WO2021132387A1 - Polyurethane foam and soundproofing material for vehicle - Google Patents

Polyurethane foam and soundproofing material for vehicle Download PDF

Info

Publication number
WO2021132387A1
WO2021132387A1 PCT/JP2020/048266 JP2020048266W WO2021132387A1 WO 2021132387 A1 WO2021132387 A1 WO 2021132387A1 JP 2020048266 W JP2020048266 W JP 2020048266W WO 2021132387 A1 WO2021132387 A1 WO 2021132387A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyurethane foam
skeleton
ratio
foam
sound absorption
Prior art date
Application number
PCT/JP2020/048266
Other languages
French (fr)
Japanese (ja)
Inventor
崇志 ▲高▼田
幸宏 藤原
澁谷 崇
孝太郎 兒玉
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to DE112020006330.5T priority Critical patent/DE112020006330T5/en
Priority to CN202080088609.2A priority patent/CN114846042A/en
Priority to JP2021567572A priority patent/JPWO2021132387A1/ja
Publication of WO2021132387A1 publication Critical patent/WO2021132387A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/63Block or graft polymers obtained by polymerising compounds having carbon-to-carbon double bonds on to polymers
    • C08G18/633Block or graft polymers obtained by polymerising compounds having carbon-to-carbon double bonds on to polymers onto polymers of compounds having carbon-to-carbon double bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/08Front or rear portions
    • B62D25/16Mud-guards or wings; Wheel cover panels
    • B62D25/18Parts or details thereof, e.g. mudguard flaps
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • C08G18/1833Catalysts containing secondary or tertiary amines or salts thereof having ether, acetal, or orthoester groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • C08G18/20Heterocyclic amines; Salts thereof
    • C08G18/2009Heterocyclic amines; Salts thereof containing one heterocyclic ring
    • C08G18/2027Heterocyclic amines; Salts thereof containing one heterocyclic ring having two nitrogen atoms in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/22Catalysts containing metal compounds
    • C08G18/24Catalysts containing metal compounds of tin
    • C08G18/244Catalysts containing metal compounds of tin tin salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4833Polyethers containing oxyethylene units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/63Block or graft polymers obtained by polymerising compounds having carbon-to-carbon double bonds on to polymers
    • C08G18/632Block or graft polymers obtained by polymerising compounds having carbon-to-carbon double bonds on to polymers onto polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/721Two or more polyisocyanates not provided for in one single group C08G18/73 - C08G18/80
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7621Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring being toluene diisocyanate including isomer mixtures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0016Foam properties semi-rigid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0041Foam properties having specified density
    • C08G2110/005< 50kg/m3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0041Foam properties having specified density
    • C08G2110/0058≥50 and <150kg/m3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0041Foam properties having specified density
    • C08G2110/0066≥ 150kg/m3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0083Foam properties prepared using water as the sole blowing agent

