WO2023061490A1 - 信息映射方法及通信设备 - Google Patents

信息映射方法及通信设备 Download PDF

Info

Publication number
WO2023061490A1
WO2023061490A1 PCT/CN2022/125408 CN2022125408W WO2023061490A1 WO 2023061490 A1 WO2023061490 A1 WO 2023061490A1 CN 2022125408 W CN2022125408 W CN 2022125408W WO 2023061490 A1 WO2023061490 A1 WO 2023061490A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
mapping
max
doppler
delayed
Prior art date
Application number
PCT/CN2022/125408
Other languages
English (en)
French (fr)
Inventor
王方刚
王东
孙布勒
刘昊
袁璞
李淅然
单雅茹
郝亚星
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023061490A1 publication Critical patent/WO2023061490A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the present application relates to the technical field of communication, and in particular to an information mapping method and a communication device.
  • the space-time coding scheme in the delayed Doppler domain assumes that the channels of multiple delayed Doppler frames are the same, and performs short-time coding at the sending end at the granularity of multiple consecutive delayed Doppler frames to obtain diversity Gain, but due to the changing characteristics of the channel and the large granularity of the delayed Doppler frame, the channels of multiple consecutive delayed Doppler frames are actually different. Therefore, based on the above assumptions, it is not suitable for direct space-time coding.
  • the embodiment of the present application provides an information mapping method and a communication device, which can solve the problem of how to ensure that the channels of multiple delayed Doppler frames are the same when performing space-time coding in the delayed Doppler domain.
  • an information mapping method including:
  • the sending end device maps the first information to the second information on the delayed Doppler frame
  • the delayed Doppler frame includes M*N grids; M is the total number of delay indexes, N is the total number of Doppler indexes, and both M and N are positive integers;
  • the delayed Doppler frame includes at least two subframes, each subframe includes a first guard interval section, a first mapping section, and two second mapping sections;
  • the two second mapping units respectively occupy grids corresponding to k max Doppler indices at the head and tail of the subframe in the Doppler direction, and the first mapping unit occupies the subframe N/
  • the information mapped to the second mapping part at the head of different subframes is the same, and the information mapped to the second mapping part at the end of different subframes is the same.
  • an information mapping device including:
  • a first mapping module configured to map the first information to second information on the delayed Doppler frame
  • the delayed Doppler frame includes M*N grids; M is the total number of delay indexes, N is the total number of Doppler indexes, and both M and N are positive integers;
  • the delayed Doppler frame includes at least two subframes, each subframe includes a first guard interval section, a first mapping section, and two second mapping sections;
  • the two second mapping units respectively occupy grids corresponding to k max Doppler indices at the head and tail of the subframe in the Doppler direction, and the first mapping unit occupies the subframe N/
  • the information mapped to the second mapping part at the head of different subframes is the same, and the information mapped to the second mapping part at the end of different subframes is the same.
  • a communication device including a processor, a memory, and a program or instruction stored on the memory and operable on the processor, and the program or instruction is implemented when executed by the processor. The steps of the method as described in the first aspect.
  • a communication device including a processor and a communication interface, wherein the processor is configured to map the first information to the second information on the delayed Doppler frame;
  • the delayed Doppler frame includes M*N grids; M is the total number of delay indexes, N is the total number of Doppler indexes, and both M and N are positive integers;
  • the delayed Doppler frame includes at least two subframes, each subframe includes a first guard interval section, a first mapping section, and two second mapping sections;
  • the two second mapping units respectively occupy grids corresponding to k max Doppler indices at the head and tail of the subframe in the Doppler direction, and the first mapping unit occupies the subframe N/
  • the information mapped to the second mapping part at the head of different subframes is the same, and the information mapped to the second mapping part at the end of different subframes is the same.
  • a readable storage medium is provided, and a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the steps of the method according to the first aspect are implemented.
  • a sixth aspect provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, the processor is used to run programs or instructions, and implement the method as described in the first aspect .
  • a computer program product is provided, the computer program product is stored in a non-transitory storage medium, and the computer program product is executed by at least one processor to implement the method as described in the first aspect step.
  • a communication device configured to perform the steps of the method described in the first aspect.
  • the delayed Doppler frame includes at least two subframes, and each subframe includes three parts: a first guard interval part, a first mapping part, and two second mapping parts.
  • FIG. 1 shows a structural diagram of a communication system applicable to an embodiment of the present application
  • FIG. 2 shows a schematic flow diagram of an information mapping method in an embodiment of the present application
  • Fig. 3 shows one of the mapping schematic diagrams of the delayed Doppler frame according to the embodiment of the present application
  • FIG. 4 shows the second schematic diagram of mapping of delayed Doppler frames according to the embodiment of the present application
  • FIG. 5 shows the third schematic diagram of mapping of delayed Doppler frames according to the embodiment of the present application.
  • FIG. 6 shows a fourth schematic diagram of mapping of delayed Doppler frames according to an embodiment of the present application.
  • FIG. 7 shows a fifth schematic diagram of mapping of delayed Doppler frames according to an embodiment of the present application.
  • Figure 8 shows a schematic diagram of the position of the cyclic prefix in the embodiment of the present application.
  • Figure 9 shows a schematic diagram of the position of the cyclic suffix in the embodiment of the present application.
  • FIG. 10 shows a schematic diagram of modules of an information mapping device according to an embodiment of the present application.
  • FIG. 11 shows a structural block diagram of a communication device according to an embodiment of the present application.
  • FIG. 12 shows a structural block diagram of a terminal in an embodiment of the present application.
  • FIG. 13 shows a structural block diagram of a network-side device according to an embodiment of the present application.
  • first, second and the like in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific sequence or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the application are capable of operation in sequences other than those illustrated or described herein and that "first" and “second” distinguish objects. It is usually one category, and the number of objects is not limited. For example, there may be one or more first objects.
  • “and/or” in the description and claims means at least one of the connected objects, and the character “/” generally means that the related objects are an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used for the above-mentioned system and radio technology, and can also be used for other systems and radio technologies.
  • the following description describes the New Radio (New Radio, NR) system for exemplary purposes, and uses NR terminology in most of the following descriptions, and these technologies can also be applied to applications other than NR system applications, such as the 6th Generation (6 th Generation , 6G) communication system.
  • 6th Generation 6th Generation
  • FIG. 1 shows a structural diagram of a wireless communication system to which this embodiment of the present application is applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12 .
  • the terminal 11 can also be called terminal equipment or user equipment (User Equipment, UE), and the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital Personal Digital Assistant (PDA), Pocket PC, Netbook, Ultra-Mobile Personal Computer (UMPC), Mobile Internet Device (MID), Augmented Reality (AR)/Virtual Reality (Virtual Yeality, VR) equipment, robots, wearable devices (Wearable Device), vehicle equipment (Vehicle User Equipment, VUE), pedestrian terminal (Pedestrian User Equipment, PUE), smart home (home equipment with wireless communication function, Such as refrigerators, TVs, washing machines or furniture, etc.), wearable devices include: smart watches, smart bracelets, smart headphones, smart glasses, smart jewelry (smart bracelets, smart bracelets,
  • the network side device 12 may be a base station or a core network device, where a base station may be called a node B, an evolved node B, an access point, a base transceiver station (Base Transceiver Station, BTS), a radio base station, a radio transceiver, a basic Basic Service Set (BSS), Extended Service Set (ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, Wireless Local Area Network, WLAN) access point, wireless fidelity (Wireless Fidelity, WiFi) node, transmitting and receiving point (Transmitting Receiving Point, TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station does not Limited to specific technical vocabulary, it should be noted that in the embodiment of the present application, only the base station in the NR system is taken as an example, and the specific type of the base station is
  • the embodiment of the present application provides an information mapping method, including:
  • Step 201 The sending end device maps the first information to the second information on the delayed Doppler frame
  • the delayed Doppler frame includes M*N grids; M is the total number of delay indexes, N is the total number of Doppler indexes, and both M and N are positive integers;
  • the delayed Doppler frame includes at least two subframes, each subframe includes a first guard interval section, a first mapping section, and two second mapping sections;
  • the two second mapping units respectively occupy grids corresponding to k max Doppler indices at the head and tail of the subframe in the Doppler direction, and the first mapping unit occupies the subframe N/
  • the information mapped to the second mapping part at the head of different subframes is the same, and the information mapped to the second mapping part at the end of different subframes is the same.
  • each delay index corresponds to a grid
  • each Doppler index corresponds to a grid.
  • the configuration information corresponding to the first interval part is 0, that is, the first interval part is not used for transmitting information.
  • the above-mentioned sending end device may be a network side device, such as a base station, or may be a terminal device.
  • the signal received by the receiving end in the delayed Doppler domain is the result of two-dimensional convolution between the delayed Doppler domain signal at the transmitting end and the delayed Doppler domain channel.
  • the signal in the delayed Doppler domain will interfere with the head at the tail of the delay direction, and the tail of the Doppler direction will also interfere with the head.
  • the tail of one subframe will interfere with the head of the next adjacent subframe.
  • guard intervals need to be placed at the head and tail of each subframe in the delay direction and Doppler direction to prevent interference between data.
  • one copy of the same information is mapped to the head positions in the Doppler direction of all subframes, and another copy of the same information is mapped to the head positions in the Doppler direction of all subframes.
  • the head of one and the tail of the other interfere with each other. Since the heads of all subframes are the same, the tails of all subframes are also the same, so each subframe receives the interference Also always the same. In this way, channels experienced by different subframes can be considered to be equivalently the same.
  • the delayed Doppler frame includes at least two subframes, and each subframe includes three parts: a first guard interval part, a first mapping part, and two second mapping parts.
  • the first guard interval occupies all the grids corresponding to the l max delay indices at the tail of the delayed Doppler frame along the delay direction;
  • ⁇ max represents the maximum delay of the channel
  • ⁇ f represents the subcarrier spacing in the time-frequency domain.
  • At least one of the first mapping unit and the second mapping unit occupies grids corresponding to M1 max Doppler indices of the delayed Doppler frame.
  • ⁇ max represents the maximum Doppler of the channel
  • the delayed Doppler frame is equally split into the first half subframe F 1 and the second half subframe F 2 along the Doppler direction, and F 1 is in
  • the grids corresponding to the k max Doppler indices of the head in the Doppler direction and the grids corresponding to the M1 max Doppler indices along the delay direction are the second mapping part F 11 , F 1 in the Doppler direction
  • the grids corresponding to the k max Doppler indices at the tail and the grids corresponding to the M1 max Doppler indices along the delay direction are the second mapping part F 12 , and the k max numbers of the head of F 2 in the Doppler direction
  • the grid corresponding to the Doppler index and the grid corresponding to the M1 max Doppler indices along the delay direction are the second mapping part F 21 , and the k max Doppler indices corresponding to the tail of F 2 in the Doppler direction
  • the first information includes a first information block, a second information block and a third information block;
  • the sending end device maps the first information to the second information on the delayed Doppler frame, including:
  • the first information block X 1 is mapped to F 11 and F 21
  • the second information block X 2 is mapped to F 12 and F 22
  • the first information block and the second information block are obtained by splitting information bits used for channel coding in the first information.
  • the information when the first information includes channel-coded information bits, the information may be split into two parts (a first information block and a second information block).
  • the first information block and the second information block include pilots.
  • the above-mentioned pilots may be impulse pilots or sequence pilots.
  • the delayed Doppler frame also includes:
  • the interference between the pilot and data is prevented by setting the second guard interval around the pilot.
  • the second guard interval satisfies at least one of the following:
  • the second guard interval part occupies the grid corresponding to the delay index from l p -l max to l p +l max , and occupies k p -2k max to k p The grid corresponding to the Doppler index of +2k max ;
  • the second guard interval occupies the grid corresponding to the delay index from l p,min -l max to l p,max +l max , and occupies k p,min
  • l p is the delay index corresponding to the grid occupied by the pilot
  • k p is the Doppler index corresponding to the grid occupied by the pilot
  • l p, min is the grid occupied by all elements of the pilot sequence
  • the minimum value of the delay index corresponding to the grid, l p,max is the maximum value of the delay index corresponding to the grid occupied by all elements of the pilot sequence
  • k p,min is the multiplicity corresponding to the grid occupied by all elements of the pilot sequence
  • the minimum value of the Doppler index, k p,max is the maximum value of the Doppler index corresponding to the grid occupied by all elements of the pilot sequence
