WO2023063016A1 - ウエハ載置台 - Google Patents

ウエハ載置台 Download PDF

Info

Publication number
WO2023063016A1
WO2023063016A1 PCT/JP2022/034525 JP2022034525W WO2023063016A1 WO 2023063016 A1 WO2023063016 A1 WO 2023063016A1 JP 2022034525 W JP2022034525 W JP 2022034525W WO 2023063016 A1 WO2023063016 A1 WO 2023063016A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
metal bonding
bonding layer
ceramic
wafer mounting
Prior art date
Application number
PCT/JP2022/034525
Other languages
English (en)
French (fr)
Inventor
達也 久野
靖也 井上
央史 竹林
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2023505382A priority Critical patent/JPWO2023063016A1/ja
Publication of WO2023063016A1 publication Critical patent/WO2023063016A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N13/00Clutches or holding devices using electrostatic attraction, e.g. using Johnson-Rahbek effect

Definitions

  • the present invention relates to a wafer mounting table.
  • a wafer mounting table in which a ceramic base material such as alumina in which an electrostatic electrode is embedded and a cooling base material made of a metal such as aluminum are joined via a resin layer (see, for example, Patent Document 1). .
  • a ceramic base material such as alumina in which an electrostatic electrode is embedded
  • a cooling base material made of a metal such as aluminum
  • a wafer mounting table is also known in which a ceramic substrate and a cooling device having a coolant flow path are bonded using a metal bonding layer instead of a resin layer (for example, Patent Documents 2 and 3). Since the metal bonding layer has a higher thermal conductivity than the resin layer, it can realize the heat removal capability required when processing wafers with high-power plasma.
  • Patent Documents 2 and 3 a metal matrix composite (MMC) having a small difference in thermal expansion coefficient from the ceramic substrate is used as the material for the cooling substrate.
  • MMC metal matrix composite
  • a gas supply path extending from the lower surface of the wafer mounting table to the wafer mounting surface is provided. , a heat transfer gas may be supplied to the backside of the wafer.
  • the present invention has been made to solve the above-described problems.
  • the main purpose is to improve the internal corrosion resistance and maintain the corrosion resistance for a long period of time.
  • the wafer mounting table of the present invention is a ceramic substrate having a wafer mounting surface on its upper surface and containing an electrode; a cooling base made of a metal-containing material having a coolant channel formed therein; a first metal bonding layer that bonds the ceramic substrate, the lower surface, and the upper surface of the cooling substrate; a gas passage in the ceramic base vertically penetrating the ceramic base; a gas hole in the first metal bonding layer vertically penetrating the first metal bonding layer and communicating with the gas passage in the ceramic base; a gas passage in the cooling base communicating with the gas passage in the ceramic base through the gas hole in the first metal bonding layer from a gas introduction port provided on the lower surface of the cooling base; a gas supply path configured by the gas passage in the ceramic substrate, the gas hole in the first metal bonding layer, and the gas passage in the cooling substrate;
  • a wafer mounting table comprising In the gas supply path, at least a portion of the peripheral wall of the gas hole in the first metal bonding layer and the peripheral wall of the gas passage in
  • the peripheral wall of the gas hole in the first metal bonding layer and the peripheral wall of the gas passage in the cooling base material are visible when the wafer mounting surface is viewed from above. is covered with an insulating film. Therefore, it is possible to prevent particles containing metal from being generated from such portions, and to prevent discharge from occurring in these portions when plasma is generated above the wafer mounting surface. As a result, the corrosion resistance of the gas supply passage is improved.
  • the linear thermal expansion coefficient of the ceramic material constituting the ceramic substrate is X1 [/K] and the linear thermal expansion coefficient of the metal-containing material is X2 [/K] at 40 to 400 ° C.
  • X1 and X2 is 1.5 ⁇ 10 ⁇ 6 /K or less. Therefore, the first metal bonding layer is less likely to deform due to the difference in thermal expansion between the ceramic base material and the cooling base material when the wafer mounting table is manufactured or used, so cracking or peeling of the insulating film can be prevented. can be done. Therefore, the corrosion resistance of the insulating film can be maintained for a long period of time.
  • the coefficient of linear thermal expansion obtained by measuring the lengths of 40°C and 400°C is referred to as the coefficient of linear thermal expansion at 40 to 400°C.
  • the present invention may be described using terms such as up and down, left and right, front and back, but up and down, left and right, and front and back are merely relative positional relationships. Therefore, when the wafer mounting table changes its direction, the top and bottom may become left and right, and the left and right may become up and down. Such cases are also included in the technical scope of the present invention.
  • the difference between X1 and X2 , the difference between X2 and X3 and the difference between X3 and X1 may be less than or equal to 1.5 ⁇ 10 ⁇ 6 /K. By doing so, the corrosion resistance of the insulating film can be maintained for a longer period of time.
  • a plurality of gas passages in the ceramic substrate may be provided, and A gas hole may be provided corresponding to each of the plurality of gas passages in the ceramic base material, and the gas passages in the cooling base material extend from the gas introduction port to the coolant flow path in the cooling base material. After extending to a predetermined position on the upper side, it is divided into a plurality of distribution portions at the predetermined position, and each of the distribution portions communicates with the gas passage in the ceramic base material through the gas hole in the first metal bonding layer. may In this way, gas can be distributed to a plurality of gas passages in the ceramic substrate with respect to one gas inlet.
  • the gas passage in the cooling base is divided into a plurality of distribution portions at predetermined positions above the coolant channels in the cooling base, it intersects the wall portion that partitions the coolant channels at one point. do. Therefore, compared with the case where the gas passage in the cooling base intersects with the wall portion at a plurality of places, the degree of freedom in designing the coolant passage is increased, and it becomes easier to improve the heat uniformity.
  • the entire peripheral wall of the gas supply path may be covered with the insulating film.
  • the cooling base material is formed by bonding a plurality of layered members via a second metal bonding layer.
  • the second metal bonding layer may have a second metal bonding layer inner gas hole through which the cooling base inner gas passage penetrates, and the second metal bonding layer inner gas hole may be covered with the insulating film.
  • the first metal bonding layer may have a thickness of 1 mm or less. In this way, the deformation of the first metal bonding layer is easily suppressed by the ceramic base material and the cooling base material, so that the corrosion resistance of the insulating film can be maintained for a sufficient period of time.
  • the metal-containing material may be a metal matrix composite material.
  • FIG. 2 is a plan view of the wafer mounting table 10; AA sectional view of FIG. FIG. 3 is an enlarged view of the B portion of FIG. 2; FIG. 3 is an enlarged view of part C of FIG. 2; The enlarged view of the D part of FIG. 4A to 4C are manufacturing process diagrams of the wafer mounting table 10; 4A to 4C are manufacturing process diagrams of the wafer mounting table 10;
  • FIG. 1 is a plan view of the wafer mounting table 10
  • FIG. 2 is a cross-sectional view along line AA of FIG. 1
  • FIG. 3 is an enlarged view of the B portion of FIG. 2
  • FIG. 4 is an enlarged view of the C portion of FIG.
  • FIG. 3 is an enlarged view of part D in FIG. 2;
  • "-" indicating a numerical range is used to include the numerical values before and after it as lower and upper limits.
  • the wafer mounting table 10 is used to perform CVD, etching, etc. on the wafer W using plasma, and is fixed to a mounting plate provided inside a chamber for semiconductor processing.
  • the wafer mounting table 10 includes a ceramic substrate 20 , a cooling substrate 30 and a first metal bonding layer 41 .
  • the ceramic substrate 20 has an outer peripheral portion 25 having an annular focus ring mounting surface 25a on the outer periphery of a central portion 21 having a circular wafer mounting surface 21a.
  • the focus ring may be abbreviated as "FR".
  • a plurality of small protrusions 22 that can come into contact with the wafer W are provided on the wafer mounting surface 21a.
  • gas passages 23 gas supply paths passing through the ceramic base material 20 in the vertical direction and opening between the small protrusions 22 are provided. 38) are formed.
  • a wafer W is mounted on the wafer mounting surface 21a, and a focus ring is mounted on the FR mounting surface 25a.
  • the ceramic substrate 20 is made of a ceramic material typified by alumina, aluminum nitride, and the like.
  • the FR mounting surface 25a is one step lower than the wafer mounting surface 21a.
  • the central portion 21 of the ceramic base material 20 incorporates a wafer chucking electrode 24 on the side closer to the wafer mounting surface 21a.
  • the wafer adsorption electrode 24 is made of a material containing W, Mo, WC, MoC, or the like, for example.
  • the wafer attracting electrode 24 is a disk-shaped or mesh-shaped unipolar electrostatic electrode.
  • a layer of the ceramic substrate 20 above the wafer chucking electrode 24 functions as a dielectric layer.
  • a wafer chucking DC power source 50 is connected to the wafer chucking electrode 24 via a power supply terminal 52 .
  • the power supply terminal 52 passes through an insulating tube 53 arranged in a through hole vertically penetrating the cooling base material 30 and the first metal bonding layer 41, and reaches from the lower surface of the ceramic base material 20 to the wafer adsorption electrode 24.
  • a low-pass filter (LPF) 51 is provided between the DC power supply 50 for wafer attraction and the electrode 24 for wafer attraction.
  • the cooling base material 30 includes a coolant channel 34 in which the coolant can circulate, and a cooling base internal gas channel 36 .
  • the coolant channel 34 is connected to a coolant supply channel and a coolant discharge channel (not shown), and the coolant discharged from the coolant discharge channel is returned to the coolant supply channel after its temperature is adjusted.
  • the cooling substrate internal gas passage 36 communicates with the ceramic substrate internal gas passage 23 from the gas introduction port 35 provided on the lower surface of the cooling substrate 30 via the first metal bonding layer internal gas hole 41a.