Definitions

  • the present invention relates to polyurethane foam and soundproofing material for vehicles.
  • Soundproofing materials are installed as undercovers and fender liner covers on vehicles such as automobiles for the purpose of suppressing noise from motors, engines, tires, etc. to the outside of the vehicle.
  • a non-woven fabric of polyester fiber or polyolefin fiber or polyurethane foam is used as the soundproofing material.
  • Polyurethane foam is cheaper than polyester fiber and polyolefin fiber, but has been used as a composite with a sheet of rubber, thermoplastic elastomer, or thermoplastic resin because it alone lacks sound absorption performance in the low frequency region. ..
  • the composite of polyurethane foam and other materials has problems such as an increase in manufacturing cost and an increase in mass.
  • Patent Document 1 describes a polyurethane foam produced by foaming in a sealed mold using a raw material composition containing a high molecular weight polyoxyalkylene polyol, an organic polyisocyanate compound, a foaming agent and a catalyst.
  • Patent Document 2 describes a sound absorbing body including a porous inner body and a dense skin formed on the surface of the inner body.
  • Patent Document 1 describes a polyurethane foam having good sound absorption around 500 Hz. Sound absorption in a low frequency region of around 500 Hz can be achieved by increasing the thickness of the sound absorbing material, but in Patent Document 1, the film is thickened to 26 mm in order to exhibit sufficient sound absorption. There is a need.
  • the sound absorbing body described in Patent Document 2 exhibits excellent sound absorbing characteristics in the medium to high frequency region (2000 Hz or more), the sound absorbing performance in the low frequency region (1000 Hz or less, particularly 500 Hz or less) is that of the sound absorbing body. It was not enough to increase the thickness to 30 mm.
  • Patent Document 1 or Patent Document 2 when the sound absorbing material described in Patent Document 1 or Patent Document 2 is applied to an application requiring a thin film of up to about 10 mm (for example, a fender liner for a vehicle, an undercover, etc.), it is sufficient in a low frequency region. It was difficult to develop a good sound absorption performance.
  • the present invention has been made in view of the above circumstances, has a good sound absorption coefficient in a low frequency region (500 to 2000 Hz), can be made thinner and lighter while maintaining sound absorption performance equal to or higher than the conventional one, and can be used as a soundproof material for vehicles.
  • An object of the present invention is to provide a flexible polyurethane foam and a soundproofing material for vehicles.
  • the polyurethane is characterized in that the skeleton ratio SS / SI is 2.8 to 5.0 when the skeleton ratio of the epidermis layer is SS and the skeleton ratio of the internal foam layer is SI.
  • the polyurethane foam of the present invention has good sound absorption characteristics in the low frequency range of 500 to 2000 Hz even if it has a thin thickness, and is therefore suitable as a soundproofing material for vehicles. Since the frequency with good sound absorption coefficient is the frequency band of road noise, it is suitable for use in fender liner and undercover applications, especially in fender liner applications.
  • the polyurethane foam of the present invention has a dense skin layer and an internal foam layer formed inside the polyurethane foam.
  • the skin layer is formed so as to cover the outer surface of the polyurethane foam.
  • the skin layer is a layer that greatly contributes to the improvement of sound absorption characteristics.
  • the thickness of the epidermis layer is defined by the thickness from the sample surface to the portion where the skeleton ratio is less than 50% in the skeleton ratio measurement described later.
  • the thickness of the epidermis layer is not particularly limited, but is preferably 0.2 to 1 mm, more preferably 0.2 to 0.6 mm. When the above value is within this range, the polyurethane foam of the present invention can secure sound absorption performance in a low frequency region of 500 to 2000 Hz.
  • the inner foam layer refers to a porous inner body formed inside the epidermis layer.
  • the thickness of the polyurethane foam of the present invention is 3 to 25 mm, preferably 3 to 20 mm. When the thickness is at least the above lower limit value, good sound absorption performance can be exhibited. On the other hand, when the thickness is not more than the above upper limit value, the polyurethane foam of the present invention is easy to exhibit good sound absorption performance while being lightweight.
  • the polyurethane foam of the present invention has a vertically incident sound absorption coefficient at a frequency of 1000 Hz, which is 0.40 or more at a thickness of 10 mm.
  • the vertically incident sound absorption coefficient is preferably 0.40 to 1, more preferably 0.50 to 1.
  • the polyurethane foam of the present invention is excellent in sound absorption performance in a low frequency region of 500 to 2000 Hz.
  • the polyurethane foam having a sound absorption coefficient within this range is suitable for use as a soundproofing material for vehicles.
  • the installation site is a narrowed portion or a complicated shape, it will be used in a thin state, and the advantages of the polyurethane foam of the present invention will be utilized.
  • the sound absorption coefficient is determined by a method based on JIS A 1405-2: 2007 "Measurement of sound absorption coefficient and impedance by acoustic tube” using a measurement sample having a thickness of 10 mm obtained by cutting polyurethane foam with a sharp blade. Measure.
  • the polyurethane foam of the present invention has a skeleton ratio SS / SI of 2.8 to 5.0 and 2.8 to 4 when the skeleton ratio of the epidermis layer is SS and the skeleton ratio of the internal foam layer is SI. .0 is preferable.
  • SS / SI is above the lower limit, the density of the epidermis layer that affects sound absorption is high, so that the transmission of sound in the low frequency region to the internal foam layer is blocked, and the internal foam layer is interacted by inertial force. The low frequency sound absorption characteristics are improved.
  • SS / SI is not more than the upper limit value, the influence of sound reflection in the epidermis layer can be suppressed. Furthermore, the strength of the internal foam layer can be maintained. As a result, the polyurethane foam of the present invention further improves the sound absorption performance in the low frequency region of 500 to 2000 Hz.
  • the skeleton ratio is calculated from the result of cutting the polyurethane foam with a sharp blade to make a sample for measurement and imaging the cross section in the thickness direction of the sample using an optical microscope. The detailed calculation method will be described later.
  • the skeletal ratio SS of the epidermis layer is defined by the average value of the skeletal ratio measured at a depth of 0.3 mm from the surface of the sample.
  • the SS is not particularly limited, but is preferably 60% to 85%, more preferably 70% to 85%. When the above value is within this range, the polyurethane foam of the present invention further improves the sound absorption performance in the low frequency region of 500 to 2000 Hz.
  • the skeletal ratio SI of the inner foam layer is defined by the average value of the skeletal ratios measured at a depth of 3.5 to 4.5 mm from the surface of the sample.
  • the SI is not particularly limited, but is preferably 24% to 30%, more preferably 25% to 29%. When the above value is within this range, the polyurethane foam of the present invention further improves the sound absorption performance in the low frequency region of 500 to 2000 Hz.
  • the skeletal ratio directly below the epidermis layer is defined as the position directly below the epidermis layer at a depth twice the thickness of the epidermis layer, and is defined by the average value of the skeletal ratio measured at the depth directly below the epidermis layer from the surface of the sample.
  • the skeleton ratio immediately below the epidermis layer is not particularly limited, but is preferably 40% or more, and more preferably 40 to 70%. When the above value is within this range, the polyurethane foam of the present invention further improves the sound absorption performance in the low frequency region of 500 to 2000 Hz.
  • the density of the polyurethane foam of the present invention is 20 ⁇ 120kg / m 3, preferably 30 ⁇ 100kg / m 3, more preferably 55 ⁇ 90kg / m 3.
  • the polyurethane foam of the present invention can be reduced in weight while maintaining the sound absorption performance equal to or higher than the conventional one.
  • recent vehicle soundproofing materials are strongly required to be lightweight, and the advantages of the polyurethane foam of the present invention can be utilized. It can also be used for parts with complicated shapes such as fender liners.
  • the density is a density (unit: kg / m 3 ) measured according to JIS K 7222: 2005 “Foam Plastics and Rubber-How to Obtain Apparent Density”.
  • the residual film ratio of the foam cell in the internal foam layer of the polyurethane foam of the present invention is 40% or more and less than 94%, preferably 40 to 90%, more preferably 50 to 85%, still more preferably 55 to 85%.
  • the polyurethane foam of the present invention is excellent in sound absorption performance in a low frequency region of 500 to 2000 Hz. Further, when the residual film ratio is within this range, shrinkage is less likely to occur during molding of the polyurethane foam, and molding is easy.
  • the residual film ratio of the foam cell is calculated from the result of imaging the cross section of the measurement sample using an optical microscope. Detailed calculation conditions will be described later.
  • the average cell diameter of the foam cells of the internal foam layer is not particularly limited, but is preferably 100 to 400 ⁇ m, more preferably 150 to 350 ⁇ m, and even more preferably 150 to 300 ⁇ m.
  • the polyurethane foam of the present invention is excellent in sound absorption performance in a low frequency region of 500 to 2000 Hz.
  • the value obtained by dividing the average skeleton diameter of the foamed cells of the inner foam layer by the average cell diameter is not particularly limited, but is preferably 0.10 to 0.50, more preferably 0.15 to 0.45, and 0.27 to 0.27 to 0.45. 0.45 is more preferable.
  • the polyurethane foam of the present invention further improves the sound absorption performance in the low frequency region of 500 to 2000 Hz.
  • the average skeleton diameter and average cell diameter of the internal foam layer are calculated from the results of imaging the cross section of the measurement sample using an optical microscope. Detailed calculation conditions will be described later.
  • the polyurethane foam of the present invention can be produced by foaming using, for example, a raw material composition G containing a polyoxyalkylene polyol A, an organic polyisocyanate compound B, a foaming agent C and a catalyst D.
  • the raw material composition G contains a polyoxyalkylene polyol A, an organic polyisocyanate compound B, a foaming agent C and a catalyst D.
  • the raw material composition G is usually prepared by mixing a polyol system liquid H containing a raw material other than the organic polyisocyanate compound B and an organic polyisocyanate compound B.
  • Polyoxyalkylene polyol A Polyoxyalkylene polyol A (hereinafter referred to as "polyol A”) is usually synthesized by ring-opening addition polymerization of an alkylene oxide as an initiator in the presence of a catalyst.
  • Polyol A contains a trifunctional polyoxyalkylene polyol, that is, a polyoxyalkylene polyol having three hydroxyl groups in one molecule.
  • the polyoxyalkylene polyol other than the trifunctional polyoxyalkylene polyol is not particularly limited, and is, for example, a bifunctional or tetrafunctional or higher functional polyoxyalkylene polyol.
  • the number of hydroxyl groups per molecule of polyol A (hereinafter referred to as "average number of hydroxyl groups") is not particularly limited as long as it is 2 or more, but 2 to 8 is preferable, 2 to 4 is more preferable, and 2.2 to 3.9 is preferable. Is more preferable, and 2.4 to 3.7 is even more preferable.
  • the average number of hydroxyl groups is within this range, the softness of the polyurethane foam becomes more appropriate, the compression set is further improved, the mechanical properties such as elongation are improved, and the soundproofing performance tends to be further improved. ..
  • the number of hydroxyl groups in one molecule of the polyoxyalkylene polyol is the same as the number of active hydrogen-containing groups of the initiator used in the synthesis of the polyoxyalkylene polyol.
  • the number average molecular weight of the polyol A is not particularly limited, but is preferably 1000 to 20000, more preferably 1000 to 16000, and even more preferably 1500 to 12000. When the molecular weight is within this range, the residual film ratio of the foamed cell in the polyurethane foam is likely to be in an appropriate range, and the sound absorption performance in the low frequency region of 500 to 2000 Hz is likely to be improved.
  • the number average molecular weight per hydroxyl group of polyol A (hereinafter referred to as "molecular weight / number of hydroxyl groups”) is not particularly limited, but is usually 500 or more, preferably 500 to 5000, and more preferably 1000 to 3500. When the molecular weight / number of hydroxyl groups is within this range, the polyurethane foam is less likely to shrink and the elasticity becomes better.
  • a polyoxyalkylene polyol having a molecular weight / number of hydroxyl groups of less than 500 is usually classified as a cross-linking agent F described later.
  • the initiator used in the production of polyol A is preferably a compound having 2 to 8 active hydrogen-containing groups in one molecule.
  • a 2- to 8-valent polyhydric alcohol, a polyhydric phenol or an amine is preferable.
  • the divalent to octavalent polyhydric alcohols include ethylene glycol, propylene glycol, 1,4-butanediol, neopentyl glycol, dipropylene glycol, glycerin, trimethylolpropane, pentaerythritol, diglycerin, meso-erythritol, and methyl.
  • Examples include, but are not limited to, glucoside, glucose, dextrose, sorbitol or sucrose.
  • Examples of the multivalent phenol include, but are not limited to, bisphenol A, bisphenol F, pyrogallol or hydroquinone.
  • Examples of the amine include, but are not limited to, polyamines such as ethylenediamine, diethylenediamine, diaminodiphenylmethane, hexamethylenediamine and propylenediamine, and condensation compounds obtained by condensing polyamine with a phenol resin or novolak resin. ..
  • the polyhydric alcohol, the polyhydric phenol, or a low molecular weight polyether polyol having a hydroxyl group at the terminal of the molecular chain obtained by ring-opening addition polymerization of a small amount of alkylene oxide to the amine can also be used as an initiator.
  • the molecular weight per hydroxyl group of such a low molecular weight polyether polyol is usually 1200 or less, preferably 200 to 500, and more preferably 200 to 350.
  • the initiator a compound having 2 to 4 hydroxyl groups in one molecule is more preferable, and a dihydric to tetravalent polyhydric alcohol or a 2 to 4 valent low molecular weight polyether polyol is preferable.
  • the polyol produced by using a trihydric or higher-valent alcohol or a low molecular weight polyether polyol as an initiator has a better balance of soundproofing performance, foaming stability and physical properties of polyurethane foam.
  • One type of initiator may be used alone, or two or more types may be used in combination.
  • the alkylene oxide is not particularly limited, but one or more selected from ethylene oxide, propylene oxide, butylene oxide and styrene oxide is preferable, and one or more selected from ethylene oxide and propylene oxide are more preferable.
  • the content of the unit derived from ethylene oxide (hereinafter referred to as “EO content”) of the polyoxyalkylene chain of polyol A is not particularly limited, but is preferably 0 to 20% by mass of the total mass of the polyoxyalkylene chain. More preferably 0 to 15% by mass.
  • the hydrophilicity of the polyoxyalkylene chain becomes more preferable, and the residual film ratio of the foamed cell in the obtained polyurethane foam tends to be within a more appropriate range.
  • a conventionally used catalyst is used as a catalyst for ring-opening addition polymerization of an alkylene oxide as an initiator.
  • the catalyst include, but are not limited to, potassium hydroxide, sodium hydroxide, cesium hydroxide, phosphazenium compound, boron trifloride compound or complex metal cyanide complex.
  • Polyol A may contain polymer fine particles dispersed in polyol A.
  • the polymer fine particles are stably dispersed in the base polyol as a dispersion medium.
  • the polymer fine particles include addition polymerization type polymers and polycondensation type polymers.
  • the polymer constituting the polymer fine particles include addition polymerization polymers such as homopolymers or copolymers of acrylonitrile, styrene, alkyl methacrylate, alkyl acrylates and other vinyl monomers, or reduced polymerization polymers such as polyester, polyurea, polyurethane or melamine resin. Is preferable, and homopolymers or copolymers of acrylonitrile and styrene are more preferable.
  • a polyol other than polyol A may be used in combination.
  • examples of such a polyol include other high molecular weight polyols such as polyester polyol.
  • the amount of the polyol other than the polyol A to be used is preferably 0 to 20 parts by mass, more preferably 0 to 10 parts by mass, and 0 parts by mass, that is, not used, based on 100 parts by mass of the total of the polyol A. preferable.
  • the content of the components other than the polyol A in the raw material composition G is defined as the content with respect to 100 parts by mass of the polyol A.
  • One type of polyol A may be used alone, or two or more types may be used in combination.
  • the organic polyisocyanate compound B used for producing the polyurethane foam of the present invention is not particularly limited. At least one selected from the group consisting of the obtained modified polyisocyanate and polyisocyanate can be mentioned.
  • the organic polyisocyanate compound B include toluene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), polymethylene polyphenyl isocyanate (commonly known as crude MDI), xylylene diisocyanate (XDI), isophorone diisocyanate (IPDI) or hexamethylene diisocyanate (HMDI).
  • Prepolymer modified products of these polyisocyanates Prepolymer modified products of these polyisocyanates, isocyanurate modified products, urea modified products and carbodiimide modified products, and at least one selected from the group consisting of TDI, MDI, crude MDI and modified products thereof. It is preferable in terms of availability.
  • the TDI may be either 2,4-TDI or 2,6-TDI, or a mixture.
  • the MDI may be any of 2,2'-MDI, 2,4'-MDI and 4,4'-MDI, and may be a mixture of two or three of these.
  • As the organic polyisocyanate compound B TDI is particularly preferable.
  • the content of the organic polyisocyanate compound B in the raw material composition G is not particularly limited, but is a value obtained by dividing the total number of moles of the isocyanate groups of the organic polyisocyanate compound B by the total number of moles of the hydroxyl groups of the polyol A and multiplying by 100.
  • the amount of (isocyanate index) is preferably 75 to 120, more preferably 80 to 120, and even more preferably 80 to 110. When the isocyanate index is within this range, curing can proceed sufficiently, and a foam having an appropriate degree of curing can be obtained without excessive curing progressing.
  • the organic polyisocyanate compound B one type may be used alone, or two or more types may be used in combination.
  • the foaming agent used in the production of the polyurethane foam of the present invention contains water. Further, a foaming agent other than water can be used for the purpose of lowering the density of the foam. As the foaming agent other than water, an inert compound having a low boiling point is preferable. Such an inert compound further includes, for example, an inert gas and a hydrocarbon compound having a boiling point of 70 ° C. or lower and a carbon number of 8 or less, and is one of the hydrogen atoms bonded to the carbon atom of the hydrocarbon compound. Examples thereof include saturated hydrocarbons whose portions may be substituted with halogen atoms (hereinafter referred to as “saturated hydrocarbons X”).
  • the halogen atom is, for example, a chlorine atom or a fluorine atom.
  • saturated hydrocarbon X include, but are not limited to, butane, pentane, hexane, dichloromethane (methylene chloride), trichloroethane and various chlorofluorocarbon compounds.
  • the content of water as the foaming agent C in the raw material composition G is preferably 1.5 parts by mass or more, more preferably 2 to 5 parts by mass, based on 100 parts by mass of the polyol A. Within this range, foaming can proceed sufficiently and the density of the foam can be easily set within a desired range.
  • the content of the foaming agent other than water in the raw material composition G is not particularly limited, but is preferably 0 to 25 parts by mass, more preferably 0 to 20 parts by mass with respect to 100 parts by mass of the polyol A.
  • One type of foaming agent C may be used alone, or two or more types may be used in combination.
  • the catalyst D used in the production of the polyurethane foam of the present invention is at least one selected from the group consisting of amine-based catalysts and tin-based catalysts.
  • the catalyst D is a catalyst used when reacting a polyoxyalkylene polyol with an organic polyisocyanate compound.
  • the catalyst D one type may be used alone, or two or more types may be used in combination.
  • amine-based catalyst examples include triethylenediamine, bis (2-dimethylaminoethyl) ether, N, N, N', N'-tetramethylhexamethylenediamine, N, N-dimethylaminoethoxyethoxyethanol, N, N-. Dimethylamino-6-hexanol, N, N-dimethylaminoethoxyethanol, N, N-dimethylaminoethoxyethanol plus 2 mol of ethylene oxide, or 5- (N, N-dimethyl) amino-3-methyl- 1-Pentanol, but is not limited to these.
  • the content of the amine-based catalyst in the raw material composition G is not particularly limited, but is preferably 0.1 to 5.0 parts by mass and 0.2 to 3.0 parts by mass with respect to 100 parts by mass of the polyol A. More preferred.
  • One type of the amine-based catalyst may be used alone, or two or more types may be used in combination.
  • tin-based catalyst examples include tin 2-ethylhexanoate, di-n-butyltin oxide, di-n-butyltin dilaurate, di-n-butyltin diacetate, di-n-octyltin oxide, and di-n-octyltin.
  • examples include, but are not limited to, dilaurate, monobutyltin trichloride, di-n-butyltin dialkyl mercaptan and di-n-octyl tin dialkyl mercaptan.
  • the content of the tin-based catalyst in the raw material composition G is not particularly limited, but is preferably 1.0 part by mass or less, more preferably 0.005 to 1.0 part by mass, based on 100 parts by mass of polyol A. preferable.
  • One type of the tin-based catalyst may be used alone, or two or more types may be used in combination.
  • the raw material composition G used for producing the polyurethane foam of the present invention may further contain a defoaming agent E.
  • the defoaming agent E include, but are not limited to, a silicone-based defoaming agent or a fluorine-containing compound-based defoaming agent.
  • the content of the foam stabilizer E in the raw material composition G is not particularly limited, but is preferably 0.1 to 5.0 parts by mass and 0.3 to 4.0 parts by mass with respect to 100 parts by mass of the polyol A. Parts are more preferable, and 0.5 to 3.0 parts by mass are further preferable.
  • One type of foam stabilizer E may be used alone, or two or more types may be used in combination.
  • the raw material composition G used for producing the polyurethane foam of the present invention may further contain a cross-linking agent F.
  • a cross-linking agent F a compound having two or more active hydrogen-containing groups selected from a hydroxyl group, a primary amino group and a secondary amino group is preferable.
  • the number of active hydrogen-containing groups is preferably 2 to 8.
  • the molecular weight of the cross-linking agent per active hydrogen-containing group is preferably less than 500.
  • cross-linking agent F examples include ethylene glycol, propylene glycol, 1,4-butanediol, neopentyl glycol, 1,6-hexanediol, diethylene glycol, triethylene glycol, dipropylene glycol, glycerin, trimethylolpropane, pentaerythritol, and di.
  • Glycerin monoethanolamine, diethanolamine, triethanolamine, bisphenol A, ethylenediamine, 3,5-diethyl-2,4-diaminotoluene, 3,5-diaminotolu, 6-diaminotoluene, 2-chloro-p-phenylene Diamine, 3,5-bis (methylthio) -2,4-diaminotoluene, 3,5-bis (methylthio) -2,6-diaminotoluene, 1-trifluoromethyl-3,5-diaminobenzene, 1-tri Fluoromethyl-4-chloro-3,5-diaminobenzene, 2,4-toludiamine, 2,6-toludiamine, bis (3,5-dimethyl-4-aminophenyl) methane, 4,4'-diaminodiphenylmethane , M-xylylene diamine, 1,4-diaminohexane, 1,3-bis (amino
  • the content of the cross-linking agent F in the raw material composition G is not particularly limited, but is preferably 0.1 to 20 parts by mass, more preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the polyol A.
  • the cross-linking agent F one type may be used alone, or two or more types may be used in combination.
  • the raw material composition G used for producing the polyurethane foam of the present invention may further contain an additive.
  • the additive include an emulsifier, an antioxidant, an antioxidant such as an ultraviolet absorber, a filler such as calcium carbonate or barium sulfate, a plasticizer, a colorant, a flame retardant, an antifungal agent or a foam breaking agent.
  • the present invention is not limited to these, and additives conventionally used for polyurethane foam can be used.
  • the content of the additive or the like in the raw material composition G is not particularly limited as long as it does not interfere with the effects of the present invention.
  • ⁇ Molding method> In the method for producing a polyurethane foam of the present invention, a molding method in which the raw material composition G is injected into a closed mold is preferable. Examples of this molding method include a molding method called mold foaming.
  • the vehicle soundproofing material of the present invention includes the polyurethane foam described above.
  • As the vehicle an automobile is preferable.
  • the polyurethane foam of the present invention has a thin thickness and good sound absorption characteristics in a low frequency region of 500 to 2000 Hz, and is therefore suitable as a soundproofing material for vehicles. Since the frequency with good sound absorption coefficient is the frequency band of road noise, it is suitable for use in fender liner and undercover applications, especially in fender liner applications.
  • DMC catalyst A composite metal cyanide complex catalyst (hereinafter referred to as “DMC catalyst”) was produced by the production method described in JP-A-2016-006203, [0021] to [0034]. In the presence of a DMC catalyst, propylene oxide was subjected to ring-opening addition polymerization using glycerin as an initiator, and then ethylene oxide was subjected to ring-opening addition polymerization using KOH to obtain a polyoxyalkylene polyol A3.
  • DMC catalyst composite metal cyanide complex catalyst
  • Polyoxyalkylene polyol A5 was synthesized by ring-opening addition polymerization of propylene oxide using glycerin as an initiator in the presence of a potassium hydroxide catalyst.
  • the EO content refers to the content (% by mass) of a unit derived from ethylene oxide in the polyoxyalkylene chain of the polyoxyalkylene polyol.
  • the PO content refers to the content (% by mass) of a unit derived from propylene oxide in the polyoxyalkylene chain of the polyoxyalkylene polyol.
  • Example 1 An aluminum mold having a length, a width of 150 mm, and a height of 10 mm was prepared. As shown in Table 2, 60 parts by mass of the polyoxyalkylene polyol A1, 40 parts by mass of the polyoxyalkylene polyol A2, 3 parts by mass of the foaming agent C1, 0.3 parts by mass of the catalyst D1 and 0. 05 parts by mass, 3 parts by mass of the foam stabilizer E2 and 3 parts of the cross-linking agent F1 were placed in a container and mixed at 3000 rpm for 30 seconds using a high-speed mixer. A mixture containing a raw material other than the organic polyisocyanate compound (hereinafter referred to as "polyol system liquid 1”) was obtained.
  • polyol system liquid 1 A mixture containing a raw material other than the organic polyisocyanate compound
  • raw material composition 1 39.4 parts by mass of the organic polyisocyanate compound B2 was added to the polyol system liquid 1 and mixed at 3000 rpm for 5 seconds using a high-speed mixer (described above).
  • a raw material composition (hereinafter referred to as "raw material composition 1") was obtained. After heating the upper and lower mold temperature of the mold prepared in advance to 60 ° C., the raw material composition 1 was added and foamed and cured. After 3 minutes, the cured product was taken out from the mold, crushed and degassed to obtain a flexible polyurethane foam (hereinafter referred to as "polyurethane foam 1").
  • polyurethane foam 1 The polyol system liquid 1, the raw material composition 1, and the polyurethane foam 1 were all produced in an environment of 25 ° C. at both room temperature and liquid temperature.
  • Example 2 A mixture containing a raw material other than the organic polyisocyanate compound (hereinafter referred to as "polyol system liquid 2”) in the same manner as in Example 1 except that the amount of the foaming agent C1 added is changed to 1 part and the catalyst D2 is not used.
  • Polyol system liquid 2 a raw material composition
  • 18.5 parts by mass of the organic polyisocyanate compound B2 was added to obtain a raw material composition (hereinafter referred to as “raw material composition 2”).
  • a flexible polyurethane foam (hereinafter referred to as “polyurethane foam 2”) was obtained in the same manner as in Example 1 except that the raw material composition 2 was used.
  • Example 3 A mixture containing a raw material other than the organic polyisocyanate compound (hereinafter referred to as “polyol system liquid 3”) was obtained in the same manner as in Example 2 except that the amount of the foaming agent C1 added was changed to 5 parts. In the same manner as in Example 2, 60.2 parts by mass of the organic polyisocyanate compound B2 was added to obtain a raw material composition (hereinafter referred to as “raw material composition 3”). A flexible polyurethane foam (hereinafter referred to as “polyurethane foam 3”) was obtained in the same manner as in Example 1 except that the raw material composition 3 was used.
  • Example 4 As shown in Table 2, 8 parts by mass of the polyoxyalkylene polyol A3, 3 parts by mass of the polyoxyalkylene polyol A4, 72 parts by mass of the polyoxyalkylene polyol A5, 20 parts by mass of the polyoxyalkylene polyol A6, and the foaming agent C1. 2.35 parts by mass of the catalyst D1, 0.6 parts by mass of the catalyst D1, 0.3 parts by mass of the catalyst D3, 0.3 parts by mass of the catalyst D4 and 0.4 parts by mass of the foam stabilizer E1. And mixed at 3000 rpm for 30 seconds using a high speed mixer. A mixture containing a raw material other than the organic polyisocyanate compound (hereinafter referred to as "polyol system liquid 4”) was obtained.
  • polyol system liquid 4 A mixture containing a raw material other than the organic polyisocyanate compound
  • raw material composition 4 A raw material composition (hereinafter referred to as “raw material composition 4”) was obtained.
  • a flexible polyurethane foam (hereinafter referred to as “polyurethane foam 4”) was obtained in the same manner as in Example 1 except that the raw material composition 4 was used. Polyurethane foams 1 to 4 were left in a room adjusted to a temperature of 23 ° C. and a humidity of 50% RH for 24 hours or more.
  • Catalyst-D1 Triethylenediamine dipropylene glycol solution (TEDA (registered trademark) L-33, manufactured by Tosoh Corporation) Amine-based catalyst-tin D2 2-ethylhexanoate (DABCO (registered trademark) T-9, manufactured by EVONIK) ) -Dipropylene glycol solution of D3 bis [(2-dimethylamino) ethyl] ether (TOYOCAT (registered trademark) ET, manufactured by Tosoh Corporation) -D4 1-isobutyl-2-methylimidazole (NC-IM, manufactured by Sankyo Air Products & Chemicals)
  • E Defoaming agent / E1 Silicone-based defoaming agent (SRX-274C, manufactured by Dow Corning) ⁇ E2 Silicone-based defoaming agent (TEGOSTAB (registered trademark) B8737 LF2, manufactured by EVONIK)
  • F Cross-linking agent / F1 cross-linking agent (molecular weight 400, number of functional groups 4, EO content 100% by mass polyol)
  • the EO content 100% by mass of F1 is a unit derived from alkylene oxide in the polyoxyalkylene chain. It means that the unit derived from ethylene oxide is 100% by mass.
  • the vertically incident sound absorption coefficient (sound absorption coefficient) was measured in the 500 to 2000 Hz region by a method based on JIS A 1405-2: 2007 “Measurement of sound absorption coefficient and impedance by acoustic tube”.
  • the equipment used for the measurement is as follows.
  • Density was measured according to JIS K 7222: 2005 "Foam Plastics and Rubber-How to Obtain Apparent Density”. Density measurements were made on the entire polyurethane foam.
  • the cross section of the measurement sample is imaged at 10 points, 100 cell skeletons are observed, the number of "with residual film” and “without residual film” is counted, and the ratio of "with residual film” is calculated as a percentage. did. The calculated percentage was taken as the residual film ratio.
  • ⁇ Average skeleton diameter> A cross section of the measurement sample was imaged using an optical microscope 1 at a magnification of 150 times. Of the internal foam layer, the portion where the boundary between the skeleton portion, the cell portion, and the membrane portion could be clearly observed was set as the observation target. The average skeleton diameter of the skeleton to be observed was measured using image processing software (ImageJ, manufactured by the National Institutes of Health). For the skeleton having a constricted shape, the smallest diameter portion was defined as the skeleton diameter of the skeleton portion. The cross section of the measurement sample was imaged at 10 places, the skeleton diameters of 70 observation objects were measured, and the average skeleton diameter was calculated by the arithmetic mean.
  • ⁇ Average cell diameter> A cross section of the measurement sample was imaged using an optical microscope 1 at a magnification of 150 times. Of the internal foam layer, the part where the cell skeleton can be confirmed over the entire circumference was used as the observation target. The contour of the inner circumference of the cell to be observed was extracted using image processing software (ImageJ, manufactured by the National Institutes of Health), and the area surrounded by the contour was calculated. The diameter of a circle with an area equal to the calculated area (circle-equivalent diameter) was calculated and defined as the cell diameter of the cell to be observed. The cross section of the measurement sample was imaged at 10 places, the cell diameters of 80 observation objects were measured, and the average cell diameter was calculated by the arithmetic mean.
  • ⁇ Skeletal ratio> The cross section of the measurement sample was imaged using an optical microscope 1. Then, using image processing software (ImageJ, manufactured by the National Institutes of Health, USA), the captured image was cut out in an area of 2.5 mm ⁇ 3.5 mm. The cut-out image was binarized by a discriminant analysis method (binarization of Otsu). In the above binarized image, the area ratio of the black part is calculated for each area of 0.02 mm ⁇ 3.5 mm, and the area ratio at each position is obtained while scanning the analysis area in the sample thickness direction by 0.02 mm. The distribution of the skeletal ratio in the sample thickness direction (skeletal ratio profile) was calculated. The cross section of the measurement sample was imaged at five or more places, and the skeleton ratio was calculated by the arithmetic mean of the skeleton ratio profile obtained from each image.
  • ⁇ Epidermal skeleton ratio SS> The epidermal layer skeleton ratio SS was calculated from the arithmetic mean of the skeletal ratio profiles measured at a depth of 0.3 mm from the surface of the polyurethane foam.
  • the internal foam layer skeleton ratio SI was calculated from the arithmetic mean of the skeletal ratio profiles measured at a depth of 3.5 to 4.5 mm from the surface of the polyurethane foam.
  • Example 1 corresponds to an embodiment, and Examples 2 to 4 correspond to a comparative example. It can be seen that the polyurethane foam of Example 1 has a residual film ratio within a specific range and is excellent not only in sound absorption characteristics at a low frequency of 1000 Hz but also in sound absorption performance in a low frequency region. Further, since the polyurethane foam of Example 1 has high sound absorption performance even if it is thin, a high sound absorption environment can be achieved by introducing it into a portion requiring weight reduction or thinning.
  • the polyurethane foam of Example 2 has a higher density than the polyurethane foam of Example 1, SS / SI does not meet the scope of the present invention and the residual film ratio is also high, so that sufficient sound absorption characteristics can be obtained. There wasn't.
  • the polyurethane foam of Example 3 has insufficient SS / SI, and has a lower density and a lower residual film ratio than the polyurethane foam of Example 1, so that the sound absorption characteristics in the low frequency region are insufficient. Met.
  • the polyurethane foam of Example 4 has a higher density than the polyurethane foam of Example 1, the SS / SI is outside the range of the present invention, so that sufficient sound absorption characteristics cannot be obtained.
  • the polyurethane foam of the present invention has a thin thickness and good sound absorption characteristics in a low frequency region of 500 to 2000 Hz, and is therefore suitable as a soundproofing material for vehicles. Since the frequency with good sound absorption coefficient is the frequency band of road noise, it is suitable for use in fender liner and undercover applications, especially in fender liner applications.
  • the entire contents of the specification, claims and abstract of Japanese Patent Application No. 2019-236123 filed on December 26, 2019 are cited here and incorporated as disclosure of the specification of the present invention. Is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

