JP2018171820A - Functional laminate and method for producing the same - Google Patents

Functional laminate and method for producing the same Download PDF

Info

Publication number
JP2018171820A
JP2018171820A JP2017072517A JP2017072517A JP2018171820A JP 2018171820 A JP2018171820 A JP 2018171820A JP 2017072517 A JP2017072517 A JP 2017072517A JP 2017072517 A JP2017072517 A JP 2017072517A JP 2018171820 A JP2018171820 A JP 2018171820A
Authority
JP
Japan
Prior art keywords
layer
porous
functional laminate
surface layer
intermediate layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017072517A
Other languages
Japanese (ja)
Other versions
JP6693459B2 (en
Inventor
大詞 桂
Hiroshi Katsura
大詞 桂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2017072517A priority Critical patent/JP6693459B2/en
Publication of JP2018171820A publication Critical patent/JP2018171820A/en
Application granted granted Critical
Publication of JP6693459B2 publication Critical patent/JP6693459B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)
  • Laminated Bodies (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a functional laminate having improved sound absorbency, heat insulation performance and vibration-damping performance.SOLUTION: In a functional laminate 10, between a porous surface layer 1 and a resin foam layer 2, a porous intermediate layer 3 with air permeability is laminated. The porous intermediate layer 3 has non-affinity with a foamable resin constituting the resin foam layer 2.SELECTED DRAWING: Figure 1

Description

本発明は機能性積層体およびその製造方法に関する。   The present invention relates to a functional laminate and a method for producing the same.

近年、車両(例えば、自動車、トラック、バスおよび電車等)および農業機械(例えば、草刈り機および耕耘機等)等のエンジンを備えた機械において、エンジンが発する音を吸音する試みが多くなされている。   2. Description of the Related Art In recent years, many attempts have been made to absorb sound generated by an engine such as a vehicle (for example, an automobile, a truck, a bus, and a train) and an agricultural machine (for example, a mower and a tiller).

特に、自動車の分野においては、搭乗者の乗り心地の観点から、エンジンおよびトランスミッションを含むパワートレイン部材を吸音材でカバーすることにより、エンジン音を吸音する試みがなされている。カバー材としては、例えば、ウレタン発泡体、繊維不織布が単独で使用されている。   In particular, in the field of automobiles, from the viewpoint of passenger comfort, attempts have been made to absorb engine noise by covering a powertrain member including an engine and a transmission with a sound absorbing material. As the cover material, for example, urethane foam and fiber nonwoven fabric are used alone.

一方、ヘッドレスト、シート座部、シートバックおよびアームレスト等の一体発泡製品として、布帛の内面に直接適用されたラテックスフォーム薄層と、その内表面に直接注入され発泡硬化した本体フォームとからなる一体発泡製品が報告されている(特許文献1)。このような一体発泡製品において、ラテックスフォーム薄層は、布帛に近い領域で布帛内面の繊維を抱き込むように機械的に結合して結合領域を形成し、外側に、本体フォーム原液の侵入を実質的に阻止する通気性スキンを形成している。   On the other hand, as an integrated foamed product such as a headrest, seat seat, seat back, and armrest, an integral foam consisting of a latex foam thin layer applied directly to the inner surface of the fabric and a body foam that is directly injected into the inner surface and foamed and cured A product has been reported (Patent Document 1). In such an integrally foamed product, the latex foam thin layer is mechanically bonded so as to embrace the fibers on the inner surface of the fabric in a region close to the fabric to form a bonded region, and the main body foam stock solution is substantially prevented from entering outside. It forms a breathable skin that prevents it.

また、イスおよびクッション等の発泡成形体として、発泡成形体本体の外面にシート材が一体化された発泡成形体が報告されている(特許文献2)。このような発泡成形体において、シート材は、延伸多孔質フィルムと不織布との積層体で構成され、気体を透過させる一方、液体は透過させない性質を有している。   In addition, as a foam molded body such as a chair and a cushion, a foam molded body in which a sheet material is integrated on the outer surface of a foam molded body is reported (Patent Document 2). In such a foamed molded article, the sheet material is composed of a laminate of a stretched porous film and a non-woven fabric, and has a property of allowing gas to permeate but not liquid.

国際公開第93/03904号International Publication No. 93/03904 特開2011−148204号公報JP 2011-148204 A

本発明の発明者は、上記の発泡製品または発泡成形体に関する技術を、例えばパワートレイン部材のカバー材に適用したところ、吸音性が十分に得られないという新たな課題を見い出した。   The inventor of the present invention has found a new problem that sound absorption is not sufficiently obtained when the technology related to the foamed product or the foamed molded body is applied to, for example, a cover material for a powertrain member.

そこで本発明の発明者は、成形型内において、例えばガラス繊維不織布の存在下で発泡成形を行っても、やはり吸音性が十分に得られないことを見い出した。   Therefore, the inventors of the present invention have found that even if foam molding is performed in a mold, for example, in the presence of a glass fiber nonwoven fabric, sufficient sound absorption is not obtained.

本発明は、吸音性により優れている機能性積層体を提供することを目的とする。   An object of this invention is to provide the functional laminated body which is excellent by sound-absorbing property.

本発明はまた、吸音性だけでなく、断熱性にもより優れている機能性積層体を提供することを目的とする。   Another object of the present invention is to provide a functional laminate that is superior not only in sound absorption but also in heat insulation.

本発明は、
多孔質表面層と樹脂発泡層との間に、通気性を有する多孔質中間層が積層されており、
前記多孔質中間層が、前記樹脂発泡層を構成する発泡性樹脂に対する非親和性を有している、機能性積層体に関する。
The present invention
Between the porous surface layer and the resin foam layer, a porous intermediate layer having air permeability is laminated,
The said porous intermediate | middle layer is related with the functional laminated body which has non-affinity with respect to the foamable resin which comprises the said resin foam layer.

本発明の機能性積層体は吸音性により優れている。
本発明の機能性積層体はまた、断熱性にもより優れている。
本発明の機能性積層体はまた、制振性にもより優れている。
The functional laminate of the present invention is superior in sound absorption.
The functional laminate of the present invention is also superior in heat insulation.
The functional laminate of the present invention is also superior in vibration damping properties.

本発明の機能性積層体の模式的断面図を示す。The typical sectional view of the functional layered product of the present invention is shown. 本発明の機能性積層体の製造方法における発泡成形工程の発泡準備段階を説明するための成形型およびその内部の模式的断面図を示す。The shaping | molding die for demonstrating the foam preparation stage of the foam molding process in the manufacturing method of the functional laminated body of this invention, and typical sectional drawing of the inside are shown. 本発明の機能性積層体の製造方法における発泡成形工程の発泡段階を説明するための成形型およびその内部の模式的断面図を示す。The shaping | molding die for demonstrating the foaming step of the foaming molding process in the manufacturing method of the functional laminated body of this invention, and typical sectional drawing of the inside are shown.

[機能性積層体]
本発明の機能性積層体は少なくとも吸音性を備えた積層体に関するものであり、機能性は、吸音性、断熱性および制振性等のうちの少なくとも1つの性能を包含する。
[Functional laminate]
The functional laminate of the present invention relates to a laminate having at least sound absorbing properties, and the functionality includes at least one of the properties of sound absorbing properties, heat insulating properties, vibration damping properties, and the like.

本発明の機能性積層体10は、図1に示すように、多孔質表面層1と樹脂発泡層2との間に、特定の多孔質中間層3が積層されており、多孔質表面層1、樹脂発泡層2および多孔質中間層3は相互に結合し一体化されている。当該特定の多孔質中間層3は後述するように、樹脂発泡層2を構成する発泡性樹脂(液体原料)に対する非親和性を有するので、当該非親和性に起因して、樹脂発泡層2を構成する発泡性樹脂(液体原料)の発泡前において多孔質表面層への当該発泡性樹脂の移動を阻害する。詳しくは、多孔質中間層3は当該非親和性に起因して、発泡前において当該発泡性樹脂を堰き止める傾向にあり、結果として発泡性樹脂を保持し易い。このため、発泡が始まると、多孔質中間層3に保持されていた発泡性樹脂は多孔質表面層1に滲入しながら発泡する。これらの結果、発泡性樹脂の多孔質表面層1への含浸量が適度に低減され、また発泡性樹脂が十分に発泡するようになるため、吸音性、断熱性および制振性(特に吸音性)が十分に向上するものと考えられる。多孔質中間層が積層されない場合には、発泡前において発泡性樹脂の多孔質表面層1への移動が過度に起こり、発泡時において発泡性樹脂が過剰量で多孔質表面層に移動(含浸)しているため、発泡性樹脂は多孔質表面層内で十分に発泡しない。その結果、吸音性、断熱性および制振性が低下するものと考えられる。図1は本発明の機能性積層体の模式的断面図を示す。   As shown in FIG. 1, the functional laminate 10 of the present invention has a specific porous intermediate layer 3 laminated between a porous surface layer 1 and a resin foam layer 2. The resin foam layer 2 and the porous intermediate layer 3 are bonded and integrated with each other. Since the specific porous intermediate layer 3 has non-affinity for the foamable resin (liquid raw material) constituting the resin foam layer 2 as described later, the resin foam layer 2 is formed due to the non-affinity. Before foaming of the foaming resin (liquid raw material) which comprises, the movement of the said foaming resin to a porous surface layer is inhibited. Specifically, the porous intermediate layer 3 tends to dam the foamable resin before foaming due to the non-affinity, and as a result, it is easy to hold the foamable resin. For this reason, when foaming starts, the foamable resin held in the porous intermediate layer 3 foams while infiltrating into the porous surface layer 1. As a result, the amount of impregnation of the foamable resin into the porous surface layer 1 is moderately reduced, and the foamable resin is sufficiently foamed, so that sound absorption, heat insulation and vibration damping (especially sound absorption) ) Is considered to be sufficiently improved. When the porous intermediate layer is not laminated, excessive movement of the foamable resin to the porous surface layer 1 occurs before foaming, and the foamable resin moves to the porous surface layer in an excessive amount at the time of foaming (impregnation). Therefore, the foamable resin does not foam sufficiently in the porous surface layer. As a result, it is considered that the sound absorbing property, the heat insulating property and the vibration damping property are lowered. FIG. 1 shows a schematic cross-sectional view of the functional laminate of the present invention.

樹脂発泡層2を構成する発泡性樹脂は樹脂発泡層2の原料として使用される発泡性樹脂のこと(液体原料)である。例えば樹脂発泡層2がポリウレタン発泡層の場合、発泡性樹脂はポリオール化合物およびイソシアネート化合物の混合物である。発泡性樹脂には発泡剤および整泡剤等の添加剤が含有されていてもよい。   The foamable resin constituting the resin foam layer 2 is a foamable resin (liquid raw material) used as a raw material for the resin foam layer 2. For example, when the resin foam layer 2 is a polyurethane foam layer, the foamable resin is a mixture of a polyol compound and an isocyanate compound. The foamable resin may contain additives such as a foaming agent and a foam stabilizer.

(多孔質中間層)
多孔質中間層3は通気性を有する。多孔質中間層3が有する「通気性」は「通液性」と換言可能な特性であり、すなわち当該多孔質中間層3が機能性積層体の製造時に自己の内部を発泡性樹脂(液体)に適度に通過させ得る特性のことである。多孔質中間層3はこのような通気性を有するため、多孔質表面層1と樹脂発泡層2と多孔質中間層3との一体化が達成される。多孔質中間層3が有する通気性は、詳しくは、後述の混層部11が形成され得る程度の通気性である。
(Porous intermediate layer)
The porous intermediate layer 3 has air permeability. “Breathability” possessed by the porous intermediate layer 3 is a characteristic that can be rephrased as “liquid permeability”, that is, the porous intermediate layer 3 forms a foamable resin (liquid) inside itself during the production of the functional laminate. It is a characteristic that can be passed through moderately. Since the porous intermediate layer 3 has such air permeability, integration of the porous surface layer 1, the resin foam layer 2, and the porous intermediate layer 3 is achieved. Specifically, the air permeability of the porous intermediate layer 3 is such that the mixed layer portion 11 described later can be formed.

多孔質中間層3は、樹脂発泡層2を構成する発泡性樹脂に対する非親和性(以下、単に「非親和性」ということがある)を有している。多孔質中間層3が当該非親和性を有しているとは、多孔質中間層3が有する空隙の表面は発泡性樹脂に対してなじみ難いまたは濡れ難いという意味である。すなわち多孔質中間層3の発泡性樹脂に対する接触角θm(以下、単に「接触角θm」ということがある)は通常、5°以上であり、多孔質中間層での発泡性樹脂移動の阻害のし易さおよび機能性積層体の吸音性、断熱性および制振性のさらなる向上の観点から、好ましくは10°以上、より好ましくは10〜90°、さらに好ましくは10〜50°、最も好ましくは11〜50°である。多孔質中間層3はこのような非親和性を有するため、多孔質中間層3は発泡性樹脂の移動を阻害し易くなる。例えば、多孔質中間層3の非親和性が高いほど、多孔質中間層3の接触角θmは大きい。また例えば、多孔質中間層3の非親和性が低いほど、多孔質中間層3の接触角θmは小さい。   The porous intermediate layer 3 has non-affinity (hereinafter sometimes simply referred to as “non-affinity”) for the foamable resin constituting the resin foam layer 2. That the porous intermediate layer 3 has the non-affinity means that the surface of the voids of the porous intermediate layer 3 is not easily adapted to the foamable resin or difficult to wet. That is, the contact angle θm of the porous intermediate layer 3 with respect to the foamable resin (hereinafter sometimes simply referred to as “contact angle θm”) is usually 5 ° or more, which inhibits the movement of the foamable resin in the porous intermediate layer. From the viewpoint of easiness and further improvement of sound absorption, heat insulation and vibration damping properties of the functional laminate, it is preferably 10 ° or more, more preferably 10 to 90 °, still more preferably 10 to 50 °, most preferably 11 to 50 °. Since the porous intermediate layer 3 has such non-affinity, the porous intermediate layer 3 tends to inhibit the movement of the foamable resin. For example, the higher the non-affinity of the porous intermediate layer 3 is, the larger the contact angle θm of the porous intermediate layer 3 is. For example, the lower the non-affinity of the porous intermediate layer 3 is, the smaller the contact angle θm of the porous intermediate layer 3 is.

多孔質中間層3の発泡性樹脂に対する接触角θmとは、多孔質中間層を構成する材料と同等組成の表面を有する平面上での発泡性樹脂の接触角のことである。   The contact angle θm of the porous intermediate layer 3 with respect to the expandable resin is a contact angle of the expandable resin on a plane having a surface having the same composition as that of the material constituting the porous intermediate layer.

