.
  • R ⁇ q is the average value when the above operation is repeated four times.
  • the surface 11a of the nonwoven fabric 11 contains, for example, a water-repellent material.
  • the water-repellent material suppresses the permeation of water into the nonwoven fabric 11, thereby suppressing the weight increase, the generation of mold, and the increase in the icing force. It should be noted that the growth of mold leads to corrosion of non-woven fabrics and vehicles.
  • the water-repellent material includes, for example, polypropylene (PP) or polyethylene (PE).
  • PP polypropylene
  • PE polyethylene
  • the water-repellent material preferably contains PP fibers or PE fibers.
  • the water-repellent material may contain PP powder or PE powder.
  • the form of PP or PE is not particularly limited.
  • the ratio R of the water-repellent material to the materials constituting the nonwoven fabric 11 is, for example, 60% by mass to 100% by mass.
  • the ratio R is 60% by mass or more, the nonwoven fabric 11 has a low water permeability, and weight increase, mold generation, and an increase in ice adhesion can be suppressed.
  • the ratio R is preferably 65% by mass or more, more preferably 70% by mass or more, still more preferably 80% by mass or more, and particularly preferably 90% by mass or more.
  • the surface layer of the nonwoven fabric 11 may contain materials other than water-repellent materials, such as polyethylene terephthalate (PET) fibers. PET fibers improve the strength of the nonwoven fabric 11 .
  • the surface layer of the nonwoven fabric 11 may contain PP fibers or PE fibers and PET fibers.
  • the ratio R in the surface layer of the nonwoven fabric 11 is measured using, for example, a Differential Scanning Calorimeter (DSC). Specifically, the ratio R is obtained from the area ratio S of the endothermic peak.
  • the area ratio S is, for example, 4.6 or more, preferably 5.9 or more, more preferably 10.0 or more, and still more preferably 22.0 or more.
  • the nonwoven fabric 11 may have a multi-layer structure, and in that case, the ratio R may be less than 60% by mass in layers other than the surface layer.
  • the nonwoven fabric 11 may have a two-layer structure and one layer may contain only PET fibers.
  • the nonwoven fabric 11 has a through-thickness flow resistance of 1.0 ⁇ 10 4 N ⁇ s/m 4 to 5.0 ⁇ 10 5 N ⁇ s/m 4 as measured by a DC method in accordance with ISO9053-1:2018. be. If the flow resistance is 5.0 ⁇ 10 5 N ⁇ s/m 4 or less, the drainage property is good, and the increase in weight, the generation of mold, and the increase in icing power can be suppressed.
  • the flow resistance is preferably 1.5 ⁇ 10 4 N ⁇ s/m 4 to 3.0 ⁇ 10 5 N ⁇ s/m 4 , more preferably 2.0 ⁇ 10 4 N ⁇ s/m 4 to It is 1.0 ⁇ 10 5 N ⁇ s/m 4 , more preferably 2.3 ⁇ 10 4 N ⁇ s/m 4 to 9.0 ⁇ 10 4 N ⁇ s/m 4 .
  • (1-W2/W1) is, for example, 0.3 to 1.0. If (1-W2/W1) is 0.3 or more, the drainage property is good, and the increase in weight, the generation of mold, and the increase in icing power can be suppressed.
  • (1-W2/W1) is preferably 0.4 or more, more preferably 0.5 or more, and still more preferably 0.6 or more.
  • (1-W2/W1) is measured using a test piece having a square surface with a side length of 50 mm. After attaching a polyimide sheet to the back surface of the test piece via a double-sided tape, the test piece is immersed in water to soak the test piece in water, and then the water content W1 of the test piece is measured. After that, with the surface of the test piece facing upward and the test piece held horizontally, the test piece is rotated at a rotation speed of 500 rpm for 10 seconds, and then the water content W2 of the test piece is measured.
  • the thickness of the nonwoven fabric 11 is, for example, 0.5 mm to 20 mm. If the thickness of the nonwoven fabric 11 is 0.5 mm or more, the strength of the nonwoven fabric 11 is high.
  • the thickness of the nonwoven fabric 11 is preferably 1.0 mm to 15 mm, more preferably 2.0 mm to 10 mm, still more preferably 3.0 mm to 5 mm.
  • the density of the nonwoven fabric 11 is, for example, 5.0 kg/m 3 to 400 kg/m 3 .
  • the density of the nonwoven fabric 11 is a so-called bulk density, which is measured according to JIS K7222:2005 "Foamed plastics and rubbers-Determination of apparent density”.
  • the density of the nonwoven fabric 11 is preferably 25 kg/m 3 to 350 kg/m 3 , more preferably 50 kg/m 3 to 300 kg/m 3 , still more preferably 75 kg/m 3 to 250 kg/m 3 , particularly preferably 100 kg/m 3 . 3 to 200 kg/m 3 .
  • the fiber diameter of the nonwoven fabric 11 is measured using a laser microscope (eg Olympus: OLS4000). For example, with an objective lens of 20 times and an optical zoom of 1 time, measurement is performed in a region (referred to as region 1) of 0.648 mm in the horizontal direction and 0.647 mm in the vertical direction, and the diameter of the thickest fiber in the region 1 is calculated. The same measurement is performed for 10 arbitrary regions (regions 1 to 10), and the fiber diameter of the nonwoven fabric 11 is the average value of the thickest fiber diameters in each region.
  • a laser microscope eg Olympus: OLS4000
  • the fiber diameter of the nonwoven fabric 11 is, for example, 10 ⁇ m to 60 ⁇ m. If the fiber diameter of the nonwoven fabric 11 is 10 ⁇ m or more, the strength of the nonwoven fabric 11 is high. On the other hand, when the fiber diameter of the nonwoven fabric 11 is 60 ⁇ m or less, the surface of the nonwoven fabric 11 facing the tire tends to be smooth, so that the icing force can be reduced.
  • the fiber diameter of the nonwoven fabric 11 is preferably 20 ⁇ m to 45 ⁇ m.
  • the sound absorption coefficient of the nonwoven fabric 11 is, for example, 0.01 to 0.3.
  • the sound absorption coefficient of the non-woven fabric 11 is measured by cutting out a 10 mm-thick test piece, vertically injecting a 1000 Hz sound wave, and measuring it in accordance with JIS A1405-2:2007 "Measurement of sound absorption coefficient and impedance by acoustic tube".
  • the nonwoven fabric 11 preferably has a sound absorption coefficient of 0.02 to 0.2.
  • a sound absorption coefficient of 1.0 means that no sound is reflected.
  • the foam layer 12 has a three-dimensional network skeleton.
  • the foam layer 12 has a large number of cells inside. A large number of bubbles are connected to each other, and sound waves propagate inside them. At that time, the air vibrates inside the foam layer 12 . Friction is generated between the three-dimensional network skeleton of the foam layer 12 and the air, and sound wave energy is converted into heat energy. As a result, sound is absorbed. The noise level outside the vehicle and the noise level inside the vehicle can be reduced.
  • the foam layer 12 While the nonwoven fabric 11 contains two-dimensionally oriented fibers, the foam layer 12 has a three-dimensionally stretched network skeleton. Therefore, the foam layer 12 can improve the sound absorption coefficient compared to the nonwoven fabric 11 . In addition, the foam layer 12 has a network structure that is three-dimensionally stretched and is continuously connected, so that shape retention can be improved.
  • the foam layer 12 is, for example, a polyurethane foam.
  • a polyurethane foam is a so-called polyurethane foam, and is obtained by foaming and solidifying a resin composition containing a polyisocyanate, a polyol, a catalyst, and a foaming agent.
  • the foaming agent contains water.
  • the foaming agent may contain chlorine. Details of the resin composition will be described later.
  • the resin composition contains polyisocyanate, polyol, catalyst, and blowing agent.
  • the resin composition may further contain additives.
  • the resin composition is usually prepared by mixing a system liquid containing raw materials other than polyisocyanate and polyisocyanate.
  • polyisocyanates examples include toluene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), polymethylene polyphenyl isocyanate (commonly known as crude MDI), xylylene diisocyanate (XDI), isophorone diisocyanate (IPDI) and hexamethylene diisocyanate (HMDI). prepolymer-modified, isocyanurate-modified, urea-modified and carbodiimide-modified polyisocyanates of, but not limited to.
  • TDI may be either 2,4-TDI or 2,6-TDI, or may be a mixture.
  • MDI may be any of 2,2'-MDI, 2,4'-MDI and 4,4'-MDI, or a mixture of two or three of these.
  • polyols examples include polyoxyalkylene polyols and polyester polyols.
  • Water can be used as the foaming agent, but is not limited to this.
  • an inert compound with a low boiling point is preferred.
  • inert compounds include inert gases, and saturated hydrocarbons having a boiling point of 70° C. or less and carbon atoms of 8 or less, in which hydrogen atoms bonded to carbon atoms may be substituted with halogen atoms.
  • the halogen atom is, for example, a chlorine atom or a fluorine atom.
  • saturated hydrocarbons include, but are not limited to, butane, pentane, hexane, dichloromethane (methylene chloride), trichloroethane and various Freon compounds.
  • a foaming agent may be used individually by 1 type, and may use 2 or more types together.
  • the catalyst is at least one selected from the group consisting of amine-based catalysts and tin-based catalysts.
  • One type of catalyst may be used alone, or two or more types may be used in combination.
  • the amine-based catalysts include triethylenediamine, bis(2-dimethylaminoethyl)ether, N,N,N',N'-tetramethylhexamethylenediamine, N,N-dimethylaminoethoxyethoxyethanol, N,N -dimethylamino-6-hexanol, N,N-dimethylaminoethoxyethanol, a compound obtained by adding 2 moles of ethylene oxide to N,N-dimethylaminoethoxyethanol, and 5-(N,N-dimethyl)amino-3-methyl -1-pentanol, but not limited to these.
  • tin-based catalysts examples include tin 2-ethylhexanoate, di-n-butyltin oxide, di-n-butyltin dilaurate, di-n-butyltin diacetate, di-n-octyltin oxide, and di-n-octyl. but are not limited to tin dilaurate, monobutyltin trichloride, di-n-butyltin dialkylmercaptan and di-n-octyltin dialkylmercaptan.
  • a foam stabilizer may be included as an additive.
  • foam stabilizers include, but are not limited to, silicone foam stabilizers or fluorine-containing compound foam stabilizers.
  • a foam stabilizer may be used individually by 1 type, and may use 2 or more types together.
  • a cross-linking agent may be included as an additive.
  • a compound having two or more active hydrogen-containing groups selected from hydroxyl groups, primary amino groups and secondary amino groups can be selected.
  • cross-linking agents include ethylene glycol, propylene glycol, 1,4-butanediol, neopentyl glycol, 1,6-hexanediol, diethylene glycol, triethylene glycol, dipropylene glycol, glycerin, trimethylolpropane, pentaerythritol, and diglycerin.
  • cross-linking agent polyoxyalkylene polyols having a molecular weight/number of hydroxyl groups of less than 500 can also be used.
  • One type of crosslinking agent may be used alone, or two or more types may be used in combination.
  • Additives other than those mentioned above include anti-aging agents such as emulsifiers, antioxidants and ultraviolet absorbers, fillers such as calcium carbonate and barium sulfate, plasticizers, colorants, flame retardants, anti-mold agents and foam breakers. but not limited thereto, and additives conventionally used in polyurethane foams can be used.
  • the foam layer 12 is a polyurethane foam in this embodiment, but may be a polyacrylic, melamine, rubber, polyolefin, or polyimide foam. These materials, including polyurethane, are lightweight and excellent in shape retention.
  • the thickness of the foam layer 12 is, for example, 3 mm to 30 mm, preferably 4 mm to 25 mm, more preferably 5 mm to 20 mm, from the viewpoint of achieving both lightness and sound absorption.
  • the density of the foam layer 12 is, for example, 20 kg/m 3 to 140 kg/m 3 from the viewpoint of compatibility between lightness and sound absorption.
  • the density of the foam layer 12 is a so-called bulk density, which is measured in accordance with JIS K7222:2005 "Foamed plastics and rubbers-Determination of apparent density-".
  • the density of the foam layer 12 is preferably 30 kg/m 3 to 130 kg/m 3 , more preferably 55 kg/m 3 to 120 kg/m 3 .
  • the sound absorption coefficient of the foam layer 12 is, for example, 0.4 to 1.0.
  • the sound absorption coefficient of the foam layer 12 is measured according to JIS A1405-2:2007 "Measurement of sound absorption coefficient and impedance by acoustic tube” by cutting out a test piece with a thickness of 10 mm and vertically irradiating a sound wave of 1000 Hz.
  • the foam layer 12 preferably has a sound absorption coefficient of 0.4 to 1.0.
  • a sound absorption coefficient of 1.0 means that no sound is reflected.
  • the foam layer 12 is superimposed on the nonwoven fabric 11 after foaming outside the nonwoven fabric 11, for example. Between the nonwoven fabric 11 and the foam layer 12, there is a dividing surface that divides the nonwoven fabric 11 and the foam layer 12. ⁇ The nonwoven fabric 11 and the foam layer 12 are separable at the dividing plane. Therefore, the separation property between the nonwoven fabric 11 and the foam layer 12 can be improved, and the recycling rate of the nonwoven fabric 11 can be improved.
  • a mixed layer 13 in which part of the nonwoven fabric 11 and part of the foam layer 12 are mixed may be provided.
  • the mixed layer 13 is formed by injecting a resin composition into the inner space of the mold with the nonwoven fabric placed in a part of the inner space of the mold, impregnating the nonwoven fabric with the resin composition, and forming the resin composition inside the nonwoven fabric. obtained by foaming
  • the foam layer 12 is provided on the back surface 11 b of the nonwoven fabric 11 .
  • the cause of the breakage is, for example, the peeling off of the ice film.
  • the foam layer 12 is provided only on part of the back surface 11b of the nonwoven fabric 11, for example.
  • the foam layer 12 can be fitted between the plurality of mounting portions 32 of the vehicle body 3 and the nonwoven fabric 11 can be fixed to each mounting portion 32 with the fixture 4 in a state in which the nonwoven fabric 11 is in contact with each mounting portion 32 . Therefore, even if the foam layer 12 is simply placed on the nonwoven fabric 11 without fixing the foam layer 12 to the nonwoven fabric 11 , displacement of the foam layer 12 with respect to the vehicle body 3 can be suppressed. Moreover, since the foam layer 12 is simply placed on the nonwoven fabric 11, the foam layer 12 and the nonwoven fabric 11 can be easily separated.
  • the foam layer 12 may include a first foam layer 121 and a second foam layer 122 .
  • the first foam layer 121 is provided on at least part of the back surface 11 b of the nonwoven fabric 11 .
  • the second foam layer 122 is provided on at least part of the back surface 121 b of the first foam layer 121 .
  • the back surface 121b is a radially outward surface of the tire 2 .
  • the second foam layer 122 is provided on the vehicle body 3 .
  • the displacement of the foam layer 12 with respect to the vehicle body 3 can be further suppressed by fitting the recess 33 of the foam layer 12 .
  • the first foam layer 121 and the second foam layer 122 for example, have the same composition and are foamed simultaneously inside the same mold. That is, the first foam layer 121 and the second foam layer 122 are integrated. By integrating the first foam layer 121 and the second foam layer 122, the handleability of the foam layer 12 can be improved.
  • first foam layer 121 and the second foam layer 122 may have different compositions and may have different sound absorption characteristics (for example, different sound absorption peak frequencies). As a result, the noise level can be reduced in a wide frequency band. Also, the first foam layer 121 and the second foam layer 122 may be separately molded inside different molds.
  • the second foam layer 122 may be provided on the entire back surface 121b of the first foam layer 121.
  • the sound absorption coefficient of the foam layer 12 can be improved.
  • the first foam layer 121 may be provided on the entire back surface 11b of the nonwoven fabric 11.
  • the foam layer 12 covers the entire nonwoven fabric 11 , so that the sound absorption coefficient can be improved over the entire fender liner 1 .
  • the second foam layer 122 is fitted between the plurality of mounting portions 32 of the vehicle body 3 , and the first foam layer 121 is in contact with each mounting portion 32 .
  • the nonwoven fabric 11 can be fixed to the portion 32 . Therefore, even if the foam layer 12 is simply placed on the nonwoven fabric 11 without fixing the foam layer 12 to the nonwoven fabric 11 , displacement of the foam layer 12 with respect to the vehicle body 3 can be suppressed. Moreover, since the foam layer 12 is simply placed on the nonwoven fabric 11, the foam layer 12 and the nonwoven fabric 11 can be easily separated.
  • the foam layer 12 may further include a third foam layer 123, as shown in FIG.
  • the third foam layer 123 is provided on at least part of the back surface 122 b of the second foam layer 122 .
  • the back surface 122b is a radially outward surface of the tire 2 .
  • by fitting the third foam layer 123 into the recessed portion 33 of the vehicle body 3 displacement of the foam layer 12 with respect to the vehicle body 3 can be further suppressed.
  • the first foam layer 121, the second foam layer 122, and the third foam layer 123 for example, have the same composition and are foamed simultaneously inside the same mold. That is, the first foam layer 121, the second foam layer 122, and the third foam layer 123 are integrated. By integrating the first foam layer 121, the second foam layer 122, and the third foam layer 123, the handleability of the foam layer 12 can be improved.
  • first foam layer 121 and the second foam layer 122 and the third foam layer 123 may have different compositions and may have different sound absorption characteristics (for example, different sound absorption peak frequencies). As a result, the noise level can be reduced in a wide frequency band. Also, the first foam layer 121, the second foam layer 122, and the third foam layer 123 may be separately molded inside different molds.
  • the third foam layer 123 may be provided on the entire back surface 122b of the second foam layer 122.
  • the second foam layer 122 and the third foam layer 123 have different densities, so that the sound absorption coefficient of the foam layer 12 can be improved.
  • Examples 1 to 11 below are working examples, and examples 12 to 14 are comparative examples.
  • Experimental data for Examples 1-14 are shown in Tables 1-2.
  • Example 3 the same type of nonwoven fabric as in Example 1 was hot pressed.
  • Example 4 the same type of nonwoven fabric as in Example 2 was hot pressed.
  • Examples 8 and 9 the same type of nonwoven fabric as in Example 7 was hot pressed under different conditions.
  • Example 11 the same type of nonwoven fabric as in Example 12 was hot pressed.
  • the surfaces of the nonwoven fabrics of Examples 1 to 11 and 13 have an Sdr of 200 or less, an Sdq of 30 or less, and an Spc was 8000 mm ⁇ 1 or less, and R ⁇ q was 20 or less.
  • the surfaces of the nonwoven fabrics of Examples 1 to 11 and 13 were excellent in smoothness, had an ice adhesion force of less than 40 N, and were excellent in anti-icing properties.
  • the surfaces of the nonwoven fabrics of Examples 12 and 14 had poor smoothness, an ice-adhesion force of 40 N or more, and poor anti-icing properties.
  • the nonwoven fabrics of Examples 1 to 12 and 14 had a flow resistance of 1.0 ⁇ 10 4 in the thickness direction measured by the DC method in accordance with ISO9053-1:2018. It was N ⁇ s/m 4 to 5.0 ⁇ 10 5 N ⁇ s/m 4 and was excellent in drainage.
  • the nonwoven fabric of Example 13 had a flow resistance exceeding 5.0 ⁇ 10 5 N ⁇ s/m 4 and was poor in drainage.
  • a fender liner comprising a non-woven fabric exposed toward a vehicle tire along the outer circumference of the tire, The surface of the nonwoven fabric facing the tire is smooth, The flow resistance in the thickness direction of the nonwoven fabric measured by the DC method in accordance with ISO 9053-1:2018 is 1.0 ⁇ 10 4 N ⁇ s/m 4 to 5.0 ⁇ 10 5 N ⁇ s/m 4 . Yes, a fender liner.
  • a fender liner The fender liner according to appendix 1, wherein the surface of the nonwoven fabric has an Sdr (developed area ratio of interface) of 200 or less as defined in ISO 25178-2:2012.
  • Sdr developed area ratio of interface
  • Appendix 4 4.
  • Appendix 5 5.
  • Appendix 6 6.
  • the water repellent material comprises polypropylene or polyethylene.
  • the water repellent material comprises polypropylene fibers or polyethylene fibers.
  • the water-repellent material accounts for 60% by mass to 100% by mass in the range within 0.2 mm in depth from the surface of the nonwoven fabric. Fender liner described in.
  • a method for manufacturing a fender liner comprising a nonwoven fabric exposed toward a tire of a vehicle along the outer periphery of the tire, the method comprising: A method of manufacturing a fender liner, comprising smoothing the tire facing surface of the nonwoven fabric.
  • the smoothing comprises pressing the nonwoven fabric at a temperature of 30° C. or higher and a pressure of 0.1 MPa or higher.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