Provided are: a polyurethane foam having a good sound absorption coefficient in a low-frequency band of 500-2000 Hz, enabling weight reduction while maintaining sound absorption performance equivalent to or higher than that of conventional products, and having a skin layer that can be used as a soundproofing material for a vehicle; and a soundproofing material for a vehicle. This polyurethane foam and this soundproofing material for a vehicle each have a skin layer and an internal foam layer formed inside the skin layer, a thickness of 3-25 mm, a normal incidence sound absorption coefficient at a frequency of 1000 Hz of not less than 0.40 at a thickness of 10 mm, and a skeleton coefficient ratio SS/SI of 2.8-5.0 where the skeleton coefficient of the skin layer is defined as SS and the skeleton coefficient of the internal foam layer is defined as SI.

Description

ポリウレタンフォーム、及び車両用防音材Polyurethane foam and soundproofing material for vehicles
 本発明は、ポリウレタンフォーム、及び車両用防音材に関する。 The present invention relates to polyurethane foam and soundproofing material for vehicles.
 自動車等の車両には、モーター、エンジン、タイヤなどからの車外への騒音の抑制を目的として、防音材がアンダーカバーやフェンダーライナーカバーとして装着されている。防音材としては、ポリエステル繊維若しくはポリオレフィン繊維の不織布又はポリウレタンフォームが用いられている。ポリウレタンフォームは、ポリエステル繊維及びポリオレフィン繊維に比べて安価であるが、単独では低周波数領域の吸音性能が不足するため、ゴム、熱可塑性エラストマー又は熱可塑性樹脂のシートとの複合体として利用されてきた。しかし、ポリウレタンフォームと他の素材との複合体では、製造コストの上昇及び質量の増加という問題が生じていた。 Soundproofing materials are installed as undercovers and fender liner covers on vehicles such as automobiles for the purpose of suppressing noise from motors, engines, tires, etc. to the outside of the vehicle. As the soundproofing material, a non-woven fabric of polyester fiber or polyolefin fiber or polyurethane foam is used. Polyurethane foam is cheaper than polyester fiber and polyolefin fiber, but has been used as a composite with a sheet of rubber, thermoplastic elastomer, or thermoplastic resin because it alone lacks sound absorption performance in the low frequency region. .. However, the composite of polyurethane foam and other materials has problems such as an increase in manufacturing cost and an increase in mass.
 特許文献1には、高分子量ポリオキシアルキレンポリオール、有機ポリイソシアネート化合物、発泡剤及び触媒を含む原料組成物を用いて密閉された金型内で発泡させて製造するポリウレタンフォームが記載されている。一方、特許文献2には、多孔質の内部本体と、この内部本体の表面に形成された緻密な表皮とを備える吸音体が記載されている。 Patent Document 1 describes a polyurethane foam produced by foaming in a sealed mold using a raw material composition containing a high molecular weight polyoxyalkylene polyol, an organic polyisocyanate compound, a foaming agent and a catalyst. On the other hand, Patent Document 2 describes a sound absorbing body including a porous inner body and a dense skin formed on the surface of the inner body.
特開2005-113134号公報Japanese Unexamined Patent Publication No. 2005-113134 特開平10-121597号公報Japanese Unexamined Patent Publication No. 10-121597
 特許文献1には、500Hz前後の吸音性が良好なポリウレタンフォームが記載されている。500Hz前後の低周波数領域での吸音性は、吸音材の厚さを厚くすることで発現可能であるが、特許文献1では、十分な吸音性を発現させるためには26mm厚まで厚膜化する必要がある。一方、特許文献2に記載された吸音体は中周波数から高周波数領域(2000Hz以上)では優れた吸音特性を示すものの、低周波数領域(1000Hz以下、特に500Hz以下)の吸音性能は、吸音体の厚さを30mmまで厚くしても十分ではなかった。
 そのため、特許文献1や特許文献2に記載される吸音材を、10mm程度までの薄膜化が要求される用途(例えば、車両用フェンダーライナーやアンダーカバーなど)に適用した場合、低周波数領域において十分な吸音性能を発現させることは困難であった。
Patent Document 1 describes a polyurethane foam having good sound absorption around 500 Hz. Sound absorption in a low frequency region of around 500 Hz can be achieved by increasing the thickness of the sound absorbing material, but in Patent Document 1, the film is thickened to 26 mm in order to exhibit sufficient sound absorption. There is a need. On the other hand, although the sound absorbing body described in Patent Document 2 exhibits excellent sound absorbing characteristics in the medium to high frequency region (2000 Hz or more), the sound absorbing performance in the low frequency region (1000 Hz or less, particularly 500 Hz or less) is that of the sound absorbing body. It was not enough to increase the thickness to 30 mm.
Therefore, when the sound absorbing material described in Patent Document 1 or Patent Document 2 is applied to an application requiring a thin film of up to about 10 mm (for example, a fender liner for a vehicle, an undercover, etc.), it is sufficient in a low frequency region. It was difficult to develop a good sound absorption performance.
 本発明は、前記事情に鑑みてなされ、低周波数領域(500~2000Hz)の吸音率が良好であり、従来と同等以上の吸音性能を維持しながら薄型軽量化でき、車両用防音材として使用可能なポリウレタンフォーム、及び車両用防音材の提供を課題とする。 The present invention has been made in view of the above circumstances, has a good sound absorption coefficient in a low frequency region (500 to 2000 Hz), can be made thinner and lighter while maintaining sound absorption performance equal to or higher than the conventional one, and can be used as a soundproof material for vehicles. An object of the present invention is to provide a flexible polyurethane foam and a soundproofing material for vehicles.
 前記課題は以下の構成により解決される。
 [1]表皮層と、その内部に形成される内部発泡層とを有するポリウレタンフォームであって、厚さが3~25mmであり、周波数1000Hzでの垂直入射吸音率が10mm厚さで0.40以上であり、前記表皮層の骨格率をSS、前記内部発泡層の骨格率をSIとしたときの、骨格率比率SS/SIが2.8~5.0であることを特徴とする、ポリウレタンフォーム。
 [2]前記骨格率比率SS/SIが2.8~4.0である、[1]に記載のポリウレタンフォーム。
 [3]前記表皮層の骨格率SSが60%~85%である、[1]又は[2]に記載のポリウレタンフォーム。
 [4]前記内部発泡層の骨格率SIが24%~30%である、[1]~[3]のいずれかに記載のポリウレタンフォーム。
 [5]表皮層直下骨格率が40%以上である、[1]~[4]のいずれかに記載のポリウレタンフォーム。
 [6]密度が20~120kg/mである、[1]~[5]のいずれかに記載のポリウレタンフォーム。
 [7]前記内部発泡層の発泡セルの残膜率が40%以上94%未満である、[1]~[6]のいずれかに記載のポリウレタンフォーム。
 [8]前記発泡セルの平均骨格径を平均セル径で除した値が0.10~0.50であり、かつ、前記発泡セルの平均セル径が100~400μmである、[7]に記載のポリウレタンフォーム。
 [9][1]~[8]のいずれかに記載のポリウレタンフォームを含む車両用防音材。
 [10][9]に記載の車両用防音材を備えたフェンダーライナー。
The problem is solved by the following configuration.
[1] A polyurethane foam having a skin layer and an internal foam layer formed inside the polyurethane foam, having a thickness of 3 to 25 mm and a vertically incident sound absorption coefficient at a frequency of 1000 Hz of 0.40 with a thickness of 10 mm. As described above, the polyurethane is characterized in that the skeleton ratio SS / SI is 2.8 to 5.0 when the skeleton ratio of the epidermis layer is SS and the skeleton ratio of the internal foam layer is SI. Form.
[2] The polyurethane foam according to [1], wherein the skeleton ratio SS / SI is 2.8 to 4.0.
[3] The polyurethane foam according to [1] or [2], wherein the skeleton ratio SS of the epidermis layer is 60% to 85%.
[4] The polyurethane foam according to any one of [1] to [3], wherein the internal foam layer has a skeleton ratio SI of 24% to 30%.
[5] The polyurethane foam according to any one of [1] to [4], wherein the skeleton ratio immediately below the epidermis layer is 40% or more.
[6] The polyurethane foam according to any one of [1] to [5], which has a density of 20 to 120 kg / m 3.
[7] The polyurethane foam according to any one of [1] to [6], wherein the residual film ratio of the foam cell of the internal foam layer is 40% or more and less than 94%.
[8] The value obtained by dividing the average skeleton diameter of the foam cell by the average cell diameter is 0.10 to 0.50, and the average cell diameter of the foam cell is 100 to 400 μm, according to [7]. Polyurethane foam.
[9] A soundproofing material for vehicles containing the polyurethane foam according to any one of [1] to [8].
[10] A fender liner provided with the vehicle soundproofing material according to [9].
 本発明のポリウレタンフォームは、薄い厚さであっても500~2000Hzの低周波数領域の吸音特性が良好なので、車両用防音材として適する。吸音率が良好な周波数はロードノイズの周波数帯のため、フェンダーライナーやアンダーカバー用途、特にフェンダーライナー用途での適用が好適である。 The polyurethane foam of the present invention has good sound absorption characteristics in the low frequency range of 500 to 2000 Hz even if it has a thin thickness, and is therefore suitable as a soundproofing material for vehicles. Since the frequency with good sound absorption coefficient is the frequency band of road noise, it is suitable for use in fender liner and undercover applications, especially in fender liner applications.
 以下、本発明の実施の形態を説明するが、本発明の技術的範囲は、以下に記載する実施の形態に限定されず、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。 Hereinafter, embodiments of the present invention will be described, but the technical scope of the present invention is not limited to the embodiments described below, and various modifications can be made without departing from the spirit of the present invention. Is.
[ポリウレタンフォーム]
 本発明のポリウレタンフォームは、緻密な表皮層と、その内部に形成される内部発泡層とを有する。
 当該表皮層は、ポリウレタンフォームの外面を覆うように形成される。当該表皮層は、吸音特性の向上に大きく寄与する層である。表皮層の厚さは、後述する骨格率測定において、サンプル表面から、骨格率が50%を下回る部分までの厚さで定義する。
 表皮層の厚さは、特に限定されないが、0.2~1mmが好ましく、0.2~0.6mmがより好ましい。前記値がこの範囲内であると、本発明のポリウレタンフォームは、500~2000Hzの低周波数領域の吸音性能を確保できる。
 内部発泡層は、表皮層の内部に形成される、多孔質の内部本体を指す。
[Polyurethane foam]
The polyurethane foam of the present invention has a dense skin layer and an internal foam layer formed inside the polyurethane foam.
The skin layer is formed so as to cover the outer surface of the polyurethane foam. The skin layer is a layer that greatly contributes to the improvement of sound absorption characteristics. The thickness of the epidermis layer is defined by the thickness from the sample surface to the portion where the skeleton ratio is less than 50% in the skeleton ratio measurement described later.
The thickness of the epidermis layer is not particularly limited, but is preferably 0.2 to 1 mm, more preferably 0.2 to 0.6 mm. When the above value is within this range, the polyurethane foam of the present invention can secure sound absorption performance in a low frequency region of 500 to 2000 Hz.
The inner foam layer refers to a porous inner body formed inside the epidermis layer.
 本発明のポリウレタンフォームの厚さは、3~25mmであり、3~20mmが好ましい。
 前記厚さが上記の下限値以上であることで、良好な吸音性能を発揮できる。一方、前記厚さが上記の上限値以下であることで、本発明のポリウレタンフォームは、軽量でありながら、良好な吸音性能を発揮しやすい。
 本発明のポリウレタンフォームの、周波数1000Hzでの垂直入射吸音率は、10mm厚さで0.40以上である。当該垂直入射吸音率は、0.40~1が好ましく、0.50~1がより好ましい。
 前記吸音率がこの範囲内であると、本発明のポリウレタンフォームは、500~2000Hzの低周波数領域の吸音性能が優れる。
 前記吸音率がこの範囲内のポリウレタンフォームは、車両用の防音材としての利用に適している。特に、設置部位が狭窄部や複雑形状である場合は、薄い状態で使用されることとなり、本発明のポリウレタンフォームの利点が生かされることとなる。
The thickness of the polyurethane foam of the present invention is 3 to 25 mm, preferably 3 to 20 mm.
When the thickness is at least the above lower limit value, good sound absorption performance can be exhibited. On the other hand, when the thickness is not more than the above upper limit value, the polyurethane foam of the present invention is easy to exhibit good sound absorption performance while being lightweight.
The polyurethane foam of the present invention has a vertically incident sound absorption coefficient at a frequency of 1000 Hz, which is 0.40 or more at a thickness of 10 mm. The vertically incident sound absorption coefficient is preferably 0.40 to 1, more preferably 0.50 to 1.
When the sound absorption coefficient is within this range, the polyurethane foam of the present invention is excellent in sound absorption performance in a low frequency region of 500 to 2000 Hz.
The polyurethane foam having a sound absorption coefficient within this range is suitable for use as a soundproofing material for vehicles. In particular, when the installation site is a narrowed portion or a complicated shape, it will be used in a thin state, and the advantages of the polyurethane foam of the present invention will be utilized.
 吸音率は、ポリウレタンフォームを鋭利な刃物を用いて切断した、厚さが10mmの測定用サンプルを用い、JIS A 1405-2:2007「音響管による吸音率及びインピーダンスの測定」に準拠した方法により測定する。 The sound absorption coefficient is determined by a method based on JIS A 1405-2: 2007 "Measurement of sound absorption coefficient and impedance by acoustic tube" using a measurement sample having a thickness of 10 mm obtained by cutting polyurethane foam with a sharp blade. Measure.
 本発明のポリウレタンフォームは、表皮層の骨格率をSS、内部発泡層の骨格率をSIとしたときの、骨格率比率SS/SIが2.8~5.0であり、2.8~4.0が好ましい。
 SS/SIが下限値以上であると、吸音に影響を及ぼす表皮層の密度が高いため、低周波数領域の音の内部発泡層への透過が遮蔽され、慣性力による相互作用で、内部発泡層による低周波数の吸音特性が向上する。
 一方、SS/SIが上限値以下であると、表皮層における音の反射の影響を抑えられる。さらに、内部発泡層の強度も保てる。
 その結果、本発明のポリウレタンフォームは、500~2000Hzの低周波数領域の吸音性能がより向上する。
The polyurethane foam of the present invention has a skeleton ratio SS / SI of 2.8 to 5.0 and 2.8 to 4 when the skeleton ratio of the epidermis layer is SS and the skeleton ratio of the internal foam layer is SI. .0 is preferable.
When SS / SI is above the lower limit, the density of the epidermis layer that affects sound absorption is high, so that the transmission of sound in the low frequency region to the internal foam layer is blocked, and the internal foam layer is interacted by inertial force. The low frequency sound absorption characteristics are improved.
On the other hand, when SS / SI is not more than the upper limit value, the influence of sound reflection in the epidermis layer can be suppressed. Furthermore, the strength of the internal foam layer can be maintained.
As a result, the polyurethane foam of the present invention further improves the sound absorption performance in the low frequency region of 500 to 2000 Hz.
 骨格率は、ポリウレタンフォームを鋭利な刃物を用いて切断して測定用サンプルとし、サンプルの厚さ方向の断面を、光学顕微鏡を用いて撮像した結果から算出する。詳細な算出方法は後述する。 The skeleton ratio is calculated from the result of cutting the polyurethane foam with a sharp blade to make a sample for measurement and imaging the cross section in the thickness direction of the sample using an optical microscope. The detailed calculation method will be described later.
 表皮層の骨格率SSは、サンプルの表面から0.3mmの深さにおいて測定した骨格率の平均値で定義する。SSは特に限定されないが、60%~85%が好ましく、70%~85%がより好ましい。
 前記値がこの範囲内であると、本発明のポリウレタンフォームは、500~2000Hzの低周波数領域の吸音性能がより向上する。
The skeletal ratio SS of the epidermis layer is defined by the average value of the skeletal ratio measured at a depth of 0.3 mm from the surface of the sample. The SS is not particularly limited, but is preferably 60% to 85%, more preferably 70% to 85%.
When the above value is within this range, the polyurethane foam of the present invention further improves the sound absorption performance in the low frequency region of 500 to 2000 Hz.
 内部発泡層の骨格率SIは、サンプルの表面から3.5~4.5mmの深さにおいて測定した骨格率の平均値で定義する。SIは特に限定されないが、24%~30%が好ましく、25%~29%がより好ましい。
 前記値がこの範囲内であると、本発明のポリウレタンフォームは、500~2000Hzの低周波数領域の吸音性能がより向上する。
The skeletal ratio SI of the inner foam layer is defined by the average value of the skeletal ratios measured at a depth of 3.5 to 4.5 mm from the surface of the sample. The SI is not particularly limited, but is preferably 24% to 30%, more preferably 25% to 29%.
When the above value is within this range, the polyurethane foam of the present invention further improves the sound absorption performance in the low frequency region of 500 to 2000 Hz.
 表皮層直下骨格率は、表皮層厚さの2倍の深さの位置を表皮層直下と定義し、サンプルの表面から表皮層直下の深さにおいて測定した骨格率の平均値で定義する。表皮層直下骨格率は、特に限定されないが、40%以上が好ましく、40~70%がより好ましい。
 前記値がこの範囲内であると、本発明のポリウレタンフォームは、500~2000Hzの低周波数領域の吸音性能がより向上する。
The skeletal ratio directly below the epidermis layer is defined as the position directly below the epidermis layer at a depth twice the thickness of the epidermis layer, and is defined by the average value of the skeletal ratio measured at the depth directly below the epidermis layer from the surface of the sample. The skeleton ratio immediately below the epidermis layer is not particularly limited, but is preferably 40% or more, and more preferably 40 to 70%.
When the above value is within this range, the polyurethane foam of the present invention further improves the sound absorption performance in the low frequency region of 500 to 2000 Hz.
 本発明のポリウレタンフォームの密度は、20~120kg/mであり、30~100kg/mが好ましく、55~90kg/mがより好ましい。
 前記密度がこの範囲内であると、本発明のポリウレタンフォームは、吸音性能を従来と同等以上に維持しながら、軽量化できる。
 特に、近年の車両用防音材は、軽量化の要求が強く、本発明のポリウレタンフォームの利点を生かすことができる。また、フェンダーライナーなど複雑な形状の部位にも使用できる。
The density of the polyurethane foam of the present invention is 20 ~ 120kg / m 3, preferably 30 ~ 100kg / m 3, more preferably 55 ~ 90kg / m 3.
When the density is within this range, the polyurethane foam of the present invention can be reduced in weight while maintaining the sound absorption performance equal to or higher than the conventional one.
In particular, recent vehicle soundproofing materials are strongly required to be lightweight, and the advantages of the polyurethane foam of the present invention can be utilized. It can also be used for parts with complicated shapes such as fender liners.
 前記密度は、JIS K 7222:2005「発泡プラスチック及びゴム-見掛け密度の求め方」に従って測定した密度(単位:kg/m)である。 The density is a density (unit: kg / m 3 ) measured according to JIS K 7222: 2005 “Foam Plastics and Rubber-How to Obtain Apparent Density”.
 本発明のポリウレタンフォームの内部発泡層における発泡セルの残膜率は、40%以上94%未満であり、40~90%が好ましく、50~85%がより好ましく、55~85%がさらに好ましい。
 前記発泡セルの残膜率がこの範囲内であると、本発明のポリウレタンフォームは、500~2000Hzの低周波数領域の吸音性能が優れる。
 また、前記残膜率がこの範囲内であると、ポリウレタンフォームの成形時に収縮が起きにくく、成形しやすい。
 なお、前記発泡セルの残膜率は、測定用サンプルの断面を、光学顕微鏡を用いて撮像した結果から算出する。詳細な算出条件は後述する。
The residual film ratio of the foam cell in the internal foam layer of the polyurethane foam of the present invention is 40% or more and less than 94%, preferably 40 to 90%, more preferably 50 to 85%, still more preferably 55 to 85%.
When the residual film ratio of the foamed cell is within this range, the polyurethane foam of the present invention is excellent in sound absorption performance in a low frequency region of 500 to 2000 Hz.