多孔質中間層3の非親和性は、多孔質中間層での発泡性樹脂移動の阻害のし易さおよび機能性積層体の吸音性、断熱性および制振性のさらなる向上の観点から、多孔質表面層1の非親和性よりも高いことが好ましい。多孔質中間層3の非親和性が多孔質表面層1の非親和性よりも高いとは、多孔質中間層3の発泡性樹脂に対する接触角θmは、多孔質表面層1の発泡性樹脂に対する接触角θs(以下、単に「接触角θs」ということがある)よりも大きいという意味である。多孔質中間層3の発泡性樹脂に対する接触角θm(°)および多孔質表面層1の発泡性樹脂に対する接触角θs(°)は、多孔質中間層での発泡性樹脂移動の阻害のし易さおよび機能性積層体の吸音性、断熱性および制振性のさらなる向上の観点から、以下の関係式(p1)を満たすことが好ましく、以下の関係式(p2)を満たすことがより好ましく、以下の関係式(p3)を満たすことがさらに好ましく、以下の関係式(p4)を満たすことが最も好ましい。   The non-affinity of the porous intermediate layer 3 is selected from the viewpoints of easy inhibition of foaming resin movement in the porous intermediate layer and further improvement in sound absorption, heat insulation and vibration damping of the functional laminate. It is preferably higher than the non-affinity of the surface layer 1. That the non-affinity of the porous intermediate layer 3 is higher than the non-affinity of the porous surface layer 1 is that the contact angle θm of the porous intermediate layer 3 to the foamable resin is relative to the foamable resin of the porous surface layer 1. It means that it is larger than the contact angle θs (hereinafter, simply referred to as “contact angle θs”). The contact angle θm (°) of the porous intermediate layer 3 with respect to the foamable resin and the contact angle θs (°) of the porous surface layer 1 with respect to the foamable resin are easy to inhibit the movement of the foamable resin in the porous intermediate layer. From the viewpoint of further improving the sound absorption, heat insulation and vibration damping properties of the functional laminate, it is preferable to satisfy the following relational expression (p1), more preferably to satisfy the following relational expression (p2), It is more preferable to satisfy the following relational expression (p3), and it is most preferable to satisfy the following relational expression (p4).

1°≦θm−θs (p1)
5°≦θm−θs≦80° (p2)
5°≦θm−θs≦40° (p3)
10°≦θm−θs≦40° (p4)
1 ° ≦ θm−θs (p1)
5 ° ≦ θm−θs ≦ 80 ° (p2)
5 ° ≦ θm−θs ≦ 40 ° (p3)
10 ° ≦ θm−θs ≦ 40 ° (p4)

多孔質中間層および多孔質表面層の発泡性樹脂に対する接触角(θmおよびθs)は以下の方法で測定された値で表される。エルマ光学社製接触角測定装置G−1.2MGを使用し、PGM(プロピレングリコールモノメチルエーテル)を試験片に滴下し、30秒後の接触角を測定する。試験片は、多孔質中間層または多孔質表面層を構成する材料と同等組成の表面を有する平板を用いる。   The contact angles (θm and θs) of the porous intermediate layer and the porous surface layer with respect to the foamable resin are represented by values measured by the following method. Using a contact angle measuring device G-1.2MG manufactured by Elma Optical Co., Ltd., PGM (propylene glycol monomethyl ether) is dropped onto the test piece, and the contact angle after 30 seconds is measured. As the test piece, a flat plate having a surface having the same composition as the material constituting the porous intermediate layer or the porous surface layer is used.

多孔質中間層を構成する材料は、上記のような通気性を有し、かつ非親和性を有するものである限り特に限定されず、例えば、繊維不織布であってもよいし、またはポリマー発泡体であってもよい。以下、あらゆる処理なしに本来的に非親和性を有する繊維不織布およびポリマー発泡体の具体例を例示する。本来的に非親和性を有していない材料からなる多孔質中間層を用いる場合は、非親和性を付与するための非親和処理を当該多孔質中間層に対して行い、非親和性が付与されたものを多孔質中間層として用いればよい。なお、以下で具体例と共に示すθは所定の材料があらゆる処理なしで本来的に示す接触角であって、上記した方法により測定された発泡性樹脂に対する接触角のことである。非親和処理としては、フッ素原子含有樹脂(例えばフッ素原子含有ポリマー)やシリコーン基含有樹脂の溶液を適用する処理が挙げられる。   The material constituting the porous intermediate layer is not particularly limited as long as it has air permeability and non-affinity as described above, and may be, for example, a fiber nonwoven fabric or a polymer foam. It may be. Hereinafter, specific examples of the nonwoven fabric and the polymer foam having inherently non-affinity without any treatment will be exemplified. When using a porous intermediate layer made of a material that does not inherently have non-affinity, non-affinity treatment is applied to the porous intermediate layer to provide non-affinity. What is necessary is just to use what was made as a porous intermediate | middle layer. In the following, θ shown with a specific example is a contact angle that a predetermined material originally shows without any treatment, and is a contact angle with respect to the foamable resin measured by the method described above. Examples of the non-affinity treatment include treatment using a solution of a fluorine atom-containing resin (for example, a fluorine atom-containing polymer) or a silicone group-containing resin.

本来的に非親和性を有する多孔質中間層の繊維不織布の具体例として、例えば、ポリプロピレン(PP)繊維(θ=20°)等のポリオレフィン繊維、PTFE等のフッ素含有樹脂繊維、シリコーン含有樹脂繊維からなる群から選択される1種以上の有機繊維の不織布が挙げられる。多孔質中間層の繊維不織布はまた、有機繊維と無機繊維との混合繊維の不織布であってもよい。非親和処理して用いることができる多孔質中間層の繊維不織布として、多孔質表面層の繊維不織布として例示する後述の有機繊維および/または無機繊維の不織布が挙げられる。   Specific examples of the non-affinity porous intermediate layer nonwoven fabric include polyolefin fibers such as polypropylene (PP) fiber (θ = 20 °), fluorine-containing resin fibers such as PTFE, and silicone-containing resin fibers. One or more organic fiber nonwoven fabrics selected from the group consisting of: The fiber nonwoven fabric of the porous intermediate layer may also be a nonwoven fabric of mixed fibers of organic fibers and inorganic fibers. Examples of the fiber nonwoven fabric of the porous intermediate layer that can be used after non-affinity treatment include the organic fiber and / or inorganic fiber nonwoven fabric described below as an example of the fiber nonwoven fabric of the porous surface layer.

本来的に非親和性を有する多孔質中間層のポリマー発泡体は連続気泡構造を有するものが使用される。そのようなポリマー発泡体の具体例として、例えば、ポリプロピレン発泡層(θ=20°)等のポリオレフィン発泡層;フッ素含有樹脂発泡層(θ=30°);シリコーン樹脂発泡層(θ=30°)からなる群から選択されるポリマー発泡層が挙げられる。非親和処理して用いることができる多孔質中間層のポリマー発泡体として、多孔質表面層のポリマー発泡体として例示する後述のポリマー発泡体が挙げられる。   As the polymer foam of the porous intermediate layer having inherently non-affinity, those having an open cell structure are used. Specific examples of such polymer foams include, for example, a polyolefin foam layer such as a polypropylene foam layer (θ = 20 °); a fluorine-containing resin foam layer (θ = 30 °); a silicone resin foam layer (θ = 30 °). A polymer foam layer selected from the group consisting of: Examples of the polymer foam of the porous intermediate layer that can be used after the non-affinity treatment include the polymer foam described below exemplified as the polymer foam of the porous surface layer.

多孔質中間層は、機能性積層体の吸音性、断熱性および制振性のさらなる向上の観点から、繊維不織布であることが好ましく、より好ましくはポリオレフィン繊維、特にポリプロピレン繊維の不織布である。   The porous intermediate layer is preferably a fiber non-woven fabric, more preferably a non-woven fabric of polyolefin fiber, particularly polypropylene fiber, from the viewpoint of further improving the sound absorbing property, heat insulating property and vibration damping property of the functional laminate.

多孔質中間層3は、少なくとも多孔質表面層側で上記非親和性を有していればよいが、好ましくは全体で上記非親和性を有している。   The porous intermediate layer 3 only needs to have the above-mentioned non-affinity at least on the porous surface layer side, but preferably has the above-mentioned non-affinity as a whole.

多孔質中間層の平均空隙率Rm(%)および多孔質表面層の平均空隙率Rs(%)は、機能性積層体の吸音性、断熱性および制振性のさらなる向上の観点から、以下の関係式(x1)を満たすことが好ましく、以下の関係式(x2)を満たすことがより好ましく、以下の関係式(x3)を満たすことがさらに好ましく、以下の関係式(x4)を満たすことがさらに好ましい。RmおよびRsが以下の関係式を満たすことにより、多孔質中間層で毛細管現象が起こり易くなり、発泡前において多孔質中間層が発泡性樹脂をより一層に保持し易くなる。このため、発泡が始まると、多孔質中間層3に保持されていた発泡性樹脂は多孔質表面層1に滲入しながらより一層、十分に発泡する。これらの結果、吸音性、断熱性および制振性(特に吸音性)がより一層、十分に向上するものと考えられる。毛細管現象は、多孔質中間層3および多孔質表面層1が有する空隙内における発泡性樹脂(液体)の挙動に関する物理現象のことである。   The average porosity Rm (%) of the porous intermediate layer and the average porosity Rs (%) of the porous surface layer are as follows from the viewpoint of further improving the sound absorbing property, heat insulating property and vibration damping property of the functional laminate. The relational expression (x1) is preferably satisfied, the following relational expression (x2) is more preferably satisfied, the following relational expression (x3) is more preferably satisfied, and the following relational expression (x4) is satisfied. Further preferred. When Rm and Rs satisfy the following relational expression, a capillary phenomenon is likely to occur in the porous intermediate layer, and the porous intermediate layer can more easily hold the foamable resin before foaming. For this reason, when foaming starts, the foamable resin held in the porous intermediate layer 3 is further sufficiently foamed while infiltrating into the porous surface layer 1. As a result, it is considered that the sound absorbing property, the heat insulating property, and the vibration damping property (especially the sound absorbing property) are further improved sufficiently. The capillary phenomenon is a physical phenomenon related to the behavior of the foamable resin (liquid) in the voids of the porous intermediate layer 3 and the porous surface layer 1.

1.01≦Rs/Rm (x1)
1.05≦Rs/Rm≦2.0 (x2)
1.10≦Rs/Rm≦1.5 (x3)
1.15≦Rs/Rm≦1.3 (x4)
1.01 ≦ Rs / Rm (x1)
1.05 ≦ Rs / Rm ≦ 2.0 (x2)
1.10 ≦ Rs / Rm ≦ 1.5 (x3)
1.15 ≦ Rs / Rm ≦ 1.3 (x4)

多孔質中間層の平均空隙率Rmは通常、60〜95%であり、多孔質中間層での発泡性樹脂移動の阻害のし易さおよび機能性積層体の吸音性、断熱性および制振性のさらなる向上の観点から、好ましくは65〜90%である。   The average porosity Rm of the porous intermediate layer is usually from 60 to 95%, the ease of inhibiting the movement of the foamable resin in the porous intermediate layer, and the sound absorbing property, heat insulating property and vibration damping property of the functional laminate. From the viewpoint of further improvement, the content is preferably 65 to 90%.

多孔質中間層の平均空隙率は、多孔質中間層が繊維不織布である場合、繊維間に形成される空隙の体積割合、すなわち繊維間の空隙の体積割合のことであり、以下の方法で測定された割合で表される。機能性積層体から、発泡性樹脂が含浸された多孔質中間層の当該不織布を切り出し、当該不織布を構成する繊維および発泡性樹脂のうち、発泡性樹脂のみを溶解する有機溶剤により、発泡性樹脂を溶解し、繊維不織布を単独で得る。この繊維不織布における空隙の体積割合を算出し、この値を、当該繊維不織布において厚みが機能性積層体における後述の多孔質中間層の厚みであるときの空隙の体積割合に換算する。空隙の体積割合は、当該繊維不織布の体積、重量、繊維材料の比重等の物性より算出できる。本明細書中、重量の測定は、電子天秤(AE160;メトラー社製)を用いて行った。また、当該繊維不織布の体積と、計算機トモグラフィー法、液浸法、水蒸発法、懸吊法、水銀圧入法、ガス吸着法等の方法で測定した当該繊維不織布の空隙体積より算出できる。
また、別の繊維間の空隙の体積割合の測定方法として、機能性積層体から、発泡性樹脂が含浸された多孔質中間層の当該不織布を切り出し、当該不織布の体積と、計算機トモグラフィー法、液浸法、水蒸発法、懸吊法、水銀圧入法、ガス吸着法等の方法で測定した当該不織布の空隙体積を得た後、当該不織布を構成する繊維および発泡性樹脂のうち、繊維材料のみを溶解する溶剤により、繊維材料を溶解し、発泡性樹脂を単独で得る。この発泡性樹脂における空隙体積を上記同様の手法で測定し、当該不織布の体積−当該発泡性樹脂の空隙体積+当該不織布の空隙体積から繊維不織布の空隙体積を算出し、この値と当該不織布の体積から繊維不織布における空隙の体積割合を算出することができる。
The average porosity of the porous intermediate layer is the volume ratio of voids formed between fibers when the porous intermediate layer is a fiber nonwoven fabric, that is, the volume ratio of voids between fibers. Expressed as a percentage. The nonwoven fabric of the porous intermediate layer impregnated with the foamable resin is cut out from the functional laminate, and the foamable resin is formed with an organic solvent that dissolves only the foamable resin among the fibers and the foamable resin constituting the nonwoven fabric. Is dissolved to obtain a fiber nonwoven fabric alone. The volume ratio of voids in this fiber nonwoven fabric is calculated, and this value is converted to the volume ratio of voids when the thickness of the fiber nonwoven fabric is the thickness of a porous intermediate layer described later in the functional laminate. The volume ratio of the voids can be calculated from physical properties such as the volume and weight of the fiber nonwoven fabric and the specific gravity of the fiber material. In this specification, the weight was measured using an electronic balance (AE160; manufactured by Mettler). Moreover, it can calculate from the volume of the said fiber nonwoven fabric, and the void volume of the said fiber nonwoven fabric measured by methods, such as a computer tomography method, a liquid immersion method, a water evaporation method, a suspension method, a mercury intrusion method, a gas adsorption method.
In addition, as a method for measuring the volume ratio of the gap between fibers, the nonwoven fabric of the porous intermediate layer impregnated with the foamable resin is cut out from the functional laminate, and the volume of the nonwoven fabric, the computer tomography method, the liquid After obtaining the void volume of the nonwoven fabric measured by a method such as immersion, water evaporation, suspension method, mercury intrusion method, gas adsorption method, etc., only the fiber material among the fibers and foamable resins constituting the nonwoven fabric The fiber material is dissolved with a solvent that dissolves the resin to obtain a foamable resin alone. The void volume in the foamable resin is measured by the same method as described above, and the void volume of the fiber nonwoven fabric is calculated from the volume of the nonwoven fabric-the void volume of the foamable resin + the void volume of the nonwoven fabric. The volume ratio of the voids in the fiber nonwoven fabric can be calculated from the volume.