  • the cooling base internal gas passage 36 includes a flow portion 36a and a distribution portion 36b.
  • the circulation portion 36 a is a portion that extends vertically from the gas introduction port 35 to a predetermined position above the coolant flow path 34 .
  • the circulation portion 36a intersects the wall portion 39 that partitions the coolant flow paths 34 at one point.
  • Each distribution portion 36b is a portion that is divided into a plurality of portions from the circulation portion 36a at a predetermined position above the coolant channel 34 .
  • the distribution portion 36 b communicates with the ceramic substrate internal gas passage 23 via the first metal bonding layer internal gas hole 41 a formed in the first metal bonding layer 41 .
  • the cooling base material 30 is formed by bonding disk-shaped first to third layered members 31 to 33 via second metal bonding layers 42 and 43 .
  • the first to third layered members 31 to 33 are made of a metal-containing material (for example, a metal matrix composite (also called metal matrix composite (MMC))).
  • MMC metal matrix composite
  • Examples of MMC include materials containing Si, SiC and Ti, and materials obtained by impregnating SiC porous bodies with Al and/or Si.
  • a material containing Si, SiC and Ti is referred to as SiSiCTi
  • AlSiC a material obtained by impregnating a porous SiC body with Al
  • SiSiC a material obtained by impregnating a porous SiC body with Si
  • SiSiC a material obtained by impregnating a porous SiC body with Si
  • the MMC used for the cooling base material 30 is preferably AlSiC, SiSiCTi, or the like.
  • the coefficient of linear thermal expansion at 40 to 400° C. is 7.2 ⁇ 10 ⁇ 6 /K for alumina, 7.8 ⁇ 10 ⁇ 6 /K for AlSiC (SiC 75%), and 7.3 for SiSiCTi. ⁇ 10 -6 /K, and AlSiC (85% SiC) is 5.6 ⁇ 10 -6 /K.
  • the second metal joining layer 42 joins the upper surface of the first layered member 31 and the lower surface of the second layered member 32, as shown in FIG. Also, the second metal bonding layer 43 bonds the upper surface of the second layered member 32 and the lower surface of the third layered member 33 .
  • the second metal bonding layers 42 and 43 may be layers made of solder or brazing metal, for example.
  • the second metal bonding layers 42 and 43 are formed by TCB (thermal compression bonding), for example.
  • TCB is a known method in which a metal bonding material is sandwiched between two members to be bonded, and the two members are pressure-bonded while being heated to a temperature below the solidus temperature of the metal bonding material.
  • the second metal bonding layers 42 and 43 are formed with second metal bonding layer internal gas holes 42a and 43a through which the cooling base internal gas passage 36 (circulating portion 36a) penetrates.
  • the first metal joining layer 41 joins the lower surface of the ceramic substrate 20 and the upper surface of the cooling substrate 30 (third layered member 33).
  • a first metal bonding layer internal gas hole 41 a is formed which vertically penetrates the first metal bonding layer 41 and communicates with the ceramic base material internal gas passage 23 .
  • the first metal bonding layer internal gas holes 41 a are provided corresponding to the respective ceramic substrate internal gas passages 23 .
  • the first metal bonding layer 41 is made of Al, an Al--Mg system bonding material, or an Al--Si--Mg system bonding material.
  • the first metal bonding layer 41 may be, for example, a layer made of solder or brazing metal.
  • the first metal bonding layer 41 is made of TCB, for example.
  • the first metal bonding layer 41 preferably has a thickness of 1 mm or less, more preferably 0.5 mm or less.
  • the cooling base material 30 is connected to the RF power supply 60 via the power supply terminal 62 .
  • a high pass filter (HPF) 61 is provided between the RF power supply 60 and the cooling base material 30 .
  • a gas supply source 70 capable of supplying gas is attached to the cooling base internal gas passage 36 of the cooling base 30 .
  • the gas supply source 70 includes the cooling substrate internal gas passage 36 (the flow portion 36a, the second metal bonding layer internal gas holes 42a and 43a, and the distribution portion 36b), the first metal bonding layer internal gas hole 41a, and the ceramic substrate internal gas passage.
  • a heat conducting gas such as He is supplied to the back surface of the wafer W through the passage 23 .
  • a gas supply path 38 (Fig. 3). A portion of the peripheral wall of the gas supply path 38 that is visible when the wafer mounting surface 21a is viewed from above (at least the peripheral wall of the first metal bonding layer internal gas hole 41a and the peripheral wall of the cooling substrate internal gas passage 36). A portion visible when the wafer mounting surface 21a is viewed from above), i.e., a straight line portion extending vertically from the opening of the gas passage 23 in the ceramic base material (for example, portions B and C shown in FIG. 2) is shown in FIG. 3 and 4, it is covered with an insulating film 44.
  • FIG. 3 A portion of the peripheral wall of the gas supply path 38 that is visible when the wafer mounting surface 21a is viewed from above (at least the peripheral wall of the first metal bonding layer internal gas hole 41a and the peripheral wall of the cooling substrate internal gas passage 36). A portion visible when the wafer mounting surface 21a is viewed from above), i.e., a straight line portion extending vertically from the opening of the gas passage 23 in the ceramic base
  • portion D in FIG. 2 is also covered with an insulating film 44 as shown in FIG. That is, the entire peripheral wall of the gas supply path 38 is covered with the insulating film 44 .
  • the linear thermal expansion coefficient of the ceramic material constituting the ceramic base material 20 at 40 to 400 ° C. is X1 [/K], and it is used for the cooling base material 30 (first to third layered members 31 to 33)
  • X2 [/K] be the linear thermal expansion coefficient of MMC
  • X3 [/K] be the linear thermal expansion coefficient of the insulating material forming the insulating film 44 .
  • the absolute value of the difference between X1 and X2, the absolute value of the difference between X2 and X3, and the absolute value of the difference between X3 and X1 are preferably 1.5 ⁇ 10 ⁇ 6 /K or less, It is more preferably 1.0 ⁇ 10 ⁇ 6 /K or less, and even more preferably 0.5 ⁇ 10 ⁇ 6 /K or less.
  • the first to third layered members 31 to 33 are preferably made of SiSiCTi or AlSiC. This is because the thermal expansion coefficient of alumina is approximately the same as that of SiSiCTi and AlSiC.
  • the insulating material forming the insulating film 44 is preferably alumina.
  • an insulating film 45 for example, a sprayed film such as alumina or yttria can be used.
  • FIG. 6 and 7 are manufacturing process diagrams of the wafer mounting table 10.
  • FIG. 6 and 7 show the same cross section as in FIG.
  • a ceramic sintered body 120 which is the base of the ceramic substrate 20, is produced by hot-press firing a compact of ceramic powder (FIG. 6A).
  • the ceramic sintered body 120 incorporates the wafer adsorption electrode 24 .
  • a hole 154a is formed from the lower surface of the ceramic sintered body 120 to the wafer adsorption electrode 24, and a hole 123 that will eventually become the gas passage 23 within the ceramic base material is formed (FIG. 6B).
  • the power supply terminal 52 is inserted into the hole 154a and joined to the wafer attracting electrode 24 (FIG. 6C).
  • the first to third plates 131 to 133 of MMC are produced (Fig. 6D).
  • the first plate 131 is formed with a hole 136a that will eventually become the circulation portion 36a of the gas passage 36 in the cooling base material, and a hole 154b into which the power supply terminal 52 is inserted.
  • the first plate 131 becomes the first layered member 31 (FIG. 6E).
  • the second plate 132 is provided with a hole 134 that will eventually become the coolant flow path 34, a hole 136a that will finally become the circulation portion 36a of the gas passage 36 in the cooling base, and a hole 154c for inserting the power supply terminal 52. to form Thereby, the second plate 132 becomes the second layered member 32 (FIG.
  • the third plate 133 is formed with a hole 136b that will eventually become the distribution portion 36b and a hole 154d into which the power supply terminal 52 is inserted. Thereby, the third plate 133 becomes the third layered member 33 (FIG. 6E).
  • the first to third plates 131 to 133 made of SiSiCTi can be produced, for example, as follows. First, silicon carbide, metal Si, and metal Ti are mixed to prepare a powder mixture. Next, the obtained powder mixture is uniaxially pressed to form a disk-shaped molded body, and the molded body is hot-press sintered in an inert atmosphere to obtain a disk member made of SiSiCTi. .
  • metal bonding materials 141 to 143 are prepared.
  • the metal bonding material 141 is for bonding the lower surface of the ceramic sintered body 120 and the upper surface of the third layered member 33 .
  • the metal bonding material 142 is for bonding the top surface of the first layered member 31 and the bottom surface of the second layered member 32 .
  • the metal bonding material 143 is for bonding the top surface of the second layered member 32 and the bottom surface of the third layered member 33 .
  • the metal bonding material 141 is provided with a through hole 141a (finally serving as the gas hole 41a in the first metal bonding layer) communicating with the hole 123 and the hole 136b, and a through hole 141b communicating with the hole 154a and the hole 154d.
  • the metal bonding material 142 has through holes 142a (which will eventually become the second metal bonding layer internal gas holes 42a) communicating with the holes 136a of the first layered member 31 and the holes 136a of the second layered member 32, and holes.
  • a through hole 142b communicating with 154b and hole 154c is provided.
  • the metal bonding material 143 has a through hole 143a (which will eventually become the second metal bonding layer internal gas hole 43a) communicating with the hole 136a and the hole 136b, and a through hole 143b communicating with the hole 154c and the hole 154d. set aside.
  • a metal bonding material 142 is placed between the upper surface of the first layered member 31 and the lower surface of the second layered member 32, and the upper surface of the second layered member 32 and the third layered member 33 are bonded together.
  • a metal bonding material 143 is arranged between the lower surface of the third layered member 33 and a metal bonding material 141 between the upper surface of the third layered member 33 and the lower surface of the ceramic sintered body 120 .
  • the power supply terminals 52 of the ceramic sintered body 120 are inserted into the holes 154b to 154d of the first to third layered members 31 to 33 and the through holes 142b and 143b of the metal joint materials 142 and 143, respectively.
  • a laminated body 210 is obtained by laminating in order from .
  • a bonded body 110 is obtained (FIG. 7A).
  • the bonded body 110 is formed by bonding the ceramic sintered body 120 to the upper surface of the cooling base material 30 via the first metal bonding layer 41 .
  • the joined body 110 has the gas supply path 38 before the insulating film 44 is formed on the peripheral wall.