This fender liner is configured so that a non-woven fabric, which is exposed towards a tire of a vehicle, is provided along the periphery of the tire. The surface of the non-woven fabric which faces the tire is smooth. The thickness-direction flow resistance of the non-woven fabric, as measured using a direct flow method in accordance with ISO 9053-1:2018, is 1.0×104N·s/m4~5.0×105N·s/m4.

Description

フェンダーライナー及びその製造方法Fender liner and its manufacturing method
 本開示は、フェンダーライナー及びその製造方法に関する。 The present disclosure relates to a fender liner and a manufacturing method thereof.
 特許文献1に記載の自動車用内外装材用シートは、不織布層と、不織布層の一方の面に積層されたオレフィン樹脂層と、を備える。特許文献1の段落0058には、撥水性の高いオレフィン樹脂層が表面に露出しており、表面がざらざら感のある微細凹凸面になっているので、フェンダーライナー等の自動車用外装材として使用する場合には、雪や氷が固着し難くて着氷防止性に優れている旨記載されている。特許文献1では、オレフィン樹脂層の微細凹凸面が自動車のタイヤに向けて露出している。 The sheet for automobile interior and exterior materials described in Patent Document 1 includes a nonwoven fabric layer and an olefin resin layer laminated on one side of the nonwoven fabric layer. In paragraph 0058 of Patent Document 1, a highly water-repellent olefin resin layer is exposed on the surface, and the surface has a fine uneven surface with a rough feeling, so it is used as an exterior material for automobiles such as a fender liner. In some cases, it is described that snow and ice are less likely to adhere and that the anti-icing properties are excellent. In Patent Document 1, the fine uneven surface of the olefin resin layer is exposed toward the tire of the automobile.
日本国特許第6757987号公報Japanese Patent No. 6757987
 特許文献1ではオレフィン樹脂層が車両のタイヤに向けて露出しているが、不織布が車両のタイヤに向けて露出していることがある。後者の場合、前者の場合とは異なり、不織布のタイヤに対向する表面が荒れているほど、着氷力が高くなってしまうことを本願発明者は見出した。 In Patent Document 1, the olefin resin layer is exposed toward the vehicle tire, but the nonwoven fabric may be exposed toward the vehicle tire. In the latter case, unlike the former case, the inventors of the present application have found that the rougher the surface of the non-woven fabric facing the tire, the higher the icing force.
 本開示の一態様は、不織布が車両のタイヤに向けて露出している場合に、着氷力を低下すると共に、排水性を向上する、技術を提供する。 One aspect of the present disclosure provides a technique that reduces the icing force and improves the drainage performance when the nonwoven fabric is exposed toward the tires of the vehicle.
 本開示の一態様に係るフェンダーライナーは、車両のタイヤに向けて露出する不織布を前記タイヤの外周に沿って備える。前記不織布の前記タイヤに対向する表面が平滑である。前記不織布のISO 9053-1:2018に準拠した直流法で測定した厚さ方向の流れ抵抗が1.0×10N・s/m~5.0×10N・s/mである。 A fender liner according to one aspect of the present disclosure includes a nonwoven fabric exposed toward a tire of a vehicle along the outer circumference of the tire. A surface of the nonwoven fabric facing the tire is smooth. The flow resistance in the thickness direction of the nonwoven fabric measured by the DC method in accordance with ISO 9053-1:2018 is 1.0×10 4 N·s/m 4 to 5.0×10 5 N·s/m 4 . be.
 本開示の一態様によれば、不織布が車両のタイヤに向けて露出している場合に、不織布のタイヤに対向する表面が平滑であることで着氷力を低下でき、不織布の流れ抵抗が1.0×10N・s/m~5.0×10N・s/mであることで排水性を向上できる。 According to one aspect of the present disclosure, when the nonwoven fabric is exposed toward the tire of the vehicle, the surface of the nonwoven fabric facing the tire is smooth, so that the icing force can be reduced, and the flow resistance of the nonwoven fabric is 1. 0×10 4 N·s/m 4 to 5.0×10 5 N·s/m 4 can improve drainage performance.
図1は、一実施形態に係るフェンダーライナーが搭載された車両の下部構造を示す断面図である。FIG. 1 is a cross-sectional view showing the lower structure of a vehicle equipped with a fender liner according to one embodiment. 図2は、図1のフェンダーライナーが搭載される前の車両の下部構造を示す断面図である。FIG. 2 is a sectional view showing the lower structure of the vehicle before the fender liner of FIG. 1 is mounted. 図3は、図1のフェンダーライナーを示す断面図である。3 is a cross-sectional view of the fender liner of FIG. 1; FIG. 図4は、変形例に係るフェンダーライナーを示す断面図である。FIG. 4 is a cross-sectional view showing a fender liner according to a modification. 図5は、別の変形例に係るフェンダーライナーの一部を示す断面図である。FIG. 5 is a cross-sectional view showing part of a fender liner according to another modification.
 以下、本開示の実施形態について図面を参照して説明する。なお、各図面において同一の又は対応する構成には同一の符号を付し、説明を省略することがある。また、明細書中、数値範囲を示す「~」は、その前後に記載された数値を下限値及び上限値として含むことを意味する。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In addition, in each drawing, the same reference numerals are given to the same or corresponding configurations, and explanations thereof may be omitted. In the specification, "-" indicating a numerical range means that the numerical values before and after it are included as lower and upper limits.
 不織布とは、日本工業規格JIS L0222:2001で以下のように定義されている。繊維シート,ウェブ又はバットで,繊維が一方向又はランダムに配向しており,交絡,及び/又は融着,及び/又は接着によって繊維間が結合されたもの。ただし,紙,織物,編物,タフト及び縮じゅう(絨)フェルトを除く。 Non-woven fabric is defined as follows in Japanese Industrial Standards JIS L0222:2001. A fibrous sheet, web or batt in which the fibers are unidirectionally or randomly oriented and are bonded together by entanglement and/or fusion and/or adhesion. However, paper, woven fabrics, knitted fabrics, tufts and crepe felts are excluded.
 先ず、図1~図3を参照して、一実施形態に係るフェンダーライナー1について説明する。図1及び図2において、白抜き矢印は車両の進行方向であり、左方が車両前方であり、右方が車両後方である。 First, a fender liner 1 according to one embodiment will be described with reference to FIGS. 1 to 3. FIG. In FIGS. 1 and 2, the white arrow indicates the traveling direction of the vehicle, with the left side being the front side of the vehicle and the right side being the rear side of the vehicle.
 フェンダーライナー1は、タイヤハウス31の内部に配置される。タイヤハウス31とは、車体3のタイヤ2を収容する空間である。フェンダーライナー1は、タイヤ2の外周に沿って湾曲状に配置される。フェンダーライナー1は、タイヤ2と接触しないように、タイヤ2との間に一定以上の間隙を形成する。 The fender liner 1 is arranged inside the tire house 31 . The tire house 31 is a space that accommodates the tire 2 of the vehicle body 3 . The fender liner 1 is curved along the outer periphery of the tire 2 . The fender liner 1 forms a certain or more gap with the tire 2 so as not to contact the tire 2.例文帳に追加
 フェンダーライナー1は、車両の走行時に跳ね上げられた小石等の異物が車体3に衝突するのを防止する。また、フェンダーライナー1は、車両の走行音、及び異物の衝突音などを吸収する。フェンダーライナー1は、固定具4で車体3に対して取り付けられる。固定具4は、例えばピンなどを含む。 The fender liner 1 prevents foreign objects such as pebbles thrown up while the vehicle is running from colliding with the vehicle body 3 . In addition, the fender liner 1 absorbs running noise of the vehicle, collision noise of foreign objects, and the like. The fender liner 1 is attached to the vehicle body 3 with fasteners 4 . The fixture 4 includes, for example, pins.
 フェンダーライナー1は、例えば、不織布11と、発泡層12と、を備える。不織布11は、タイヤ2に向けて露出している。発泡層12は、不織布11を基準としてタイヤ2とは反対側に設けられる。なお、フェンダーライナー1は、不織布11を備えればよく、発泡層12を備えなくてもよい。 The fender liner 1 includes, for example, a nonwoven fabric 11 and a foam layer 12. The nonwoven fabric 11 is exposed toward the tire 2. - 特許庁The foam layer 12 is provided on the side opposite to the tire 2 with respect to the nonwoven fabric 11 . Note that the fender liner 1 may include the nonwoven fabric 11 and may not include the foam layer 12 .
 不織布11は、タイヤ2の外周に沿って湾曲状の形状を有する。不織布11は、タイヤ2に対向する表面11aと、表面11aとは反対向きの裏面11bと、を有する。表面11aはタイヤ2の径方向内向きの面であり、裏面11bはタイヤ2の径方向外向きの面である。 The nonwoven fabric 11 has a curved shape along the outer circumference of the tire 2 . The nonwoven fabric 11 has a surface 11a facing the tire 2 and a back surface 11b opposite to the surface 11a. The front surface 11 a is a radially inward surface of the tire 2 , and the back surface 11 b is a radially outward surface of the tire 2 .
 不織布11の表面11aは、平滑である。不織布11の表面11aが平滑であれば、不織布11と氷の膜の界面が平滑であるので、氷の膜が剥落しやすく、着氷力が低い。氷の膜が剥落しやすいほど、車両の操舵性が良い。 The surface 11a of the nonwoven fabric 11 is smooth. If the surface 11a of the nonwoven fabric 11 is smooth, the interface between the nonwoven fabric 11 and the ice film is smooth, so the ice film is easily peeled off and the ice adhesion is low. The easier the ice film flakes off, the better the steering of the vehicle.
 フェンダーライナー1の製造方法は、着氷力を低減すべく、不織布11の表面11aを平滑化することを含んでもよい。平滑化することは、例えば、不織布11を30℃以上の温度で0.1MPa以上の圧力でプレスすることを含む。不織布11は、発泡層12とは別に単独でプレスされるが、発泡層12と積層された後にプレスされてもよい。 The method of manufacturing the fender liner 1 may include smoothing the surface 11a of the nonwoven fabric 11 in order to reduce the icing force. Smoothing includes, for example, pressing the nonwoven fabric 11 at a temperature of 30° C. or higher and a pressure of 0.1 MPa or higher. The nonwoven fabric 11 is pressed separately from the foam layer 12 , but may be pressed after being laminated with the foam layer 12 .
 プレス温度は、好ましくは30℃~260℃、より好ましくは80℃~250℃、さらに好ましくは100℃~240℃である。プレス温度が30℃以上であれば、不織布11の表面11aに含まれる熱可塑性樹脂が変形し、表面11aが平滑になる。プレス圧力は、好ましくは0.1MPa~50MPaである。プレス時間は、好ましくは5秒~5分である。 The pressing temperature is preferably 30°C to 260°C, more preferably 80°C to 250°C, even more preferably 100°C to 240°C. If the pressing temperature is 30° C. or higher, the thermoplastic resin contained in the surface 11a of the nonwoven fabric 11 is deformed and the surface 11a becomes smooth. The pressing pressure is preferably 0.1 MPa to 50 MPa. The pressing time is preferably 5 seconds to 5 minutes.
 不織布11の表面11aは、ISO 25178-2:2012で規定されるSdr(界面の展開面積比)が例えば200以下である。表面11aのSdrが200以下であれば、表面11aの平滑性が良い。表面11aのSdrは、好ましくは150以下であり、より好ましくは100以下であり、さらに好ましくは50以下であり、特に好ましくは25以下である。表面11aのSdrは、ゼロ以上である。 The surface 11a of the nonwoven fabric 11 has an Sdr (development area ratio of interface) defined by ISO 25178-2:2012 of, for example, 200 or less. If the Sdr of the surface 11a is 200 or less, the smoothness of the surface 11a is good. The Sdr of the surface 11a is preferably 150 or less, more preferably 100 or less, still more preferably 50 or less, and particularly preferably 25 or less. Sdr of surface 11a is greater than or equal to zero.
 不織布11の表面11aは、ISO 25178-2:2012で規定されるSdq(二乗平均平方根傾斜)が例えば30以下である。表面11aのSdqが30以下であれば、表面11aの平滑性が良い。表面11aのSdqは、好ましくは20以下であり、より好ましくは15以下であり、さらに好ましくは10以下である。表面11aのSdqは、ゼロ以上である。 The surface 11a of the nonwoven fabric 11 has an Sdq (root mean square slope) defined by ISO 25178-2:2012 of, for example, 30 or less. If the Sdq of the surface 11a is 30 or less, the smoothness of the surface 11a is good. The Sdq of the surface 11a is preferably 20 or less, more preferably 15 or less, even more preferably 10 or less. Sdq of surface 11a is greater than or equal to zero.