Further, when the residual film ratio is within this range, shrinkage is less likely to occur during molding of the polyurethane foam, and molding is easy.
The residual film ratio of the foam cell is calculated from the result of imaging the cross section of the measurement sample using an optical microscope. Detailed calculation conditions will be described later.
 内部発泡層の発泡セルの平均セル径は、特に限定されないが、100~400μmが好ましく、150~350μmがより好ましく、150~300μmがさらに好ましい。 前記発泡セルの平均セル径がこの範囲内であると、本発明のポリウレタンフォームは、500~2000Hzの低周波数領域の吸音性能が優れる。 The average cell diameter of the foam cells of the internal foam layer is not particularly limited, but is preferably 100 to 400 μm, more preferably 150 to 350 μm, and even more preferably 150 to 300 μm. When the average cell diameter of the foamed cell is within this range, the polyurethane foam of the present invention is excellent in sound absorption performance in a low frequency region of 500 to 2000 Hz.
 内部発泡層の発泡セルの平均骨格径を平均セル径で除した値は、特に限定されないが、0.10~0.50が好ましく、0.15~0.45がより好ましく、0.27~0.45がさらに好ましい。
 前記値がこの範囲内であると、本発明のポリウレタンフォームは、500~2000Hzの低周波数領域の吸音性能がより向上する。
The value obtained by dividing the average skeleton diameter of the foamed cells of the inner foam layer by the average cell diameter is not particularly limited, but is preferably 0.10 to 0.50, more preferably 0.15 to 0.45, and 0.27 to 0.27 to 0.45. 0.45 is more preferable.
When the above value is within this range, the polyurethane foam of the present invention further improves the sound absorption performance in the low frequency region of 500 to 2000 Hz.
 なお、内部発泡層の平均骨格径及び平均セル径は、測定用サンプルの断面を、光学顕微鏡を用いて撮像した結果から算出する。詳細な算出条件は後述する。 The average skeleton diameter and average cell diameter of the internal foam layer are calculated from the results of imaging the cross section of the measurement sample using an optical microscope. Detailed calculation conditions will be described later.
[ポリウレタンフォームの製造方法]
 本発明のポリウレタンフォームは、例えば、ポリオキシアルキレンポリオールA、有機ポリイソシアネート化合物B、発泡剤C及び触媒Dを含む原料組成物Gを用いて発泡させて製造できる。
[Manufacturing method of polyurethane foam]
The polyurethane foam of the present invention can be produced by foaming using, for example, a raw material composition G containing a polyoxyalkylene polyol A, an organic polyisocyanate compound B, a foaming agent C and a catalyst D.
<原料組成物G>
 原料組成物Gは、ポリオキシアルキレンポリオールA、有機ポリイソシアネート化合物B、発泡剤C及び触媒Dを含む。原料組成物Gは、通常、有機ポリイソシアネート化合物B以外の原料を含むポリオールシステム液Hと、有機ポリイソシアネート化合物Bとを混合して調製する。
<Raw material composition G>
The raw material composition G contains a polyoxyalkylene polyol A, an organic polyisocyanate compound B, a foaming agent C and a catalyst D. The raw material composition G is usually prepared by mixing a polyol system liquid H containing a raw material other than the organic polyisocyanate compound B and an organic polyisocyanate compound B.
(ポリオキシアルキレンポリオールA)
 ポリオキシアルキレンポリオールA(以下「ポリオールA」という。)は、通常、触媒の存在下、開始剤にアルキレンオキシドを開環付加重合して合成する。
 ポリオールAは、3官能のポリオキシアルキレンポリオール、すなわち、1分子中に3個の水酸基を有するポリオキシアルキレンポリオールを含む。3官能のポリオキシアルキレンポリオール以外のポリオキシアルキレンポリオールは、特に限定されないが、例えば、2官能又は4官能以上のポリオキシアルキレンポリオールである。
 ポリオールAの1分子当たりの水酸基数(以下「平均水酸基数」という。)は2以上であれば特に限定されないが、2~8が好ましく、2~4がより好ましく、2.2~3.9がさらに好ましく、2.4~3.7がいっそう好ましい。
 平均水酸基数がこの範囲内であると、ポリウレタンフォームの軟らかさがより適度になり、圧縮永久歪がより改善し、伸び等の機械物性がより良好になり、防音性能がより向上する傾向がある。ポリオキシアルキレンポリオールの1分子の水酸基数は、そのポリオキシアルキレンポリオールの合成に用いた開始剤の活性水素含有基数と一致する。
(Polyoxyalkylene polyol A)
Polyoxyalkylene polyol A (hereinafter referred to as "polyol A") is usually synthesized by ring-opening addition polymerization of an alkylene oxide as an initiator in the presence of a catalyst.
Polyol A contains a trifunctional polyoxyalkylene polyol, that is, a polyoxyalkylene polyol having three hydroxyl groups in one molecule. The polyoxyalkylene polyol other than the trifunctional polyoxyalkylene polyol is not particularly limited, and is, for example, a bifunctional or tetrafunctional or higher functional polyoxyalkylene polyol.
The number of hydroxyl groups per molecule of polyol A (hereinafter referred to as "average number of hydroxyl groups") is not particularly limited as long as it is 2 or more, but 2 to 8 is preferable, 2 to 4 is more preferable, and 2.2 to 3.9 is preferable. Is more preferable, and 2.4 to 3.7 is even more preferable.
When the average number of hydroxyl groups is within this range, the softness of the polyurethane foam becomes more appropriate, the compression set is further improved, the mechanical properties such as elongation are improved, and the soundproofing performance tends to be further improved. .. The number of hydroxyl groups in one molecule of the polyoxyalkylene polyol is the same as the number of active hydrogen-containing groups of the initiator used in the synthesis of the polyoxyalkylene polyol.
 ポリオールAの数平均分子量は、特に限定されないが、1000~20000が好ましく、1000~16000がより好ましく、1500~12000がさらに好ましい。分子量がこの範囲内であると、ポリウレタンフォームにおける発泡セルの残膜率を適度な範囲としやすく、500~2000Hzの低周波数領域の吸音性能を改善しやすい。 The number average molecular weight of the polyol A is not particularly limited, but is preferably 1000 to 20000, more preferably 1000 to 16000, and even more preferably 1500 to 12000. When the molecular weight is within this range, the residual film ratio of the foamed cell in the polyurethane foam is likely to be in an appropriate range, and the sound absorption performance in the low frequency region of 500 to 2000 Hz is likely to be improved.
 ポリオールAの水酸基1個当たりの数平均分子量(以下「分子量/水酸基数」という。)は、特に限定されないが、通常、500以上であり、500~5000が好ましく、1000~3500がより好ましい。分子量/水酸基数がこの範囲内であると、ポリウレタンフォームの収縮がより起こりにくく、弾性がより良好になる。本発明では、分子量/水酸基数が500未満のポリオキシアルキレンポリオールは、通常、後述する架橋剤Fに分類する。 The number average molecular weight per hydroxyl group of polyol A (hereinafter referred to as "molecular weight / number of hydroxyl groups") is not particularly limited, but is usually 500 or more, preferably 500 to 5000, and more preferably 1000 to 3500. When the molecular weight / number of hydroxyl groups is within this range, the polyurethane foam is less likely to shrink and the elasticity becomes better. In the present invention, a polyoxyalkylene polyol having a molecular weight / number of hydroxyl groups of less than 500 is usually classified as a cross-linking agent F described later.
 ポリオールAの製造の際に用いる開始剤は、1分子中に活性水素含有基を2~8個有する化合物が好ましい。このような化合物としては、2~8価の多価アルコール、多価フェノール又はアミンが好ましい。
 前記2~8価の多価アルコールとしては、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、ネオペンチルグリコール、ジプロピレングリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール、ジグリセリン、meso-エリスリトール、メチルグルコシド、グルコース、デキストロース、ソルビトール又はショ糖が挙げられるが、これらに限定されない。
 前記多価フェノールとしては、ビスフェノールA、ビスフェノールF、ピロガロール又はヒドロキノンが挙げられるが、これらに限定されない。
 前記アミンとしては、エチレンジアミン、ジエチレンジアミン、ジアミノジフェニルメタン、ヘキサメチレンジアミン及びプロピレンジアミン等のポリアミン、並びにポリアミンとフェノール樹脂又はノボラック樹脂を縮合反応させて得られる縮合系化合物が挙げられるが、これらに限定されない。
 また、前記多価アルコール、前記多価フェノール、又は前記アミンにアルキレンオキシドを少量開環付加重合して得られる分子鎖末端に水酸基を有する低分子量ポリエーテルポリオールも開始剤として使用できる。このような低分子量ポリエーテルポリオールの水酸基当たりの分子量は、通常、1200以下であり、200~500が好ましく、200~350がより好ましい。
The initiator used in the production of polyol A is preferably a compound having 2 to 8 active hydrogen-containing groups in one molecule. As such a compound, a 2- to 8-valent polyhydric alcohol, a polyhydric phenol or an amine is preferable.
Examples of the divalent to octavalent polyhydric alcohols include ethylene glycol, propylene glycol, 1,4-butanediol, neopentyl glycol, dipropylene glycol, glycerin, trimethylolpropane, pentaerythritol, diglycerin, meso-erythritol, and methyl. Examples include, but are not limited to, glucoside, glucose, dextrose, sorbitol or sucrose.
Examples of the multivalent phenol include, but are not limited to, bisphenol A, bisphenol F, pyrogallol or hydroquinone.
Examples of the amine include, but are not limited to, polyamines such as ethylenediamine, diethylenediamine, diaminodiphenylmethane, hexamethylenediamine and propylenediamine, and condensation compounds obtained by condensing polyamine with a phenol resin or novolak resin. ..
Further, the polyhydric alcohol, the polyhydric phenol, or a low molecular weight polyether polyol having a hydroxyl group at the terminal of the molecular chain obtained by ring-opening addition polymerization of a small amount of alkylene oxide to the amine can also be used as an initiator. The molecular weight per hydroxyl group of such a low molecular weight polyether polyol is usually 1200 or less, preferably 200 to 500, and more preferably 200 to 350.
 開始剤としては、1分子中に水酸基を2~4個有する化合物がより好ましく、2~4価の多価アルコール又は2~4価の低分子量ポリエーテルポリオールが好ましい。中でも、3価以上の多価アルコール又は低分子量ポリエーテルポリオールを開始剤として用いて製造したポリオールは、ポリウレタンフォームの防音性能、発泡安定性及び物性のバランスがより良好である。開始剤は、1種類を単独で用いてもよいし、2種類以上を併用してもよい。 As the initiator, a compound having 2 to 4 hydroxyl groups in one molecule is more preferable, and a dihydric to tetravalent polyhydric alcohol or a 2 to 4 valent low molecular weight polyether polyol is preferable. Among them, the polyol produced by using a trihydric or higher-valent alcohol or a low molecular weight polyether polyol as an initiator has a better balance of soundproofing performance, foaming stability and physical properties of polyurethane foam. One type of initiator may be used alone, or two or more types may be used in combination.
 アルキレンオキシドは、特に限定されないが、エチレンオキシド、プロピレンオキシド、ブチレンオキシド及びスチレンオキシドから選択される1種類以上が好ましく、エチレンオキシド及びプロピレンオキシドから選択される1種類以上がより好ましい。エチレンオキシドの含有量が多くなると、ポリオキシアルキレン鎖の結晶性が向上し、ポリウレタンのソフトセグメントが剛直になる傾向がある。ポリオールAのポリオキシアルキレン鎖の、エチレンオキシドに由来する単位の含有量(以下「EO含有量」という。)は、特に限定されないが、ポリオキシアルキレン鎖の総質量の0~20質量%が好ましく、0~15質量%がより好ましい。EO含有量がこの範囲内であると、ポリオキシアルキレン鎖の親水性がより好ましくなり、得られるポリウレタンフォームにおける発泡セルの残膜率がより適度な範囲内になりやすい。 The alkylene oxide is not particularly limited, but one or more selected from ethylene oxide, propylene oxide, butylene oxide and styrene oxide is preferable, and one or more selected from ethylene oxide and propylene oxide are more preferable. As the ethylene oxide content increases, the crystallinity of the polyoxyalkylene chain tends to improve and the soft segment of polyurethane tends to become rigid. The content of the unit derived from ethylene oxide (hereinafter referred to as “EO content”) of the polyoxyalkylene chain of polyol A is not particularly limited, but is preferably 0 to 20% by mass of the total mass of the polyoxyalkylene chain. More preferably 0 to 15% by mass. When the EO content is within this range, the hydrophilicity of the polyoxyalkylene chain becomes more preferable, and the residual film ratio of the foamed cell in the obtained polyurethane foam tends to be within a more appropriate range.
 開始剤にアルキレンオキシドを開環付加重合する際の触媒としては、従来使用されている触媒が用いられる。触媒としては、水酸化カリウム、水酸化ナトリウム、水酸化セシウム、ホスファゼニウム化合物、ボロントリフロリド化合物又は複合金属シアン化物錯体が挙げられるが、これらに限定されない。 A conventionally used catalyst is used as a catalyst for ring-opening addition polymerization of an alkylene oxide as an initiator. Examples of the catalyst include, but are not limited to, potassium hydroxide, sodium hydroxide, cesium hydroxide, phosphazenium compound, boron trifloride compound or complex metal cyanide complex.
 ポリオールAは、ポリマー微粒子をポリオールA中に分散して含んでいてもよい。ポリマー微粒子は、分散媒としてのベースポリオール中にポリマー微粒子が安定的に分散する。ポリマー微粒子としては、付加重合系ポリマー及び縮重合系ポリマーが挙げられる。ポリマー微粒子を構成するポリマーとしては、アクリロニトリル、スチレン、アルキルメタクリレート、アルキルアクリレート及びその他のビニルモノマーのホモポリマー若しくはコポリマー等の付加重合系ポリマー、又はポリエステル、ポリウレア、ポリウレタン若しくはメラミン樹脂等の縮重合系ポリマーが好ましく、アクリロニトリル、スチレンのホモポリマー又はコポリマーがより好ましい。 Polyol A may contain polymer fine particles dispersed in polyol A. In the polymer fine particles, the polymer fine particles are stably dispersed in the base polyol as a dispersion medium. Examples of the polymer fine particles include addition polymerization type polymers and polycondensation type polymers. Examples of the polymer constituting the polymer fine particles include addition polymerization polymers such as homopolymers or copolymers of acrylonitrile, styrene, alkyl methacrylate, alkyl acrylates and other vinyl monomers, or reduced polymerization polymers such as polyester, polyurea, polyurethane or melamine resin. Is preferable, and homopolymers or copolymers of acrylonitrile and styrene are more preferable.
 本発明のポリウレタンフォームの製造方法においては、ポリオールA以外のポリオールを併用してもよい。このようなポリオールとしては、ポリエステルポリオール等の他の高分子量ポリオールが挙げられる。ポリオールA以外のポリオールの使用量は、ポリオールAの合計100質量部に対して、0~20質量部が好ましく、0~10質量部がより好ましく、0質量部、すなわち、使用しないこと、がさらに好ましい。 In the method for producing a polyurethane foam of the present invention, a polyol other than polyol A may be used in combination. Examples of such a polyol include other high molecular weight polyols such as polyester polyol. The amount of the polyol other than the polyol A to be used is preferably 0 to 20 parts by mass, more preferably 0 to 10 parts by mass, and 0 parts by mass, that is, not used, based on 100 parts by mass of the total of the polyol A. preferable.
 以下、原料組成物G中のポリオールA以外の成分の含有量を、100質量部のポリオールAに対する含有量として定義する。
 ポリオールAは、1種類を単独で用いてもよいし、2種類以上を併用してもよい。
Hereinafter, the content of the components other than the polyol A in the raw material composition G is defined as the content with respect to 100 parts by mass of the polyol A.
One type of polyol A may be used alone, or two or more types may be used in combination.
(有機ポリイソシアネート化合物B)
 本発明のポリウレタンフォームの製造に用いる有機ポリイソシアネート化合物Bは、特に限定されないが、例えば、イソシアネート基を2以上有する芳香族系、脂環式ポリイソシアネート、脂肪族系ポリイソシアネート、これらを変性して得られる変性ポリイソシアネート、及びポリイソシアネートからなる群から選択される少なくとも1種が挙げられる。
 有機ポリイソシアネート化合物Bとしては、トルエンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、ポリメチレンポリフェニルイソシアネート(通称:クルードMDI)、キシリレンジイソシアネート(XDI)、イソホロンジイソシアネート(IPDI)又はヘキサメチレンジイソシアネート(HMDI)、これらのポリイソシアネートのプレポリマー変性体、イソシアヌレート変性体、ウレア変性体及びカルボジイミド変性体が挙げられ、TDI、MDI、クルードMDI及びこれらの変性体からなる群から選択される少なくとも1種が入手性の点で好ましい。TDIは2,4-TDI及び2,6-TDIのいずれでもよく、混合物でもよい。MDIは2,2’-MDI、2,4’-MDI及び4,4’-MDIのいずれでもよく、これらのうち2種類又は3種類の混合物でもよい。有機ポリイソシアネート化合物Bとしては、TDIが特に好ましい。
(Organic Polyisocyanate Compound B)
The organic polyisocyanate compound B used for producing the polyurethane foam of the present invention is not particularly limited. At least one selected from the group consisting of the obtained modified polyisocyanate and polyisocyanate can be mentioned.
Examples of the organic polyisocyanate compound B include toluene diisocyanate (TDI), diphenylmethane diisocyanate (MDI), polymethylene polyphenyl isocyanate (commonly known as crude MDI), xylylene diisocyanate (XDI), isophorone diisocyanate (IPDI) or hexamethylene diisocyanate (HMDI). ), Prepolymer modified products of these polyisocyanates, isocyanurate modified products, urea modified products and carbodiimide modified products, and at least one selected from the group consisting of TDI, MDI, crude MDI and modified products thereof. It is preferable in terms of availability. The TDI may be either 2,4-TDI or 2,6-TDI, or a mixture. The MDI may be any of 2,2'-MDI, 2,4'-MDI and 4,4'-MDI, and may be a mixture of two or three of these. As the organic polyisocyanate compound B, TDI is particularly preferable.
 原料組成物G中の有機ポリイソシアネート化合物Bの含有量は、特に限定されないが、有機ポリイソシアネート化合物Bのイソシアネート基の総モル数をポリオールAの水酸基の総モル数で除して100倍した値(イソシアネートインデックス)が、75~120となる量が好ましく、80~120となる量がより好ましく、80~110となる量がさらに好ましい。イソシアネートインデックスがこの範囲内であると、硬化を充分に進行させることができ、かつ、硬化が過剰に進行することなく、適切な硬化度の発泡体を得ることができる。
 有機ポリイソシアネート化合物Bは、1種類を単独で用いてもよいし、2種類以上を併用してもよい。
The content of the organic polyisocyanate compound B in the raw material composition G is not particularly limited, but is a value obtained by dividing the total number of moles of the isocyanate groups of the organic polyisocyanate compound B by the total number of moles of the hydroxyl groups of the polyol A and multiplying by 100. The amount of (isocyanate index) is preferably 75 to 120, more preferably 80 to 120, and even more preferably 80 to 110. When the isocyanate index is within this range, curing can proceed sufficiently, and a foam having an appropriate degree of curing can be obtained without excessive curing progressing.
As the organic polyisocyanate compound B, one type may be used alone, or two or more types may be used in combination.
(発泡剤C)
 本発明のポリウレタンフォームの製造に用いる発泡剤は、水を含む。
 また、発泡体の密度を低くする目的で、水以外の発泡剤を用いることができる。水以外の発泡剤としては、低沸点の不活性化合物が好ましい。このような不活性化合物としては、例えば、不活性ガス、及び沸点が70℃以下で、炭素数が8以下の炭化水素化合物をさらに含み、前記炭化水素化合物の炭素原子に結合する水素原子の一部がハロゲン原子に置換されていてもよい飽和炭化水素(以下「飽和炭化水素X」という。)が挙げられる。前記ハロゲン原子は、例えば、塩素原子又はフッ素原子である。
 飽和炭化水素Xとしては、ブタン、ペンタン、ヘキサン、ジクロロメタン(塩化メチレン)、トリクロロエタン及び各種フロン化合物が挙げられるが、これらに限定されない。
(Foamant C)
The foaming agent used in the production of the polyurethane foam of the present invention contains water.
Further, a foaming agent other than water can be used for the purpose of lowering the density of the foam. As the foaming agent other than water, an inert compound having a low boiling point is preferable. Such an inert compound further includes, for example, an inert gas and a hydrocarbon compound having a boiling point of 70 ° C. or lower and a carbon number of 8 or less, and is one of the hydrogen atoms bonded to the carbon atom of the hydrocarbon compound. Examples thereof include saturated hydrocarbons whose portions may be substituted with halogen atoms (hereinafter referred to as “saturated hydrocarbons X”). The halogen atom is, for example, a chlorine atom or a fluorine atom.
