WO2023061703A1 - VERFAHREN UND VORRICHTUNG ZUM BESTIMMEN EINER REGLERAUSGANGSGRÖßE EINES REGLERS FÜR EINE HANDMOMENTENREGELUNG EINES STEER-BY-WIRE LENKSYSTEMS FÜR EIN FAHRZEUG - Google Patents
VERFAHREN UND VORRICHTUNG ZUM BESTIMMEN EINER REGLERAUSGANGSGRÖßE EINES REGLERS FÜR EINE HANDMOMENTENREGELUNG EINES STEER-BY-WIRE LENKSYSTEMS FÜR EIN FAHRZEUG Download PDFInfo
- Publication number
- WO2023061703A1 WO2023061703A1 PCT/EP2022/075970 EP2022075970W WO2023061703A1 WO 2023061703 A1 WO2023061703 A1 WO 2023061703A1 EP 2022075970 W EP2022075970 W EP 2022075970W WO 2023061703 A1 WO2023061703 A1 WO 2023061703A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- controller
- parameter
- vehicle
- output variable
- controlled system
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 18
- 230000006978 adaptation Effects 0.000 claims description 24
- 230000005540 biological transmission Effects 0.000 claims description 8
- 230000001629 suppression Effects 0.000 claims description 7
- 239000011159 matrix material Substances 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D6/00—Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits
- B62D6/008—Control of feed-back to the steering input member, e.g. simulating road feel in steer-by-wire applications
Definitions
- the invention is based on a method and a device for determining a controller output variable of a controller, in particular for manual torque control of a steer-by-wire steering system for a vehicle.
- a desired steering feel for a driver is generated by regulation.
- a corresponding actual torque is measured and fed back to a controller.
- the desired steering feel is represented by a target torque that is fed to the controller.
- the controller calculates a corresponding output signal in such a way that the actual torque is as close to the target torque as possible at all times.
- the controller is designed in such a way that a defined specification for the controller is met.
- the specification usually includes several target variables, such as good control behavior, sufficient interference suppression, sufficient robustness, haptic unobtrusiveness, etc.
- a controller is therefore desirable that can be adapted to an operating situation and that meets the corresponding desired target specifications, in particular with regard to good control behavior, sufficient interference suppression, sufficient robustness and/or haptic unobtrusiveness.
- DE 102019202 769 A1 relates to a movement control of a motor vehicle by means of regulation.
- One goal of this control is to achieve good control behavior, i.e. to optimize the control deviation between the target and actual value.
- US Pat. No. 7,130,729 B2 relates to an adaptive compensation of a rear axle steering control using vehicle dynamic parameter estimation with a gain scheduler. This is implemented as a predefined function of parameters of the vehicle and is executed in parallel with a control unit in an open loop, with a manipulated variable being determined as a function of a sum of a manipulated variable of the controller unit and a manipulated variable of the gain scheduler.
- target specifications that, in addition to leadership behavior, also relate to other target values that cannot be quantified in terms of time using signals from the system. Examples of such target values are e.g. haptic conspicuousness or robustness.
- a transfer function of a closed control loop characterizes various target values, eg leadership behavior, haptic abnormalities or robustness, with their amplitude and phase in certain frequency ranges.
- the gain scheduler appears in the path of the actual values. This means that the gain scheduler is non-linear with respect to system behavior in the closed control loop.
- the robustness for example when increasing a gain of the gain scheduler with a gain scheduling parameter, is improved at first, but deteriorates again with further increases. It is therefore difficult to specify in which direction the gain scheduling parameter in the gain scheduler should be changed in order to increase robustness.
- behavior in closed loop control by the device and the method according to the independent claims due to its adaptation linearly dependent on the gain scheduling parameter. Therefore, a relationship between a target variable and a gain scheduling parameter is monotonic.
- the method provides that a controller output variable of a control device is determined with a controller for a controlled system, in particular for manual torque control of a steer-by-wire steering system for a vehicle, with a specified controller property of the controller being adapted by a specified adaptation component, with a Influence of the specified adaptation component on the controller property is continuously changed depending on a parameter, the parameter being determined depending on an operating variable of the controlled system, in particular a steering and/or driving situation of the vehicle, and the controller output variable being determined with the controller.
- the controller is operated with situation-dependent controller parameters and the controller properties are continuously adapted depending on the steering and/or driving situations of the vehicle, without discontinuities arising which a driver of the vehicle, for example, perceives.
- the controller output variable is preferably determined as a function of a transfer function of the control device, with the transfer function being defined as a function of a Koprime factorization of the controlled system and the adaptation component being parameterized with the Youla parameterization, with the Youla parameterization being scaled by the parameter.