多孔質中間層の平均空隙率は、多孔質中間層がポリマー発泡体である場合、多孔質中間層としてのポリマー発泡体が本来的に有するポリマー中の気泡の体積割合のことであり、以下の方法で測定された割合で表される。機能性積層体から、発泡性樹脂が含浸された多孔質中間層の当該ポリマー発泡体を切り出し、当該試料の垂直断面の光学顕微鏡や電子顕微鏡写真において、発泡性樹脂の発泡が起こっていないところの任意の100カ所で全面積に対する気泡の面積の割合を測定し、平均値を求める。気泡の面積は、多孔質中間層としてのポリマー発泡体が本来的に有する気泡の面積であり、当該気泡と、発泡性樹脂の発泡による気泡とは、気泡周囲の明度等の差異により、容易に区別することができる。本明細書中、光学顕微鏡や電子顕微鏡写真を撮影する際の平行断面は当該外表面12に対して平行な断面のことであり、垂直断面は多孔質表面層の外表面12に対して垂直な断面のことである。   The average porosity of the porous intermediate layer is the volume ratio of bubbles in the polymer inherently possessed by the polymer foam as the porous intermediate layer when the porous intermediate layer is a polymer foam. Expressed as a percentage measured by the method. From the functional laminate, the polymer foam of the porous intermediate layer impregnated with the foamable resin is cut out, and the foamed resin is not foamed in the optical and electron micrographs of the vertical cross section of the sample. The ratio of the area of the bubble to the total area is measured at an arbitrary 100 locations, and the average value is obtained. The area of the bubble is the area of the bubble inherently possessed by the polymer foam as the porous intermediate layer, and the bubble and the bubble due to foaming of the foaming resin are easily affected by the difference in brightness around the bubble. Can be distinguished. In this specification, the parallel cross section when taking an optical microscope or an electron micrograph is a cross section parallel to the outer surface 12, and the vertical cross section is perpendicular to the outer surface 12 of the porous surface layer. It is a cross section.

多孔質中間層の平均空隙率は、上記のように機能性積層体から測定された値を用いているが、製造(発泡成形)に使用される材料から測定しても、同等の測定値が得られる。つまり、製造(発泡成形)に使用される当該多孔質中間層材料の体積、重量、多孔質中間層材料の繊維またはポリマーの比重等の物性より算出できる。本明細書中、重量の測定は、電子天秤(AE160;メトラー社製)を用いて行った。また、当該多孔質中間層材料の体積と、計算機トモグラフィー法、液浸法、水蒸発法、懸吊法、水銀圧入法、ガス吸着法等の方法で測定した当該多孔質中間層材料の空隙体積より算出できる。また、当該多孔質中間層材料の垂直断面の光学顕微鏡や電子顕微鏡写真において、任意の100カ所で全面積に対する気泡の面積の割合を測定し、平均値を求めることより算出できる。   The average porosity of the porous intermediate layer uses the value measured from the functional laminate as described above, but even if measured from the material used for manufacturing (foam molding), the equivalent measured value is can get. That is, it can be calculated from physical properties such as the volume and weight of the porous intermediate layer material used for production (foam molding) and the specific gravity of the fiber or polymer of the porous intermediate layer material. In this specification, the weight was measured using an electronic balance (AE160; manufactured by Mettler). Further, the volume of the porous interlayer material and the void volume of the porous interlayer material measured by a method such as a computer tomography method, a liquid immersion method, a water evaporation method, a suspension method, a mercury intrusion method, a gas adsorption method, etc. Can be calculated. Moreover, in the optical microscope and electron micrograph of the vertical cross section of the said porous intermediate | middle layer material, it can calculate by measuring the ratio of the area of the bubble with respect to the total area in arbitrary 100 places, and calculating | requiring an average value.

多孔質中間層の厚みは通常、0.1〜2mmであり、多孔質中間層での発泡性樹脂移動の阻害のし易さおよび機能性積層体の吸音性、断熱性および制振性のさらなる向上の観点から、好ましくは0.1〜1mmであり、好ましくは0.2〜1mmである。   The thickness of the porous intermediate layer is usually 0.1 to 2 mm, and the ease of inhibiting the movement of the foamable resin in the porous intermediate layer and the sound absorbing property, heat insulating property and vibration damping property of the functional laminate are further increased. From a viewpoint of improvement, Preferably it is 0.1-1 mm, Preferably it is 0.2-1 mm.

多孔質中間層の厚みは、多孔質中間層が繊維不織布である場合であっても、またはポリマー発泡体である場合であっても、多孔質中間層3における多孔質表面層1との界面32から、樹脂発泡層2との界面33までの厚みであり、以下の方法で測定された厚みで表される。機能性積層体の垂直断面の光学顕微鏡写真において、任意の100カ所で厚みを測定し、平均値を求める)。   The thickness of the porous intermediate layer is such that the interface 32 with the porous surface layer 1 in the porous intermediate layer 3 is a case where the porous intermediate layer is a fiber nonwoven fabric or a polymer foam. To the interface 33 with the resin foam layer 2 and is represented by the thickness measured by the following method. In the optical micrograph of the vertical cross section of the functional laminate, the thickness is measured at an arbitrary 100 points to obtain the average value).

多孔質中間層の厚みは、上記のように機能性積層体から測定された値を用いているが、製造(発泡成形)に使用される材料から測定しても、同等の測定値が得られる。つまり、製造(発泡成形)に使用される当該多孔質中間層材料の垂直断面の光学顕微鏡写真において、任意の100カ所で厚みを測定し、平均値を求める。また、膜厚計、変位計、ノギス等の計器で当該多孔質中間層材料の厚みを測定し、平均値を求める。   As for the thickness of the porous intermediate layer, the value measured from the functional laminate as described above is used, but an equivalent measurement value can be obtained even when measured from the material used for production (foam molding). . That is, in the optical micrograph of the vertical cross section of the porous intermediate layer material used for production (foam molding), the thickness is measured at 100 arbitrary positions, and the average value is obtained. Moreover, the thickness of the said porous intermediate | middle layer material is measured with gauges, such as a film thickness meter, a displacement meter, a caliper, and an average value is calculated | required.

多孔質中間層が特に繊維不織布である場合、当該繊維不織布を構成する繊維の平均繊維径および平均繊維長は、発泡性樹脂の移動が阻害される限り特に限定されない。平均繊維径は通常、0.005〜50μmであり、多孔質中間層での発泡性樹脂移動の阻害のし易さおよび機能性積層体の吸音性、断熱性および制振性のさらなる向上の観点から、好ましくは0.1〜20μmである。平均繊維長は通常、多孔質中間層材料の厚み以上であり、多孔質中間層での発泡性樹脂移動の阻害のし易さおよび機能性積層体の吸音性、断熱性および制振性のさらなる向上の観点から、好ましくは20mm以上である。   When the porous intermediate layer is a fiber nonwoven fabric, the average fiber diameter and the average fiber length of the fibers constituting the fiber nonwoven fabric are not particularly limited as long as the movement of the foamable resin is inhibited. Average fiber diameter is usually 0.005 to 50 μm, and it is easy to inhibit the movement of the foamable resin in the porous intermediate layer, and the viewpoint of further improving the sound absorption, heat insulation and vibration damping properties of the functional laminate Therefore, it is preferably 0.1 to 20 μm. The average fiber length is usually equal to or greater than the thickness of the porous intermediate layer material, facilitates inhibition of foaming resin movement in the porous intermediate layer, and further enhances sound absorption, heat insulation and vibration damping of the functional laminate. From the viewpoint of improvement, it is preferably 20 mm or more.

多孔質中間層の繊維不織布における繊維の平均繊維径は以下の方法で測定された平均直径で表される。機能性積層体から、発泡性樹脂が含浸された多孔質中間層の当該不織布を切り出し、当該試料の垂直断面の光学顕微鏡や電子顕微鏡写真において、任意の100本の繊維の直径を測定し、平均値を求める。   The average fiber diameter of the fiber in the fiber nonwoven fabric of the porous intermediate layer is represented by an average diameter measured by the following method. From the functional laminate, cut out the nonwoven fabric of the porous intermediate layer impregnated with the foamable resin, measure the diameter of any 100 fibers in the optical microscope or electron micrograph of the vertical cross section of the sample, and average Find the value.

多孔質中間層の繊維不織布における繊維の平均繊維長は以下の方法で測定された平均値で表される。機能性積層体から、発泡性樹脂が含浸された多孔質中間層の当該不織布を切り出し、繊維不織布を構成する繊維および発泡性樹脂のうち、発泡性樹脂のみを溶解する有機溶剤により、発泡性樹脂を溶解する。発泡性樹脂が溶解された不織布より、任意の100本の繊維の長さを測定し、平均値を求める。また、CT等の手法で当該不織布内部を3次元画像化し、任意の100本の繊維の長さを測定して平均値を求める。   The average fiber length of the fibers in the fiber nonwoven fabric of the porous intermediate layer is represented by an average value measured by the following method. The non-woven fabric of the porous intermediate layer impregnated with the expandable resin is cut out from the functional laminate, and the expandable resin is formed with an organic solvent that dissolves only the expandable resin out of the fibers and the expandable resin constituting the non-woven fabric. Dissolve. The length of arbitrary 100 fibers is measured from the nonwoven fabric in which the foamable resin is dissolved, and the average value is obtained. Moreover, the inside of the nonwoven fabric is three-dimensionally imaged by a method such as CT, and the length of an arbitrary 100 fibers is measured to obtain an average value.

繊維不織布の繊維の平均繊維径および平均繊維長は、上記のように機能性積層体から測定された値を用いているが、製造(発泡成形)に使用される材料から測定しても、同等の測定値が得られる。つまり、製造(発泡成形)に使用される繊維不織布の繊維の平均繊維径は、当該不織布の垂直断面の光学顕微鏡や電子顕微鏡写真において、任意の100本の繊維の直径を測定し、平均値を求める。製造(発泡成形)に使用される繊維不織布の繊維の平均繊維長は、任意の100本の繊維の長さを測定し、平均値を求める。また、CT等の手法で当該不織布内部を3次元画像化し、任意の100本の繊維の長さを測定して平均値を求める。   The average fiber diameter and average fiber length of the fibers of the fiber nonwoven fabric use the values measured from the functional laminate as described above, but they are equivalent even if measured from the material used for manufacturing (foam molding) Is obtained. In other words, the average fiber diameter of the fibers of the fiber nonwoven fabric used for production (foam molding) is determined by measuring the diameter of any 100 fibers in an optical microscope or electron micrograph of a vertical cross section of the nonwoven fabric, and calculating the average value. Ask. The average fiber length of the fibers of the fiber nonwoven fabric used for production (foam molding) is obtained by measuring the length of any 100 fibers and determining the average value. Moreover, the inside of the nonwoven fabric is three-dimensionally imaged by a method such as CT, and the length of an arbitrary 100 fibers is measured to obtain an average value.

多孔質中間層が特に繊維不織布である場合、当該繊維不織布の目付は、多孔質中間層が発泡性樹脂の移動を阻害する限り特に限定されず、通常は5〜500g/mであり、多孔質中間層での発泡性樹脂移動の阻害のし易さおよび機能性積層体の吸音性、断熱性および制振性のさらなる向上の観点から、好ましくは10〜300g/mである。 When the porous intermediate layer is a fiber nonwoven fabric in particular, the basis weight of the fiber nonwoven fabric is not particularly limited as long as the porous intermediate layer inhibits the movement of the foamable resin, and is usually 5 to 500 g / m 2 and porous. From the viewpoint of easily inhibiting the movement of the foamable resin in the quality intermediate layer and further improving the sound absorbing property, heat insulating property and vibration damping property of the functional laminate, it is preferably 10 to 300 g / m 2 .

多孔質中間層の繊維不織布における目付は以下の方法で測定された値で表される。機能性積層体から、発泡性樹脂が含浸された多孔質中間層の当該不織布を切り出し、当該不織布を構成する繊維および発泡性樹脂のうち、発泡性樹脂のみを溶解する有機溶剤により、発泡性樹脂を溶解し、繊維不織布を単独で得る。当該繊維不織布の面積、重量より目付を算出できる。本明細書中、重量の測定は、電子天秤(AE160;メトラー社製)を用いて行った。また、別の測定方法として、機能性積層体から、発泡性樹脂が含浸された多孔質中間層の当該不織布を切り出し、当該不織布を構成する繊維および発泡性樹脂のうち、繊維材料のみを溶解する溶剤により、繊維材料を溶解し、繊維材料の溶解液を得る。この繊維材料の溶解液の液体分を蒸発させた後に、蒸発後の固体分の重量から固体分における繊維材料の重量を算出し、当該不織布の面積と繊維材料の重量から目付を算出できる。   The basis weight in the fiber nonwoven fabric of the porous intermediate layer is represented by a value measured by the following method. The nonwoven fabric of the porous intermediate layer impregnated with the foamable resin is cut out from the functional laminate, and the foamable resin is formed with an organic solvent that dissolves only the foamable resin among the fibers and the foamable resin constituting the nonwoven fabric. Is dissolved to obtain a fiber nonwoven fabric alone. The basis weight can be calculated from the area and weight of the nonwoven fabric. In this specification, the weight was measured using an electronic balance (AE160; manufactured by Mettler). As another measurement method, the nonwoven fabric of the porous intermediate layer impregnated with the foamable resin is cut out from the functional laminate, and only the fiber material is dissolved out of the fibers and the foamable resin constituting the nonwoven fabric. The fiber material is dissolved with a solvent to obtain a solution of the fiber material. After evaporating the liquid content of the fiber material solution, the weight of the fiber material in the solid content is calculated from the weight of the solid content after evaporation, and the basis weight can be calculated from the area of the nonwoven fabric and the weight of the fiber material.

繊維不織布の目付は、上記のように機能性積層体から測定された値を用いているが、製造(発泡成形)に使用される材料から測定しても、同等の測定値が得られる。つまり、製造(発泡成形)に使用される繊維不織布の面積、重量より目付を算出できる。本明細書中、重量の測定は、電子天秤(AE160;メトラー社製)を用いて行った。   As the basis weight of the fiber nonwoven fabric, the value measured from the functional laminate as described above is used. However, even when measured from the material used for production (foam molding), an equivalent measurement value is obtained. That is, the basis weight can be calculated from the area and weight of the fiber nonwoven fabric used for production (foam molding). In this specification, the weight was measured using an electronic balance (AE160; manufactured by Mettler).