  • l max is the delay index number corresponding to the grid occupied by the first guard interval.
  • the configuration information corresponding to the second guard interval is 0, that is, the second guard interval is not used for data transmission.
  • mapping the first information block to a grid corresponding to the second mapping part of each subframe header includes:
  • the first information block is multiplied by different phase offsets and then mapped to the grid corresponding to the second mapping part of each subframe header.
  • mapping the second information block to the grid corresponding to the second mapping part at the end of each subframe includes:
  • the second information block is multiplied by different phase offsets and then mapped to the grid corresponding to the second mapping part at the end of each subframe.
  • the first information includes delayed Doppler information corresponding to L antennas, each delayed Doppler information includes three information blocks, each delayed Doppler frame includes L subframes, and L is greater than or equal to 2.
  • Each antenna corresponds to a delayed Doppler frame;
  • the sending end device maps the first information to the second information on the delayed Doppler frame, including:
  • S ij represents the j-th information block of the delayed Doppler information corresponding to the i-th antenna, 1 ⁇ j ⁇ 3, j is a positive integer, and i is a positive integer greater than or equal to 1.
  • the delayed Doppler frame includes a first delayed Doppler frame corresponding to the first antenna and a second delayed Doppler frame corresponding to the second antenna.
  • the delayed Doppler information corresponding to the first antenna is divided into three information blocks: the first information block (S 11 ), the second information block (S 12 ) and the third information block (S 13 ), and then the third information block Equally divided into two sub-blocks S 131 and S 132 .
  • S 11 is mapped to F 11 and F 21
  • S 12 is mapped to F 21 and F 22
  • S 131 is mapped to the first mapping part of F 1
  • S 131 is mapped to F 2 's first mapping section.
  • S 21 is mapped to F 11 and F 21
  • S 22 is mapped to F 21 and F 22
  • S 231 is mapped to the first mapping part of F 1
  • S 232 is mapped to F 2 's first mapping section.
  • the first information includes first delayed Doppler information corresponding to the first antenna and second delayed Doppler information corresponding to the second antenna
  • the delayed Doppler frame includes the first delayed Doppler The first delayed Doppler frame corresponding to the information and the second delayed Doppler frame corresponding to the second delayed Doppler information
  • the method also includes:
  • the preset method includes at least one of the following:
  • the first mapping information is the mapping information in the first mapping part of the P1th subframe of the first delayed Doppler frame
  • the second mapping information is For the mapping information in the first mapping part of the P2th subframe of the second delayed Doppler frame, P1 and P2 are different, and both P1 and P2 are positive integers; for example, exchange S232 with S131 , and/or, exchange S231 with S132 .
  • the third mapping information is obtained by performing conjugate processing on the first mapping information; for example, exchanging S 232 with S 131 * , wherein, S 131 * Indicates that S 131 is conjugated;
  • the fourth mapping information is obtained by performing conjugate processing on the second mapping information; for example, exchanging S 231 and S 132 * , wherein, S 132 * indicates conjugation of S 132 ;
  • Exchanging fifth mapping information with second mapping information where the fifth mapping information is information obtained after rearranging the first mapping information; for example, combining S231 with exchange, where Indicates that S132 is rearranged, that is, the elements in S132 are rearranged.
  • the sixth mapping information is information obtained after rearranging the second mapping information; for example, combining S 132 with exchange, where Indicates that the rearrangement process is performed on S 231 , that is, the elements in S 231 are rearranged.
  • mapping information is mapping information obtained by multiplying the first mapping information by the first phase offset
  • the sending end device maps the first information to the second information on the delayed Doppler frame, it further includes:
  • the delayed Doppler information (second information) is converted to the time-frequency domain, and a corresponding guard interval is added in the time-frequency domain.
  • adding a third guard interval part to the second information in the time-frequency domain includes:
  • a third guard interval part is added in at least one of a specific time domain position and a specific frequency domain position of the second information.
  • the configuration information corresponding to the third guard interval part is 0 or a cyclic prefix or a cyclic suffix.
  • a cyclic prefix is added in the time domain
  • a cyclic suffix is added in the time domain
  • the method of the embodiment of the present application further includes:
  • the sending end device notifies the receiving end device of the target information through the first signaling
  • the target information includes at least one of the following:
  • the content information of the pilot in the first information and the position information of the pilot in the delayed Doppler frame are used.
  • the first signaling includes at least one of the following:
  • MSG 1 information of the physical random access channel
  • MSG A information of the physical random access channel
  • PC5 Direct communication
  • the secondary link in the embodiment of the present application may also be a side link, a side link, a side link or a side link.
  • the transmitting end device when the transmitting end device is a single-antenna device, after mapping the first information to the second information on the delayed Doppler frame, adding a pilot and a guard interval in the delayed Doppler domain, and then performing Orthogonal Time Frequency Space (OTFS) modulation (Inverse Symplectic Finite Fourier Transform (ISFFT) and Heisenberg Transform), and finally add a guard interval in the time domain.
  • OTFS Orthogonal Time Frequency Space
  • ISFFT Inverse Symplectic Finite Fourier Transform
  • Heisenberg Transform Heisenberg Transform
  • the above-mentioned target information may also be determined through an agreement.
  • the above-mentioned first mapping part can map information of different layers, and the embodiment of the present application can also be applied to the scene where the base station serves multiple users.
  • the common information of multiple users is placed in the above-mentioned second mapping part, and the individual information of each user is placed in the first mapping department.
  • the delayed Doppler frame includes at least two subframes, and each subframe includes three parts: a first guard interval part, a first mapping part, and two second mapping parts.
  • the information mapping method provided in the embodiment of the present application may be executed by an information mapping device, or a control module in the information mapping device for executing the information mapping method.
  • the information mapping device provided in the embodiment of the present application is described by taking the information mapping device executing the information mapping method as an example.
  • an information mapping device 900 including:
  • the first mapping module 901 is configured to map the first information to the second information on the delayed Doppler frame
  • the delayed Doppler frame includes M*N grids; M is the total number of delay indexes, N is the total number of Doppler indexes, and both M and N are positive integers;
  • the delayed Doppler frame includes at least two subframes, each subframe includes a first guard interval section, a first mapping section, and two second mapping sections;
  • the two second mapping units respectively occupy grids corresponding to k max Doppler indices at the head and tail of the subframe in the Doppler direction, and the first mapping unit occupies the subframe N/
  • the information mapped to the second mapping part at the head of different subframes is the same, and the information mapped to the second mapping part at the end of different subframes is the same.
  • the device of the embodiment of the present application further includes:
  • a determining module configured to determine the delayed Doppler frame.
  • the first guard interval occupies all the grids corresponding to the l max delay indices at the tail of the delayed Doppler frame along the delay direction;
  • ⁇ max represents the maximum delay of the channel
  • ⁇ f represents the subcarrier spacing in the time-frequency domain.
  • At least one of the first mapping unit and the second mapping unit occupies grids corresponding to M1 max Doppler indices of the delayed Doppler frame.
  • ⁇ max represents the maximum Doppler of the channel
  • the first information includes a first information block, a second information block and a third information block;
  • the first mapping module is used to respectively map the first information block to the grid corresponding to the second mapping part at the head of each subframe, and map the second information block to the grid corresponding to the second mapping part at the end of each subframe.
  • the third information block is equally divided into G sub-blocks, and respectively mapped to the grid corresponding to the first mapping part of each subframe.
  • the first information block and the second information block are obtained by splitting information bits used for channel coding in the first information.
  • the first information block and the second information block include pilots.
  • the delayed Doppler frame also includes:
  • the second guard interval satisfies at least one of the following:
  • the second guard interval part occupies the grid corresponding to the delay index from l p -l max to l p +l max , and occupies k p -2k max to k p The grid corresponding to the Doppler index of +2k max ;
  • the second guard interval occupies the grid corresponding to the delay index from l p,min -l max to l p,max +l max , and occupies k p,min
  • l p is the delay index corresponding to the grid occupied by the pilot
  • k p is the Doppler index corresponding to the grid occupied by the pilot
  • l p, min is the grid occupied by all elements of the pilot sequence
  • the minimum value of the delay index corresponding to the grid, l p,max is the maximum value of the delay index corresponding to the grid occupied by all elements of the pilot sequence
  • k p,min is the multiplicity corresponding to the grid occupied by all elements of the pilot sequence
  • the minimum value of the Doppler index, k p,max is the maximum value of the Doppler index corresponding to the grid occupied by all elements of the pilot sequence
  • l max is the delay index number corresponding to the grid occupied by the first guard interval.
  • the first mapping module is configured to multiply the first information block by different phase offsets and map the first information block to the grid corresponding to the second mapping part of each subframe header.
  • the first-end mapping module is configured to multiply the second information block by different phase offsets and then map to the grid corresponding to the second mapping part at the end of each subframe.
  • the first information includes delayed Doppler information corresponding to L antennas, each delayed Doppler information includes three information blocks, each delayed Doppler frame includes L subframes, and L is greater than or equal to 2;
  • the sending end device maps the first information to the second information on the delayed Doppler frame, including:
  • S ij represents the j-th information block of the delayed Doppler information corresponding to the i-th antenna, 1 ⁇ j ⁇ 3, j is a positive integer, and i is a positive integer greater than or equal to 1.
  • the first information includes first delayed Doppler information corresponding to the first antenna and second delayed Doppler information corresponding to the second antenna
  • the delayed Doppler frame includes the first delayed Doppler The first delayed Doppler frame corresponding to the information and the second delayed Doppler frame corresponding to the second delayed Doppler information
  • the device also includes:
  • a first processing module configured to send the second information after processing the content of the first mapping part according to a preset method
  • the preset method includes at least one of the following:
  • the first mapping information is the mapping information in the first mapping part of the P1th subframe of the first delayed Doppler frame
  • the second mapping information is For the mapping information in the first mapping part of the P2th subframe of the second delayed Doppler frame, P1 and P2 are different, and both P1 and P2 are positive integers;
  • mapping information is information obtained by rearranging the first mapping information
  • mapping information is mapping information obtained by multiplying the first mapping information by the first phase offset
  • the device of the embodiment of the present application further includes:
  • the second processing module is configured to perform time-frequency domain conversion processing on the second information after the first mapping module maps the first information to the second information on the delayed Doppler frame to obtain second information in the time-frequency domain ;
  • a third processing module configured to add a third guard interval to the second information in the time-frequency domain.
  • the third processing module is configured to add a third guard interval in at least one of a specific time domain position and a specific frequency domain position of the second information.
  • the configuration information corresponding to the third guard interval part is 0 or a cyclic prefix or a cyclic suffix.
  • the device of the embodiment of the present application further includes:
  • a notification module configured to notify the receiving end device of the target information through the first signaling
  • the target information includes at least one of the following:
  • the content information of the pilot in the first information and the position information of the pilot in the delayed Doppler frame are used.
  • the first signaling includes at least one of the following:
  • MSG 1 information of the physical random access channel
  • MSG A information of the physical random access channel
  • the delayed Doppler frame includes at least two subframes, and each subframe includes three parts: a first guard interval part, a first mapping part, and two second mapping parts.
  • the information mapping device provided by the embodiment of the present application can realize each process realized by the method embodiments in Fig. 2 to Fig. 9, and achieve the same technical effect, and to avoid repetition, details are not repeated here.
  • the above-mentioned information mapping device may be a terminal or a network side device, and when it is a terminal, it may be a component, an integrated circuit, or a chip in the terminal.
  • the device may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include but not limited to the types of terminals 11 listed above, and the non-mobile terminal may be a server, a network attached storage (Network Attached Storage, NAS), a personal computer (Personal Computer, PC), a television ( Television, TV), teller machines or self-service machines, etc., are not specifically limited in this embodiment of the present application.
  • the resource determining device and the resource configuring device in the embodiment of the present application may be devices with an operating system.
  • the operating system may be an Android (Android) operating system, an ios operating system, or other possible operating systems, which are not specifically limited in this embodiment of the present application.
