WO2023062876A1 - Combustion device and boiler - Google Patents

Combustion device and boiler Download PDF

Info

Publication number
WO2023062876A1
WO2023062876A1 PCT/JP2022/024360 JP2022024360W WO2023062876A1 WO 2023062876 A1 WO2023062876 A1 WO 2023062876A1 JP 2022024360 W JP2022024360 W JP 2022024360W WO 2023062876 A1 WO2023062876 A1 WO 2023062876A1
Authority
WO
WIPO (PCT)
Prior art keywords
ammonia
injection nozzle
injection
pulverized coal
furnace
Prior art date
Application number
PCT/JP2022/024360
Other languages
French (fr)
Japanese (ja)
Inventor
大樹 石井
亮 花岡
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to KR1020247002590A priority Critical patent/KR20240017097A/en
Priority to CN202280054400.3A priority patent/CN117795250A/en
Priority to JP2022563235A priority patent/JP7332060B1/en
Priority to AU2022367978A priority patent/AU2022367978B2/en
Publication of WO2023062876A1 publication Critical patent/WO2023062876A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D1/00Burners for combustion of pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/08Regulating fuel supply conjointly with another medium, e.g. boiler water
    • F23N1/087Regulating fuel supply conjointly with another medium, e.g. boiler water using mechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C1/00Combustion apparatus specially adapted for combustion of two or more kinds of fuel simultaneously or alternately, at least one kind of fuel being either a fluid fuel or a solid fuel suspended in a carrier gas or air
    • F23C1/10Combustion apparatus specially adapted for combustion of two or more kinds of fuel simultaneously or alternately, at least one kind of fuel being either a fluid fuel or a solid fuel suspended in a carrier gas or air liquid and pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C1/00Combustion apparatus specially adapted for combustion of two or more kinds of fuel simultaneously or alternately, at least one kind of fuel being either a fluid fuel or a solid fuel suspended in a carrier gas or air
    • F23C1/12Combustion apparatus specially adapted for combustion of two or more kinds of fuel simultaneously or alternately, at least one kind of fuel being either a fluid fuel or a solid fuel suspended in a carrier gas or air gaseous and pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C99/00Subject-matter not provided for in other groups of this subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/20Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone
    • F23D14/22Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/48Nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D17/00Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J7/00Arrangement of devices for supplying chemicals to fire
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion

Definitions

  • Patent Literature 1 discloses a burner for co-firing pulverized coal and ammonia as fuel.
  • NOx nitrogen oxides
  • An object of the present disclosure is to provide a combustion device and a boiler capable of suppressing nitrogen oxide (NOx) emissions.
  • the combustion apparatus of the present disclosure includes an ammonia injection nozzle whose injection port faces the interior space of the furnace, a pulverized coal injection nozzle whose injection port faces the interior space of the furnace, and ammonia from the ammonia injection nozzle. and a control device for controlling the operation of the adjustment mechanism so that the ammonia injection flow velocity from the ammonia injection nozzle is faster than the pulverized coal injection flow velocity from the pulverized coal injection nozzle.
  • the adjustment mechanism may include a mechanism that adjusts the opening area of the injection port of the ammonia injection nozzle.
  • the ammonia injection nozzle is provided with a plurality of ammonia flow paths, and the adjustment mechanism may include a mechanism for adjusting the number of ammonia flow paths through which ammonia flows among the plurality of ammonia flow paths.
  • the boiler of the present disclosure includes the above combustion device.
  • nitrogen oxide (NOx) emissions can be suppressed.
  • FIG. 1 is a schematic diagram showing a boiler according to this embodiment.
  • FIG. 2 is a schematic diagram showing a combustion device according to this embodiment.
  • FIG. 3 is a schematic diagram showing an adjusting mechanism according to this embodiment.
  • FIG. 4 is a schematic diagram showing a state in which the opening area of the injection port of the ammonia injection nozzle according to this embodiment is smaller than in the example of FIG.
  • FIG. 5 is a flow chart showing an example of the flow of processing performed by the control device according to the present embodiment.
  • FIG. 6 is a diagram for explaining flames formed by the combustion apparatus according to this embodiment.
  • FIG. 7 is a diagram for explaining flames formed by a combustion device according to a comparative example.
  • FIG. 8 is a schematic diagram showing a combustion device according to a modification.
  • FIG. 9 is a cross-sectional view showing the inside of an ammonia injection nozzle according to a modification.
  • FIG. 1 is a schematic diagram showing a boiler 1 according to this embodiment. As shown in FIG. 1, the boiler 1 includes a furnace 2, a flue 3, and burners 4.
  • Furnace 2 is a furnace that burns fuel to generate combustion heat.
  • the furnace 2 has a tubular shape such as a rectangular tubular shape extending in the vertical direction.
  • high-temperature combustion gas is generated by burning fuel.
  • the bottom of the furnace 2 is provided with an outlet 2a for discharging ash generated by combustion of fuel to the outside.
  • the flue 3 is a passage that guides the combustion gas generated in the furnace 2 to the outside as exhaust gas.
  • a flue 3 is connected to the upper part of the furnace 2 .
  • the flue 3 has a horizontal flue 3a and a rear flue 3b.
  • a horizontal flue 3 a extends horizontally from the top of the furnace 2 .
  • a rear flue 3b extends downward from the end of the horizontal flue 3a.
  • the boiler 1 has a superheater (not shown) installed above the furnace 2 or the like. In the superheater, heat is exchanged between the combustion heat generated in the furnace 2 and water. Water vapor is thereby generated.
  • the boiler 1 may also include various devices such as reheaters, economizers or air preheaters not shown in FIG.
  • the burner 4 is provided on the lower wall of the furnace 2.
  • a plurality of burners 4 are provided in the furnace 2 at intervals in the circumferential direction of the furnace 2 .
  • the plurality of burners 4 are also spaced apart in the vertical direction, which is the extending direction of the furnace 2 .
  • the burner 4 injects ammonia and pulverized coal as fuel into the furnace 2 .
  • a flame F is formed in the furnace 2 by burning the fuel injected from the burner 4 .
  • the furnace 2 is provided with an ignition device (not shown) that ignites the fuel injected from the burner 4.
  • FIG. 2 is a schematic diagram showing the combustion device 100 according to this embodiment.
  • the combustion device 100 includes a burner 4 , an air supply section 5 , an ammonia tank 6 , an adjustment mechanism 7 and a control device 8 .
  • the burner 4 is attached to the wall of the furnace 2 outside the furnace 2 .
  • the burner 4 has an ammonia injection nozzle 41 , an air injection nozzle 42 and a pulverized coal injection nozzle 43 .
  • the ammonia injection nozzle 41 is a nozzle that injects ammonia.
  • the air injection nozzle 42 is a nozzle that injects air for combustion.
  • the pulverized coal injection nozzle 43 is a nozzle that injects pulverized coal.
  • the ammonia injection nozzle 41, the air injection nozzle 42 and the pulverized coal injection nozzle 43 have a cylindrical shape.
  • the air injection nozzle 42 is arranged coaxially with the ammonia injection nozzle 41 so as to surround the ammonia injection nozzle 41 .
  • the pulverized coal injection nozzle 43 is arranged coaxially with the air injection nozzle 42 so as to surround the air injection nozzle 42 .
  • the ammonia injection nozzle 41, the air injection nozzle 42 and the pulverized coal injection nozzle 43 form a triple cylindrical structure.
  • the central axes of the ammonia injection nozzle 41 , the air injection nozzle 42 and the pulverized coal injection nozzle 43 intersect the wall of the furnace 2 . Specifically, the central axes of the ammonia injection nozzle 41 , the air injection nozzle 42 and the pulverized coal injection nozzle 43 are substantially perpendicular to the wall of the furnace 2 .
  • the radial direction of the burner 4, the axial direction of the burner 4, and the circumferential direction of the burner 4 are also simply referred to as the radial direction, the axial direction, and the circumferential direction.
  • the furnace 2 side of the burner 4 (the right side in FIG. 2) is called the front end side, and the opposite side of the burner 4 to the furnace 2 side (the left side in FIG. 2) is called the rear end side.
  • the ammonia injection nozzle 41 includes a main body 41a, a supply port 41b, and an injection port 41c.
  • the main body 41a has a cylindrical shape.
  • the main body 41a extends on the central axis of the burner 4. As shown in FIG.
  • the thickness, inner diameter and outer diameter of the main body 41a are substantially constant regardless of the position in the axial direction. However, the thickness, inner diameter and outer diameter of the main body 41a may change according to the axial position.
  • a supply port 41b which is an opening, is provided at the rear end of the main body 41a.
  • the supply port 41 b is connected with the ammonia tank 6 .
  • An injection port 41c which is an opening, is provided at the tip of the main body 41a.
  • the injection port 41 c faces the internal space of the furnace 2 . In other words, the injection port 41c faces the internal space of the furnace 2 .
  • Ammonia is supplied from the ammonia tank 6 into the main body 41a through the supply port 41b. As indicated by arrow A1, ammonia supplied into main body 41a flows through main body 41a. Ammonia passing through the main body 41a is injected toward the internal space of the furnace 2 from the injection port 41c. Thus, the ammonia injection nozzle 41 is provided toward the inner space of the furnace 2 .
  • Ammonia is stored in a liquid state in the ammonia tank 6 .
  • Ammonia stored in the ammonia tank 6 is vaporized by a vaporizer. Vaporized ammonia is supplied to the ammonia injection nozzle 41 .
  • the air injection nozzle 42 includes a main body 42a and an injection port 42b.
  • the main body 42a has a cylindrical shape.
  • the main body 42a is arranged coaxially with the main body 41a of the ammonia injection nozzle 41 so as to surround the main body 41a.
  • the main body 42a has a shape that tapers toward the distal end.
  • a supply port (not shown) is provided in the rear portion of the main body 42a.
  • the supply port of the air injection nozzle 42 is connected to an air supply source (not shown).
  • the supply port of the air injection nozzle 42 is exposed to the atmosphere as an air supply source.
  • An injection port 42b which is an opening, is provided at the tip of the main body 42a.
  • the tip of the main body 41a of the ammonia injection nozzle 41 is positioned radially inside the tip of the main body 42a.
  • the injection port 42 b is an annular opening between the tip of the main body 42 a and the tip of the main body 41 a of the ammonia injection nozzle 41 .
  • the injection port 42 b faces the internal space of the furnace 2 . In other words, the injection port 42b faces the internal space of the furnace 2 .
  • Air is supplied into the main body 42a from an air supply source through a supply port (not shown).
  • the air supplied into the main body 42a flows through the space between the inner peripheral portion of the main body 42a and the outer peripheral portion of the main body 41a of the ammonia injection nozzle 41, as indicated by the arrow A2.
  • the air that has passed through the main body 42a is injected toward the internal space of the furnace 2 from the injection port 42b.
  • the air injection nozzle 42 is provided toward the interior space of the furnace 2 .
  • the pulverized coal injection nozzle 43 includes a main body 43a and an injection port 43b.
  • the main body 43a has a cylindrical shape.
  • the main body 43a is arranged coaxially with the main body 42a of the air injection nozzle 42 so as to surround the main body 42a.
  • the main body 43a has a tapered shape toward the distal end.
  • a supply port (not shown) is provided in the rear portion of the main body 43a.
  • the supply port of the pulverized coal injection nozzle 43 is connected to a pulverized coal supply source (not shown).
  • An injection port 43b which is an opening, is provided at the tip of the main body 43a.
  • the axial position of the tip of the main body 43 a substantially coincides with the axial position of the tip of the main body 42 a of the air injection nozzle 42 .
  • the injection port 43 b is an annular opening between the tip of the main body 43 a and the tip of the main body 42 a of the air injection nozzle 42 .
  • the injection port 43 b faces the internal space of the furnace 2 . In other words, the injection port 43b faces the internal space of the furnace 2 .
  • Pulverized coal is supplied from a pulverized coal supply source into the main body 43a through a supply port (not shown) together with air for transporting the pulverized coal.
  • the pulverized coal supplied into the main body 43a flows together with the air in the space between the inner peripheral portion of the main body 43a and the outer peripheral portion of the main body 42a of the air injection nozzle .
  • the pulverized coal that has passed through the main body 43a is injected toward the internal space of the furnace 2 from the injection port 43b.
  • the pulverized coal injection nozzle 43 is provided toward the interior space of the furnace 2 .
  • the air supply unit 5 supplies combustion air to the flame F formed by the burner 4 from the outside in the radial direction.
  • the air supply unit 5 is arranged so as to cover the space between the tip of the burner 4 and the furnace 2 .
  • a flow path 51 through which air flows is formed in the air supply portion 5 .
  • the channel 51 is formed in a cylindrical shape coaxial with the burner 4 .
  • the flow path 51 is connected to an air supply source (not shown).
  • An injection port 52 is formed at the end of the flow path 51 on the furnace 2 side.
  • the air supplied from the air supply source to the air supply unit 5 passes through the flow path 51 and is injected from the injection port 52 toward the internal space of the furnace 2.
  • the injection port 52 faces the internal space of the furnace 2 . That is, the injection port 52 faces the internal space of the furnace 2 .
  • the air supply unit 5 is provided toward the inner space of the furnace 2 .
  • the air injected from the injection port 52 of the air supply unit 5 advances toward the inner space of the furnace 2 while swirling in the circumferential direction.
  • the adjustment mechanism 7 is a mechanism for adjusting the injection flow rate of ammonia from the ammonia injection nozzle 41 .
  • the injection flow velocity of ammonia is the flow velocity of ammonia injected from the injection port 41 c of the ammonia injection nozzle 41 .
  • the adjustment mechanism 7 adjusts the injection flow rate of ammonia from the ammonia injection nozzle 41 by adjusting the opening area of the injection port 41 c of the ammonia injection nozzle 41 . Details of the adjustment mechanism 7 will be described with reference to FIG.
  • FIG. 3 is a schematic diagram showing the adjusting mechanism 7 according to this embodiment.
  • the tip of the ammonia injection nozzle 41 is provided with a variable portion 41d.
  • the variable portion 41d deforms, the opening area of the injection port 41c changes.
  • the variable portion 41d includes a plurality of members spaced apart in the circumferential direction, and can be deformed so as to assume an inclined posture in which the tip of each member is positioned radially inward from the rear end.
  • a variable part 41d for example, a structure similar to that of a convergence divergence nozzle can be adopted.
  • the adjustment mechanism 7 has a driving device 71 .
  • the driving device 71 deforms the variable portion 41 d of the ammonia injection nozzle 41 .
  • the driving device 71 is provided at the rear end of the variable portion 41d and includes a power source such as a motor that generates power.
  • the driving device 71 can change the posture of the variable portion 41d by rotating the variable portion 41d around the rear end of the variable portion 41d.
  • the adjustment mechanism 7 can adjust the opening area of the injection port 41 c of the ammonia injection nozzle 41 by deforming the variable portion 41 d of the ammonia injection nozzle 41 with the driving device 71 .
  • FIG. 4 is a schematic diagram showing a state in which the opening area of the injection port 41c of the ammonia injection nozzle 41 according to this embodiment is smaller than in the example of FIG.
  • the variable portion 41d is deformed such that the radial position of the tip of the variable portion 41d moves radially inward.
  • the shape of the variable portion 41d is tapered toward the distal end side.
  • the variable portion 41d in FIG. 4 has a truncated cone shape. Therefore, the opening area of the injection port 41c of the ammonia injection nozzle 41 is reduced.
  • the adjustment mechanism 7 can adjust the injection flow rate of ammonia from the ammonia injection nozzle 41 by adjusting the opening area of the injection port 41 c of the ammonia injection nozzle 41 .
  • the injection flow rate of ammonia is properly adjusted.
  • the control device 8 in FIG. 2 includes a central processing unit (CPU), a ROM storing programs and the like, a RAM as a work area, and the like, and controls the combustion device 100 as a whole.
  • controller 8 controls the operation of adjustment mechanism 7 .
  • the control device 8 controls the driving device 71 of the adjusting mechanism 7 to adjust the opening area of the injection port 41c of the ammonia injection nozzle 41, thereby adjusting the injection flow rate of ammonia from the ammonia injection nozzle 41. can do.
  • FIG. 5 is a flowchart showing an example of the flow of processing performed by the control device 8 according to this embodiment.
  • the processing flow shown in FIG. 5 is, for example, repeatedly executed at preset time intervals.
  • the processing example of FIG. 5 is merely an example, and the processing performed by the control device 8 is not limited to this example.
  • step S101 the control device 8 acquires the injection flow rate of pulverized coal from the pulverized coal injection nozzle 43.
  • the injection flow velocity of pulverized coal is the flow velocity of pulverized coal injected from the injection port 43 b of the pulverized coal injection nozzle 43 .
  • the amount of carrier air supplied to the pulverized coal injection nozzle 43 changes according to the required combustion amount in the furnace 2 .
  • the pulverized coal injection flow rate changes according to the required combustion amount in the furnace 2 .
  • the injection flow velocity of pulverized coal increases as the required combustion amount in the furnace 2 increases.
  • the required combustion amount in the furnace 2 has a correlation with the required load of the boiler 1 or the required power generation amount.
  • control device 8 acquires the supply amount of air for transportation from a device that controls the supply amount of air for transportation supplied to the pulverized coal injection nozzle 43 . Then, the control device 8 can acquire the jet flow velocity of the pulverized coal based on the supply amount of air for transportation.
  • the controller 8 may control the amount of carrier air supplied to the pulverized coal injection nozzle 43 .
  • step S102 the control device 8 controls the adjustment mechanism 7 so that the injection flow rate of ammonia is faster than the injection flow rate of pulverized coal.
  • the control device 8 controls the driving device 71 of the adjustment mechanism 7 so that the opening area of the injection port 41c of the ammonia injection nozzle 41 changes according to the injection flow rate of pulverized coal.
  • the injection flow velocity of ammonia can be made faster than the injection flow velocity of pulverized coal.
  • control device 8 controls the adjustment mechanism 7 in consideration of parameters other than the opening area of the injection port 41c among the parameters that affect the injection flow rate of ammonia.
  • the amount of ammonia supplied to the ammonia injection nozzle 41 can change according to the required combustion amount in the furnace 2 . Therefore, the control device 8 preferably controls the adjustment mechanism 7 based on the amount of ammonia supplied to the ammonia injection nozzle 41 in addition to the pulverized coal injection flow rate. As a result, the injection flow velocity of ammonia is more appropriately achieved to be faster than the injection flow velocity of pulverized coal.
  • the control device 8 may change the opening area of the injection port 41c of the ammonia injection nozzle 41 according to parameters other than the injection flow velocity of pulverized coal.
  • the control device 8 may change the opening area of the injection port 41 c of the ammonia injection nozzle 41 according to the required combustion amount in the furnace 2 , the required load of the boiler 1 , or the required power generation amount of the boiler 1 .
  • the control device 8 controls the injection flow rate of ammonia from the ammonia injection nozzle 41 to be faster than the injection flow rate of pulverized coal from the pulverized coal injection nozzle 43. It controls the operation of the adjustment mechanism 7 .
  • the shape of the flame F formed in front of the burner 4 and the phenomenon occurring within the flame F differ depending on the magnitude relationship between the injection flow velocity of ammonia and the injection flow velocity of pulverized coal. The shape of the flame F and phenomena occurring within the flame F will be described below with reference to FIGS. 6 and 7. FIG.
  • FIG. 6 is a diagram for explaining the flame F formed by the combustion device 100 according to this embodiment. That is, the flame F shown in FIG. 6 is a flame when the injection flow velocity of ammonia is faster than the injection flow velocity of pulverized coal.
  • the flame F has an elongated shape extending on the central axis of the burner 4.
  • a flow of air injected from the air supply section 5 is formed as indicated by the dashed arrow A5.
  • the pulverized coal injected from the pulverized coal injection nozzle 43 is pulled by the flow of air injected from the air supply unit 5 and flows near the surface layer of the flame F. Therefore, the pulverized coal injected from the pulverized coal injection nozzle 43 flows in the vicinity of the surface layer of the flame F, as indicated by the dashed arrow A6, along the air flow indicated by the dashed arrow A5.
  • the pulverized coal is burned in the region R1 near the surface layer of the flame F, and NOx is generated.
  • a region R1 is a pulverized coal combustion region.
  • the injection flow velocity of ammonia is higher than the injection flow velocity of pulverized coal. Therefore, the ammonia injected from the ammonia injection nozzle 41 is less likely to be pulled by the flow of air injected from the air supply section 5, so it flows in the axial direction of the burner 4 through the center of the flame F as indicated by the solid line arrow A7. .
  • the direction of flow of ammonia can actually take various directions, but the main direction is the axial direction of the burner 4 .
  • ammonia (NH 3 ) is decomposed into NH 2 , NH, and N in the oxygen-poor region R2 on the center side of the flame F.
  • the region R2 is positioned radially inward with respect to the region R1.
  • Region R2 is the decomposition region of ammonia.
  • Region R2 has an elongated shape extending on the central axis of burner 4 .
  • FIG. 7 is a diagram for explaining the flame F formed by the combustion device according to the comparative example.
  • the injection flow velocity of ammonia is slower than the injection flow velocity of pulverized coal. That is, the flame F shown in FIG. 7 is a flame when the injection flow velocity of ammonia is slower than the injection flow velocity of pulverized coal.
  • the flame F has a radially expanded shape compared to the example of FIG.
  • the air injected from the air supply unit 5 and the pulverized coal injected from the pulverized coal injection nozzle 43 are near the surface of the flame F. flowing.
  • pulverized coal is burned to generate NOx.
  • the injection flow velocity of ammonia is slower than the injection flow velocity of pulverized coal. Therefore, ammonia injected from the ammonia injection nozzle 41 is likely to be pulled by the flow of air injected from the air supply section 5 . Therefore, most of the ammonia injected from the ammonia injection nozzle 41 flows along the air flow indicated by the dashed arrow A5, as indicated by the solid arrow A7. As a result, in the oxygen-rich region R4 away from the center of the flame F to the surface layer side, ammonia burns and NOx is generated. Region R4 is the ammonia combustion region.
  • Part of the ammonia injected from the ammonia injection nozzle 41 is decomposed into NH 2 , NH, and N on the center side of the flame F where oxygen is scarce. Then, in the region R3 on the tip side of the flame F, NOx is reduced by NH 2 , NH, and N.
  • the control device 8 controls the adjustment mechanism 7 so that the injection flow rate of ammonia from the ammonia injection nozzle 41 is faster than the injection flow rate of pulverized coal from the pulverized coal injection nozzle 43. control behavior.
  • the ammonia injected from the ammonia injection nozzle 41 can be sent to the oxygen-poor region R2 on the center side of the flame F and decomposed. Therefore, the generation of NOx due to combustion of ammonia is suppressed, and the decomposition of ammonia is promoted. Therefore, NOx is effectively reduced, and NOx emissions are suppressed.
  • the injection flow velocity of ammonia from the ammonia injection nozzle 41 becomes excessively faster than the injection flow velocity of pulverized coal from the pulverized coal injection nozzle 43, the shape of the flame F formed in front of the burner 4, and within the flame F
  • the phenomenon that occurs may deviate from the example of FIG.
  • the ammonia injected from the ammonia injection nozzle 41 reaches the front of the region R2, which is the ammonia decomposition region, in a state where it is not sufficiently decomposed.
  • the amounts of NH 2 , NH, and N produced by decomposition of ammonia are reduced, and the effect of suppressing NOx emissions may be reduced.
  • control device 8 operates the adjustment mechanism 7 so that the injection flow rate of ammonia from the ammonia injection nozzle 41 is faster than the injection flow rate of pulverized coal from the pulverized coal injection nozzle 43 and is equal to or lower than the upper limit speed. is preferably controlled.
  • the upper limit speed is, for example, a speed that is faster than the injection flow speed of pulverized coal by a predetermined ratio.
  • the flame F formed by the combustion device 100 has an elongated shape.
  • the time for the pulverized coal to come into contact with oxygen is lengthened, thus promoting the combustion of the pulverized coal. Therefore, generation and discharge of unburned fuel are suppressed.
  • FIG. 8 is a schematic diagram showing a combustion device 100A according to a modification.
  • a combustion device 100A is an example in which the adjustment mechanism 7 in the combustion device 100 described above is replaced with an adjustment mechanism 7A.
  • FIG. 9 is a cross-sectional view showing the inside of an ammonia injection nozzle 41A according to a modification. Specifically, FIG. 9 is a cross-sectional view taken along line XX in FIG. 8 orthogonal to the central axis of the ammonia injection nozzle 41A.
  • a plurality of supply pipes 41e are provided inside the main body 41a of the ammonia injection nozzle 41A.
  • the supply pipe 41e has a tubular shape such as a cylindrical shape.
  • the supply pipe 41e extends in the axial direction of the main body 41a.
  • the supply pipes 41e are arranged at regular intervals in the circumferential direction of the main body 41a.
  • the arrangement of the supply pipes 41e inside the main body 41a is not limited to the example in FIG.
  • Ammonia supplied from the ammonia tank 6 into the main body 41a passes through the ammonia flow path 41f, which is the internal space of each supply pipe 41e, and is injected from the injection port 41c.
  • the ammonia injection nozzle 41 is provided with a plurality of ammonia flow paths 41f.
  • the adjustment mechanism 7A in FIG. 8 adjusts the injection flow rate of ammonia from the ammonia injection nozzle 41A by adjusting the number of ammonia flow paths 41f through which ammonia flows among the plurality of ammonia flow paths 41f.
  • the adjustment mechanism 7A has a switching valve 71A.
  • 71 A of switching valves are provided in the flow path which connects the ammonia tank 6 and the ammonia injection nozzle 41A.
  • the switching valve 71A switches between a state in which ammonia is supplied from the ammonia tank 6 and a state in which ammonia is not supplied from the ammonia tank 6 for each supply pipe 41e.
  • the switching valve 71A switches the supply pipe 41e to which ammonia is supplied among the plurality of supply pipes 41e.
  • the number of ammonia flow paths 41f through which ammonia flows is adjusted among the plurality of ammonia flow paths 41f.
  • the adjustment mechanism 7A can adjust the injection flow rate of ammonia from the ammonia injection nozzle 41A by adjusting the number of ammonia flow paths 41f through which ammonia flows among the plurality of ammonia flow paths 41f.
  • the injection flow rate of ammonia is properly adjusted.
  • the control device 8 controls the adjustment mechanism 7A so that the injection flow velocity of ammonia is faster than the injection flow velocity of pulverized coal.
  • the control device 8 controls the switching valve 71A of the adjusting mechanism 7A so that the number of the ammonia flow paths 41f through which ammonia flows changes according to the injection flow rate of pulverized coal.
  • the injection flow velocity of ammonia can be made faster than the injection flow velocity of pulverized coal. Therefore, as with the combustion device 100 described above, NOx emissions are suppressed. In addition, generation and discharge of unburned fuel are suppressed.
  • the control device 8 may change the number of ammonia flow paths 41f through which ammonia flows according to parameters other than the injection flow rate of pulverized coal. For example, the control device 8 may change the number of ammonia flow paths 41f through which ammonia flows according to the required combustion amount in the furnace 2, the required load of the boiler 1, or the required power generation amount of the boiler 1.
  • the adjustment mechanism 7 and the adjustment mechanism 7A have been described above as examples of the adjustment mechanism that adjusts the injection flow rate of ammonia from the ammonia injection nozzle 41 .
  • any mechanism other than the adjusting mechanism 7 and the adjusting mechanism 7A may be used as long as it has a function of adjusting the injection flow rate of ammonia from the ammonia injection nozzle 41 .
  • the adjustment mechanism 7 for adjusting the opening area of the injection port 41c of the ammonia injection nozzle 41 and the adjustment mechanism 7A for adjusting the number of the ammonia passages 41f among the plurality of ammonia passages 41f through which ammonia flows are used together. may
  • combustion devices 100 and 100A are provided in the furnace 2 of the boiler 1 .
  • the furnace in which the combustion devices 100 and 100A are used may be any furnace that burns fuel to generate combustion heat.
  • Combustion devices 100 and 100A can be used in various furnaces of equipment other than boiler 1 .
  • the present disclosure contributes to stabilization of combustion by combustion equipment used in boilers and the like, and reduction of repair frequency of combustion equipment. Ensure access to affordable and modern energy” and Goal 13 “Take urgent action to combat climate change and its impacts”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)