  • the cooling base material 30 is formed by bonding a first layered member 31 , a second layered member 32 and a third layered member 33 via second metal bonding layers 42 and 43 .
  • the cooling base material 30 has a coolant channel 34 inside.
  • TCB is performed as follows. That is, the laminate is pressurized and bonded at a temperature below the solidus temperature of the metal bonding material (for example, the temperature obtained by subtracting 20° C. from the solidus temperature and below the solidus temperature), and then returned to room temperature. As a result, the metal bonding material becomes a metal bonding layer.
  • the metal bonding material at this time an Al--Mg system bonding material or an Al--Si--Mg system bonding material can be used.
  • the laminated body is pressed while being heated in a vacuum atmosphere. It is preferable to use a metal bonding material having a thickness of about 100 ⁇ m.
  • an insulating material layer is formed so as to cover the entire peripheral wall of the gas supply path 38 by CVD, sol-gel method, or the like. Then, the joined body 110 is heat-treated. As a result, the insulating material layer is baked to become the insulating film 44, and the entire peripheral wall of the gas supply path 38 is covered with the insulating film 44 (FIG. 7B).
  • the outer circumference of the ceramic sintered body 120 is cut to form a step.
  • a mask for forming the small projections 22 is attached to the upper surface of the ceramic sintered body 120, blasting is performed by injecting blasting media, and then the mask is removed.
  • a small protrusion 22 is formed by blasting.
  • the ceramic sintered body 120 becomes the ceramic substrate 20 having the central portion 21, the wafer mounting surface 21a, the outer peripheral portion 25, and the small protrusions 22 (FIG. 7C).
  • the side surface of the outer peripheral portion 25 of the ceramic substrate 20, the outer periphery of the first metal bonding layer 41, the side surface of the cooling substrate 30 (the side surfaces of the first to third layered members 31 to 33 and the second metal bonding layers 42 and 43 ) and a portion of the upper surface of the cooling base material 30 that is not covered with the first metal bonding layer 41 is thermally sprayed using ceramic powder to form an insulating film 45 (FIG. 7D).
  • the insulating tube 53 is inserted into the hole 54 formed by communicating the holes 154b to 154d, the through hole 142b, the through hole 143b, and the through hole 141b, and the lower surface of the cooling substrate 30 and the power supply terminal 62 are joined. to obtain the wafer mounting table 10 (FIG. 7D).
  • the wafer mounting table 10 is fixed to a chamber installation plate (not shown).
  • a shower head is arranged on the ceiling surface of the chamber to discharge the process gas into the chamber from a large number of gas ejection holes.
  • a focus ring is mounted on the FR mounting surface 25a of the wafer mounting table 10, and a disk-shaped wafer W is mounted on the wafer mounting surface 21a.
  • This focus ring has a step along the inner circumference of the upper end so as not to interfere with the wafer W.
  • a DC current from the wafer chucking DC power supply 50 is applied to the wafer chucking electrode 24 to chuck the wafer W onto the wafer mounting surface 21a.
  • a gas for example, a heat conducting gas such as helium
  • the inside of the chamber is set to a predetermined vacuum atmosphere (or reduced pressure atmosphere), and the RF voltage from the RF power source 60 is applied to the cooling substrate 30 while supplying the process gas from the shower head.
  • plasma is generated between the wafer W and the showerhead.
  • the plasma is used to subject the wafer W to CVD or etching.
  • the focus ring is also worn out as the wafer W is processed with plasma. However, since the focus ring is thicker than the wafer W, the focus ring is replaced after a plurality of wafers W are processed.
  • the wafer mounting surface 21a of the peripheral wall of the first metal bonding layer internal gas hole 41a and the peripheral wall of the cooling substrate internal gas passage 36 is viewed from above.
  • a part that sometimes enters the field of view is covered with an insulating film 44 . Therefore, it is possible to prevent particles containing metal from being generated from such portions, and to prevent discharge from occurring in these portions when plasma is generated above the wafer mounting surface 21a. As a result, the corrosion resistance of the gas supply passage is improved.
  • X1 and X2 are 1.5 ⁇ 10 ⁇ 6 /K or less.
  • the first metal bonding layer 41 is less likely to deform due to the difference in thermal expansion between the ceramic base 20 and the cooling base 30 when the wafer mounting table 10 is manufactured or used, and the insulating film 44 may crack or peel off. can be prevented. Therefore, the corrosion resistance of the insulating film 44 can be maintained for a long period of time.
  • the linear thermal expansion coefficient of the insulating material forming the insulating film 44 at 40 to 400° C. is X3
  • the difference between X2 and X3 and the difference between X3 and X1 is less than or equal to 1.5 ⁇ 10 ⁇ 6 /K. Therefore, the corrosion resistance of the insulating film 44 can be maintained for a long period of time.
  • a plurality of the ceramic-substrate gas passages 23 are provided, and the first metal bonding layer-internal gas holes 41a are provided corresponding to the plurality of the ceramic-substrate gas passages 23, respectively.
  • the cooling base internal gas passage 36 extends from the gas introduction port 35 to a predetermined position above the cooling medium flow path 34 in the cooling base 30, and then divided into a plurality of distribution portions 36b at the predetermined position. Each of the portions 36b communicates with the ceramic base material internal gas passage 23 via the first metal bonding layer internal gas hole 41a. Therefore, gas can be distributed to a plurality of gas passages 23 in the ceramic base material with respect to one gas introduction port 35 .
  • cooling base internal gas passage 36 is divided into a plurality of distribution portions 36b at predetermined positions above the coolant flow paths 34 in the cooling base 30, wall portions partitioning between the coolant flow paths 34 Intersects 39 at one point. Therefore, compared to the case where the cooling-substrate internal gas passage 36 intersects with the wall portion 39 at a plurality of locations, the degree of freedom in designing the coolant passage 34 is increased, and heat uniformity can be easily improved.
  • the entire peripheral wall of the gas supply path 38 is covered with an insulating film 44. Therefore, not only the portion of the peripheral wall of the gas supply path 38 which is visible when the wafer mounting surface 21a is viewed from above, but also the other portions are covered with the insulating film 44, so that the corrosion resistance is further improved.
  • the cooling base material 30 is formed by bonding the first to third layered members 31 to 33 via the second metal bonding layers 42 and 43.
  • 43 has second metal bonding layer inner gas holes 42a and 43a through which the cooling substrate inner gas passage 36 penetrates, and the peripheral walls of the second metal bonding layer inner gas holes 42a and 43a are covered with an insulating film 44. It is Therefore, when the first to third layered members 31 to 33 are bonded via the second metal bonding layers 42 and 43, the gas holes 42a and 43a in the second metal bonding layers are also covered with the insulating film 44. Therefore, corrosion resistance is further improved.
  • the thickness of the first metal bonding layer 41 is 1 mm or less. Therefore, the deformation of the first metal bonding layer 41 is easily suppressed by the ceramic base material 20 and the cooling base material 30, and the corrosion resistance of the insulating film 44 can be maintained for a longer period of time.
  • one gas introduction port 35 is provided on the lower surface of the cooling base material 30, and one gas supply path 38 corresponding to the gas introduction port 35 is provided, but the present invention is not limited to this.
  • a plurality of gas introduction ports 35 may be provided on the lower surface of the cooling substrate 30 , and a gas supply path 38 may be provided for each of the gas introduction ports 35 .
  • the cooling base material 30 joins the first to third layered members 31 to 33 via the second metal joining layers 42 and 43, but is not limited to this.
  • two layered members may be bonded via the second metal bonding layer, or four or more layered members may be bonded via the second metal bonding layer.
  • the ceramic sintered body 120 of FIG. 6A was produced by hot-press firing a compact of ceramic powder.
  • it may be produced by a mold casting method, or may be produced by compacting ceramic powder.
  • one of the distribution portions 36b does not have a portion extending in the lateral direction (horizontal direction) from the circulation portion 36a, and extends vertically, and then the first metal Although it communicates with the ceramic base material internal gas passage 23 via the bonding layer internal gas hole 41a, it is not limited to this.
  • all of the distribution portions 36b do not have a portion extending vertically from the circulation portion 36a, but extend in the horizontal direction, and then the gas passages 23 in the ceramic base material through the first metal bonding layer gas holes 41a. may be communicated with.
  • the present invention is not limited to this. For example, if a portion of the peripheral wall of the gas supply path 38 that is visible when the wafer mounting surface 21a is viewed from above is covered with the insulating film 44, a portion that is not visible is covered with the insulating film 44. It doesn't have to be.
  • the ceramic substrate 20 may incorporate RF electrodes or heater electrodes. Further, the wafer mounting table 10 may be formed with lift pin holes through which lift pins for lifting the wafer W from the wafer mounting surface 21a can be inserted.
  • the present invention can be used, for example, in an apparatus that plasma-processes wafers.
  • Wafer mounting table 20 Ceramic base material 21 Center part 21a Wafer mounting surface 22 Small protrusion 23 Gas passage in ceramic base material 24 Wafer adsorption electrode 25 Peripheral part 25a Focus ring mounting surface 30 Cooling substrate 31 First layered member 32 Second layered member 33 Third layered member 34 Refrigerant channel 35 Gas introduction port 36 Gas passage in cooling substrate 36a Distribution part 36b Distribution part 38 Gas Supply path 39 Wall portion 41 First metal bonding layer 41a Gas hole in first metal bonding layer 42 Second metal bonding layer 42a Gas hole in second metal bonding layer 43 Second metal bonding layer 43a Second 2 gas hole in metal bonding layer, 44 insulation film, 45 insulation film, 50 DC power supply for wafer adsorption, 52 power supply terminal, 53 insulation tube, 54 hole, 60 RF power supply, 61 high pass filter (HPF), 62 power supply terminal, 70 gas supply source, 110 joined body, 120 ceramic sintered body, 123 hole, 131 first plate, 132 second plate, 133 third plate, 134 hole, 136a hole, 136b hole, 141