 不織布11の表面11aは、ISO 25178-2:2012で規定されるSpc(山頂点の算術平均曲率)が例えば8000mm-1以下である。表面11aのSpcが8000mm-1以下であれば、表面11aの平滑性が良い。表面11aのSpcは、好ましくは6000mm-1以下であり、より好ましくは5000mm-1以下であり、さらに好ましくは4000mm-1以下である。表面11aのSpcは、0mm-1以上である。 The surface 11a of the nonwoven fabric 11 has an Spc (arithmetic mean curvature at peak points) defined by ISO 25178-2:2012 of, for example, 8000 mm −1 or less. If the Spc of the surface 11a is 8000 mm −1 or less, the smoothness of the surface 11a is good. The Spc of the surface 11a is preferably 6000 mm -1 or less, more preferably 5000 mm -1 or less, and even more preferably 4000 mm -1 or less. The Spc of the surface 11a is 0 mm −1 or more.
 Sdr、Sdq、Spcは、ISO 25178-2:2012に基づいて測定する。具体的に、Sdr、Sdq、Spcは、レーザー顕微鏡(例えばキーエンス社製:VK-X200)を用いて、水平方向2.8mm、垂直方向1.8mmの領域で1.346μm間隔で表面プロファイルを測定したのち、領域内の中心を通る水平垂直方向に断面形状プロファイルをとって平面傾斜補正を行い、表面性状解析を行うことで求める。このとき、SフィルターおよびLフィルターによるカットオフは行わない。Sdr、Sdq、Spcは、上記の操作を4回繰り返したときの平均値である。 Sdr, Sdq, and Spc are measured based on ISO 25178-2:2012. Specifically, Sdr, Sdq, and Spc use a laser microscope (for example, Keyence: VK-X200) to measure the surface profile at intervals of 1.346 μm in an area of 2.8 mm in the horizontal direction and 1.8 mm in the vertical direction. After that, a cross-sectional shape profile is taken in the horizontal and vertical directions passing through the center of the area, plane inclination correction is performed, and the surface properties are analyzed. At this time, cutoff by the S filter and the L filter is not performed. Sdr, Sdq, and Spc are average values when the above operation is repeated four times.
 不織布11の表面11aは、JIS B0601:2001で規定されるRΔq(二乗平均平方根傾斜)が例えば20以下である。表面11aのRΔqが20以下であれば、表面11aの平滑性が良い。表面11aのRΔqは、好ましくは15以下であり、より好ましくは10以下であり、さらに好ましくは7以下であり、特に好ましくは5以下である。表面11aのRΔqは、0以上である。RΔqは、レーザー顕微鏡(例えばキーエンス社製:VK-X200)を用いて、水平方向2.8mm、垂直方向1.8mmの領域で1.346μm間隔で表面プロファイルを測定したのち、領域内の中心を通る水平垂直方向に断面形状プロファイルをとって平面傾斜補正を行い、線粗さ解析をこの領域における水平方向に任意の21点について行うことで求める。線粗さ測定は、JIS B0601:2001(ISO 4287:1997)に基づいて行う。このとき、λsおよびλcのカットオフは行わない。RΔqは、上記の操作を4回繰り返したときの平均値である。 The surface 11a of the nonwoven fabric 11 has an RΔq (root mean square gradient) defined by JIS B0601:2001 of, for example, 20 or less. If RΔq of the surface 11a is 20 or less, the smoothness of the surface 11a is good. RΔq of the surface 11a is preferably 15 or less, more preferably 10 or less, still more preferably 7 or less, and particularly preferably 5 or less. RΔq of the surface 11a is 0 or more. RΔq is measured using a laser microscope (eg, VK-X200 manufactured by Keyence Corporation) at intervals of 1.346 μm in an area of 2.8 mm in the horizontal direction and 1.8 mm in the vertical direction, and then measuring the center of the area. A cross-sectional shape profile is taken in the horizontal and vertical directions passing through, plane tilt correction is performed, and line roughness analysis is performed for arbitrary 21 points in the horizontal direction in this area. Line roughness measurement is performed based on JIS B0601:2001 (ISO 4287:1997). At this time, λs and λc are not cut off. RΔq is the average value when the above operation is repeated four times.
 不織布11の表面11aは、例えば撥水性素材を含む。撥水性素材は、不織布11に対する水の浸透を抑制することで、重量増加、カビの発生、及び着氷力の増加を抑制する。なお、カビの発生は、不織布や車両の腐食につながる。 The surface 11a of the nonwoven fabric 11 contains, for example, a water-repellent material. The water-repellent material suppresses the permeation of water into the nonwoven fabric 11, thereby suppressing the weight increase, the generation of mold, and the increase in the icing force. It should be noted that the growth of mold leads to corrosion of non-woven fabrics and vehicles.
 撥水性素材は、例えばポリプロピレン(PP)又はポリエチレン(PE)を含む。撥水性素材は、好ましくはPP繊維、又はPE繊維を含む。なお、撥水性素材は、PP粉末、又はPE粉末を含んでもよい。PP又はPEの形態は、特に限定されない。 The water-repellent material includes, for example, polypropylene (PP) or polyethylene (PE). The water-repellent material preferably contains PP fibers or PE fibers. The water-repellent material may contain PP powder or PE powder. The form of PP or PE is not particularly limited.
 不織布11の表面11aから深さ0.2mm以内の表層において、不織布11を構成する素材に占める撥水性素材の割合Rは、例えば60質量%~100質量%である。割合Rが60質量%以上であれば、不織布11に対する水の浸透性が低く、重量増加、カビの発生、及び着氷力の増加を抑制できる。割合Rは、好ましくは65質量%以上であり、より好ましくは70質量%以上であり、さらに好ましくは80質量%以上であり、特に好ましくは90質量%以上である。 In the surface layer within a depth of 0.2 mm from the surface 11a of the nonwoven fabric 11, the ratio R of the water-repellent material to the materials constituting the nonwoven fabric 11 is, for example, 60% by mass to 100% by mass. When the ratio R is 60% by mass or more, the nonwoven fabric 11 has a low water permeability, and weight increase, mold generation, and an increase in ice adhesion can be suppressed. The ratio R is preferably 65% by mass or more, more preferably 70% by mass or more, still more preferably 80% by mass or more, and particularly preferably 90% by mass or more.
 不織布11の表層は、撥水性素材以外の素材を含んでもよく、例えばポリエチレンテレフタレート(PET)繊維を含んでもよい。PET繊維は、不織布11の強度を向上する。不織布11の表層は、PP繊維又はPE繊維と、PET繊維とを含んでもよい。 The surface layer of the nonwoven fabric 11 may contain materials other than water-repellent materials, such as polyethylene terephthalate (PET) fibers. PET fibers improve the strength of the nonwoven fabric 11 . The surface layer of the nonwoven fabric 11 may contain PP fibers or PE fibers and PET fibers.
 不織布11の表層における割合Rは、例えば示差走査熱量計(Differential Scanning Calorimeter:DSC)を用いて測定する。具体的には、吸熱ピークの面積比Sから割合Rを求める。吸熱ピークの面積比Sは、20℃から10℃/minで昇温した際の吸熱ピークの面積S1(100℃~180℃)と吸熱ピークの面積S2(200℃~270℃)との比(S=S1/S2)である。割合Rと面積比Sには、非線形の関係がある。例えば、割合Rが65質量%のときに面積比Sは4.6であり、割合Rが80質量%のときに面積比Sは10.0である。面積比Sは、例えば4.6以上であり、好ましくは5.9以上であり、より好ましくは10.0以上であり、さらに好ましくは22.0以上である。 The ratio R in the surface layer of the nonwoven fabric 11 is measured using, for example, a Differential Scanning Calorimeter (DSC). Specifically, the ratio R is obtained from the area ratio S of the endothermic peak. The endothermic peak area ratio S is the ratio ( S=S1/S2). There is a nonlinear relationship between the ratio R and the area ratio S. For example, when the ratio R is 65% by mass, the area ratio S is 4.6, and when the ratio R is 80% by mass, the area ratio S is 10.0. The area ratio S is, for example, 4.6 or more, preferably 5.9 or more, more preferably 10.0 or more, and still more preferably 22.0 or more.
 なお、不織布11は複数層構造を有してもよく、その場合、上記表層以外の層では割合Rは60質量%未満であってもよい。例えば不織布11は二層構造を有してもよく、1つの層はPET繊維のみを含んでもよい。 In addition, the nonwoven fabric 11 may have a multi-layer structure, and in that case, the ratio R may be less than 60% by mass in layers other than the surface layer. For example, the nonwoven fabric 11 may have a two-layer structure and one layer may contain only PET fibers.
 不織布11は、ISO9053-1:2018に準拠した直流法で測定した厚さ方向の流れ抵抗が1.0×10N・s/m~5.0×10N・s/mである。流れ抵抗が5.0×10N・s/m以下であれば、排水性が良く、重量増加、カビの発生、及び着氷力の増加を抑制できる。流れ抵抗は、好ましくは1.5×10N・s/m~3.0×10N・s/mであり、より好ましくは2.0×10N・s/m~1.0×10N・s/mであり、さらに好ましくは2.3×10N・s/m~9.0×10N・s/mである。 The nonwoven fabric 11 has a through-thickness flow resistance of 1.0×10 4 N·s/m 4 to 5.0×10 5 N·s/m 4 as measured by a DC method in accordance with ISO9053-1:2018. be. If the flow resistance is 5.0×10 5 N·s/m 4 or less, the drainage property is good, and the increase in weight, the generation of mold, and the increase in icing power can be suppressed. The flow resistance is preferably 1.5×10 4 N·s/m 4 to 3.0×10 5 N·s/m 4 , more preferably 2.0×10 4 N·s/m 4 to It is 1.0×10 5 N·s/m 4 , more preferably 2.3×10 4 N·s/m 4 to 9.0×10 4 N·s/m 4 .
 不織布11は、遠心脱水前の含水量(g)をW1とし、遠心脱水後の含水量(g)をW2とすると、(1-W2/W1)が例えば0.3~1.0である。(1-W2/W1)が0.3以上であれば、排水性が良く、重量増加、カビの発生、及び着氷力の増加を抑制できる。(1-W2/W1)は、好ましくは0.4以上であり、より好ましくは0.5以上であり、さらに好ましくは0.6以上である。 For the nonwoven fabric 11, if W1 is the water content (g) before centrifugal dehydration and W2 is the water content (g) after centrifugal dehydration, (1-W2/W1) is, for example, 0.3 to 1.0. If (1-W2/W1) is 0.3 or more, the drainage property is good, and the increase in weight, the generation of mold, and the increase in icing power can be suppressed. (1-W2/W1) is preferably 0.4 or more, more preferably 0.5 or more, and still more preferably 0.6 or more.
 (1-W2/W1)の測定には、一辺の長さが50mmの正方形の表面を有する試験片を用いる。試験片の裏面に両面テープを介してポリイミドシートを貼った後、試験片を浸水させて試験片に水を浸み込ませ、続いて試験片の含水量W1を測定する。その後、試験片の表面を上に向けて試験片を水平に保持した状態で、試験片を500rpmの回転数で10秒間回転させ、続いて試験片の含水量W2を測定する。 (1-W2/W1) is measured using a test piece having a square surface with a side length of 50 mm. After attaching a polyimide sheet to the back surface of the test piece via a double-sided tape, the test piece is immersed in water to soak the test piece in water, and then the water content W1 of the test piece is measured. After that, with the surface of the test piece facing upward and the test piece held horizontally, the test piece is rotated at a rotation speed of 500 rpm for 10 seconds, and then the water content W2 of the test piece is measured.
 不織布11の厚みは、例えば0.5mm~20mmである。不織布11の厚みが0.5mm以上であれば、不織布11の強度が高い。不織布11の厚みは、好ましくは1.0mm~15mmであり、より好ましくは2.0mm~10mmであり、さらに好ましくは3.0mm~5mmである。 The thickness of the nonwoven fabric 11 is, for example, 0.5 mm to 20 mm. If the thickness of the nonwoven fabric 11 is 0.5 mm or more, the strength of the nonwoven fabric 11 is high. The thickness of the nonwoven fabric 11 is preferably 1.0 mm to 15 mm, more preferably 2.0 mm to 10 mm, still more preferably 3.0 mm to 5 mm.
 不織布11の密度は、例えば5.0kg/m~400kg/mである。不織布11の密度は、いわゆる、かさ密度であって、JIS K7222:2005「発泡プラスチック及びゴム-見掛け密度の求め方」に準拠して測定する。不織布11の密度は、好ましくは25kg/m~350kg/m、より好ましくは50kg/m~300kg/m、さらに好ましくは75kg/m~250kg/m、特に好ましくは100kg/m~200kg/mである。 The density of the nonwoven fabric 11 is, for example, 5.0 kg/m 3 to 400 kg/m 3 . The density of the nonwoven fabric 11 is a so-called bulk density, which is measured according to JIS K7222:2005 "Foamed plastics and rubbers-Determination of apparent density". The density of the nonwoven fabric 11 is preferably 25 kg/m 3 to 350 kg/m 3 , more preferably 50 kg/m 3 to 300 kg/m 3 , still more preferably 75 kg/m 3 to 250 kg/m 3 , particularly preferably 100 kg/m 3 . 3 to 200 kg/m 3 .