(多孔質表面層)
多孔質表面層1を構成する材料は、多孔性を有するものである限り特に限定されず、例えば、繊維不織布であってもよいし、またはポリマー発泡体であってもよい。
(Porous surface layer)
The material which comprises the porous surface layer 1 is not specifically limited as long as it has porosity, For example, a fiber nonwoven fabric may be sufficient, or a polymer foam may be sufficient.

多孔質表面層1は発泡性樹脂に対する非親和性を有していてもよいが、有していなくてもよい。多孔質表面層1は、機能性積層体の吸音性、断熱性および制振性のさらなる向上の観点から、多孔質中間層よりも、発泡性樹脂に対する非親和性を有してないことが好ましい。多孔質表面層1が多孔質中間層よりも、当該非親和性を有していないとは、多孔質表面層1が有する発泡性樹脂に対する接触角θsが、多孔質中間層が有する発泡性樹脂に対する接触角θmよりも小さいという意味である。同様の観点から好ましくは多孔質表面層1は多孔質中間層に対して上記した「θm−θs」の関係を有する。   Although the porous surface layer 1 may have non-affinity with respect to a foamable resin, it does not need to have it. The porous surface layer 1 preferably has no affinity for the foamable resin rather than the porous intermediate layer from the viewpoint of further improving the sound absorbing property, heat insulating property and vibration damping property of the functional laminate. . The porous surface layer 1 has less incompatibility than the porous intermediate layer. The contact angle θs with respect to the expandable resin that the porous surface layer 1 has is a foamable resin that the porous intermediate layer has. This means that the contact angle is smaller than θm. From the same viewpoint, the porous surface layer 1 preferably has the above-mentioned “θm−θs” relationship with respect to the porous intermediate layer.

多孔質表面層1の発泡性樹脂に対する接触角θsは通常、1°以上であり、多孔質中間層での発泡性樹脂移動の阻害のし易さおよび機能性積層体の吸音性、断熱性および制振性のさらなる向上の観点から、好ましくは1〜89°、特に好ましくは1〜80°、より好ましくは1〜40°、さらに好ましくは1〜30°であり、最も好ましくは1〜20°である。多孔質表面層1の発泡性樹脂に対する接触角θsとは、多孔質表面層を構成する材料と同等組成の表面を有する平面上での発泡性樹脂の接触角のことである。   The contact angle θs with respect to the foamable resin of the porous surface layer 1 is usually 1 ° or more, the ease of inhibiting the movement of the foamable resin in the porous intermediate layer, and the sound absorption, heat insulation and From the viewpoint of further improving the vibration damping properties, it is preferably 1 to 89 °, particularly preferably 1 to 80 °, more preferably 1 to 40 °, still more preferably 1 to 30 °, and most preferably 1 to 20 °. It is. The contact angle θs with respect to the foamable resin of the porous surface layer 1 is a contact angle of the foamable resin on a plane having a surface having the same composition as that of the material constituting the porous surface layer.

多孔質表面層1を構成する材料としての繊維不織布およびポリマー発泡体の具体例を例示する。本来的に上記のような接触角θsを有していない材料からなる多孔質表面層を用いる場合は、処理の前後で接触角が増加または減少する表面処理を当該多孔質表面層に対して行い、接触角を制御したものを多孔質中間層として用いてもよい。なお、以下で具体例と共に示すθは所定の材料があらゆる処理なしで本来的に示す接触角であって、上記した方法により測定された発泡性樹脂に対する接触角のことである。表面処理としては、例えば、フッ素原子含有樹脂(例えばフッ素原子含有ポリマー)やシリコーン基含有樹脂の溶液を適用により、接触角を増加させる非親和処理が挙げられる。   Specific examples of the fiber nonwoven fabric and the polymer foam as materials constituting the porous surface layer 1 are illustrated. When a porous surface layer made of a material that does not inherently have a contact angle θs as described above is used, the porous surface layer is subjected to a surface treatment that increases or decreases the contact angle before and after the treatment. Those having a controlled contact angle may be used as the porous intermediate layer. In the following, θ shown with a specific example is a contact angle that a predetermined material originally shows without any treatment, and is a contact angle with respect to the foamable resin measured by the method described above. Examples of the surface treatment include non-affinity treatment that increases the contact angle by applying a solution of a fluorine atom-containing resin (for example, a fluorine atom-containing polymer) or a silicone group-containing resin.

多孔質表面層の繊維不織布の具体例として、例えば、ポリプロピレン(PP)繊維(θ=20°)等のポリオレフィン繊維;ポリエチレンテレフタレート(PET)繊維(θ=4°)等のポリエステル繊維からなる群から選択される1種以上の有機繊維の不織布が挙げられる。多孔質表面層の繊維不織布はまた、ガラス繊維(θ=12°)、シリカ繊維(θ=15°)、アルミナ繊維(θ=4°)からなる群から選択される1種以上の無機繊維の不織布であってもよい。有機繊維と無機繊維との混合繊維の不織布であってもよい。)   As specific examples of the fiber nonwoven fabric of the porous surface layer, for example, from a group consisting of polyolefin fibers such as polypropylene (PP) fibers (θ = 20 °); polyester fibers such as polyethylene terephthalate (PET) fibers (θ = 4 °) Non-woven fabrics of one or more organic fibers selected can be mentioned. The fiber nonwoven fabric of the porous surface layer is also made of one or more inorganic fibers selected from the group consisting of glass fibers (θ = 12 °), silica fibers (θ = 15 °), and alumina fibers (θ = 4 °). It may be a non-woven fabric. It may be a nonwoven fabric of mixed fibers of organic fibers and inorganic fibers. )

多孔質表面層のポリマー発泡体は連続気泡構造または独立気泡構造を有するものが使用される。そのようなポリマー発泡体の具体例として、例えば、ポリプロピレン発泡層(θ=20°)等のポリオレフィン発泡層;ポリウレタン発泡層(θ=4°);PET発泡層(θ=4°)等のポリエステル発泡層からなる群から選択されるポリマー発泡層が挙げられる。)   As the polymer foam of the porous surface layer, one having an open cell structure or a closed cell structure is used. Specific examples of such polymer foams include, for example, polyolefin foam layers such as polypropylene foam layers (θ = 20 °); polyurethane foam layers (θ = 4 °); polyesters such as PET foam layers (θ = 4 °) Examples include polymer foam layers selected from the group consisting of foam layers. )

多孔質表面層は、機能性積層体の吸音性、断熱性および制振性のさらなる向上の観点から、繊維不織布であることが好ましく、より好ましくは無機繊維または有機繊維の不織布、さらに好ましくはガラス繊維またはポリエステル繊維(特にPET繊維)の不織布である。   The porous surface layer is preferably a fiber non-woven fabric, more preferably a non-woven fabric of inorganic fiber or organic fiber, more preferably glass, from the viewpoint of further improving the sound absorption, heat insulation and vibration damping properties of the functional laminate. It is a nonwoven fabric of fiber or polyester fiber (especially PET fiber).

多孔質表面層の平均空隙率Rsは通常、80〜99.5%であり、多孔質中間層での発泡性樹脂移動の阻害のし易さおよび機能性積層体の吸音性、断熱性および制振性のさらなる向上の観点から、好ましくは90〜99%である。   The average porosity Rs of the porous surface layer is usually from 80 to 99.5%, and it is easy to inhibit the movement of the foamable resin in the porous intermediate layer, and the sound absorption, heat insulation and control of the functional laminate. From the viewpoint of further improving the vibration, it is preferably 90 to 99%.

多孔質表面層の平均空隙率は、多孔質表面層が繊維不織布である場合、繊維間に形成される空隙の体積割合、すなわち繊維間の空隙の体積割合のことであり、以下の方法で測定された割合で表される。機能性積層体から、発泡性樹脂が含浸されていない多孔質表面層部分の当該不織布を切り出す。この繊維不織布における空隙の体積割合を算出し、この値を、当該繊維不織布において厚みが機能性積層体における後述の多孔質表面層の厚みであるときの空隙の体積割合に換算する。空隙の体積割合は、当該繊維不織布の体積、重量、繊維の比重等の物性より算出できる。本明細書中、重量の測定は、電子天秤(AE160;メトラー社製)を用いて行った。また、当該繊維不織布の体積と、計算機トモグラフィー法、液浸法、水蒸発法、懸吊法、水銀圧入法、ガス吸着法等の方法で測定した当該繊維不織布の空隙体積より算出できる。   The average porosity of the porous surface layer is the volume ratio of the voids formed between the fibers when the porous surface layer is a fiber nonwoven fabric, that is, the volume ratio of the voids between the fibers. Expressed as a percentage. The said nonwoven fabric of the porous surface layer part which is not impregnated with foamable resin is cut out from a functional laminated body. The volume ratio of the voids in the fiber nonwoven fabric is calculated, and this value is converted to the volume ratio of the voids when the thickness is the thickness of the porous surface layer described later in the functional laminate. The volume ratio of the voids can be calculated from physical properties such as the volume, weight, and specific gravity of the fiber nonwoven fabric. In this specification, the weight was measured using an electronic balance (AE160; manufactured by Mettler). Moreover, it can calculate from the volume of the said fiber nonwoven fabric, and the void volume of the said fiber nonwoven fabric measured by methods, such as a computer tomography method, a liquid immersion method, a water evaporation method, a suspension method, a mercury intrusion method, a gas adsorption method.

多孔質表面層の平均空隙率は、多孔質表面層がポリマー発泡体である場合、多孔質表面層としてのポリマー発泡体が本来的に有するポリマー中の気泡の体積割合のことであり、以下の方法で測定された割合で表される。機能性積層体から、発泡性樹脂が含浸されていない多孔質表面層部分の当該ポリマー発泡体を切り出し、当該試料の垂直断面の光学顕微鏡や電子顕微鏡写真において、任意の100カ所で全面積に対する気泡の面積の割合を測定し、平均値を求めることより算出できる。   When the porous surface layer is a polymer foam, the average porosity of the porous surface layer is the volume ratio of bubbles in the polymer inherently possessed by the polymer foam as the porous surface layer. Expressed as a percentage measured by the method. From the functional laminate, the polymer foam in the porous surface layer portion not impregnated with the foamable resin is cut out, and in the optical microscope or electron micrograph of the vertical cross section of the sample, bubbles with respect to the entire area at any 100 locations It can be calculated by measuring the ratio of the area and obtaining the average value.

多孔質表面層の平均空隙率は、上記のように機能性積層体から測定された値を用いているが、製造(発泡成形)に使用される材料から測定しても、同等の測定値が得られる。つまり、製造(発泡成形)に使用される当該多孔質表面層材料の体積、重量、当該多孔質表面層材料の繊維またはポリマーの比重等の物性より算出できる。本明細書中、重量の測定は、電子天秤(AE160;メトラー社製)を用いて行った。また、当該多孔質表面層材料の体積と、計算機トモグラフィー法、液浸法、水蒸発法、懸吊法、水銀圧入法、ガス吸着法等の方法で測定した当該多孔質表面層材料の空隙体積より算出できる。また、当該多孔質表面層材料の垂直断面の光学顕微鏡や電子顕微鏡写真において、任意の100カ所で全面積に対する気泡の面積の割合を測定し、平均値を求めることより算出できる。   The average porosity of the porous surface layer uses the value measured from the functional laminate as described above, but even if measured from the material used for manufacturing (foam molding), the equivalent measured value is can get. That is, it can be calculated from physical properties such as the volume and weight of the porous surface layer material used for production (foam molding), the specific gravity of the fiber or polymer of the porous surface layer material. In this specification, the weight was measured using an electronic balance (AE160; manufactured by Mettler). Further, the volume of the porous surface layer material and the void volume of the porous surface layer material measured by a method such as a computer tomography method, a liquid immersion method, a water evaporation method, a suspension method, a mercury intrusion method, a gas adsorption method, etc. Can be calculated. Moreover, in the optical microscope and electron micrograph of the vertical cross section of the said porous surface layer material, it can calculate by measuring the ratio of the area of the bubble with respect to the whole area in arbitrary 100 places, and calculating | requiring an average value.

多孔質表面層の厚みは通常、1〜50mmであり、多孔質中間層での発泡性樹脂移動の阻害のし易さおよび機能性積層体の吸音性、断熱性および制振性のさらなる向上の観点から、好ましくは2〜30mmである。   The thickness of the porous surface layer is usually 1 to 50 mm, and it is easy to inhibit the foaming resin movement in the porous intermediate layer and further improve the sound absorption, heat insulation and damping properties of the functional laminate. From the viewpoint, it is preferably 2 to 30 mm.

多孔質表面層の厚みは、多孔質表面層が繊維不織布である場合であっても、またはポリマー発泡体である場合であっても、後述の混層部を含む厚みであって、多孔質表面層1における外表面12から、多孔質中間層3との界面13までの厚みであり、以下の方法で測定された厚みで表される。機能性積層体の垂直断面の光学顕微鏡写真において、任意の100カ所で厚みを測定し、平均値を求める。   The thickness of the porous surface layer is a thickness including a mixed layer portion to be described later, even if the porous surface layer is a fiber nonwoven fabric or a polymer foam. 1 is a thickness from the outer surface 12 to the interface 13 with the porous intermediate layer 3, and is represented by a thickness measured by the following method. In the optical micrograph of the vertical cross section of the functional laminate, the thickness is measured at an arbitrary 100 locations to determine the average value.

多孔質表面層の厚みは、上記のように機能性積層体から測定された値を用いているが、製造(発泡成形)に使用される材料から測定しても、同等の測定値が得られる。つまり、製造(発泡成形)に使用される当該多孔質表面層材料の垂直断面の光学顕微鏡写真において、任意の100カ所で厚みを測定し、平均値を求める。また、膜厚計、変位計、ノギス等の計器で当該多孔質表面層材料の厚みを測定し、平均値を求める。   As for the thickness of the porous surface layer, the value measured from the functional laminate as described above is used, but even if measured from the material used for manufacturing (foam molding), the same measured value can be obtained. . That is, in the optical micrograph of the vertical cross section of the porous surface layer material used for production (foam molding), the thickness is measured at arbitrary 100 locations to obtain the average value. Further, the thickness of the porous surface layer material is measured with a gauge such as a film thickness meter, a displacement meter, or a caliper, and an average value is obtained.