Abstract

ウエハ載置台10は、セラミック基材20と、金属マトリックス複合材料の冷却基材30と、セラミック基材20と冷却基材30とを接合する第1金属接合層41とを備える。ウエハ載置台10は、セラミック基材内ガス通路23、第1金属接合層内ガス穴41a及び冷却基材内ガス通路36によって構成されるガス供給路38において、少なくとも第1金属接合層内ガス穴41aの周壁及び冷却基材内ガス通路36の周壁のうちウエハ載置面21aを上から見たときに視野に入る部分は、絶縁膜44で覆われている。40~400℃における、セラミック基材20を構成するセラミック材料の線熱膨張係数をX1[/K]、金属マトリックス複合材料の線熱膨張係数をX2[/K]としたとき、X1とX2との差の絶対値は、1.5×10-6/K以下である。

Description

ウエハ載置台
 本発明は、ウエハ載置台に関する。
 従来、静電電極を埋設したアルミナなどのセラミック基材と、アルミニウムなどの金属からなる冷却基材とを、樹脂層を介して接合したウエハ載置台が知られている(例えば特許文献1参照)。こうしたウエハ載置台によれば、樹脂層によってセラミック基材と冷却基材との熱膨張差の影響を緩和することができる。樹脂層の代わりに金属接合層を用いてセラミック基材と冷媒流路を備えた冷却機材とを接合したウエハ載置台も知られている(例えば特許文献2,3)。金属接合層は、樹脂層に比べて熱伝導率が高いため、ハイパワープラズマでウエハを処理する場合に要求される抜熱能力を実現することができる。その一方、金属接合層は、樹脂層に比べてヤング率が大きく応力緩和性が低いため、セラミック基材と冷却基材との熱膨張差の影響を緩和することがほとんどできない。そのため、特許文献2,3では、冷却基材の材料として、セラミック基材と熱膨張係数差の小さい金属マトリックス複合材料(MMC)を用いている。こうしたウエハ載置台では、ウエハ載置面に設けられた複数の小突起に支持されたウエハからの抜熱を高めるために、ウエハ載置台の下面からウエハ載置面に至るガス供給路を介して、ウエハの裏面に熱伝導ガスを供給することがある。
特開平4-287344号公報 特許第5666748号公報 特許第5666749号公報
 しかしながら、ガス供給路の周壁に金属接合層や冷却基材が露出していると、その露出部分で金属を含むパーティクルが発生してウエハを汚染したり、プラズマを発生させたときにその露出部分で放電が起きたりするおそれがあった。そのため、ガス供給路の耐食性を向上させることが望まれていた。また、ガス供給路の耐食性を長期にわたって維持することも望まれていた。
 本発明はこのような課題を解決するためになされたものであり、セラミック基材と冷却基材とを金属接合層で接合したウエハ載置台において、ウエハ載置面にガスを供給するガス供給路内の耐食性を向上させると共にその耐食性を長期にわたって維持することを主目的とする。
[1]本発明のウエハ載置台は、
 上面にウエハ載置面を有し、電極を内蔵するセラミック基材と、
 内部に冷媒流路が形成された金属含有材料の冷却基材と、
 前記セラミック基材と下面と前記冷却基材の上面とを接合する第1金属接合層と、
 前記セラミック基材を上下方向に貫通するセラミック基材内ガス通路と、
 前記第1金属接合層を上下方向に貫通して前記セラミック基材内ガス通路に連通する第1金属接合層内ガス穴と、
 前記冷却基材の下面に設けられたガス導入口から前記第1金属接合層内ガス穴を介して前記セラミック基材内ガス通路に連通する冷却基材内ガス通路と、
 前記セラミック基材内ガス通路、前記第1金属接合層内ガス穴及び前記冷却基材内ガス通路によって構成されたガス供給路と、
 を備えたウエハ載置台であって、
 前記ガス供給路において、少なくとも、前記第1金属接合層内ガス穴の周壁及び前記冷却基材内ガス通路の周壁のうち前記ウエハ載置面を上から見たときに視野に入る部分は、絶縁膜で覆われており、
 40~400℃における、前記セラミック基材を構成するセラミック材料の線熱膨張係数をX1[/K]とし、前記金属含有材料の線熱膨張係数をX2[/K]としたとき、X1とX2との差の絶対値は、1.5×10-6/K以下である、
 ものである。
 本発明のウエハ載置台では、ガス供給路において、少なくとも、第1金属接合層内ガス穴の周壁及び冷却基材内ガス通路の周壁のウエハ載置面を上から見たときに視野に入る部分は、絶縁膜で覆われている。そのため、こうした部分から金属を含むパーティクルが発生するのを防止したり、ウエハ載置面の上方でプラズマを発生させたときにこれらの部分で放電が起きるのを防止したりすることができる。その結果、ガス供給路の耐食性が向上する。また、40~400℃における、セラミック基材を構成するセラミック材料の線熱膨張係数をX1[/K]とし、金属含有材料の線熱膨張係数をX2[/K]としたとき、X1とX2との差の絶対値は、1.5×10-6/K以下である。そのため、ウエハ載置台の製造時や使用時に、セラミック基材と冷却基材との熱膨張差によって第1金属接合層が変形しにくくなるため、絶縁膜が割れたり剥がれたりするのを防止することができる。したがって、絶縁膜の耐食性を長期間にわたって維持することができる。なお、本明細書では、40℃と400℃の長さを測定して求めた線熱膨張係数を、40~400℃における線熱膨張係数と称する。
 なお、本明細書では、上下、左右、前後などを用いて本発明を説明することがあるが、上下、左右、前後は、相対的な位置関係に過ぎない。そのため、ウエハ載置台が向きを変えた場合には上下が左右になったり左右が上下になったりすることがあるが、そうした場合も本発明の技術的範囲に含まれる。
[2]上述したウエハ載置台(前記[1]に記載のウエハ載置台)において、前記絶縁膜を構成する材料の線熱膨張係数をX3[/K]としたとき、X1とX2との差、X2とX3との差及びX3とX1との差の各絶対値は、1.5×10-6/K以下であってもよい。こうすれば、絶縁膜の耐食性をより長期間にわたって維持することができる。
[3]上述したウエハ載置台(前記[1]又は[2]に記載のウエハ載置台)において、前記セラミック基材内ガス通路は、複数設けられていてもよく、前記第1金属接合層内ガス穴は、複数の前記セラミック基材内ガス通路のそれぞれに対応して設けられていてもよく、前記冷却基材内ガス通路は、前記ガス導入口から前記冷却基材のうち前記冷媒流路よりも上側の所定位置まで延びたあと前記所定位置で複数の分配部に分かれ、前記分配部のそれぞれが前記第1金属接合層内ガス穴を介して前記セラミック基材内ガス通路に連通していてもよい。こうすれば、1つのガス導入口に対して複数のセラミック基材内ガス通路へガスを分配することができる。また、冷却基材内ガス通路は、冷却基材のうち冷媒流路よりも上側の所定位置で複数の分配部に分かれているため、冷媒流路同士の間を仕切る壁部と1箇所で交差する。そのため、冷却基材内ガス通路が壁部と複数箇所で交差する場合に比べて、冷媒流路の設計の自由度が高くなり、均熱性を向上させやすくなる。
[4]上述したウエハ載置台(前記[1]~[3]のいずれかに記載のウエハ載置台)において、前記ガス供給路の周壁全体は、前記絶縁膜で覆われていてもよい。こうすれば、ガス供給路の周壁のうちウエハ載置面を上から見たときに視野に入る部分だけでなくそれ以外の部分も絶縁膜で覆われているため、耐食性がより向上する。
[5]上述したウエハ載置台(前記[1]~[4]のいずれかに記載のウエハ載置台)において、前記冷却基材は、複数の層状部材を第2金属接合層を介して接合したものであってもよく、前記第2金属接合層は、前記冷却基材内ガス通路が貫通する第2金属接合層内ガス穴を有していてもよく、前記第2金属接合層内ガス穴の周壁は、前記絶縁膜で覆われていてもよい。こうすれば、冷却基材が複数の層状部材を第2金属接合を介して接合したものである場合において、第2金属接合層内ガス穴も絶縁膜で覆われているため、耐食性がより向上する。
[6]上述したウエハ載置台(前記[1]~[5]のいずれかに記載のウエハ載置台)において、前記第1金属接合層は、厚さが1mm以下であってもよい。こうすれば、第1金属接合層の変形がセラミック基材と冷却基材とによって抑制され易いため絶縁膜の耐食性をより十分期間にわたって維持することができる。