Examples of the saturated hydrocarbon X include, but are not limited to, butane, pentane, hexane, dichloromethane (methylene chloride), trichloroethane and various chlorofluorocarbon compounds.
 原料組成物G中の発泡剤Cとしての水の含有量は、ポリオールAの100質量部に対して、1.5質量部以上が好ましく、2~5質量部がより好ましい。当該範囲とすることで、発泡を充分に進行させ、発泡体の密度を所望の範囲としやすくなる。
 また、原料組成物G中の水以外の発泡剤の含有量は、特に限定されないが、ポリオールAの100質量部に対して、0~25質量部が好ましく、0~20質量部がより好ましい。
 発泡剤Cは、1種類を単独で用いてもよいし、2種類以上を併用してもよい。
The content of water as the foaming agent C in the raw material composition G is preferably 1.5 parts by mass or more, more preferably 2 to 5 parts by mass, based on 100 parts by mass of the polyol A. Within this range, foaming can proceed sufficiently and the density of the foam can be easily set within a desired range.
The content of the foaming agent other than water in the raw material composition G is not particularly limited, but is preferably 0 to 25 parts by mass, more preferably 0 to 20 parts by mass with respect to 100 parts by mass of the polyol A.
One type of foaming agent C may be used alone, or two or more types may be used in combination.
(触媒D)
 本発明のポリウレタンフォームの製造に用いる触媒Dは、アミン系触媒及びスズ系触媒からなる群から選択される少なくとも1種である。
 触媒Dは、ポリオキシアルキレンポリオールと有機ポリイソシアネート化合物とを反応させる際に使用する触媒である。
 触媒Dは、1種類を単独で用いてもよいし、2種類以上を併用してもよい。
(Catalyst D)
The catalyst D used in the production of the polyurethane foam of the present invention is at least one selected from the group consisting of amine-based catalysts and tin-based catalysts.
The catalyst D is a catalyst used when reacting a polyoxyalkylene polyol with an organic polyisocyanate compound.
As the catalyst D, one type may be used alone, or two or more types may be used in combination.
 前記アミン系触媒としては、トリエチレンジアミン、ビス(2-ジメチルアミノエチル)エーテル、N,N,N’,N’-テトラメチルヘキサメチレンジアミン、N,N-ジメチルアミノエトキシエトキシエタノール、N,N-ジメチルアミノ-6-ヘキサノール、N,N-ジメチルアミノエトキシエタノール、N,N-ジメチルアミノエトキシエタノールに2モルのエチレンオキシドを付加した化合物、又は5-(N,N-ジメチル)アミノ-3-メチル-1-ペンタノールが挙げられるが、これらに限定されない。 Examples of the amine-based catalyst include triethylenediamine, bis (2-dimethylaminoethyl) ether, N, N, N', N'-tetramethylhexamethylenediamine, N, N-dimethylaminoethoxyethoxyethanol, N, N-. Dimethylamino-6-hexanol, N, N-dimethylaminoethoxyethanol, N, N-dimethylaminoethoxyethanol plus 2 mol of ethylene oxide, or 5- (N, N-dimethyl) amino-3-methyl- 1-Pentanol, but is not limited to these.
 原料組成物G中の前記アミン系触媒の含有量は、特に限定されないが、ポリオールAの100質量部に対して、0.1~5.0質量部が好ましく、0.2~3.0質量部がより好ましい。
 前記アミン系触媒は、1種類を単独で用いてもよいし、2種類以上を併用してもよい。
The content of the amine-based catalyst in the raw material composition G is not particularly limited, but is preferably 0.1 to 5.0 parts by mass and 0.2 to 3.0 parts by mass with respect to 100 parts by mass of the polyol A. More preferred.
One type of the amine-based catalyst may be used alone, or two or more types may be used in combination.
 前記スズ系触媒としては、2-エチルヘキサン酸スズ、ジ-n-ブチルスズオキシド、ジ-n-ブチルスズジラウレート、ジ-n-ブチルスズジアセテート、ジ-n-オクチルスズオキシド、ジ-n-オクチルスズジラウレート、モノブチルスズトリクロリド、ジ-n-ブチルスズジアルキルメルカプタン及びジ-n-オクチルスズジアルキルメルカプタンが挙げられるが、これらに限定されない。 Examples of the tin-based catalyst include tin 2-ethylhexanoate, di-n-butyltin oxide, di-n-butyltin dilaurate, di-n-butyltin diacetate, di-n-octyltin oxide, and di-n-octyltin. Examples include, but are not limited to, dilaurate, monobutyltin trichloride, di-n-butyltin dialkyl mercaptan and di-n-octyl tin dialkyl mercaptan.
 原料組成物G中の前記スズ系触媒の含有量は、特に限定されないが、ポリオールAの100質量部に対して、1.0質量部以下が好ましく、0.005~1.0質量部がより好ましい。
 前記スズ系触媒は、1種類を単独で用いてもよいし、2種類以上を併用してもよい。
The content of the tin-based catalyst in the raw material composition G is not particularly limited, but is preferably 1.0 part by mass or less, more preferably 0.005 to 1.0 part by mass, based on 100 parts by mass of polyol A. preferable.
One type of the tin-based catalyst may be used alone, or two or more types may be used in combination.
(整泡剤E)
 本発明のポリウレタンフォームの製造に用いる原料組成物Gは、さらに、整泡剤Eを含んでもよい。
 整泡剤Eとしては、シリコーン系整泡剤又は含フッ素化合物系整泡剤が挙げられるがこれらに限定されない。
 原料組成物Gが整泡剤Eを含むと、良好な気泡を形成できる。
 原料組成物G中の整泡剤Eの含有量は、特に限定されないが、ポリオールAの100質量部に対して、0.1~5.0質量部が好ましく、0.3~4.0質量部がより好ましく、0.5~3.0質量部がさらに好ましい。
 整泡剤Eは、1種類を単独で用いてもよいし、2種類以上を併用してもよい。
(Foaming agent E)
The raw material composition G used for producing the polyurethane foam of the present invention may further contain a defoaming agent E.
Examples of the defoaming agent E include, but are not limited to, a silicone-based defoaming agent or a fluorine-containing compound-based defoaming agent.
When the raw material composition G contains the antifoaming agent E, good bubbles can be formed.
The content of the foam stabilizer E in the raw material composition G is not particularly limited, but is preferably 0.1 to 5.0 parts by mass and 0.3 to 4.0 parts by mass with respect to 100 parts by mass of the polyol A. Parts are more preferable, and 0.5 to 3.0 parts by mass are further preferable.
One type of foam stabilizer E may be used alone, or two or more types may be used in combination.
(架橋剤F)
 本発明のポリウレタンフォームの製造に用いる原料組成物Gは、さらに、架橋剤Fを含んでもよい。架橋剤Fとしては、水酸基、1級アミノ基及び2級アミノ基から選ばれる活性水素含有基を2個以上有する化合物が好ましい。活性水素含有基の数は2~8が好ましい。また、架橋剤の活性水素含有基当たりの分子量は、500未満が好ましい。
(Crosslinking agent F)
The raw material composition G used for producing the polyurethane foam of the present invention may further contain a cross-linking agent F. As the cross-linking agent F, a compound having two or more active hydrogen-containing groups selected from a hydroxyl group, a primary amino group and a secondary amino group is preferable. The number of active hydrogen-containing groups is preferably 2 to 8. The molecular weight of the cross-linking agent per active hydrogen-containing group is preferably less than 500.
 架橋剤Fとしては、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール、ジグリセリン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ビスフェノールA、エチレンジアミン、3,5-ジエチル-2,4-ジアミノトルエン、3,5-ジエチル-2,6-ジアミノトルエン、2-クロロ-p-フェニレンジアミン、3,5-ビス(メチルチオ)-2,4-ジアミノトルエン、3,5-ビス(メチルチオ)-2,6-ジアミノトルエン、1-トリフルオロメチル-3,5-ジアミノベンゼン、1-トリフルオロメチル-4-クロロ-3,5-ジアミノベンゼン、2,4-トルエンジアミン、2,6-トルエンジアミン、ビス(3,5-ジメチル-4-アミノフェニル)メタン、4,4’-ジアミノジフェニルメタン、m-キシリレンジアミン、1,4-ジアミノヘキサン、1,3-ビス(アミノメチル)シクロヘキサン及びイソホロンジアミンが挙げられるが、これらに限定されない。また、架橋剤Fとして、上述した分子量/水酸基数が500未満のポリオキシアルキレンポリオールも使用できる。 Examples of the cross-linking agent F include ethylene glycol, propylene glycol, 1,4-butanediol, neopentyl glycol, 1,6-hexanediol, diethylene glycol, triethylene glycol, dipropylene glycol, glycerin, trimethylolpropane, pentaerythritol, and di. Glycerin, monoethanolamine, diethanolamine, triethanolamine, bisphenol A, ethylenediamine, 3,5-diethyl-2,4-diaminotoluene, 3,5-diaminotolu, 6-diaminotoluene, 2-chloro-p-phenylene Diamine, 3,5-bis (methylthio) -2,4-diaminotoluene, 3,5-bis (methylthio) -2,6-diaminotoluene, 1-trifluoromethyl-3,5-diaminobenzene, 1-tri Fluoromethyl-4-chloro-3,5-diaminobenzene, 2,4-toludiamine, 2,6-toludiamine, bis (3,5-dimethyl-4-aminophenyl) methane, 4,4'-diaminodiphenylmethane , M-xylylene diamine, 1,4-diaminohexane, 1,3-bis (aminomethyl) cyclohexane and isophoronediamine, but are not limited thereto. Further, as the cross-linking agent F, the above-mentioned polyoxyalkylene polyol having a molecular weight / number of hydroxyl groups of less than 500 can also be used.
 原料組成物G中の架橋剤Fの含有量は、特に限定されないが、ポリオールAの100質量部に対して、0.1~20質量部が好ましく、0.5~10質量部がより好ましい。 架橋剤Fは、1種類を単独で用いてもよいし、2種類以上を併用してもよい。 The content of the cross-linking agent F in the raw material composition G is not particularly limited, but is preferably 0.1 to 20 parts by mass, more preferably 0.5 to 10 parts by mass with respect to 100 parts by mass of the polyol A. As the cross-linking agent F, one type may be used alone, or two or more types may be used in combination.
(添加剤)
 本発明のポリウレタンフォームの製造に用いる原料組成物Gは、さらに、添加剤を含んでもよい。
 前記添加剤としては、例えば、乳化剤、酸化防止剤、紫外線吸収剤等の老化防止剤、炭酸カルシウム又は硫酸バリウム等の充填剤、可塑剤、着色剤、難燃剤、抗カビ剤若しくは破泡剤等の公知の各種添加剤又は助剤が挙げられるが、これらに限定されず、従来ポリウレタンフォームに使用されている添加剤を使用できる。
 原料組成物G中の前記添加剤等の含有量は、本発明の効果を妨げなければ、特に限定されない。
(Additive)
The raw material composition G used for producing the polyurethane foam of the present invention may further contain an additive.
Examples of the additive include an emulsifier, an antioxidant, an antioxidant such as an ultraviolet absorber, a filler such as calcium carbonate or barium sulfate, a plasticizer, a colorant, a flame retardant, an antifungal agent or a foam breaking agent. Examples of the above-mentioned various known additives or auxiliaries can be mentioned, but the present invention is not limited to these, and additives conventionally used for polyurethane foam can be used.
The content of the additive or the like in the raw material composition G is not particularly limited as long as it does not interfere with the effects of the present invention.
<成型方法>
 本発明のポリウレタンフォームの製造方法では、原料組成物Gを密閉の型に注入する成型方法が好ましい。この成型方法としては、例えば、モールド発泡と呼ばれる成型方法が挙げられる。
<Molding method>
In the method for producing a polyurethane foam of the present invention, a molding method in which the raw material composition G is injected into a closed mold is preferable. Examples of this molding method include a molding method called mold foaming.
[車両用防音材]
 本発明の車両用防音材は、上述したポリウレタンフォームを含む。
 車両としては、自動車が好ましい。
 本発明のポリウレタンフォームは、薄い厚さで500~2000Hzの低周波数領域の吸音特性が良好なので、車両用防音材として適する。吸音率が良好な周波数はロードノイズの周波数帯のため、フェンダーライナーやアンダーカバー用途、特にフェンダーライナー用途での適用が好適である。
[Soundproofing material for vehicles]
The vehicle soundproofing material of the present invention includes the polyurethane foam described above.
As the vehicle, an automobile is preferable.
The polyurethane foam of the present invention has a thin thickness and good sound absorption characteristics in a low frequency region of 500 to 2000 Hz, and is therefore suitable as a soundproofing material for vehicles. Since the frequency with good sound absorption coefficient is the frequency band of road noise, it is suitable for use in fender liner and undercover applications, especially in fender liner applications.
 以下、実施例により、本発明をより具体的に説明するが、本発明の技術的範囲は、後述する実施例に限定されず、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the technical scope of the present invention is not limited to the Examples described later, and various modifications may be made without departing from the spirit of the present invention. It is possible.
[合成例]
 以下の手順に従って、ポリオキシアルキレンポリオールを合成した。
[Synthesis example]
A polyoxyalkylene polyol was synthesized according to the following procedure.
<合成例1>
 水酸化カリウム触媒の存在下、グリセリンを開始剤として、プロピレンオキシドを開環付加重合させた後、さらにエチレンオキシドを開環付加重合させて、ポリオキシアルキレンポリオールA1を合成した。
<Synthesis example 1>
In the presence of a potassium hydroxide catalyst, propylene oxide was subjected to ring-opening addition polymerization using glycerin as an initiator, and then ethylene oxide was further subjected to ring-opening addition polymerization to synthesize a polyoxyalkylene polyol A1.
<合成例2>
 上記で得られたポリオキシアルキレンポリオールA1を分散媒とし、アクリロニトリルポリマー微粒子(30質量%)を分散させて、ポリオキシアルキレンポリオールA2を得た。
<Synthesis example 2>
Using the polyoxyalkylene polyol A1 obtained above as a dispersion medium, acrylonitrile polymer fine particles (30% by mass) were dispersed to obtain a polyoxyalkylene polyol A2.
<合成例3>
 特開2016-006203号公報の[0021]~[0034]に記載された製造方法によって複合金属シアン化物錯体触媒(以下「DMC触媒」という。)を製造した。
 DMC触媒の存在下、グリセリンを開始剤として、プロピレンオキシドを開環付加重合後、KOHを用いてエチレンオキシドを開環付加重合させて、ポリオキシアルキレンポリオールA3を得た。
<Synthesis example 3>
A composite metal cyanide complex catalyst (hereinafter referred to as “DMC catalyst”) was produced by the production method described in JP-A-2016-006203, [0021] to [0034].
In the presence of a DMC catalyst, propylene oxide was subjected to ring-opening addition polymerization using glycerin as an initiator, and then ethylene oxide was subjected to ring-opening addition polymerization using KOH to obtain a polyoxyalkylene polyol A3.
<合成例4>
 水酸化カリウム触媒の存在下、グリセリンを開始剤として、プロピレンオキシドを開環付加重合させた後、さらにエチレンオキシドを開環付加重合させて、ポリオキシアルキレンポリオールA4を合成した。
<Synthesis example 4>
In the presence of a potassium hydroxide catalyst, propylene oxide was subjected to ring-opening addition polymerization using glycerin as an initiator, and then ethylene oxide was further subjected to ring-opening addition polymerization to synthesize a polyoxyalkylene polyol A4.
<合成例5>
 水酸化カリウム触媒の存在下、グリセリンを開始剤として、プロピレンオキシドを開環付加重合させて、ポリオキシアルキレンポリオールA5を合成した。
<Synthesis example 5>
Polyoxyalkylene polyol A5 was synthesized by ring-opening addition polymerization of propylene oxide using glycerin as an initiator in the presence of a potassium hydroxide catalyst.
<合成例6>
 水酸化カリウム触媒の存在下、グリセリンを開始剤として、プロピレンオキシドを開環付加重合させた後、さらにエチレンオキシドを開環付加重合させて、ポリオキシアルキレンポリオールA6を合成した。
 ポリオキシアルキレンポリオールA1~A6の数平均分子量、1分子当たりの水酸基数、水酸基当たりの分子量、EO含有量は、それぞれ、表1に示すとおりである。
<Synthesis example 6>
In the presence of a potassium hydroxide catalyst, propylene oxide was subjected to ring-opening addition polymerization using glycerin as an initiator, and then ethylene oxide was further subjected to ring-opening addition polymerization to synthesize a polyoxyalkylene polyol A6.
The number average molecular weights of the polyoxyalkylene polyols A1 to A6, the number of hydroxyl groups per molecule, the molecular weight per hydroxyl group, and the EO content are as shown in Table 1, respectively.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1中、EO含有量は、ポリオキシアルキレンポリオールのポリオキシアルキレン鎖中の、エチレンオキシドに由来する単位の含有量(質量%)をいう。また、PO含有量は、ポリオキシアルキレンポリオールのポリオキシアルキレン鎖中の、プロピレンオキシドに由来する単位の含有量(質量%)をいう。 In Table 1, the EO content refers to the content (% by mass) of a unit derived from ethylene oxide in the polyoxyalkylene chain of the polyoxyalkylene polyol. The PO content refers to the content (% by mass) of a unit derived from propylene oxide in the polyoxyalkylene chain of the polyoxyalkylene polyol.
[例1]
 縦、横150mm、高さ10mmのアルミニウム製金型を準備した。
 表2に示すとおり、ポリオキシアルキレンポリオールA1の60質量部、ポリオキシアルキレンポリオールA2の40質量部と、発泡剤C1の3質量部と、触媒D1の0.3質量部及び触媒D2の0.05質量部と、整泡剤E2の3質量部と架橋剤F1の3部とを、容器に入れ、高速ミキサーを用いて、3000rpmで30秒間混合した。有機ポリイソシアネート化合物以外の原料を含む混合物(以下「ポリオールシステム液1」という。)を得た。
 ポリオールシステム液1に、有機ポリイソシアネート化合物B2の39.4質量部を加え、高速ミキサー(前記)を用いて、3000rpmで5秒間混合した。原料組成物(以下「原料組成物1」という。)を得た。
 予め準備しておいた金型の上下型温度を60℃に加温してから、原料組成物1を投入し、発泡硬化させた。3分後、金型から硬化物を取り出し、押しつぶしてガス抜きを行い、軟質ポリウレタンフォーム(以下「ポリウレタンフォーム1」という。)を得た。
 ポリオールシステム液1、原料組成物1及びポリウレタンフォーム1の製造は、いずれも、室温・液温ともに25℃の環境下で行った。
[Example 1]
An aluminum mold having a length, a width of 150 mm, and a height of 10 mm was prepared.
As shown in Table 2, 60 parts by mass of the polyoxyalkylene polyol A1, 40 parts by mass of the polyoxyalkylene polyol A2, 3 parts by mass of the foaming agent C1, 0.3 parts by mass of the catalyst D1 and 0. 05 parts by mass, 3 parts by mass of the foam stabilizer E2 and 3 parts of the cross-linking agent F1 were placed in a container and mixed at 3000 rpm for 30 seconds using a high-speed mixer. A mixture containing a raw material other than the organic polyisocyanate compound (hereinafter referred to as "polyol system liquid 1") was obtained.
39.4 parts by mass of the organic polyisocyanate compound B2 was added to the polyol system liquid 1 and mixed at 3000 rpm for 5 seconds using a high-speed mixer (described above). A raw material composition (hereinafter referred to as "raw material composition 1") was obtained.
After heating the upper and lower mold temperature of the mold prepared in advance to 60 ° C., the raw material composition 1 was added and foamed and cured. After 3 minutes, the cured product was taken out from the mold, crushed and degassed to obtain a flexible polyurethane foam (hereinafter referred to as "polyurethane foam 1").
The polyol system liquid 1, the raw material composition 1, and the polyurethane foam 1 were all produced in an environment of 25 ° C. at both room temperature and liquid temperature.
[例2]
 発泡剤C1の添加量を1部に変更、触媒D2を使用しない点を除いて、例1と同様にして、有機ポリイソシアネート化合物以外の原料を含む混合物(以下「ポリオールシステム液2」という。)を得た。例1と同様にして、有機ポリイソシアネート化合物B2の18.5質量部を加えて原料組成物(以下「原料組成物2」という。)を得た。原料組成物2を用いた以外は例1と同様にして、軟質ポリウレタンフォーム(以下「ポリウレタンフォーム2」という。)を得た。
[Example 2]
A mixture containing a raw material other than the organic polyisocyanate compound (hereinafter referred to as "polyol system liquid 2") in the same manner as in Example 1 except that the amount of the foaming agent C1 added is changed to 1 part and the catalyst D2 is not used. Got In the same manner as in Example 1, 18.5 parts by mass of the organic polyisocyanate compound B2 was added to obtain a raw material composition (hereinafter referred to as “raw material composition 2”). A flexible polyurethane foam (hereinafter referred to as "polyurethane foam 2") was obtained in the same manner as in Example 1 except that the raw material composition 2 was used.
[例3]
 発泡剤C1の添加量を5部に変更した点を除いて、例2と同様にして、有機ポリイソシアネート化合物以外の原料を含む混合物(以下「ポリオールシステム液3」という。)を得た。例2と同様にして、有機ポリイソシアネート化合物B2の60.2質量部を加えて原料組成物(以下「原料組成物3」という。)を得た。原料組成物3を用いた以外は例1と同様にして、軟質ポリウレタンフォーム(以下「ポリウレタンフォーム3」という。)を得た。
[Example 3]