多孔質表面層が特に繊維不織布である場合、当該繊維不織布を構成する繊維の平均繊維径および平均繊維長は、多孔質中間層が発泡性樹脂の移動を阻害する限り特に限定されない。平均繊維径は通常、0.005〜50μmであり、多孔質中間層での発泡性樹脂移動の阻害のし易さおよび機能性積層体の吸音性、断熱性および制振性のさらなる向上の観点から、好ましくは0.1〜20μmであり、より好ましくは1〜5μmである。平均繊維長は通常、2mm以上であり、多孔質中間層での発泡性樹脂移動の阻害のし易さおよび機能性積層体の吸音性、断熱性および制振性のさらなる向上の観点から、好ましくは20mm以上である。   When the porous surface layer is a fiber nonwoven fabric in particular, the average fiber diameter and average fiber length of the fibers constituting the fiber nonwoven fabric are not particularly limited as long as the porous intermediate layer inhibits the movement of the foamable resin. Average fiber diameter is usually 0.005 to 50 μm, and it is easy to inhibit the movement of the foamable resin in the porous intermediate layer, and the viewpoint of further improving the sound absorption, heat insulation and vibration damping properties of the functional laminate Therefore, it is preferably 0.1 to 20 μm, more preferably 1 to 5 μm. The average fiber length is usually 2 mm or more, preferably from the viewpoint of easy inhibition of foaming resin movement in the porous intermediate layer and further improvement of sound absorption, heat insulation and vibration damping of the functional laminate. Is 20 mm or more.

多孔質表面層の繊維不織布における繊維の平均繊維径は以下の方法で測定された平均直径で表される。機能性積層体から、発泡性樹脂が含浸されていない多孔質表面層部分の当該不織布を切り出し、当該試料の垂直断面の光学顕微鏡や電子顕微鏡写真において、任意の100本の繊維の直径を測定し、平均値を求める。   The average fiber diameter of the fibers in the fiber nonwoven fabric of the porous surface layer is represented by the average diameter measured by the following method. Cut out the nonwoven fabric of the porous surface layer portion not impregnated with the foamable resin from the functional laminate, and measure the diameter of any 100 fibers in the optical microscope and electron micrographs of the vertical cross section of the sample. Find the average value.

多孔質表面層の繊維不織布における繊維の平均繊維長は以下の方法で測定された平均値で表される。機能性積層体から、発泡性樹脂が含浸されていない多孔質表面層部分の当該不織布を切り出し、当該不織布より、任意の100本の繊維の長さを測定し、平均値を求める。また、CT等の手法で当該不織布内部を3次元画像化し、任意の100本の繊維の長さを測定して平均値を求める。   The average fiber length of the fibers in the fiber nonwoven fabric of the porous surface layer is represented by an average value measured by the following method. The said nonwoven fabric of the porous surface layer part which is not impregnated with foamable resin is cut out from a functional laminated body, the length of arbitrary 100 fibers is measured from the said nonwoven fabric, and an average value is calculated | required. Moreover, the inside of the nonwoven fabric is three-dimensionally imaged by a method such as CT, and the length of an arbitrary 100 fibers is measured to obtain an average value.

繊維不織布の繊維の平均繊維径および平均繊維長は、上記のように機能性積層体から測定された値を用いているが、製造(発泡成形)に使用される材料から測定しても、同等の測定値が得られる。つまり、製造(発泡成形)に使用される繊維不織布の繊維の平均繊維径は、当該不織布の垂直断面の光学顕微鏡や電子顕微鏡写真において、任意の100本の繊維の直径を測定し、平均値を求める。製造(発泡成形)に使用される繊維不織布の繊維の平均繊維長は、任意の100本の繊維の長さを測定し、平均値を求める。また、CT等の手法で当該繊維不織布内部を3次元画像化し、任意の100本の繊維の長さを測定して平均値を求める。   The average fiber diameter and average fiber length of the fibers of the fiber nonwoven fabric use the values measured from the functional laminate as described above, but they are equivalent even if measured from the material used for manufacturing (foam molding) Is obtained. In other words, the average fiber diameter of the fibers of the fiber nonwoven fabric used for production (foam molding) is determined by measuring the diameter of any 100 fibers in an optical microscope or electron micrograph of a vertical cross section of the nonwoven fabric, and calculating the average value. Ask. The average fiber length of the fibers of the fiber nonwoven fabric used for production (foam molding) is obtained by measuring the length of any 100 fibers and determining the average value. Moreover, the inside of the said fiber nonwoven fabric is made into a three-dimensional image by methods, such as CT, and the length of arbitrary 100 fibers is measured and an average value is calculated | required.

多孔質表面層が特に繊維不織布である場合、当該繊維不織布の目付は、多孔質中間層が発泡性樹脂の移動を阻害する限り特に限定されず、通常は50〜6000g/mであり、多孔質中間層での発泡性樹脂移動の阻害のし易さおよび機能性積層体の吸音性、断熱性および制振性のさらなる向上の観点から、好ましくは100〜3000g/mである。 When the porous surface layer is particularly a fiber nonwoven fabric, the basis weight of the fiber nonwoven fabric is not particularly limited as long as the porous intermediate layer inhibits the movement of the foamable resin, and is usually 50 to 6000 g / m 2. From the viewpoint of easily inhibiting the movement of the foamable resin in the quality intermediate layer and further improving the sound absorbing property, heat insulating property and vibration damping property of the functional laminate, it is preferably 100 to 3000 g / m 2 .

多孔質表面層の繊維不織布における目付は以下の方法で測定された値で表される。機能性積層体から、発泡性樹脂が含浸されていない多孔質表面層部分の当該不織布を切り出し、当該不織布の面積、重量より目付を算出できる。本明細書中、重量の測定は、電子天秤(AE160;メトラー社製)を用いて行った。   The basis weight in the fiber nonwoven fabric of the porous surface layer is represented by a value measured by the following method. The nonwoven fabric of the porous surface layer portion not impregnated with the foamable resin is cut out from the functional laminate, and the basis weight can be calculated from the area and weight of the nonwoven fabric. In this specification, the weight was measured using an electronic balance (AE160; manufactured by Mettler).

繊維不織布の目付は、上記のように機能性積層体から測定された値を用いているが、製造(発泡成形)に使用される材料から測定しても、同等の測定値が得られる。つまり、製造(発泡成形)に使用される繊維不織布の面積、重量より目付を算出できる。本明細書中、重量の測定は、電子天秤(AE160;メトラー社製)を用いて行った。   As the basis weight of the fiber nonwoven fabric, the value measured from the functional laminate as described above is used. However, even when measured from the material used for production (foam molding), an equivalent measurement value is obtained. That is, the basis weight can be calculated from the area and weight of the fiber nonwoven fabric used for production (foam molding). In this specification, the weight was measured using an electronic balance (AE160; manufactured by Mettler).

(樹脂発泡層)
樹脂発泡層2はポリマーの発泡層である。樹脂発泡層を構成するポリマーは、プラスチックの分野で発泡体を構成し得るポリマーとして知られているあらゆるポリマーであってもよい。樹脂発泡層の具体例として、例えば、ポリウレタン発泡層;ポリエチレン発泡層、ポリプロピレン発泡層等のポリオレフィン発泡層;PET発泡層等のポリエステル発泡層;シリコーン発泡層;ポリ塩化ビニル発泡層からなる群から選択されるポリマー発泡層が挙げられる。
(Resin foam layer)
The resin foam layer 2 is a polymer foam layer. The polymer constituting the resin foam layer may be any polymer known as a polymer capable of constituting a foam in the plastic field. Specific examples of the resin foam layer include, for example, a polyurethane foam layer; a polyolefin foam layer such as a polyethylene foam layer and a polypropylene foam layer; a polyester foam layer such as a PET foam layer; a silicone foam layer; and a polyvinyl chloride foam layer. Polymer foam layer.

樹脂発泡層は、機能性積層体の吸音性、断熱性および制振性のさらなる向上の観点から、ポリウレタン発泡層であることが好ましい。
The resin foam layer is preferably a polyurethane foam layer from the viewpoint of further improving the sound absorption, heat insulation and vibration damping properties of the functional laminate.

樹脂発泡層の平均空隙径Dfは特に限定されず、吸音対象の音の周波数に応じて、例えば、0.04〜800μm、特に10〜600μmの範囲内であってもよい。樹脂発泡層の平均空隙径Dfが上記範囲内で大きいほど、吸音される音の周波数は大きくなる。一方、樹脂発泡層の平均空隙径Dfが上記範囲内で小さいほど、吸音される音の周波数は小さくなる。   The average void diameter Df of the resin foam layer is not particularly limited, and may be, for example, in the range of 0.04 to 800 μm, particularly 10 to 600 μm, depending on the frequency of the sound to be absorbed. The greater the average void diameter Df of the resin foam layer is within the above range, the greater the frequency of the sound that is absorbed. On the other hand, the smaller the average void diameter Df of the resin foam layer is within the above range, the smaller the frequency of the sound that is absorbed.

例えば、樹脂発泡層の平均空隙径Dfが50〜500μm、特に100〜300μmのとき、周波数1000〜4000Hzの音が有効に吸音される。このような吸音は、機能性積層体を自動車のパワートレイン部材のためのカバー部材用途で使用する場合に好適である。   For example, when the average void diameter Df of the resin foam layer is 50 to 500 μm, particularly 100 to 300 μm, sound having a frequency of 1000 to 4000 Hz is effectively absorbed. Such sound absorption is suitable when the functional laminate is used for a cover member for a powertrain member of an automobile.

樹脂発泡層の平均空隙径Dfは、ポリマー中の気泡の直径のことであり、以下の方法で測定された平均直径で表される。機能性積層体から、樹脂発泡層を切り出し、当該試料の平行断面の光学顕微鏡や電子顕微鏡写真において、任意の100個の気泡の直径を測定し、平均値を求める。   The average void diameter Df of the resin foam layer is the diameter of bubbles in the polymer, and is represented by the average diameter measured by the following method. A resin foam layer is cut out from the functional laminate, and the diameter of an arbitrary 100 bubbles is measured in an optical microscope or an electron micrograph of a parallel section of the sample, and an average value is obtained.

樹脂発泡層の平均空隙率Rfは通常、60〜98%であり、多孔質中間層での発泡性樹脂移動の阻害のし易さおよび機能性積層体の吸音性、断熱性および制振性のさらなる向上の観点から、好ましくは80〜95%である。   The average porosity Rf of the resin foam layer is usually 60 to 98%, and it is easy to inhibit the movement of the foamable resin in the porous intermediate layer, and the sound absorbing property, heat insulating property and vibration damping property of the functional laminate. From the viewpoint of further improvement, it is preferably 80 to 95%.

樹脂発泡層の平均空隙率は、ポリマー中の気泡の体積割合のことであり、以下の方法で測定された割合で表される。機能性積層体から、樹脂発泡層を切り出し、当該樹脂発泡材の垂直断面の光学顕微鏡や電子顕微鏡写真において、任意の100カ所で全面積に対する気泡の面積の割合を測定し、平均値を求める。また、当該樹脂発泡材の体積、重量、ポリマーの比重等の物性より算出できる。本明細書中、重量の測定は、電子天秤(AE160;メトラー社製)を用いて行った。また、当該樹脂発泡材の体積と、計算機トモグラフィー法、液浸法、水蒸発法、懸吊法、水銀圧入法、ガス吸着法等の方法で測定した当該樹脂発泡材の空隙体積より算出できる。   The average porosity of the resin foam layer is a volume ratio of bubbles in the polymer, and is expressed by a ratio measured by the following method. A resin foam layer is cut out from the functional laminate, and in the optical microscope and electron micrographs of the vertical cross section of the resin foam material, the ratio of the area of bubbles to the total area is measured at an arbitrary 100 locations, and the average value is obtained. Moreover, it can calculate from physical properties, such as the volume of the said resin foam material, weight, and specific gravity of a polymer. In this specification, the weight was measured using an electronic balance (AE160; manufactured by Mettler). Further, it can be calculated from the volume of the resin foam and the void volume of the resin foam measured by a method such as a computer tomography method, a liquid immersion method, a water evaporation method, a suspension method, a mercury intrusion method, a gas adsorption method.

樹脂発泡層の厚みは通常、1〜100mmであり、多孔質中間層での発泡性樹脂移動の阻害のし易さおよび機能性積層体の吸音性、断熱性および制振性のさらなる向上の観点から、好ましくは2〜30mmである。   The thickness of the resin foam layer is usually 1 to 100 mm, and it is easy to inhibit the movement of the foamable resin in the porous intermediate layer, and the viewpoint of further improving the sound absorption, heat insulation and vibration damping of the functional laminate Therefore, it is preferably 2 to 30 mm.

樹脂発泡層の厚みは、多孔質表面層1の外表面12に対して略垂直方向の厚みであって、樹脂発泡層2における多孔質中間層3との界面22までの厚みであり、以下の方法で測定された厚みで表される。機能性積層体の垂直断面の光学顕微鏡写真において、任意の100カ所で厚みを測定し、平均値を求める。   The thickness of the resin foam layer is a thickness in a direction substantially perpendicular to the outer surface 12 of the porous surface layer 1, and is a thickness up to the interface 22 with the porous intermediate layer 3 in the resin foam layer 2. It is represented by the thickness measured by the method. In the optical micrograph of the vertical cross section of the functional laminate, the thickness is measured at an arbitrary 100 locations to determine the average value.

(混層部)
本発明の機能性積層体10は、多孔質中間層3と多孔質表面層1との間に、混層部11を備えている。詳しくは、多孔質表面層1が多孔質中間層3側に、混層部11を備えている。より詳しくは、多孔質表面層1における多孔質中間層3側の一部が混層部11に変換されており、換言すると、多孔質表面層1内における多孔質中間層3側の一部において混層部11が生成している。混層部により、機能性積層体の剛性が向上する。
(Mixed layer)
The functional laminate 10 of the present invention includes a mixed layer portion 11 between the porous intermediate layer 3 and the porous surface layer 1. Specifically, the porous surface layer 1 includes a mixed layer portion 11 on the porous intermediate layer 3 side. More specifically, a part of the porous surface layer 1 on the porous intermediate layer 3 side is converted to the mixed layer part 11, in other words, a part of the porous surface layer 1 on the porous intermediate layer 3 side is mixed. Part 11 is generated. The rigidity of the functional laminate is improved by the mixed layer portion.

混層部は、多孔質中間層と多孔質表面層との間に形成される、樹脂発泡層と多孔質表面層との複合層である。混層部は、詳しくは、樹脂発泡層を構成する発泡性樹脂が多孔質表面層に滲入し、発泡および硬化して形成された層であり、換言すると、多孔質表面層の構成材料と樹脂発泡層の構成材料とが共存する層のことである。混層部においては、発泡性樹脂の滲入前の多孔質表面層の空隙内において、発泡性樹脂による気泡が形成されている。   The mixed layer portion is a composite layer of a resin foam layer and a porous surface layer formed between the porous intermediate layer and the porous surface layer. More specifically, the mixed layer portion is a layer formed by infiltrating the foamed resin constituting the resin foam layer into the porous surface layer, foaming and curing, in other words, the constituent material of the porous surface layer and the resin foam. It is a layer where the constituent materials of the layer coexist. In the mixed layer portion, bubbles of the foamable resin are formed in the voids of the porous surface layer before the infiltration of the foamable resin.