[7]上述したウエハ載置台(前記[1]~[6]のいずれかに記載のウエハ載置台)において、前記金属含有材料は金属マトリックス複合材料であってもよい。
ウエハ載置台10の平面図。 図1のA-A断面図。 図2のB部分の拡大図。 図2のC部分の拡大図。 図2のD部分の拡大図。 ウエハ載置台10の製造工程図。 ウエハ載置台10の製造工程図。
 本発明の好適な実施形態を、図面を参照しながら以下に説明する。図1はウエハ載置台10の平面図、図2は図1のA-A断面図、図3は図2のB部分の拡大図、図4は図2のC部分の拡大図、図5は図2のD部分の拡大図である。本明細書において数値範囲を示す「~」は、その前後に記載される数値を下限値及び上限値として含む意味として使用される。
 ウエハ載置台10は、ウエハWにプラズマを利用してCVDやエッチングなどを行うために用いられるものであり、半導体プロセス用のチャンバの内部に設けられた設置板に固定されている。ウエハ載置台10は、セラミック基材20と、冷却基材30と、第1金属接合層41を備えている。
 セラミック基材20は、円形のウエハ載置面21aを有する中央部21の外周に、環状のフォーカスリング載置面25aを有する外周部25を備えている。以下、フォーカスリングは「FR」と略すことがある。ウエハ載置面21aには、ウエハWと当接可能な複数の小突起22が設けられている。また、セラミック基材20には、セラミック基材20を上下方向に貫通して、小突起22同士の間に開口する複数(本実施形態では12)のセラミック基材内ガス通路23(ガス供給路38の一部)が形成されている。ウエハ載置面21aには、ウエハWが載置され、FR載置面25aには、フォーカスリングが載置される。セラミック基材20は、アルミナ、窒化アルミニウムなどに代表されるセラミック材料で形成されている。FR載置面25aは、ウエハ載置面21aに対して一段低くなっている。
 セラミック基材20の中央部21は、ウエハ載置面21aに近い側に、ウエハ吸着用電極24を内蔵している。ウエハ吸着用電極24は、例えばW、Mo、WC、MoCなどを含有する材料によって形成されている。ウエハ吸着用電極24は、円板状又はメッシュ状の単極型の静電電極である。セラミック基材20のうちウエハ吸着用電極24よりも上側の層は誘電体層として機能する。ウエハ吸着用電極24には、ウエハ吸着用直流電源50が給電端子52を介して接続されている。給電端子52は、冷却基材30及び第1金属接合層41を上下方向に貫通する貫通穴に配置された絶縁管53を通過して、セラミック基材20の下面からウエハ吸着用電極24に至るように設けられている。ウエハ吸着用直流電源50とウエハ吸着用電極24との間には、ローパスフィルタ(LPF)51が設けられている。
 冷却基材30は、内部に冷媒が循環可能な冷媒流路34と、冷却基材内ガス通路36とを備えている。冷媒流路34は、図示しない冷媒供給路及び冷媒排出路に接続されており、冷媒排出路から排出された冷媒は温度調整されたあと再び冷媒供給路に戻される。冷却基材内ガス通路36は、冷却基材30の下面に設けられたガス導入口35から第1金属接合層内ガス穴41aを介してセラミック基材内ガス通路23に連通している。冷却基材内ガス通路36は、流通部36aと分配部36bとを備える。流通部36aは、ガス導入口35から冷媒流路34よりも上側の所定位置まで上下方向に延びた部分である。流通部36aは、冷媒流路34同士の間を仕切る壁部39と1箇所で交差している。それぞれの分配部36bは、冷媒流路34よりも上側の所定位置で流通部36aから複数に分かれている部分である。分配部36bは、第1金属接合層41に形成された第1金属接合層内ガス穴41aを介して、セラミック基材内ガス通路23に連通している。
 冷却基材30は、円板状の第1~第3層状部材31~33が第2金属接合層42,43を介して接合されたものである。第1~第3層状部材31~33は、金属含有材料(例えば、金属マトリックス複合材料(メタル・マトリックス・コンポジット(MMC)ともいう))で作製されたものである。MMCとしては、Si,SiC及びTiを含む材料やSiC多孔質体にAl及び/又はSiを含浸させた材料などが挙げられる。Si,SiC及びTiを含む材料をSiSiCTiといい、SiC多孔質体にAlを含浸させた材料をAlSiCといい、SiC多孔質体にSiを含浸させた材料をSiSiCという。セラミック基材20がアルミナ基材の場合、冷却基材30に用いるMMCとしてはAlSiCやSiSiCTiなどが好ましい。なお、40~400℃における線熱膨張係数は、アルミナが7.2×10-6/Kであり、AlSiC(SiC75%)が7.8×10-6/Kであり、SiSiCTiが7.3×10-6/Kであり、AlSiC(SiC85%)が5.6×10-6/Kである。
 第2金属接合層42は、図2に示すように、第1層状部材31の上面と第2層状部材32の下面とを接合する。また、第2金属接合層43は、第2層状部材32の上面と第3層状部材33の下面とを接合する。第2金属接合層42,43は、例えば、はんだや金属ロウ材で形成された層であってもよい。第2金属接合層42、43は、例えばTCB(Thermal compression bonding)により形成される。TCBとは、接合対象の2つの部材の間に金属接合材を挟み込み、金属接合材の固相線温度以下の温度に加熱した状態で2つの部材を加圧接合する公知の方法をいう。第2金属接合層42,43には、冷却基材内ガス通路36(流通部36a)が貫通する第2金属接合層内ガス穴42a,43aが形成されている。
 第1金属接合層41は、セラミック基材20の下面と冷却基材30(第3層状部材33)の上面とを接合する。第1金属接合層41には、第1金属接合層41を上下方向に貫通してセラミック基材内ガス通路23に連通する第1金属接合層内ガス穴41aが形成されている。第1金属接合層内ガス穴41aは、それぞれのセラミック基材内ガス通路23に対応して設けられている。第1金属接合層41は、AlやAl-Mg系接合材やAl-Si-Mg系接合材により構成されている。第1金属接合層41は、例えば、はんだや金属ロウ材で形成された層であってもよい。第1金属接合層41は、例えばTCBにより形成される。第1金属接合層41は、厚さが1mm以下であることが好ましく、0.5mm以下であることがより好ましい。
 冷却基材30は、給電端子62を介してRF電源60に接続されている。RF電源60と冷却基材30との間には、ハイパスフィルタ(HPF)61が設けられている。
 冷却基材30の冷却基材内ガス通路36には、ガスを供給可能なガス供給源70が取付けられている。ガス供給源70は、冷却基材内ガス通路36(流通部36a、第2金属接合層内ガス穴42a,43a及び分配部36b)、第1金属接合層内ガス穴41a及びセラミック基材内ガス通路23を介して、ウエハWの裏面にHeなどの熱伝導ガスを供給する。
 セラミック基材内ガス通路23、第1金属接合層内ガス穴41a及び冷却基材内ガス通路36によって構成され、ウエハWの裏面までガスの供給をするための経路を、ガス供給路38(図3参照)と称する。ガス供給路38の周壁のうちウエハ載置面21aを上から見たときに視野に入る部分(少なくとも、第1金属接合層内ガス穴41aの周壁及び冷却基材内ガス通路36の周壁のうちウエハ載置面21aを上から見たときに視野に入る部分)、すなわちセラミック基材内ガス通路23の開口から上下方向に延びる直線部分(例えば図2に示すB部分及びC部分)は、図3,4に示すように、絶縁膜44で覆われている。本実施形態では、更に、ガス供給路38の周壁のうちウエハ載置面21aを上から見たときに視野に入らない部分、すなわち冷却基材30の内部で横方向(水平方向)に延びる部分(例えば、図2のD部分)も、図5に示すように、絶縁膜44で覆われている。すなわち、ガス供給路38の周壁全体は、絶縁膜44で覆われている。