A mixture containing a raw material other than the organic polyisocyanate compound (hereinafter referred to as "polyol system liquid 3") was obtained in the same manner as in Example 2 except that the amount of the foaming agent C1 added was changed to 5 parts. In the same manner as in Example 2, 60.2 parts by mass of the organic polyisocyanate compound B2 was added to obtain a raw material composition (hereinafter referred to as “raw material composition 3”). A flexible polyurethane foam (hereinafter referred to as "polyurethane foam 3") was obtained in the same manner as in Example 1 except that the raw material composition 3 was used.
[例4]
 表2に示すとおり、ポリオキシアルキレンポリオールA3の8質量部、ポリオキシアルキレンポリオールA4の3質量部、ポリオキシアルキレンポリオールA5の72質量部、ポリオキシアルキレンポリオールA6の20質量部と、発泡剤C1の2.35質量部と、触媒D1の0.6質量部,触媒D3の0.3質量部と、触媒D4の0.3質量部と整泡剤E1の0.4質量部とを、容器に入れ、高速ミキサーを用いて、3000rpmで30秒間混合した。有機ポリイソシアネート化合物以外の原料を含む混合物(以下「ポリオールシステム液4」という。)を得た。
 ポリオールシステム液4に、有機ポリイソシアネート化合物B1の29.9質量部を加え、高速ミキサー(前記)を用いて、3000rpmで5秒間混合した。原料組成物(以下「原料組成物4という。)を得た。原料組成物4を用いた以外は例1と同様にして、軟質ポリウレタンフォーム(以下「ポリウレタンフォーム4」という。)を得た。
 ポリウレタンフォーム1~4を、温度23℃で、湿度50%RHに調節した室内に24時間以上放置した。
[Example 4]
As shown in Table 2, 8 parts by mass of the polyoxyalkylene polyol A3, 3 parts by mass of the polyoxyalkylene polyol A4, 72 parts by mass of the polyoxyalkylene polyol A5, 20 parts by mass of the polyoxyalkylene polyol A6, and the foaming agent C1. 2.35 parts by mass of the catalyst D1, 0.6 parts by mass of the catalyst D1, 0.3 parts by mass of the catalyst D3, 0.3 parts by mass of the catalyst D4 and 0.4 parts by mass of the foam stabilizer E1. And mixed at 3000 rpm for 30 seconds using a high speed mixer. A mixture containing a raw material other than the organic polyisocyanate compound (hereinafter referred to as "polyol system liquid 4") was obtained.
To the polyol system liquid 4, 29.9 parts by mass of the organic polyisocyanate compound B1 was added, and the mixture was mixed at 3000 rpm for 5 seconds using a high-speed mixer (described above). A raw material composition (hereinafter referred to as “raw material composition 4”) was obtained. A flexible polyurethane foam (hereinafter referred to as “polyurethane foam 4”) was obtained in the same manner as in Example 1 except that the raw material composition 4 was used.
Polyurethane foams 1 to 4 were left in a room adjusted to a temperature of 23 ° C. and a humidity of 50% RH for 24 hours or more.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2中の記号の意味は以下のとおりである。
A:ポリオキシアルキレンポリオール
・A1 合成例1で合成したポリオキシアルキレンポリオールA1
・A2 合成例2で合成したポリオキシアルキレンポリオールA2
・A3 合成例3で合成したポリオキシアルキレンポリオールA3
・A4 合成例4で合成したポリオキシアルキレンポリオールA4
・A5 合成例5で合成したポリオキシアルキレンポリオールA5
・A6 合成例6で合成したポリオキシアルキレンポリオールA6
The meanings of the symbols in Table 2 are as follows.
A: Polyoxyalkylene polyol A1 Polyoxyalkylene polyol A1 synthesized in Synthesis Example 1
-A2 Polyoxyalkylene polyol A2 synthesized in Synthesis Example 2
-A3 Polyoxyalkylene polyol A3 synthesized in Synthesis Example 3
-A4 Polyoxyalkylene polyol A4 synthesized in Synthesis Example 4
-A5 Polyoxyalkylene polyol A5 synthesized in Synthesis Example 5
-A6 Polyoxyalkylene polyol A6 synthesized in Synthesis Example 6
B:有機ポリイソシアネート化合物
・B1 TDIとMDIとの混合物(コロネート1025、東ソー社製)
 2,4-TDIと2,6-TDIとクルードMDIの質量比が2,4-TDI/2,6-TDI/クルードMDI=40/10/50の混合物
 イソシアネート基含有率39.7質量%
・B2 TDIとMDIとの混合物(コロネート1021、東ソー社製)
 2,4-TDIと2,6-TDIとクルードMDIの質量比が2,4-TDI/2,6-TDI/クルードMDI=64/16/20の混合物
 イソシアネート基含有率44.8質量%
B: Organic polyisocyanate compound-Mixture of B1 TDI and MDI (Coronate 1025, manufactured by Tosoh Corporation)
A mixture of 2,4-TDI, 2,6-TDI and Crude MDI having a mass ratio of 2,4-TDI / 2,6-TDI / Crude MDI = 40/10/50 Isocyanate group content 39.7% by mass
・ Mixture of B2 TDI and MDI (Coronate 1021, manufactured by Tosoh Corporation)
A mixture of 2,4-TDI, 2,6-TDI and Crude MDI having a mass ratio of 2,4-TDI / 2,6-TDI / Crude MDI = 64/16/20 Isocyanate group content 44.8% by mass
C:発泡剤
・C1 水
C: Foaming agent, C1 water
D:触媒
・D1 トリエチレンジアミンのジプロピレングリコール溶液(TEDA(登録商標) L-33、東ソー社製) アミン系触媒
・D2 2-エチルヘキサン酸スズ(DABCO(登録商標) T-9、EVONIK社製)
・D3 ビス[(2-ジメチルアミノ)エチル]エーテルのジプロピレングリコール溶液(TOYOCAT(登録商標) ET、東ソー社製)
・D4 1-イソブチル-2-メチルイミダゾール(NC-IM、三共エアプロダクツ社製)
D: Catalyst-D1 Triethylenediamine dipropylene glycol solution (TEDA (registered trademark) L-33, manufactured by Tosoh Corporation) Amine-based catalyst-tin D2 2-ethylhexanoate (DABCO (registered trademark) T-9, manufactured by EVONIK) )
-Dipropylene glycol solution of D3 bis [(2-dimethylamino) ethyl] ether (TOYOCAT (registered trademark) ET, manufactured by Tosoh Corporation)
-D4 1-isobutyl-2-methylimidazole (NC-IM, manufactured by Sankyo Air Products & Chemicals)
E:整泡剤
・E1 シリコーン系整泡剤(SRX-274C、ダウコーニング社製)
・E2 シリコーン系整泡剤(TEGOSTAB(登録商標) B8737 LF2、EVONIK社製)
E: Defoaming agent / E1 Silicone-based defoaming agent (SRX-274C, manufactured by Dow Corning)
・ E2 Silicone-based defoaming agent (TEGOSTAB (registered trademark) B8737 LF2, manufactured by EVONIK)
F:架橋剤
・F1 架橋剤(分子量400、官能基数4、EO含有率100質量%のポリオール) ただし、F1のEO含有率100質量%は、ポリオキシアルキレン鎖中アルキレンオキシドに由来する単位中、エチレンオキシドに由来する単位が、100質量%であることを表す。
F: Cross-linking agent / F1 cross-linking agent (molecular weight 400, number of functional groups 4, EO content 100% by mass polyol) However, the EO content 100% by mass of F1 is a unit derived from alkylene oxide in the polyoxyalkylene chain. It means that the unit derived from ethylene oxide is 100% by mass.
[評価方法]
 例1~4で得られたポリウレタンフォーム1~4を、鋭利な刃物を用いて切断し、測定用サンプルを準備した。この測定用サンプルの任意の5か所の厚さを、ダイヤルシックネスゲージ式膜厚測定計(尾崎製作所社製、型式:G)で測定し、平均値を算出して得た厚さは10mmであった。この測定用サンプルを用い、吸音率、密度、残膜率、平均セル径、平均骨格径、平均骨格径を平均セル径で除した値、骨格率(表皮層骨格率SS、内部発泡層骨格率SI、SS/SI、表皮層直下骨格率)及び表皮層厚さを、以下に記載する方法によって評価し、結果を表3に示した。
[Evaluation method]
The polyurethane foams 1 to 4 obtained in Examples 1 to 4 were cut with a sharp cutting tool to prepare a sample for measurement. The thickness of any 5 points of this measurement sample was measured with a dial thickness gauge type film thickness meter (manufactured by Ozaki Seisakusho Co., Ltd., model: G), and the average value was calculated to obtain a thickness of 10 mm. there were. Using this measurement sample, sound absorption coefficient, density, residual film ratio, average cell diameter, average skeleton diameter, value obtained by dividing the average skeleton diameter by the average cell diameter, skeleton ratio (epidermal layer skeleton ratio SS, internal foamed layer skeleton ratio) SI, SS / SI, skeletal ratio directly below the epidermis layer) and epidermis layer thickness were evaluated by the methods described below, and the results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
<吸音率>
 垂直入射吸音率(吸音率)は、JIS A 1405-2:2007「音響管による吸音率及びインピーダンス測定」に準拠した方法により、500~2000Hz領域について測定した。測定に用いた装置は以下のとおりである。
・垂直入射吸音測定管(40mmφ、日本音響エンジニアリング社製)
・解析ソフトウェア(WinZacMTX VER.5.0、日本音響エンジニアリング社製)
・パワーアンプ(AP15d、FOSTEX社製)
・マイクロホン(46BD、GRAS社製)
・マイクロホンアンプ(12AQ、GRAS社製)
・オーディオインターフェース(Fireface UC、RME社製)
<Sound absorption rate>
The vertically incident sound absorption coefficient (sound absorption coefficient) was measured in the 500 to 2000 Hz region by a method based on JIS A 1405-2: 2007 “Measurement of sound absorption coefficient and impedance by acoustic tube”. The equipment used for the measurement is as follows.
・ Vertically incident sound absorption measuring tube (40 mmφ, manufactured by Nippon Acoustic Engineering Co., Ltd.)
・ Analysis software (WinZacMTX VER.5.0, manufactured by Nippon Acoustic Engineering Co., Ltd.)
・ Power amplifier (AP15d, manufactured by FOSTEX)
・ Microphone (46BD, manufactured by GRAS)
・ Microphone amplifier (12AQ, manufactured by GRAS)
・ Audio interface (Fireface UC, manufactured by RME)
<密度>
 密度は、JIS K 7222:2005「発泡プラスチック及びゴム-見掛け密度の求め方」に従って測定した。密度の測定はポリウレタンフォーム全体に対して行った。
<Density>
Density was measured according to JIS K 7222: 2005 "Foam Plastics and Rubber-How to Obtain Apparent Density". Density measurements were made on the entire polyurethane foam.
<残膜率>
 測定用サンプルの断面を、光学顕微鏡1(VHX-1000、キーエンス社製)を用いて、倍率150倍で撮像した。内部発泡層のうち、全周にわたりセル骨格を確認でき、かつ明確な周辺骨格部の破壊がない部分を観察対象とした。
 観察対象のセル骨格の内周部に破損が無い膜が存在しているものを「残膜あり」と判定した。
 観察対象のセル骨格の内周部に膜が無いが、又は膜が一部でも破れているものを「残膜なし」と判定した。
 測定用サンプルの断面を10か所撮像し、100個のセル骨格を観察して、「残膜あり」及び「残膜なし」の数をカウントし、「残膜あり」の割合を百分率で算出した。算出した百分率を、残膜率とした。
<Residual film ratio>
A cross section of the measurement sample was imaged using an optical microscope 1 (VHX-1000, manufactured by KEYENCE CORPORATION) at a magnification of 150 times. Of the internal foamed layers, the part where the cell skeleton could be confirmed over the entire circumference and the peripheral skeleton was not clearly destroyed was used as the observation target.
If there was an undamaged membrane on the inner circumference of the cell skeleton to be observed, it was judged that there was a residual membrane.
If there was no membrane on the inner circumference of the cell skeleton to be observed, or if the membrane was partially torn, it was judged as "no residual membrane".
The cross section of the measurement sample is imaged at 10 points, 100 cell skeletons are observed, the number of "with residual film" and "without residual film" is counted, and the ratio of "with residual film" is calculated as a percentage. did. The calculated percentage was taken as the residual film ratio.
<平均骨格径>
 測定用サンプルの断面を、光学顕微鏡1を用いて、倍率150倍で撮像した。内部発泡層のうち、骨格部とセル部及び膜部との境界が明瞭に観察できる部分を観察対象とした。 観察対象とした骨格部の平均骨格径を、画像処理ソフトウェア(ImageJ、アメリカ国立衛生研究所製)を用いて計測した。形状がくびれている骨格は、最も径の細い部分をその骨格部分の骨格径とした。
 測定用サンプルの断面を10か所撮像し、70個の観察対象の骨格径を測定して、その算術平均により、平均骨格径を算出した。
<Average skeleton diameter>
A cross section of the measurement sample was imaged using an optical microscope 1 at a magnification of 150 times. Of the internal foam layer, the portion where the boundary between the skeleton portion, the cell portion, and the membrane portion could be clearly observed was set as the observation target. The average skeleton diameter of the skeleton to be observed was measured using image processing software (ImageJ, manufactured by the National Institutes of Health). For the skeleton having a constricted shape, the smallest diameter portion was defined as the skeleton diameter of the skeleton portion.
The cross section of the measurement sample was imaged at 10 places, the skeleton diameters of 70 observation objects were measured, and the average skeleton diameter was calculated by the arithmetic mean.
<平均セル径>
 測定用サンプルの断面を、光学顕微鏡1を用いて、倍率150倍で撮像した。内部発泡層のうち、全周にわたりセル骨格を確認できる部分を観察対象とした。
 観察対象としたセル内周部の輪郭を、画像処理ソフトウェア(ImageJ、アメリカ国立衛生研究所製)を用いて抽出し、その輪郭で囲まれる面積を算出した。算出した面積と等しい面積の円の直径(円換算直径)を算出し、観察対象としたセルのセル径と定義した。
 測定用サンプルの断面を10か所撮像し、80個の観察対象のセル径を測定して、その算術平均により、平均セル径を算出した。
<Average cell diameter>
A cross section of the measurement sample was imaged using an optical microscope 1 at a magnification of 150 times. Of the internal foam layer, the part where the cell skeleton can be confirmed over the entire circumference was used as the observation target.
The contour of the inner circumference of the cell to be observed was extracted using image processing software (ImageJ, manufactured by the National Institutes of Health), and the area surrounded by the contour was calculated. The diameter of a circle with an area equal to the calculated area (circle-equivalent diameter) was calculated and defined as the cell diameter of the cell to be observed.
The cross section of the measurement sample was imaged at 10 places, the cell diameters of 80 observation objects were measured, and the average cell diameter was calculated by the arithmetic mean.
<平均骨格径/平均セル径>
 上述した方法により求めた平均骨格径及び平均セル径より、平均骨格径を平均セル径で除した値を算出した。
<Average skeleton diameter / average cell diameter>
From the average skeleton diameter and the average cell diameter obtained by the above method, a value obtained by dividing the average skeleton diameter by the average cell diameter was calculated.
<骨格率>
 測定用サンプルの断面を、光学顕微鏡1を用いて撮像した。ついで、画像処理ソフトウェア(ImageJ、アメリカ国立衛生研究所製)を用いて、撮像した画像を2.5mm×3.5mmの領域に切り出した。
 切り出した画像に対し、判別分析法(大津の二値化)により二値化処理を行った。
 上記二値化画像において、0.02mm×3.5mmの領域毎に黒部の面積率を算出し、0.02mmずつサンプル厚さ方向に解析領域を走査しながら各位置での面積率を求め、サンプル厚さ方向の骨格率の分布(骨格率プロファイル)を算出した。
 測定用サンプルの断面を5か所以上撮像し、各画像から求めた骨格率プロファイルの算術平均により、骨格率を算出した。
<Skeletal ratio>
The cross section of the measurement sample was imaged using an optical microscope 1. Then, using image processing software (ImageJ, manufactured by the National Institutes of Health, USA), the captured image was cut out in an area of 2.5 mm × 3.5 mm.
The cut-out image was binarized by a discriminant analysis method (binarization of Otsu).
In the above binarized image, the area ratio of the black part is calculated for each area of 0.02 mm × 3.5 mm, and the area ratio at each position is obtained while scanning the analysis area in the sample thickness direction by 0.02 mm. The distribution of the skeletal ratio in the sample thickness direction (skeletal ratio profile) was calculated.
The cross section of the measurement sample was imaged at five or more places, and the skeleton ratio was calculated by the arithmetic mean of the skeleton ratio profile obtained from each image.
<表皮層骨格率SS>
 ポリウレタンフォームの表面からの深さが0.3mmの部分において測定した骨格率プロファイルの算術平均により、表皮層骨格率SSを算出した。
<Epidermal skeleton ratio SS>
The epidermal layer skeleton ratio SS was calculated from the arithmetic mean of the skeletal ratio profiles measured at a depth of 0.3 mm from the surface of the polyurethane foam.
<内部発泡層骨格率SI>
 ポリウレタンフォームの表面からの深さが3.5~4.5mmの部分において測定した骨格率プロファイルの算術平均により、内部発泡層骨格率SIを算出した。
<Internal foam layer skeleton ratio SI>
The internal foam layer skeleton ratio SI was calculated from the arithmetic mean of the skeletal ratio profiles measured at a depth of 3.5 to 4.5 mm from the surface of the polyurethane foam.
<SS/SI>
 上述した方法により求めた表皮層骨格率SSと内部発泡層骨格率SIより、表皮層骨格率SSを内部発泡層骨格率SIで除した値を算出した。
<SS / SI>
From the epidermis layer skeleton ratio SS and the internal foam layer skeleton ratio SI obtained by the above method, a value obtained by dividing the epidermis layer skeleton ratio SS by the internal foam layer skeleton ratio SI was calculated.
<表皮層厚さ>
 上述した方法により求めた骨格率プロファイルにおいて、サンプル表面から、0.02mmずつサンプル厚さ方向に解析領域を走査しながら骨格率が50%を下回る部分までの厚さを算出し、表皮層厚さとした。
<Epidermis layer thickness>
In the skeletal ratio profile obtained by the above method, the thickness from the sample surface to the portion where the skeletal ratio is less than 50% is calculated while scanning the analysis region in the sample thickness direction by 0.02 mm to obtain the epidermis layer thickness. did.
[結果の説明]
 例1が実施例に該当し、例2~4が比較例に該当する。
 例1のポリウレタンフォームは、残膜率が特定範囲内であり、1000Hzの低周波数の吸音特性だけではなく、低周波数領域の吸音性能にも優れることがわかる。また、例1のポリウレタンフォームは、薄くても吸音性能が高いため、軽量化や、薄膜化を要する部位に導入することで、高い吸音環境を達成できる。
 例2のポリウレタンフォームは例1のポリウレタンフォームと比べて、密度が高いにもかかわらず、SS/SIが本発明の範囲を満たさず、さらに残膜率も高いため、十分な吸音特性が得られなかった。
 例3のポリウレタンフォームは、SS/SIが本発明の範囲を満たさず、さらに、例1のポリウレタンフォームと比べて密度が低く、残膜率も低いため、低周波数領域での吸音特性が不十分であった。
 例4のポリウレタンフォームは、例1のポリウレタンフォームと比べて、密度が高いにもかかわらず、SS/SIが本発明の範囲外であるため、十分な吸音特性が得られなかった。
[Explanation of results]
Example 1 corresponds to an embodiment, and Examples 2 to 4 correspond to a comparative example.
It can be seen that the polyurethane foam of Example 1 has a residual film ratio within a specific range and is excellent not only in sound absorption characteristics at a low frequency of 1000 Hz but also in sound absorption performance in a low frequency region. Further, since the polyurethane foam of Example 1 has high sound absorption performance even if it is thin, a high sound absorption environment can be achieved by introducing it into a portion requiring weight reduction or thinning.
Although the polyurethane foam of Example 2 has a higher density than the polyurethane foam of Example 1, SS / SI does not meet the scope of the present invention and the residual film ratio is also high, so that sufficient sound absorption characteristics can be obtained. There wasn't.
The polyurethane foam of Example 3 has insufficient SS / SI, and has a lower density and a lower residual film ratio than the polyurethane foam of Example 1, so that the sound absorption characteristics in the low frequency region are insufficient. Met.
Although the polyurethane foam of Example 4 has a higher density than the polyurethane foam of Example 1, the SS / SI is outside the range of the present invention, so that sufficient sound absorption characteristics cannot be obtained.
 本発明のポリウレタンフォームは、薄い厚さで500~2000Hzの低周波数領域の吸音特性が良好なので、車両用防音材として適する。吸音率が良好な周波数はロードノイズの周波数帯のため、フェンダーライナーやアンダーカバー用途、特にフェンダーライナー用途での適用が好適である。
 なお、2019年12月26日に出願された日本特許出願2019-236123号の明細書、特許請求の範囲および要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The polyurethane foam of the present invention has a thin thickness and good sound absorption characteristics in a low frequency region of 500 to 2000 Hz, and is therefore suitable as a soundproofing material for vehicles. Since the frequency with good sound absorption coefficient is the frequency band of road noise, it is suitable for use in fender liner and undercover applications, especially in fender liner applications.
The entire contents of the specification, claims and abstract of Japanese Patent Application No. 2019-236123 filed on December 26, 2019 are cited here and incorporated as disclosure of the specification of the present invention. Is.