混層部の平均空隙径Dxは特に限定されず、吸音対象の音の周波数に応じて、例えば、0.04〜800μm、特に10〜500μmの範囲内であってもよい。混層部の平均空隙径Dxが上記範囲内で大きいほど、吸音される音の周波数は大きくなる。一方、混層部の平均空隙径Dxが上記範囲内で小さいほど、吸音される音の周波数は小さくなる。   The average gap diameter Dx of the mixed layer portion is not particularly limited, and may be, for example, in the range of 0.04 to 800 μm, particularly 10 to 500 μm, depending on the frequency of the sound to be absorbed. The larger the average gap diameter Dx of the mixed layer portion is within the above range, the greater the frequency of the sound that is absorbed. On the other hand, the smaller the average gap diameter Dx of the mixed layer portion is within the above range, the smaller the frequency of the sound that is absorbed.

例えば、混層部の平均空隙径Dxが50〜250μm、特に60〜200μmのとき、周波数1000〜4000Hzの音が有効に吸音される。このような吸音は、機能性積層体を自動車のパワートレイン部材のためのカバー部材用途で使用する場合に好適である。   For example, when the average void diameter Dx of the mixed layer portion is 50 to 250 μm, particularly 60 to 200 μm, sound having a frequency of 1000 to 4000 Hz is effectively absorbed. Such sound absorption is suitable when the functional laminate is used for a cover member for a powertrain member of an automobile.

混層部の平均空隙径Dxは、発泡性樹脂の滲入前における多孔質表面層の空隙内において形成された樹脂(ポリマー)中の気泡の直径のことであり、以下の方法で測定された平均直径で表される。機能性積層体における混層部の平行断面の光学顕微鏡や電子顕微鏡写真において、任意の100個の気泡の直径(最長径)を測定し、平均値を求める。任意の100個の気泡は、発泡性樹脂の発泡により形成された任意の100個の気泡のことであり、当該気泡と、多孔質表面層としてのポリマー発泡体が本来的に有する気泡とは、気泡周囲の明度等の差異により、容易に区別することができる。また、機能性積層体から、混層部を切り出し、この混層部における空隙の直径の分布を、水銀圧入法、ガス吸着法等の方法で測定し、平均直径を算出できる。   The average void diameter Dx of the mixed layer portion is the diameter of bubbles in the resin (polymer) formed in the voids of the porous surface layer before the infiltration of the foamable resin, and is measured by the following method. It is represented by In an optical microscope or electron micrograph of a parallel section of the mixed layer portion in the functional laminate, the diameter (longest diameter) of any 100 bubbles is measured, and the average value is obtained. Arbitrary 100 bubbles are arbitrary 100 bubbles formed by foaming of the foamable resin, and the bubbles and the bubbles inherently contained in the polymer foam as the porous surface layer are: It can be easily distinguished by the difference in brightness around the bubble. Moreover, a mixed layer part is cut out from a functional laminated body, the distribution of the diameter of the space | gap in this mixed layer part is measured by methods, such as a mercury intrusion method and a gas adsorption method, and an average diameter can be calculated.

混層部の平均空隙率Rxは通常、30〜95%であり、機能性積層体の吸音性、断熱性および制振性のさらなる向上の観点から、好ましくは50〜90%である。   The average porosity Rx of the mixed layer portion is usually 30 to 95%, and preferably 50 to 90% from the viewpoint of further improving the sound absorbing property, heat insulating property and vibration damping property of the functional laminate.

混層部の平均空隙率は、発泡性樹脂の滲入前における多孔質表面層の空隙内において形成された樹脂(ポリマー)中の気泡の体積割合のことであり、以下の方法で測定された割合で表される。機能性積層体における混層部の垂直断面の光学顕微鏡や電子顕微鏡写真において、任意の100カ所で全面積に対する気泡の面積の割合を測定し、平均値を求める。気泡の面積は、多孔質表面層の空隙内において発泡性樹脂の発泡により形成された樹脂(ポリマー)中の気泡の面積であり、多孔質中間層がポリマー発泡体の場合、当該気泡と、当該ポリマー発泡体が本来的に有する気泡とは、気泡周囲の明度等の差異により、容易に区別することができる。また、別の測定方法として、機能性積層体から、混層部を切り出し、当該混層部の体積、重量、ポリマーの比重等の物性より算出できる。また、当該混層部の体積と、計算機トモグラフィー法、液浸法、水蒸発法、懸吊法、水銀圧入法、ガス吸着法等の方法で測定した当該混層部の空隙体積より算出できる。   The average porosity of the mixed layer portion is a volume ratio of bubbles in the resin (polymer) formed in the void of the porous surface layer before the infiltration of the foamable resin, and is a ratio measured by the following method. expressed. In an optical microscope or electron micrograph of a vertical cross section of the mixed layer portion in the functional laminate, the ratio of the area of bubbles to the total area is measured at an arbitrary 100 locations, and the average value is obtained. The area of the bubbles is the area of bubbles in the resin (polymer) formed by foaming of the foamable resin in the voids of the porous surface layer. When the porous intermediate layer is a polymer foam, the bubbles and The bubbles inherent in the polymer foam can be easily distinguished from each other by the difference in brightness around the bubbles. As another measurement method, the mixed layer portion can be cut out from the functional laminate and calculated from physical properties such as the volume and weight of the mixed layer portion and the specific gravity of the polymer. Further, it can be calculated from the volume of the mixed layer portion and the void volume of the mixed layer portion measured by a method such as a computer tomography method, a liquid immersion method, a water evaporation method, a suspension method, a mercury intrusion method, or a gas adsorption method.

混層部の厚みは通常、0.05〜3mmであり、自動車のパワートレイン部材のためのカバー部材用途での吸音性、断熱性および制振性(特に吸音性)のさらなる向上の観点から、好ましくは0.1〜2mmであり、より好ましくは0.2〜1.7mmである。   The thickness of the mixed layer portion is usually 0.05 to 3 mm, which is preferable from the viewpoint of further improving sound absorbing properties, heat insulating properties, and vibration damping properties (particularly sound absorbing properties) in cover member applications for automobile powertrain members. Is 0.1 to 2 mm, more preferably 0.2 to 1.7 mm.

混層部の厚みは、多孔質表面層1の外表面12に対して略垂直方向の厚みのことであって、多孔質表面層1における多孔質中間層3との界面13から、多孔質表面層1内に発泡性樹脂が含浸されなくなるまでの厚みであり、以下の方法で測定された厚みで表される。機能性積層体における混層部近傍の垂直断面の光学顕微鏡や電子顕微鏡写真において、任意の100カ所で厚みを測定し、平均値を求める。当該光学顕微鏡や電子顕微鏡写真において、多孔質表面層1内に発泡性樹脂が含浸されていること、および含浸されていないことは、多孔質表面層1の空隙内での発泡性樹脂の存在/不存在により容易に区別できる。   The thickness of the mixed layer portion is a thickness in a direction substantially perpendicular to the outer surface 12 of the porous surface layer 1, and from the interface 13 with the porous intermediate layer 3 in the porous surface layer 1, the porous surface layer It is the thickness until the foamable resin is not impregnated in 1, and is represented by the thickness measured by the following method. In an optical microscope or electron micrograph of a vertical cross section in the vicinity of the mixed layer portion in the functional laminate, the thickness is measured at an arbitrary 100 locations to obtain an average value. In the optical microscope and the electron micrograph, the fact that the porous surface layer 1 is impregnated with the foamable resin and that the porous surface layer 1 is not impregnated are the presence / absence of the foamable resin in the voids of the porous surface layer 1 / Can be easily distinguished by the absence.

[機能性積層体の製造方法]
本発明の機能性積層体は以下の積層用基材形成工程および発泡成形工程を含む製造方法により製造することができる。
[Method for producing functional laminate]
The functional laminate of the present invention can be produced by a production method including the following lamination base material forming step and foam molding step.

(積層用基材形成工程)
本工程においては、多孔質表面層1および多孔質中間層3を重ね合わせ、積層用基材40を得る。重ね合わせは、単に、一方の層の上に、他方の層を載置すればよいが、積層用基材の取り扱い性の観点から多孔質表面層1と多孔質中間層3とは接着することが好ましい。
(Lamination substrate forming process)
In this step, the porous surface layer 1 and the porous intermediate layer 3 are superposed to obtain a lamination substrate 40. In order to superimpose, the other layer may simply be placed on one layer, but the porous surface layer 1 and the porous intermediate layer 3 are bonded from the viewpoint of handling of the substrate for lamination. Is preferred.

接着方法は、多孔質表面層1と多孔質中間層3との結合が達成される限り特に限定されず、例えば、接着剤を用いる方法を採用すればよい。接着は多孔質表面層1と多孔質中間層3との接触面の一部で達成されてもよいし、または全面で達成されてもよい。自動車のパワートレイン部材のためのカバー部材用途での吸音性、断熱性および制振性(特に吸音性)のさらなる向上の観点から、接着は多孔質表面層1と多孔質中間層3との接触面の一部で達成されることが好ましい。   The bonding method is not particularly limited as long as the bonding between the porous surface layer 1 and the porous intermediate layer 3 is achieved. For example, a method using an adhesive may be adopted. Adhesion may be achieved on a part of the contact surface between the porous surface layer 1 and the porous intermediate layer 3, or may be achieved on the entire surface. From the standpoint of further improving sound absorption, heat insulation and vibration damping (particularly sound absorption) in the application of a cover member for a powertrain member of an automobile, adhesion is a contact between the porous surface layer 1 and the porous intermediate layer 3. Preferably it is achieved on part of the surface.

多孔質表面層1および多孔質中間層3はそれぞれ前記した材料が使用可能であり、市販品として入手可能である。特に多孔質表面層1および多孔質中間層3が繊維不織布の場合、所定の繊維を熱プレス成形法またはニードルパンチ成形法等の公知の成形法により所望の物性に調整して成形したもの(シート状材料)を使用することができる。   The porous surface layer 1 and the porous intermediate layer 3 can be made of the materials described above, and are available as commercial products. In particular, when the porous surface layer 1 and the porous intermediate layer 3 are fiber nonwoven fabrics, a predetermined fiber is formed by adjusting to a desired physical property by a known molding method such as a hot press molding method or a needle punch molding method (sheet) Shaped material) can be used.

(発泡成形工程)
本工程においては、図2Aに示すように、成形型50内において、発泡成形を行う。成形型50は通常、上型51および下型52からなっている。図2Aは、発泡成形工程の発泡準備段階を説明するための成形型およびその内部の模式的断面図を示す。
(Foam molding process)
In this step, foam molding is performed in the molding die 50 as shown in FIG. 2A. The mold 50 is usually composed of an upper mold 51 and a lower mold 52. FIG. 2A shows a mold for explaining the foam preparation stage of the foam molding process and a schematic cross-sectional view of the inside thereof.

発泡成形は、樹脂発泡層2を構成する原料として発泡性樹脂20を用いて、積層用基材40の多孔質中間層3側で行う。発泡成形を積層用基材40の多孔質中間層3側で行うとは、積層用基材40の多孔質中間層3側で樹脂発泡層2が形成されるように、発泡性樹脂20および積層用基材40を配置して、発泡成形を行うという意味である。例えば、図2Aに示すように、下型52の成形面520に発泡性樹脂20を注入した後、当該発泡性樹脂20の上に積層用基材40を、多孔質中間層3が発泡性樹脂20と接触するように、配置させる。(積層用基材40を、多孔質中間層3が発泡性樹脂20と接触するように、上型51に配置させてもよい。)その後、図2Bに示すように、上型51を閉じ、発泡が開始されると、発泡性樹脂20が膨張し、上型51と下型52との間のキャビティ内を充たし、樹脂発泡層2が形成される。成形体を脱型することにより、多孔質表面層1、樹脂発泡層2および多孔質中間層3が一体化された機能性積層体が得られる。図2Bは、発泡成形工程の発泡段階を説明するための成形型およびその内部の模式的断面図を示す。   Foam molding is performed on the porous intermediate layer 3 side of the substrate for lamination 40 using the foamable resin 20 as a raw material constituting the resin foam layer 2. When foam molding is performed on the porous intermediate layer 3 side of the substrate 40 for lamination, the foamable resin 20 and the laminate are formed so that the resin foam layer 2 is formed on the porous intermediate layer 3 side of the substrate 40 for lamination. This means that the base material 40 is disposed and foam molding is performed. For example, as shown in FIG. 2A, after injecting the foamable resin 20 into the molding surface 520 of the lower mold 52, the base material for lamination 40 is placed on the foamable resin 20, and the porous intermediate layer 3 is the foamable resin. 20 so as to be in contact with 20. (You may arrange the base material 40 for lamination | stacking in the upper mold | type 51 so that the porous intermediate | middle layer 3 may contact the foamable resin 20.) Then, as shown to FIG. 2B, the upper mold | type 51 is closed, When foaming is started, the foamable resin 20 expands, fills the cavity between the upper mold 51 and the lower mold 52, and the resin foam layer 2 is formed. By removing the molded body, a functional laminate in which the porous surface layer 1, the resin foam layer 2, and the porous intermediate layer 3 are integrated is obtained. FIG. 2B shows a mold for explaining the foaming stage of the foam molding process and a schematic cross-sectional view of the inside thereof.

発泡性樹脂20は樹脂発泡層の原料であり、例えば樹脂発泡層がポリウレタン発泡層の場合、発泡性樹脂20はポリオール化合物およびイソシアネート化合物の混合物が使用される。発泡性樹脂20には発泡剤および整泡剤等の添加剤が含有されていてもよい。   The foamable resin 20 is a raw material for the resin foam layer. For example, when the resin foam layer is a polyurethane foam layer, the foamable resin 20 is a mixture of a polyol compound and an isocyanate compound. The foamable resin 20 may contain additives such as a foaming agent and a foam stabilizer.

発泡条件は、発泡性樹脂20の種類に応じて、適宜決定され、例えば、成形型50を加熱してもよいし、かつ/または成形型50内を加圧または減圧してもよい。   The foaming conditions are appropriately determined according to the type of the foamable resin 20. For example, the mold 50 may be heated and / or the inside of the mold 50 may be pressurized or depressurized.