  • the embodiment of the present application further provides a communication device 1000, including a processor 1001, a memory 1002, and programs or instructions stored in the memory 1002 and operable on the processor 1001,
  • the communication device 1000 is the above-mentioned sending end device.
  • the program or instruction is executed by the processor 1001
  • each process of the above-mentioned information mapping method embodiment can be achieved, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • the information mapping device in the embodiment of the present application can be a terminal or a network-side device.
  • the above information mapping device is a terminal, its hardware structure diagram is shown in Figure 12.
  • the terminal 1100 includes but is not limited to: a radio frequency unit 1101, a network module 1102, an audio output unit 1103, an input unit 1104, a sensor 1105, a display unit 1106, a user input unit 1107, an interface unit 1108, a memory 1109, and at least some components in the processor 1110, etc.
  • the terminal 1100 may also include a power supply (such as a battery) for supplying power to various components, and the power supply may be logically connected to the processor 1110 through the power management system, so as to manage charging, discharging, and power consumption through the power management system. Management and other functions.
  • a power supply such as a battery
  • the terminal structure shown in FIG. 12 does not constitute a limitation on the terminal.
  • the terminal may include more or fewer components than shown in the figure, or combine some components, or arrange different components, which will not be repeated here.
  • the input unit 1104 may include a graphics processor (Graphics Processing Unit, GPU) 11041 and a microphone 11042, and the graphics processor 11041 is used for the image capture device (such as the image data of the still picture or video obtained by the camera) for processing.
  • the display unit 1106 may include a display panel 11061, and the display panel 11061 may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 1107 includes a touch panel 11071 and other input devices 11072 . Touch panel 11071, also called touch screen.
  • the touch panel 11071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 11072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the radio frequency unit 1101 receives the downlink data from the network side device, and processes it to the processor 1110; in addition, sends the uplink data to the network side device.
  • the radio frequency unit 1101 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the memory 1109 can be used to store software programs or instructions as well as various data.
  • the memory 1109 may mainly include a program or instruction storage area and a data storage area, wherein the program or instruction storage area may store an operating system, an application program or instructions required by at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 1109 may include a high-speed random access memory, and may also include a nonvolatile memory, wherein the nonvolatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM erasable programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage device.
  • the processor 1110 may include one or more processing units; optionally, the processor 1110 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, application programs or instructions, etc., Modem processors mainly handle wireless communications, such as baseband processors. It can be understood that the foregoing modem processor may not be integrated into the processor 1110 .
  • the processor 1110 is configured to map the first information to the second information on the delayed Doppler frame;
  • the delayed Doppler frame includes M*N grids; M is the total number of delay indexes, N is the total number of Doppler indexes, and both M and N are positive integers;
  • the delayed Doppler frame includes at least two subframes, each subframe includes a first guard interval section, a first mapping section, and two second mapping sections;
  • the two second mapping units respectively occupy grids corresponding to k max Doppler indices at the head and tail of the subframe in the Doppler direction, and the first mapping unit occupies the subframe N/
  • the information mapped to the second mapping part at the head of different subframes is the same, and the information mapped to the second mapping part at the end of different subframes is the same.
  • the first guard interval occupies all the grids corresponding to the l max delay indices at the tail of the delayed Doppler frame along the delay direction;
  • ⁇ max represents the maximum delay of the channel
  • ⁇ f represents the subcarrier spacing in the time-frequency domain.
  • At least one of the first mapping unit and the second mapping unit occupies grids corresponding to M1 max Doppler indices of the delayed Doppler frame.
  • ⁇ max represents the maximum Doppler of the channel
  • the first information includes a first information block, a second information block and a third information block;
  • the processor 1110 is configured to respectively map the first information block to the grid corresponding to the second mapping part at the head of each subframe, and map the second information block to the second mapping part at the end of each subframe respectively.
  • the third information block is equally divided into G sub-blocks, which are respectively mapped to the grid corresponding to the first mapping part of each subframe.
  • the first information block and the second information block are obtained by splitting information bits used for channel coding in the first information.
  • the first information block and the second information block include pilots.
  • the delayed Doppler frame also includes:
  • the second guard interval satisfies at least one of the following:
  • the second guard interval part occupies the grid corresponding to the delay index from l p -l max to l p +l max , and occupies k p -2k max to k p The grid corresponding to the Doppler index of +2k max ;
  • the second guard interval occupies the grid corresponding to the delay index from l p,min -l max to l p,max +l max , and occupies k p,min
  • l p is the delay index corresponding to the grid occupied by the pilot
  • k p is the Doppler index corresponding to the grid occupied by the pilot
  • l p, min is the grid occupied by all elements of the pilot sequence
  • the minimum value of the delay index corresponding to the grid, l p,max is the maximum value of the delay index corresponding to the grid occupied by all elements of the pilot sequence
  • k p,min is the multiplicity corresponding to the grid occupied by all elements of the pilot sequence
  • the minimum value of the Doppler index, k p,max is the maximum value of the Doppler index corresponding to the grid occupied by all elements of the pilot sequence
  • l max is the delay index number corresponding to the grid occupied by the first guard interval.
  • the processor 1110 is configured to multiply the first information block by a different phase offset and then map it to a grid corresponding to the second mapping part of each subframe header.
  • the processor 1110 is configured to multiply the second information block by a different phase offset and then map it to a grid corresponding to the second mapping part at the end of each subframe.
  • the first information includes delayed Doppler information corresponding to L antennas, each delayed Doppler information includes three information blocks, each delayed Doppler frame includes L subframes, and L is greater than or equal to 2;
  • the processor 1110 is configured to map the information block S i1 to the grid corresponding to the second mapping part of each subframe header corresponding to the i-th antenna; map the information block S i2 to each grid corresponding to the i-th antenna on the grid corresponding to the second mapping part at the end of the subframe; divide the information block S i3 into L sub-blocks, and map them to the grid corresponding to the first mapping part of each subframe corresponding to the i-th antenna;
  • S ij represents the j-th information block of the delayed Doppler information corresponding to the i-th antenna, 1 ⁇ j ⁇ 3, j is a positive integer, and i is a positive integer greater than or equal to 1.
  • the first information includes first delayed Doppler information corresponding to the first antenna and second delayed Doppler information corresponding to the second antenna
  • the delayed Doppler frame includes the first delayed Doppler The first delayed Doppler frame corresponding to the information and the second delayed Doppler frame corresponding to the second delayed Doppler information
  • the processor 1110 is configured to send the second information after processing the content of the first mapping part according to a preset method
  • the preset method includes at least one of the following:
  • the first mapping information is the mapping information in the first mapping part of the P1th subframe of the first delayed Doppler frame
  • the second mapping information is the For the mapping information in the first mapping part of the P2-th subframe of the second delayed Doppler frame, P1 and P2 are different, and both P1 and P2 are positive integers;
  • mapping information is information obtained by rearranging the first mapping information
  • mapping information is mapping information obtained by multiplying the first mapping information by the first phase offset
  • the processor 1110 is further configured to perform time-frequency domain conversion processing on the second information to obtain the first information in the time-frequency domain.
  • Second information adding a third guard interval part to the second information in the time-frequency domain.
  • the processor 1110 is configured to add a third guard interval in at least one of a specific time domain position and a specific frequency domain position of the second information.
  • the configuration information corresponding to the third guard interval part is 0 or a cyclic prefix or a cyclic suffix.
  • the processor 1110 is further configured to notify the receiving end device of the target information through the first signaling;
  • the target information includes at least one of the following:
  • the content information of the pilot in the first information and the position information of the pilot in the delayed Doppler frame are used.
  • the first signaling includes at least one of the following:
  • MSG 1 information of the physical random access channel
  • MSG A information of the physical random access channel
  • the delayed Doppler frame includes at least two subframes, and each subframe includes three parts: a first guard interval part, a first mapping part, and two second mapping parts.
  • the network-side device includes: an antenna 1201 , a radio frequency device 1202 , and a baseband device 1203 .
  • the antenna 1201 is connected to the radio frequency device 1202 .
  • the radio frequency device 1202 receives information through the antenna 1201, and sends the received information to the baseband device 1203 for processing.
  • the baseband device 1203 processes the information to be sent and sends it to the radio frequency device 1202
  • the radio frequency device 1202 processes the received information and sends it out through the antenna 1201 .
  • the foregoing frequency band processing device may be located in the baseband device 1203 , and the method performed by the network device in the above embodiments may be implemented in the baseband device 1203 , and the baseband device 1203 includes a processor 1204 and a memory 1205 .
  • the baseband device 1203 may include at least one baseband board, for example, a plurality of chips are arranged on the baseband board, as shown in FIG. The operation of the sending end device in the above method embodiment.
  • the baseband device 1203 may also include a network interface 1206 for exchanging information with the radio frequency device 1202, such as a Common Public Radio Interface (CPRI).
  • CPRI Common Public Radio Interface
  • the network-side device in this embodiment of the present invention further includes: instructions or programs stored in the memory 1205 and operable on the processor 1204, and the processor 1204 calls the instructions or programs in the memory 1205 to execute the modules shown in FIG. 10 To avoid duplication, the method of implementation and to achieve the same technical effect will not be repeated here.
  • the embodiment of the present application also provides a communication device, including a processor and a communication interface, and the processor is configured to map the first information to the second information on the delayed Doppler frame;
  • the delayed Doppler frame includes M*N grids; M is the total number of delay indexes, N is the total number of Doppler indexes, and both M and N are positive integers;
  • the delayed Doppler frame includes at least two subframes, each subframe includes a first guard interval section, a first mapping section, and two second mapping sections;
  • the two second mapping units respectively occupy grids corresponding to k max Doppler indices at the head and tail of the subframe in the Doppler direction, and the first mapping unit occupies the subframe N/
  • the information mapped to the second mapping part at the head of different subframes is the same, and the information mapped to the second mapping part at the end of different subframes is the same.
  • This embodiment corresponds to the above-mentioned method embodiment, and each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this embodiment, and can achieve the same technical effect.
  • the embodiment of the present application also provides a readable storage medium, the storage medium may be volatile or nonvolatile, and the readable storage medium stores programs or instructions, and when the programs or instructions are executed by the processor, the Each process of the resource selection method embodiment above can achieve the same technical effect, so in order to avoid repetition, details are not repeated here.
  • the processor is the processor in the terminal or the network side device described in the foregoing embodiments.
  • the readable storage medium includes computer readable storage medium, such as computer read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc.
  • the embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the above information mapping method embodiment Each process can achieve the same technical effect, so in order to avoid repetition, it will not be repeated here.
  • the embodiment of the present application also provides a computer program/program product, the computer program/program product is stored in a non-transitory storage medium, and the program/program product is executed by at least one processor to implement the information mapping described above method steps.
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • the term “comprising”, “comprising” or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or device. Without further limitations, an element defined by the phrase “comprising a " does not preclude the presence of additional identical elements in the process, method, article, or apparatus comprising that element.
  • the scope of the methods and devices in the embodiments of the present application is not limited to performing functions in the order shown or discussed, and may also include performing functions in a substantially simultaneous manner or in reverse order according to the functions involved. Functions are performed, for example, the described methods may be performed in an order different from that described, and various steps may also be added, omitted, or combined. Additionally, features described with reference to certain examples may be combined in other examples.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种信息映射方法,包括:发送端设备将第一信息映射为延迟多普勒帧上的第二信息;其中,所述延迟多普勒帧包括M*N个栅格;M为延迟索引的总个数,N为多普勒索引的总个数,M和N均为正整数;所述延迟多普勒帧包括至少两个子帧,每个子帧包括第一保护间隔部、第一映射部和两个第二映射部;所述两个第二映射部分别占据所述子帧在多普勒方向的头部和尾部的k max个多普勒索引对应的栅格,所述第一映射部占据所述子帧N/G-2k max个多普勒索引对应的栅格;G为所述延迟多普勒帧包含的子帧数,k max为正整数;不同子帧头部的第二映射部分映射的信息相同,且不同子帧尾部的第二映射部分映射的信息相同。