 ここで、40~400℃における、セラミック基材20を構成するセラミック材料の線熱膨張係数をX1[/K]とし、冷却基材30(第1~第3層状部材31~33)に使用するMMCの線熱膨張係数をX2[/K]とし、絶縁膜44を構成する絶縁材料の線熱膨張係数をX3[/K]とする。このとき、X1とX2との差の絶対値、X2とX3との差の絶対値及びX3とX1との差の絶対値は、1.5×10-6/K以下であることが好ましく、1.0×10-6/K以下であることがより好ましく、0.5×10-6/K以下であることが更に好ましい。セラミック基材20がアルミナ製の場合、第1~第3層状部材31~33は、SiSiCTiかAlSiC製であることが好ましい。アルミナの熱膨張係数とSiSiCTiやAlSiCの熱膨張係数とは、概ね同じだからである。また、その場合、絶縁膜44を構成する絶縁材料は、アルミナであることが好ましい。
 セラミック基材20の外周部25の側面、第1金属接合層41の外周、冷却基材30の側面(第1~第3層状部材31~33及び第2金属接合層42,43の側面)及び冷却基材30(第3層状部材33)の上面のうち第1金属接合層41で覆われていない部分は、絶縁膜45で被覆されている。絶縁膜45としては、例えばアルミナやイットリアなどの溶射膜が挙げられる。
 次に、ウエハ載置台10の製造例を、図6及び図7を用いて説明する。図6及び図7はウエハ載置台10の製造工程図である。なお、図6及び図7では図2と同じ断面を図示している。まず、セラミック基材20の元となるセラミック焼結体120をセラミック粉末の成形体をホットプレス焼成することにより作製する(図6A)。セラミック焼結体120は、ウエハ吸着用電極24を内蔵している。次にセラミック焼結体120の下面からウエハ吸着用電極24まで穴154aを空けると共に、最終的にセラミック基材内ガス通路23となる穴123を形成する(図6B)。そして、穴154aに給電端子52を挿入しウエハ吸着用電極24と接合する(図6C)。
 これと並行して、MMCの第1~第3プレート131~133を作製する(図6D)。次に、第1プレート131に、最終的に冷却基材内ガス通路36の流通部36aとなる穴136a及び給電端子52を挿入するための穴154bを形成する。これにより、第1プレート131は第1層状部材31となる(図6E)。次に、第2プレート132に、最終的に冷媒流路34となる穴134、最終的に冷却基材内ガス通路36の流通部36aとなる穴136a及び給電端子52を挿入するための穴154cを形成する。これにより、第2プレート132は、第2層状部材32となる(図6E)。そして、第3プレート133に、最終的に分配部36bとなる穴136b及び給電端子52を挿入するための穴154dを形成する。これにより、第3プレート133は、第3層状部材33となる(図6E)。
 SiSiCTi製の第1~第3プレート131~133は、例えば以下のように作製することができる。まず、炭化珪素と金属Siと金属Tiとを混合して粉体混合物を作製する。次に、得られた粉体混合物を一軸加圧成形により円板状の成形体を作製し、その成形体を不活性雰囲気下でホットプレス焼結させることにより、SiSiCTi製の円板部材を得る。
 続いて、金属接合材141~143を用意する。金属接合材141は、セラミック焼結体120の下面と第3層状部材33の上面とを接合するためのものである。金属接合材142は、第1層状部材31の上面と第2層状部材32の下面とを接合するためのものである。金属接合材143は、第2層状部材32の上面と第3層状部材33の下面とを接合するためのものである。金属接合材141には、穴123と穴136bとに連通する貫通穴141a(最終的に第1金属接合層内ガス穴41aとなる)や穴154aと穴154dとに連通する貫通穴141bを設けておく。金属接合材142には、第1層状部材31の穴136aと第2層状部材32の穴136aとに連通する貫通穴142a(最終的には第2金属接合層内ガス穴42aとなる)や穴154bと穴154cとに連通する貫通穴142bを設けておく。金属接合材143には、穴136aと穴136bとに連通する貫通穴143a(最終的には第2金属接合層内ガス穴43aとなる)や穴154cと穴154dとに連通する貫通穴143bを設けておく。
 続いて、図6Fに示すように、第1層状部材31の上面と第2層状部材32の下面との間に金属接合材142を配置し、第2層状部材32の上面と第3層状部材33の下面との間に金属接合材143を配置し、第3層状部材33の上面とセラミック焼結体120の下面との間に金属接合材141を配置する。セラミック焼結体120の給電端子52を第1~第3層状部材31~33の穴154b~154dに挿入すると共に金属接合材142,143の貫通穴142b,143bに挿入し、セラミック焼結体120を第3層状部材33の上面に配置された金属接合材141の上にのせる。これにより、第1層状部材31と、金属接合材142と、第2層状部材32と、金属接合材143と、第3層状部材33と、金属接合材141と、セラミック焼結体120とを下から順に積層した積層体210を得る。
 次に、この積層体210を加熱しながら加圧することにより(TCB接合)、接合体110を得る(図7A)。接合体110は、冷却基材30の上面に、第1金属接合層41を介して、セラミック焼結体120が接合されたものである。接合体110は、周壁に絶縁膜44が形成される前のガス供給路38を有する。冷却基材30は、第1層状部材31と第2層状部材32と第3層状部材33とが第2金属接合層42,43を介して接合されたものである。冷却基材30は、内部に冷媒流路34を有する。
 TCBは、例えば以下のように行われる。すなわち、金属接合材の固相線温度以下(例えば、固相線温度から20℃引いた温度以上固相線温度以下)の温度で積層体を加圧して接合し、その後室温に戻す。これにより、金属接合材は金属接合層になる。このときの金属接合材としては、Al-Mg系接合材やAl-Si-Mg系接合材を使用することができる。例えば、Al-Si-Mg系接合材を用いてTCBを行う場合、真空雰囲気下で加熱した状態で積層体を加圧する。金属接合材は、厚みが100μm前後のものを用いるのが好ましい。
 次に、CVDやゾルゲル法等により、ガス供給路38の周壁全体を覆うように絶縁材料層を形成する。そして、接合体110を熱処理する。これにより、絶縁材料層は焼成されて絶縁膜44となり、ガス供給路38の周壁全体が絶縁膜44で覆われる(図7B)。
 次に、セラミック焼結体120の外周を切削して段差を形成する。そして、セラミック焼結体120の上面に、小突起22を形成するためのマスクを貼り付け、ブラストメディアを噴射してブラスト加工を行い、その後マスクを外す。ブラスト加工により小突起22が形成される。これにより、セラミック焼結体120は、中央部21、ウエハ載置面21a、外周部25及び小突起22を備えたセラミック基材20となる(図7C)。
 そして、セラミック基材20の外周部25の側面、第1金属接合層41の外周、冷却基材30の側面(第1~第3層状部材31~33及び第2金属接合層42,43の側面)及び冷却基材30の上面のうち第1金属接合層41で覆われていない部分に、セラミック粉末を用いて溶射することにより絶縁膜45を形成する(図7D)。そして、穴154b~154d、貫通穴142b、貫通穴143b及び貫通穴141bが連通して形成された穴54に絶縁管53を挿入すると共に、冷却基材30の下面と給電端子62とを接合して、ウエハ載置台10を得る(図7D)。
 次に、ウエハ載置台10の使用例について説明する。ウエハ載置台10は図示しないチャンバの設置板に固定されている。チャンバの天井面には、プロセスガスを多数のガス噴出孔からチャンバの内部へ放出するシャワーヘッドが配置されている。