Claims (10)

  1.  表皮層と、その内部に形成される内部発泡層とを有するポリウレタンフォームであって、
     厚さが3~25mmであり、周波数1000Hzでの垂直入射吸音率が10mm厚さで0.40以上であり、
     前記表皮層の骨格率をSS、前記内部発泡層の骨格率をSIとしたときの、骨格率比率SS/SIが2.8~5.0であることを特徴とする、ポリウレタンフォーム。
    A polyurethane foam having an epidermis layer and an internal foam layer formed inside the epidermis layer.
    The thickness is 3 to 25 mm, and the vertical incident sound absorption coefficient at a frequency of 1000 Hz is 0.40 or more at a thickness of 10 mm.
    A polyurethane foam having a skeleton ratio ratio SS / SI of 2.8 to 5.0 when the skeleton ratio of the epidermis layer is SS and the skeleton ratio of the internal foam layer is SI.
  2.  前記骨格率比率SS/SIが2.8~4.0である、請求項1に記載のポリウレタンフォーム。 The polyurethane foam according to claim 1, wherein the skeleton ratio SS / SI is 2.8 to 4.0.
  3.  前記表皮層の骨格率SSが60%~85%である、請求項1又は2に記載のポリウレタンフォーム。 The polyurethane foam according to claim 1 or 2, wherein the skeleton ratio SS of the epidermis layer is 60% to 85%.
  4.  前記内部発泡層の骨格率SIが24%~30%である、請求項1~3のいずれか1項に記載のポリウレタンフォーム。 The polyurethane foam according to any one of claims 1 to 3, wherein the skeleton ratio SI of the internal foam layer is 24% to 30%.
  5.  表皮層直下骨格率が40%以上である、請求項1~4のいずれか1項に記載のポリウレタンフォーム。 The polyurethane foam according to any one of claims 1 to 4, wherein the skeleton ratio immediately below the epidermis layer is 40% or more.
  6.  密度が20~120kg/mである、請求項1~5のいずれか1項に記載のポリウレタンフォーム。 The polyurethane foam according to any one of claims 1 to 5, which has a density of 20 to 120 kg / m 3.
  7.  前記内部発泡層の発泡セルの残膜率が40%以上94%未満である、請求項1~6のいずれか1項に記載のポリウレタンフォーム。 The polyurethane foam according to any one of claims 1 to 6, wherein the residual film ratio of the foam cell of the internal foam layer is 40% or more and less than 94%.
  8.  前記発泡セルの平均骨格径を平均セル径で除した値が0.10~0.50であり、かつ、前記発泡セルの平均セル径が100~400μmである、請求項7に記載のポリウレタンフォーム。 The polyurethane foam according to claim 7, wherein the value obtained by dividing the average skeleton diameter of the foam cells by the average cell diameter is 0.10 to 0.50, and the average cell diameter of the foam cells is 100 to 400 μm. ..
  9.  請求項1~8のいずれか1項に記載のポリウレタンフォームを含む車両用防音材。 A soundproofing material for vehicles containing the polyurethane foam according to any one of claims 1 to 8.
  10.  請求項9に記載の車両用防音材を備えたフェンダーライナー。 A fender liner provided with the vehicle soundproofing material according to claim 9.
PCT/JP2020/048266 2019-12-26 2020-12-23 Polyurethane foam and soundproofing material for vehicle WO2021132387A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112020006330.5T DE112020006330T5 (en) 2019-12-26 2020-12-23 POLYURETHANE FOAM AND ACOUSTIC INSULATION MATERIAL FOR VEHICLES
CN202080088609.2A CN114846042A (en) 2019-12-26 2020-12-23 Polyurethane foam and sound insulation material for vehicle
JP2021567572A JPWO2021132387A1 (en) 2019-12-26 2020-12-23