Abstract

A combustion device (100) comprises: an ammonia injection nozzle (41) with an injection port (41c) facing the interior space of a furnace (2); a pulverized coal injection nozzle (43) with an injection port (43b) facing the interior space of the furnace (2); an adjustment mechanism (7) that adjusts the injection velocity of ammonia from the ammonia injection nozzle (41); and a control device (8) that controls the operation of the adjustment mechanism (7) so that the injection velocity of ammonia from the ammonia injection nozzle (41) is faster than the injection velocity of pulverized coal from the pulverized coal injection nozzle (43).

Description

燃焼装置およびボイラCombustion equipment and boilers
 本開示は、燃焼装置およびボイラに関する。本出願は2021年10月14日に提出された日本特許出願第2021-169141号に基づく優先権の利益を主張するものであり、その内容は本出願に援用される。 The present disclosure relates to combustion equipment and boilers. This application claims the benefit of priority based on Japanese Patent Application No. 2021-169141 filed on October 14, 2021, the content of which is incorporated herein by reference.
 ボイラ等の火炉に設けられるバーナにおいて、アンモニアを燃料として噴射するアンモニア噴射ノズルを有するバーナがある。アンモニアを燃料として用いることによって、二酸化炭素の排出量の削減が図られる。例えば、特許文献1には、微粉炭とアンモニアとを燃料として混焼させるバーナが開示されている。 Among burners installed in furnaces such as boilers, there are burners that have ammonia injection nozzles that inject ammonia as fuel. By using ammonia as a fuel, the amount of carbon dioxide emissions can be reduced. For example, Patent Literature 1 discloses a burner for co-firing pulverized coal and ammonia as fuel.
特開2019-086189号公報JP 2019-086189 A
 微粉炭とアンモニアとを燃料として混焼させるバーナでは、バーナの前方に形成される火炎において、窒素酸化物(以下、NOxとも呼ぶ)の発生および還元が行われる。作動条件によっては、NOxの還元が十分に行われず、NOxの排出量が増加するおそれがある。そこで、NOxの排出を抑制するための新たな提案が望まれている。 In a burner that co-fires pulverized coal and ammonia as fuel, nitrogen oxides (hereinafter also referred to as NOx) are generated and reduced in the flame formed in front of the burner. Depending on the operating conditions, NOx may not be reduced sufficiently, resulting in an increase in NOx emissions. Therefore, new proposals for suppressing NOx emissions are desired.
 本開示の目的は、窒素酸化物(NOx)の排出を抑制することが可能な燃焼装置およびボイラを提供することである。 An object of the present disclosure is to provide a combustion device and a boiler capable of suppressing nitrogen oxide (NOx) emissions.
 上記課題を解決するために、本開示の燃焼装置は、火炉の内部空間に噴射口が臨むアンモニア噴射ノズルと、火炉の内部空間に噴射口が臨む微粉炭噴射ノズルと、アンモニア噴射ノズルからのアンモニアの噴射流速を調整する調整機構と、アンモニア噴射ノズルからのアンモニアの噴射流速が微粉炭噴射ノズルからの微粉炭の噴射流速よりも速くなるように、調整機構の動作を制御する制御装置と、を備える。 In order to solve the above problems, the combustion apparatus of the present disclosure includes an ammonia injection nozzle whose injection port faces the interior space of the furnace, a pulverized coal injection nozzle whose injection port faces the interior space of the furnace, and ammonia from the ammonia injection nozzle. and a control device for controlling the operation of the adjustment mechanism so that the ammonia injection flow velocity from the ammonia injection nozzle is faster than the pulverized coal injection flow velocity from the pulverized coal injection nozzle. Prepare.
 調整機構は、アンモニア噴射ノズルの噴射口の開口面積を調整する機構を含んでもよい。 The adjustment mechanism may include a mechanism that adjusts the opening area of the injection port of the ammonia injection nozzle.
 アンモニア噴射ノズルには、複数のアンモニア流路が設けられており、調整機構は、複数のアンモニア流路のうち、アンモニアが流通するアンモニア流路の数を調整する機構を含んでもよい。 The ammonia injection nozzle is provided with a plurality of ammonia flow paths, and the adjustment mechanism may include a mechanism for adjusting the number of ammonia flow paths through which ammonia flows among the plurality of ammonia flow paths.
 上記課題を解決するために、本開示のボイラは、上記の燃焼装置を備える。 In order to solve the above problems, the boiler of the present disclosure includes the above combustion device.
 本開示によれば、窒素酸化物(NOx)の排出を抑制することができる。 According to the present disclosure, nitrogen oxide (NOx) emissions can be suppressed.
図1は、本実施形態に係るボイラを示す模式図である。FIG. 1 is a schematic diagram showing a boiler according to this embodiment. 図2は、本実施形態に係る燃焼装置を示す模式図である。FIG. 2 is a schematic diagram showing a combustion device according to this embodiment. 図3は、本実施形態に係る調整機構を示す模式図である。FIG. 3 is a schematic diagram showing an adjusting mechanism according to this embodiment. 図4は、本実施形態に係るアンモニア噴射ノズルの噴射口の開口面積が図3の例と比べて小さくなった状態を示す模式図である。FIG. 4 is a schematic diagram showing a state in which the opening area of the injection port of the ammonia injection nozzle according to this embodiment is smaller than in the example of FIG. 図5は、本実施形態に係る制御装置が行う処理の流れの一例を示すフローチャートである。FIG. 5 is a flow chart showing an example of the flow of processing performed by the control device according to the present embodiment. 図6は、本実施形態に係る燃焼装置により形成される火炎について説明するための図である。FIG. 6 is a diagram for explaining flames formed by the combustion apparatus according to this embodiment. 図7は、比較例に係る燃焼装置により形成される火炎について説明するための図である。FIG. 7 is a diagram for explaining flames formed by a combustion device according to a comparative example. 図8は、変形例に係る燃焼装置を示す模式図である。FIG. 8 is a schematic diagram showing a combustion device according to a modification. 図9は、変形例に係るアンモニア噴射ノズルの内部の様子を示す断面図である。FIG. 9 is a cross-sectional view showing the inside of an ammonia injection nozzle according to a modification.
 以下に添付図面を参照しながら、本開示の実施形態について説明する。実施形態に示す寸法、材料、その他具体的な数値等は、理解を容易とするための例示にすぎず、特に断る場合を除き、本開示を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本開示に直接関係のない要素は図示を省略する。 Embodiments of the present disclosure will be described below with reference to the accompanying drawings. Dimensions, materials, and other specific numerical values shown in the embodiments are merely examples for facilitating understanding, and do not limit the present disclosure unless otherwise specified. In the present specification and drawings, elements having substantially the same function and configuration are given the same reference numerals to omit redundant description, and elements that are not directly related to the present disclosure are omitted from the drawings. do.
 図1は、本実施形態に係るボイラ1を示す模式図である。図1に示すように、ボイラ1は、火炉2と、煙道3と、バーナ4とを備える。 FIG. 1 is a schematic diagram showing a boiler 1 according to this embodiment. As shown in FIG. 1, the boiler 1 includes a furnace 2, a flue 3, and burners 4.
 火炉2は、燃料を燃焼させて燃焼熱を発生させる炉である。火炉2は、鉛直方向に延在する矩形筒形状等の筒形状を有する。火炉2では、燃料が燃焼することによって、高温の燃焼ガスが発生する。火炉2の底部には、燃料の燃焼によって発生する灰分を外部に排出する排出口2aが設けられている。 Furnace 2 is a furnace that burns fuel to generate combustion heat. The furnace 2 has a tubular shape such as a rectangular tubular shape extending in the vertical direction. In the furnace 2, high-temperature combustion gas is generated by burning fuel. The bottom of the furnace 2 is provided with an outlet 2a for discharging ash generated by combustion of fuel to the outside.
 煙道3は、火炉2で発生した燃焼ガスを排ガスとして外部に案内する通路である。煙道3は、火炉2の上部と接続される。煙道3は、水平煙道3aと、後部煙道3bとを有する。水平煙道3aは、火炉2の上部から水平方向に延在する。後部煙道3bは、水平煙道3aの端部から下方に延在する。 The flue 3 is a passage that guides the combustion gas generated in the furnace 2 to the outside as exhaust gas. A flue 3 is connected to the upper part of the furnace 2 . The flue 3 has a horizontal flue 3a and a rear flue 3b. A horizontal flue 3 a extends horizontally from the top of the furnace 2 . A rear flue 3b extends downward from the end of the horizontal flue 3a.
 ボイラ1は、火炉2の上部等に設置される図示しない過熱器を備えている。過熱器では、火炉2で発生した燃焼熱と水との間での熱交換が行われる。それにより、水蒸気が生成される。また、ボイラ1は、図1で図示されていない再熱器、節炭器または空気予熱器等の各種機器を備え得る。 The boiler 1 has a superheater (not shown) installed above the furnace 2 or the like. In the superheater, heat is exchanged between the combustion heat generated in the furnace 2 and water. Water vapor is thereby generated. The boiler 1 may also include various devices such as reheaters, economizers or air preheaters not shown in FIG.
 バーナ4は、火炉2の下部の壁部に設けられている。火炉2には、複数のバーナ4が、火炉2の周方向に間隔を空けて設けられている。図1では図示を省略しているが、複数のバーナ4は、火炉2の延在方向である上下方向にも間隔を空けて設けられている。バーナ4は、アンモニアおよび微粉炭を燃料として火炉2内に噴射する。バーナ4から噴射された燃料が燃焼することにより、火炉2内で火炎Fが形成される。火炉2には、バーナ4から噴射された燃料を着火する図示しない着火装置が設けられている The burner 4 is provided on the lower wall of the furnace 2. A plurality of burners 4 are provided in the furnace 2 at intervals in the circumferential direction of the furnace 2 . Although not shown in FIG. 1, the plurality of burners 4 are also spaced apart in the vertical direction, which is the extending direction of the furnace 2 . The burner 4 injects ammonia and pulverized coal as fuel into the furnace 2 . A flame F is formed in the furnace 2 by burning the fuel injected from the burner 4 . The furnace 2 is provided with an ignition device (not shown) that ignites the fuel injected from the burner 4.
 図2は、本実施形態に係る燃焼装置100を示す模式図である。図2に示すように、燃焼装置100は、バーナ4と、空気供給部5と、アンモニアタンク6と、調整機構7と、制御装置8とを備える。 FIG. 2 is a schematic diagram showing the combustion device 100 according to this embodiment. As shown in FIG. 2 , the combustion device 100 includes a burner 4 , an air supply section 5 , an ammonia tank 6 , an adjustment mechanism 7 and a control device 8 .
 バーナ4は、火炉2の外部において、火炉2の壁部に取り付けられる。バーナ4は、アンモニア噴射ノズル41と、空気噴射ノズル42と、微粉炭噴射ノズル43とを有する。アンモニア噴射ノズル41は、アンモニアを噴射するノズルである。空気噴射ノズル42は、燃焼用の空気を噴射するノズルである。微粉炭噴射ノズル43は、微粉炭を噴射するノズルである。 The burner 4 is attached to the wall of the furnace 2 outside the furnace 2 . The burner 4 has an ammonia injection nozzle 41 , an air injection nozzle 42 and a pulverized coal injection nozzle 43 . The ammonia injection nozzle 41 is a nozzle that injects ammonia. The air injection nozzle 42 is a nozzle that injects air for combustion. The pulverized coal injection nozzle 43 is a nozzle that injects pulverized coal.
 アンモニア噴射ノズル41、空気噴射ノズル42および微粉炭噴射ノズル43は、円筒形状を有する。空気噴射ノズル42は、アンモニア噴射ノズル41と同軸上に、アンモニア噴射ノズル41を囲むように配置される。微粉炭噴射ノズル43は、空気噴射ノズル42と同軸上に、空気噴射ノズル42を囲むように配置される。アンモニア噴射ノズル41、空気噴射ノズル42および微粉炭噴射ノズル43によって、三重円筒構造が形成される。アンモニア噴射ノズル41、空気噴射ノズル42および微粉炭噴射ノズル43の中心軸は、火炉2の壁部に対して交差する。具体的には、アンモニア噴射ノズル41、空気噴射ノズル42および微粉炭噴射ノズル43の中心軸は、火炉2の壁部に対して略直交する。 The ammonia injection nozzle 41, the air injection nozzle 42 and the pulverized coal injection nozzle 43 have a cylindrical shape. The air injection nozzle 42 is arranged coaxially with the ammonia injection nozzle 41 so as to surround the ammonia injection nozzle 41 . The pulverized coal injection nozzle 43 is arranged coaxially with the air injection nozzle 42 so as to surround the air injection nozzle 42 . The ammonia injection nozzle 41, the air injection nozzle 42 and the pulverized coal injection nozzle 43 form a triple cylindrical structure. The central axes of the ammonia injection nozzle 41 , the air injection nozzle 42 and the pulverized coal injection nozzle 43 intersect the wall of the furnace 2 . Specifically, the central axes of the ammonia injection nozzle 41 , the air injection nozzle 42 and the pulverized coal injection nozzle 43 are substantially perpendicular to the wall of the furnace 2 .
 以下、バーナ4の径方向、バーナ4の軸方向、および、バーナ4の周方向を、単に径方向、軸方向および周方向とも呼ぶ。バーナ4における火炉2側(図2中の右側)を先端側と呼び、バーナ4における火炉2側に対する逆側(図2中の左側)を後端側と呼ぶ。 Hereinafter, the radial direction of the burner 4, the axial direction of the burner 4, and the circumferential direction of the burner 4 are also simply referred to as the radial direction, the axial direction, and the circumferential direction. The furnace 2 side of the burner 4 (the right side in FIG. 2) is called the front end side, and the opposite side of the burner 4 to the furnace 2 side (the left side in FIG. 2) is called the rear end side.
 アンモニア噴射ノズル41は、本体41aと、供給口41bと、噴射口41cとを含む。本体41aは、円筒形状を有する。本体41aは、バーナ4の中心軸上に延在する。本体41aの肉厚、内径および外径は、軸方向位置によらず略一定である。ただし、本体41aの肉厚、内径および外径は、軸方向位置に応じて変化してもよい。本体41aの後端部に、開口である供給口41bが設けられる。供給口41bは、アンモニアタンク6と接続されている。本体41aの先端部に、開口である噴射口41cが設けられる。噴射口41cは、火炉2の内部空間に臨む。つまり、噴射口41cは、火炉2の内部空間を向いている。 The ammonia injection nozzle 41 includes a main body 41a, a supply port 41b, and an injection port 41c. The main body 41a has a cylindrical shape. The main body 41a extends on the central axis of the burner 4. As shown in FIG. The thickness, inner diameter and outer diameter of the main body 41a are substantially constant regardless of the position in the axial direction. However, the thickness, inner diameter and outer diameter of the main body 41a may change according to the axial position. A supply port 41b, which is an opening, is provided at the rear end of the main body 41a. The supply port 41 b is connected with the ammonia tank 6 . An injection port 41c, which is an opening, is provided at the tip of the main body 41a. The injection port 41 c faces the internal space of the furnace 2 . In other words, the injection port 41c faces the internal space of the furnace 2 .