 不織布11の繊維径は、レーザー顕微鏡(例えばオリンパス社製:OLS4000)を用いて測定する。例えば対物レンズ20倍、光学ズーム1倍で水平方向0.648mm、垂直方向0.647mmの領域(領域1とする)で測定し、領域1内における最も太い繊維径を算出する。任意の10領域(領域1~10)に対し同様の測定を行い、各領域における最も太い繊維径の平均値を不織布11の繊維径とする。 The fiber diameter of the nonwoven fabric 11 is measured using a laser microscope (eg Olympus: OLS4000). For example, with an objective lens of 20 times and an optical zoom of 1 time, measurement is performed in a region (referred to as region 1) of 0.648 mm in the horizontal direction and 0.647 mm in the vertical direction, and the diameter of the thickest fiber in the region 1 is calculated. The same measurement is performed for 10 arbitrary regions (regions 1 to 10), and the fiber diameter of the nonwoven fabric 11 is the average value of the thickest fiber diameters in each region.
 不織布11の繊維径は、例えば10μm~60μmである。不織布11の繊維径が10μm以上であれば、不織布11の強度が高い。一方、不織布11の繊維径が60μm以下であれば、不織布11のタイヤに対向する表面が平滑になりやすいことから着氷力を低下できる。不織布11の繊維径は、好ましくは20μm~45μmである。 The fiber diameter of the nonwoven fabric 11 is, for example, 10 μm to 60 μm. If the fiber diameter of the nonwoven fabric 11 is 10 μm or more, the strength of the nonwoven fabric 11 is high. On the other hand, when the fiber diameter of the nonwoven fabric 11 is 60 μm or less, the surface of the nonwoven fabric 11 facing the tire tends to be smooth, so that the icing force can be reduced. The fiber diameter of the nonwoven fabric 11 is preferably 20 μm to 45 μm.
 不織布11の吸音率は、例えば0.01~0.3である。不織布11の吸音率は、厚み10mmの試験片を切り出し、1000Hzの音波を垂直に入射し、JIS A1405-2:2007「音響管による吸音率及びインピーダンスの測定」に準拠して測定する。不織布11の吸音率は、好ましくは0.02~0.2である。吸音率が1.0であることは、音が全く反射されないことを意味する。 The sound absorption coefficient of the nonwoven fabric 11 is, for example, 0.01 to 0.3. The sound absorption coefficient of the non-woven fabric 11 is measured by cutting out a 10 mm-thick test piece, vertically injecting a 1000 Hz sound wave, and measuring it in accordance with JIS A1405-2:2007 "Measurement of sound absorption coefficient and impedance by acoustic tube". The nonwoven fabric 11 preferably has a sound absorption coefficient of 0.02 to 0.2. A sound absorption coefficient of 1.0 means that no sound is reflected.
 発泡層12は、不織布11とは異なり、3次元的な網状の骨格を有する。発泡層12は、内部に多数の気泡を有する。多数の気泡は互いにつながっており、その内部を音波が伝播する。その際に、発泡層12の内部で空気が振動する。発泡層12の3次元的な網状の骨格と空気との間に摩擦が生じ、音波のエネルギーが熱のエネルギーに変換される。その結果、音が吸収される。車外の騒音レベル、及び車内の騒音レベルを低減できる。 Unlike the nonwoven fabric 11, the foam layer 12 has a three-dimensional network skeleton. The foam layer 12 has a large number of cells inside. A large number of bubbles are connected to each other, and sound waves propagate inside them. At that time, the air vibrates inside the foam layer 12 . Friction is generated between the three-dimensional network skeleton of the foam layer 12 and the air, and sound wave energy is converted into heat energy. As a result, sound is absorbed. The noise level outside the vehicle and the noise level inside the vehicle can be reduced.
 不織布11が2次元的に配向される繊維を含むのに対し、発泡層12は3次元的に張り巡らされた網状の骨格を有する。それゆえ、発泡層12は、不織布11に比べて、吸音率を向上できる。また、発泡層12は、3次元的に張り巡らされた網状の骨格を有し、連続的につながっているので、保形性を向上できる。 While the nonwoven fabric 11 contains two-dimensionally oriented fibers, the foam layer 12 has a three-dimensionally stretched network skeleton. Therefore, the foam layer 12 can improve the sound absorption coefficient compared to the nonwoven fabric 11 . In addition, the foam layer 12 has a network structure that is three-dimensionally stretched and is continuously connected, so that shape retention can be improved.
 発泡層12は、例えばポリウレタンの発泡体である。ポリウレタンの発泡体は、いわゆるポリウレタンフォームであって、ポリイソシアネート、ポリオール、触媒、及び発泡剤を含む樹脂組成物を発泡させ、固化して得られる。発泡剤は、水を含む。なお、発泡剤は、塩素を含んでもよい。樹脂組成物の詳細は、後述する。 The foam layer 12 is, for example, a polyurethane foam. A polyurethane foam is a so-called polyurethane foam, and is obtained by foaming and solidifying a resin composition containing a polyisocyanate, a polyol, a catalyst, and a foaming agent. The foaming agent contains water. In addition, the foaming agent may contain chlorine. Details of the resin composition will be described later.
 発泡体がポリウレタンフォームである場合、樹脂組成物は、ポリイソシアネート、ポリオール、触媒、及び発泡剤を含む。樹脂組成物は、更に添加剤を含んでもよい。樹脂組成物は、通常、ポリイソシアネート以外の原料を含むシステム液と、ポリイソシアネートとを混合して調製する。 When the foam is polyurethane foam, the resin composition contains polyisocyanate, polyol, catalyst, and blowing agent. The resin composition may further contain additives. The resin composition is usually prepared by mixing a system liquid containing raw materials other than polyisocyanate and polyisocyanate.
 ポリイソシアネートとしては、トルエンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、ポリメチレンポリフェニルイソシアネート(通称:クルードMDI)、キシリレンジイソシアネート(XDI)、イソホロンジイソシアネート(IPDI)及びヘキサメチレンジイソシアネート(HMDI)、これらのポリイソシアネートのプレポリマー変性体、イソシアヌレート変性体、ウレア変性体及びカルボジイミド変性体であるが、これらに限定されない。TDIは2,4-TDI及び2,6-TDIのいずれでもよく、混合物でもよい。MDIは2,2’-MDI、2,4’-MDI及び4,4’-MDIのいずれでもよく、これらのうち2種類又は3種類の混合物でもよい。 Examples of polyisocyanates include toluene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), polymethylene polyphenyl isocyanate (commonly known as crude MDI), xylylene diisocyanate (XDI), isophorone diisocyanate (IPDI) and hexamethylene diisocyanate (HMDI). prepolymer-modified, isocyanurate-modified, urea-modified and carbodiimide-modified polyisocyanates of, but not limited to. TDI may be either 2,4-TDI or 2,6-TDI, or may be a mixture. MDI may be any of 2,2'-MDI, 2,4'-MDI and 4,4'-MDI, or a mixture of two or three of these.
 ポリオールとしては、ポリオキシアルキレンポリオール、ポリエステルポリオール等を挙げることができる。 Examples of polyols include polyoxyalkylene polyols and polyester polyols.
 発泡剤としては、水を用いることができるが、これに限定されない。水以外の発泡剤としては、低沸点の不活性化合物が好ましい。このような不活性化合物としては、例えば、不活性ガス、及び沸点が70℃以下で、炭素数が8以下の、炭素原子に結合する水素原子がハロゲン原子に置換されていてもよい飽和炭化水素が挙げられる。前記ハロゲン原子は、例えば、塩素原子又はフッ素原子である。飽和炭化水素の例は、ブタン、ペンタン、ヘキサン、ジクロロメタン(塩化メチレン)、トリクロロエタン及び各種フロン化合物であるが、これらに限定されない。また、発泡剤は、1種類を単独で用いてもよいし、2種類以上を併用してもよい。 Water can be used as the foaming agent, but is not limited to this. As the blowing agent other than water, an inert compound with a low boiling point is preferred. Examples of such inert compounds include inert gases, and saturated hydrocarbons having a boiling point of 70° C. or less and carbon atoms of 8 or less, in which hydrogen atoms bonded to carbon atoms may be substituted with halogen atoms. is mentioned. The halogen atom is, for example, a chlorine atom or a fluorine atom. Examples of saturated hydrocarbons include, but are not limited to, butane, pentane, hexane, dichloromethane (methylene chloride), trichloroethane and various Freon compounds. Moreover, a foaming agent may be used individually by 1 type, and may use 2 or more types together.
 触媒としては、アミン系触媒及びスズ系触媒からなる群から選択される少なくとも1種である。触媒は、1種類を単独で用いてもよいし、2種類以上を併用してもよい。前記アミン系触媒の例は、トリエチレンジアミン、ビス(2-ジメチルアミノエチル)エーテル、N,N,N’,N’-テトラメチルヘキサメチレンジアミン、N,N-ジメチルアミノエトキシエトキシエタノール、N,N-ジメチルアミノ-6-ヘキサノール、N,N-ジメチルアミノエトキシエタノール、N,N-ジメチルアミノエトキシエタノールに2モルのエチレンオキシドを付加した化合物、及び5-(N,N-ジメチル)アミノ-3-メチル-1-ペンタノールであるが、これらに限定されない。前記スズ系触媒の例は、2-エチルヘキサン酸スズ、ジ-n-ブチルスズオキシド、ジ-n-ブチルスズジラウレート、ジ-n-ブチルスズジアセテート、ジ-n-オクチルスズオキシド、ジ-n-オクチルスズジラウレート、モノブチルスズトリクロリド、ジ-n-ブチルスズジアルキルメルカプタン及びジ-n-オクチルスズジアルキルメルカプタンであるが、これらに限定されない。 The catalyst is at least one selected from the group consisting of amine-based catalysts and tin-based catalysts. One type of catalyst may be used alone, or two or more types may be used in combination. Examples of the amine-based catalysts include triethylenediamine, bis(2-dimethylaminoethyl)ether, N,N,N',N'-tetramethylhexamethylenediamine, N,N-dimethylaminoethoxyethoxyethanol, N,N -dimethylamino-6-hexanol, N,N-dimethylaminoethoxyethanol, a compound obtained by adding 2 moles of ethylene oxide to N,N-dimethylaminoethoxyethanol, and 5-(N,N-dimethyl)amino-3-methyl -1-pentanol, but not limited to these. Examples of the tin-based catalysts include tin 2-ethylhexanoate, di-n-butyltin oxide, di-n-butyltin dilaurate, di-n-butyltin diacetate, di-n-octyltin oxide, and di-n-octyl. but are not limited to tin dilaurate, monobutyltin trichloride, di-n-butyltin dialkylmercaptan and di-n-octyltin dialkylmercaptan.
 添加剤として、整泡剤を含んでもよい。整泡剤の例として、シリコーン系整泡剤又は含フッ素化合物系整泡剤が挙げられるがこれらに限定されない。整泡剤は、1種類を単独で用いてもよいし、2種類以上を併用してもよい。 A foam stabilizer may be included as an additive. Examples of foam stabilizers include, but are not limited to, silicone foam stabilizers or fluorine-containing compound foam stabilizers. A foam stabilizer may be used individually by 1 type, and may use 2 or more types together.
 添加剤として、架橋剤を含んでもよい。架橋剤としては、水酸基、1級アミノ基及び2級アミノ基から選ばれる活性水素含有基を2個以上有する化合物を選択することができる。架橋剤としては、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール、ジグリセリン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ビスフェノールA、エチレンジアミン、3,5-ジエチル-2,4-ジアミノトルエン、3,5-ジエチル-2,6-ジアミノトルエン、2-クロロ-p-フェニレンジアミン、3,5-ビス(メチルチオ)-2,4-ジアミノトルエン、3,5-ビス(メチルチオ)-2,6-ジアミノトルエン、1-トリフルオロメチル-3,5-ジアミノベンゼン、1-トリフルオロメチル-4-クロロ-3,5-ジアミノベンゼン、2,4-トルエンジアミン、2,6-トルエンジアミン、ビス(3,5-ジメチル-4-アミノフェニル)メタン、4,4’-ジアミノジフェニルメタン、m-キシリレンジアミン、1,4-ジアミノヘキサン、1,3-ビス(アミノメチル)シクロヘキサン及びイソホロンジアミンであるが、これらに限定されない。また、架橋剤として、上述した分子量/水酸基数が500未満のポリオキシアルキレンポリオールも使用できる。架橋剤は、1種類を単独で用いてもよいし、2種類以上を併用してもよい。 A cross-linking agent may be included as an additive. As the cross-linking agent, a compound having two or more active hydrogen-containing groups selected from hydroxyl groups, primary amino groups and secondary amino groups can be selected. Examples of cross-linking agents include ethylene glycol, propylene glycol, 1,4-butanediol, neopentyl glycol, 1,6-hexanediol, diethylene glycol, triethylene glycol, dipropylene glycol, glycerin, trimethylolpropane, pentaerythritol, and diglycerin. , monoethanolamine, diethanolamine, triethanolamine, bisphenol A, ethylenediamine, 3,5-diethyl-2,4-diaminotoluene, 3,5-diethyl-2,6-diaminotoluene, 2-chloro-p-phenylenediamine , 3,5-bis(methylthio)-2,4-diaminotoluene, 3,5-bis(methylthio)-2,6-diaminotoluene, 1-trifluoromethyl-3,5-diaminobenzene, 1-trifluoro methyl-4-chloro-3,5-diaminobenzene, 2,4-toluenediamine, 2,6-toluenediamine, bis(3,5-dimethyl-4-aminophenyl)methane, 4,4'-diaminodiphenylmethane, but not limited to m-xylylenediamine, 1,4-diaminohexane, 1,3-bis(aminomethyl)cyclohexane and isophoronediamine. As a cross-linking agent, polyoxyalkylene polyols having a molecular weight/number of hydroxyl groups of less than 500 can also be used. One type of crosslinking agent may be used alone, or two or more types may be used in combination.