[用途]
本発明の機能性積層体10は、吸音性、断熱性および制振性(特に吸音性)に優れているため、吸音材、断熱材かつ/または制振材(特に吸音材)として有用である。
本発明の機能性積層体10が有用な分野として、例えば、車両(例えば、自動車、トラック、バスおよび電車等)および農業機械(例えば、草刈り機および耕耘機等)等のエンジンを備えた機械等の分野が挙げられる。
[Usage]
The functional laminate 10 of the present invention is useful as a sound absorbing material, a heat insulating material and / or a vibration damping material (especially a sound absorbing material) because it has excellent sound absorbing properties, heat insulating properties and vibration damping properties (especially sound absorbing properties). .
Fields in which the functional laminate 10 of the present invention is useful include, for example, machines equipped with engines such as vehicles (for example, automobiles, trucks, buses and trains) and agricultural machines (for example, mowers and tillers). Fields.

本発明の機能性積層体10が、例えば、エンジンを備えた機械における吸音断熱材として使用される場合、詳しくは、エンジンおよびトランスミッションを含むパワートレイン部材のためのカバー部材として使用される。このとき機能性積層体10は、より詳しくは、パワートレイン部材を部分的または全体的に包囲するカバー部材として使用される。機能性積層体10は、樹脂発泡層2側がパワートレイン部材に接触するように配置され使用される。あるいは、多孔質表面層1側が音源および/または熱源に非接触で対向するように、すなわち多孔質表面層1側にエンジンおよびトランスミッションが配置されるように、使用される。   When the functional laminate 10 of the present invention is used as, for example, a sound-absorbing heat insulating material in a machine equipped with an engine, it is specifically used as a cover member for a powertrain member including an engine and a transmission. More specifically, the functional laminate 10 is used as a cover member that partially or entirely surrounds the powertrain member. The functional laminate 10 is disposed and used such that the resin foam layer 2 side contacts the power train member. Alternatively, it is used such that the porous surface layer 1 side faces the sound source and / or heat source in a non-contact manner, that is, the engine and transmission are arranged on the porous surface layer 1 side.

(測定方法)
各層の各種物性は前記した方法により測定した。なお、グラスウールの接触角の測定には当該グラスウールと同等組成のガラス板を用いた。PETウールの接触角の測定には当該PETウールと同等組成のPET板を用いた。PP不織布の接触角の測定には当該PP不織布と同等組成のPP板を用いた。特にフッ素樹脂をコートしたPP不織布である「PP不織布+フッ素樹脂コート」の接触角の測定には、当該PP不織布と同等組成のPP板に、当該フッ素樹脂コートと同等組成のフッ素樹脂コートを成膜した板を用いた。接触角の測定に使用した上記板の表面粗さは共通してRaが1.6μm以下であった。
(Measuring method)
Various physical properties of each layer were measured by the methods described above. In addition, the glass plate of the same composition as the said glass wool was used for the measurement of the contact angle of glass wool. For measurement of the contact angle of PET wool, a PET plate having the same composition as that of the PET wool was used. For the measurement of the contact angle of the PP nonwoven fabric, a PP plate having the same composition as that of the PP nonwoven fabric was used. In particular, for the measurement of the contact angle of “PP nonwoven fabric + fluororesin coat”, which is a PP nonwoven fabric coated with a fluororesin, a fluororesin coat having the same composition as the fluororesin coat is formed on a PP plate having the same composition as the PP nonwoven fabric. A filmed plate was used. The surface roughness of the plates used for measuring the contact angle was commonly Ra of 1.6 μm or less.

(評価方法)
吸音率(α):
日本音響エンジニアリング社製 垂直入射吸音率測定システム WinZacMTXを使用し、測定周波数範囲 200〜4800Hz(1/3オクターブバンド)にて、内径40mmの音響管を用いた垂直入射吸音率の測定(JIS A 1405−2、ISO 10534−2準拠)を行い、1000〜4000Hzの平均垂直入射吸音率を算出した。測定試料は、各実施例/比較例で得られた機能性積層体から直径40mmの円柱状にくり抜いたものを使用した。測定試料としての機能性積層体は、多孔質表面層1側から音が入射されるように配置した。多孔質中間層を用いることなく、同じ多孔質表面層を用いた比較例における吸音率からの増加幅に基づいて評価した。
◎:5.0%≦増加幅;(最良)
○:2.0%≦増加幅<5.0%;(良)
△:0.5%≦増加幅<2.0%;(実用上問題なし)
×:増加幅<0.5%。
(Evaluation method)
Sound absorption coefficient (α):
Normal acoustic absorption coefficient measurement system WinZacMTX, manufactured by Nippon Acoustic Engineering Co., Ltd., and measurement of vertical incident acoustic absorption coefficient using an acoustic tube with an inner diameter of 40 mm in a measurement frequency range of 200 to 4800 Hz (1/3 octave band) (JIS A 1405) -2, ISO 10534-2 compliant), and an average normal incidence sound absorption coefficient of 1000 to 4000 Hz was calculated. As the measurement sample, a functional laminate obtained in each example / comparative example was hollowed out into a columnar shape with a diameter of 40 mm. The functional laminate as a measurement sample was arranged so that sound was incident from the porous surface layer 1 side. It evaluated based on the increase width from the sound absorption rate in the comparative example using the same porous surface layer, without using a porous intermediate | middle layer.
A: 5.0% ≦ increased width; (best)
○: 2.0% ≦ increased width <5.0%; (good)
Δ: 0.5% ≦ increased width <2.0%; (no practical problem)
X: Increase width <0.5%.

熱伝導率:
NETZSCH社製 定常法熱伝導率測定装置 HFM436/3/1Lambdaを使用し、測定温度30℃にて、機能性積層体の厚み方向の熱伝導率をJIS A1412−2第2部熱流計法に基づいて測定した。
Thermal conductivity:
Based on JIS A1412-2 Part 2 heat flow meter method, the thermal conductivity in the thickness direction of the functional laminate is measured at 30 ° C using a steady-state thermal conductivity measuring device HFM436 / 3/1 Lambda manufactured by NETZSCH. Measured.

(実施例1〜3)
・積層用基材形成工程
平均繊維径約7.5μmのグラスウールAを、表1に記載の平均空隙率および厚みになるよう熱プレス成形し、多孔質表面層1を得た。所定の不織布にフッ素樹脂コーティング剤(FG5030C;(株)フロロテクノロジー製)を含浸し、常温乾燥させ、表1の多孔質中間層3を得た。多孔質表面層1に、多孔質中間層3を接着して、積層用基材40を得た。接着は多孔質表面層と多孔質中間層との接触面の一部で接着剤により達成した。
(Examples 1-3)
-Substrate forming process for lamination Glass wool A having an average fiber diameter of about 7.5 μm was hot press-molded so as to have the average porosity and thickness shown in Table 1 to obtain a porous surface layer 1. A predetermined nonwoven fabric was impregnated with a fluororesin coating agent (FG5030C; manufactured by Fluoro Technology Co., Ltd.) and dried at room temperature to obtain a porous intermediate layer 3 shown in Table 1. The porous intermediate layer 3 was adhered to the porous surface layer 1 to obtain a substrate for lamination 40. Adhesion was achieved with an adhesive at part of the contact surface between the porous surface layer and the porous intermediate layer.

・発泡成形工程
発泡性樹脂20として表1のポリウレタンフォームの原料をミキサーで混合し、図2Aに示すように、下型52の成形面520上に注入した。次いで、当該発泡性樹脂20の上に積層用基材40を、多孔質中間層3が発泡性樹脂20と接触するように、配置させた。その後、25℃および常圧の環境下で、図2Bに示すように、上型51を閉じ、発泡が開始されると、発泡性樹脂20が膨張し、上型51と下型52との間のキャビティ(寸法100mm×100mm×25mm)内を充たし、樹脂発泡層2が形成された。冷却後、成形体を脱型することにより、多孔質表面層1、樹脂発泡層2および多孔質中間層3が一体化された機能性積層体を得た。
-Foam molding process The raw material of the polyurethane foam of Table 1 was mixed with the mixer as the foamable resin 20, and it inject | poured on the molding surface 520 of the lower mold | type 52, as shown to FIG. 2A. Subsequently, the base material 40 for lamination | stacking was arrange | positioned so that the porous intermediate | middle layer 3 might contact the foamable resin 20 on the said foamable resin 20. FIG. Thereafter, under an environment of 25 ° C. and normal pressure, as shown in FIG. 2B, when the upper mold 51 is closed and foaming is started, the foamable resin 20 expands, and between the upper mold 51 and the lower mold 52 The cavity (size 100 mm × 100 mm × 25 mm) was filled, and the resin foam layer 2 was formed. After cooling, the molded body was demolded to obtain a functional laminate in which the porous surface layer 1, the resin foam layer 2, and the porous intermediate layer 3 were integrated.

(実施例4)
多孔質表面層1として平均繊維径約3.5μmのグラスウールBを、表1に記載の平均空隙率および厚みになるよう、熱プレス成形したものを用いたこと以外、実施例2と同様の方法により、積層用基材形成工程および発泡成形工程を行った。
Example 4
The same method as in Example 2 except that a glass wool B having an average fiber diameter of about 3.5 μm as the porous surface layer 1 was subjected to hot press molding so as to have the average porosity and thickness described in Table 1. The base material formation process for lamination and the foam molding process were performed.

(実施例5)
多孔質表面層1として平均繊維長51mmおよび繊度2.2デニール(平均繊維径約16μm)のPET繊維を、表1に記載の平均空隙率および厚みになるよう、ニードルパンチおよび接着剤にてシート状に成形して得られたPETウールを用いたこと、および表1の多孔質中間層3を用いたこと以外、実施例1と同様の方法により、積層用基材形成工程および発泡成形工程を行った。
(Example 5)
The porous surface layer 1 is made of PET fibers having an average fiber length of 51 mm and a fineness of 2.2 denier (average fiber diameter of about 16 μm) with a needle punch and an adhesive so that the average porosity and thickness shown in Table 1 are obtained. In the same manner as in Example 1 except that the PET wool obtained by molding into a shape was used and the porous intermediate layer 3 shown in Table 1 was used, the substrate forming process for lamination and the foam molding process were carried out. went.

(実施例6)
表1の多孔質中間層3を用いたこと以外、実施例1と同様の方法により、積層用基材形成工程および発泡成形工程を行った。
(Example 6)
Except for using the porous intermediate layer 3 in Table 1, the substrate forming process for lamination and the foam molding process were performed in the same manner as in Example 1.

(比較例1)
多孔質中間層を用いることなく、積層用基材の代わりに多孔質表面層を単独で用いたこと以外、実施例1と同様の方法により、積層用基材形成工程および発泡成形工程を行った。
(Comparative Example 1)
Without using the porous intermediate layer, the base material forming step and the foam molding step were performed in the same manner as in Example 1 except that the porous surface layer was used alone instead of the base material for stacking. .

(比較例2)
多孔質中間層を用いることなく、積層用基材の代わりに多孔質表面層を単独で用いたこと以外、実施例4と同様の方法により、積層用基材形成工程および発泡成形工程を行った。
(Comparative Example 2)
The base material forming step and the foam molding step were performed in the same manner as in Example 4 except that the porous surface layer was used alone instead of the base material for lamination without using the porous intermediate layer. .

(比較例3)
多孔質中間層を用いることなく、積層用基材の代わりに多孔質表面層を単独で用いたこと以外、実施例5と同様の方法により、積層用基材形成工程および発泡成形工程を行った。
(Comparative Example 3)
Without using the porous intermediate layer, the base material forming step and the foam molding step were performed in the same manner as in Example 5 except that the porous surface layer was used alone instead of the base material for stacking. .

Figure 2018171820
Figure 2018171820

グラスウールA:平均繊維径約7.5μmおよび平均繊維長約50mmの硝子繊維(グラスウールAによる多孔質表面層1の目付 実施例1〜3:960g/m、実施例6:960g/m、比較例1:960g/m
グラスウールB:平均繊維径約3.5μmおよび平均繊維長約50mmの硝子繊維(グラスウールBによる多孔質表面層1の目付 実施例4:960g/m、比較例2:960g/m
PETウール:平均繊維長51mmおよび繊度2.2デニール(平均繊維径約16μm)のPET繊維(PETウールによる多孔質表面層1の目付 実施例5:540g/m、比較例3:540g/m
PP不織布A:SP−1040E(前田工繊(株)製、目付40g/m
PP不織布B:SP−1200E(前田工繊(株)製、目付200g/m
PP不織布C:SP−1017E(前田工繊(株)製、目付17g/m
フッ素樹脂コート:フッ素樹脂コーティング剤(FG5030C;(株)フロロテクノロジー製)
ポリウレタンフォームAの原料:DKシステム(第一工業製薬(株)製)
Glass wool A: Glass fiber having an average fiber diameter of about 7.5 μm and an average fiber length of about 50 mm (weight per unit area of porous surface layer 1 by glass wool A Examples 1-3: 960 g / m 2 , Example 6: 960 g / m 2 , Comparative Example 1: 960 g / m 2 )
Glass wool B: Glass fiber having an average fiber diameter of about 3.5 μm and an average fiber length of about 50 mm (weight per unit area of porous surface layer 1 by glass wool B Example 4: 960 g / m 2 , Comparative Example 2: 960 g / m 2 )
PET wool: PET fiber having an average fiber length of 51 mm and a fineness of 2.2 denier (average fiber diameter of about 16 μm) (weight per unit area of the porous surface layer 1 made of PET wool Example 5: 540 g / m 2 , Comparative Example 3: 540 g / m) 2 )
PP non-woven fabric A: SP-1040E (manufactured by Maeda Kosen Co., Ltd., basis weight 40 g / m 2 )
PP non-woven fabric B: SP-1200E (Maeda Kosen Co., Ltd., basis weight 200 g / m 2 )
PP non-woven fabric C: SP-1017E (manufactured by Maeda Kosen Co., Ltd., basis weight 17 g / m 2 )
Fluororesin coating: Fluororesin coating agent (FG5030C; manufactured by Fluoro Technology)
Raw material of polyurethane foam A: DK system (Daiichi Kogyo Seiyaku Co., Ltd.)

本発明の機能性積層体は、車両(例えば、自動車、トラック、バスおよび電車等)および農業機械(例えば、草刈り機および耕耘機等)等のエンジンを備えた機械等の分野における吸音材、断熱材かつ/または制振材として有用である。   The functional laminate of the present invention is a sound-absorbing material and a heat-insulating material in the field of machines including engines such as vehicles (for example, automobiles, trucks, buses, trains, etc.) and agricultural machines (for example, mowers and tillers). And / or useful as a damping material.