Description

信息映射方法及通信设备
相关申请的交叉引用
本申请主张在2021年10月18日在中国提交的中国专利申请No.202111209306.4的优先权,其全部内容通过引用包含于此,本申请还主张在2021年10月15日在中国提交的中国专利申请No.202111205722.7的优先权。
技术领域
本申请涉及通信技术领域,特别涉及一种信息映射方法及通信设备。
背景技术
在相关技术中,延迟多普勒域空时编码方案,会假设多个延迟多普勒帧的信道是相同的,在发送端以连续多个延迟多普勒帧为粒度做空时编码,获得分集增益,但是由于信道的变化特性以及延迟多普勒帧的粒度较大,连续多个延迟多普勒帧的信道实际上是不相同的,因此,基于上述假设并不适合直接做空时编码。
发明内容
本申请实施例提供了一种信息映射方法及通信设备,能够解决在进行延迟多普勒域的空时编码时如何保证多个延迟多普勒帧的信道相同的问题。
第一方面,提供了一种信息映射方法,包括:
发送端设备将第一信息映射为延迟多普勒帧上的第二信息;
其中,所述延迟多普勒帧包括M*N个栅格;M为延迟索引的总个数,N为多普勒索引的总个数,M和N均为正整数;
所述延迟多普勒帧包括至少两个子帧,每个子帧包括第一保护间隔部、第一映射部和两个第二映射部;
所述两个第二映射部分别占据所述子帧在多普勒方向的头部和尾部的k max个多普勒索引对应的栅格,所述第一映射部占据所述子帧N/G-2k max个多 普勒索引对应的栅格;G为所述延迟多普勒帧包含的子帧数,k max为正整数;
不同子帧头部的第二映射部分映射的信息相同,且不同子帧尾部的第二映射部分映射的信息相同。
第二方面,提供了一种信息映射装置,包括:
第一映射模块,用于将第一信息映射为延迟多普勒帧上的第二信息;
其中,所述延迟多普勒帧包括M*N个栅格;M为延迟索引的总个数,N为多普勒索引的总个数,M和N均为正整数;
所述延迟多普勒帧包括至少两个子帧,每个子帧包括第一保护间隔部、第一映射部和两个第二映射部;
所述两个第二映射部分别占据所述子帧在多普勒方向的头部和尾部的k max个多普勒索引对应的栅格,所述第一映射部占据所述子帧N/G-2k max个多普勒索引对应的栅格;G为所述延迟多普勒帧包含的子帧数,k max为正整数;
不同子帧头部的第二映射部分映射的信息相同,且不同子帧尾部的第二映射部分映射的信息相同。
第三方面,提供了一种通信设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第四方面,提供了一种通信设备,包括处理器及通信接口,其中,所述处理器用于将第一信息映射为延迟多普勒帧上的第二信息;
其中,所述延迟多普勒帧包括M*N个栅格;M为延迟索引的总个数,N为多普勒索引的总个数,M和N均为正整数;
所述延迟多普勒帧包括至少两个子帧,每个子帧包括第一保护间隔部、第一映射部和两个第二映射部;
所述两个第二映射部分别占据所述子帧在多普勒方向的头部和尾部的k max个多普勒索引对应的栅格,所述第一映射部占据所述子帧N/G-2k max个多普勒索引对应的栅格;G为所述延迟多普勒帧包含的子帧数,k max为正整数;
不同子帧头部的第二映射部分映射的信息相同,且不同子帧尾部的第二 映射部分映射的信息相同。
第五方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法。
第七方面,提供了一种计算机程序产品,所述计算机程序产品被存储在非瞬态的存储介质中,所述计算机程序产品被至少一个处理器执行以实现如第一方面所述的方法的步骤。
第八方面,提供了一种通信设备,被配置为执行如第一方面所述的方法的步骤。
在本申请实施例中,延迟多普勒帧包括至少两个子帧,且每个子帧包括第一保护间隔部、第一映射部和两个第二映射部三个部分。通过在不同子帧头部的第二映射部分映射相同的信息,以及在不同子帧尾部的第二映射部分映射相同的信息,再加上上述第一保护间隔部,可以保证每个子帧经历的等效信道相同,然后再对第一映射部中的映射信息进行分集编码,进而获得分集增益或编码增益,这样,实现了在保证多个延迟多普勒帧的信道相同的前提下,对延迟多普勒域的时空编码。
附图说明
图1表示本申请实施例可应用的一种通信系统的结构图;
图2表示本申请实施例的信息映射方法的流程示意图;
图3表示本申请实施例的延迟多普勒帧的映射示意图之一;
图4表示本申请实施例的延迟多普勒帧的映射示意图之二;
图5表示本申请实施例的延迟多普勒帧的映射示意图之三;
图6表示本申请实施例的延迟多普勒帧的映射示意图之四;
图7表示本申请实施例的延迟多普勒帧的映射示意图之五;
图8表示本申请实施例中循环前缀的位置示意图;
图9表示本申请实施例中循环后缀的位置示意图;
图10表示本申请实施例的信息映射装置的模块示意图;
图11表示本申请实施例的通信设备的结构框图;
图12表示本申请实施例的终端的结构框图;
图13表示本申请实施例的网络侧设备的结构框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以 上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,这些技术也可应用于NR系统应用以外的应用,如第6代(6 th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的结构图。无线通信系统包括终端11和网络侧设备12。其中,终端11也可以称作终端设备或者用户设备(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(Ultra-Mobile Personal Computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(Augmented Reality,AR)/虚拟现实(Virtual Yeality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(Vehicle User Equipment,VUE)、行人终端(Pedestrian User Equipment,PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装、游戏机等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以是基站或核心网设备,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、无线局域网(Wireless Local Area Network,WLAN)接入点、无线保真(Wireless Fidelity,WiFi)节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,并不限定基站的具体类型。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的信息映射方法进行详细地说明。
如图2所示,本申请实施例提供了一种信息映射方法,包括:
步骤201:发送端设备将第一信息映射为延迟多普勒帧上的第二信息;
其中,所述延迟多普勒帧包括M*N个栅格;M为延迟索引的总个数,N为多普勒索引的总个数,M和N均为正整数;
所述延迟多普勒帧包括至少两个子帧,每个子帧包括第一保护间隔部、第一映射部和两个第二映射部;
所述两个第二映射部分别占据所述子帧在多普勒方向的头部和尾部的k max个多普勒索引对应的栅格,所述第一映射部占据所述子帧N/G-2k max个多普勒索引对应的栅格;G为所述延迟多普勒帧包含的子帧数,k max为正整数;
不同子帧头部的第二映射部分映射的信息相同,且不同子帧尾部的第二映射部分映射的信息相同。
本申请实施例中,每个延迟索引对应一个栅格,每个多普勒索引对应一个栅格。上述第一间隔部对应的配置信息为0,即该第一间隔部不用于传输信息。
另外,上述发送端设备可以为网络侧设备,如基站,也可以为终端设备。
由于接收端在延迟多普勒域接收到的信号是发送端的延迟多普勒域信号与延迟多普勒域信道进行二维卷积的结果。在这种二维卷积的作用下,延迟多普勒域的信号在延迟方向的尾部会对头部产生干扰,同样多普勒方向的尾部也会对头部产生干扰。转换至多个子帧的场景中,即一个子帧的尾部会对下一个相邻子帧的头部产生干扰。为了避免这种子帧之间的干扰,需要在每个子帧的延迟方向和多普勒方向的头部和尾部放置保护间隔,防止数据间的干扰。除了放置保护间隔,在所有子帧的多普勒方向头部位置映射一份相同的信息,在所有子帧的多普勒方向头部位置映射另一份相同的信息。这样,对于每个子帧,都是一个的头部和另一个的尾部相互干扰,由于所有子帧的头部是相同的,所有子帧的尾部也是相同的,因此每个子帧收到受到的干扰 也总是相同的。这样,不同子帧经历的信道可以认为是等效相同的。
本申请实施例中,延迟多普勒帧包括至少两个子帧,且每个子帧包括第一保护间隔部、第一映射部和两个第二映射部三个部分。通过在不同子帧头部的第二映射部分映射相同的信息,以及在不同子帧尾部的第二映射部分映射相同的信息,再加上上述第一保护间隔部,可以保证每个子帧经历的等效信道相同,然后再对第一映射部中的映射信息进行分集编码,进而获得分集增益或编码增益,这样,实现了在保证多个延迟多普勒帧的信道相同的前提下,对延迟多普勒域的时空编码。
可选地,所述第一保护间隔部占据所述延迟多普勒帧沿延迟方向尾部的l max个延迟索引对应的所有栅格;
其中,l max<M。
进一步可选地,l max≥τ maxMΔf;
其中,τ max表示信道的最大延迟,Δf表示在时频域的子载波间隔。
可选地,所述第一映射部和所述第二映射部中的至少一项占据所述延迟多普勒帧的M-l max个多普勒索引对应的栅格。
可选地,k max≥ν maxNT;
其中,ν max表示信道的最大多普勒,T=1/Δf表示在时频域的一个符号的持续时间。
例如,在本申请的一具体实施例中,如图3所示,将延迟多普勒帧沿多普勒方向均等地拆分成前半子帧F 1和后半子帧F 2,F 1在多普勒方向的头部的k max个多普勒索引对应的栅格以及沿延迟方向M-l max个多普勒索引对应的栅格为第二映射部分F 11,F 1在多普勒方向的尾部的k max个多普勒索引对应的栅格以及沿延迟方向M-l max个多普勒索引对应的栅格为第二映射部分F 12,F 2在多普勒方向的头部的k max个多普勒索引对应的栅格以及沿延迟方向M-l max个多普勒索引对应的栅格为第二映射部分F 21,F 2在多普勒方向的尾部的k max个多普勒索引对应的栅格以及沿延迟方向M-l max个多普勒索引对应的栅格为第二映射部分F 22
可选地,所述第一信息包括第一信息块、第二信息块和第三信息块;
所述发送端设备将第一信息映射为延迟多普勒帧上的第二信息,包括:
将所述第一信息块分别映射至每个子帧头部的第二映射部分对应的栅格上,将所述第二信息块分别映射至每个子帧尾部的第二映射部分对应的栅格上,将所述第三信息块等分成G个子块,分别映射至所述每个子帧的第一映射部对应的栅格上。
如图3所示,第一信息块X 1映射至F 11和F 21,将第二信息块X 2映射至F 12和F 22,将第三信息块等分成两个子块X 3和X 4,即G=2,其中,X 3映射至F 1的第一映射部,X 4映射至F 2的第一映射部。
可选地,所述第一信息块和所述第二信息块是由所述第一信息中用于信道编码的信息位拆分得到的。
在本申请的具体实施例中,当第一信息中包含信道编码的信息位时,可以将该信息为拆分成两部分(第一信息块和第二信息块)。
可选地,所述第一信息块和所述第二信息块包括导频。
上述导频可以是脉冲导频,也可以是序列导频。
可选地,所述延迟多普勒帧还包括:
设置于所述导频周围的第二保护间隔部。
本申请实施例中,通过在导频周围设置第二保护间隔部,以防止导频与数据之间的干扰。
可选地,所述第二保护间隔部满足以下至少一项:
在所述导频为脉冲导频的情况下,所述第二保护间隔部占用l p-l max到l p+l max的延迟索引对应的栅格,且占用k p-2k max到k p+2k max的多普勒索引对应的栅格;
在所述导频为序列导频的情况下,所述第二保护间隔部占用l p,min-l max到l p,max+l max的延迟索引对应的栅格,且占用k p,min-2k max到k p,max+2k max的多普勒索引对应的栅格;
其中,l p为所述导频占用的栅格对应的延迟索引,k p为所述导频占用的 栅格对应的多普勒索引,l p,min为导频序列的所有元素占用的栅格对应的延迟索引的最小值,l p,max为导频序列的所有元素占用的栅格对应的延迟索引的最大值,k p,min为导频序列的所有元素占用的栅格对应的多普勒索引的最小值,k p,max为导频序列的所有元素占用的栅格对应的多普勒索引的最大值;l max为第一保护间隔部占据的栅格对应的延迟索引数。
上述第二保护间隔部对应的配置信息为0,即该第二保护间隔部不用于传输数据。
具体的,如图4或图5所示,在图3的基础上,为了防止数据对导频的干扰或不同天线间导频的干扰,沿延迟方向在导频两边分别设置l max个栅格作为保护间隔,并沿多普勒方向在导频两边分别设置2k max个栅格作为保护间隔。
可选地,将所述第一信息块分别映射至每个子帧头部的第二映射部分对应的栅格上,包括:
将所述第一信息块乘以不同的相位偏移后分别映射至每个子帧头部的第二映射部分对应的栅格上。
可选地,将所述第二信息块分别映射至每个子帧尾部的第二映射部分对应的栅格上,包括:
将所述第二信息块乘以不同的相位偏移后分别映射至每个子帧尾部的第二映射部分对应的栅格上。
可选地,所述第一信息包括L个天线对应的延迟多普勒信息,每个延迟多普勒信息包括三个信息块,每个延迟多普勒帧包括L个子帧,L大于或者等于2,每个天线对应一个延迟多普勒帧;
所述发送端设备将第一信息映射为延迟多普勒帧上的第二信息,包括:
将信息块S i1映射至第i根天线对应的每个子帧头部的第二映射部分对应的栅格上;将信息块S i2映射至第i根天线对应的每个子帧尾部的第二映射部分对应的栅格上;将信息块S i3等分成L个子块,分别映射至第i根天线对应的每个子帧的第一映射部对应的栅格上;
其中,S ij表示第i个天线对应的延迟多普勒信息的第j个信息块,1≤j ≤3,j为正整数,i为大于或者等于1的正整数。
在本申请的具体实施例中,假设延迟多普勒帧包括第一天线对应的第一延迟多普勒帧和第二天线对应的第二延迟多普勒帧。将第一天线对应的延迟多普勒信息分成三个信息块:第一信息块(S 11)、第二信息块(S 12)和第三信息块(S 13),然后将第三信息块等分成两个子块S 131和S 132。如图6所示,对于天线1,将S 11映射至F 11和F 21,将S 12映射至F 21和F 22,将S 131映射至F 1的第一映射部,将S 131映射至F 2的第一映射部。
将第二天线对应的延迟多普勒信息分成三个信息块:第一信息块(S 21)、第二信息块(S 22)和第三信息块(S 23),然后将第三信息块等分成两个子块S 231和S 232
如图7所示,对于天线2,将S 21映射至F 11和F 21,将S 22映射至F 21和F 22,将S 231映射至F 1的第一映射部,将S 232映射至F 2的第一映射部。
其中,S 21=S 11,S 22=S 12
可选地,所述第一信息包括第一天线对应的第一延迟多普勒信息和第二天线对应的第二延迟多普勒信息,所述延迟多普勒帧包括第一延迟多普勒信息对应的第一延迟多普勒帧和第二延迟多普勒信息对应的第二延迟多普勒帧;
所述方法还包括:
按照预设方式对所述第一映射部的内容进行处理后,发送所述第二信息;
其中,所述预设方式包括以下至少一项:
将第一映射信息与第二映射信息进行交换,所述第一映射信息为第一延迟多普勒帧的第P 1个子帧的第一映射部中的映射信息,所述第二映射信息为第二延迟多普勒帧的第P 2个子帧的第一映射部中的映射信息,P 1与P 2不同,且P 1和P 2均为正整数;例如,将S 232与S 131交换,和/或,将S 231与S 132交换。
将第三映射信息与第二映射信息进行交换,所述第三映射信息是对所述第一映射信息进行共轭处理后得到的;例如,将S 232与S 131 *交换,其中,S 131 *表示S 131进行共轭处理;
将第四映射信息与第一映射信息进行交换,所述第四映射信息是对所述 第二映射信息进行共轭处理后得到的;例如,将S 231与S 132 *交换,其中,S 132 *表示对S 132进行共轭处理;
将第五映射信息与第二映射信息进行交换,所述第五映射信息是对第一映像信息进行重排后得到的信息;例如,将S 231
Figure PCTCN2022125408-appb-000001
交换,其中,
Figure PCTCN2022125408-appb-000002
表示对S 132进行重排处理,即将S 132中的元素进行重排。
将第六映射信息与第一映射信息进行交换,所述第六映射信息是对第二映射信息进行重排后得到的信息;例如,将S 132
Figure PCTCN2022125408-appb-000003
交换,其中,
Figure PCTCN2022125408-appb-000004
表示对S 231进行重排处理,即将S 231中的元素进行重排。
将第七映射信息与第二映射信息进行交换,所述第七映射信息是将第一映射信息乘以第一相位偏移后得到的映射信息;
将第八映射信息与第一映射信息进行交换,所述第八映射信息是将第二映射信息乘以第二相位偏移后得到的映射信息。
可选地,发送端设备将第一信息映射为延迟多普勒帧上的第二信息之后,还包括:
对所述第二信息进行时频域转换处理,得到时频域的第二信息;
在所述时频域的第二信息中添加第三保护间隔部。
本申请实施例中,将延迟多普勒信息(第二信息)转换至时频域,并在时频域添加相应的保护间隔。
可选地,在所述时频域的第二信息中添加第三保护间隔部,包括:
在所述第二信息的特定时域位置和特定频域位置的至少一项内添加第三保护间隔部。
可选地,所述第三保护间隔部对应的配置信息为0或循环前缀或循环后缀。
如图8所示,在时域添加循环前缀,如图9所示,在时域添加循环后缀。
可选地,本申请实施例的方法,还包括:
所述发送端设备通过第一信令将目标信息通知给接收端设备;
其中,所述目标信息包括以下至少一项:
所述第一保护间隔部在所述延迟多普勒帧中的位置信息;
所述第一映射部在所述延迟多普勒帧中的位置信息;
所述第二映射部在所述延迟多普勒帧中的位置信息;
所述第一信息中导频的内容信息和导频在所述延迟多普勒帧中的位置信息。
可选地,所述第一信令包括以下至少一项:
无线资源控制信令;
物理下行控制信道的层1信令;
物理下行共享信道的信息;
媒体接入控制层控制单元的信令;
系统信息块;
物理上行控制信道的层1信令;
物理随机接入信道的MSG 1信息;
物理随机接入信道的MSG 2信息;
物理随机接入信道的MSG 3信息;
物理随机接入信道的MSG 4信息;
物理随机接入信道的MSG A信息;
物理随机接入信道的MSG B信息;
物理上行共享信道的信息。
无线节点间(Xn)接口信令;
直连通信(PC5)接口信令;
副链路(Sidelink)接口信令。
需要说明的是,本申请实施例中的副链路也可以成为侧链路、侧行链路、侧边链路或旁链路。
另外本申请实施例中,当发送端设备为单天线设备时,将第一信息映射为延迟多普勒帧上的第二信息后,在延迟多普勒域加入导频和保护间隔,然后进行正交时频空(Orthogonal Time Frequency Space,OTFS)调制(逆辛傅 里叶变换(Inverse Symplectic Finite Fourier Transform,ISFFT)和海森堡变换),最后在时域加入保护间隔。
另外,上述目标信息也可通过协议确定。上述第一映射部可映射不同层的信息,且本申请实施例也可以应用于基站服务多用户场景,多用户的共用信息放置在上述第二映射部,每个用户单独的信息放置在第一映射部。
本申请实施例中,延迟多普勒帧包括至少两个子帧,且每个子帧包括第一保护间隔部、第一映射部和两个第二映射部三个部分。通过在不同子帧头部的第二映射部分映射相同的信息,以及在不同子帧尾部的第二映射部分映射相同的信息,再加上上述第一保护间隔部,可以保证每个子帧经历的等效信道相同,然后再对第一映射部中的映射信息进行分集编码,进而获得分集增益或编码增益,这样,实现了在保证多个延迟多普勒帧的信道相同的前提下,对延迟多普勒域的时空编码。
需要说明的是,本申请实施例提供的信息映射方法,执行主体可以为信息映射装置,或者,该信息映射装置中的用于执行信息映射方法的控制模块。本申请实施例中以信息映射装置执行信息映射方法为例,说明本申请实施例提供的信息映射装置。
如图10所示,本申请实施例提供了一种信息映射装置900,包括:
第一映射模块901,用于将第一信息映射为延迟多普勒帧上的第二信息;
其中,所述延迟多普勒帧包括M*N个栅格;M为延迟索引的总个数,N为多普勒索引的总个数,M和N均为正整数;
所述延迟多普勒帧包括至少两个子帧,每个子帧包括第一保护间隔部、第一映射部和两个第二映射部;
所述两个第二映射部分别占据所述子帧在多普勒方向的头部和尾部的k max个多普勒索引对应的栅格,所述第一映射部占据所述子帧N/G-2k max个多普勒索引对应的栅格;G为所述延迟多普勒帧包含的子帧数,k max为正整数;
不同子帧头部的第二映射部分映射的信息相同,且不同子帧尾部的第二映射部分映射的信息相同。
可选地,本申请实施例的装置,还包括:
确定模块,用于确定所述延迟多普勒帧。
可选地,所述第一保护间隔部占据所述延迟多普勒帧沿延迟方向尾部的l max个延迟索引对应的所有栅格;
其中,l max<M。
可选地,l max≥τ maxMΔf;
其中,τ max表示信道的最大延迟,Δf表示在时频域的子载波间隔。
可选地,所述第一映射部和所述第二映射部中的至少一项占据所述延迟多普勒帧的M-l max个多普勒索引对应的栅格。
可选地,k max≥ν maxNT;
其中,ν max表示信道的最大多普勒,T=1/Δf表示在时频域的一个符号的持续时间。
可选地,所述第一信息包括第一信息块、第二信息块和第三信息块;
所述第一映射模块用于将所述第一信息块分别映射至每个子帧头部的第二映射部分对应的栅格上,将所述第二信息块分别映射至每个子帧尾部的第二映射部分对应的栅格上,将所述第三信息块等分成G个子块,分别映射至所述每个子帧的第一映射部对应的栅格上。
可选地,所述第一信息块和所述第二信息块是由所述第一信息中用于信道编码的信息位拆分得到的。
可选地,所述第一信息块和所述第二信息块包括导频。
可选地,所述延迟多普勒帧还包括:
设置于所述导频周围的第二保护间隔部。
可选地,所述第二保护间隔部满足以下至少一项:
在所述导频为脉冲导频的情况下,所述第二保护间隔部占用l p-l max到l p+l max的延迟索引对应的栅格,且占用k p-2k max到k p+2k max的多普勒索引对应的栅格;
在所述导频为序列导频的情况下,所述第二保护间隔部占用l p,min-l max到 l p,max+l max的延迟索引对应的栅格,且占用k p,min-2k max到k p,max+2k max的多普勒索引对应的栅格;
其中,l p为所述导频占用的栅格对应的延迟索引,k p为所述导频占用的栅格对应的多普勒索引,l p,min为导频序列的所有元素占用的栅格对应的延迟索引的最小值,l p,max为导频序列的所有元素占用的栅格对应的延迟索引的最大值,k p,min为导频序列的所有元素占用的栅格对应的多普勒索引的最小值,k p,max为导频序列的所有元素占用的栅格对应的多普勒索引的最大值;l max为第一保护间隔部占据的栅格对应的延迟索引数。
可选地,所述第一映射模块用于将所述第一信息块乘以不同的相位偏移后分别映射至每个子帧头部的第二映射部分对应的栅格上。
可选地,所述第一端映射模块用于将所述第二信息块乘以不同的相位偏移后分别映射至每个子帧尾部的第二映射部分对应的栅格上。
可选地,所述第一信息包括L个天线对应的延迟多普勒信息,每个延迟多普勒信息包括三个信息块,每个延迟多普勒帧包括L个子帧,L大于或者等于2;
所述发送端设备将第一信息映射为延迟多普勒帧上的第二信息,包括:
将信息块S i1映射至第i根天线对应的每个子帧头部的第二映射部分对应的栅格上;将信息块S i2映射至第i根天线对应的每个子帧尾部的第二映射部分对应的栅格上;将信息块S i3等分成L个子块,分别映射至第i根天线对应的每个子帧的第一映射部对应的栅格上;
其中,S ij表示第i个天线对应的延迟多普勒信息的第j个信息块,1≤j≤3,j为正整数,i为大于或者等于1的正整数。
可选地,所述第一信息包括第一天线对应的第一延迟多普勒信息和第二天线对应的第二延迟多普勒信息,所述延迟多普勒帧包括第一延迟多普勒信息对应的第一延迟多普勒帧和第二延迟多普勒信息对应的第二延迟多普勒帧;
所述装置,还包括:
第一处理模块,用于按照预设方式对所述第一映射部的内容进行处理后, 发送所述第二信息;
其中,所述预设方式包括以下至少一项:
将第一映射信息与第二映射信息进行交换,所述第一映射信息为第一延迟多普勒帧的第P 1个子帧的第一映射部中的映射信息,所述第二映射信息为第二延迟多普勒帧的第P 2个子帧的第一映射部中的映射信息,P 1与P 2不同,且P 1和P 2均为正整数;
将第三映射信息与第二映射信息进行交换,所述第三映射信息是对所述第一映射信息进行共轭处理后得到的;
将第四映射信息与第一映射信息进行交换,所述第四映射信息是对所述第二映射信息进行共轭处理后得到的;
将第五映射信息与第二映射信息进行交换,所述第五映射信息是对第一映像信息进行重排后得到的信息;
将第六映射信息与第一映射信息进行交换,所述第六映射信息是对第二映射信息进行重排后得到的信息;
将第七映射信息与第二映射信息进行交换,所述第七映射信息是将第一映射信息乘以第一相位偏移后得到的映射信息;
将第八映射信息与第一映射信息进行交换,所述第八映射信息是将第二映射信息乘以第二相位偏移后得到的映射信息。
可选地,本申请实施例的装置,还包括:
第二处理模块,用于第一映射模块将第一信息映射为延迟多普勒帧上的第二信息之后,对所述第二信息进行时频域转换处理,得到时频域的第二信息;
第三处理模块,用于在所述时频域的第二信息中添加第三保护间隔部。
可选地,所述第三处理模块用于在所述第二信息的特定时域位置和特定频域位置的至少一项内添加第三保护间隔部。
可选地,所述第三保护间隔部对应的配置信息为0或循环前缀或循环后缀。
可选地,本申请实施例的装置,还包括:
通知模块,用于通过第一信令将目标信息通知给接收端设备;
其中,所述目标信息包括以下至少一项:
所述第一保护间隔部在所述延迟多普勒帧中的位置信息;
所述第一映射部在所述延迟多普勒帧中的位置信息;
所述第二映射部在所述延迟多普勒帧中的位置信息;
所述第一信息中导频的内容信息和导频在所述延迟多普勒帧中的位置信息。
可选地,所述第一信令包括以下至少一项:
无线资源控制信令;
物理下行控制信道的层1信令;
物理下行共享信道的信息;
媒体接入控制层控制单元的信令;
系统信息块;
物理上行控制信道的层1信令;
物理随机接入信道的MSG 1信息;
物理随机接入信道的MSG 2信息;
物理随机接入信道的MSG 3信息;
物理随机接入信道的MSG 4信息;
物理随机接入信道的MSG A信息;
物理随机接入信道的MSG B信息;
物理上行共享信道的信息。
Xn接口信令;
PC5接口信令;
副链路Sidelink接口信令。
本申请实施例的装置,延迟多普勒帧包括至少两个子帧,且每个子帧包括第一保护间隔部、第一映射部和两个第二映射部三个部分。通过在不同子 帧头部的第二映射部分映射相同的信息,以及在不同子帧尾部的第二映射部分映射相同的信息,再加上上述第一保护间隔部,可以保证每个子帧经历的等效信道相同,然后再对第一映射部中的映射信息进行分集编码,进而获得分集增益或编码增益,这样,实现了在保证多个延迟多普勒帧的信道相同的前提下,对延迟多普勒域的时空编码。
本申请实施例提供的信息映射装置能够实现图2至图9方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
上述信息映射装置可以为终端,也可以为网络侧设备,在为终端时,可以是终端中的部件、集成电路、或芯片。该装置可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(Personal Computer,PC)、电视机(Television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。且本申请实施例中的资源确定装置和资源配置装置,可以为具有操作系统的装置。该操作系统可以为安卓(Android)操作系统,可以为ios操作系统,还可以为其他可能的操作系统,本申请实施例不作具体限定。
可选地,如图11所示,本申请实施例还提供一种通信设备1000,包括处理器1001,存储器1002,存储在存储器1002上并可在所述处理器1001上运行的程序或指令,该通信设备1000为上述发送端设备,该程序或指令被处理器1001执行时实现上述信息映射方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例的信息映射装置,可以为终端,也可以为网络侧设备,在上述资信息映射装置为终端时,其硬件结构示意图如图12所示,该终端1100包括但不限于:射频单元1101、网络模块1102、音频输出单元1103、输入单元1104、传感器1105、显示单元1106、用户输入单元1107、接口单元1108、存储器1109、以及处理器1110等中的至少部分部件。
本领域技术人员可以理解,终端1100还可以包括给各个部件供电的电源 (比如电池),电源可以通过电源管理系统与处理器1110逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图12中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1104可以包括图形处理器(Graphics Processing Unit,GPU)11041和麦克风11042,图形处理器11041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1106可包括显示面板11061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板11061。用户输入单元1107包括触控面板11071以及其他输入设备11072。触控面板11071,也称为触摸屏。触控面板11071可包括触摸检测装置和触摸控制器两个部分。其他输入设备11072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1101将来自网络侧设备的下行数据接收后,给处理器1110处理;另外,将上行的数据发送给网络侧设备。通常,射频单元1101包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1109可用于存储软件程序或指令以及各种数据。存储器1109可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1109可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器1110可包括一个或多个处理单元;可选地,处理器1110可集成 应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1110中。
所述处理器1110用于将第一信息映射为延迟多普勒帧上的第二信息;
其中,所述延迟多普勒帧包括M*N个栅格;M为延迟索引的总个数,N为多普勒索引的总个数,M和N均为正整数;
所述延迟多普勒帧包括至少两个子帧,每个子帧包括第一保护间隔部、第一映射部和两个第二映射部;
所述两个第二映射部分别占据所述子帧在多普勒方向的头部和尾部的k max个多普勒索引对应的栅格,所述第一映射部占据所述子帧N/G-2k max个多普勒索引对应的栅格;G为所述延迟多普勒帧包含的子帧数,k max为正整数;
不同子帧头部的第二映射部分映射的信息相同,且不同子帧尾部的第二映射部分映射的信息相同。
可选地,所述第一保护间隔部占据所述延迟多普勒帧沿延迟方向尾部的l max个延迟索引对应的所有栅格;
其中,l max<M。
可选地,l max≥τ maxMΔf;
其中,τ max表示信道的最大延迟,Δf表示在时频域的子载波间隔。
可选地,所述第一映射部和所述第二映射部中的至少一项占据所述延迟多普勒帧的M-l max个多普勒索引对应的栅格。
可选地,k max≥ν maxNT;
其中,ν max表示信道的最大多普勒,T=1/Δf表示在时频域的一个符号的持续时间。
可选地,所述第一信息包括第一信息块、第二信息块和第三信息块;
所述处理器1110用于将所述第一信息块分别映射至每个子帧头部的第二映射部分对应的栅格上,将所述第二信息块分别映射至每个子帧尾部的第二映射部分对应的栅格上,将所述第三信息块等分成G个子块,分别映射至所 述每个子帧的第一映射部对应的栅格上。
可选地,所述第一信息块和所述第二信息块是由所述第一信息中用于信道编码的信息位拆分得到的。
可选地,所述第一信息块和所述第二信息块包括导频。
可选地,所述延迟多普勒帧还包括:
设置于所述导频周围的第二保护间隔部。
可选地,所述第二保护间隔部满足以下至少一项:
在所述导频为脉冲导频的情况下,所述第二保护间隔部占用l p-l max到l p+l max的延迟索引对应的栅格,且占用k p-2k max到k p+2k max的多普勒索引对应的栅格;
在所述导频为序列导频的情况下,所述第二保护间隔部占用l p,min-l max到l p,max+l max的延迟索引对应的栅格,且占用k p,min-2k max到k p,max+2k max的多普勒索引对应的栅格;
其中,l p为所述导频占用的栅格对应的延迟索引,k p为所述导频占用的栅格对应的多普勒索引,l p,min为导频序列的所有元素占用的栅格对应的延迟索引的最小值,l p,max为导频序列的所有元素占用的栅格对应的延迟索引的最大值,k p,min为导频序列的所有元素占用的栅格对应的多普勒索引的最小值,k p,max为导频序列的所有元素占用的栅格对应的多普勒索引的最大值;l max为第一保护间隔部占据的栅格对应的延迟索引数。
可选地,所述处理器1110用于将所述第一信息块乘以不同的相位偏移后分别映射至每个子帧头部的第二映射部分对应的栅格上。
可选地,所述处理器1110用于将所述第二信息块乘以不同的相位偏移后分别映射至每个子帧尾部的第二映射部分对应的栅格上。
可选地,所述第一信息包括L个天线对应的延迟多普勒信息,每个延迟多普勒信息包括三个信息块,每个延迟多普勒帧包括L个子帧,L大于或者等于2;
所述处理器1110用于将信息块S i1映射至第i根天线对应的每个子帧头部 的第二映射部分对应的栅格上;将信息块S i2映射至第i根天线对应的每个子帧尾部的第二映射部分对应的栅格上;将信息块S i3等分成L个子块,分别映射至第i根天线对应的每个子帧的第一映射部对应的栅格上;
其中,S ij表示第i个天线对应的延迟多普勒信息的第j个信息块,1≤j≤3,j为正整数,i为大于或者等于1的正整数。
可选地,所述第一信息包括第一天线对应的第一延迟多普勒信息和第二天线对应的第二延迟多普勒信息,所述延迟多普勒帧包括第一延迟多普勒信息对应的第一延迟多普勒帧和第二延迟多普勒信息对应的第二延迟多普勒帧;
所述处理器1110用于按照预设方式对所述第一映射部的内容进行处理后,发送所述第二信息;
其中,所述预设方式包括以下至少一项:
将第一映射信息与第二映射信息进行交换,所述第一映射信息为第一延迟多普勒帧的第P1个子帧的第一映射部中的映射信息,所述第二映射信息为第二延迟多普勒帧的第P2个子帧的第一映射部中的映射信息,P1与P2不同,且P1和P2均为正整数;
将第三映射信息与第二映射信息进行交换,所述第三映射信息是对所述第一映射信息进行共轭处理后得到的;
将第四映射信息与第一映射信息进行交换,所述第四映射信息是对所述第二映射信息进行共轭处理后得到的;
将第五映射信息与第二映射信息进行交换,所述第五映射信息是对第一映像信息进行重排后得到的信息;
将第六映射信息与第一映射信息进行交换,所述第六映射信息是对第二映射信息进行重排后得到的信息;
将第七映射信息与第二映射信息进行交换,所述第七映射信息是将第一映射信息乘以第一相位偏移后得到的映射信息;
将第八映射信息与第一映射信息进行交换,所述第八映射信息是将第二映射信息乘以第二相位偏移后得到的映射信息。
可选地,在将第一信息映射为延迟多普勒帧上的第二信息之后,所述处理器1110还用于对所述第二信息进行时频域转换处理,得到时频域的第二信息;在所述时频域的第二信息中添加第三保护间隔部。
可选地,所述处理器1110用于在所述第二信息的特定时域位置和特定频域位置的至少一项内添加第三保护间隔部。
可选地,所述第三保护间隔部对应的配置信息为0或循环前缀或循环后缀。
可选地,所述处理器1110还用于通过第一信令将目标信息通知给接收端设备;
其中,所述目标信息包括以下至少一项:
所述第一保护间隔部在所述延迟多普勒帧中的位置信息;
所述第一映射部在所述延迟多普勒帧中的位置信息;
所述第二映射部在所述延迟多普勒帧中的位置信息;
所述第一信息中导频的内容信息和导频在所述延迟多普勒帧中的位置信息。
可选地,所述第一信令包括以下至少一项:
无线资源控制信令;
物理下行控制信道的层1信令;
物理下行共享信道的信息;
媒体接入控制层控制单元的信令;
系统信息块;
物理上行控制信道的层1信令;
物理随机接入信道的MSG 1信息;
物理随机接入信道的MSG 2信息;
物理随机接入信道的MSG 3信息;
物理随机接入信道的MSG 4信息;
物理随机接入信道的MSG A信息;
物理随机接入信道的MSG B信息;
物理上行共享信道的信息。
Xn接口信令;
PC5接口信令;
副链路Sidelink接口信令。
本申请实施例中,延迟多普勒帧包括至少两个子帧,且每个子帧包括第一保护间隔部、第一映射部和两个第二映射部三个部分。通过在不同子帧头部的第二映射部分映射相同的信息,以及在不同子帧尾部的第二映射部分映射相同的信息,再加上上述第一保护间隔部,可以保证每个子帧经历的等效信道相同,然后再对第一映射部中的映射信息进行分集编码,进而获得分集增益或编码增益,这样,实现了在保证多个延迟多普勒帧的信道相同的前提下,对延迟多普勒域的时空编码。
在上述资信息映射装置为网络侧设备的情况下,如图13所示,该网络侧设备包括:天线1201、射频装置1202、基带装置1203。天线1201与射频装置1202连接。在上行方向上,射频装置1202通过天线1201接收信息,将接收的信息发送给基带装置1203进行处理。在下行方向上,基带装置1203对要发送的信息进行处理,并发送给射频装置1202,射频装置1202对收到的信息进行处理后经过天线1201发送出去。
上述频带处理装置可以位于基带装置1203中,以上实施例中网络设备执行的方法可以在基带装置1203中实现,该基带装置1203包括处理器1204和存储器1205。
基带装置1203例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图13所示,其中一个芯片例如为处理器1204,与存储器1205连接,以调用存储器1205中的程序,执行以上方法实施例中发送端设备的操作。
该基带装置1203还可以包括网络接口1206,用于与射频装置1202交互信息,该接口例如为通用公共无线接口(Common Public Radio Interface,CPRI)。
具体地,本发明实施例的网络侧设备还包括:存储在存储器1205上并可在处理器1204上运行的指令或程序,处理器1204调用存储器1205中的指令或程序执行图10所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供了一种通信设备,包括处理器和通信接口,所述处理器用于将第一信息映射为延迟多普勒帧上的第二信息;
其中,所述延迟多普勒帧包括M*N个栅格;M为延迟索引的总个数,N为多普勒索引的总个数,M和N均为正整数;
所述延迟多普勒帧包括至少两个子帧,每个子帧包括第一保护间隔部、第一映射部和两个第二映射部;
所述两个第二映射部分别占据所述子帧在多普勒方向的头部和尾部的k max个多普勒索引对应的栅格,所述第一映射部占据所述子帧N/G-2k max个多普勒索引对应的栅格;G为所述延迟多普勒帧包含的子帧数,k max为正整数;
不同子帧头部的第二映射部分映射的信息相同,且不同子帧尾部的第二映射部分映射的信息相同。
该实施例是与上述方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该实施例中,且能达到相同的技术效果。
本申请实施例还提供一种可读存储介质,该存储介质可以是易失的或非易失的,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述资源选择方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端或网络侧设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述 信息映射方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在非瞬态的存储介质中,所述程序/程序产品被至少一个处理器执行以实现上述信息映射方法的步骤。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对相关技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的, 本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (31)

  1. 一种信息映射方法,包括:
    发送端设备将第一信息映射为延迟多普勒帧上的第二信息;
    其中,所述延迟多普勒帧包括M*N个栅格;M为延迟索引的总个数,N为多普勒索引的总个数,M和N均为正整数;
    所述延迟多普勒帧包括至少两个子帧,每个子帧包括第一保护间隔部、第一映射部和两个第二映射部;
    所述两个第二映射部分别占据所述子帧在多普勒方向的头部和尾部的k max个多普勒索引对应的栅格,所述第一映射部占据所述子帧N/G-2k max个多普勒索引对应的栅格;G为所述延迟多普勒帧包含的子帧数,k max为正整数;
    不同子帧头部的第二映射部分映射的信息相同,且不同子帧尾部的第二映射部分映射的信息相同。
  2. 根据权利要求1所述的方法,其中,所述第一保护间隔部占据所述延迟多普勒帧沿延迟方向尾部的l max个延迟索引对应的所有栅格;
    其中,l max<M。
  3. 根据权利要求2所述的方法,其中,l max≥τ maxMΔf;
    其中,τ max表示信道的最大延迟,Δf表示在时频域的子载波间隔。
  4. 根据权利要求2所述的方法,其中,所述第一映射部和所述第二映射部中的至少一项占据所述延迟多普勒帧的M-l max个多普勒索引对应的栅格。
  5. 根据权利要求1所述的方法,其中,k max≥ν maxNT;
    其中,ν max表示信道的最大多普勒,T=1/Δf表示在时频域的一个符号的持续时间。
  6. 根据权利要求1所述的方法,其中,所述第一信息包括第一信息块、第二信息块和第三信息块;
    所述发送端设备将第一信息映射为延迟多普勒帧上的第二信息,包括:
    将所述第一信息块分别映射至每个子帧头部的第二映射部分对应的栅格 上,将所述第二信息块分别映射至每个子帧尾部的第二映射部分对应的栅格上,将所述第三信息块等分成G个子块,分别映射至所述每个子帧的第一映射部对应的栅格上。
  7. 根据权利要求6所述的方法,其中,所述第一信息块和所述第二信息块是由所述第一信息中用于信道编码的信息位拆分得到的。
  8. 根据权利要求6所述的方法,其中,所述第一信息块和所述第二信息块包括导频。
  9. 根据权利要求8所述的方法,其中,所述延迟多普勒帧还包括:
    设置于所述导频周围的第二保护间隔部。
  10. 根据权利要求9所述的方法,其中,所述第二保护间隔部满足以下至少一项:
    在所述导频为脉冲导频的情况下,所述第二保护间隔部占用l p-l max到l p+l max的延迟索引对应的栅格,且占用k p-2k max到k p+2k max的多普勒索引对应的栅格;
    在所述导频为序列导频的情况下,所述第二保护间隔部占用l p,min-l max到l p,max+l max的延迟索引对应的栅格,且占用k p,min-2k max到k p,max+2k max的多普勒索引对应的栅格;
    其中,l p为所述导频占用的栅格对应的延迟索引,k p为所述导频占用的栅格对应的多普勒索引,l p,min为导频序列的所有元素占用的栅格对应的延迟索引的最小值,l p,max为导频序列的所有元素占用的栅格对应的延迟索引的最大值,k p,min为导频序列的所有元素占用的栅格对应的多普勒索引的最小值,k p,max为导频序列的所有元素占用的栅格对应的多普勒索引的最大值;l max为第一保护间隔部占据的栅格对应的延迟索引数。
  11. 根据权利要求6所述的方法,其中,将所述第一信息块分别映射至每个子帧头部的第二映射部分对应的栅格上,包括:
    将所述第一信息块乘以不同的相位偏移后分别映射至每个子帧头部的第二映射部分对应的栅格上。
  12. 根据权利要求6所述的方法,其中,将所述第二信息块分别映射至每个子帧尾部的第二映射部分对应的栅格上,包括:
    将所述第二信息块乘以不同的相位偏移后分别映射至每个子帧尾部的第二映射部分对应的栅格上。
  13. 根据权利要求1所述的方法,其中,所述第一信息包括L个天线对应的延迟多普勒信息,每个延迟多普勒信息包括三个信息块,每个延迟多普勒帧包括L个子帧,L大于或者等于2;
    所述发送端设备将第一信息映射为延迟多普勒帧上的第二信息,包括:
    将信息块S i1映射至第i根天线对应的每个子帧头部的第二映射部分对应的栅格上;将信息块S i2映射至第i根天线对应的每个子帧尾部的第二映射部分对应的栅格上;将信息块S i3等分成L个子块,分别映射至第i根天线对应的每个子帧的第一映射部对应的栅格上;
    其中,S ij表示第i个天线对应的延迟多普勒信息的第j个信息块,1≤j≤3,j为正整数,i为大于或者等于1的正整数。
  14. 根据权利要求13所述的方法,其中,所述第一信息包括第一天线对应的第一延迟多普勒信息和第二天线对应的第二延迟多普勒信息,所述延迟多普勒帧包括第一延迟多普勒信息对应的第一延迟多普勒帧和第二延迟多普勒信息对应的第二延迟多普勒帧;
    所述方法还包括:
    按照预设方式对所述第一映射部的内容进行处理后,发送所述第二信息;
    其中,所述预设方式包括以下至少一项:
    将第一映射信息与第二映射信息进行交换,所述第一映射信息为第一延迟多普勒帧的第P 1个子帧的第一映射部中的映射信息,所述第二映射信息为第二延迟多普勒帧的第P 2个子帧的第一映射部中的映射信息,P 1与P 2不同,且P 1和P 2均为正整数;
    将第三映射信息与第二映射信息进行交换,所述第三映射信息是对所述第一映射信息进行共轭处理后得到的;
    将第四映射信息与第一映射信息进行交换,所述第四映射信息是对所述第二映射信息进行共轭处理后得到的;
    将第五映射信息与第二映射信息进行交换,所述第五映射信息是对第一映像信息进行重排后得到的信息;
    将第六映射信息与第一映射信息进行交换,所述第六映射信息是对第二映射信息进行重排后得到的信息;
    将第七映射信息与第二映射信息进行交换,所述第七映射信息是将第一映射信息乘以第一相位偏移后得到的映射信息;
    将第八映射信息与第一映射信息进行交换,所述第八映射信息是将第二映射信息乘以第二相位偏移后得到的映射信息。
  15. 根据权利要求1所述的方法,其中,发送端设备将第一信息映射为延迟多普勒帧上的第二信息之后,还包括:
    对所述第二信息进行时频域转换处理,得到时频域的第二信息;
    在所述时频域的第二信息中添加第三保护间隔部。
  16. 根据权利要求15所述的方法,其中,在所述时频域的第二信息中添加第三保护间隔部,包括:
    在所述第二信息的特定时域位置和特定频域位置的至少一项内添加第三保护间隔部。
  17. 根据权利要求16所述的方法,其中,所述第三保护间隔部对应的配置信息为0或循环前缀或循环后缀。
  18. 根据权利要求1所述的方法,还包括:
    所述发送端设备通过第一信令将目标信息通知给接收端设备;
    其中,所述目标信息包括以下至少一项:
    所述第一保护间隔部在所述延迟多普勒帧中的位置信息;
    所述第一映射部在所述延迟多普勒帧中的位置信息;
    所述第二映射部在所述延迟多普勒帧中的位置信息;
    所述第一信息中导频的内容信息和导频在所述延迟多普勒帧中的位置信 息。
  19. 根据权利要求18所述的方法,其中,所述第一信令包括以下至少一项:
    无线资源控制信令;
    物理下行控制信道的层1信令;
    物理下行共享信道的信息;
    媒体接入控制层控制单元的信令;
    系统信息块;
    物理上行控制信道的层1信令;
    物理随机接入信道的MSG 1信息;
    物理随机接入信道的MSG 2信息;
    物理随机接入信道的MSG 3信息;
    物理随机接入信道的MSG 4信息;
    物理随机接入信道的MSG A信息;
    物理随机接入信道的MSG B信息;
    物理上行共享信道的信息;
    无线节点间Xn接口信令;
    直连通信PC5接口信令;
    副链路Sidelink接口信令。
  20. 一种信息映射装置,包括:
    第一映射模块,用于将第一信息映射为延迟多普勒帧上的第二信息;
    其中,所述延迟多普勒帧包括M*N个栅格;M为延迟索引的总个数,N为多普勒索引的总个数,M和N均为正整数;
    所述延迟多普勒帧包括至少两个子帧,每个子帧包括第一保护间隔部、第一映射部和两个第二映射部;
    所述两个第二映射部分别占据所述子帧在多普勒方向的头部和尾部的k max个多普勒索引对应的栅格,所述第一映射部占据所述子帧N/G-2k max个多 普勒索引对应的栅格;G为所述延迟多普勒帧包含的子帧数,k max为正整数;
    不同子帧头部的第二映射部分映射的信息相同,且不同子帧尾部的第二映射部分映射的信息相同。
  21. 根据权利要求20所述的装置,其中,所述第一保护间隔部占据所述延迟多普勒帧沿延迟方向尾部的l max个延迟索引对应的所有栅格;
    其中,l max<M。
  22. 根据权利要求21所述的装置,其中,l max≥τ maxMΔf;
    其中,τ max表示信道的最大延迟,Δf表示在时频域的子载波间隔。
  23. 根据权利要求21所述的装置,其中,所述第一映射部和所述第二映射部中的至少一项占据所述延迟多普勒帧的M-l max个多普勒索引对应的栅格。
  24. 根据权利要求20所述的装置,其中,k max≥ν maxNT;
    其中,ν max表示信道的最大多普勒,T=1/Δf表示在时频域的一个符号的持续时间。
  25. 根据权利要求20所述的装置,其中,所述第一信息包括第一信息块、第二信息块和第三信息块;
    所述第一映射模块用于将所述第一信息块分别映射至每个子帧头部的第二映射部分对应的栅格上,将所述第二信息块分别映射至每个子帧尾部的第二映射部分对应的栅格上,将所述第三信息块等分成G个子块,分别映射至所述每个子帧的第一映射部对应的栅格上。
  26. 根据权利要求25所述的装置,其中,所述第一信息块和所述第二信息块是由所述第一信息中用于信道编码的信息位拆分得到的。
  27. 一种通信设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至19中任一项所述的信息映射方法的步骤。
  28. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至19中任一项所述的信息映射方法的步骤。
  29. 一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1至19中任一项所述的信息映射方法的步骤。
  30. 一种计算机程序产品,所述计算机程序产品被至少一个处理器执行以实现如权利要求1至19中任一项所述的信息映射方法的步骤。
  31. 一种通信设备,被配置为执行如权利要求1至19中任一项所述的信息映射方法的步骤。
PCT/CN2022/125408 2021-10-15 2022-10-14 信息映射方法及通信设备 WO2023061490A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111205722.7 2021-10-15
CN202111205722 2021-10-15
CN202111209306.4A CN115987465A (zh) 2021-10-15 2021-10-18 信息映射方法及通信设备
CN202111209306.4 2021-10-18

Publications (1)

Publication Number Publication Date
WO2023061490A1 true WO2023061490A1 (zh) 2023-04-20

Family

ID=85961082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125408 WO2023061490A1 (zh) 2021-10-15 2022-10-14 信息映射方法及通信设备

Country Status (2)

Country Link
CN (1) CN115987465A (zh)
WO (1) WO2023061490A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108770382A (zh) * 2015-09-07 2018-11-06 凝聚技术公司 使用正交时间频率空间调制的多路存取
CN109196812A (zh) * 2016-04-01 2019-01-11 科希尔技术股份有限公司 正交时频空间通信系统中的汤姆林森-哈拉希玛预编码
CN109348739A (zh) * 2016-02-25 2019-02-15 凝聚技术公司 用于无线通信的参考信号封装
US20190238189A1 (en) * 2016-09-30 2019-08-01 Cohere Technologies, Inc. Uplink user resource allocation for orthogonal time frequency space modulation
CN110731071A (zh) * 2017-06-15 2020-01-24 株式会社Ntt都科摩 用户终端及无线通信方法
CN111884975A (zh) * 2020-07-17 2020-11-03 北京理工大学 基于时延-多普勒域的索引调制解调方法和系统
US20210288709A1 (en) * 2020-03-16 2021-09-16 Qualcomm Incorporated Antenna switch diversity or cyclic delay diversity selection

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108770382A (zh) * 2015-09-07 2018-11-06 凝聚技术公司 使用正交时间频率空间调制的多路存取
CN109348739A (zh) * 2016-02-25 2019-02-15 凝聚技术公司 用于无线通信的参考信号封装
CN109196812A (zh) * 2016-04-01 2019-01-11 科希尔技术股份有限公司 正交时频空间通信系统中的汤姆林森-哈拉希玛预编码
US20190238189A1 (en) * 2016-09-30 2019-08-01 Cohere Technologies, Inc. Uplink user resource allocation for orthogonal time frequency space modulation
CN110731071A (zh) * 2017-06-15 2020-01-24 株式会社Ntt都科摩 用户终端及无线通信方法
US20210288709A1 (en) * 2020-03-16 2021-09-16 Qualcomm Incorporated Antenna switch diversity or cyclic delay diversity selection
CN111884975A (zh) * 2020-07-17 2020-11-03 北京理工大学 基于时延-多普勒域的索引调制解调方法和系统

Also Published As

Publication number Publication date
CN115987465A (zh) 2023-04-18

Similar Documents

Publication Publication Date Title
WO2018130093A1 (zh) 同步接入信号组的发送方法、接收方法、相关设备及系统
WO2023061490A1 (zh) 信息映射方法及通信设备
WO2023284801A1 (zh) Tci状态确定方法、装置、终端及网络侧设备
RU2751217C2 (ru) Базовая станция
WO2023186158A1 (zh) 解调参考信号传输方法、装置、终端及网络侧设备
CN114915530B (zh) 数据发送处理方法、接收处理方法、装置及设备
WO2023138633A1 (zh) 信息传输方法、装置、网络侧设备及终端
WO2023198058A1 (zh) 信息传输方法、装置、终端及网络侧设备
WO2023193766A1 (zh) 控制信息的接收和发送方法、终端及网络侧设备
WO2023025000A1 (zh) 扩频方法、装置、通信设备及可读存储介质
WO2023186156A1 (zh) Dmrs端口信息的指示方法、终端及网络侧设备
WO2023061344A1 (zh) 信号传输方法、装置和终端设备
WO2024001981A1 (zh) 预编码矩阵的指示方法、终端及网络侧设备
WO2023051539A1 (zh) 上行预编码信息确定方法、终端及网络侧设备
WO2022242677A1 (zh) 波束应用时间的确定方法、装置及通信设备
WO2022242557A1 (zh) 控制信道监测方法和设备
WO2023131288A1 (zh) 资源确定方法、装置、终端和网络侧设备
WO2023072087A1 (zh) 波束应用时间确定方法、装置及通信设备
US20230354064A1 (en) Signal configuration method and apparatus, device, and storage medium
WO2023207976A1 (zh) 物理随机接入信道传输资源确定方法、装置、终端和设备
WO2023169563A1 (zh) 延迟多普勒域dd域的控制信道资源的指示方法及装置
WO2023143428A1 (zh) 信息传输方法、设备、终端及网络侧设备
US20230396398A1 (en) Method and device for indicating scs of initial downlink bwp
WO2023231924A1 (zh) 信号发送方法、发送设备及接收设备
WO2023040778A1 (zh) 传输方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22880426

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022880426

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022880426

Country of ref document: EP

Effective date: 20240515