 ウエハ載置台10のFR載置面25aには、フォーカスリングが載置され、ウエハ載置面21aには、円板状のウエハWが載置される。このフォーカスリングは、ウエハWと干渉しないように上端部の内周に沿って段差を備えている。この状態で、ウエハ吸着用電極24にウエハ吸着用直流電源50の直流電流を印加してウエハWをウエハ載置面21aに吸着させる。また、ガス供給源70に接続されたガス供給路38からウエハWの裏面にガス(例えばヘリウム等の熱伝導ガス)を供給している。そして、チャンバの内部を所定の真空雰囲気(又は減圧雰囲気)になるように設定し、シャワーヘッドからプロセスガスを供給しながら冷却基材30にRF電源60からのRF電圧を印加する。すると、ウエハWとシャワーヘッドとの間にプラズマが発生する。そして、そのプラズマを利用してウエハWにCVDを施したり、エッチングを施したりする。なお、ウエハWがプラズマ処理されるのに伴ってフォーカスリングも消耗するが、フォーカスリングはウエハWに比べて厚いため、フォーカスリングの交換は複数枚のウエハWを処理したあと行われる。
 以上説明したウエハ載置台10では、ガス供給路38において、少なくとも、第1金属接合層内ガス穴41aの周壁及び冷却基材内ガス通路36の周壁のうちウエハ載置面21aを上から見たときに視野に入る部分は、絶縁膜44で覆われている。そのため、こうした部分から金属を含むパーティクルが発生するのを防止したり、ウエハ載置面21aの上方でプラズマを発生させたときにこれらの部分で放電が起きるのを防止したりすることができる。その結果、ガス供給路の耐食性が向上する。また、40~400℃における、セラミック基材を構成するセラミック材料の線熱膨張係数をX1[/K]とし、金属含有材料の線熱膨張係数をX2[/K]としたとき、X1とX2との差の絶対値は、1.5×10-6/K以下である。そのため、ウエハ載置台10の製造時や使用時に、セラミック基材20と冷却基材30との熱膨張差によって第1金属接合層41が変形しにくくなるため、絶縁膜44が割れたり剥がれたりするのを防止することができる。したがって、絶縁膜44の耐食性を長期間にわたって維持することができる。
 また、ウエハ載置台10では、40~400℃における、絶縁膜44を構成する絶縁材料の線熱膨張係数をX3としたとき、X1とX2との差、X2とX3との差及びX3とX1との差の各絶対値は、1.5×10-6/K以下である。したがって、絶縁膜44の耐食性を長期間にわたって維持することができる。
 更に、ウエハ載置台10では、セラミック基材内ガス通路23は、複数設けられており、第1金属接合層内ガス穴41aは、複数のセラミック基材内ガス通路23のそれぞれに対応して設けられており、冷却基材内ガス通路36は、ガス導入口35から冷却基材30のうち冷媒流路34よりも上側の所定位置まで延びたあと所定位置で複数の分配部36bに分かれ、分配部36bのそれぞれが第1金属接合層内ガス穴41aを介してセラミック基材内ガス通路23に連通している。そのため、1つのガス導入口35に対して複数のセラミック基材内ガス通路23へガスを分配することができる。また、冷却基材内ガス通路36は、冷却基材30のうち冷媒流路34よりも上側の所定位置で複数の分配部36bに分かれているため、冷媒流路34同士の間を仕切る壁部39と1箇所で交差する。そのため、冷却基材内ガス通路36が壁部39と複数箇所で交差する場合に比べて、冷媒流路34の設計の自由度が高くなり、均熱性を向上させやすくなる。
 そして、ウエハ載置台10では、ガス供給路38の周壁全体は、絶縁膜44で覆われている。そのため、ガス供給路38の周壁のうちウエハ載置面21aを上から見たときに視野に入る部分だけでなくそれ以外の部分も絶縁膜44で覆われているため、耐食性がより向上する。
 更にまた、ウエハ載置台10では、冷却基材30は、第1~第3層状部材31~33を第2金属接合層42,43を介して接合したものであり、第2金属接合層42,43は、冷却基材内ガス通路36が貫通する第2金属接合層内ガス穴42a,43aを有しており、第2金属接合層内ガス穴42a,43aの周壁は、絶縁膜44で覆われている。したがって、第1~第3層状部材31~33を第2金属接合層42,43を介して接合したものである場合において、第2金属接合層内ガス穴42a,43aも絶縁膜44で覆われているため、耐食性がより向上する。
 そしてまた、ウエハ載置台10では、第1金属接合層41の厚みは1mm以下である。そのため、第1金属接合層41の変形がセラミック基材20と冷却基材30とによって抑制され易く、絶縁膜44の耐食性をより長期間にわたって維持することができる。
 なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。
 例えば、上述した実施形態では、ガス導入口35は、冷却基材30の下面に1つ設けられ、ガス導入口35に対応するガス供給路38が1つ設けられていたが、これに限定されない。例えば、ガス導入口35は、冷却基材30の下面に複数設けられており、ガス導入口35のそれぞれに対して、ガス供給路38が設けられていてもよい。
 上述した実施形態では、冷却基材30は第1~第3層状部材31~33を第2金属接合層42,43を介して接合するものとしたが、これに限定されない。例えば、2つの層状部材を第2金属接合層を介して接合したものとしてもよいし、4つ以上の層状部材を第2金属接合層を介して接合したものとしてもよい。
 上述した実施形態では、図6Aのセラミック焼結体120はセラミック粉末の成形体をホットプレス焼成することにより作製したが、そのときの成形体は、テープ成形体を複数枚積層して作製してもよいし、モールドキャスト法によって作製してもよいし、セラミック粉末を押し固めることによって作製してもよい。
 上述した実施形態では、図2に示すように分配部36bのうちの1つは、流通部36aから横方向(水平方向)に延びる部分を有さず、上下方向に延びたあと、第1金属接合層内ガス穴41aを介してセラミック基材内ガス通路23に連通していたが、これに限定されない。例えば、すべての分配部36bは、流通部36aから上下方向には延びる部分を有さず、横方向に延びたあと、第1金属接合層内ガス穴41aを介してセラミック基材内ガス通路23に連通するものとしてもよい。
 上述した実施形態において、ガス供給路38の周壁全体が、絶縁膜44で覆われていたが、これに限定されない。例えば、ガス供給路38の周壁のうちウエハ載置面21aを上から見たときに視野に入る部分が絶縁膜44で覆われていれば、視野に入らない部分は、絶縁膜44で覆われていなくてもよい。
 上述した実施形態において、セラミック基材20は、RF電極を内蔵していてもよいし、ヒータ電極を内蔵していてもよい。また、ウエハ載置台10には、ウエハWをウエハ載置面21aから持ち上げるためのリフトピンを挿通可能なリフトピン穴が形成されていてもよい。
 本出願は、2021年10月12日に出願された日本国特許出願第2021-167335号を優先権主張の基礎としており、引用によりその内容の全てが本明細書に含まれる。
 本発明は、例えばウエハをプラズマ処理する装置に利用可能である。
 10 ウエハ載置台、20 セラミック基材、21 中央部、21a ウエハ載置面、22 小突起、23 セラミック基材内ガス通路、24 ウエハ吸着用電極、25 外周部、25a フォーカスリング載置面、30 冷却基材、31 第1層状部材、32 第2層状部材、33 第3層状部材、34 冷媒流路、35 ガス導入口、36 冷却基材内ガス通路、36a 流通部、36b 分配部、38 ガス供給路、39 壁部、41 第1金属接合層、41a 第1金属接合層内ガス穴、42 第2金属接合層、42a 第2金属接合層内ガス穴、43 第2金属接合層、43a 第2金属接合層内ガス穴、44 絶縁膜、45 絶縁膜、50 ウエハ吸着用直流電源、52 給電端子、53 絶縁管、54 穴、60 RF電源、61 ハイパスフィルタ(HPF)、62 給電端子、70 ガス供給源、110 接合体、120 セラミック焼結体、123 穴、131 第1プレート、132 第2プレート、133 第3プレート、134 穴、136a 穴、136b 穴、141 金属接合材、141a 貫通穴、141b 貫通穴、142 金属接合材、142a 貫通穴、142b 貫通穴、143 金属接合材、143a 貫通穴、143b 貫通穴、154a 穴、154b 穴、154c 穴、154d 穴、210 積層体、W ウエハ。