1:多孔質表面層
2:樹脂発泡層
3:多孔質中間層
10:機能性積層体
11:混層部
12:多孔質表面層の外表面
13:多孔質表面層における多孔質中間層との界面
20:発泡性樹脂
22:樹脂発泡層における多孔質中間層との界面
32:多孔質中間層における多孔質表面層との界面
33:多孔質中間層における樹脂発泡層との界面
40:積層用基材
50:成形型
51:上型
52:下型
520:下型の成形面
1: Porous surface layer 2: Resin foam layer 3: Porous intermediate layer 10: Functional laminate 11: Mixed layer portion 12: Outer surface of porous surface layer 13: Interface of porous surface layer with porous intermediate layer 20: Foamable resin 22: Interface with porous intermediate layer in resin foam layer 32: Interface with porous surface layer in porous intermediate layer 33: Interface with resin foam layer in porous intermediate layer 40: Base for lamination Material 50: Mold 51: Upper mold 52: Lower mold 520: Molding surface of lower mold

Claims (28)

多孔質表面層と樹脂発泡層との間に、通気性を有する多孔質中間層が積層されており、
前記多孔質中間層が、前記樹脂発泡層を構成する発泡性樹脂に対する非親和性を有している、機能性積層体。
Between the porous surface layer and the resin foam layer, a porous intermediate layer having air permeability is laminated,
The functional laminated body in which the said porous intermediate | middle layer has non-affinity with respect to the foamable resin which comprises the said resin foam layer.
前記多孔質中間層の前記非親和性が、前記多孔質表面層の前記非親和性よりも高い、請求項1に記載の機能性積層体。   The functional laminate according to claim 1, wherein the non-affinity of the porous intermediate layer is higher than the non-affinity of the porous surface layer. 前記多孔質中間層の前記発泡性樹脂に対する接触角θmが、前記多孔質表面層の前記発泡性樹脂に対する接触角θsよりも大きい、請求項2に記載の機能性積層体。   The functional laminate according to claim 2, wherein a contact angle θm of the porous intermediate layer with respect to the foamable resin is larger than a contact angle θs of the porous surface layer with respect to the foamable resin. 前記多孔質中間層の前記発泡性樹脂に対する接触角θmおよび前記多孔質表面層の前記発泡性樹脂に対する接触角θsは以下の関係式を満たす、請求項3に記載の機能性積層体。
5°≦θm−θs≦40°
The functional laminate according to claim 3, wherein a contact angle θm of the porous intermediate layer with respect to the foamable resin and a contact angle θs of the porous surface layer with respect to the foamable resin satisfy the following relational expression.
5 ° ≦ θm−θs ≦ 40 °
前記多孔質中間層が、前記非親和性に起因して、前記多孔質表面層への前記発泡性樹脂の移動を阻害する、請求項1〜4のいずれかに記載の機能性積層体。   The functional laminate according to claim 1, wherein the porous intermediate layer inhibits the movement of the foamable resin to the porous surface layer due to the non-affinity. 前記多孔質中間層の前記発泡性樹脂に対する接触角θmが10〜50°である、請求項1〜5のいずれかに記載の機能性積層体。   The functional laminate according to claim 1, wherein a contact angle θm of the porous intermediate layer with respect to the foamable resin is 10 to 50 °. 前記多孔質中間層が60〜95%の平均空隙率を有する、請求項1〜6のいずれかに記載の機能性積層体。   The functional laminate according to any one of claims 1 to 6, wherein the porous intermediate layer has an average porosity of 60 to 95%. 前記多孔質中間層が0.1〜2mmの厚みを有する、請求項1〜7のいずれかに記載の機能性積層体。   The functional laminate according to any one of claims 1 to 7, wherein the porous intermediate layer has a thickness of 0.1 to 2 mm. 前記多孔質中間層が繊維不織布である、請求項1〜8のいずれかに記載の機能性積層体。   The functional laminated body in any one of Claims 1-8 whose said porous intermediate | middle layer is a fiber nonwoven fabric. 前記多孔質中間層がポリオレフィン系繊維からなる群から選択される有機繊維の不織布である、請求項1〜9のいずれかに記載の機能性積層体。   The functional laminate according to claim 1, wherein the porous intermediate layer is an organic fiber nonwoven fabric selected from the group consisting of polyolefin fibers. 前記多孔質中間層の繊維不織布を構成する繊維が0.005〜50μmの平均繊維径を有する、請求項9または10に記載の機能性積層体。   The functional laminated body of Claim 9 or 10 in which the fiber which comprises the fiber nonwoven fabric of the said porous intermediate | middle layer has an average fiber diameter of 0.005-50 micrometers. 前記多孔質中間層の平均空隙率Rmおよび前記多孔質表面層の平均空隙率Rsは、以下の関係式を満たす、請求項1〜11のいずれかに記載の機能性積層体。
1.10≦Rs/Rm≦1.5
The functional laminate according to claim 1, wherein an average porosity Rm of the porous intermediate layer and an average porosity Rs of the porous surface layer satisfy the following relational expression.
1.10 ≦ Rs / Rm ≦ 1.5
前記多孔質表面層の前記発泡性樹脂に対する接触角θsが1〜40°である、請求項1〜12のいずれかに記載の機能性積層体。   The functional laminate according to claim 1, wherein a contact angle θs of the porous surface layer with respect to the foamable resin is 1 to 40 °. 前記多孔質表面層が80〜99.5%の平均空隙率を有する、請求項1〜13のいずれかに記載の機能性積層体。   The functional laminate according to any one of claims 1 to 13, wherein the porous surface layer has an average porosity of 80 to 99.5%. 前記多孔質表面層が1〜50mmの厚みを有する、請求項1〜14のいずれかに記載の機能性積層体。   The functional laminate according to claim 1, wherein the porous surface layer has a thickness of 1 to 50 mm. 前記多孔質表面層が繊維不織布である、請求項1〜15のいずれかに記載の機能性積層体。   The functional laminate according to claim 1, wherein the porous surface layer is a fiber nonwoven fabric. 前記多孔質表面層が無機繊維および/または有機繊維の不織布である、請求項1〜16のいずれかに記載の機能性積層体。   The functional laminate according to any one of claims 1 to 16, wherein the porous surface layer is a nonwoven fabric of inorganic fibers and / or organic fibers. 前記多孔質表面層の繊維不織布を構成する繊維が0.005〜50μmの平均繊維径を有する、請求項16または17に記載の機能性積層体。   The functional laminate according to claim 16 or 17, wherein the fibers constituting the fiber nonwoven fabric of the porous surface layer have an average fiber diameter of 0.005 to 50 µm. 前記樹脂発泡層が0.04〜800μmの平均空隙径を有する、請求項1〜18のいずれかに記載の機能性積層体。   The functional laminate according to claim 1, wherein the resin foam layer has an average void diameter of 0.04 to 800 μm. 前記樹脂発泡層がポリウレタン発泡層、ポリオレフィン発泡層、ポリエステル発泡層、シリコーン発泡層およびポリ塩化ビニル発泡層からなる群から選択されるポリマー発泡層である、請求項1〜19のいずれかに記載の機能性積層体。   20. The resin foam layer according to claim 1, wherein the resin foam layer is a polymer foam layer selected from the group consisting of a polyurethane foam layer, a polyolefin foam layer, a polyester foam layer, a silicone foam layer, and a polyvinyl chloride foam layer. Functional laminate. 前記多孔質表面層が前記多孔質中間層側に、前記樹脂発泡層と前記多孔質表面層との混層部を備えている、請求項1〜20のいずれかに記載の機能性積層体。   The functional laminate according to claim 1, wherein the porous surface layer includes a mixed layer portion of the resin foam layer and the porous surface layer on the porous intermediate layer side. 前記混層部が0.2〜1.7mmの厚みを有する、請求項21に記載の機能性積層体。   The functional laminate according to claim 21, wherein the mixed layer portion has a thickness of 0.2 to 1.7 mm. 前記混層部が60〜200μmの平均空隙径を有する、請求項21または22に記載の機能性積層体。   The functional laminate according to claim 21 or 22, wherein the mixed layer portion has an average void diameter of 60 to 200 µm. 前記混層部が50〜90%の平均空隙率を有する、請求項21〜23のいずれかに記載の機能性積層体。   The functional laminate according to any one of claims 21 to 23, wherein the mixed layer portion has an average porosity of 50 to 90%. 前記機能性積層体は吸音材、断熱材かつ/または制振材として使用される、請求項1〜24のいずれかに記載の機能性積層体。   The functional laminate according to any one of claims 1 to 24, wherein the functional laminate is used as a sound absorbing material, a heat insulating material and / or a vibration damping material. 前記機能性積層体は、前記樹脂発泡層側が熱源および/または音源に接触するように配置され使用される、あるいは、前記多孔質表面層側が熱源および/または音源に非接触で対向するように配置され使用される、請求項1〜25のいずれかに記載の機能性積層体。   The functional laminate is used so that the resin foam layer side is in contact with a heat source and / or a sound source, or the porous surface layer side is arranged so as to face the heat source and / or the sound source without contact. The functional laminate according to claim 1, wherein the functional laminate is used. 前記機能性積層体は、自動車のエンジンおよびトランスミッションを含むパワートレイン部材のためのカバー部材として、使用される、請求項1〜26のいずれかに記載の機能性積層体。   The functional laminate according to any one of claims 1 to 26, wherein the functional laminate is used as a cover member for a powertrain member including an automobile engine and a transmission. 請求項1〜27のいずれかに記載の機能性積層体の製造方法であって、
前記多孔質表面層および前記多孔質中間層を重ね合わせ、積層用基材を得る工程;および
成形型内において、前記樹脂発泡層を構成する発泡性樹脂の発泡成形を、前記積層用基材の多孔質中間層側で行う、方法。
It is a manufacturing method of the functional layered product according to any one of claims 1 to 27, and
A step of superimposing the porous surface layer and the porous intermediate layer to obtain a base material for lamination; and foam molding of a foamable resin constituting the resin foam layer in a molding die of the base material for lamination A method performed on the porous intermediate layer side.
JP2017072517A 2017-03-31 2017-03-31 Functional laminate and method for producing the same Active JP6693459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017072517A JP6693459B2 (en) 2017-03-31 2017-03-31 Functional laminate and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017072517A JP6693459B2 (en) 2017-03-31 2017-03-31 Functional laminate and method for producing the same

Publications (2)

Publication Number Publication Date
JP2018171820A true JP2018171820A (en) 2018-11-08
JP6693459B2 JP6693459B2 (en) 2020-05-13

Family

ID=64106991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017072517A Active JP6693459B2 (en) 2017-03-31 2017-03-31 Functional laminate and method for producing the same

Country Status (1)

Country Link
JP (1) JP6693459B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020181063A (en) * 2019-04-24 2020-11-05 株式会社イノアックコーポレーション Sound absorption board, package tray, luggage board, and sound insulation structure
WO2022102410A1 (en) * 2020-11-11 2022-05-19 Agc株式会社 Fender liner and manufacturing method thereof, and vehicle
WO2023063114A1 (en) * 2021-10-15 2023-04-20 Agc株式会社 Fender liner and manufacturing method therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005177198A (en) * 2003-12-19 2005-07-07 Toyo Tire & Rubber Co Ltd Pad for seat
JP2007255190A (en) * 2006-03-20 2007-10-04 Pacific Ind Co Ltd Engine cover
JP2013019087A (en) * 2011-06-15 2013-01-31 Toyobo Co Ltd Nonwoven fabric for reinforcing foam molded article and product using the same
JP2015003445A (en) * 2013-06-20 2015-01-08 呉羽テック株式会社 Nonwoven fabric for automobile interior material and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005177198A (en) * 2003-12-19 2005-07-07 Toyo Tire & Rubber Co Ltd Pad for seat
JP2007255190A (en) * 2006-03-20 2007-10-04 Pacific Ind Co Ltd Engine cover
JP2013019087A (en) * 2011-06-15 2013-01-31 Toyobo Co Ltd Nonwoven fabric for reinforcing foam molded article and product using the same
JP2015003445A (en) * 2013-06-20 2015-01-08 呉羽テック株式会社 Nonwoven fabric for automobile interior material and method for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020181063A (en) * 2019-04-24 2020-11-05 株式会社イノアックコーポレーション Sound absorption board, package tray, luggage board, and sound insulation structure
JP7383334B2 (en) 2019-04-24 2023-11-20 株式会社イノアックコーポレーション Sound absorption boards, package trays, luggage boards and sound insulation structures
WO2022102410A1 (en) * 2020-11-11 2022-05-19 Agc株式会社 Fender liner and manufacturing method thereof, and vehicle
WO2023063114A1 (en) * 2021-10-15 2023-04-20 Agc株式会社 Fender liner and manufacturing method therefor

Also Published As

Publication number Publication date
JP6693459B2 (en) 2020-05-13

Similar Documents

Publication Publication Date Title
JP6693459B2 (en) Functional laminate and method for producing the same
JP4997057B2 (en) Sound insulation for vehicles
JP2007022183A (en) Sound insulating material for vehicle
JP2007203919A (en) Floor carpet for automobile, and manufacturing method thereof
WO2018179977A1 (en) Functional laminate and production method therefor
US11600254B2 (en) Acoustic foam decoupler
US20190126518A1 (en) Method for producing a soundproofing trim panel for the interior of a motor vehicle
JP5283886B2 (en) Soundproof cushioning material
MX2007009627A (en) Sound-absorbent lining for motor vehicles, more particularly engine bonnet lining.
KR101874882B1 (en) Method of manufacturing polyurethane foam seat with carbon nano tube for vehicle, method of manufacturing insulation of vehicle using the same, and the insulation using the same method
JP5994713B2 (en) Vehicle parts
AU2002343969B2 (en) Floor laying material, piece mat, and arranging structure thereof
WO2018179978A1 (en) Functional laminate and production method therefor
JP6589924B2 (en) Functional laminate and manufacturing method thereof
KR101675834B1 (en) Moulded product for automotive panels
KR100950603B1 (en) Soundproofing material for automobile interior
JPWO2017141801A1 (en) Automotive interior / exterior sheet and manufacturing method thereof
JP2018171822A (en) Functional laminate and method for producing the same
JP7328353B2 (en) Multi-layer sound absorbing material
KR102029924B1 (en) Method of manufacturing insulation for vehicle, and the insulation using the same method
JP3180765U (en) Porous foam molding for automobile interior materials
JP6266579B2 (en) Ventilation adjusting adhesive sheet, method for producing the same, and laminated sound absorbing material
JP7351429B1 (en) Sound absorbing materials and vehicle parts
JP2019084910A (en) Vehicular interior core material, and vehicular interior material containing the same
KR102328692B1 (en) Automobile floor carpet using low weight thermoplastic polyethylene sound insulation coating and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190122

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200330

R150 Certificate of patent or registration of utility model

Ref document number: 6693459

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150