 上記以外の添加剤としては、乳化剤、酸化防止剤、紫外線吸収剤等の老化防止剤、炭酸カルシウム又は硫酸バリウム等の充填剤、可塑剤、着色剤、難燃剤、抗カビ剤及び破泡剤等の公知の各種添加剤及び助剤が挙げられるが、これらに限定されず、従来ポリウレタンフォームに使用されている添加剤を使用できる。 Additives other than those mentioned above include anti-aging agents such as emulsifiers, antioxidants and ultraviolet absorbers, fillers such as calcium carbonate and barium sulfate, plasticizers, colorants, flame retardants, anti-mold agents and foam breakers. but not limited thereto, and additives conventionally used in polyurethane foams can be used.
 なお、発泡層12は、本実施形態ではポリウレタンの発泡体であるが、ポリアクリル、メラミン、ゴム、ポリオレフィン、又はポリイミドの発泡体であってもよい。ポリウレタンを含むこれらの材料は、軽量性、保形性に優れている。 The foam layer 12 is a polyurethane foam in this embodiment, but may be a polyacrylic, melamine, rubber, polyolefin, or polyimide foam. These materials, including polyurethane, are lightweight and excellent in shape retention.
 発泡層12の厚みは、軽量性と吸音性の両立の観点から、例えば3mm~30mm、好ましくは4mm~25mm、より好ましくは5mm~20mmである。 The thickness of the foam layer 12 is, for example, 3 mm to 30 mm, preferably 4 mm to 25 mm, more preferably 5 mm to 20 mm, from the viewpoint of achieving both lightness and sound absorption.
 発泡層12の密度は、軽量性と吸音性の両立の観点から、例えば20kg/m~140kg/mである。発泡層12の密度は、いわゆる、かさ密度であって、JIS K7222:2005「発泡プラスチック及びゴム-見掛け密度の求め方-」に準拠して測定する。発泡層12の密度は、好ましくは30kg/m~130kg/m、より好ましくは55kg/m~120kg/mである。 The density of the foam layer 12 is, for example, 20 kg/m 3 to 140 kg/m 3 from the viewpoint of compatibility between lightness and sound absorption. The density of the foam layer 12 is a so-called bulk density, which is measured in accordance with JIS K7222:2005 "Foamed plastics and rubbers-Determination of apparent density-". The density of the foam layer 12 is preferably 30 kg/m 3 to 130 kg/m 3 , more preferably 55 kg/m 3 to 120 kg/m 3 .
 発泡層12の吸音率は、例えば0.4~1.0である。発泡層12の吸音率は、厚み10mmの試験片を切り出し、1000Hzの音波を垂直に入射し、JIS A1405-2:2007「音響管による吸音率及びインピーダンスの測定」に準拠して測定する。発泡層12の吸音率は、好ましくは0.4~1.0である。吸音率が1.0であることは、音が全く反射されないことを意味する。 The sound absorption coefficient of the foam layer 12 is, for example, 0.4 to 1.0. The sound absorption coefficient of the foam layer 12 is measured according to JIS A1405-2:2007 "Measurement of sound absorption coefficient and impedance by acoustic tube" by cutting out a test piece with a thickness of 10 mm and vertically irradiating a sound wave of 1000 Hz. The foam layer 12 preferably has a sound absorption coefficient of 0.4 to 1.0. A sound absorption coefficient of 1.0 means that no sound is reflected.
 発泡層12は、例えば、不織布11の外部で発泡した後に、不織布11に重ね合わせる。不織布11と発泡層12の間に、不織布11と発泡層12を分断する分断面が存在する。不織布11と発泡層12は、分断面にて分離自在である。よって、不織布11と発泡層12との分離性を向上でき、不織布11のリサイクル率を向上できる。 The foam layer 12 is superimposed on the nonwoven fabric 11 after foaming outside the nonwoven fabric 11, for example. Between the nonwoven fabric 11 and the foam layer 12, there is a dividing surface that divides the nonwoven fabric 11 and the foam layer 12.例文帳に追加The nonwoven fabric 11 and the foam layer 12 are separable at the dividing plane. Therefore, the separation property between the nonwoven fabric 11 and the foam layer 12 can be improved, and the recycling rate of the nonwoven fabric 11 can be improved.
 なお、図5に示すように、不織布11の一部と発泡層12の一部とが混じり合う混合層13が設けられてもよい。混合層13は、成形型の内部空間の一部に不織布を設置した状態で、成形型の内部空間に樹脂組成物を注入し、樹脂組成物を不織布に含浸させ、不織布の内部で樹脂組成物を発泡させることで得られる。 In addition, as shown in FIG. 5, a mixed layer 13 in which part of the nonwoven fabric 11 and part of the foam layer 12 are mixed may be provided. The mixed layer 13 is formed by injecting a resin composition into the inner space of the mold with the nonwoven fabric placed in a part of the inner space of the mold, impregnating the nonwoven fabric with the resin composition, and forming the resin composition inside the nonwoven fabric. obtained by foaming
 図1に示すように、発泡層12は、不織布11の裏面11bに設けられる。強度の高い不織布11を、強度の低い発泡層12よりもタイヤ2の近くに配置することにより、フェンダーライナー1の破損を抑制できる。その破損の原因としては、例えば氷の膜の剥落などが挙げられる。 As shown in FIG. 1 , the foam layer 12 is provided on the back surface 11 b of the nonwoven fabric 11 . By arranging the nonwoven fabric 11 with high strength closer to the tire 2 than the foam layer 12 with low strength, breakage of the fender liner 1 can be suppressed. The cause of the breakage is, for example, the peeling off of the ice film.
 発泡層12は、例えば、不織布11の裏面11bの一部のみに設けられる。この場合、発泡層12を車体3の複数の取付部32の間に嵌め込み、且つ、各取付部32に不織布11を接した状態で、固定具4で各取付部32に不織布11を固定できる。それゆえ、発泡層12を不織布11に対して固定することなく、発泡層12を不織布11の上に単に載せた状態であっても、車体3に対する発泡層12のずれを抑制できる。また、発泡層12を不織布11の上に単に載せた状態であるので、発泡層12と不織布11とを容易に分離できる。 The foam layer 12 is provided only on part of the back surface 11b of the nonwoven fabric 11, for example. In this case, the foam layer 12 can be fitted between the plurality of mounting portions 32 of the vehicle body 3 and the nonwoven fabric 11 can be fixed to each mounting portion 32 with the fixture 4 in a state in which the nonwoven fabric 11 is in contact with each mounting portion 32 . Therefore, even if the foam layer 12 is simply placed on the nonwoven fabric 11 without fixing the foam layer 12 to the nonwoven fabric 11 , displacement of the foam layer 12 with respect to the vehicle body 3 can be suppressed. Moreover, since the foam layer 12 is simply placed on the nonwoven fabric 11, the foam layer 12 and the nonwoven fabric 11 can be easily separated.
 発泡層12は、第1発泡層121と第2発泡層122とを含んでもよい。第1発泡層121は、不織布11の裏面11bの少なくとも一部に設けられる。第2発泡層122は、第1発泡層121の裏面121bの少なくとも一部に設けられる。裏面121bは、タイヤ2の径方向外向きの面である。 The foam layer 12 may include a first foam layer 121 and a second foam layer 122 . The first foam layer 121 is provided on at least part of the back surface 11 b of the nonwoven fabric 11 . The second foam layer 122 is provided on at least part of the back surface 121 b of the first foam layer 121 . The back surface 121b is a radially outward surface of the tire 2 .
 第1発泡層121が不織布11の裏面11bの一部のみに設けられ、第2発泡層122が第1発泡層121の裏面121bの一部のみに設けられる場合、第2発泡層122を車体3の凹部33に嵌め込むことで、車体3に対する発泡層12のずれをより抑制できる。 When the first foam layer 121 is provided only on part of the back surface 11 b of the nonwoven fabric 11 and the second foam layer 122 is provided only on part of the back surface 121 b of the first foam layer 121 , the second foam layer 122 is provided on the vehicle body 3 . The displacement of the foam layer 12 with respect to the vehicle body 3 can be further suppressed by fitting the recess 33 of the foam layer 12 .
 第1発泡層121と、第2発泡層122とは、例えば、同一の組成を有し、同一の成形型の内部で同時に発泡したものである。つまり、第1発泡層121と、第2発泡層122とは、一体化されている。第1発泡層121と第2発泡層122とを一体化することで、発泡層12のハンドリング性を向上できる。 The first foam layer 121 and the second foam layer 122, for example, have the same composition and are foamed simultaneously inside the same mold. That is, the first foam layer 121 and the second foam layer 122 are integrated. By integrating the first foam layer 121 and the second foam layer 122, the handleability of the foam layer 12 can be improved.
 なお、第1発泡層121と、第2発泡層122とは、異なる組成を有してもよく、異なる吸音特性(例えば異なる吸音ピーク周波数)を有してもよい。これにより、広い周波数帯で騒音の大きさを低減できる。また、第1発泡層121と、第2発泡層122は、異なる成形型の内部で別々に成形されてもよい。 Note that the first foam layer 121 and the second foam layer 122 may have different compositions and may have different sound absorption characteristics (for example, different sound absorption peak frequencies). As a result, the noise level can be reduced in a wide frequency band. Also, the first foam layer 121 and the second foam layer 122 may be separately molded inside different molds.
 第1発泡層121と、第2発泡層122とが、異なる組成を有する場合、第2発泡層122は、第1発泡層121の裏面121bの全体に設けられてもよい。この場合、例えば第1発泡層121と、第2発泡層122とが、異なる密度を有することで、発泡層12の吸音率を向上できる。 When the first foam layer 121 and the second foam layer 122 have different compositions, the second foam layer 122 may be provided on the entire back surface 121b of the first foam layer 121. In this case, for example, by having the first foam layer 121 and the second foam layer 122 have different densities, the sound absorption coefficient of the foam layer 12 can be improved.
 図4に示すように、第1発泡層121が不織布11の裏面11bの全体に設けられてもよい。この場合、発泡層12が不織布11の全体を覆うことで、フェンダーライナー1の全体にわたって吸音率を向上できる。この場合、図示しないが、第2発泡層122を車体3の複数の取付部32の間に嵌め込み、且つ、各取付部32に第1発泡層121を接した状態で、固定具4で各取付部32に不織布11を固定できる。それゆえ、発泡層12を不織布11に対して固定することなく、発泡層12を不織布11の上に単に載せた状態であっても、車体3に対する発泡層12のずれを抑制できる。また、発泡層12を不織布11の上に単に載せた状態であるので、発泡層12と不織布11とを容易に分離できる。 As shown in FIG. 4, the first foam layer 121 may be provided on the entire back surface 11b of the nonwoven fabric 11. In this case, the foam layer 12 covers the entire nonwoven fabric 11 , so that the sound absorption coefficient can be improved over the entire fender liner 1 . In this case, although not shown, the second foam layer 122 is fitted between the plurality of mounting portions 32 of the vehicle body 3 , and the first foam layer 121 is in contact with each mounting portion 32 . The nonwoven fabric 11 can be fixed to the portion 32 . Therefore, even if the foam layer 12 is simply placed on the nonwoven fabric 11 without fixing the foam layer 12 to the nonwoven fabric 11 , displacement of the foam layer 12 with respect to the vehicle body 3 can be suppressed. Moreover, since the foam layer 12 is simply placed on the nonwoven fabric 11, the foam layer 12 and the nonwoven fabric 11 can be easily separated.
 図4に示すように、発泡層12は、第3発泡層123を更に含んでもよい。第3発泡層123は、第2発泡層122の裏面122bの少なくとも一部に設けられる。裏面122bは、タイヤ2の径方向外向きの面である。この場合、図示しないが、第3発泡層123を車体3の凹部33に嵌め込むことで、車体3に対する発泡層12のずれをより抑制できる。 The foam layer 12 may further include a third foam layer 123, as shown in FIG. The third foam layer 123 is provided on at least part of the back surface 122 b of the second foam layer 122 . The back surface 122b is a radially outward surface of the tire 2 . In this case, although not shown, by fitting the third foam layer 123 into the recessed portion 33 of the vehicle body 3 , displacement of the foam layer 12 with respect to the vehicle body 3 can be further suppressed.