Claims (7)

  1.  上面にウエハ載置面を有し、電極を内蔵するセラミック基材と、
     内部に冷媒流路が形成された金属含有材料の冷却基材と、
     前記セラミック基材と下面と前記冷却基材の上面とを接合する第1金属接合層と、
     前記セラミック基材を上下方向に貫通するセラミック基材内ガス通路と、
     前記第1金属接合層を上下方向に貫通して前記セラミック基材内ガス通路に連通する第1金属接合層内ガス穴と、
     前記冷却基材の下面に設けられたガス導入口から前記第1金属接合層内ガス穴を介して前記セラミック基材内ガス通路に連通する冷却基材内ガス通路と、
     前記セラミック基材内ガス通路、前記第1金属接合層内ガス穴及び前記冷却基材内ガス通路によって構成されたガス供給路と、
     を備えたウエハ載置台であって、
     前記ガス供給路において、少なくとも、前記第1金属接合層内ガス穴の周壁及び前記冷却基材内ガス通路の周壁のうち前記ウエハ載置面を上から見たときに視野に入る部分は、絶縁膜で覆われており、
     40~400℃における、前記セラミック基材を構成するセラミック材料の線熱膨張係数をX1[/K]とし、前記冷却基材を構成する材料の線熱膨張係数をX2[/K]としたとき、X1とX2との差の絶対値は、1.5×10-6/K以下である、ウエハ載置台。
  2.  40~400℃における、前記絶縁膜を構成する材料の線熱膨張係数をX3[/K]としたとき、X1とX2との差、X2とX3との差及びX3とX1との差の各絶対値は、1.5×10-6/K以下である、
     請求項1に記載のウエハ載置台。
  3.  前記セラミック基材内ガス通路は、複数設けられ、
     前記第1金属接合層内ガス穴は、複数の前記セラミック基材内ガス通路のそれぞれに対応して設けられ、
     前記冷却基材内ガス通路は、前記ガス導入口から前記冷却基材のうち前記冷媒流路よりも上側の所定位置まで延びたあと前記所定位置で複数の分配部に分かれ、前記分配部のそれぞれが前記第1金属接合層内ガス穴を介して前記セラミック基材内ガス通路に連通する、
     請求項1又は2に記載のウエハ載置台。
  4.  前記ガス供給路の周壁全体は、前記絶縁膜で覆われている、
     請求項1又は2に記載のウエハ載置台。
  5.  前記冷却基材は、複数の層状部材を第2金属接合層を介して接合したものであり、
     前記第2金属接合層は、前記冷却基材内ガス通路が貫通する第2金属接合層内ガス穴を有し、
     前記第2金属接合層内ガス穴の周壁は、前記絶縁膜で覆われている、
     請求項1又は2に記載のウエハ載置台。
  6.  前記第1金属接合層は、厚さが1mm以下である、
     請求項1又は2に記載のウエハ載置台。
  7.  前記金属含有材料は、金属マトリックス複合材料である、
     請求項1又は2に記載のウエハ載置台。
PCT/JP2022/034525 2021-10-12 2022-09-15 ウエハ載置台 WO2023063016A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023505382A JPWO2023063016A1 (ja) 2021-10-12 2022-09-15

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021167335 2021-10-12
JP2021-167335 2021-10-12

Publications (1)

Publication Number Publication Date
WO2023063016A1 true WO2023063016A1 (ja) 2023-04-20

Family

ID=85987445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034525 WO2023063016A1 (ja) 2021-10-12 2022-09-15 ウエハ載置台

Country Status (2)

Country Link
JP (1) JPWO2023063016A1 (ja)
WO (1) WO2023063016A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0982683A (ja) * 1995-09-12 1997-03-28 Toshiba Corp ドライエッチング装置
JPH09148420A (ja) * 1995-09-20 1997-06-06 Hitachi Ltd 静電吸着電極およびその製作方法
JP2006156691A (ja) * 2004-11-29 2006-06-15 Kyocera Corp 基板保持部材
US20090002913A1 (en) * 2007-06-29 2009-01-01 Mahmood Naim Polyceramic e-chuck
WO2014141974A1 (ja) * 2013-03-15 2014-09-18 日本碍子株式会社 冷却板、その製法及び半導体製造装置用部材
JP2018064055A (ja) * 2016-10-14 2018-04-19 日本碍子株式会社 半導体製造装置用部材及びその製法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0982683A (ja) * 1995-09-12 1997-03-28 Toshiba Corp ドライエッチング装置
JPH09148420A (ja) * 1995-09-20 1997-06-06 Hitachi Ltd 静電吸着電極およびその製作方法
JP2006156691A (ja) * 2004-11-29 2006-06-15 Kyocera Corp 基板保持部材
US20090002913A1 (en) * 2007-06-29 2009-01-01 Mahmood Naim Polyceramic e-chuck
WO2014141974A1 (ja) * 2013-03-15 2014-09-18 日本碍子株式会社 冷却板、その製法及び半導体製造装置用部材
JP2018064055A (ja) * 2016-10-14 2018-04-19 日本碍子株式会社 半導体製造装置用部材及びその製法

Also Published As

Publication number Publication date
JPWO2023063016A1 (ja) 2023-04-20

Similar Documents

Publication Publication Date Title
WO2023063016A1 (ja) ウエハ載置台
US20230343564A1 (en) Wafer placement table
US20230111137A1 (en) Wafer placement table
US20230317433A1 (en) Wafer placement table
TW202403950A (zh) 晶圓載置台
US20240105428A1 (en) Wafer placement table
WO2023037698A1 (ja) ウエハ載置台
US20230317432A1 (en) Wafer placement table
WO2024004040A1 (ja) ウエハ載置台
WO2023166866A1 (ja) ウエハ載置台
US20240079218A1 (en) Wafer placement table
US20240079217A1 (en) Wafer placement table
WO2024004039A1 (ja) ウエハ載置台
US20230122013A1 (en) Wafer placement table
WO2023153021A1 (ja) 半導体製造装置用部材
TW202339070A (zh) 半導體製造裝置用構件
TW202412166A (zh) 晶圓載置台
TW202410283A (zh) 晶圓載置台
KR20240046104A (ko) 웨이퍼 배치대
JP2023079422A (ja) ウエハ載置台
JP2023106929A (ja) 半導体製造装置用部材

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023505382

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22880712

Country of ref document: EP

Kind code of ref document: A1