 アンモニアは、アンモニアタンク6から供給口41bを介して本体41a内に供給される。矢印A1により示すように、本体41a内に供給されたアンモニアは、本体41a内を流れる。本体41a内を通過したアンモニアは、噴射口41cから火炉2の内部空間に向けて噴射される。このように、アンモニア噴射ノズル41は、火炉2の内部空間に向けて設けられる。 Ammonia is supplied from the ammonia tank 6 into the main body 41a through the supply port 41b. As indicated by arrow A1, ammonia supplied into main body 41a flows through main body 41a. Ammonia passing through the main body 41a is injected toward the internal space of the furnace 2 from the injection port 41c. Thus, the ammonia injection nozzle 41 is provided toward the inner space of the furnace 2 .
 アンモニアタンク6には、アンモニアが液体の状態で貯蔵されている。アンモニアタンク6に貯蔵されるアンモニアは、気化器によって気化される。気化したアンモニアがアンモニア噴射ノズル41に供給されるようになっている。 Ammonia is stored in a liquid state in the ammonia tank 6 . Ammonia stored in the ammonia tank 6 is vaporized by a vaporizer. Vaporized ammonia is supplied to the ammonia injection nozzle 41 .
 空気噴射ノズル42は、本体42aと、噴射口42bとを含む。本体42aは、円筒形状を有する。本体42aは、アンモニア噴射ノズル41の本体41aと同軸上に、本体41aを囲むように配置される。本体42aは、先端側に進むにつれて先細りする形状を有する。本体42aの後部に、図示しない供給口が設けられる。 The air injection nozzle 42 includes a main body 42a and an injection port 42b. The main body 42a has a cylindrical shape. The main body 42a is arranged coaxially with the main body 41a of the ammonia injection nozzle 41 so as to surround the main body 41a. The main body 42a has a shape that tapers toward the distal end. A supply port (not shown) is provided in the rear portion of the main body 42a.
 空気噴射ノズル42の供給口は、図示しない空気供給源と接続されている。例えば、空気噴射ノズル42の供給口は、空気供給源としての大気に露出している。本体42aの先端部に、開口である噴射口42bが設けられる。本体42aの先端部の径方向内側には、アンモニア噴射ノズル41の本体41aの先端部が位置している。噴射口42bは、本体42aの先端部と、アンモニア噴射ノズル41の本体41aの先端部との間の円環形状の開口である。噴射口42bは、火炉2の内部空間に臨む。つまり、噴射口42bは、火炉2の内部空間を向いている。 The supply port of the air injection nozzle 42 is connected to an air supply source (not shown). For example, the supply port of the air injection nozzle 42 is exposed to the atmosphere as an air supply source. An injection port 42b, which is an opening, is provided at the tip of the main body 42a. The tip of the main body 41a of the ammonia injection nozzle 41 is positioned radially inside the tip of the main body 42a. The injection port 42 b is an annular opening between the tip of the main body 42 a and the tip of the main body 41 a of the ammonia injection nozzle 41 . The injection port 42 b faces the internal space of the furnace 2 . In other words, the injection port 42b faces the internal space of the furnace 2 .
 空気は、空気供給源から図示しない供給口を介して本体42a内に供給される。矢印A2により示すように、本体42a内に供給された空気は、本体42aの内周部と、アンモニア噴射ノズル41の本体41aの外周部との間の空間内を流れる。本体42a内を通過した空気は、噴射口42bから火炉2の内部空間に向けて噴射される。このように、空気噴射ノズル42は、火炉2の内部空間に向けて設けられる。 Air is supplied into the main body 42a from an air supply source through a supply port (not shown). The air supplied into the main body 42a flows through the space between the inner peripheral portion of the main body 42a and the outer peripheral portion of the main body 41a of the ammonia injection nozzle 41, as indicated by the arrow A2. The air that has passed through the main body 42a is injected toward the internal space of the furnace 2 from the injection port 42b. Thus, the air injection nozzle 42 is provided toward the interior space of the furnace 2 .
 微粉炭噴射ノズル43は、本体43aと、噴射口43bとを含む。本体43aは、円筒形状を有する。本体43aは、空気噴射ノズル42の本体42aと同軸上に、本体42aを囲むように配置される。本体43aは、先端側に進むにつれて先細りする形状を有する。本体43aの後部に、図示しない供給口が設けられる。 The pulverized coal injection nozzle 43 includes a main body 43a and an injection port 43b. The main body 43a has a cylindrical shape. The main body 43a is arranged coaxially with the main body 42a of the air injection nozzle 42 so as to surround the main body 42a. The main body 43a has a tapered shape toward the distal end. A supply port (not shown) is provided in the rear portion of the main body 43a.
 微粉炭噴射ノズル43の供給口は、図示しない微粉炭供給源と接続されている。本体43aの先端部に、開口である噴射口43bが設けられる。本体43aの先端の軸方向位置は、空気噴射ノズル42の本体42aの先端の軸方向位置と略一致する。噴射口43bは、本体43aの先端部と、空気噴射ノズル42の本体42aの先端部との間の円環形状の開口である。噴射口43bは、火炉2の内部空間に臨む。つまり、噴射口43bは、火炉2の内部空間を向いている。 The supply port of the pulverized coal injection nozzle 43 is connected to a pulverized coal supply source (not shown). An injection port 43b, which is an opening, is provided at the tip of the main body 43a. The axial position of the tip of the main body 43 a substantially coincides with the axial position of the tip of the main body 42 a of the air injection nozzle 42 . The injection port 43 b is an annular opening between the tip of the main body 43 a and the tip of the main body 42 a of the air injection nozzle 42 . The injection port 43 b faces the internal space of the furnace 2 . In other words, the injection port 43b faces the internal space of the furnace 2 .
 微粉炭は、微粉炭を搬送するための空気とともに、微粉炭供給源から図示しない供給口を介して本体43a内に供給される。矢印A3により示すように、本体43a内に供給された微粉炭は、本体43aの内周部と、空気噴射ノズル42の本体42aの外周部との間の空間内を空気とともに流れる。本体43a内を通過した微粉炭は、噴射口43bから火炉2の内部空間に向けて噴射される。このように、微粉炭噴射ノズル43は、火炉2の内部空間に向けて設けられる。 Pulverized coal is supplied from a pulverized coal supply source into the main body 43a through a supply port (not shown) together with air for transporting the pulverized coal. As indicated by an arrow A3, the pulverized coal supplied into the main body 43a flows together with the air in the space between the inner peripheral portion of the main body 43a and the outer peripheral portion of the main body 42a of the air injection nozzle . The pulverized coal that has passed through the main body 43a is injected toward the internal space of the furnace 2 from the injection port 43b. Thus, the pulverized coal injection nozzle 43 is provided toward the interior space of the furnace 2 .
 空気供給部5は、バーナ4により形成される火炎Fに対して、径方向外側から燃焼用の空気を供給する。空気供給部5は、バーナ4の先端部と火炉2との間を覆うように配置される。空気供給部5には、空気が流通する流路51が形成されている。流路51は、バーナ4と同軸の円筒形状に形成される。流路51は、図示しない空気供給源と接続されている。流路51のうち火炉2側の端部には、噴射口52が形成されている。 The air supply unit 5 supplies combustion air to the flame F formed by the burner 4 from the outside in the radial direction. The air supply unit 5 is arranged so as to cover the space between the tip of the burner 4 and the furnace 2 . A flow path 51 through which air flows is formed in the air supply portion 5 . The channel 51 is formed in a cylindrical shape coaxial with the burner 4 . The flow path 51 is connected to an air supply source (not shown). An injection port 52 is formed at the end of the flow path 51 on the furnace 2 side.
 矢印A4により示すように、空気供給源から空気供給部5に供給された空気は、流路51を通過し、噴射口52から火炉2の内部空間に向けて噴射される。噴射口52は、火炉2の内部空間に臨む。つまり、噴射口52は、火炉2の内部空間を向いている。このように、空気供給部5は、火炉2の内部空間に向けて設けられる。空気供給部5の噴射口52から噴射される空気は、周方向に旋回しながら、火炉2の内部空間に向けて進む。 As indicated by arrow A4, the air supplied from the air supply source to the air supply unit 5 passes through the flow path 51 and is injected from the injection port 52 toward the internal space of the furnace 2. The injection port 52 faces the internal space of the furnace 2 . That is, the injection port 52 faces the internal space of the furnace 2 . Thus, the air supply unit 5 is provided toward the inner space of the furnace 2 . The air injected from the injection port 52 of the air supply unit 5 advances toward the inner space of the furnace 2 while swirling in the circumferential direction.
 調整機構7は、アンモニア噴射ノズル41からのアンモニアの噴射流速を調整するための機構である。アンモニアの噴射流速は、アンモニア噴射ノズル41の噴射口41cから噴射されるアンモニアの流速である。本実施形態では、調整機構7は、アンモニア噴射ノズル41の噴射口41cの開口面積を調整することによって、アンモニア噴射ノズル41からのアンモニアの噴射流速を調整する。図3を参照して、調整機構7の詳細について説明する。 The adjustment mechanism 7 is a mechanism for adjusting the injection flow rate of ammonia from the ammonia injection nozzle 41 . The injection flow velocity of ammonia is the flow velocity of ammonia injected from the injection port 41 c of the ammonia injection nozzle 41 . In this embodiment, the adjustment mechanism 7 adjusts the injection flow rate of ammonia from the ammonia injection nozzle 41 by adjusting the opening area of the injection port 41 c of the ammonia injection nozzle 41 . Details of the adjustment mechanism 7 will be described with reference to FIG.
 図3は、本実施形態に係る調整機構7を示す模式図である。図3に示すように、アンモニア噴射ノズル41の先端部には、可変部41dが設けられる。可変部41dが変形することによって、噴射口41cの開口面積が変化する。例えば、可変部41dは、周方向に離隔した複数の部材を含み、各部材の先端が後端よりも径方向内側に位置する傾斜姿勢となるように変形できる。このような可変部41dとしては、例えば、コンバージェンス・ダイバージェンス・ノズルと同様の構造が採用され得る。 FIG. 3 is a schematic diagram showing the adjusting mechanism 7 according to this embodiment. As shown in FIG. 3, the tip of the ammonia injection nozzle 41 is provided with a variable portion 41d. As the variable portion 41d deforms, the opening area of the injection port 41c changes. For example, the variable portion 41d includes a plurality of members spaced apart in the circumferential direction, and can be deformed so as to assume an inclined posture in which the tip of each member is positioned radially inward from the rear end. As such a variable part 41d, for example, a structure similar to that of a convergence divergence nozzle can be adopted.
 調整機構7は、駆動装置71を有する。駆動装置71は、アンモニア噴射ノズル41の可変部41dを変形させる。例えば、駆動装置71は、可変部41dの後端に設けられ、動力を発生させるモータ等の動力源を含む。そして、駆動装置71は、可変部41dの後端を中心として可変部41dを回動させることによって、可変部41dの姿勢を変化させることができる。調整機構7は、駆動装置71によりアンモニア噴射ノズル41の可変部41dを変形させることによって、アンモニア噴射ノズル41の噴射口41cの開口面積を調整することができる。 The adjustment mechanism 7 has a driving device 71 . The driving device 71 deforms the variable portion 41 d of the ammonia injection nozzle 41 . For example, the driving device 71 is provided at the rear end of the variable portion 41d and includes a power source such as a motor that generates power. The driving device 71 can change the posture of the variable portion 41d by rotating the variable portion 41d around the rear end of the variable portion 41d. The adjustment mechanism 7 can adjust the opening area of the injection port 41 c of the ammonia injection nozzle 41 by deforming the variable portion 41 d of the ammonia injection nozzle 41 with the driving device 71 .
 図4は、本実施形態に係るアンモニア噴射ノズル41の噴射口41cの開口面積が図3の例と比べて小さくなった状態を示す模式図である。図4の例では、図3の例と比べて、可変部41dの先端の径方向位置が径方向内側に移動するように、可変部41dが変形している。それにより、可変部41dの形状は、先端側に進むにつれて先細りする形状となっている。例えば、図4の可変部41dの形状は、円錐台形状となっている。ゆえに、アンモニア噴射ノズル41の噴射口41cの開口面積が小さくなる。 FIG. 4 is a schematic diagram showing a state in which the opening area of the injection port 41c of the ammonia injection nozzle 41 according to this embodiment is smaller than in the example of FIG. In the example of FIG. 4, compared with the example of FIG. 3, the variable portion 41d is deformed such that the radial position of the tip of the variable portion 41d moves radially inward. Thereby, the shape of the variable portion 41d is tapered toward the distal end side. For example, the variable portion 41d in FIG. 4 has a truncated cone shape. Therefore, the opening area of the injection port 41c of the ammonia injection nozzle 41 is reduced.
 アンモニア噴射ノズル41の噴射口41cの開口面積が小さいほど、噴射口41cから噴射されるアンモニアの流速は速くなる。ゆえに、調整機構7は、アンモニア噴射ノズル41の噴射口41cの開口面積を調整することによって、アンモニア噴射ノズル41からのアンモニアの噴射流速を調整することができる。このように、調整機構7によれば、アンモニアの噴射流速を調整することが適切に実現される。 The smaller the opening area of the injection port 41c of the ammonia injection nozzle 41, the faster the flow rate of ammonia injected from the injection port 41c. Therefore, the adjustment mechanism 7 can adjust the injection flow rate of ammonia from the ammonia injection nozzle 41 by adjusting the opening area of the injection port 41 c of the ammonia injection nozzle 41 . Thus, according to the adjustment mechanism 7, the injection flow rate of ammonia is properly adjusted.
 図2中の制御装置8は、中央処理装置(CPU)、プログラム等が格納されたROM、ワークエリアとしてのRAM等を含み、燃焼装置100全体を制御する。特に、制御装置8は、調整機構7の動作を制御する。具体的には、制御装置8は、調整機構7の駆動装置71を制御することによって、アンモニア噴射ノズル41の噴射口41cの開口面積を調整し、アンモニア噴射ノズル41からのアンモニアの噴射流速を調整することができる。 The control device 8 in FIG. 2 includes a central processing unit (CPU), a ROM storing programs and the like, a RAM as a work area, and the like, and controls the combustion device 100 as a whole. In particular, controller 8 controls the operation of adjustment mechanism 7 . Specifically, the control device 8 controls the driving device 71 of the adjusting mechanism 7 to adjust the opening area of the injection port 41c of the ammonia injection nozzle 41, thereby adjusting the injection flow rate of ammonia from the ammonia injection nozzle 41. can do.