 第1発泡層121と、第2発泡層122と、第3発泡層123とは、例えば、同一の組成を有し、同一の成形型の内部で同時に発泡したものである。つまり、第1発泡層121と、第2発泡層122と、第3発泡層123とは、一体化されている。第1発泡層121と第2発泡層122と第3発泡層123とを一体化することで、発泡層12のハンドリング性を向上できる。 The first foam layer 121, the second foam layer 122, and the third foam layer 123, for example, have the same composition and are foamed simultaneously inside the same mold. That is, the first foam layer 121, the second foam layer 122, and the third foam layer 123 are integrated. By integrating the first foam layer 121, the second foam layer 122, and the third foam layer 123, the handleability of the foam layer 12 can be improved.
 なお、第1発泡層121及び第2発泡層122と、第3発泡層123とは、異なる組成を有してもよく、異なる吸音特性(例えば異なる吸音ピーク周波数)を有してもよい。これにより、広い周波数帯で騒音の大きさを低減できる。また、第1発泡層121及び第2発泡層122と、第3発泡層123とは、異なる成形型の内部で別々に成形されてもよい。 Note that the first foam layer 121 and the second foam layer 122 and the third foam layer 123 may have different compositions and may have different sound absorption characteristics (for example, different sound absorption peak frequencies). As a result, the noise level can be reduced in a wide frequency band. Also, the first foam layer 121, the second foam layer 122, and the third foam layer 123 may be separately molded inside different molds.
 ここで、第2発泡層122と、第3発泡層123とが、異なる組成を有する場合、第3発泡層123は、第2発泡層122の裏面122bの全体に設けられてもよい。この場合、例えば第2発泡層122と、第3発泡層123とが、異なる密度を有することで、発泡層12の吸音率を向上できる。 Here, when the second foam layer 122 and the third foam layer 123 have different compositions, the third foam layer 123 may be provided on the entire back surface 122b of the second foam layer 122. In this case, for example, the second foam layer 122 and the third foam layer 123 have different densities, so that the sound absorption coefficient of the foam layer 12 can be improved.
 以下、実験データについて説明する。下記の例1~例11が実施例であり、例12~例14が比較例である。例1~例14の実験データを表1~表2に示す。 The experimental data will be explained below. Examples 1 to 11 below are working examples, and examples 12 to 14 are comparative examples. Experimental data for Examples 1-14 are shown in Tables 1-2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1及び表2に示すように、不織布としては、9種類の不織布A~Iを用意した。例3では、例1と同じ種類の不織布を熱プレスした。例4では、例2と同じ種類の不織布を熱プレスした。例8~例9では、例7と同じ種類の不織布を異なる条件で熱プレスした。例11では、例12と同じ種類の不織布を熱プレスした。
Figure JPOXMLDOC01-appb-T000002
As shown in Tables 1 and 2, nine types of nonwoven fabrics A to I were prepared. In Example 3, the same type of nonwoven fabric as in Example 1 was hot pressed. In Example 4, the same type of nonwoven fabric as in Example 2 was hot pressed. In Examples 8 and 9, the same type of nonwoven fabric as in Example 7 was hot pressed under different conditions. In Example 11, the same type of nonwoven fabric as in Example 12 was hot pressed.
 表1及び表2において、「着氷力」は、不織布を基台の上に強固に固定した後、不織布の上にステンレス製リング(短筒管;内径50mm、高さ40mm)を載置し、このリング内に水を入れて凍らせた。次に、リングに対し垂直方向に荷重を負荷することによって着氷している氷を不織布シートから剥離させた。剥離するに至るまでの最大の荷重を、着氷力として測定した。着氷力が小さいもの程、着氷防止性に優れていると言える。 In Tables 1 and 2, "Ice-adhesion force" was measured by firmly fixing a nonwoven fabric on a base, and then placing a stainless steel ring (short cylindrical tube; inner diameter: 50 mm, height: 40 mm) on the nonwoven fabric. , water was put into this ring and frozen. Next, by applying a load in the direction perpendicular to the ring, the ice adhered to the ring was peeled off from the nonwoven fabric sheet. The maximum load until detachment was measured as the icing force. It can be said that the smaller the icing force, the better the anti-icing property.
 表1及び表2に示すように、例1~例11、及び例13の不織布の表面(ステンレス製リングを載せる面)は、Sdrが200以下であって、Sdqが30以下であって、Spcが8000mm-1以下であって、且つRΔqが20以下であった。例1~例11、及び例13の不織布の表面は、平滑性に優れており、40N未満の着氷力を有しており、着氷防止性に優れていた。 As shown in Tables 1 and 2, the surfaces of the nonwoven fabrics of Examples 1 to 11 and 13 (the surfaces on which the stainless steel rings are placed) have an Sdr of 200 or less, an Sdq of 30 or less, and an Spc was 8000 mm −1 or less, and RΔq was 20 or less. The surfaces of the nonwoven fabrics of Examples 1 to 11 and 13 were excellent in smoothness, had an ice adhesion force of less than 40 N, and were excellent in anti-icing properties.
 例12及び例14の不織布の表面は、平滑性が悪く、着氷力が40N以上であり、着氷防止性が劣っていた。 The surfaces of the nonwoven fabrics of Examples 12 and 14 had poor smoothness, an ice-adhesion force of 40 N or more, and poor anti-icing properties.
 また、表1及び表2に示すように、例1~例12および例14の不織布は、ISO9053-1:2018に準拠した直流法で測定した厚さ方向の流れ抵抗が1.0×10N・s/m~5.0×10N・s/mであり、排水性に優れていた。 Further, as shown in Tables 1 and 2, the nonwoven fabrics of Examples 1 to 12 and 14 had a flow resistance of 1.0×10 4 in the thickness direction measured by the DC method in accordance with ISO9053-1:2018. It was N·s/m 4 to 5.0×10 5 N·s/m 4 and was excellent in drainage.
 例13の不織布は、流れ抵抗が5.0×10N・s/mを超えており、排水性が劣っていた。 The nonwoven fabric of Example 13 had a flow resistance exceeding 5.0×10 5 N·s/m 4 and was poor in drainage.
 以上、本開示に係るフェンダーライナー及びその製造方法の実施形態などについて説明したが、本開示は上記実施形態などに限定されない。特許請求の範囲に記載された範疇内において、各種の変更、修正、置換、付加、削除、及び組み合わせが可能である。それらについても当然に本開示の技術的範囲に属する。 Although the embodiments of the fender liner and the manufacturing method thereof according to the present disclosure have been described above, the present disclosure is not limited to the above embodiments. Various changes, modifications, substitutions, additions, deletions, and combinations are possible within the scope of the claims. These also naturally belong to the technical scope of the present disclosure.
 上記実施形態等に関し、以下の付記を開示する。
[付記1]
 車両のタイヤに向けて露出する不織布を前記タイヤの外周に沿って備える、フェンダーライナーであって、
 前記不織布の前記タイヤに対向する表面が平滑であり、
 前記不織布のISO 9053-1:2018に準拠した直流法で測定した厚さ方向の流れ抵抗が1.0×10N・s/m~5.0×10N・s/mである、フェンダーライナー。
[付記2]
 前記不織布の前記表面は、ISO 25178-2:2012で規定されるSdr(界面の展開面積比)が200以下である、付記1に記載のフェンダーライナー。
[付記3]
 前記不織布の前記表面は、ISO 25178-2:2012で規定されるSdq(二乗平均平方根傾斜)が30以下である、付記1又は2に記載のフェンダーライナー。
[付記4]
 前記不織布の前記表面は、ISO 25178-2:2012で規定されるSpc(山頂点の算術平均曲率)が8000mm-1以下である、付記1~3のいずれか1項に記載のフェンダーライナー。
[付記5]
 前記不織布の前記表面は、JIS B0601:2001で規定されるRΔq(二乗平均平方根傾斜)が20以下である、付記1~4のいずれか1項に記載のフェンダーライナー。
[付記6]
 前記不織布の前記表面は、撥水性素材を含む、付記1~5のいずれか1項に記載のフェンダーライナー。
[付記7]
 前記撥水性素材は、ポリプロピレン、又はポリエチレンを含む、付記6に記載のフェンダーライナー。
[付記8]
 前記撥水性素材は、ポリプロピレン繊維、又はポリエチレン繊維を含む、付記7に記載のフェンダーライナー。
[付記9]
 前記不織布の前記表面から深さ0.2mm以内の範囲において、前記不織布を構成する素材に占める前記撥水性素材の割合が60質量%~100質量%である、付記6~8のいずれか1項に記載のフェンダーライナー。
[付記10]
 前記不織布は、遠心脱水前の含水量(g)をW1とし、遠心脱水後の含水量(g)をW2とすると、(1-W2/W1)が0.3~1.0である、付記1~9のいずれか1項に記載のフェンダーライナー。
[付記11]
 前記不織布の厚さが0.5mm~20mmである、付記1~10のいずれか1項に記載のフェンダーライナー。
[付記12]
 前記不織布の前記表面とは反対向きの裏面に設けられる発泡層を備え、
 前記発泡層の一部と前記不織布の一部とが混ざり合う混合層が設けられる、付記1~11のいずれか1項に記載のフェンダーライナー。
[付記13]
 車両のタイヤに向けて露出する不織布を前記タイヤの外周に沿って備えるフェンダーライナーの製造方法であって、
 前記不織布の前記タイヤに対向する表面を平滑化することを含む、フェンダーライナーの製造方法。
[付記14]
 前記平滑化することは、前記不織布を30℃以上の温度で0.1MPa以上の圧力でプレスすることを含む、付記13に記載のフェンダーライナーの製造方法。
The following additional remarks are disclosed with respect to the above-described embodiments and the like.
[Appendix 1]
A fender liner comprising a non-woven fabric exposed toward a vehicle tire along the outer circumference of the tire,
The surface of the nonwoven fabric facing the tire is smooth,
The flow resistance in the thickness direction of the nonwoven fabric measured by the DC method in accordance with ISO 9053-1:2018 is 1.0×10 4 N·s/m 4 to 5.0×10 5 N·s/m 4 . Yes, a fender liner.
[Appendix 2]
The fender liner according to appendix 1, wherein the surface of the nonwoven fabric has an Sdr (developed area ratio of interface) of 200 or less as defined in ISO 25178-2:2012.
[Appendix 3]
3. The fender liner according to appendix 1 or 2, wherein the surface of the nonwoven fabric has an Sdq (root mean square slope) defined by ISO 25178-2:2012 of 30 or less.
[Appendix 4]
4. The fender liner according to any one of appendices 1 to 3, wherein the surface of the nonwoven fabric has an Spc (arithmetic mean curvature at peak points) defined by ISO 25178-2:2012 of 8000 mm −1 or less.
[Appendix 5]
5. The fender liner according to any one of appendices 1 to 4, wherein the surface of the nonwoven fabric has an RΔq (root mean square slope) defined by JIS B0601:2001 of 20 or less.
[Appendix 6]
6. The fender liner of any one of Clauses 1-5, wherein the surface of the nonwoven comprises a water-repellent material.
[Appendix 7]
7. The fender liner of clause 6, wherein the water repellent material comprises polypropylene or polyethylene.
[Appendix 8]
8. The fender liner of paragraph 7, wherein the water repellent material comprises polypropylene fibers or polyethylene fibers.
[Appendix 9]
Any one of Appendices 6 to 8, wherein the water-repellent material accounts for 60% by mass to 100% by mass in the range within 0.2 mm in depth from the surface of the nonwoven fabric. Fender liner described in.
[Appendix 10]
In the nonwoven fabric, where W1 is the water content (g) before centrifugal dehydration and W2 is the water content (g) after centrifugal dehydration, (1-W2/W1) is 0.3 to 1.0. A fender liner according to any one of 1 to 9.
[Appendix 11]
11. The fender liner of any one of Clauses 1-10, wherein the nonwoven has a thickness of 0.5 mm to 20 mm.
[Appendix 12]
A foam layer provided on the back surface opposite to the surface of the nonwoven fabric,
12. The fender liner of any one of the preceding clauses, wherein a mixed layer is provided in which a portion of the foam layer and a portion of the nonwoven are intermingled.
[Appendix 13]
A method for manufacturing a fender liner comprising a nonwoven fabric exposed toward a tire of a vehicle along the outer periphery of the tire, the method comprising:
A method of manufacturing a fender liner, comprising smoothing the tire facing surface of the nonwoven fabric.
[Appendix 14]
14. The method of manufacturing a fender liner according to paragraph 13, wherein the smoothing comprises pressing the nonwoven fabric at a temperature of 30° C. or higher and a pressure of 0.1 MPa or higher.
 本出願は、2021年10月15日に日本国特許庁に出願した特願2021-169420号に基づく優先権を主張するものであり、特願2021-169420号の全内容を本出願に援用する。 This application claims priority based on Japanese Patent Application No. 2021-169420 filed with the Japan Patent Office on October 15, 2021, and the entire contents of Japanese Patent Application No. 2021-169420 are incorporated into this application. .
1  フェンダーライナー
11 不織布
11a 表面
2  タイヤ
1 fender liner 11 nonwoven fabric 11a surface 2 tire