- This guarantees the stability of a closed control loop, which includes the controller and the controlled system, despite the adaptation of the controller properties or a change in the controller parameters. This makes it possible to change the controller properties continuously without switching operation and at the same time to ensure the stability of the control loop.
- at least one transmission behavior of the control circuit which includes the control device and the controlled system, in particular interference suppression, is modified by the parameter and at least one other transmission behavior is not. This makes it possible to continuously and individually reach the target variables resulting from the steering and/or driving situation of the vehicle.
- a gradient of the parameter is not limited. This means the gradient does not have to be limited. As a result, a dynamic of the parameter can be chosen arbitrarily without inducing instability.
- a device which is designed to determine a controller output variable of a control device with a controller for a controlled system, in particular for manual torque control of a steer-by-wire steering system for a vehicle, with the device being designed to determine a predefined controller property of the adjust controller by a predetermined adjustment proportion; to continuously change an influence of the predetermined adaptation component on the controller property as a function of a parameter; to determine the parameter as a function of an operating situation of the controlled system, in particular a steering and/or driving situation of the vehicle, and to determine the controller output variable with the controller.
- the device is designed without a limitation of a gradient of the parameter.
- the vehicle For controlling a vehicle, the vehicle includes the device.
- Figure 1 is a schematic representation of part of a steer-by-wire steering system
- FIG. 2 shows a flow chart of a method for determining a controller output variable of a controller
- FIG. 3 shows a schematic representation of part of a vehicle.
- FIG. 1 shows a schematic representation of a device 100 for controlling a controlled system 102.
- the device 100 includes a control device 104, which provides the controlled system 102 with a controller output variable 106 by a controller 108.
- controller output variable 106 characterizes a motor torque for the manual torque adjuster of the steer-by-wire steering system.
- a signal from the steer-by-wire steering system, which characterizes an actual torque 110 of the manual torque adjuster, is provided to controller 108 as an input variable.
- controller 108 is supplied with a setpoint torque 112 for the desired manual torque and a parameter 114, which is also referred to below as parameter r, as further input variables.
- a specified controller property of the controller 108 is adapted by a specified adaptation component 116 .
- the parameter r continuously changed.
- the parameter r is determined depending on an operating situation of the steer-by-wire steering system, in particular a steering and/or driving situation of the vehicle. This selects a controller property that is suitable for the operating situation.
- a control loop which includes the control device 104 and the controlled system 102, remains stable.
- the controlled system 102 is broken down as follows using a Koprime factorization where the controlled system 102 is denoted by G(s) and the transfer functions N(s) and M(s) are stable. Due to the Koprime property, other stable transfer functions X(s) and Y(s) exist, so that the Bezout identity is applicable.
- Any controller that has the following transfer matrix K(s), with a predetermined stable transfer function and with a is parameterized with any stable transfer function Q(s), the controlled system G(s) and thus also the control loop are stabilized.
- the stable transfer function Q(s) represents the adaptation part 116.
- the controller 108 which together with the transfer function Q(s) results in the transfer matrix K(s), has the following transfer matrix J(s),
- the transfer function Q(s) as the adaptation part 116 is parameterized in the example with a Youla parameterization, with the Youla parameterization by is scaled by the parameter r.
- the controller 108 is designed in accordance with the procedure described above, as a result of which the controller properties of the controller 104 can be adjusted via the parameter r. The stability of the control loop is maintained.
- the control device 104 results accordingly from the specified controller 108, which is combined with the adaptation component 116 scaled by the parameter r according to the Youla parameterization.
- Adaptation component 116 is specified, for example, taking into account a steering and/or driving situation of the vehicle or is determined as a function of an operating variable of controller 108 .
- FIG. 2 shows a flow chart of a method for determining controller output variable 106 of controller 108 for manual torque control of the steer-by-wire steering system for a vehicle.
- a step 200 an operating situation of the controlled system is determined in the form of a steering and/or driving situation of the vehicle.
- the parameter r is determined as a function of the operating situation and the influence of the adaptation component 116 is changed as a function of the parameter r, as a result of which the controller property is adapted.
- Predefined adaptation component 116 is determined, for example, as a function of one of the operating variables of controller 108 .
- the controller output variable 106 of the controller 108 is determined by the controller 108 with the previously adjusted controller property and is provided to the steer-by-wire steering system.
- controller output variable 106 is determined as a function of transfer function K(s) of controller 104 .
- the transfer function K(s) is defined as a function of a Koprime factorization of the controlled system 102, ie G(s) in the example.
- the adjustment portion 116 is parameterized in the example with the Youla parameterization Q(s).
- the Youla parameterization Q(s) is scaled by parameter 114 in the example.
- At least one transmission behavior of the control loop is modified by parameter 114 and at least one other transmission behavior is not.
- the gradient of the parameter 114 is not limited.
- the vehicle 300 includes the steer-by-wire steering system.
- the steer-by-wire steering system includes a steering system 302 and a manual torque adjuster 304.
- the vehicle 300 includes two rear wheels 306 and two front wheels 308.
- the rear wheels 306 are not steerable in the example.
- the front wheels 308 can be steered by the steering 302 in the example.
- the rear wheels 306 can also be steerable by steering the rear axle.
- Manual torque adjuster 304 picks up directional specifications from a driver and generates a steering feel for the driver. To generate the steering feel, the manual torque adjuster 304 contains a motor 310 which delivers a corresponding motor torque to a rotor shaft 312 which is then forwarded to a steering handle 318 via a gear 314 and a torsion bar 316 . A steering wheel is shown as an example of the steering handle 318 .
- Vehicle 300 includes device 100 , manual torque controller 304 representing controlled system 102 .
- motor 310 is controlled with controller output variable 106 depending on actual torque 110 of manual torque controller 304 .
- the device and the method were described using the example of manual torque control of the steer-by-wire steering system for vehicle 300 .
- the method is also the same for a controller output variable controller can be used for another controlled system.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Steering Control In Accordance With Driving Conditions (AREA)
Abstract
Description
Claims
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280068427.8A CN118103276A (zh) | 2021-10-11 | 2022-09-19 | 用于确定调节器的调节器输出参量用于对车辆的线控转向转向系统进行手动转矩调节的方法和设备 |
JP2024521811A JP2024538759A (ja) | 2021-10-11 | 2022-09-19 | 車両用のステアバイワイヤ式の操舵システムの手動トルクを閉ループ制御するためのコントローラのコントローラ出力量を決定するための方法及び装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102021211421.0A DE102021211421A1 (de) | 2021-10-11 | 2021-10-11 | Verfahren und Vorrichtung zum Bestimmen einer Reglerausgangsgröße eines Reglers für eine Handmomentenregelung eines Steer-by-Wire Lenksystems für ein Fahrzeug |
DE102021211421.0 | 2021-10-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023061703A1 true WO2023061703A1 (de) | 2023-04-20 |
Family
ID=83717546
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2022/075970 WO2023061703A1 (de) | 2021-10-11 | 2022-09-19 | VERFAHREN UND VORRICHTUNG ZUM BESTIMMEN EINER REGLERAUSGANGSGRÖßE EINES REGLERS FÜR EINE HANDMOMENTENREGELUNG EINES STEER-BY-WIRE LENKSYSTEMS FÜR EIN FAHRZEUG |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP2024538759A (de) |
CN (1) | CN118103276A (de) |
DE (1) | DE102021211421A1 (de) |
WO (1) | WO2023061703A1 (de) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7130729B2 (en) | 2004-07-26 | 2006-10-31 | General Motors Corporation | Adaptive compensation of rear-wheel steering control using vehicle dynamics parameter estimation |
US7295905B2 (en) * | 2004-07-29 | 2007-11-13 | Visteon Global Technology, Inc. | Control of a steering wheel system with passive resistance torque |
DE102019202769A1 (de) | 2019-03-01 | 2020-09-03 | Zf Friedrichshafen Ag | Bewegungssteuerung eines Kraftfahrzeugs |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10254392A1 (de) | 2002-11-18 | 2004-05-27 | Volkswagen Ag | Verfahren und Vorrichtung zur Fahrdynamikregelung |
-
2021
- 2021-10-11 DE DE102021211421.0A patent/DE102021211421A1/de active Pending
-
2022
- 2022-09-19 JP JP2024521811A patent/JP2024538759A/ja active Pending
- 2022-09-19 CN CN202280068427.8A patent/CN118103276A/zh active Pending
- 2022-09-19 WO PCT/EP2022/075970 patent/WO2023061703A1/de active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7130729B2 (en) | 2004-07-26 | 2006-10-31 | General Motors Corporation | Adaptive compensation of rear-wheel steering control using vehicle dynamics parameter estimation |
US7295905B2 (en) * | 2004-07-29 | 2007-11-13 | Visteon Global Technology, Inc. | Control of a steering wheel system with passive resistance torque |
DE102019202769A1 (de) | 2019-03-01 | 2020-09-03 | Zf Friedrichshafen Ag | Bewegungssteuerung eines Kraftfahrzeugs |
Non-Patent Citations (1)
Title |
---|
MAHTOUT I ET AL: "Youla-Kucera Based Lateral Controller for Autonomous Vehicle", 2018 21ST INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), IEEE, 4 November 2018 (2018-11-04), pages 3281 - 3286, XP033470397, ISBN: 978-1-7281-0321-1, [retrieved on 20181207], DOI: 10.1109/ITSC.2018.8569779 * |
Also Published As
Publication number | Publication date |
---|---|
CN118103276A (zh) | 2024-05-28 |
JP2024538759A (ja) | 2024-10-23 |
DE102021211421A1 (de) | 2023-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3738860B1 (de) | Verfahren und lenkungssteuergerät zum ermitteln einer stellgrösse für das einstellen eines servolenkmoments bei einem fahrzeuglenksystem | |
DE102006025380B4 (de) | Fahrzeuglenksystem zum Setzen einer Lenkreaktion ohne Verwendung einer Differenz zwischen Soll- und Istlenkwinkeln | |
EP3943368B1 (de) | Erzeugen von lenkhandhabemomenten als haptische rückmeldung bei fahrzeuglenksystemen | |
DE3840101A1 (de) | Lenksteuereinrichtung fuer kraftfahrzeuge | |
DE102004001984B4 (de) | System und Verfahren zum Steuern bzw. Regeln eines elektronischen Fahrzeuglenkers unter Anwendung einer Verstärkungsplanungssteuerung bzw. Regelung | |
DE102007040064B4 (de) | Verfahren zur Steuerung des Rückstellmoments eines Fahrzeuglenksystems | |
DE102016218845B4 (de) | Verfahren und Vorrichtung zum Betreiben eines Lenksystems mit elektromechanischer Lenkunterstützung | |
DE102012009568B3 (de) | Verfahren zum Betreiben einer Überlagerungslenkung und Kraftwagen mit einer Überlagerungslenkung | |
DE102019127167A1 (de) | Management von schwankungsrauschen in elektrischen servolenkungssystemen | |
DE102017217084B4 (de) | Verfahren zur Ansteuerung eines Lenksystems mit einer elektrischen Lenkunterstützung | |
DE112020003389B4 (de) | Spurgeführte fahrerassistenzvorrichtung und verfahren zur unterstützung oder automatisierung der quersteuerung eines fahrzeugs | |
EP2832599B1 (de) | Verfahren und Vorrichtung zum Betreiben eines Fahrzeugs, Computerprogramm, Computer-Programmprodukt | |
DE102009055939B4 (de) | Elektromechanische Lenkung und Verfahren zur Steuerung einer elektromechanischen Lenkung | |
WO2023061703A1 (de) | VERFAHREN UND VORRICHTUNG ZUM BESTIMMEN EINER REGLERAUSGANGSGRÖßE EINES REGLERS FÜR EINE HANDMOMENTENREGELUNG EINES STEER-BY-WIRE LENKSYSTEMS FÜR EIN FAHRZEUG | |
DE102012107595A1 (de) | Verfahren zur ermittlung eines soll-vorgabewerts für einen zielstromwert eines servomotors in einer elektrischen hilfs- oder fremdkraftlenkung | |
DE102019216950B4 (de) | Einstellen eines Fahrzeuglenkwinkels per Steuerung unter Berücksichtigung von Dynamikgrößen | |
EP4222043A1 (de) | Ermittlung einer zahnstangenkraft für ein fahrzeuglenksystem | |
EP1646547A1 (de) | Verfahren zum ermitteln eines istwertes einer stellgrösse, insbesondere eines lenkwinkels | |
DE102022211205B3 (de) | Regelvorrichtung und Verfahren zur Regelung eines Systems eines Fahrzeugs | |
EP3980314B1 (de) | Einstellen eines fahrzeuglenkwinkels bei einem fahrzeuglenksystem unter berücksichtigung von dynamikgrössen | |
EP1783459B9 (de) | Vorrichtung und Verfahren zum Filtern eines differenziertem Messsignals eines elektromechanischen Lenksystems | |
DE102021211432A1 (de) | Verfahren und Vorrichtung zum Bestimmen einer Filterausgangsgröße eines Filters für eine Filterung eines Drehstabmoments eines Steer-by-Wire Lenksystems für ein Fahrzeug | |
DE102021204997A1 (de) | Verfahren zur Bestimmung eines Lenkrücklaufmomentbedarfs, Lenksystem, Computerprogrammprodukt und Speichermedium | |
DE102021204995A1 (de) | Verfahren zur Bestimmung eines Lenkhysteresebedarfs, Lenksystem, Computerprogrammprodukt und Speichermedium | |
DE102022205552A1 (de) | Verfahren zur Erzeugung einer haptischen Rückmeldekraft an einer Lenkwunscheingabevorrichtung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22790292 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2024521811 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280068427.8 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22790292 Country of ref document: EP Kind code of ref document: A1 |