 図5は、本実施形態に係る制御装置8が行う処理の流れの一例を示すフローチャートである。図5に示す処理フローは、例えば、予め設定された時間間隔で繰り返し実行される。後述するように、図5の処理例は、あくまでも一例に過ぎず、制御装置8が行う処理はこの例に限定されない。 FIG. 5 is a flowchart showing an example of the flow of processing performed by the control device 8 according to this embodiment. The processing flow shown in FIG. 5 is, for example, repeatedly executed at preset time intervals. As will be described later, the processing example of FIG. 5 is merely an example, and the processing performed by the control device 8 is not limited to this example.
 図5に示す処理フローが開始すると、ステップS101において、制御装置8は、微粉炭噴射ノズル43からの微粉炭の噴射流速を取得する。微粉炭の噴射流速は、微粉炭噴射ノズル43の噴射口43bから噴射される微粉炭の流速である。 When the process flow shown in FIG. 5 starts, in step S101, the control device 8 acquires the injection flow rate of pulverized coal from the pulverized coal injection nozzle 43. The injection flow velocity of pulverized coal is the flow velocity of pulverized coal injected from the injection port 43 b of the pulverized coal injection nozzle 43 .
 微粉炭噴射ノズル43に供給される搬送用の空気の供給量は、火炉2における要求燃焼量に応じて変化する。それにより、微粉炭の噴射流速は、火炉2における要求燃焼量に応じて変化する。例えば、微粉炭の噴射流速は、火炉2における要求燃焼量が大きくなるにつれて速くなる。火炉2における要求燃焼量は、ボイラ1の要求負荷または要求発電量と相関を有する。 The amount of carrier air supplied to the pulverized coal injection nozzle 43 changes according to the required combustion amount in the furnace 2 . As a result, the pulverized coal injection flow rate changes according to the required combustion amount in the furnace 2 . For example, the injection flow velocity of pulverized coal increases as the required combustion amount in the furnace 2 increases. The required combustion amount in the furnace 2 has a correlation with the required load of the boiler 1 or the required power generation amount.
 制御装置8は、例えば、微粉炭噴射ノズル43に供給される搬送用の空気の供給量を制御する装置から、搬送用の空気の供給量を取得する。そして、制御装置8は、搬送用の空気の供給量に基づいて、微粉炭の噴射流速を取得できる。制御装置8が、微粉炭噴射ノズル43に供給される搬送用の空気の供給量を制御してもよい。 For example, the control device 8 acquires the supply amount of air for transportation from a device that controls the supply amount of air for transportation supplied to the pulverized coal injection nozzle 43 . Then, the control device 8 can acquire the jet flow velocity of the pulverized coal based on the supply amount of air for transportation. The controller 8 may control the amount of carrier air supplied to the pulverized coal injection nozzle 43 .
 ステップS101の次に、ステップS102において、制御装置8は、アンモニアの噴射流速が微粉炭の噴射流速よりも速くなるように、調整機構7を制御する。例えば、制御装置8は、アンモニア噴射ノズル41の噴射口41cの開口面積が微粉炭の噴射流速に応じて変化するように、調整機構7の駆動装置71を制御する。それにより、アンモニアの噴射流速を微粉炭の噴射流速よりも速くすることができる。 After step S101, in step S102, the control device 8 controls the adjustment mechanism 7 so that the injection flow rate of ammonia is faster than the injection flow rate of pulverized coal. For example, the control device 8 controls the driving device 71 of the adjustment mechanism 7 so that the opening area of the injection port 41c of the ammonia injection nozzle 41 changes according to the injection flow rate of pulverized coal. Thereby, the injection flow velocity of ammonia can be made faster than the injection flow velocity of pulverized coal.
 制御装置8は、アンモニアの噴射流速に影響を与えるパラメータのうち、噴射口41cの開口面積以外のパラメータを加味して、調整機構7を制御することが好ましい。例えば、アンモニア噴射ノズル41へのアンモニアの供給量は、火炉2における要求燃焼量に応じて変化し得る。ゆえに、制御装置8は、微粉炭の噴射流速に加えて、アンモニア噴射ノズル41へのアンモニアの供給量に基づいて、調整機構7を制御することが好ましい。それにより、アンモニアの噴射流速を微粉炭の噴射流速よりも速くすることが、より適切に実現される。 It is preferable that the control device 8 controls the adjustment mechanism 7 in consideration of parameters other than the opening area of the injection port 41c among the parameters that affect the injection flow rate of ammonia. For example, the amount of ammonia supplied to the ammonia injection nozzle 41 can change according to the required combustion amount in the furnace 2 . Therefore, the control device 8 preferably controls the adjustment mechanism 7 based on the amount of ammonia supplied to the ammonia injection nozzle 41 in addition to the pulverized coal injection flow rate. As a result, the injection flow velocity of ammonia is more appropriately achieved to be faster than the injection flow velocity of pulverized coal.
 上記では、アンモニア噴射ノズル41の噴射口41cの開口面積を微粉炭の噴射流速に応じて変化させる例を説明した。ただし、制御装置8は、アンモニア噴射ノズル41の噴射口41cの開口面積を、微粉炭の噴射流速以外のパラメータに応じて変化させてもよい。例えば、制御装置8は、アンモニア噴射ノズル41の噴射口41cの開口面積を、火炉2における要求燃焼量、ボイラ1の要求負荷、または、ボイラ1の要求発電量に応じて変化させてもよい。 In the above, an example was explained in which the opening area of the injection port 41c of the ammonia injection nozzle 41 is changed according to the injection flow velocity of pulverized coal. However, the control device 8 may change the opening area of the injection port 41c of the ammonia injection nozzle 41 according to parameters other than the injection flow velocity of pulverized coal. For example, the control device 8 may change the opening area of the injection port 41 c of the ammonia injection nozzle 41 according to the required combustion amount in the furnace 2 , the required load of the boiler 1 , or the required power generation amount of the boiler 1 .
 上記のように、本実施形態に係る燃焼装置100では、制御装置8は、アンモニア噴射ノズル41からのアンモニアの噴射流速が微粉炭噴射ノズル43からの微粉炭の噴射流速よりも速くなるように、調整機構7の動作を制御する。アンモニアの噴射流速と微粉炭の噴射流速との大小関係によって、バーナ4の前方に形成される火炎Fの形状、および、火炎F内で生じる現象が異なる。以下、図6および図7を参照して、火炎Fの形状、および、火炎F内で生じる現象について説明する。 As described above, in the combustion device 100 according to the present embodiment, the control device 8 controls the injection flow rate of ammonia from the ammonia injection nozzle 41 to be faster than the injection flow rate of pulverized coal from the pulverized coal injection nozzle 43. It controls the operation of the adjustment mechanism 7 . The shape of the flame F formed in front of the burner 4 and the phenomenon occurring within the flame F differ depending on the magnitude relationship between the injection flow velocity of ammonia and the injection flow velocity of pulverized coal. The shape of the flame F and phenomena occurring within the flame F will be described below with reference to FIGS. 6 and 7. FIG.
 図6は、本実施形態に係る燃焼装置100により形成される火炎Fについて説明するための図である。つまり、図6に示す火炎Fは、アンモニアの噴射流速が微粉炭の噴射流速よりも速い場合の火炎である。 FIG. 6 is a diagram for explaining the flame F formed by the combustion device 100 according to this embodiment. That is, the flame F shown in FIG. 6 is a flame when the injection flow velocity of ammonia is faster than the injection flow velocity of pulverized coal.
 図6の例では、火炎Fは、バーナ4の中心軸上に延在する細長形状を有する。火炎Fの表層近傍では、破線矢印A5により示すように、空気供給部5から噴射された空気の流れが形成される。微粉炭噴射ノズル43から噴射された微粉炭は、空気供給部5から噴射された空気の流れに引っ張られ、火炎Fの表層近傍を流れる。ゆえに、微粉炭噴射ノズル43から噴射された微粉炭は、火炎Fの表層近傍において、破線矢印A6により示すように、破線矢印A5により示す空気の流れに沿って流れる。それにより、火炎Fの表層近傍の領域R1において、微粉炭が燃焼し、NOxが発生する。領域R1は、微粉炭の燃焼領域である。 In the example of FIG. 6, the flame F has an elongated shape extending on the central axis of the burner 4. In the vicinity of the surface layer of the flame F, a flow of air injected from the air supply section 5 is formed as indicated by the dashed arrow A5. The pulverized coal injected from the pulverized coal injection nozzle 43 is pulled by the flow of air injected from the air supply unit 5 and flows near the surface layer of the flame F. Therefore, the pulverized coal injected from the pulverized coal injection nozzle 43 flows in the vicinity of the surface layer of the flame F, as indicated by the dashed arrow A6, along the air flow indicated by the dashed arrow A5. As a result, the pulverized coal is burned in the region R1 near the surface layer of the flame F, and NOx is generated. A region R1 is a pulverized coal combustion region.
 図6の例では、アンモニアの噴射流速が微粉炭の噴射流速よりも速い。ゆえに、アンモニア噴射ノズル41から噴射されたアンモニアは、空気供給部5から噴射された空気の流れに引っ張られにくいので、実線矢印A7により示すように、火炎Fの中心をバーナ4の軸方向に流れる。アンモニアの流れ方向は、実際には、種々の方向を取り得るが、主たる方向はバーナ4の軸方向となる。それにより、火炎Fの中心側の酸素が少ない領域R2において、アンモニア(NH)がNH、NH、Nに分解される。領域R2は、領域R1に対して径方向内側に位置する。領域R2は、アンモニアの分解領域である。領域R2は、バーナ4の中心軸上に延在する細長形状を有する。 In the example of FIG. 6, the injection flow velocity of ammonia is higher than the injection flow velocity of pulverized coal. Therefore, the ammonia injected from the ammonia injection nozzle 41 is less likely to be pulled by the flow of air injected from the air supply section 5, so it flows in the axial direction of the burner 4 through the center of the flame F as indicated by the solid line arrow A7. . The direction of flow of ammonia can actually take various directions, but the main direction is the axial direction of the burner 4 . As a result, ammonia (NH 3 ) is decomposed into NH 2 , NH, and N in the oxygen-poor region R2 on the center side of the flame F. The region R2 is positioned radially inward with respect to the region R1. Region R2 is the decomposition region of ammonia. Region R2 has an elongated shape extending on the central axis of burner 4 .
 そして、火炎Fの先端側の領域R3において、NOxがNH、NH、Nによって還元される。領域R3は、領域R2に対して、前側に位置する。領域R3は、NOxの還元領域である。 Then, in the region R3 on the tip side of the flame F, NOx is reduced by NH 2 , NH, and N. The region R3 is located on the front side with respect to the region R2. Region R3 is a NOx reduction region.
 図7は、比較例に係る燃焼装置により形成される火炎Fについて説明するための図である。比較例では、本実施形態と異なり、アンモニアの噴射流速が微粉炭の噴射流速よりも遅い。つまり、図7に示す火炎Fは、アンモニアの噴射流速が微粉炭の噴射流速よりも遅い場合の火炎である。 FIG. 7 is a diagram for explaining the flame F formed by the combustion device according to the comparative example. In the comparative example, unlike the present embodiment, the injection flow velocity of ammonia is slower than the injection flow velocity of pulverized coal. That is, the flame F shown in FIG. 7 is a flame when the injection flow velocity of ammonia is slower than the injection flow velocity of pulverized coal.
 図7の例では、火炎Fは、図6の例と比べて、径方向に拡がった形状を有する。図6の例と同様に、破線矢印A5および破線矢印A6により示すように、空気供給部5から噴射された空気、および、微粉炭噴射ノズル43から噴射された微粉炭は、火炎Fの表層近傍を流れる。火炎Fの表層近傍の領域R1において、微粉炭が燃焼し、NOxが発生する。 In the example of FIG. 7, the flame F has a radially expanded shape compared to the example of FIG. As in the example of FIG. 6, as indicated by dashed arrows A5 and A6, the air injected from the air supply unit 5 and the pulverized coal injected from the pulverized coal injection nozzle 43 are near the surface of the flame F. flowing. In a region R1 near the surface layer of the flame F, pulverized coal is burned to generate NOx.
 図7の例では、アンモニアの噴射流速が微粉炭の噴射流速よりも遅い。ゆえに、アンモニア噴射ノズル41から噴射されたアンモニアは、空気供給部5から噴射された空気の流れに引っ張られやすい。よって、アンモニア噴射ノズル41から噴射されたアンモニアの大部分は、実線矢印A7により示すように、破線矢印A5により示す空気の流れに沿って流れる。それにより、火炎Fの中心から表層側に離れた酸素が多い領域R4において、アンモニアが燃焼し、NOxが発生する。領域R4は、アンモニアの燃焼領域である。 In the example of FIG. 7, the injection flow velocity of ammonia is slower than the injection flow velocity of pulverized coal. Therefore, ammonia injected from the ammonia injection nozzle 41 is likely to be pulled by the flow of air injected from the air supply section 5 . Therefore, most of the ammonia injected from the ammonia injection nozzle 41 flows along the air flow indicated by the dashed arrow A5, as indicated by the solid arrow A7. As a result, in the oxygen-rich region R4 away from the center of the flame F to the surface layer side, ammonia burns and NOx is generated. Region R4 is the ammonia combustion region.
 アンモニア噴射ノズル41から噴射されたアンモニアの一部は、酸素が少ない火炎Fの中心側において、NH、NH、Nに分解される。そして、火炎Fの先端側の領域R3において、NOxがNH、NH、Nによって還元される。 Part of the ammonia injected from the ammonia injection nozzle 41 is decomposed into NH 2 , NH, and N on the center side of the flame F where oxygen is scarce. Then, in the region R3 on the tip side of the flame F, NOx is reduced by NH 2 , NH, and N.
 図7に示す比較例では、図6の例と異なり、アンモニア噴射ノズル41から噴射されたアンモニアの大部分が燃焼し、NOxが発生する。ゆえに、微粉炭の燃焼により生じるNOxに加えて、アンモニアの燃焼によってもNOxが発生する。よって、NOxの発生量が多くなる。また、アンモニア噴射ノズル41から噴射されたアンモニアの大部分は、燃焼するので、分解されない。ゆえに、アンモニアの分解により生成されるNH、NH、Nの量が少なくなる。したがって、NOxの還元が十分に行われず、NOxの排出量が増加してしまう。 In the comparative example shown in FIG. 7, unlike the example in FIG. 6, most of the ammonia injected from the ammonia injection nozzle 41 is burned to generate NOx. Therefore, in addition to NOx generated by combustion of pulverized coal, combustion of ammonia also generates NOx. Therefore, the amount of NOx generated increases. Also, most of the ammonia injected from the ammonia injection nozzle 41 is combusted and is not decomposed. Therefore, the amounts of NH 2 , NH, and N produced by decomposition of ammonia are reduced. Therefore, reduction of NOx is not sufficiently performed, and the amount of NOx emissions increases.
 以上説明したように、本実施形態では、制御装置8は、アンモニア噴射ノズル41からのアンモニアの噴射流速が微粉炭噴射ノズル43からの微粉炭の噴射流速よりも速くなるように、調整機構7の動作を制御する。それにより、図6の例のように、アンモニア噴射ノズル41から噴射されたアンモニアを、火炎Fの中心側の酸素が少ない領域R2に送り、分解させることができる。ゆえに、アンモニアの燃焼によるNOxの発生が抑制され、アンモニアの分解が促進される。よって、NOxが効果的に還元され、NOxの排出が抑制される。 As described above, in the present embodiment, the control device 8 controls the adjustment mechanism 7 so that the injection flow rate of ammonia from the ammonia injection nozzle 41 is faster than the injection flow rate of pulverized coal from the pulverized coal injection nozzle 43. control behavior. Thereby, as in the example of FIG. 6, the ammonia injected from the ammonia injection nozzle 41 can be sent to the oxygen-poor region R2 on the center side of the flame F and decomposed. Therefore, the generation of NOx due to combustion of ammonia is suppressed, and the decomposition of ammonia is promoted. Therefore, NOx is effectively reduced, and NOx emissions are suppressed.
 アンモニア噴射ノズル41からのアンモニアの噴射流速が微粉炭噴射ノズル43からの微粉炭の噴射流速に対して過度に速くなると、バーナ4の前方に形成される火炎Fの形状、および、火炎F内で生じる現象が図6の例から乖離するおそれがある。例えば、アンモニア噴射ノズル41から噴射されたアンモニアが、十分に分解されない状態で、アンモニアの分解領域である領域R2よりも前方まで到達することが考えられる。この場合、アンモニアの分解により生成されるNH、NH、Nの量が少なくなり、NOxの排出を抑制する効果が低下し得る。ゆえに、制御装置8は、アンモニア噴射ノズル41からのアンモニアの噴射流速が、微粉炭噴射ノズル43からの微粉炭の噴射流速よりも速く、かつ、上限速度以下になるように、調整機構7の動作を制御することが好ましい。上限速度は、例えば、微粉炭の噴射流速に対して所定の割合だけ速い速度である。 If the injection flow velocity of ammonia from the ammonia injection nozzle 41 becomes excessively faster than the injection flow velocity of pulverized coal from the pulverized coal injection nozzle 43, the shape of the flame F formed in front of the burner 4, and within the flame F The phenomenon that occurs may deviate from the example of FIG. For example, it is conceivable that the ammonia injected from the ammonia injection nozzle 41 reaches the front of the region R2, which is the ammonia decomposition region, in a state where it is not sufficiently decomposed. In this case, the amounts of NH 2 , NH, and N produced by decomposition of ammonia are reduced, and the effect of suppressing NOx emissions may be reduced. Therefore, the control device 8 operates the adjustment mechanism 7 so that the injection flow rate of ammonia from the ammonia injection nozzle 41 is faster than the injection flow rate of pulverized coal from the pulverized coal injection nozzle 43 and is equal to or lower than the upper limit speed. is preferably controlled. The upper limit speed is, for example, a speed that is faster than the injection flow speed of pulverized coal by a predetermined ratio.
 さらに、本実施形態では、図6の例のように、燃焼装置100により形成される火炎Fが細長形状を有する。それにより、微粉炭が酸素と触れ合う時間が長くなるので、微粉炭の燃焼が促進される。ゆえに、未燃の燃料の発生および排出が抑制される。 Furthermore, in this embodiment, as in the example of FIG. 6, the flame F formed by the combustion device 100 has an elongated shape. As a result, the time for the pulverized coal to come into contact with oxygen is lengthened, thus promoting the combustion of the pulverized coal. Therefore, generation and discharge of unburned fuel are suppressed.
 図8は、変形例に係る燃焼装置100Aを示す模式図である。図8に示すように、燃焼装置100Aは、上述した燃焼装置100に対して調整機構7を調整機構7Aに置き換えた例である。 FIG. 8 is a schematic diagram showing a combustion device 100A according to a modification. As shown in FIG. 8, a combustion device 100A is an example in which the adjustment mechanism 7 in the combustion device 100 described above is replaced with an adjustment mechanism 7A.
 燃焼装置100Aのアンモニア噴射ノズル41Aでは、上述した燃焼装置100のアンモニア噴射ノズル41と比較して、内部構造が異なる。図9は、変形例に係るアンモニア噴射ノズル41Aの内部の様子を示す断面図である。具体的には、図9は、アンモニア噴射ノズル41Aの中心軸に直交する図8中のX-X断面における断面図である。 The ammonia injection nozzle 41A of the combustion device 100A has a different internal structure compared to the ammonia injection nozzle 41 of the combustion device 100 described above. FIG. 9 is a cross-sectional view showing the inside of an ammonia injection nozzle 41A according to a modification. Specifically, FIG. 9 is a cross-sectional view taken along line XX in FIG. 8 orthogonal to the central axis of the ammonia injection nozzle 41A.
 図9に示すように、アンモニア噴射ノズル41Aの本体41a内には、複数の供給管41eが設けられている。図9の例では、供給管41eの数が6つである。ただし、供給管41eの数が6つ以外であってもよい。供給管41eは、円筒形状等の筒形状を有する。供給管41eは、本体41aの軸方向に延在する。図9の例では、供給管41eは、本体41aの周方向に等間隔に配置されている。ただし、本体41a内における各供給管41eの配置は、図9の例に限定されない。アンモニアタンク6から本体41a内に供給されたアンモニアは、各供給管41eの内部空間であるアンモニア流路41fを通過して、噴射口41cから噴射される。このように、アンモニア噴射ノズル41には、複数のアンモニア流路41fが設けられている。 As shown in FIG. 9, a plurality of supply pipes 41e are provided inside the main body 41a of the ammonia injection nozzle 41A. In the example of FIG. 9, there are six supply pipes 41e. However, the number of supply pipes 41e may be other than six. The supply pipe 41e has a tubular shape such as a cylindrical shape. The supply pipe 41e extends in the axial direction of the main body 41a. In the example of FIG. 9, the supply pipes 41e are arranged at regular intervals in the circumferential direction of the main body 41a. However, the arrangement of the supply pipes 41e inside the main body 41a is not limited to the example in FIG. Ammonia supplied from the ammonia tank 6 into the main body 41a passes through the ammonia flow path 41f, which is the internal space of each supply pipe 41e, and is injected from the injection port 41c. Thus, the ammonia injection nozzle 41 is provided with a plurality of ammonia flow paths 41f.
 図8中の調整機構7Aは、複数のアンモニア流路41fのうち、アンモニアが流通するアンモニア流路41fの数を調整することによって、アンモニア噴射ノズル41Aからのアンモニアの噴射流速を調整する。 The adjustment mechanism 7A in FIG. 8 adjusts the injection flow rate of ammonia from the ammonia injection nozzle 41A by adjusting the number of ammonia flow paths 41f through which ammonia flows among the plurality of ammonia flow paths 41f.
 具体的には、調整機構7Aは、切替弁71Aを有する。切替弁71Aは、アンモニアタンク6とアンモニア噴射ノズル41Aとを接続する流路に設けられる。切替弁71Aは、各供給管41eについて、アンモニアタンク6からアンモニアが供給される状態と、アンモニアタンク6からアンモニアが供給されない状態とを切り替える。つまり、切替弁71Aは、複数の供給管41eのうち、アンモニアの供給先となる供給管41eを切り替える。それにより、複数のアンモニア流路41fのうち、アンモニアが流通するアンモニア流路41fの数が調整される。 Specifically, the adjustment mechanism 7A has a switching valve 71A. 71 A of switching valves are provided in the flow path which connects the ammonia tank 6 and the ammonia injection nozzle 41A. The switching valve 71A switches between a state in which ammonia is supplied from the ammonia tank 6 and a state in which ammonia is not supplied from the ammonia tank 6 for each supply pipe 41e. In other words, the switching valve 71A switches the supply pipe 41e to which ammonia is supplied among the plurality of supply pipes 41e. Thereby, the number of ammonia flow paths 41f through which ammonia flows is adjusted among the plurality of ammonia flow paths 41f.
 複数のアンモニア流路41fのうち、アンモニアが流通するアンモニア流路41fの数が小さいほど、アンモニア噴射ノズル41における流路断面積の合計値が小さくなるので、噴射口41cから噴射されるアンモニアの流速は速くなる。例えば、複数のアンモニア流路41fのうちの一部のアンモニア流路41fのみをアンモニアが流通する場合、全てのアンモニア流路41fをアンモニアが流通する場合と比べて、噴射口41cから噴射されるアンモニアの流速は速くなる。ゆえに、調整機構7Aは、複数のアンモニア流路41fのうち、アンモニアが流通するアンモニア流路41fの数を調整することによって、アンモニア噴射ノズル41Aからのアンモニアの噴射流速を調整することができる。このように、調整機構7Aによれば、アンモニアの噴射流速を調整することが適切に実現される。 Among the plurality of ammonia flow paths 41f, the smaller the number of ammonia flow paths 41f through which ammonia flows, the smaller the total cross-sectional area of the ammonia injection nozzle 41. Therefore, the flow velocity of ammonia injected from the injection port 41c becomes faster. For example, when ammonia flows through only some of the ammonia flow channels 41f among the plurality of ammonia flow channels 41f, compared to the case where ammonia flows through all of the ammonia flow channels 41f, the amount of ammonia injected from the injection port 41c increases. flow velocity increases. Therefore, the adjustment mechanism 7A can adjust the injection flow rate of ammonia from the ammonia injection nozzle 41A by adjusting the number of ammonia flow paths 41f through which ammonia flows among the plurality of ammonia flow paths 41f. Thus, according to the adjustment mechanism 7A, the injection flow rate of ammonia is properly adjusted.
 燃焼装置100Aにおいても、上述した燃焼装置100と同様に、制御装置8は、アンモニアの噴射流速が微粉炭の噴射流速よりも速くなるように、調整機構7Aを制御する。例えば、制御装置8は、アンモニアが流通するアンモニア流路41fの数が微粉炭の噴射流速に応じて変化するように、調整機構7Aの切替弁71Aを制御する。それにより、アンモニアの噴射流速を微粉炭の噴射流速よりも速くすることができる。ゆえに、上述した燃焼装置100と同様に、NOxの排出が抑制される。また、未燃の燃料の発生および排出が抑制される。 In the combustion device 100A, similarly to the combustion device 100 described above, the control device 8 controls the adjustment mechanism 7A so that the injection flow velocity of ammonia is faster than the injection flow velocity of pulverized coal. For example, the control device 8 controls the switching valve 71A of the adjusting mechanism 7A so that the number of the ammonia flow paths 41f through which ammonia flows changes according to the injection flow rate of pulverized coal. Thereby, the injection flow velocity of ammonia can be made faster than the injection flow velocity of pulverized coal. Therefore, as with the combustion device 100 described above, NOx emissions are suppressed. In addition, generation and discharge of unburned fuel are suppressed.
 制御装置8は、アンモニアが流通するアンモニア流路41fの数を、微粉炭の噴射流速以外のパラメータに応じて変化させてもよい。例えば、制御装置8は、アンモニアが流通するアンモニア流路41fの数を、火炉2における要求燃焼量、ボイラ1の要求負荷、または、ボイラ1の要求発電量に応じて変化させてもよい。 The control device 8 may change the number of ammonia flow paths 41f through which ammonia flows according to parameters other than the injection flow rate of pulverized coal. For example, the control device 8 may change the number of ammonia flow paths 41f through which ammonia flows according to the required combustion amount in the furnace 2, the required load of the boiler 1, or the required power generation amount of the boiler 1.
 以上、添付図面を参照しながら本開示の実施形態について説明したが、本開示はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本開示の技術的範囲に属するものと了解される。 Although the embodiments of the present disclosure have been described above with reference to the accompanying drawings, it goes without saying that the present disclosure is not limited to such embodiments. It is clear that a person skilled in the art can conceive of various modifications or modifications within the scope of the claims, and it is understood that these also belong to the technical scope of the present disclosure. be done.
 上記では、アンモニア噴射ノズル41からのアンモニアの噴射流速を調整する調整機構の例として、調整機構7および調整機構7Aを説明した。ただし、アンモニア噴射ノズル41からのアンモニアの噴射流速を調整する機能を有する機構であれば、調整機構7および調整機構7A以外の機構が用いられてもよい。また、アンモニア噴射ノズル41の噴射口41cの開口面積を調整する調整機構7と、複数のアンモニア流路41fのうち、アンモニアが流通するアンモニア流路41fの数を調整する調整機構7Aとが併用されてもよい。 The adjustment mechanism 7 and the adjustment mechanism 7A have been described above as examples of the adjustment mechanism that adjusts the injection flow rate of ammonia from the ammonia injection nozzle 41 . However, any mechanism other than the adjusting mechanism 7 and the adjusting mechanism 7A may be used as long as it has a function of adjusting the injection flow rate of ammonia from the ammonia injection nozzle 41 . In addition, the adjustment mechanism 7 for adjusting the opening area of the injection port 41c of the ammonia injection nozzle 41 and the adjustment mechanism 7A for adjusting the number of the ammonia passages 41f among the plurality of ammonia passages 41f through which ammonia flows are used together. may
 上記では、燃焼装置100、100Aが、ボイラ1の火炉2に設けられる例を説明した。ただし、燃焼装置100、100Aが用いられる火炉は、燃料を燃焼させて燃焼熱を発生させる炉であればよい。燃焼装置100、100Aは、ボイラ1以外の設備の様々な火炉に用いられ得る。 An example in which the combustion devices 100 and 100A are provided in the furnace 2 of the boiler 1 has been described above. However, the furnace in which the combustion devices 100 and 100A are used may be any furnace that burns fuel to generate combustion heat. Combustion devices 100 and 100A can be used in various furnaces of equipment other than boiler 1 .
 本開示は、ボイラ等に用いられる燃焼装置による燃焼の安定化、および、燃焼装置の補修頻度の低減に資するので、例えば、持続可能な開発目標(SDGs)の目標7「手ごろで信頼でき、持続可能かつ近代的なエネルギーへのアクセスを確保する」および目標13「気候変動とその影響に立ち向かうため、緊急対策を取る」に貢献することができる。 The present disclosure contributes to stabilization of combustion by combustion equipment used in boilers and the like, and reduction of repair frequency of combustion equipment. Ensure access to affordable and modern energy” and Goal 13 “Take urgent action to combat climate change and its impacts”.
1:ボイラ 2:火炉 7:調整機構 7A:調整機構 8:制御装置 41:アンモニア噴射ノズル 41A:アンモニア噴射ノズル 41c:噴射口 41f:アンモニア流路 43:微粉炭噴射ノズル 43b:噴射口 100:燃焼装置 100A:燃焼装置 1: Boiler 2: Furnace 7: Adjustment mechanism 7A: Adjustment mechanism 8: Control device 41: Ammonia injection nozzle 41A: Ammonia injection nozzle 41c: Injection port 41f: Ammonia flow path 43: Pulverized coal injection nozzle 43b: Injection port 100: Combustion Device 100A: Combustion device

Claims (4)

  1.  火炉の内部空間に噴射口が臨むアンモニア噴射ノズルと、
     前記火炉の前記内部空間に噴射口が臨む微粉炭噴射ノズルと、
     前記アンモニア噴射ノズルからのアンモニアの噴射流速を調整する調整機構と、
     前記アンモニア噴射ノズルからのアンモニアの噴射流速が前記微粉炭噴射ノズルからの微粉炭の噴射流速よりも速くなるように、前記調整機構の動作を制御する制御装置と、
     を備える、
     燃焼装置。
    an ammonia injection nozzle whose injection port faces the interior space of the furnace;
    a pulverized coal injection nozzle having an injection port facing the internal space of the furnace;
    an adjustment mechanism for adjusting the injection flow rate of ammonia from the ammonia injection nozzle;
    a controller for controlling the operation of the adjustment mechanism so that the injection flow rate of ammonia from the ammonia injection nozzle is faster than the injection flow rate of pulverized coal from the pulverized coal injection nozzle;
    comprising
    Combustion device.
  2.  前記調整機構は、前記アンモニア噴射ノズルの噴射口の開口面積を調整する機構を含む、
     請求項1に記載の燃焼装置。
    The adjustment mechanism includes a mechanism for adjusting the opening area of the injection port of the ammonia injection nozzle,
    Combustion device according to claim 1 .
  3.  前記アンモニア噴射ノズルには、複数のアンモニア流路が設けられており、
     前記調整機構は、前記複数のアンモニア流路のうち、アンモニアが流通する前記アンモニア流路の数を調整する機構を含む、
     請求項1または2に記載の燃焼装置。
    The ammonia injection nozzle is provided with a plurality of ammonia flow paths,
    The adjustment mechanism includes a mechanism for adjusting the number of the ammonia channels through which ammonia flows among the plurality of ammonia channels,
    Combustion device according to claim 1 or 2.
  4.  請求項1から3のいずれか一項に記載の燃焼装置を備えるボイラ。 A boiler comprising the combustion device according to any one of claims 1 to 3.
PCT/JP2022/024360 2021-10-14 2022-06-17 Combustion device and boiler WO2023062876A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020247002590A KR20240017097A (en) 2021-10-14 2022-06-17 Combustion devices and boilers
CN202280054400.3A CN117795250A (en) 2021-10-14 2022-06-17 Combustion device and boiler
JP2022563235A JP7332060B1 (en) 2021-10-14 2022-06-17 Combustion equipment and boilers
AU2022367978A AU2022367978B2 (en) 2021-10-14 2022-06-17 Combustion device and boiler

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-169141 2021-10-14
JP2021169141 2021-10-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/402,857 Continuation US20240133550A1 (en) 2021-10-13 2024-01-03 Combustion device and boiler

Publications (1)

Publication Number Publication Date
WO2023062876A1 true WO2023062876A1 (en) 2023-04-20

Family

ID=85988257

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/024360 WO2023062876A1 (en) 2021-10-14 2022-06-17 Combustion device and boiler

Country Status (5)

Country Link
JP (1) JP7332060B1 (en)
KR (1) KR20240017097A (en)
CN (1) CN117795250A (en)
AU (1) AU2022367978B2 (en)
WO (1) WO2023062876A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827612U (en) * 1981-08-12 1983-02-22 三菱重工業株式会社 Powder combustion burner
JP2001227711A (en) * 2000-02-17 2001-08-24 Tokyo Gas Co Ltd LOW NOx BURNER
JP2018173177A (en) * 2017-03-31 2018-11-08 株式会社Ihi Combined combustion furnace, and combined combustion boiler
CN110873326A (en) * 2018-08-29 2020-03-10 赫普科技发展(北京)有限公司 Ammonia mixing combustion system and carbon dioxide emission reduction method adopting same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001065810A (en) * 1999-08-25 2001-03-16 Nkk Corp Combustion method of combustion burner
JP7027817B2 (en) * 2017-11-02 2022-03-02 株式会社Ihi Combustion device and boiler

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827612U (en) * 1981-08-12 1983-02-22 三菱重工業株式会社 Powder combustion burner
JP2001227711A (en) * 2000-02-17 2001-08-24 Tokyo Gas Co Ltd LOW NOx BURNER
JP2018173177A (en) * 2017-03-31 2018-11-08 株式会社Ihi Combined combustion furnace, and combined combustion boiler
CN110873326A (en) * 2018-08-29 2020-03-10 赫普科技发展(北京)有限公司 Ammonia mixing combustion system and carbon dioxide emission reduction method adopting same

Also Published As

Publication number Publication date
AU2022367978B2 (en) 2024-05-09
KR20240017097A (en) 2024-02-06
CN117795250A (en) 2024-03-29
JP7332060B1 (en) 2023-08-23
AU2022367978A1 (en) 2024-01-18
JPWO2023062876A1 (en) 2023-04-20

Similar Documents

Publication Publication Date Title
JP7485500B2 (en) Combustion equipment and boilers
KR20200050962A (en) Low NOx and CO combustion burner methods and devices
KR20040012525A (en) Combustion method and apparatus for reduction NOx
WO2009134614A1 (en) Low nox burner
WO2022176347A1 (en) Combustion device and boiler
CN101603682A (en) The combustion method of burner and high-speed flow-jet diffusion combustion type combustion nozzle
KR101238301B1 (en) LOW NOx OXYGEN BUNER WITH 2 STAGE PREMIXING CYLINDRICAL CHAMBER FLUE GAS RECIRCULATION
JP7332060B1 (en) Combustion equipment and boilers
KR101328255B1 (en) Burner using more than two gases having a different burning speed
JP6429471B2 (en) Regenerative burner and metal heating furnace
CN112189113A (en) Fuel nozzle system
US20240133550A1 (en) Combustion device and boiler
WO2022176353A1 (en) Combustion device and boiler
WO2022176275A1 (en) Combustion device and boiler
KR101199261B1 (en) LOW NOx GAS/OIL OXYGEN BUNER WITH 2 STAGE PREMIXING CYLINDRICAL CHAMBER AND FLUE GAS RECIRCULATION
WO2023127919A1 (en) Burner and combustion furnace
JP7150102B1 (en) Two-stage combustion device
WO2023120395A1 (en) Ammonia combustion burner and boiler
JP2017122540A (en) Burner
JP2023119728A (en) Burner
JP2023154262A (en) Burner
JP2761962B2 (en) Low NO lower x boiler burner, low NO lower x boiler and operating method thereof
JP2022130326A (en) Burner
WO2017056318A1 (en) Regenerative burner and metal furnace
Lifshits et al. Low NO x burner

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022563235

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22880582

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022367978

Country of ref document: AU

Ref document number: AU2022367978

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2022367978

Country of ref document: AU

Date of ref document: 20220617

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20247002590

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247002590

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 202280054400.3

Country of ref document: CN