Claims (14)

  1.  車両のタイヤに向けて露出する不織布を前記タイヤの外周に沿って備える、フェンダーライナーであって、
     前記不織布の前記タイヤに対向する表面が平滑であり、
     前記不織布のISO 9053-1:2018に準拠した直流法で測定した厚さ方向の流れ抵抗が1.0×10N・s/m~5.0×10N・s/mである、フェンダーライナー。
    A fender liner comprising a non-woven fabric exposed toward a vehicle tire along the outer circumference of the tire,
    The surface of the nonwoven fabric facing the tire is smooth,
    The flow resistance in the thickness direction of the nonwoven fabric measured by the DC method in accordance with ISO 9053-1:2018 is 1.0×10 4 N·s/m 4 to 5.0×10 5 N·s/m 4 . Yes, a fender liner.
  2.  前記不織布の前記表面は、ISO 25178-2:2012で規定されるSdr(界面の展開面積比)が200以下である、請求項1に記載のフェンダーライナー。 The fender liner according to claim 1, wherein the surface of the nonwoven fabric has an Sdr (developed area ratio of interfaces) of 200 or less as defined in ISO 25178-2:2012.
  3.  前記不織布の前記表面は、ISO 25178-2:2012で規定されるSdq(二乗平均平方根傾斜)が30以下である、請求項1又は2に記載のフェンダーライナー。 The fender liner according to claim 1 or 2, wherein the surface of the nonwoven fabric has an Sdq (root mean square slope) defined by ISO 25178-2:2012 of 30 or less.
  4.  前記不織布の前記表面は、ISO 25178-2:2012で規定されるSpc(山頂点の算術平均曲率)が8000mm-1以下である、請求項1又は2に記載のフェンダーライナー。 3. The fender liner according to claim 1 or 2, wherein the surface of the nonwoven fabric has an Spc (arithmetic mean curvature at peak points) defined by ISO 25178-2:2012 of 8000 mm -1 or less.
  5.  前記不織布の前記表面は、JIS B0601:2001で規定されるRΔq(二乗平均平方根傾斜)が20以下である、請求項1又は2に記載のフェンダーライナー。 The fender liner according to claim 1 or 2, wherein the surface of the nonwoven fabric has an RΔq (root mean square slope) of 20 or less as defined in JIS B0601:2001.
  6.  前記不織布の前記表面は、撥水性素材を含む、請求項1又は2に記載のフェンダーライナー。 The fender liner according to claim 1 or 2, wherein said surface of said nonwoven fabric comprises a water-repellent material.
  7.  前記撥水性素材は、ポリプロピレン、又はポリエチレンを含む、請求項6に記載のフェンダーライナー。 The fender liner according to claim 6, wherein the water-repellent material includes polypropylene or polyethylene.
  8.  前記撥水性素材は、ポリプロピレン繊維、又はポリエチレン繊維を含む、請求項7に記載のフェンダーライナー。 The fender liner according to claim 7, wherein the water-repellent material includes polypropylene fibers or polyethylene fibers.
  9.  前記不織布の前記表面から深さ0.2mm以内の範囲において、前記不織布を構成する素材に占める前記撥水性素材の割合が60質量%~100質量%である、請求項6に記載のフェンダーライナー。 The fender liner according to claim 6, wherein the water-repellent material accounts for 60% by mass to 100% by mass in the range within 0.2 mm in depth from the surface of the nonwoven fabric.
  10.  前記不織布は、遠心脱水前の含水量(g)をW1とし、遠心脱水後の含水量(g)をW2とすると、(1-W2/W1)が0.3~1.0である、請求項1又は2に記載のフェンダーライナー。 The nonwoven fabric has a water content (g) before centrifugal dehydration as W1 and a water content (g) after centrifugal dehydration as W2, and (1-W2/W1) is 0.3 to 1.0. 3. A fender liner according to item 1 or 2.
  11.  前記不織布の厚さが0.5mm~20mmである、請求項1又は2に記載のフェンダーライナー。 The fender liner according to claim 1 or 2, wherein the nonwoven fabric has a thickness of 0.5 mm to 20 mm.
  12.  前記不織布の前記表面とは反対向きの裏面に設けられる発泡層を備え、
     前記発泡層の一部と前記不織布の一部とが混ざり合う混合層が設けられる、請求項1又は2に記載のフェンダーライナー。
    A foam layer provided on the back surface opposite to the surface of the nonwoven fabric,
    3. A fender liner according to claim 1 or 2, wherein a mixed layer is provided in which a portion of the foam layer and a portion of the nonwoven are intermingled.
  13.  車両のタイヤに向けて露出する不織布を前記タイヤの外周に沿って備えるフェンダーライナーの製造方法であって、
     前記不織布の前記タイヤに対向する表面を平滑化することを含む、フェンダーライナーの製造方法。
    A method for manufacturing a fender liner comprising a nonwoven fabric exposed toward a tire of a vehicle along the outer periphery of the tire, the method comprising:
    A method of manufacturing a fender liner, comprising smoothing the tire facing surface of the nonwoven fabric.
  14.  前記平滑化することは、前記不織布を30℃以上の温度で0.1MPa以上の圧力でプレスすることを含む、請求項13に記載のフェンダーライナーの製造方法。 The method of manufacturing a fender liner according to claim 13, wherein said smoothing includes pressing said nonwoven fabric at a temperature of 30°C or higher and a pressure of 0.1 MPa or higher.
PCT/JP2022/036696 2021-10-15 2022-09-30 Fender liner and manufacturing method therefor WO2023063114A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023555116A JPWO2023063114A1 (en) 2021-10-15 2022-09-30