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-236123 2019-12-26
JP2019236123 2019-12-26

Publications (1)

Publication Number Publication Date
WO2021132387A1 true WO2021132387A1 (en) 2021-07-01

Family

ID=76574286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/048266 WO2021132387A1 (en) 2019-12-26 2020-12-23 Polyurethane foam and soundproofing material for vehicle

Country Status (4)

Country Link
JP (1) JPWO2021132387A1 (en)
CN (1) CN114846042A (en)
DE (1) DE112020006330T5 (en)
WO (1) WO2021132387A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113610992A (en) * 2021-08-04 2021-11-05 北京百度网讯科技有限公司 Bone driving coefficient determining method and device, electronic equipment and readable storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08245742A (en) * 1995-03-14 1996-09-24 Nhk Spring Co Ltd Polyurethane molded product having water-resistant property
JP2003300294A (en) * 2002-04-08 2003-10-21 Basf Inoac Polyurethanes Ltd Sound absorbing material of foamed polyurethane
JP2005060414A (en) * 2003-08-08 2005-03-10 Basf Inoacポリウレタン株式会社 Open-cell rigid polyurethane foam, method for producing the same and sound absorbing material
JP2005272806A (en) * 2003-10-22 2005-10-06 Sanyo Chem Ind Ltd Rigid polyurethane foam
JP2005350533A (en) * 2004-06-09 2005-12-22 Asahi Rubber Kk Acoustical material and method for preparation of the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10121597A (en) 1996-10-22 1998-05-12 Nissan Motor Co Ltd Sound absorption body and vehicle using the same
JP4617793B2 (en) 2003-09-19 2011-01-26 旭硝子株式会社 Soundproofing materials for automobile interior materials
JP2005120247A (en) * 2003-10-17 2005-05-12 Honda Motor Co Ltd Soft polyurethane foam to be used for sound isolation material for automobile and method for producing the same
JP2007106881A (en) * 2005-10-13 2007-04-26 Basf Inoacポリウレタン株式会社 Method for producing rigid polyurethane foam with open-cell structure
WO2012133812A1 (en) 2011-03-30 2012-10-04 旭硝子株式会社 Polyether polyol and soft polyurethane foam production method and sheet
CN104031235B (en) * 2013-03-05 2016-07-13 万华化学(北京)有限公司 A kind of preparation method of visco-elasticity polyurethane sound-absorbing foam
JP2015052074A (en) * 2013-09-09 2015-03-19 東洋ゴム工業株式会社 Sound insulation material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08245742A (en) * 1995-03-14 1996-09-24 Nhk Spring Co Ltd Polyurethane molded product having water-resistant property
JP2003300294A (en) * 2002-04-08 2003-10-21 Basf Inoac Polyurethanes Ltd Sound absorbing material of foamed polyurethane
JP2005060414A (en) * 2003-08-08 2005-03-10 Basf Inoacポリウレタン株式会社 Open-cell rigid polyurethane foam, method for producing the same and sound absorbing material
JP2005272806A (en) * 2003-10-22 2005-10-06 Sanyo Chem Ind Ltd Rigid polyurethane foam
JP2005350533A (en) * 2004-06-09 2005-12-22 Asahi Rubber Kk Acoustical material and method for preparation of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113610992A (en) * 2021-08-04 2021-11-05 北京百度网讯科技有限公司 Bone driving coefficient determining method and device, electronic equipment and readable storage medium
CN113610992B (en) * 2021-08-04 2022-05-20 北京百度网讯科技有限公司 Bone driving coefficient determining method and device, electronic equipment and readable storage medium

Also Published As

Publication number Publication date
CN114846042A (en) 2022-08-02
DE112020006330T5 (en) 2022-11-10
JPWO2021132387A1 (en) 2021-07-01

Similar Documents

Publication Publication Date Title
US7588121B2 (en) Flexible polyurethane foam and process for its production
US20080085945A1 (en) Flexible polyurethane foam, process for its production, and seat for automobile
JP2001137077A (en) Seat cushion pad
KR100900175B1 (en) Flexible polyurethane foam and method for its production
WO2005052020A1 (en) Flexible polyurethane foam, process for producing the same, and automotive sheet employing the same
KR101916508B1 (en) composition for manufacturing polyurethane foam and molded article thereof
WO2021132387A1 (en) Polyurethane foam and soundproofing material for vehicle
KR20130048057A (en) Highly comport automotive polyurethane seat resin
JP4058954B2 (en) Flexible polyurethane foam
JP5986838B2 (en) Sound absorbing shock absorber and method for manufacturing the same
JP4595675B2 (en) Flexible polyurethane foam, method for producing the same, and automotive seat using the flexible polyurethane foam
JP4617793B2 (en) Soundproofing materials for automobile interior materials
JP7414061B2 (en) Polyurethane foam and soundproofing materials for vehicles
JP3631558B2 (en) Manufacturing method of flexible mold foam
JP2005120247A (en) Soft polyurethane foam to be used for sound isolation material for automobile and method for producing the same
KR101240928B1 (en) Polyurethane foam acoustic absorbent using dash-panel of automobile
JPS6322967B2 (en)
WO2023063114A1 (en) Fender liner and manufacturing method therefor
JP2007100031A (en) Seat cushion and its production method
WO2003072626A1 (en) Process for production of flexible polyurethane foam
JP2004203899A (en) Flexible polyurethane foam and method for producing the same
WO2022113793A1 (en) Fender liner, method for manufacturing same, and vehicle
JP4736539B2 (en) Flexible polyurethane foam for automobile seat and method for producing the same
JP4548220B2 (en) Flexible polyurethane foam, method for producing the same, and automotive seat using the flexible polyurethane foam
JP2005179579A (en) Method for producing sound insulating material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20905341

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021567572

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20905341

Country of ref document: EP

Kind code of ref document: A1