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-169420 2021-10-15
JP2021169420 2021-10-15

Publications (1)

Publication Number Publication Date
WO2023063114A1 true WO2023063114A1 (en) 2023-04-20

Family

ID=85988536

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036696 WO2023063114A1 (en) 2021-10-15 2022-09-30 Fender liner and manufacturing method therefor

Country Status (2)

Country Link
JP (1) JPWO2023063114A1 (en)
WO (1) WO2023063114A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003112661A (en) * 2001-10-02 2003-04-15 Toyoda Gosei Co Ltd Exterior material for vehicle, exterior article using the same, and forming method therefor
JP2004142675A (en) * 2002-10-25 2004-05-20 Toyoda Gosei Co Ltd Exterior material and under protector provided with it
JP2004359066A (en) * 2003-06-03 2004-12-24 Toyoda Gosei Co Ltd Sheath material and under protector equipped with the same
JP2018171820A (en) * 2017-03-31 2018-11-08 マツダ株式会社 Functional laminate and method for producing the same
WO2020066913A1 (en) * 2018-09-25 2020-04-02 東洋紡株式会社 Nonwoven-fabric structure and manufacturing method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003112661A (en) * 2001-10-02 2003-04-15 Toyoda Gosei Co Ltd Exterior material for vehicle, exterior article using the same, and forming method therefor
JP2004142675A (en) * 2002-10-25 2004-05-20 Toyoda Gosei Co Ltd Exterior material and under protector provided with it
JP2004359066A (en) * 2003-06-03 2004-12-24 Toyoda Gosei Co Ltd Sheath material and under protector equipped with the same
JP2018171820A (en) * 2017-03-31 2018-11-08 マツダ株式会社 Functional laminate and method for producing the same
WO2020066913A1 (en) * 2018-09-25 2020-04-02 東洋紡株式会社 Nonwoven-fabric structure and manufacturing method therefor

Also Published As

Publication number Publication date
JPWO2023063114A1 (en) 2023-04-20

Similar Documents

Publication Publication Date Title
KR102053149B1 (en) Tyre, the inner wall of which has a layer of specific polyurethane foam
KR101005985B1 (en) Process to manufacture three dimensionally shaped substrate for sound abatement
KR101137527B1 (en) Fabrication method of inner material for automobile by compression molding
JP4575874B2 (en) Soft polyurethane foam for tire, noise reduction device and tire
US9994136B2 (en) Cushion pad
US9573504B2 (en) Cushion pad
CN105326246B (en) Buffer cushion
KR20080087831A (en) Method for making automotive headliners
JPWO2018182001A1 (en) Laminate and sound absorbing material
CN102026803B (en) Foam laminate product and process for production thereof
WO2023063114A1 (en) Fender liner and manufacturing method therefor
KR101371848B1 (en) Polyurethane composition for automobile interior material
JP2010017962A (en) Foam molded article and its manufacturing process
JP5986838B2 (en) Sound absorbing shock absorber and method for manufacturing the same
WO2022158266A1 (en) Fender liner and method for producing same
WO2021132387A1 (en) Polyurethane foam and soundproofing material for vehicle
WO2021132497A1 (en) Fender liner manufacturing method
WO2022102410A1 (en) Fender liner and manufacturing method thereof, and vehicle
CN104424931A (en) Electronic percussion pad and method of manufacturing electronic percussion pad
WO2021132493A1 (en) Fender liner and vehicle
JP2005120247A (en) Soft polyurethane foam to be used for sound isolation material for automobile and method for producing the same
KR20230051819A (en) Polishing pad and preparing method of semiconductor device using the same
JP2021000451A (en) Vehicular seat base material, and vehicular seat
JP7414061B2 (en) Polyurethane foam and soundproofing materials for vehicles
JP2003300294A (en) Sound absorbing material of foamed polyurethane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22880810

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023555116

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE