WO2023072087A1 - 波束应用时间确定方法、装置及通信设备 - Google Patents

波束应用时间确定方法、装置及通信设备 Download PDF

Info

Publication number
WO2023072087A1
WO2023072087A1 PCT/CN2022/127417 CN2022127417W WO2023072087A1 WO 2023072087 A1 WO2023072087 A1 WO 2023072087A1 CN 2022127417 W CN2022127417 W CN 2022127417W WO 2023072087 A1 WO2023072087 A1 WO 2023072087A1
Authority
WO
WIPO (PCT)
Prior art keywords
symbol
bwp
slot
tag
target
Prior art date
Application number
PCT/CN2022/127417
Other languages
English (en)
French (fr)
Inventor
杨宇
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2023072087A1 publication Critical patent/WO2023072087A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the present application relates to the field of communication technologies, and in particular to a beam application time (beam application time, BAT) determination method and user equipment.
  • a beam application time beam application time, BAT
  • the network-side device can send beam indication information to the terminal through a medium access control control element (MAC CE) or downlink control information (DCI), so that the terminal and/or the network-side device can determine the beam
  • MAC CE medium access control control element
  • DCI downlink control information
  • the terminal can select the component carrier (CC) (hereinafter referred to as CC0) where the response message (Acknowledgment, ACK) of the beam indication information is located and the CC corresponding to the beam indication information with the minimum subcarrier spacing (Subcarrier spacing, SCS) CC as a reference CC, and then on the time domain resource corresponding to the reference CC, the first slot after Y symbols from the timing start is used as the BAT of all CCs corresponding to the beam indication information.
  • CC0 component carrier
  • SCS subcarrier spacing
  • the CCs corresponding to the beam indication information may belong to different timing advance groups (timing advance group, TAG), the time slot (slot) and symbol ( symbol) may not be aligned.
  • TAG timing advance group
  • the BAT determined by the above method may cause the BAT of all or some of these CCs to be located in the middle of the slot instead of the first symbol of the slot, resulting in that the application time of the CC corresponding to the beam indication information cannot be aligned. As a result, correct data transmission cannot be performed.
  • Embodiments of the present application provide a method, device, and communication device for determining beam application time, which can solve the problem that CC application time cannot be aligned in a CA scenario and correct data transmission cannot be performed.
  • a method for determining the beam application time includes: the communication device determines the timing start symbol corresponding to the reference CC according to the first symbol, the first symbol is the last symbol occupied by the ACK of the beam indication information; the communication The device determines the first slot corresponding to the target CC according to the timing start symbol, and the target CC is the CC where the ACK is located or the first CC that belongs to the first TAG in the target CC group; the communication device determines the target CC group according to the first slot. TAG's CC's BAT.
  • the CCs in the target CC group belong to different TAGs or the CCs in the target CC group belong to If the TAG and the TAG to which the CC where the ACK belongs are different, determine the timing start symbol corresponding to the reference CC, determine the first slot corresponding to the target CC, and determine the CC belonging to each TAG in the target CC group according to the first slot
  • the BAT can make the beam effective time of the CCs belonging to the same TAG in the target CC group consistent, that is, the beams of the CCs belonging to the same TAG can be aligned, so that data transmission can be performed correctly.
  • a method for determining the beam application time including: the communication device determines the timing start symbol corresponding to the reference BWP according to the seventh symbol, the seventh symbol is the last symbol occupied by the ACK of the beam indication information; the communication device according to The timing start symbol determines the fourth slot corresponding to the target BWP.
  • the target BWP is the BWP where the ACK is located or the first BWP that belongs to the CC in the target BWP group and belongs to the third TAG.
  • the communication device determines the target BWP group according to the fourth slot. TAG's CC's BWP's BAT.
  • the CCs to which the BWPs in the target BWP group belong to different TAGs or target BWP groups If the TAG to which the CC of the BWP belongs to is different from the TAG to which the CC to which the BWP belongs to the ACK, determine the timing start symbol corresponding to the reference BWP, determine the first slot corresponding to the target BWP, and determine the target BWP according to the first slot.
  • the BAT of the BWP of the CCs belonging to each TAG in the group can make the beams of the BWPs of the CCs belonging to the same TAG in the target BWP group take effect at the same time, that is, the beams of the BWPs of the CCs belonging to the same TAG can be aligned, so that Data transfer is done correctly.
  • an apparatus for determining beam application time including: a determination module configured to determine a timing start symbol corresponding to a reference CC according to a first symbol, where the first symbol is the last symbol occupied by the ACK of the beam indication information; And according to the timing start symbol, determine the first slot corresponding to the target CC, the target CC is the CC where the ACK is located or the first CC belonging to the first TAG in the target CC group; and according to the first slot, determine the target CC group belonging to each TAG CC's BAT.
  • an apparatus for determining a beam application time including: a determination module configured to determine a timing start symbol corresponding to a reference BWP according to a seventh symbol, where the seventh symbol is the last symbol occupied by the ACK of the beam indication information; And according to the timing start symbol, determine the fourth slot corresponding to the target BWP, the target BWP is the BWP where the ACK is located or the first BWP of the CC belonging to the third TAG in the target BWP group; and according to the fourth slot, determine the target BWP group belonging to each The beam application time BAT of the BWP of the CC of a TAG.
  • a communication device including a terminal and/or network side device
  • the terminal includes a processor, a memory, and a program or instruction stored in the memory and operable on the processor, the program or instruction is executed by the processor When executed, the steps of the method in the first aspect are realized.
  • a communication device including a processor and a communication interface, wherein the processor is configured to determine the timing start symbol corresponding to the reference CC according to the first symbol, and the first symbol is the last one occupied by the ACK of the beam indication information and according to the timing start symbol, determine the first slot corresponding to the target CC, where the target CC is the CC where the ACK is located or the first CC that belongs to the first TAG in the target CC group; and according to the first slot, determine the target CC group that belongs to each The BAT of the CC of a TAG. or.
  • the processor is configured to determine the timing start symbol corresponding to the reference BWP according to the seventh symbol, and the seventh symbol is the last symbol occupied by the ACK of the beam indication information; and determine the fourth slot corresponding to the target BWP according to the timing start symbol, and the target BWP is The BWP where the ACK is located or the CC in the target BWP group belongs to the first BWP of the third TAG; and according to the fourth slot, determine the beam application time BAT of the BWP of the CC belonging to each TAG in the target BWP group.
  • a readable storage medium is provided, and programs or instructions are stored on the readable storage medium, and when the programs or instructions are executed by a processor, the steps of the method described in the first aspect are realized, or the steps of the method described in the first aspect are realized, or The steps of the method described in the second aspect.
  • a chip in an eighth aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the method as described in the first aspect , or implement the method described in the second aspect.
  • a ninth aspect provides a computer program/program product, the computer program/program product is stored in a non-volatile storage medium, and the program/program product is executed by at least one processor to implement the first aspect The steps of the method, or the steps of the method for realizing the second aspect.
  • FIG. 1 is a schematic structural diagram of a wireless communication system provided by an embodiment of the present application.
  • FIG. 2 is one of the schematic flowcharts of the method for determining the beam application time provided in the embodiment of the present application;
  • FIG. 3 is one of the application schematic diagrams of the method for determining the beam application time provided in the embodiment of the present application
  • Fig. 4 is the second application schematic diagram of the method for determining the beam application time provided by the embodiment of the present application.
  • FIG. 5 is the third application schematic diagram of the method for determining the beam application time provided by the embodiment of the present application.
  • FIG. 6 is the fourth application schematic diagram of the method for determining the beam application time provided by the embodiment of the present application.
  • FIG. 7 is the fifth application schematic diagram of the method for determining the beam application time provided by the embodiment of the present application.
  • FIG. 8 is the sixth application schematic diagram of the method for determining the beam application time provided by the embodiment of the present application.
  • FIG. 9 is the seventh application schematic diagram of the method for determining the beam application time provided by the embodiment of the present application.
  • FIG. 10 is the eighth application schematic diagram of the method for determining the beam application time provided by the embodiment of the present application.
  • FIG. 11 is the ninth application schematic diagram of the method for determining the beam application time provided by the embodiment of the present application.
  • FIG. 12 is the tenth application schematic diagram of the method for determining the beam application time provided by the embodiment of the present application.
  • FIG. 13 is the eleventh application schematic diagram of the method for determining the beam application time provided by the embodiment of the present application.
  • FIG. 14 is the twelveth application schematic diagram of the method for determining the beam application time provided by the embodiment of the present application.
  • FIG. 15 is the thirteenth application schematic diagram of the method for determining the beam application time provided by the embodiment of the present application.
  • Figure 16 is the fourteenth application schematic diagram of the method for determining the beam application time provided by the embodiment of the present application.
  • FIG. 17 is the fifteenth application schematic diagram of the method for determining the beam application time provided by the embodiment of the present application.
  • Figure 18 is the sixteenth application schematic diagram of the method for determining the beam application time provided by the embodiment of the present application.
  • FIG. 19 is the second schematic flow diagram of the method for determining the beam application time provided by the embodiment of the present application.
  • FIG. 20 is a schematic structural diagram of an apparatus for determining a beam application time provided in an embodiment of the present application.
  • FIG. 21 is a structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 22 is a schematic diagram of the hardware of the terminal provided by the embodiment of the present application.
  • FIG. 23 is a schematic diagram of hardware of a network side device provided by an embodiment of the present application.
  • first, second and the like in the specification and claims of the present application are used to distinguish similar objects, and are not used to describe a specific sequence or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances such that the embodiments of the application are capable of operation in sequences other than those illustrated or described herein and that "first" and “second” distinguish objects. It is usually one category, and the number of objects is not limited. For example, there may be one or more first objects.
  • “and/or” in the description and claims means at least one of the connected objects, and the character “/” generally means that the related objects are an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used for the above-mentioned system and radio technology, and can also be used for other systems and radio technologies.
  • the following description describes the New Radio (New Radio, NR) system for example purposes, and uses NR terms in most of the following descriptions, but these techniques can also be applied to applications other than NR system applications, such as the 6th generation (6- th Generation, 6G) communication system.
  • 6G 6th generation
  • Fig. 1 shows a block diagram of a wireless communication system to which the embodiment of the present application is applicable.
  • the wireless communication system includes a terminal 11 and a network side device 12 .
  • the terminal 11 can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, a netbook, a super mobile personal computer (ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), augmented reality (augmented reality, AR) / virtual reality (virtual reality, VR) equipment, robot, wearable device (Wearable Device) , vehicle equipment (VUE), pedestrian terminal (PUE), smart home (home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.) and other terminal-side equipment, wearable devices include: smart watches, smart hands Rings, smart earphones, smart glasses, smart jewelry (smart bracelets, smart bracelets
  • the network side device 12 may be a base station or a core network, where a base station may be called a node B, an evolved node B, an access point, a base transceiver station (Base Transceiver Station, BTS), a radio base station, a radio transceiver, a basic service Basic Service Set (BSS), Extended Service Set (ESS), Node B, Evolved Node B (eNB), Home Node B, Home Evolved Node B, WLAN access point, WiFi node, transmission Receiving point (Transmitting Receiving Point, TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical terms. It should be noted that in the embodiment of this application, only The base station in the NR system is taken as an example, but the specific type of the base station is not limited.
  • an embodiment of the present application provides a method for determining a beam application time, and the method for determining a beam time includes the following steps 201 - 203 .
  • step 201 the communication device determines a timing start symbol corresponding to the reference CC according to the first symbol.
  • the first symbol may be the last symbol occupied by the ACK of the beam indication information.
  • the determination of the timing start symbol corresponding to the reference CC may be determining the timing start symbol on the time domain resource of the reference CC.
  • the aforementioned communication device may be a terminal or a network side device. Specifically, it may be determined according to actual usage requirements, and is not limited in this embodiment of the application.
  • the above beam indication information may be sent by the network side equipment to the terminal, such as common beam indication information, the common beam is used for multiple downlink channels and/or multiple uplink channels, which may include User equipment (user equipment, UE)-dedicated channels may also include non-UE-dedicated channels.
  • UE User equipment
  • the foregoing ACK is an ACK of the beam indication information sent by the terminal to the network side device.
  • Step 202 the communication device determines the first slot corresponding to the target CC according to the timing start symbol.
  • the aforementioned target CC may be the CC where the ACK is located or the first CC belonging to the first TAG in the target CC group.
  • the above CC where the ACK is located is the CC that carries the ACK of the beam indication information.
  • the foregoing determination of the first slot corresponding to the target CC may be determining the first slot on the time domain resource of the target CC.
  • Step 203 the communication device determines the BAT of the CCs belonging to each TAG in the target CC group according to the first slot.
  • the terminal may send an ACK of the beam indication information to the network side device.
  • the communication device terminal and/or network side device
  • the communication device can determine the above-mentioned timing start symbol on the time domain resource of the reference CC according to the above-mentioned first symbol (the last symbol occupied by the ACK of the beam indication information), and according to the timing The starting point symbol, determine the first slot on the time domain resource corresponding to the target CC, and then determine the BAT of the CC belonging to each TAG in the target CC group according to the first slot, that is, the communication device can according to the first slot, Determine the BAT of each TAG's CC in the target CC group.
  • the CCs in the foregoing target CC group may be CCs to which the foregoing beam indication information is applied.
  • the beam indication information may be common beam (common beam) indication information.
  • the CC in the target CC group and the CC where the ACK is located belong to at least two TAGs.
  • the CCs in the target CC group may belong to at least one TAG.
  • the TAG to which the CC belongs to is different from the TAG to which the CC in the target CC group belongs;
  • the ACK The TAG to which the CC belongs may be the same as or different from the TAG to which the CCs in the target CC group belong. The details may be determined according to actual usage requirements, which is not limited in this application.
  • the at least two TAGs correspond to the same transmission configuration indicator (TCI) state pool (state pool) , or the at least two TAGs correspond to different TCI state pools. That is, when the network side device configures a TCI state pool for the target CC group, no matter how many TAGs the CCs in the target CC group belong to, a TCI state pool can be configured for the CCs in the target CC group, or it can be based on the CCs in the target CC group. For the TAG to which it belongs, one TCI state pool is configured for CCs belonging to the same TAG, and another TCI state pool is configured for CCs belonging to another TAG.
  • TCI transmission configuration indicator
  • the network side device can indicate the TCI state corresponding to the CCs in the target CC group through downlink information, such as downlink control information (DCI), and then determine the downlink common state of the CCs in the target CC group according to the TCI state.
  • downlink information such as downlink control information (DCI)
  • Beam information and/or uplink common beam information can indicate the TCI state corresponding to the CCs in the target CC group through downlink information, such as downlink control information (DCI), and then determine the downlink common state of the CCs in the target CC group according to the TCI state.
  • Beam information and/or uplink common beam information can indicate the TCI state corresponding to the CCs in the target CC group through downlink information, such as downlink control information (DCI), and then determine the downlink common state of the CCs in the target CC group according to the TCI state.
  • Beam information and/or uplink common beam information can indicate the TCI state corresponding to the CCs in the target
  • the above-mentioned reference CC (the CC used to determine the timing start symbol) may be the CC where the above-mentioned ACK is located, the above-mentioned first CC, or the second CC belonging to the second TAG in the target CC group.
  • the CCs in the foregoing target CC group may belong to multiple TAGs.
  • the determined timing start symbols are different, and the target CCs are also different, so the determined first slots are also different.
  • the BATs of the CCs belonging to each TAG of the target CC group are also different.
  • the method for determining the beam application time provided in the embodiment of the present application is exemplarily described below by referring to three situations of the CC.
  • Case 1 The reference CC is the first CC, and the first CC is the CC with the smallest SCS in the first TAG.
  • the foregoing timing start symbol may be a symbol determined according to the first symbol. It can be understood that the timing start symbol may be a symbol corresponding to a mapping position of the first symbol on the time domain resource corresponding to the first CC.
  • the timing start symbol may be a symbol determined according to the first symbol and the first timing advance (timing advance, TA).
  • first TA may include at least one of the following items: the TA corresponding to the first TAG, and the TA corresponding to the TAG to which the CC where the ACK belongs.
  • the timing start symbol may be a corresponding symbol after subtracting and/or adding the first TA from the mapping position of the first symbol on the time domain resource corresponding to the first CC.
  • the timing start symbol may be a corresponding symbol after the mapping position of the first symbol on the time domain resource corresponding to the first CC goes back backward and/or advances forward by the first TA.
  • the backward step refers to the number of symbols located before (before) the mapping position of the first symbol on the time domain resource corresponding to the first CC
  • the forward step refers to the number of symbols located before the mapping position of the first symbol on the time domain resource corresponding to the first CC.
  • the number of symbols after (after/next) the mapped position on the time domain resource is at symbol n, m symbols backward from symbol n is symbol (n-m), and forward k symbols from symbol n is symbol (n+k).
  • the time of the first symbol is t1
  • the time difference between the TA corresponding to the TAG to which the ACK belongs and the TA corresponding to the first TAG is t2
  • the time of the timing start symbol is (t1+t2). If the TA corresponding to the TAG to which the ACK belongs is smaller than the TA corresponding to the first TAG, the time of the timing start symbol is (t1-t2).
  • the timing start symbol may be the time domain resource corresponding to the first symbol in the first CC Add 5 symbols to the mapped position on , and subtract the corresponding symbols after 3 symbols. That is to say, the timing start symbol determined according to the TA corresponding to the first TAG and the TA corresponding to the TAG to which the CC where the ACK belongs is 2 symbols behind in time compared to the symbol on the time domain resource corresponding to the CC where the ACK is located. Advance the mapping position of the first symbol on the time domain resource corresponding to the first CC by 2 symbols, if the mapping position is the symbol n on the time domain resource corresponding to the first CC, then the timing start symbol is the symbol (n+ 2).
  • the TAG to which the CC where the ACK belongs and the first TAG may be different TAGs.
  • the first slot may be on the time domain resource corresponding to the first CC, which is located Y symbols after the timing start symbol The first slot.
  • each Y of the network configuration may correspond to at least one of a group of CC, BWP, and SCS.
  • the BAT of the CC belonging to the first TAG is the first slot.
  • the communication device may determine the BAT of all CCs in the first TAG by determining the BAT of the CC with the smallest SCS in the first TAG.
  • CCs in the target CC group belong to the same TAG.
  • CC0 the CC where the ACK is located
  • TAG1 the CC where the ACK is located
  • TAG2 the CCs in the target CC group all belong to TAG2. If among the CCs belonging to TAG2, CC1 (that is, the first CC) has the smallest SCS, CC1 belonging to TAG2 is used as a reference (reference) CC.
  • Example 1 As shown in Figure 3, according to at least one of the TA corresponding to TAG1 and the TA corresponding to TAG2 to which CC0 belongs, map T0 (the last symbol occupied by ACK on CC0, that is, the first symbol) to the corresponding TA of CC1 The first time point T1 (that is, the timing start symbol) on the time domain resource, and then according to the SCS of CC1, count Y symbols starting from T1, and use the first slot (the first slot) after the Yth symbol as the first One slot, so that the first slot is used as the BAT of the CC belonging to TAG2.
  • Example 2 As shown in Figure 4, map T0 (the last symbol occupied by ACK on CC0, that is, the first symbol) to the second time point T2 (that is, the timing start symbol) on the time domain resource corresponding to CC1, and then According to the SCS of CC1, Y symbols are counted from T2, and the first slot after the Y-th symbol is used as the first slot, so that the first slot is used as the BAT of the CC belonging to TAG2.
  • CCs in the target CC group belong to different TAGs.
  • CC0 the CC where the ACK is located
  • TAG1 the CC where the ACK is located
  • TAG2 the CC where the ACK is located
  • TAG3 the CC where the ACK is located
  • Example 3 As shown in Figure 5, according to at least one of the TA corresponding to TAG1 and the TA corresponding to TAG2 to which CC0 belongs, map T0 (the last symbol occupied by ACK on CC0, that is, the first symbol) to the corresponding TA of CC1
  • the first time point TAG2-T1 on the time domain resource that is, the timing start symbol corresponding to TAG2
  • the first slot of TAG2 is used as the first slot corresponding to TAG2, so the first slot is used as the BAT of the CC belonging to TAG2.
  • T0 is mapped to the first time point TAG3-T1 on the time domain resource corresponding to CC2 (that is, the timing start symbol corresponding to TAG3), and then According to the SCS of CC2, count Y symbols from TAG3-T1, and use the first slot after the Y-th symbol (TAG3-T6) as the first slot corresponding to TAG3, so as to use the first slot as the BAT of the CC belonging to TAG3 .
  • Example 4 As shown in Figure 6, map T0 (that is, the first symbol) to the second time point TAG2-T2 (that is, the timing start symbol corresponding to TAG2) on the time domain resource corresponding to CC1, and then according to the SCS of CC1, Count Y symbols from TAG2-T2, and use the first slot after the Y-th symbol (TAG2-T6) as the first slot corresponding to TAG2, so as to use the first slot as the BAT of the CC belonging to TAG2.
  • map T0 that is, the first symbol
  • the second time point TAG3-T2 that is, the timing start symbol corresponding to TAG3
  • the first slot located after the Yth symbol (TAG3-T6) is used as the first slot corresponding to TAG3, so that the first slot is used as the BAT of the CC belonging to TAG3.
  • Y corresponding to each TAG may be the same or different, which may be determined according to actual usage requirements, and is not limited in this embodiment of the present application.
  • the number of TAGs is not limited, for example, 2 TAGs, 3 TAGs, or 4 TAGs, etc.
  • This application uses 2 TAGs as an example to illustrate Illustrated.
  • the implementation manner in which CCs in the target CC group belong to other numbers of TAGs is similar to the implementation manner in which CCs in the target CC group belong to 2 TAGs. To avoid repetition, details will not be described herein.
  • Case 2 the reference CC is the second CC, and the second CC is the CC with the smallest SCS in the target CC group.
  • the foregoing timing start symbol may be a symbol determined according to the first symbol. It can be understood that the timing start symbol may be a symbol corresponding to a mapping position of the first symbol on the time domain resource corresponding to the second CC.
  • the timing start symbol is a symbol determined according to the first symbol and the second TA.
  • the second TA may include at least one of the following items: the TA corresponding to the second TAG, and the TA corresponding to the TAG to which the CC where the ACK belongs.
  • the timing start symbol may be a corresponding symbol after subtracting and/or adding the second TA from the mapping position of the first symbol on the time domain resource corresponding to the second CC.
  • the timing start symbol may be a corresponding symbol after the mapping position of the first symbol on the time domain resource corresponding to the second CC goes back backward and/or advances forward by the second TA.
  • the backward step refers to the number of symbols located before (before) the mapping position of the first symbol on the time domain resource corresponding to the second CC
  • the forward step refers to the number of symbols located at the first symbol corresponding to the second CC.
  • the mapping position is at symbol n
  • m symbols backward from symbol n are symbol (n-m)
  • forward k symbols from symbol n are symbol (n+k).
  • the time of the first symbol is t1
  • the time difference between the TA corresponding to the CC where the ACK is located and the TA corresponding to the second TAG is t2
  • the time of the timing start symbol is (t1+t2)
  • the time of the timing start symbol is (t1-t2).
  • the timing start symbol may be the time domain resource corresponding to the first symbol in the second CC Add 5 symbols to the mapped position on , and subtract the corresponding symbols after 2 symbols. That is to say, the timing start symbol determined according to the TA corresponding to the second TAG and the TA corresponding to the TAG to which the CC where the ACK is located is 3 symbols behind in time compared to the symbol on the time domain resource corresponding to the CC where the ACK is located. Advance the mapping position of the first symbol on the time domain resource corresponding to the first CC forward by 3 symbols. If the mapping position is the symbol n on the time domain resource corresponding to the first CC, the timing start symbol is symbol (n +3).
  • the TAG to which the CC where the above ACK belongs can be a different TAG from the first TAG and the second TAG, or can be the same TAG, which can be determined according to actual usage requirements.
  • This application Examples are not limited.
  • first TAG and the second TAG may be different TAGs.
  • the target CC can be the above-mentioned first CC
  • the first CC can be the CC with the smallest SCS in the first TAG
  • the first slot can be the time slot corresponding to the first CC. The first slot after the second symbol on the domain resource.
  • the foregoing second symbol may be a symbol determined according to the second slot.
  • the above-mentioned second slot may be the first slot located after the third symbol on the time domain resource corresponding to the second CC, and the third symbol may be located on the time domain resource corresponding to the second CC and located after the timing start symbol The Yth symbol of . It can be understood that the above second symbol may be a symbol corresponding to a mapping position of the second slot (or understood as the first symbol in the second slot) on the time domain resource corresponding to the first CC.
  • the second symbol may be a symbol determined according to the second slot and the third TA.
  • the third TA may include at least one of the following items: a TA corresponding to the first TAG, and a TA corresponding to the second TAG.
  • the above-mentioned second symbol may be the mapping position corresponding to the second slot (for example, the first symbol of the second slot) on the time-domain resource corresponding to the above-mentioned first CC after subtracting and/or adding the third TA. symbol.
  • the above-mentioned second symbol may be the mapping position of the second slot (for example, the first symbol of the second slot) on the time-domain resource corresponding to the above-mentioned first CC, backward and/or forward to the third TA corresponding symbols.
  • going backward refers to the number of symbols before (before) the mapping position of the second slot (for example, the first symbol of the second slot) on the time domain resource corresponding to the first CC
  • forwarding refers to The number of symbols located after (after/next) the mapping position of the second slot (for example, the first symbol of the second slot) on the time domain resource corresponding to the first CC.
  • the mapping position is at symbol n
  • m symbols backward from symbol n is symbol (n-m)
  • forward k symbols from symbol n is symbol (n+k).
  • the time of the first symbol of the second slot is t3
  • the time difference between the TA corresponding to the first TAG and the TA corresponding to the second TAG is t4
  • the time of the timing start symbol is (t3+t4). If the TA corresponding to the second TAG is smaller than the TA corresponding to the first TAG, the time of the timing start symbol is (t3-t4).
  • the second symbol may be the mapping of the second slot on the time domain resource corresponding to the first CC Add 2 symbols to the position, and subtract the corresponding symbol after subtracting 3 symbols.
  • the second symbol determined according to the TA corresponding to the first TAG and the TA corresponding to the second TAG is one symbol earlier in time than the symbol on the time domain resource corresponding to the second CC, and the second slot needs to be
  • the mapping position on the time domain resource corresponding to the first TAG is set back by one symbol, and if the mapping position is symbol n on the time domain resource corresponding to the first CC, the second symbol is symbol (n-1).
  • the foregoing second symbol may be a symbol determined according to the third symbol.
  • the third symbol may be the Yth symbol after the timing start symbol on the time domain resource corresponding to the second CC. It can be understood that the foregoing second symbol may be a symbol corresponding to a mapping position of the third symbol on the time domain resource corresponding to the first CC.
  • the second symbol is a symbol determined according to the third symbol and the third TA.
  • the third TA may include at least one of the following items: a TA corresponding to the first TAG, and a TA corresponding to the second TAG.
  • the second symbol may be a corresponding symbol after subtracting and/or adding the third TA from the mapping position of the third symbol on the time domain resource corresponding to the first CC.
  • the above-mentioned second symbol may be a symbol corresponding to a mapping position of the third symbol on the time-domain resource corresponding to the above-mentioned first CC backward and/or forward by the third TA.
  • the backward step refers to the number of symbols located before (before) the mapping position of the third symbol on the time domain resource corresponding to the first CC
  • the forward step refers to the number of symbols located before the mapping position of the third symbol on the time domain resource corresponding to the first CC.
  • the number of symbols after (after/next) the mapped position on the time domain resource is at symbol n, m symbols backward from symbol n is symbol (n-m), and forward k symbols from symbol n is symbol (n+k).
  • the time of the third symbol is t3
  • the time difference between the TA corresponding to the first TAG and the TA corresponding to the second TAG is t4
  • the time of the timing start symbol is (t3+t4)
  • the time of the timing start symbol is (t3-t4)
  • the BAT of the CC belonging to the first TAG may be the first slot
  • the BAT of the CC belonging to the second TAG may be the second slot
  • the communication device can determine the BAT of all CCs in the first TAG by determining the BAT of the first CC (the CC with the smallest SCS in the first TAG); and determine the BAT of all CCs in the first TAG; The BAT of the CC with the smallest SCS in the group) determines the BAT of all CCs in the second TAG.
  • the second case (the reference CC is the second CC and the target CC is the first CC) will be exemplarily described below with reference to the accompanying drawings.
  • TAGX Assuming that the CC where the ACK is located (hereinafter referred to as CC0) belongs to TAGX, some of the CCs in the target CC group belong to TAG2 and the other part belong to TAG3. If the SCS of CC1 belonging to TAG2 is the smallest in the target CC group, CC1 is used as a common reference CC for TAG2 and TAG3. Wherein, TAGX may be the same as TAG2 or TAG3, or may be different from both TAG2 and TAG3.
  • Example 5 As shown in Figure 7, according to at least one of the TA of TAGX to which CC0 belongs and the TA corresponding to TAG2, map T0 (the last symbol occupied by ACK on CC0, that is, the first symbol) to the time corresponding to CC1 The first time point T1 on the domain resource (that is, the timing start symbol); then according to the SCS of CC1, counting Y symbols from T1, the first slot ( The first slot) is used as the first slot corresponding to TAG2, so that the first slot is used as the BAT of the CC belonging to TAG2.
  • the next slot after T7 is used as the first slot of CC2, so that the next slot after T7 is used as the BAT of the CC belonging to TAG3.
  • Example 6 As shown in Figure 8, map T0 (the last symbol occupied by ACK on CC0, that is, the first symbol) to the first time point T1 (that is, the timing start symbol) on the time domain resource corresponding to CC1; then According to the SCS of CC1, count Y symbols from T1, and use the first slot (the first slot) after the Yth symbol (T6, the third symbol above) as the first slot corresponding to TAG2, so that the first The slot serves as the BAT of the CC belonging to TAG2.
  • Example 7 As shown in Figure 9, according to at least one of the TA of TAGX where CC0 is located and the TA corresponding to TAG2, map T0 (the last symbol occupied by ACK on CC0, that is, the first symbol) to the time domain corresponding to CC1 The first time point T1 on the resource (that is, the timing start symbol); then according to the SCS of CC1, count Y symbols from T1, and place the first slot (the first slot) after the Yth symbol (T6, the third symbol above) A slot) is used as the first slot corresponding to TAG2, so that the first slot is used as the BAT of the CC belonging to TAG2.
  • Example 8 As shown in 10, map T0 (the last symbol occupied by ACK on CC0, that is, the first symbol) to the first time point T2 (that is, the timing start symbol) on the time domain resource corresponding to CC1; and then according to The SCS of CC1 counts Y symbols from T2, and uses the first slot (the first slot) after the Yth symbol (T6, the third symbol above) as the first slot corresponding to TAG2, so that the first slot As a BAT for each CC in TAG2.
  • Example 9 As shown in Figure 11, according to at least one of the TA of TAGX where CC0 is located and the TA corresponding to TAG2, map T0 (the last symbol occupied by ACK on CC0, that is, the first symbol) to the time domain corresponding to CC1 The first time point T1 on the resource (that is, the timing start symbol); then, according to the SCS of CC1, counting Y symbols from T1, it will be located in the first slot after the Yth symbol (T6, the third symbol above) (ie The above second slot) is used as the first slot corresponding to TAG2, so that the first slot is used as the BAT of each CC in TAG2.
  • the first slot located after T6 (ie, the above-mentioned second slot) is mapped to the CC2 with the smallest SCS in TAG3 (ie, the above-mentioned first CC)
  • the time point on the corresponding time domain resource that is, map the first symbol in the first slot after T6 to the symbol position on the time domain resource corresponding to CC2 with the smallest SCS in TAG3, and map the time domain resource corresponding to CC2
  • the next slot after this time point is used as the BAT of the CC belonging to TAG3.
  • Example 10 As shown in Figure 12, map T0 (the last symbol occupied by ACK on CC0, that is, the first symbol) to the first time point T2 (that is, the timing start symbol) on the time domain resource corresponding to CC1; and then According to the SCS of CC1, Y symbols are counted from T2, and the first slot (that is, the second slot above) located after the Yth symbol (T6, that is, the third symbol above) is used as the first slot corresponding to TAG2, so that the The first slot serves as the BAT of each CC in TAG2.
  • the first slot located after T6 (ie, the above-mentioned second slot) is mapped to the CC2 with the smallest SCS in TAG3 (ie, the above-mentioned first CC)
  • a time point on the corresponding time domain resource that is, the first symbol in the first slot after T6 is mapped to the symbol position on the time domain resource corresponding to CC2 with the smallest SCS in TAG3, and the corresponding to CC2
  • the next slot after this time point is used as the BAT of the CC belonging to TAG3.
  • the reference CC is the CC where the ACK is located
  • the CC where the ACK is located is the CC in the target CC group and the CC with the smallest SCS among the CCs where the ACK is located.
  • the timing start symbol may be the first symbol.
  • the target CC may be the CC where the ACK is located.
  • the above-mentioned first slot may be the first slot located Y symbols after the timing start symbol on the time domain resource corresponding to the CC where the ACK is located.
  • the target CC is the CC where the ACK is located
  • the BAT of the CC belonging to the same TAG group is the third slot.
  • the above third slot may be the first slot located after the fourth symbol on the time domain resource corresponding to the third CC, and the third CC may be the CC with the smallest SCS in the same TAG group.
  • the foregoing fourth symbol may be a symbol determined according to the first slot.
  • the foregoing fourth symbol may be a symbol corresponding to a mapping position of the first slot on the time domain resource corresponding to the third CC. That is to say, the foregoing fourth symbol may be a symbol corresponding to a mapping position of the first symbol of the first slot on the time domain resource corresponding to the third CC.
  • the fourth symbol is a symbol determined according to the first slot and the fourth TA.
  • the fourth TA may include at least one of the following: a TA corresponding to the TAG to which the third CC belongs, and a TA corresponding to the TAG to which the CC where the ACK belongs.
  • the fourth symbol may be a symbol corresponding to a mapping position of the first slot on the time domain resource corresponding to the third CC minus and/or a symbol corresponding to the fourth TA.
  • the fourth symbol may be the mapping position of the first slot (for example, the first symbol of the first slot) on the time domain resource corresponding to the third CC. Backwards and/or forwards the fourth TA corresponding symbols.
  • the backward rollback refers to the number of symbols located before (before) the mapping position of the first slot (such as the first symbol of the first slot) on the time domain resource corresponding to the third CC
  • the forward advance refers to the number of symbols located at The number of symbols after (after/next) the mapping position of the first slot (for example, the first symbol of the first slot) on the time domain resource corresponding to the third CC.
  • the mapping position is at symbol n
  • m symbols backward from symbol n is symbol (n-m)
  • forward k symbols from symbol n is symbol (n+k).
  • the time of the first slot (for example, the first symbol of the first slot) is t5
  • the time difference between the TA corresponding to the TAG to which the CC belongs and the TA corresponding to the TAG to which the third CC belongs is t6
  • the time of the fourth symbol is (T1+T2)
  • the time of the fourth symbol is (T1-T2)
  • the fourth symbol may be the first slot corresponding to the third CC.
  • the corresponding symbol after adding 4 symbols to the mapping position on the time domain resource and subtracting 3 symbols.
  • the fourth symbol determined according to the TA corresponding to the TAG to which the third CC belongs and the TA corresponding to the TAG to which the CC to which the ACK belongs is one behind in time compared to the symbol on the time domain resource corresponding to the CC to which the ACK belongs Symbol
  • the mapping position of the first slot (for example, the first symbol of the first slot) on the time domain resource corresponding to the third CC needs to be advanced by 1 symbol, if the mapping position is the time domain resource corresponding to the first CC
  • the timing start symbol is symbol (n+1).
  • CCs in the target CC group belong to the same TAG.
  • CC0 the CC where the ACK is located
  • the CCs in the target CC group all belong to TAG2. If among the CCs belonging to TAG2, CC1 (that is, the third CC) has the smallest SCS, CC1 belonging to TAG2 is used as the CC used by TAG2 to determine the BAT.
  • T0 (the last symbol occupied by ACK on CC0, that is, the first symbol) is determined as the timing start symbol.
  • the first slot (the first slot) after the Y-th symbol (denoted as T3) is used as the first slot, so that according to at least one of the TA corresponding to TAG1 where CC0 is located and the TA corresponding to TAG2 (or regardless of TA), the The first slot is mapped to a time point on the time domain resource corresponding to CC1 (that is, the third CC above), and the next slot after the time point on the time domain resource corresponding to CC1 is used as the BAT of the CC belonging to TAG2 .
  • CCs in the target CC group belong to different TAGs.
  • CC0 the CC where the ACK is located
  • TAG1 the CC where the ACK is located
  • TAG2 the CC where the ACK is located
  • TAG3 the CC where the ACK is located
  • T0 (the last symbol occupied by ACK on CC0, that is, the first symbol) is determined as the timing start symbol. According to the SCS of CC0, the Y symbols starting from T0 will be located at The first slot (the first slot) after the Yth symbol (denoted as T3) is used as the first slot.
  • the first slot is mapped to a time on the time domain resource corresponding to CC1 (that is, the third CC corresponding to TAG2) point, and the next slot after the time point on the time domain resource corresponding to CC1 is used as the BAT belonging to the CC in TAG2.
  • the first slot is mapped to a time on the time domain resource corresponding to CC2 (that is, the third CC corresponding to TAG3) point, and the next slot after the time point on the time domain resource corresponding to CC2 is used as the BAT of the CC belonging to TAG3.
  • the target CC is the first CC
  • the first CC is the CC with the smallest SCS in the first TAG.
  • the first slot may be the first slot after the fifth symbol on the time domain resource corresponding to the first CC.
  • the foregoing fifth symbol may be a symbol determined according to the sixth symbol.
  • the sixth symbol may be the Yth symbol after the timing start symbol on the time domain resource corresponding to the CC where the ACK is located. It can be understood that, in the foregoing implementation manner, the fifth symbol may be a symbol corresponding to a mapping position of the sixth symbol on the time domain resource corresponding to the first CC.
  • the foregoing fifth symbol may be a symbol determined according to the sixth symbol and the first TA.
  • the above-mentioned first TA may include at least one of the following items: the TA corresponding to the first TAG, and the TA corresponding to the TAG to which the CC where the ACK belongs.
  • the fifth symbol may be a corresponding symbol after subtracting and/or adding the first TA to the symbol corresponding to the mapping position of the sixth symbol on the time domain resource corresponding to the first CC.
  • the fifth symbol may be a corresponding symbol after the mapping position of the sixth symbol on the time-domain resource corresponding to the first CC goes back backward and/or advances forward by the first TA.
  • the backward step refers to the number of symbols located before (before) the mapping position of the sixth symbol on the time domain resource corresponding to the first CC
  • the forward step refers to the number of symbols located at the sixth symbol corresponding to the first CC.
  • the number of symbols after (after/next) the mapped position on the time domain resource is at symbol n, m symbols backward from symbol n is symbol (n-m), and forward k symbols from symbol n is symbol (n+k).
  • the time of the sixth symbol is t7
  • the time difference between the TA corresponding to the TAG to which the ACK belongs and the TA corresponding to the first TAG is t8
  • the time of the fifth symbol is (t7+t8). If the TA corresponding to the TAG to which the ACK belongs is smaller than the TA corresponding to the first TAG, the time of the fifth symbol is (t7-t8).
  • the fifth symbol may be the time domain resource corresponding to the sixth symbol in the third CC
  • the corresponding symbol after adding 3 symbols to the mapped position on and subtracting 5 symbols. That is to say, the fifth symbol determined according to the TA corresponding to the first TAG and the TA corresponding to the TAG to which the CC where the ACK belongs is 2 symbols ahead of the symbol on the time domain resource corresponding to the CC where the ACK is located.
  • the mapping position of the sixth symbol on the time domain resource corresponding to the first CC is set back by 2 symbols. If the mapping position is symbol n on the first CC, the timing start symbol is symbol (n-2).
  • the target CC is the first CC
  • the BAT of the CC belonging to the first TAG is the first slot.
  • CCs in the target CC group belong to the same TAG.
  • CC0 the CC where the ACK is located
  • TAG1 the CC where the ACK is located
  • TAG2 the CCs in the target CC group all belong to TAG2. If among the CCs belonging to TAG2, CC1 (that is, the first CC) has the smallest SCS, CC1 belonging to TAG2 is used as the CC used by TAG2 to determine the BAT.
  • Example 13 As shown in Figure 15, determine T0 (the last symbol occupied by ACK on CC0, that is, the first symbol) as the timing start symbol, according to the SCS of CC0, the number Y symbols starting from T0, according to where CC0 is located At least one of the TA corresponding to TAG1 and the TA corresponding to TAG2, and map the Y-th symbol (that is, the sixth symbol above, denoted as T3) to T4 (that is, the fifth symbol above) on the time domain resource corresponding to CC1, The first slot after T4 is used as the first slot, so that the first slot is used as the BAT of the CC belonging to TAG2.
  • Example 14 As shown in Figure 16, determine T0 (the last symbol occupied by ACK on CC0, that is, the first symbol) as the timing start symbol, and according to the SCS of CC0, count Y symbols starting from T0, set the Yth symbols (i.e. the sixth symbol above, denoted as T3) are mapped to T5 (i.e. the fifth symbol above) on the time domain resource corresponding to CC1, and the first slot after T5 is used as the first slot, so that the first slot is used as The BAT of the CC belonging to TAG2.
  • CCs in the target CC group belong to different TAGs.
  • CC0 the CC where the ACK is located
  • TAG1 the CC where the ACK is located
  • TAG2 the CC where the ACK is located
  • TAG3 the CC where the ACK is located
  • Example 15 As shown in Figure 17, determine T0 (the last symbol occupied by ACK on CC0, that is, the first symbol) as the timing start symbol, and count Y symbols from T0 according to the SCS of CC0. Then, according to at least one of the TA corresponding to TAG1 where CC0 is located and the TA corresponding to TAG2, map the Y-th symbol (that is, the sixth symbol above, denoted as T3) to TAG2-T4 on the time domain resource corresponding to CC1 ( That is, the fifth symbol corresponding to TAG2), and the first slot after TAG2-T4 is used as the first slot, so that the first slot is used as the BAT of the CC belonging to TAG2.
  • T3 the last symbol occupied by ACK on CC0, that is, the first symbol
  • the TA corresponding to TAG1 where CC0 is located and the TA corresponding to TAG3 map the Yth symbol (that is, the sixth symbol above, denoted as T3) to TAG3-T4 on the time domain resource corresponding to CC2 (that is, The fifth symbol corresponding to TAG3), and the first slot (the first slot) after TAG3-T4 is used as the first slot, so that the first slot is used as the BAT of the CC belonging to TAG3.
  • Example 16 As shown in Figure 18, determine T0 (the last symbol occupied by ACK on CC0, that is, the first symbol) as the timing start symbol, and count Y symbols from T0 according to the SCS of CC0. Then, map the Yth symbol (that is, the sixth symbol above, denoted as T3) to TAG2-T5 (that is, the fifth symbol corresponding to TAG2) on the time domain resource corresponding to CC1, and place the first slot after TAG2-T5 (the first slot) as the first slot, so that the first slot is used as the BAT of the CC belonging to TAG2.
  • the Yth symbol (that is, the sixth symbol above, denoted as T3) is mapped to TAG3-T5 (that is, the fifth symbol corresponding to TAG3) on the time domain resource corresponding to CC2, and the first slot after TAG3-T5 ( The first slot) is used as the first slot, so that the first slot is used as the BAT of the CC belonging to TAG3.
  • the CCs in the target CC group belong to different TAGs or If the TAG to which the CC in the target CC group belongs is different from the TAG to which the CC to which the ACK belongs, determine the timing start symbol corresponding to the reference CC, determine the first slot corresponding to the target CC, and determine the target CC according to the first slot
  • the BAT of the CCs belonging to each TAG in the group can make the beams of the CCs belonging to the same TAG in the target CC group take effect at the same time, that is, the beams of the CCs belonging to the same TAG can be aligned, so that data transmission can be performed correctly.
  • the network side device can configure multiple BWPs for the cell corresponding to one CC, and the multiple BWPs include active BWP (active BWP) and inactive BWP (inactive BWP).
  • communication Devices such as terminals and network-side devices
  • an embodiment of the present application provides a method for determining a beam application time, and the method for determining a beam application time may include the following steps 301 to 303 .
  • step 301 the communication device determines a timing start symbol corresponding to the reference BWP according to the seventh symbol.
  • the seventh symbol may be the last symbol occupied by the ACK of the beam indication information.
  • Step 302 the communication device determines the fourth slot corresponding to the target BWP according to the timing start symbol.
  • the above-mentioned target BWP may be the BWP where the ACK is located or the first BWP whose CC belongs to the third TAG in the target BWP group.
  • the above BWP where the ACK is located may be the BWP of the ACK that carries the beam indication information, and specifically may be the BWP of the CC that carries the ACK of the beam indication information.
  • Step 303 the communication device determines the BAT of the BWP of the CC belonging to each TAG in the target BWP group according to the fourth slot.
  • the terminal may send an ACK of the beam indication information to the network side device.
  • the communication device terminal and/or network side device
  • the communication device can determine the above timing start symbol on the time domain resource corresponding to the reference BWP according to the above seventh symbol (the last symbol occupied by the ACK of the beam indication information), and according to the The timing start symbol determines the fourth slot on the time domain resource corresponding to the target BWP, and then determines the BAT of the BWP of the CC belonging to each TAG in the target BWP group according to the fourth slot, that is, the communication device can use the fourth slot. slot, to determine the BAT of the BWP of the CC of each TAG in the target BWP group.
  • the BWPs in the foregoing target BWP group may be the BWPs to which the foregoing beam indication information is applied.
  • the beam indication information may be common beam (common beam) indication information.
  • the CC to which the BWP belongs and the CC to which the BWP to which the ACK belongs belong to at least two TAGs in the target BWP group.
  • the CC to which the BWP in the target BWP group belongs may belong to at least one TAG.
  • the TAG to which the CC to which the BWP belongs to which the ACK belongs is different from the TAG to which the CC to which the BWP belongs to in the target BWP group belongs to; the CC to which the BWP belongs to in the target BWP group belongs to
  • the TAG to which the CC to which the BWP belongs and the TAG to which the CC to which the BWP belongs in the target BWP group belong may be the same or different. The details may be determined according to actual usage requirements, which is not limited in this application.
  • the at least two TAGs correspond to the same TCI state pool, or the at least two TAGs correspond to different TCIs state pool. That is, when the network side device configures a TCI state pool for the BWP-owned CCs in the target BWP group, no matter how many TAGs the BWP-owned CCs in the target BWP group belong to, a TCI state pool can be configured for the BWP-owned CCs in the target BWP group. You can also configure one TCI state pool for CCs belonging to the same TAG and another TCI state pool for CCs belonging to another TAG according to the TAG to which the BWP CCs in the target BWP group belong.
  • the network side device can indicate the TCI state corresponding to the CC to which the BWP in the target BWP group belongs through downlink information, such as downlink control information (DCI), and then determine the BWP in the target BWP group according to the TCI state.
  • downlink information such as downlink control information (DCI)
  • DCI downlink control information
  • the above-mentioned reference BWP (BWP used to determine the timing start symbol) may be the BWP where the above-mentioned ACK is located, and the second BWP of the fourth TAG belonging to the first BWP or the CC to which the target BWP group belongs.
  • the CC to which the BWP in the above-mentioned target BWP group belongs may belong to multiple TAGs.
  • the determined timing start symbols are different, and the target BWP is also different, so the determined fourth slot is also different.
  • the BATs of the BWPs of the CCs belonging to each TAG in the target BWP group are also different.
  • the method for determining the beam application time provided in the embodiment of the present application is exemplarily described below by referring to three situations of the BWP.
  • Case 1 The reference BWP is the first BWP, and the first BWP is the BWP with the smallest SCS among the CCs belonging to the third TAG.
  • the timing start symbol may be a symbol determined according to the seventh symbol. It can be understood that the timing start symbol may be a symbol corresponding to a mapping position of the seventh symbol on the time domain resource corresponding to the first BWP.
  • the timing start symbol may be a symbol determined according to the seventh symbol and the fifth TA.
  • the fifth TA may include at least one of the following items: the TA corresponding to the third TAG, and the TA corresponding to the TAG to which the CC of the BWP where the ACK belongs.
  • the timing start symbol may be a corresponding symbol after subtracting and/or adding the fifth TA from the mapping position of the seventh symbol on the time domain resource corresponding to the first BWP.
  • the timing start symbol may be a corresponding symbol after the mapping position of the seventh symbol on the time domain resource corresponding to the first BWP is backward and/or forward by the fifth TA.
  • going backward refers to the number of symbols located before (before) the mapping position of the seventh symbol on the time domain resource corresponding to the first BWP; The number of symbols after (after/next) the mapped position on the time domain resource.
  • the mapping position is at symbol n, m symbols backward from symbol n is symbol (n-m), and forward k symbols from symbol n is symbol (n+k).
  • timing start symbol For an example of how to determine the timing start symbol, refer to the relevant example of determining the timing start symbol on the time domain resource corresponding to the first CC in the above embodiment for details. To avoid repetition, details are not repeated here.
  • the TAG to which the CC to which the BWP where the ACK is located and the third TAG to which the above-mentioned ACK belongs may be different TAGs.
  • the fourth slot may be on the time-domain resource corresponding to the first BWP, which is located after Y symbols after the timing start symbol. a slot.
  • each Y of the network configuration may correspond to at least one of a group of CC, BWP, and SCS.
  • the BAT of the BWP of the CC belonging to the third TAG is the fourth slot.
  • the communication device may determine the BWP BAT of all CCs belonging to the third TAG by determining the BWP BAT with the smallest SCS among the CCs belonging to the third TAG.
  • BWP0 the CC to which the BWP (hereinafter referred to as BWP0) where the ACK is located belongs to TAG1, and the CCs to which BWPs in the target BWP group belong to TAG2. If the SCS of BWP1 (that is, the above-mentioned first BWP) is the smallest among the CCs belonging to TAG2, BWP1 is used as the reference (reference) BWP of the target BWP group.
  • Example 17 As shown in Figure 3, according to at least one of the TA corresponding to TAG1 and the TA corresponding to TAG2 to which the CC to which BWP0 belongs, map T0 (the last symbol occupied by ACK on BWP0, that is, the seventh symbol) to BWP1 The first time point T1 on the corresponding time-domain resource (that is, the timing start symbol), and then count Y symbols from T1 according to the SCS of BWP1, and use the first slot after the Y-th symbol as the fourth slot, so that The first slot is used as the BAT of the BWP of the CC belonging to TAG2.
  • Example 18 As shown in Figure 4, map T0 (the last symbol occupied by ACK on BWP0, i.e. the seventh symbol) to the second time point T2 (i.e. the timing start symbol) on the time domain resource corresponding to BWP1, and then According to the SCS of BWP1, Y symbols are counted from T2, and the first slot after the Y-th symbol is used as the fourth slot, so that the first slot is used as the BAT of the BWP belonging to the CC of TAG2.
  • Another possible situation the BWPs in the target BWP group belong to different TAGs.
  • BWP0 the CC to which the BWP (hereinafter referred to as BWP0) where the ACK is located belongs to TAG1, and among the CCs to which the BWPs in the target BWP group belong, some belong to TAG2 and the other part belong to TAG3. If among the CCs belonging to TAG2, the SCS of BWP1 is the smallest, then BWP1 is used as the reference BWP corresponding to TAG2; among the CCs belonging to TAG3, the SCS of BWP2 is the smallest, then BWP2 is used as the reference BWP corresponding to TAG3.
  • Example 19 As shown in Figure 5, according to at least one of the TA corresponding to TAG1 and the TA corresponding to TAG2 to which the CC to which BWP0 belongs, map T0 (the last symbol occupied by ACK on BWP0, that is, the seventh symbol) to BWP1
  • the first time point TAG2-T1 on the corresponding time domain resource that is, the timing start symbol corresponding to TAG2
  • count Y symbols from TAG2-T1 according to the SCS of BWP1 and will be located at the Yth symbol (TAG2-T6 ) after the first slot (the first slot) is used as the fourth slot corresponding to TAG2, so that the first slot is used as the BAT of the BWP of the CC belonging to TAG2.
  • T0 is mapped to the first time point TAG3-T1 on the time domain resource corresponding to BWP2 (that is, the timing start symbol corresponding to TAG3) , and then count Y symbols from TAG3-T1 according to the SCS of BWP2, and take the first slot (the first slot) after the Yth symbol (TAG3-T6) as the fourth slot corresponding to TAG3, so that the first The slot serves as the BAT of the BWP of the CC belonging to TAG3.
  • Example 20 As shown in Figure 6, map T0 (that is, the seventh symbol) to the second time point TAG2-T2 (that is, the timing start symbol corresponding to TAG2) on the time domain resource corresponding to BWP1, and then according to the SCS of BWP1, Count Y symbols from TAG2-T2, and use the first slot after the Y-th symbol (TAG2-T6) as the fourth slot corresponding to TAG2, so that the first slot is used as the BAT of the BWP of the CC belonging to TAG2.
  • map T0 that is, the seventh symbol
  • the second time point TAG3-T2 that is, the timing start symbol corresponding to TAG3
  • the first slot located after the Yth symbol (TAG3-T6) is used as the fourth slot corresponding to TAG3, so that the first slot is used as the BAT of the BWP of the CC belonging to TAG3.
  • Y corresponding to each TAG may be the same or different, which may be determined according to actual usage requirements, and is not limited in this embodiment of the present application.
  • the number of TAGs is not limited, such as 2 TAGs, 3 TAGs or 4 TAGs, etc.
  • This application takes 2 TAGs as an example to carry out Exemplary.
  • the CCs to which the BWP belongs in the target BWP group belong to other numbers of TAGs, it is similar to the realization that the CCs to which the BWPs belong to the target BWP group belong to 2 TAGs. To avoid repetition, this application will not repeat them.
  • Case 2 The reference BWP is the second BWP, and the second BWP is the BWP with the smallest SCS in the target BWP group.
  • the timing start symbol may be a symbol determined according to the seventh symbol. It can be understood that the timing start symbol may be a symbol corresponding to a mapping position of the seventh symbol on the time domain resource corresponding to the second BWP.
  • the timing start symbol is a symbol determined according to the seventh symbol and the sixth TA.
  • the sixth TA may include at least one of the following: the TA corresponding to the fourth TAG, and the TA corresponding to the TAG to which the CC of the BWP where the ACK belongs.
  • the timing start symbol may be a corresponding symbol after subtracting and/or adding the sixth TA from the mapping position of the seventh symbol on the time domain resource corresponding to the second BWP.
  • the timing start symbol may be the symbol corresponding to the sixth TA in which the mapping position of the seventh symbol on the time domain resource corresponding to the second BWP goes backwards and/or forwards.
  • the backward step refers to the number of symbols located before (before) the mapping position of the seventh symbol on the time domain resource corresponding to the above-mentioned second BWP
  • the forward step refers to the number of symbols located at the time domain resource corresponding to the seventh symbol on the above-mentioned second BWP.
  • the number of symbols after (after/next) the mapped position on the time domain resource is at symbol n, m symbols backward from symbol n is symbol (n-m), and forward k symbols from symbol n is symbol (n+k).
  • timing start symbol For an example of how to determine the timing start symbol, please refer to the relevant example of determining the timing start symbol on the time domain resource corresponding to the second CC in the above-mentioned embodiment. To avoid repetition, details are not repeated here.
  • the TAG to which the CC to which the BWP belongs to the above-mentioned ACK is located may be different from the third TAG and the fourth TAG, or may be the same TAG, which may be determined according to actual usage requirements.
  • This application Examples are not limited.
  • the third TAG and the fourth TAG may be different TAGs.
  • the fourth slot may be the time slot corresponding to the first BWP.
  • the first slot after the eighth symbol on the domain resource.
  • the eighth symbol may be a symbol determined according to the fifth slot.
  • the above fifth slot may be the first slot located after the ninth symbol on the time domain resource corresponding to the second BWP, and the ninth symbol may be located on the time domain resource corresponding to the second BWP after the timing start symbol The Yth symbol of .
  • the above eighth symbol may be a symbol corresponding to a mapping position of the fifth slot (or understood as the first symbol in the fifth slot) on the time domain resource corresponding to the first BWP.
  • the eighth symbol may be a symbol determined according to the fifth slot and the seventh TA.
  • the seventh TA may include at least one of the following: a TA corresponding to the third TAG, and a TA corresponding to the fourth TAG.
  • the above-mentioned eighth symbol may be the mapping position corresponding to the fifth slot (for example, the first symbol of the fifth slot) on the time-domain resource corresponding to the above-mentioned first BWP after subtracting and/or adding the seventh TA. symbol.
  • the above-mentioned eighth symbol may be the mapping position of the fifth slot (for example, the first symbol of the fifth slot) on the time-domain resource corresponding to the above-mentioned BWP. Backward and/or forward after the seventh TA corresponding symbols.
  • the backward rollback refers to the number of symbols before (before) the mapping position of the fifth slot (for example, the first symbol of the fifth slot) on the time domain resource corresponding to the first BWP
  • the forward advance refers to The number of symbols located after (after/next) the mapping position of the fifth slot (for example, the first symbol of the fifth slot) on the time domain resource corresponding to the first BWP.
  • the mapping position is at symbol n, m symbols backward from symbol n are symbol (n-m), and forward k symbols from symbol n are symbol (n+k).
  • the eighth symbol may be a symbol determined according to the ninth symbol.
  • the ninth symbol may be the Yth symbol after the timing start symbol on the time domain resource corresponding to the second BWP. It can be understood that the foregoing eighth symbol may be a symbol corresponding to a mapping position of the ninth symbol on the time domain resource corresponding to the first BWP.
  • the eighth symbol is a symbol determined according to the ninth symbol and the seventh TA.
  • the seventh TA may include at least one of the following: a TA corresponding to the third TAG, and a TA corresponding to the fourth TAG.
  • the eighth symbol may be a corresponding symbol after subtracting and/or adding the seventh TA from the mapping position of the ninth symbol on the time domain resource corresponding to the first BWP.
  • the eighth symbol may be a corresponding symbol after the mapping position of the ninth symbol on the time domain resource corresponding to the first BWP goes back backward and/or advances forward by the seventh TA.
  • the backward rollback refers to the number of symbols located before (before) the mapping position of the ninth symbol on the time domain resource corresponding to the first BWP
  • the forward advance refers to the number of symbols located at the ninth symbol corresponding to the first BWP.
  • the mapping position is at symbol n
  • m symbols backward from symbol n is symbol (n-m)
  • forward k symbols from symbol n is symbol (n+k).
  • the BAT of the BWP of the CC belonging to the third TAG may be the fourth slot; the BAT of the BWP of the CC belonging to the fourth TAG may be the fifth slot.
  • the communication device can determine the BAT of the BWP of each CC in the third TAG by determining the BAT of the first BWP (the BWP with the smallest SCS in the CCs belonging to the third TAG); and by determining the BAT of the second BWP
  • the BAT of the BWP (the BWP with the smallest SCS in the target BWP group) determines the BAT of the BWP of each CC in the fourth TAG (the TAG to which the CC to which the second BWP belongs) belongs.
  • TAGX the CC to which the BWP (hereinafter referred to as BWP0) where the ACK is located belongs to TAGX, and the CCs to which the BWPs in the target BWP group belong, some belong to TAG2 and the other part belong to TAG3. If the CC to which it belongs belongs to the CCs of TAG2 and the SCS of BWP1 is the smallest, BWP1 is used as the common reference (reference) BWP of TAG2 and TAG3.
  • TAGX may be the same as TAG2 or TAG3, or may be different from both TAG2 and TAG3.
  • Example 21 As shown in Figure 7, according to at least one of the TA of the TAGX to which the CC to which BWP0 belongs and the TA corresponding to TAG2, map T0 (the last symbol occupied by ACK on BWP0, that is, the seventh symbol) to the corresponding TA of BWP1 The first time point T1 (that is, the timing start symbol) on the time domain resource; then according to the SCS of BWP1, counting Y symbols from T1, the first The slot (the first slot) is used as the fourth slot corresponding to TAG2, so that the first slot is used as the BAT of the BWP of the CC belonging to TAG2.
  • T6 (that is, the ninth symbol above) is mapped to T7 on the time domain resource corresponding to BWP2 (that is, the first BWP above) with the smallest SCS in the CC belonging to TAG3 (that is, the eighth symbol above), and the next slot after T7 on the time domain resource corresponding to BWP2 is used as the first slot of BWP2, so that the next slot after T7 is used as the BAT of the BWP of the CC belonging to TAG3.
  • Example 22 As shown in Figure 8, map T0 (the last symbol occupied by ACK on BWP0, that is, the seventh symbol) to the first time point T1 on BWP1 (that is, the timing start symbol); then according to the SCS of BWP1, Count Y symbols from T1, and use the first slot (the first slot) after the Yth symbol (T6, the ninth symbol above) as the fourth slot corresponding to TAG2, so that the first slot is regarded as belonging to TAG2 CC's BWP's BAT.
  • T6 (ie, the above-mentioned ninth symbol) is mapped to T7 (ie, the above-mentioned eighth symbol) of BWP2 (ie, the above-mentioned first BWP) with the smallest SCS among the CCs belonging to TAG3 ), and the next slot after T7 on the time domain resource corresponding to BWP2 is used as the first slot of BWP2, so that the first slot of BWP2 is used as the BAT of the BWP of the CC belonging to TAG3.
  • Example 23 As shown in Figure 9, according to at least one of the TA of TAGX where BWP0 is located and the TA corresponding to TAG2, map T0 (the last symbol occupied by ACK on BWP0, that is, the seventh symbol) to the time domain corresponding to BWP1
  • the first time point T1 on the resource that is, the timing start symbol
  • the SCS of BWP1 count Y symbols from T1
  • place the first slot (the first slot) after the Yth symbol (T6, the ninth symbol above) A slot) is used as the fourth slot corresponding to TAG2, so that the first slot is used as the BAT of the BWP of the CC belonging to TAG2.
  • Example 24 As shown in Figure 10, map T0 (the last symbol occupied by ACK on BWP0, that is, the seventh symbol) to the first time point T2 (that is, the timing start symbol) on the time domain resource corresponding to BWP1; then According to the SCS of BWP1, Y symbols are counted from T2, and the first slot (the first slot) after the Yth symbol (T6, the ninth symbol above) is used as the fourth slot corresponding to TAG2, so that the first The slot serves as the BAT of the BWP of the CC belonging to TAG2.
  • Example 25 As shown in Figure 11, according to at least one of the TA of TAGX where BWP0 is located and the TA corresponding to TAG2, map T0 (the last symbol occupied by ACK on BWP0, that is, the seventh symbol) to the time domain corresponding to BWP1 The first time point T1 on the resource (that is, the timing start symbol); then, according to the SCS of BWP1, count Y symbols from T1, and place the first slot after the Yth symbol (T6, the ninth symbol above) (ie The above-mentioned fifth slot) is used as the fourth slot corresponding to TAG2, so that the first slot is used as the BAT of the BWP of the CC belonging to TAG2.
  • the first slot after T6 (that is, the fifth slot above) is mapped to the BWP2 with the smallest SCS among the CCs belonging to TAG3 (that is, the first slot above)
  • a time point on the time domain resource corresponding to BWP that is, mapping the first symbol in the first slot after T6 to the symbol position on the time domain resource corresponding to BWP2, and mapping the time domain resource corresponding to BWP2 , the next slot after this time point is used as the BAT of the BWP belonging to the CC in TAG3.
  • Example 26 As shown in Figure 12, map T0 (the last symbol occupied by ACK on BWP0, that is, the seventh symbol) to the first time point T2 (that is, the timing start symbol) on the time domain resource corresponding to BWP1; and then According to the SCS of BWP1, Y symbols are counted from T2, and the first slot (that is, the fifth slot above) located after the Yth symbol (T6, that is, the ninth symbol above) is used as the fourth slot corresponding to TAG2, so that the The first slot is used as the BAT of the BWP of the CC belonging to TAG2.
  • the first slot after T6 (that is, the fifth slot above) is mapped to the BWP2 with the smallest SCS among the CCs belonging to TAG3 (that is, the first slot above)
  • a point in time on the time domain resource corresponding to BWP that is, map the first symbol in the first slot after T6 to the symbol position on the time domain resource corresponding to BWP2, and map the time domain resource corresponding to BWP2 , the next slot after this time point is used as the BAT of the BWP of the CC belonging to TAG3.
  • Case 3 The reference BWP is the BWP where the ACK is located, and the BWP where the ACK is located is the BWP in the target BWP group and the BWP with the smallest SCS among the BWPs where the ACK is located;
  • the timing start symbol may be the seventh symbol.
  • the target BWP may be the BWP where the ACK is located.
  • the fourth slot may be the first slot after Y symbols after the timing start symbol on the time domain resource corresponding to the BWP where the ACK is located.
  • the target BWP is the BWP where the ACK is located
  • the BAT of the BWP belonging to the same TAG group is the sixth slot.
  • the sixth slot may be the first slot after the tenth symbol on the time domain resource corresponding to the third BWP, and the third BWP may be the BWP with the smallest SCS among the CCs belonging to the same TAG group.
  • the above tenth symbol may be a symbol determined according to the fourth slot. It can be understood that the above tenth symbol may be a symbol corresponding to a mapping position of the fourth slot on the time domain resource corresponding to the third BWP. That is to say, the above tenth symbol may be the symbol corresponding to the mapping position of the first symbol of the fourth slot on the time domain resource corresponding to the th BWP.
  • the tenth symbol is a symbol determined according to the fourth slot and the eighth TA.
  • the eighth TA may include at least one of the following items: the TA corresponding to the TAG to which the third BWP belongs, and the TA corresponding to the TAG to which the BWP where the ACK belongs.
  • the above tenth symbol may be a corresponding symbol after subtracting and/or adding the eighth TA from the symbol corresponding to the mapping position of the fourth slot on the time domain resource corresponding to the third BWP.
  • the above-mentioned tenth symbol may be the mapping position of the fourth slot (for example, the first symbol of the fourth slot) on the time-domain resource corresponding to the above-mentioned third BWP. Backward and/or forward to the eighth TA corresponding symbols.
  • the backward rollback refers to the number of symbols located before (before) the mapping position of the fourth slot (such as the first symbol of the fourth slot) on the time domain resource corresponding to the third BWP
  • the forward advance refers to the number of symbols located at The number of symbols after (after/next) the mapping position of the fourth slot (for example, the first symbol of the fourth slot) on the time domain resource corresponding to the third BWP.
  • the mapping position is at symbol n
  • m symbols backward from symbol n is symbol (n-m)
  • forward k symbols from symbol n is symbol (n+k).
  • BWP0 the CC to which the BWP (hereinafter referred to as BWP0) where the ACK is located belongs to TAG1, and the CCs to which BWPs in the target BWP group belong to TAG2. If the SCS of BWP1 (that is, the third BWP) is the smallest among the CCs belonging to TAG2, BWP1 is used as the BWP for determining the BAT among the CCs belonging to TAG2.
  • T0 (the last symbol occupied by ACK on BWP0, that is, the seventh symbol) is determined as the timing start symbol.
  • the number Y symbols starting from T0 will be located at
  • the first slot after the Y-th symbol is used as the fourth slot, so that the first slot is mapped to BWP1 according to at least one of the TA corresponding to TAG1 where BWP0 is located and the TA corresponding to TAG2 (or regardless of TA).
  • a time point on the time domain resource corresponding to BWP), and the next slot after the time point on the time domain resource corresponding to BWP1 is used as the BAT of the BWP of the CC belonging to TAG2.
  • BWP0 the CC to which the BWP (hereinafter referred to as BWP0) where the ACK is located belongs to TAG1, and the CCs to which the BWPs in the target BWP group belong, some belong to TAG2 and the other part belong to TAG3. If the SCS of BWP1 is the smallest among the CCs belonging to TAG2, then BWP1 is used as the third BWP corresponding to TAG2; among the CCs belonging to TAG3, the SCS of BWP2 is the smallest, then BWP2 is used as the third BWP corresponding to TAG3.
  • T0 (the last symbol occupied by ACK on BWP0, that is, the seventh symbol) is determined as the timing start symbol. According to the SCS of BWP0, the number Y symbols starting from T0 will be located at The first slot (the first slot) after the Yth symbol is used as the fourth slot.
  • the first slot is mapped to a time on the time domain resource corresponding to BWP1 (that is, the third BWP corresponding to TAG2) point, and use the time domain resource corresponding to BWP1, and the next slot after this time point as the BAT of the BWP of the CC belonging to TAG2.
  • the first slot is mapped to a time on the time domain resource corresponding to BWP2 (that is, the third BWP corresponding to TAG3) point, and use the time domain resource corresponding to BWP2, and the next slot after this time point as the BAT of the BWP of the CC belonging to TAG3.
  • the target BWP is the first BWP
  • the first BWP is the BWP with the smallest SCS in the third TAG.
  • the fourth slot may be the first slot after the eleventh symbol on the time domain resource corresponding to the first BWP.
  • the above-mentioned eleventh symbol may be a symbol determined according to the twelfth symbol.
  • the above-mentioned twelfth symbol may be the Yth symbol after the timing start symbol on the time domain resource corresponding to the BWP where the ACK is located. It can be understood that the eleventh symbol may be a symbol corresponding to a mapping position of the twelfth symbol on the time domain resource corresponding to the first BWP.
  • the eleventh symbol may be a symbol determined according to the twelfth symbol and the fifth TA.
  • the fifth TA may include at least one of the following items: the TA corresponding to the third TAG, and the TA corresponding to the TAG to which the BWP where the ACK belongs.
  • the eleventh symbol may be the symbol corresponding to the mapping position of the twelfth symbol on the time domain resource corresponding to the first BWP minus and/or adding the fifth TA.
  • the eleventh symbol may be a corresponding symbol after the mapping position of the twelfth symbol on the time-domain resource corresponding to the first BWP goes backwards and/or advances forward by the fifth TA.
  • going backward refers to the number of symbols located before (before) the mapping position of the twelfth symbol on the time domain resource corresponding to the first BWP; The number of symbols after (after/next) the mapping position on the corresponding time domain resource.
  • the mapping position is at symbol n, m symbols backward from symbol n is symbol (n-m), and forward k symbols from symbol n is symbol (n+k).
  • the BAT of the BWP of the CC belonging to the third TAG is the fourth slot.
  • BWP0 the CC to which the BWP (hereinafter referred to as BWP0) where the ACK is located belongs to TAG1, and the CCs to which BWPs in the target BWP group belong to TAG2. If the SCS of BWP1 (that is, the third BWP) is the smallest among the CCs belonging to TAG2, BWP1 is used as the BWP for determining the BAT among the CCs belonging to TAG2.
  • Example 29 As shown in Figure 15, determine T0 (the last symbol occupied by ACK on BWP0, that is, the seventh symbol) as the timing start symbol, according to the SCS of BWP0, the number Y symbols starting from T0, according to the location of BWP0 At least one of the TA corresponding to TAG1 and the TA corresponding to TAG2, and map the Y-th symbol (that is, the twelfth symbol above, denoted as T3) to T4 (that is, the eleventh symbol above) on the time domain resource corresponding to BWP1 ), and the first slot after T4 is used as the fourth slot, so that the first slot is used as the BAT of the BWP of the CC belonging to TAG2.
  • Example 30 As shown in Figure 16, determine T0 (the last symbol occupied by ACK on BWP0, that is, the seventh symbol) as the timing start symbol, and according to the SCS of BWP0, count Y symbols starting from T0, set the Yth symbols (that is, the above-mentioned twelfth symbol, denoted as T3) are mapped to T5 (that is, the above-mentioned eleventh symbol) on the time domain resource corresponding to BWP1, and the first slot after T5 is used as the fourth slot, so that the first The slot serves as the BAT of the BWP of the CC belonging to TAG2.
  • BWP0 the CC to which the BWP (hereinafter referred to as BWP0) where the ACK is located belongs to TAG1, and the CCs to which the BWPs in the target BWP group belong, some belong to TAG2 and the other part belong to TAG3. If the SCS of BWP1 is the smallest among the CCs belonging to TAG2, then BWP1 is set as the target BWP corresponding to TAG2; among the CCs belonging to TAG3, the SCS of BWP2 is the smallest, then BWP2 is set as the target BWP corresponding to TAG3.
  • Example 31 As shown in Figure 17, determine T0 (the last symbol occupied by ACK on BWP0, that is, the seventh symbol) as the timing start symbol, and count Y symbols from T0 according to the SCS of BWP0. Then, according to at least one of the TA corresponding to TAG1 where BWP0 is located and the TA corresponding to TAG2, the Y-th symbol (that is, the above-mentioned twelfth symbol, denoted as T3) is mapped to TAG2-T4 on the time domain resource corresponding to BWP1 (that is, the eleventh symbol corresponding to TAG2), and the first slot after TAG2-T4 is used as the fourth slot, so that the first slot is used as the BAT of the BWP of the CC belonging to TAG2.
  • T3 the last symbol occupied by ACK on BWP0, that is, the seventh symbol
  • the TA corresponding to TAG1 where BWP0 is located and the TA corresponding to TAG3 map the Y-th symbol (that is, the above-mentioned twelfth symbol, denoted as T3) to TAG3-T4 on the time domain resource corresponding to BWP2 ( That is, the eleventh symbol corresponding to TAG3), and the first slot after TAG3-T4 is used as the fourth slot, so that the first slot is used as the BAT of the BWP of the CC belonging to TAG3.
  • Example 32 As shown in Figure 18, determine T0 (the last symbol occupied by ACK on BWP0, that is, the seventh symbol) as the timing start symbol, and count Y symbols from T0 according to the SCS of BWP0. Then, map the Y-th symbol (that is, the twelfth symbol above, denoted as T3) to TAG2-T4 (that is, the eleventh symbol corresponding to TAG2) on the time domain resource corresponding to BWP1, and will be located after TAG2-T5
  • the first slot is used as the fourth slot, so the first slot is used as the BAT of the BWP of the CC belonging to TAG2.
  • T3 the twelfth symbol above, denoted as T3
  • TAG3-T5 that is, the eleventh symbol corresponding to TAG3
  • the first slot is used as the fourth slot, so the first slot is used as the BAT of the BWP of the CC belonging to TAG3.
  • the CCs to which the BWPs in the target BWP group belong If the TAG to which the CC to which the BWP belongs belongs to a different TAG or in the target BWP group is different from the TAG to which the CC to which the BWP to which the ACK belongs, determine the timing start symbol corresponding to the reference BWP and determine the first slot corresponding to the target BWP, and According to the first slot, determine the BWP BAT of the CCs belonging to each TAG in the target BWP group, so that the BWP beams of the CCs belonging to the same TAG in the target BWP group can take effect at the same time, that is, the CCs belonging to the same TAG can be made.
  • the beams of the BWP are aligned so
  • the executor may be the device for determining the beam application time, or a control module in the device for determining the beam application time for executing the method for determining the beam application time.
  • the method for determining the beam application time determined by BAT is taken as an example to describe the apparatus for determining the beam application time provided in the embodiment of the present application.
  • the embodiment of the present application provides a beam application time determination device 400
  • the beam application time determination device 400 includes a determination module 401; the determination module 401 is used to determine the timing start point corresponding to the reference CC according to the first symbol Symbol, the first symbol is the last symbol occupied by the ACK of the beam indication information; and according to the timing start symbol, determine the first slot corresponding to the target CC, the target CC is the CC where the ACK is located or the first slot belonging to the first TAG in the target CC group CC; and according to the first slot, determine the BAT of the CC belonging to each TAG in the target CC group.
  • the reference CC is the CC where the ACK is located, the first CC, or a second CC belonging to the second TAG in the target CC group.
  • the reference CC is the first CC
  • the first CC is the CC with the smallest subcarrier spacing SCS in the first TAG
  • the timing start symbol is a symbol determined according to the first symbol
  • the timing start symbol is based on the first symbol and the second A symbol determined by a timing advance TA
  • the first TA includes at least one of the following items: the TA corresponding to the first TAG, and the TA corresponding to the TAG to which the CC where the ACK belongs.
  • the target CC is the first CC; the first slot is the first slot located Y symbols after the timing start symbol on the time domain resource corresponding to the first CC.
  • the BAT of the CC belonging to the first TAG is the first slot.
  • the reference CC is the second CC, and the second CC is the CC with the smallest SCS in the target CC group;
  • the timing start symbol is a symbol determined according to the first symbol; or the timing start symbol is determined according to the first symbol and the second TA where the second TA includes at least one of the following items: the TA corresponding to the second TAG, and the TA corresponding to the TAG to which the CC where the ACK belongs.
  • the target CC is the first CC
  • the first CC is the CC with the smallest SCS in the first TAG
  • the first slot is the first slot after the second symbol on the time domain resource corresponding to the first CC.
  • the second symbol is a symbol determined according to the second slot; or the second symbol is a symbol determined according to the second slot and the third TA; wherein, the second slot is on the time domain resource corresponding to the second CC, located in The first slot after the third symbol, the third symbol is the Yth symbol after the timing start symbol on the time domain resource corresponding to the second CC, and the third TA includes at least one of the following items: TA corresponding to the first TAG , the TA corresponding to the second TAG.
  • the second symbol is a symbol determined according to the third symbol, or the second symbol is a symbol determined according to the third symbol and the third TA; wherein, the third symbol is on the time domain resource corresponding to the second CC, located in In the Y-th symbol after the timing start symbol, the third TA includes at least one of the following items: the TA corresponding to the first TAG, and the TA corresponding to the second TAG.
  • the BAT of the CC belonging to the first TAG is the first slot
  • the BAT of the CC belonging to the second TAG is the second slot
  • the reference CC is the CC where the ACK is located, the CC where the ACK is located is the CC in the target CC group and the CC with the smallest SCS among the CCs where the ACK is located; the timing start symbol is the first symbol.
  • the target CC is the CC where the ACK is located; the first slot is the first slot after Y symbols after the timing start symbol on the time domain resource corresponding to the CC where the ACK is located.
  • the BAT of CCs belonging to the same TAG group is the third slot; wherein, the third slot is the first slot after the fourth symbol on the time domain resource corresponding to the third CC,
  • the third CC is the CC with the smallest SCS in the same TAG group.
  • the fourth symbol is a symbol determined according to the first slot; or the fourth symbol is a symbol determined according to the first slot and the fourth TA; wherein, the fourth TA includes at least one of the following: the TAG to which the third CC belongs The corresponding TA and the TA corresponding to the TAG to which the CC where the ACK is located belongs.
  • the target CC is the first CC
  • the first CC is the CC with the smallest SCS in the first TAG
  • the first slot is the first slot after the fifth symbol on the time domain resource corresponding to the first CC.
  • the fifth symbol is a symbol determined according to the sixth symbol; or the fifth symbol is a symbol determined according to the sixth symbol and the first TA; wherein, the sixth symbol is on the time domain resource corresponding to the CC where the ACK is located, and is located in In the Y-th symbol after the timing start symbol, the first TA includes at least one of the following items: the TA corresponding to the first TAG, and the TA corresponding to the TAG to which the CC where the ACK belongs.
  • the BAT of the CC belonging to the first TAG is the first slot.
  • the CC in the target CC group and the CC where the ACK is located belong to at least two TAGs.
  • the CCs in the target CC group belong to at least two TAGs; at least two TAGs correspond to the same TCI state pool, or at least two TAGs correspond to different TCI state pools
  • the CCs in the target CC group belong to different TAGs or target CCs If the TAG to which the CC in the group belongs is different from the TAG to which the CC to which the ACK belongs, by determining the timing start symbol corresponding to the reference CC, and determining the first slot corresponding to the target CC, and according to the first slot, determine the target CC group
  • the BAT of the CCs belonging to each TAG can make the beams of the CCs belonging to the same TAG in the target CC group take effect at the same time, that is, the beams of the CCs belonging to the same TAG can be aligned, so that data transmission can be performed correctly.
  • the embodiment of the present application provides a beam application time determination device 400
  • the beam application time determination device 400 includes a determination module 401; the determination module 401 is used to determine the timing start point corresponding to the reference BWP according to the seventh symbol
  • the seventh symbol is the last symbol occupied by the ACK of the beam indication information; and according to the timing start symbol, determine the fourth slot corresponding to the target BWP.
  • the target BWP is the BWP where the ACK is located or the carrier unit CC in the target BWP group belongs to the third the first BWP of the TAG; and according to the fourth slot, determine the BAT of the BWP of the CC belonging to each TAG in the target BWP group.
  • the reference BWP is the BWP where the ACK is located, the first BWP, or the second BWP whose CC belongs to the fourth TAG in the target BWP group.
  • the reference BWP is the first BWP, and the first BWP is the BWP with the smallest SCS among the CCs belonging to the third TAG;
  • the timing start symbol is a symbol determined according to the seventh symbol; or the timing start symbol is based on the seventh symbol and the Symbols determined by five TAs; wherein, the fifth TA includes at least one of the following items: the TA corresponding to the third TAG, and the TA corresponding to the TAG to which the CC to which the BWP belongs to where the ACK is located.
  • the target BWP is the first BWP; the fourth slot is the first slot after Y symbols after the timing start symbol on the time domain resource corresponding to the first BWP.
  • the BAT of the BWP of the CC belonging to the third TAG is the fourth slot.
  • the reference BWP is the second BWP, and the second BWP is the BWP with the smallest SCS in the target BWP group;
  • the timing start symbol is a symbol determined according to the seventh symbol; or the timing start symbol is determined according to the seventh symbol and the sixth TA where the sixth TA includes at least one of the following items: the TA corresponding to the fourth TAG, and the TA corresponding to the TAG to which the CC of the BWP where the ACK is located belongs.
  • the target BWP is the first BWP
  • the first BWP is the BWP with the smallest SCS among the CCs belonging to the third TAG
  • the fourth slot is the first slot after the eighth symbol on the time domain resource corresponding to the first BWP slot.
  • the eighth symbol is a symbol determined according to the fifth slot; or the eighth symbol is a symbol determined according to the fifth slot and the seventh TA; wherein, the fifth slot is the time domain resource corresponding to the second BWP, located in The first slot after the ninth symbol, the ninth symbol is the Yth symbol after the timing start symbol on the time domain resource corresponding to the second BWP, and the seventh TA includes at least one of the following: TA corresponding to the third TAG , the TA corresponding to the fourth TAG.
  • the eighth symbol is a symbol determined according to the ninth symbol, or the eighth symbol is a symbol determined according to the ninth symbol and the seventh TA; wherein, the ninth symbol is on the time domain resource corresponding to the second BWP, and is located at In the Y-th symbol after the timing start symbol, the seventh TA includes at least one of the following items: the TA corresponding to the third TAG, and the TA corresponding to the fourth TAG.
  • the BAT of the BWP of the CC belonging to the third TAG is the fourth slot
  • the BAT of the BWP of the CC belonging to the fourth TAG is the fifth slot.
  • the reference BWP is the BWP where the ACK is located
  • the BWP where the ACK is located is the BWP in the target BWP group and the BWP with the smallest SCS among the BWPs where the ACK is located
  • the timing start symbol is the seventh symbol.
  • the target BWP is the BWP where the ACK is located; the fourth slot is the first slot after Y symbols after the timing start symbol on the time domain resource corresponding to the BWP where the ACK is located.
  • the BAT of the BWP of the CC belonging to the same TAG group is the sixth slot; wherein, the sixth slot is the first one after the tenth symbol on the time domain resource corresponding to the third BWP slot, the third BWP is the BWP with the smallest SCS among the CCs belonging to the same TAG group.
  • the tenth symbol is a symbol determined according to the fourth slot; or the tenth symbol is a symbol determined according to the fourth slot and the eighth TA; wherein, the eighth TA includes at least one of the following: the CC to which the third BWP belongs The TA corresponding to the TAG of the ACK, and the TA corresponding to the TAG of the CC to which the BWP to which the ACK belongs.
  • the target BWP is the first BWP
  • the first BWP is the BWP with the smallest SCS among the BWPs included in the CC in the third TAG
  • the fourth slot is on the time domain resource corresponding to the first BWP, and is located after the eleventh symbol The first slot of .
  • the eleventh symbol is a symbol determined according to the twelfth symbol; or the eleventh symbol is a symbol determined according to the twelfth symbol and the fifth TA; wherein, the twelfth symbol is the time corresponding to the BWP where the ACK is located
  • the fifth TA includes at least one of the following items: the TA corresponding to the first TAG, and the TA corresponding to the TAG to which the CC of the BWP where the ACK is located is located in the Y-th symbol after the timing start symbol.
  • the BAT of the BWP of the CC belonging to the third TAG is the fourth slot.
  • the CC to which the BWP belongs and the CC to which the ACK belongs to the BWP in the target BWP group belong to at least two TAGs.
  • the CC to which the BWP in the target BWP group belongs belongs to at least two TAGs; at least two TAGs correspond to the same TCI state pool, or at least two TAGs correspond to different TCI state pools.
  • the CCs to which the BWPs in the target BWP group belong to different If the TAG to which the CC to which the BWP belongs in the TAG or the target BWP group belongs is different from the TAG to which the CC to which the BWP to which the ACK belongs belongs, determine the timing start symbol corresponding to the reference BWP, determine the first slot corresponding to the target BWP, and One slot, determine the BWP BAT of the CC belonging to each TAG in the target BWP group, so that the BWP beams of the CCs belonging to the same TAG in the target BWP group can be effective at the same time, that is, the CCs belonging to the BWP of the same TAG can be made
  • the beams are aligned so that data transmission can be
  • the device for determining the beam application time in the embodiment of the present application may be a device, a device with an operating system or an electronic device, or a component, an integrated circuit, or a chip in a terminal.
  • the apparatus or electronic equipment may be a mobile terminal or a non-mobile terminal.
  • the mobile terminal may include but not limited to the types of terminals 11 listed above, and the non-mobile terminal may be a server, a network attached storage (Network Attached Storage, NAS), a personal computer (personal computer, PC), a television ( television, TV), teller machines or self-service machines, etc., are not specifically limited in this embodiment of the present application.
  • the device for determining the beam application time provided in the embodiment of the present application can implement the various processes implemented in the above method embodiments and achieve the same technical effect. To avoid repetition, details are not repeated here.
  • this embodiment of the present application also provides a communication device 500, including a processor 501, a memory 502, and programs or instructions stored in the memory 502 and operable on the processor 501, for example,
  • a communication device 500 including a processor 501, a memory 502, and programs or instructions stored in the memory 502 and operable on the processor 501
  • the communication device 500 is a terminal
  • the program or the instruction is executed by the processor 501
  • each process of the above embodiment of the method for determining the beam application time can be realized, and the same technical effect can be achieved.
  • the communication device 500 is a network-side device
  • the program or instruction is executed by the processor 501
  • each process of the above embodiment of the method for determining the beam application time can be achieved, and the same technical effect can be achieved. To avoid repetition, details are not repeated here.
  • the embodiment of the present application also provides a terminal, including a processor and a communication interface, the processor is configured to determine the timing start symbol corresponding to the reference CC according to the first symbol, the first symbol is the last symbol occupied by the ACK of the beam indication information; and According to the timing start symbol, determine the first slot corresponding to the target CC, the target CC is the CC where the ACK is located or the first CC belonging to the first TAG in the target CC group; and according to the first slot, determine the target CC group belonging to each TAG CC's BAT.
  • the processor is configured to determine the timing start symbol corresponding to the reference BWP according to the seventh symbol, where the seventh symbol is the last symbol occupied by the ACK of the beam indication information; and determine the fourth slot corresponding to the target BWP according to the timing start symbol, the target The BWP is the BWP where the ACK is located or the first BWP of the carrier unit CC in the target BWP group that belongs to the third TAG; and according to the fourth slot, determine the BAT of the BWP of the CC belonging to each TAG in the target BWP group.
  • This embodiment of the terminal is related to Corresponding to the above terminal side method embodiment, each implementation process and implementation manner of the above method embodiment can be applied to this terminal embodiment, and can achieve the same technical effect.
  • FIG. 22 is a schematic diagram of a hardware structure of a terminal implementing an embodiment of the present application.
  • the terminal 100 includes but is not limited to: a radio frequency unit 101, a network module 102, an audio output unit 103, an input unit 104, a sensor 105, a display unit 106, a user input unit 107, an interface unit 108, a memory 109, and a processor 110, etc. at least some of the components.
  • the terminal 100 may also include a power supply (such as a battery) for supplying power to various components, and the power supply may be logically connected to the processor 110 through the power management system, so as to manage charging, discharging, and power consumption through the power management system. Management and other functions.
  • a power supply such as a battery
  • the terminal structure shown in FIG. 22 does not constitute a limitation on the terminal, and the terminal may include more or fewer components than shown in the figure, or combine certain components, or arrange different components, which will not be repeated here.
  • the input unit 104 may include a graphics processing unit (Graphics Processing Unit, GPU) 1041 and a microphone 1042, and the graphics processing unit 1041 is used by the image capturing device (such as the image data of the still picture or video obtained by the camera) for processing.
  • the display unit 106 may include a display panel 1061, and the display panel 1061 may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the user input unit 107 includes a touch panel 1071 and other input devices 1072 .
  • the touch panel 1071 is also called a touch screen.
  • the touch panel 1071 may include two parts, a touch detection device and a touch controller.
  • Other input devices 1072 may include, but are not limited to, physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be repeated here.
  • the radio frequency unit 101 receives the downlink data from the network side device, and processes it to the processor 110; in addition, sends the uplink data to the network side device.
  • the radio frequency unit 101 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the memory 109 can be used to store software programs or instructions as well as various data.
  • the memory 109 may mainly include a program or instruction storage area and a data storage area, wherein the program or instruction storage area may store an operating system, an application program or instructions required by at least one function (such as a sound playback function, an image playback function, etc.) and the like.
  • the memory 109 may include a high-speed random access memory, and may also include a nonvolatile memory, wherein the nonvolatile memory may be a read-only memory (Read-Only Memory, ROM), a programmable read-only memory (Programmable ROM) , PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically erasable programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • ROM Read-Only Memory
  • PROM programmable read-only memory
  • PROM erasable programmable read-only memory
  • Erasable PROM Erasable PROM
  • EPROM electrically erasable programmable read-only memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory for example at least one magnetic disk storage device, flash memory device, or other non-volatile solid-state storage device.
  • the processor 110 may include one or more processing units; optionally, the processor 110 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, application programs or instructions, etc., Modem processors mainly handle wireless communications, such as baseband processors. It can be understood that the foregoing modem processor may not be integrated into the processor 110 .
  • the processor 110 is configured to determine the timing start symbol corresponding to the reference CC according to the first symbol, and the first symbol is the last symbol occupied by the ACK of the beam indication information; and determine the first timing symbol corresponding to the target CC according to the timing start symbol.
  • the target CC is the CC where the ACK is located or the first CC belonging to the first TAG in the target CC group; and according to the first slot, determine the BAT of the CC belonging to each TAG in the target CC group.
  • the CCs belonging to a TAG have a certain association relationship in the time domain (for example, the SCS is the same or the SCS is multiplied), the CCs in the target CC group belong to different TAGs or target CC groups.
  • the TAG to which the CC belongs is different from the TAG to which the CC to which the ACK belongs, by determining the timing start symbol corresponding to the reference CC, and determining the first slot corresponding to the target CC, and according to the first slot, determine the The BAT of the CCs of a TAG can make the beams of the CCs belonging to the same TAG in the target CC group take effect at the same time, that is, the beams of the CCs belonging to the same TAG can be aligned, so that data transmission can be performed correctly.
  • the processor 110 is configured to determine the timing start symbol corresponding to the reference BWP according to the seventh symbol, where the seventh symbol is the last symbol occupied by the ACK of the beam indication information; and determine the fourth symbol corresponding to the target BWP according to the timing start symbol.
  • the target BWP is the BWP where the ACK is located or the first BWP of the carrier component CC in the target BWP group belonging to the third TAG; and according to the fourth slot, determine the BAT of the BWP of the CC belonging to each TAG in the target BWP group.
  • the embodiment of the present application also provides a network side device, including a processor and a communication interface, the processor is used to determine the timing start symbol corresponding to the reference CC according to the first symbol, the first symbol is the last symbol occupied by the ACK of the beam indication information ; and according to the timing start symbol, determine the first slot corresponding to the target CC, where the target CC is the CC where the ACK is located or the first CC belonging to the first TAG in the target CC group; and according to the first slot, determine the target CC group belonging to each TAG's CC's BAT.
  • a network side device including a processor and a communication interface
  • the processor is configured to determine the timing start symbol corresponding to the reference BWP according to the seventh symbol, where the seventh symbol is the last symbol occupied by the ACK of the beam indication information; and determine the fourth slot corresponding to the target BWP according to the timing start symbol, the target The BWP is the BWP where the ACK is located or the first BWP of the carrier component CC belonging to the third TAG in the target BWP group; and according to the fourth slot, determine the BAT of the BWP of the CC belonging to each TAG in the target BWP group.
  • the network-side device embodiment corresponds to the above-mentioned network-side device method embodiment, and each implementation process and implementation mode of the above-mentioned method embodiment can be applied to this network-side device embodiment, and can achieve the same technical effect.
  • the embodiment of the present application further provides a network side device.
  • the network side device 700 includes: an antenna 71 , a radio frequency device 72 , and a baseband device 73 .
  • the antenna 71 is connected to a radio frequency device 72 .
  • the radio frequency device 72 receives information through the antenna 71, and sends the received information to the baseband device 73 for processing.
  • the baseband device 73 processes the information to be sent and sends it to the radio frequency device 72
  • the radio frequency device 72 processes the received information and sends it out through the antenna 71 .
  • the foregoing frequency band processing device may be located in the baseband device 73 , and the method performed by the network side device in the above embodiments may be implemented in the baseband device 73 , and the baseband device 73 includes a processor 74 and a memory 75 .
  • the baseband device 73 can include at least one baseband board, for example, a plurality of chips are arranged on the baseband board, as shown in FIG. The operation of the network side device shown in the above method embodiments.
  • the baseband device 73 may also include a network interface 76 for exchanging information with the radio frequency device 72, such as a common public radio interface (CPRI for short).
  • a network interface 76 for exchanging information with the radio frequency device 72, such as a common public radio interface (CPRI for short).
  • CPRI common public radio interface
  • the network-side device in the embodiment of the present invention also includes: instructions or programs stored in the memory 75 and operable on the processor 74, and the processor 74 calls the instructions or programs in the memory 75 to execute the modules shown in FIG. 20 To avoid duplication, the method of implementation and to achieve the same technical effect will not be repeated here.
  • the embodiment of the present application also provides a readable storage medium, the readable storage medium stores a program or an instruction, and when the program or instruction is executed by a processor, each process of the above embodiment of the method for determining the beam application time is implemented, and can To achieve the same technical effect, in order to avoid repetition, no more details are given here.
  • the processor is the processor in the terminal described in the foregoing embodiments.
  • the readable storage medium includes computer readable storage medium, such as computer read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk, etc.
  • the embodiment of the present application further provides a chip, the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is used to run programs or instructions to implement the above method for determining the beam application time
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is used to run programs or instructions to implement the above method for determining the beam application time
  • the chip mentioned in the embodiment of the present application may also be called a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip.
  • the term “comprising”, “comprising” or any other variation thereof is intended to cover a non-exclusive inclusion such that a process, method, article or apparatus comprising a set of elements includes not only those elements, It also includes other elements not expressly listed, or elements inherent in the process, method, article, or device. Without further limitations, an element defined by the phrase “comprising a " does not preclude the presence of additional identical elements in the process, method, article, or apparatus comprising that element.
  • the scope of the methods and devices in the embodiments of the present application is not limited to performing functions in the order shown or discussed, and may also include performing functions in a substantially simultaneous manner or in reverse order according to the functions involved. Functions are performed, for example, the described methods may be performed in an order different from that described, and various steps may also be added, omitted, or combined. Additionally, features described with reference to certain examples may be combined in other examples.
  • the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of computer software products, which are stored in a storage medium (such as ROM/RAM, magnetic disk, etc.) , CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of the present application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种波束应用时间确定方法、装置及通信设备,属于通信技术领域,本申请实施例的波束应用时间确定方法包括:通信设备根据第一符号,确定参考CC对应的计时起点符号,第一符号为波束指示信息的ACK占用的最后一个符号;通信设备根据计时起点符号,确定目标CC对应的第一slot,目标CC为ACK所在CC或目标CC组中属于第一TAG的第一CC;通信设备根据第一slot,确定目标CC组中属于每个TAG的CC的BAT。

Description

波束应用时间确定方法、装置及通信设备
相关申请的交叉引用
本申请主张在2021年10月27日在中国提交的中国专利申请号202111258237.6的优先权,其全部内容通过引用包含于此。
技术领域
本申请涉及通信技术领域,尤其涉及一种波束应用时间(beam application time,BAT)确定方法及用户设备。
背景技术
网络侧设备可以通过媒体接入控制控制单元(medium access control control element,MAC CE)或下行控制信息(downlink control information,DCI)向终端发送波束指示信息,从而终端和/网络侧设备可以确定该波束指示信息指示的波束的波束应用时间(beam application time,BAT)。
通常,终端可以从发送上述波束指示信息的响应消息(Acknowledgement,ACK)所在的载波单元(component carrier,CC)(以下简称为CC0)、该波束指示信息对应的CC中选择具有最小子载波间隔(Subcarrier spacing,SCS)的CC作为参考CC,然后将该参考CC对应的时域资源上,从计时起点开始的Y个符号后的第一个slot作为该波束指示信息对应的所有CC的BAT。
然而,由于在载波聚合(carrier aggregation,CA)场景中,波束指示信息对应的CC可能属于不同的时间提前量组(timing advance group,TAG),因此这些CC之间时隙(slot)和符号(symbol)可能无法对齐。如此,通过上述方式确定的BAT,可能会导致这些CC中的全部或部分CC的BAT位于slot的中间,而非slot的第一个符号,从而导致波束指示信息对应的CC的应用时间无法对齐,进而无法进行正确的数据传输。
发明内容
本申请实施例提供一种波束应用时间确定方法、装置及通信设备,能够解决CA场景中CC的应用时间无法对齐,而无法进行正确的数据传输的问题。
第一方面,提供了一种波束应用时间确定方法,该方法包括:通信设备根据第一符号,确定参考CC对应的计时起点符号,第一符号为波束指示信息的ACK占用的最后一个符号;通信设备根据计时起点符号,确定目标CC对应的第一slot,目标CC为ACK所在CC或目标CC组中属于第一TAG的第一CC;通信设备根据第一slot,确定目标CC组中属于每个TAG的CC的BAT。
通过上述方案,由于属于一个TAG的CC在时域上具有一定的关联关系(比如SCS相同或SCS成倍数关系),因此在目标CC组中的CC属于不同TAG或目标CC 组中的CC所属的TAG与ACK所在CC所属的TAG不同的情况下,通过确定参考CC对应的计时起点符号,并且确定目标CC对应的第一slot,以及根据第一slot,确定目标CC组中属于每个TAG的CC的BAT,可以使得目标CC组中属于同一个TAG的CC的波束生效时间一致,即可以使得属于同一个TAG的CC的波束对齐,从而可以正确地进行数据传输。
第二方面,提供了一种波束应用时间确定方法,包括:通信设备根据第七符号,确定参考BWP对应的计时起点符号,第七符号为波束指示信息的ACK占用的最后一个符号;通信设备根据计时起点符号,确定目标BWP对应的第四slot,目标BWP为ACK所在BWP或目标BWP组中所属CC属于第三TAG的第一BWP;通信设备根据第四slot,确定目标BWP组中属于每个TAG的CC的BWP的BAT。
通过上述方案,由于属于一个TAG的CC的BWP在时域上具有一定的关联关系(比如SCS相同或SCS成倍数关系),因此在目标BWP组中的BWP所属CC属于不同TAG或目标BWP组中的BWP所属CC所属的TAG与ACK所在BWP所属CC所属的TAG不同的情况下,通过确定参考BWP对应的计时起点符号,并且确定目标BWP对应的第一slot,以及根据第一slot,确定目标BWP组中属于每个TAG的CC的BWP的BAT,可以使得目标BWP组中所属CC属于同一个TAG的BWP的波束生效时间一致,即可以使得所属CC属于同一个TAG的BWP的波束对齐,从而可以正确地进行数据传输。
第三方面,提供了一种波束应用时间确定装置,包括:确定模块,用于根据第一符号,确定参考CC对应的计时起点符号,第一符号为波束指示信息的ACK占用的最后一个符号;并根据计时起点符号,确定目标CC对应的第一slot,目标CC为ACK所在CC或目标CC组中属于第一TAG的第一CC;以及根据第一slot,确定目标CC组中属于每个TAG的CC的BAT。
第四方面,提供了一种波束应用时间确定装置,包括:确定模块,用于根据第七符号,确定参考BWP对应的计时起点符号,第七符号为波束指示信息的ACK占用的最后一个符号;并根据计时起点符号,确定目标BWP对应的第四slot,目标BWP为ACK所在BWP或目标BWP组中所属CC属于第三TAG的第一BWP;以及根据第四slot,确定目标BWP组中属于每个TAG的CC的BWP的波束应用时间BAT。
第五方面,提供了一种通信设备(包括终端和/网络侧设备),该终端包括处理器、存储器及存储在存储器上并可在处理器上运行的程序或指令,程序或指令被处理器执行时实现如第一方面的方法的步骤。
第六方面,提供了一种通信设备,包括处理器及通信接口,其中,处理器用于根据第一符号,确定参考CC对应的计时起点符号,第一符号为波束指示信息的ACK占用的最后一个符号;并根据计时起点符号,确定目标CC对应的第一slot,目标CC为ACK所在CC或目标CC组中属于第一TAG的第一CC;以及根据第一slot,确定目标CC组中属于每个TAG的CC的BAT。或者。处理器用于根据第七符号,确定参考BWP对应的计时起点符号,第七符号为波束指示信息的ACK占用的最后一个符号;并根据计时起点符号,确定目标BWP对应的第四slot,目标BWP为ACK所在BWP或目标BWP组中所属CC属于第三TAG的第一BWP;以及根据第四slot,确定目标BWP组中属于每个TAG的CC的BWP的波束应用时间BAT。
第七方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
第八方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和 所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法,或实现如第二方面所述的方法。
第九方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在非易失的存储介质中,所述程序/程序产品被至少一个处理器执行以实现如第一方面所述的方法的步骤,或者实现如第二方面所述的方法的步骤。
附图说明
图1是本申请实施例提供的无线通信系统的结构示意图;
图2为本申请实施例提供的波束应用时间确定方法的流程示意图之一;
图3为本申请实施例提供的波束应用时间确定方法的应用示意图之一;
图4为本申请实施例提供的波束应用时间确定方法的应用示意图之二;
图5为本申请实施例提供的波束应用时间确定方法的应用示意图之三;
图6为本申请实施例提供的波束应用时间确定方法的应用示意图之四;
图7为本申请实施例提供的波束应用时间确定方法的应用示意图之五;
图8为本申请实施例提供的波束应用时间确定方法的应用示意图之六;
图9为本申请实施例提供的波束应用时间确定方法的应用示意图之七;
图10为本申请实施例提供的波束应用时间确定方法的应用示意图之八;
图11为本申请实施例提供的波束应用时间确定方法的应用示意图之九;
图12为本申请实施例提供的波束应用时间确定方法的应用示意图之十;
图13为本申请实施例提供的波束应用时间确定方法的应用示意图之十一;
图14为本申请实施例提供的波束应用时间确定方法的应用示意图之十二;
图15为本申请实施例提供的波束应用时间确定方法的应用示意图之十三;
图16为本申请实施例提供的波束应用时间确定方法的应用示意图之十四;
图17为本申请实施例提供的波束应用时间确定方法的应用示意图之十五;
图18为本申请实施例提供的波束应用时间确定方法的应用示意图之十六;
图19为本申请实施例提供的波束应用时间确定方法的流程示意图之二;
图20为本申请实施例提供的波束应用时间确定装置的结构示意图;
图21为本申请实施例提供的通信设备的结构意图;
图22为本申请实施例提供的终端的硬件示意图;
图23为本申请实施例提供的网络侧设备的硬件示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通 信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6-th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(VUE)、行人终端(PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装、游戏机等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的波束应用时间确定进行详细地说明。
如图2所示,本申请实施例提供一种波束应用时间确定方法,该波束时间确定方法包括下述的步骤201-步骤203。
步骤201、通信设备根据第一符号,确定参考CC对应的计时起点符号。
其中,上述第一符号可以为波束指示信息的ACK占用的最后一个符号。
可以理解,上述确定参考CC对应的计时起点符号可以为在参考CC的时域资源上确定计时起点符号。
需要说明的是,上述通信设备可以为终端,也可以为网络侧设备。具体可以根据实际使用需求确定,本申请实施例不作限定。
本申请实施例中,上述波束指示信息可以为网络侧设备向终端发送的,例如公共波束(common beam)指示信息,该公共波束用于多种下行信道和/或多种上行信道,其中可以包括用户设备(user equipment,UE)专用的信道,也可以包括非UE专用的信道。可以理解,上述ACK为终端向网络侧设备发送的波束指示信息的ACK。
步骤202、通信设备根据计时起点符号,确定目标CC对应的第一slot。
其中,上述目标CC可以为ACK所在CC或目标CC组中属于第一TAG的第一CC。
可以理解,上述ACK所在CC为承载波束指示信息的ACK的CC。上述确定目标CC对应的第一slot可以为在目标CC的时域资源上确定第一slot。
步骤203、通信设备根据第一slot,确定目标CC组中属于每个TAG的CC的BAT。
本申请实施例中,在终端接收到波束指示信息之后,终端可以向网络侧设备发送波束指示信息的ACK。然后,通信设备(终端和/或网络侧设备)可以根据上述第一符号(波束指示信息的ACK占用的最后一个符号),在参考CC的时域资源上确定上述计时起点符号,并根据该计时起点符号,在上述目标CC对应的时域资源上确定第一slot,然后再根据该第一slot,确定目标CC组中属于每个TAG的CC的BAT,即通信设备可以根据该第一slot,确定目标CC组中的每个TAG的CC的BAT。
需要说明的是,本申请实施例中,上述目标CC组中的CC可以为应用上述波束指示信息的CC。其中,该波束指示信息可以为公共波束(common beam)指示信息。
可选地,本申请实施例中,上述目标CC组中的CC和ACK所在CC属于至少两个TAG。
可选地,本申请实施例中,目标CC组中的CC可以属于至少一个TAG。其中,在目标CC组中的CC属于一个TAG的情况下,ACK所在CC所属的TAG与目标CC组中的CC所属的TAG不同;在目标CC组中的CC属于多个TAG的情况下,ACK所在CC所属的TAG与目标CC组中的CC所属的TAG可以相同,也可以不同,具体可以根据实际使用需求确定,本申请对此不作限定。
需要说明的是,当本申请提及“多个CC属于一个TAG”时,也可以理解为该多个CC所对应的小区属于同一个TAG。
可选地,本申请实施例中,在目标CC组中的CC属于至少两个TAG的情况下,该至少两个TAG对应同一个传输配置指示(transmission configuration indicator,TCI)状态池(state pool),或者该至少两个TAG对应不同的TCI状态池。即,网络侧设备为目标CC组配置TCI state pool时,无论目标CC组中的CC属于几个TAG,可以为目标CC组中的CC配置一个TCI state pool,也可以根据目标CC组中的CC所属的TAG,为属于同一TAG的CC配置一个TCI state pool,为属于另一个TAG的CC配置另一个TCI state pool。
本申请实施例中,网络侧设备可以通过下行信息,例如下行控制信息(DCI),指示目标CC组中的CC对应的TCI state,然后根据该TCI state,确定目标CC组中的CC的下行公共波束信息和/或上行公共波束信息。
可选地,本申请实施例中,上述参考CC(用于确定计时起点符号的CC)可以为上述ACK所在CC、上述第一CC或目标CC组中属于第二TAG的第二CC。
可以理解,在上述参考CC为上述第二CC的情况下,上述目标CC组中的CC可以属于多个TAG。
本申请实施例中,上述参考CC不同时,确定的计时起点符号不同,且目标CC也不同,从而确定的第一slot也不同。如此,目标CC组属于每个TAG的CC的BAT也不同。下面以参考CC的三种情况,对本申请实施例提供的波束应用时间确定方法进行示例性地说明。
第一种情况:参考CC为第一CC,该第一CC为第一TAG中SCS最小的CC。
基于上述第一种情况,在一种实现方式中,上述计时起点符号可以为根据第一符号确定的符号。可以理解,上述计时起点符号可以为第一符号在上述第一CC对应的时域资源上的映射位置对应的符号。
在另一种实现方式中,计时起点符号可以为根据第一符号和第一时间提前量(timing advance,TA)确定的符号。其中,上述第一TA可以包括以下至少一项:第 一TAG对应的TA、ACK所在CC所属的TAG对应的TA。
可以理解,上述计时起点符号可以为第一符号在上述第一CC对应的时域资源上的映射位置减去和/或加上第一TA后对应的符号。或者说,上述计时起点符号可以为第一符号在上述第一CC对应的时域资源上的映射位置向后回退和/或向前前进第一TA后对应的符号。其中,向后回退是指向位于第一符号在上述第一CC对应的时域资源上的映射位置之前(before)的符号数,向前前进是指向位于第一符号在上述第一CC对应的时域资源上的映射位置之后(after/next)的符号数。如,所述映射位置在符号n,从符号n向后回退m个符号,则为符号(n-m),从符号n向前前进k个符号,则为符号(n+k)。
还可以理解为,若第一符号的时间为t1,ACK所在CC所属的TAG对应的TA和第一TAG对应的TA之间相差的时间为t2,若ACK所在CC所属的TAG对应的TA大于第一TAG对应的TA,则计时起点符号的时间为(t1+t2),若ACK所在CC所属的TAG对应的TA小于第一TAG对应的TA,则计时起点符号的时间为(t1-t2)。
示例性地,假设上述第一TAG对应的TA为3个符号,ACK所在CC所属的TAG对应的TA为5个符号,那么上述计时起点符号可以为第一符号在第一CC对应的时域资源上的映射位置加上5个符号,再减去3个符号之后对应的符号。也就是说,根据第一TAG对应的TA和ACK所在CC所属的TAG对应的TA确定的计时起点符号,相比于ACK所在CC对应的时域资源上的符号在时间上落后2个符号,需要将第一符号在第一CC对应的时域资源上的映射位置向前前进2个符号,若映射位置为第一CC对应的时域资源上的符号n,则计时起点符号为符号(n+2)。
另外,上述ACK所在CC所属的TAG与第一TAG可以为不同的TAG。
可选地,在上述第一种情况中,在目标CC为上述第一CC的情况下,第一slot可以为第一CC对应的时域资源上,位于计时起点符号之后的Y个符号后的第一个slot。
需要说明的是,上述Y的值可以为网络侧设备配置的。其中,网络配置的每个Y可以对应一组CC、BWP、SCS中的至少一项。
可选地,基于上述第一种情况,目标CC组中,属于第一TAG的CC的BAT为第一slot。
可以理解,对于上述第一种情况,通信设备可以通过确定第一TAG中SCS最小的CC的BAT,确定第一TAG中所有CC的BAT。
下面结合附图对上述第一种情况(参考CC和目标CC均为第一CC)进行示例性地说明。
一种可能的情况:目标CC组中的CC属于同一个TAG。
假设ACK所在CC(以下称为CC0)属于TAG1,目标CC组中的CC均属于TAG2。若属于TAG2的CC中,CC1(即上述第一CC)的SCS最小,则将属于TAG2中CC1作为参考(reference)CC。
示例1:如图3所示,根据CC0所属的TAG1对应的TA和TAG2对应的TA中的至少一个,将T0(ACK在CC0上占用的最后一个符号,即第一符号)映射到CC1对应的时域资源上的第一时间点T1(即计时起点符号),然后根据CC1的SCS,从T1开始的数Y个符号,将位于第Y个符号后的first slot(第一个slot)作为第一slot,从而将该first slot作为属于TAG2的CC的BAT。
示例2:如图4所示,将T0(ACK在CC0上占用的最后一个符号,即第一符号)映射到CC1对应的时域资源上的第二时间点T2(即计时起点符号),然后根据CC1的SCS,从T2开始数Y个符号,将位于第Y个符号后的first slot作为第一slot,从而将该first slot作为属于TAG2的CC的BAT。
另一种可能的情况:目标CC组中的CC属于不同的TAG。
假设ACK所在CC(以下称为CC0)属于TAG1,目标CC组中的CC,一部分属于TAG2,另一部分属于TAG3。若属于TAG2的CC中,CC1的SCS最小,则将CC1作为TAG2对应的参考(reference)CC;属于TAG3的CC中,CC2的SCS最小,则将CC2作为TAG3对应的参考CC。
示例3:如图5所示,根据CC0所属的TAG1对应的TA和TAG2对应的TA中的至少一个,将T0(ACK在CC0上占用的最后一个符号,即第一符号)映射到CC1对应的时域资源上的第一时间点TAG2-T1(即TAG2对应的计时起点符号),然后根据CC1的SCS,从TAG2-T1开始数Y个符号,将位于第Y个符号(TAG2-T6)后的first slot作为TAG2对应的第一slot,从而将该first slot作为属于TAG2的CC的BAT。并且,根据CC0所在的TAG1对应的TA和TAG3对应的TA中的至少一个,将T0映射到CC2对应的时域资源上的第一时间点TAG3-T1(即TAG3对应的计时起点符号),然后根据CC2的SCS,从TAG3-T1开始数Y个符号,将位于第Y个符号(TAG3-T6)后的first slot作为TAG3对应的第一slot,从而将该first slot作为属于TAG3的CC的BAT。
示例4:如图6所示,将T0(即第一符号)映射到CC1对应的时域资源上的第二时间点TAG2-T2(即TAG2对应的计时起点符号),然后根据CC1的SCS,从TAG2-T2开始数Y个符号,将位于第Y个符号(TAG2-T6)后的first slot作为TAG2对应的第一slot,从而将该first slot作为属于TAG2的CC的BAT。并且,将T0(即第一符号)映射到CC2对应的时域资源上的第二时间点TAG3-T2(即TAG3对应的计时起点符号),然后根据CC2的SCS,从TAG3-T2开始数Y个符号,将位于第Y个符号(TAG3-T6)后的first slot作为TAG3对应的第一slot,从而将该first slot作为属于TAG3的CC的BAT。
需要说明的是,对于每个TAG对应的Y的值可以相同,也可以不同,具体可以根据实际使用需求确定,本申请实施例不作限定。
另外,在目标CC组中的CC属于多个TAG的情况下,TAG的数量不作限定,例如2个TAG、3个TAG或4个TAG等,本申请是以2个TAG为例,进行示例性说明的。对于目标CC组中的CC属于其它数量的TAG的实现方式,与目标CC组中的CC属于2个TAG的实现方式类似,为避免重复,本文将不予赘述。
第二种情况:参考CC为第二CC,该第二CC为上述目标CC组中SCS最小的CC。
基于上述第二种情况,在一种实现方式中,上述计时起点符号可以为根据第一符号确定的符号。可以理解,上述计时起点符号可以为第一符号在上述第二CC对应的时域资源上的映射位置对应的符号。
在另一种实现方式中,计时起点符号为根据第一符号和第二TA确定的符号。其中,上述第二TA可以包括以下至少一项:第二TAG对应的TA、ACK所在CC所属的TAG对应的TA。
可以理解,上述计时起点符号可以为第一符号在上述第二CC对应的时域资源上的映射位置减去和/或加上第二TA后对应的符号。或者说,上述计时起点符号可以为第一符号在上述第二CC对应的时域资源上的映射位置向后回退和/或向前前进第二TA后对应的符号。其中,向后回退是指向位于第一符号在上述第二CC对应的时域资源上的映射位置之前(before)的符号数,向前前进是指向位于第一符号在上述第二CC对应的时域资源上的映射位置之后(after/next)的符号数。如,所述映射位置在符号n,从符号n向后回退m个符号,则为符号(n-m),从符号n向前前进k个符号, 则为符号(n+k)。
还可以理解为,若第一符号的时间为t1,ACK所在CC对应的TA和第二TAG对应的TA之间相差的时间为t2,若ACK所在CC对应的TA大于第二TAG对应的TA,则计时起点符号的时间为(t1+t2),若ACK所在CC对应的TA小于第二TAG对应的TA,则计时起点符号的时间为(t1-t2)。
示例性地,假设上述第二TAG对应的TA为2个符号,ACK所在CC所属的TAG对应的TA为5个符号,那么上述计时起点符号可以为第一符号在第二CC对应的时域资源上的映射位置加上5个符号,再减去2个符号之后对应的符号。也就是说,根据第二TAG对应的TA和ACK所在CC所属的TAG对应的TA确定的计时起点符号,相比于ACK所在CC对应的时域资源上的符号在时间上落后3个符号,需要将第一符号在第一CC对应的时域资源上的映射位置向前前进数3个符号,若映射位置为第一CC对应的时域资源上的符号n,则计时起点符号为符号(n+3)。
需要说明的是,基于上述第二种情况,上述ACK所在CC所属的TAG与第一TAG和第二TAG可以为不同的TAG,也可以为相同的TAG,具体可以根据实际使用需求确定,本申请实施例不作限定。
另外,第一TAG和第二TAG可以为不同的TAG。
可选地,在上述第二种情况中,在目标CC可以为上述第一CC,第一CC可以为第一TAG中SCS最小的CC的情况下,第一slot可以为第一CC对应的时域资源上,位于第二符号之后的第一个slot。
可选地,在一些实施例中,上述第二符号可以为根据第二slot确定的符号。
其中,上述第二slot可以为第二CC对应的时域资源上,位于第三符号之后的第一个slot,该第三符号可以为第二CC对应的时域资源上,位于计时起点符号之后的第Y个符号。可以理解,上述第二符号可以为第二slot(或理解为第二slot中的第一个符号)在第一CC对应的时域资源上的映射位置对应的符号。
在一些实施例中,上述第二符号可以为根据第二slot和第三TA确定的符号。其中,上述第三TA可以包括以下至少一项:第一TAG对应的TA、第二TAG对应的TA。
可以理解,上述第二符号可以为第二slot(例如第二slot的第一个符号)在上述第一CC对应的时域资源上的映射位置减去和/或加上第三TA后对应的符号。或者说,上述第二符号可以为第二slot(例如第二slot的第一个符号)在上述第一CC对应的时域资源上的映射位置向后回退和/或向前前进第三TA后对应的符号。其中,向后回退是指向位于第二slot(例如第二slot的第一个符号)在上述第一CC对应的时域资源上的映射位置之前(before)的符号数,向前前进是指向位于第二slot(例如第二slot的第一个符号)在上述第一CC对应的时域资源上的映射位置之后(after/next)的符号数。如,所述映射位置在符号n,从符号n向后回退m个符号,则为符号(n-m),从符号n向前前进k个符号,则为符号(n+k)。
还可以理解为,若第二slot的第一个符号的时间为t3,第一TAG对应的TA和第二TAG对应的TA之间相差的时间为t4,若第二TAG对应的TA大于第一TAG对应的TA,则计时起点符号的时间为(t3+t4),若第二TAG对应的TA小于第一TAG对应的TA,则计时起点符号的时间为(t3-t4)。
示例性地,假设上述第一TAG对应的TA为3个符号,第二TAG对应的TA为2个符号,那么上述第二符号可以为第二slot在第一CC对应的时域资源上的映射位置加上2个符号,再减去3个符号之后对应的符号。也就是说,根据第一TAG对应的TA和第二TAG对应的TA确定的第二符号,相比于第二CC对应的时域资源上的符 号在时间上提前一个符号,需要将第二slot在第一TAG对应的时域资源上的映射位置向后回退1个符号,若映射位置为第一CC对应的时域资源上的符号n,则第二符号为符号(n-1)。
在另一些实施例中,上述第二符号可以为根据第三符号确定的符号。
其中,第三符号可以为第二CC对应的时域资源上,位于计时起点符号之后的第Y个符号。可以理解,上述第二符号可以为第三符号在第一CC对应的时域资源上的映射位置对应的符号。
在又一些实施例中,第二符号为根据第三符号和第三TA确定的符号。其中,第三TA可以包括以下至少一项:第一TAG对应的TA、第二TAG对应的TA。
可以理解,上述第二符号可以为第三符号在上述第一CC对应的时域资源上的映射位置减去和/或加上第三TA后对应的符号。或者说,上述第二符号可以为第三符号在上述第一CC对应的时域资源上的映射位置向后回退和/或向前前进第三TA后对应的符号。其中,向后回退是指向位于第三符号在上述第一CC对应的时域资源上的映射位置之前(before)的符号数,向前前进是指向位于第三符号在上述第一CC对应的时域资源上的映射位置之后(after/next)的符号数。如,所述映射位置在符号n,从符号n向后回退m个符号,则为符号(n-m),从符号n向前前进k个符号,则为符号(n+k)。
还可以理解为,若第三符号的时间为t3,第一TAG对应的TA和第二TAG对应的TA之间相差的时间为t4,若第二TAG对应的TA大于第一TAG对应的TA,则计时起点符号的时间为(t3+t4),若第二TAG对应的TA小于第一TAG对应的TA,则计时起点符号的时间为(t3-t4)。
本申请实施例中,基于上述第二种情况,属于第一TAG的CC的BAT可以为第一slot,属于第二TAG的CC的BAT可以为第二slot。
可以理解,对于上述第二种情况,通信设备可以通过确定第一CC(第一TAG中SCS最小的CC)的BAT,确定第一TAG中所有CC的BAT;并且通过确定第二CC(目标CC组中SCS最小的CC)的BAT,确定第二TAG中所有CC的BAT。
下面结合附图对上述第二种情况(参考CC为第二CC、目标CC为第一CC)进行示例性地说明。
假设ACK所在CC(以下称为CC0)属于TAGX,目标CC组中的CC,一部分属于TAG2,另一部分属于TAG3。若目标CC组中,属于TAG2的CC1的SCS最小,则将CC1作为TAG2和TAG3共同的参考(reference)CC。其中,TAGX可以与TAG2或TAG3相同,也可以与TAG2和TAG3均不同。
示例5:如图7所示,根据CC0所属的TAGX的TA和TAG2对应的TA中的至少一个,将T0(ACK在CC0上占用的最后一个符号,即第一符号)映射到CC1对应的时域资源上的第一时间点T1(即计时起点符号);然后根据CC1的SCS,从T1开始数Y个符号,将位于第Y个符号(T6,即上述第三符号)后的first slot(第一个slot)作为TAG2对应的第一slot,从而将该first slot作为属于TAG2的CC的BAT。并且根据TAG2的TA和TAG3的TA中的至少一个,将T6(即上述第三符号)映射到TAG3中具有最小SCS的CC2(即上述第一CC)对应的时域资源上的T7(即上述第二符号),并将CC2对应的时域资源上,位于T7之后的下一个slot作为CC2的first slot,从而将位于T7之后的下一个slot作为属于TAG3的CC的BAT。
示例6:如图8所示,将T0(ACK在CC0上占用的最后一个符号,即第一符号)映射到CC1对应的时域资源上的第一时间点T1(即计时起点符号);然后根据CC1的SCS,从T1开始数Y个符号,将位于第Y个符号(T6,即上述第三符号)后的first  slot(第一个slot)作为TAG2对应的第一slot,从而将该first slot作为属于TAG2的CC的BAT。并且根据TAG2的TA和TAG3的TA中的至少一个,将T6(即上述第三符号)映射到TAG3中具有最小SCS的CC2(即上述第一CC)对应的时域资源上的T7(即上述第二符号),并将CC2对应的时域资源上,位于T7之后的下一个slot作为CC2的first slot,从而将CC2的first slot作为属于TAG3的CC的BAT。
示例7:如图9所示,根据CC0所在TAGX的TA和TAG2对应的TA中的至少一个,将T0(ACK在CC0上占用的最后一个符号,即第一符号)映射到CC1对应的时域资源上的第一时间点T1(即计时起点符号);然后根据CC1的SCS,从T1开始数Y个符号,将位于第Y个符号(T6,即上述第三符号)后的first slot(第一个slot)作为TAG2对应的第一slot,从而将该first slot作为属于TAG2的CC的BAT。并且将T6(即上述第三符号)映射到TAG3中具有最小SCS的CC2(即上述第一CC)对应的时域资源上的T7(即上述第二符号),并将CC2对应的时域资源上,位于T7之后的下一个slot作为CC2的first slot,从而将该first slot作为属于TAG3的CC的BAT。
示例8:如10所示,将T0(ACK在CC0上占用的最后一个符号,即第一符号)映射到CC1对应的时域资源上的第一时间点T2(即计时起点符号);然后根据CC1的SCS,从T2开始数Y个符号,将位于第Y个符号(T6,即上述第三符号)后的first slot(第一个slot)作为TAG2对应的第一slot,从而将该first slot作为TAG2中的每个CC的BAT。并且将T6(即上述第三符号)映射到TAG3中具有最小SCS的CC2(即上述第一CC)对应的时域资源上的T7(即上述第二符号),并将CC2对应的时域资源上,位于T7之后的下一个slot作为CC2的first slot,从而将该first slot作为属于TAG3的CC的BWP的BAT。
示例9:如图11所示,根据CC0所在TAGX的TA和TAG2对应的TA中的至少一个,将T0(ACK在CC0上占用的最后一个符号,即第一符号)映射到CC1对应的时域资源上的第一时间点T1(即计时起点符号);然后根据CC1的SCS,从T1开始数Y个符号,将位于第Y个符号(T6,即上述第三符号)之后的first slot(即上述第二slot)作为TAG2对应的第一slot,从而将该first slot作为TAG2中的每个CC的BAT。并且根据TAG2的TA和TAG3的TA中的至少一个(或者不考虑TA),将位于T6之后的first slot(即上述第二slot)映射到TAG3中具有最小SCS的CC2(即上述第一CC)对应的时域资源上的时间点,也就是将位于T6之后的first slot中的第一个符号映射到TAG3中具有最小SCS的CC2对应的时域资源上的符号位置,并将CC2对应的时域资源上,位于该时间点之后的下一个slot作为属于TAG3的CC的BAT。
示例10:如图12所示,将T0(ACK在CC0上占用的最后一个符号,即第一符号)映射到CC1对应的时域资源上的第一时间点T2(即计时起点符号);然后根据CC1的SCS,从T2开始数Y个符号,将位于第Y个符号(T6,即上述第三符号)之后的first slot(即上述第二slot)作为TAG2对应的第一slot,从而将该first slot作为TAG2中的每个CC的BAT。并且根据TAG2的TA和TAG3的TA中的至少一个(或者不考虑TA),将位于T6之后的first slot(即上述第二slot)映射到TAG3中具有最小SCS的CC2(即上述第一CC)对应的时域资源上的一个时间点,也就是将位于T6之后的first slot中的第一个符号映射到TAG3中具有最小SCS的CC2对应的时域资源上的符号位置,并将CC2对应的时域资源上,位于该时间点之后的下一个slot作为属于TAG3的CC的BAT。
第三种情况:参考CC为ACK所在CC,ACK所在CC为目标CC组中的CC和ACK所在CC中SCS最小的CC。
可选地,在上述第三种情况中,计时起点符号可以为第一符号。
基于上述第三种情况,在一种可能的实现方式中,目标CC可以为ACK所在CC。在该情况下,上述第一slot可以为ACK所在CC对应的时域资源上,位于计时起点符号之后的Y个符号后的第一个slot。
本申请实施例中,在目标CC为ACK所在CC的情况下,目标CC组中,属于同一个TAG组的CC的BAT为第三slot。
其中,上述第三slot可以为第三CC对应的时域资源上,位于第四符号之后的第一个slot,第三CC可以为同一个TAG组中SCS最小的CC。
在一种实现方式中,上述第四符号可以为根据第一slot确定的符号。
可以理解,上述第四符号可以为第一slot在第三CC对应的时域资源上的映射位置对应的符号。也就是说,上述第四符号可以为第一slot的第一个符号在第三CC对应的时域资源上的映射位置对应的符号。
在另一种实现方式中,第四符号为根据第一slot和第四TA确定的符号。其中,上述第四TA可以包括以下至少一项:第三CC所属的TAG对应的TA、ACK所在CC所属的TAG对应的TA。
可以理解,上述第四符号可以为第一slot在第三CC对应的时域资源上的映射位置对应的符号减去和/或加上第四TA后对应的符号。或者说,上述第四符号可以为第一slot(比如第一slot的第一个符号)在上述第三CC对应的时域资源上的映射位置向后回退和/或向前前进第四TA后对应的符号。其中,向后回退是指向位于第一slot(比如第一slot的第一个符号)在第三CC对应的时域资源上的映射位置之前(before)的符号数,向前前进是指向位于第一slot(比如第一slot的第一个符号)在第三CC对应的时域资源上的映射位置之后(after/next)的符号数。如,所述映射位置在符号n,从符号n向后回退m个符号,则为符号(n-m),从符号n向前前进k个符号,则为符号(n+k)。
还可以理解为,若第一slot(例如第一slot的第一个符号)的时间为t5,ACK所在CC所属的TAG对应的TA和第三CC所属的TAG对应的TA之间相差的时间为t6,若ACK所在CC所属的TAG对应的TA大于第三CC所属的TAG对应的TA,则第四符号的时间为(T1+T2),若ACK所在CC所属的TAG对应的TA小于第三CC所属的TAG对应的TA,则第四符号的时间为(T1-T2)。
示例性地,假设上述第三CC所属的TAG对应的TA为3个符号,ACK所在CC所属的TAG对应的TA为4个符号,那么上述第四符号可以为第一slot在第三CC对应的时域资源上的映射位置加上4个符号,再减去3个符号之后对应的符号。也就是说,根据第三CC所属的TAG对应的TA和ACK所在CC所属的TAG对应的TA确定的第四符号,相比于ACK所在CC对应的时域资源上的符号在时间上落后1个符号,需要将第一slot(例如第一slot的第一个符号)在第三CC对应的时域资源上的映射位置向前前进1个符号,若映射位置为第一CC对应的时域资源上的符号n,则计时起点符号为符号(n+1)。
下面再结合附图,对上述第三种情况的一种实现方式(参考CC和目标CC均为ACK所在CC)进行示例性地说明。
一种可能的情况:目标CC组中的CC属于同一个TAG。
假设ACK所在CC(以下称为CC0)属于TAG1,目标CC组中的CC均属于TAG2。若属于TAG2的CC中,CC1(即上述第三CC)的SCS最小,则将属于TAG2中CC1作为TAG2用于确定BAT的CC。
示例11:如图13所示,将T0(ACK在CC0上占用的最后一个符号,即第一符号)确定为即计时起点符号,根据CC0的SCS,从T0开始的数Y个符号,将位于第 Y个符号(记为T3)后的first slot(第一个slot)作为第一slot,从而根据CC0所在的TAG1对应的TA和TAG2对应的TA中的至少一个(或者不考虑TA),将该first slot映射到CC1(即上述第三CC)对应的时域资源上的一个时间点,并将CC1对应的时域资源上,位于该时间点之后的下一个slot作为属于TAG2的CC的BAT。
另一种可能的情况:目标CC组中的CC属于不同的TAG。
假设ACK所在CC(以下称为CC0)属于TAG1,目标CC组中的CC,一部分属于TAG2,另一部分属于TAG3。若属于TAG2的CC中,CC1的SCS最小,则将CC1作为TAG2对应的第三CC;属于TAG3的CC中,CC2的SCS最小,则将CC2作为TAG3对应的第三CC。
示例12:如图14所示,将T0(ACK在CC0上占用的最后一个符号,即第一符号)确定为即计时起点符号,根据CC0的SCS,从T0开始的数Y个符号,将位于第Y个符号(记为T3)后的first slot(第一个slot)作为第一slot。然后根据CC0所在的TAG1对应的TA和TAG2对应的TA中的至少一个(或不考虑TA),将该first slot映射到CC1(即TAG2对应的第三CC)对应的时域资源上的一个时间点,并将CC1对应的时域资源上,位于该时间点之后的下一个slot作为属于TAG2中的CC的BAT。并且根据CC0所在的TAG1对应的TA和TAG3对应的TA中的至少一个(或不考虑TA),将该first slot映射到CC2(即TAG3对应的第三CC)对应的时域资源上的一个时间点,并将CC2对应的时域资源上,位于该时间点之后的下一个slot作为属于TAG3的CC的BAT。
基于上述第三种情况,在另一种可能的实现方式中,目标CC为第一CC,该第一CC为第一TAG中SCS最小的CC。在该种情况下,第一slot可以为第一CC对应的时域资源上,位于第五符号之后的第一个slot。
在一种实现方式中,上述第五符号可以为根据第六符号确定的符号。
其中,上述第六符号可以为ACK所在CC对应的时域资源上,位于计时起点符号之后的第Y个符号。可以理解,在上述实现方式中,第五符号可以为第六符号在第一CC对应的时域资源上的映射位置对应的符号。
在另一种实现方式中,上述第五符号可以为根据第六符号和第一TA确定的符号。其中,上述第一TA可以包括以下至少一项:第一TAG对应的TA、ACK所在CC所属的TAG对应的TA。
可以理解,在上述实现方式中,第五符号可以为第六符号在第一CC对应的时域资源上的映射位置对应的符号减去和/或加上第一TA后对应的符号。或者说,上述第五符号可以为第六符号在上述第一CC对应的时域资源上的映射位置向后回退和/或向前前进第一TA后对应的符号。其中,向后回退是指向位于第六符号在上述第一CC对应的时域资源上的映射位置之前(before)的符号数,向前前进是指向位于第六符号在上述第一CC对应的时域资源上的映射位置之后(after/next)的符号数。如,所述映射位置在符号n,从符号n向后回退m个符号,则为符号(n-m),从符号n向前前进k个符号,则为符号(n+k)。
还可以理解为,若第六符号的时间为t7,ACK所在CC所属的TAG对应的TA和第一TAG对应的TA之间相差的时间为t8,若ACK所在CC所属的TAG对应的TA大于第一TAG对应的TA,则第五符号的时间为(t7+t8),若ACK所在CC所属的TAG对应的TA小于第一TAG对应的TA,则第五符号的时间为(t7-t8)。
示例性地,假设上述第一TAG对应的TA为5个符号,ACK所在CC所属的TAG对应的TA为3个符号,那么上述第五符号可以为第六符号在第三CC对应的时域资源上的映射位置加上3个符号,再减去5个符号之后对应的符号。也就是说,根据第 一TAG对应的TA和ACK所在CC所属的TAG对应的TA确定的第五符号,相比于ACK所在CC对应的时域资源上的符号在时间上提前2个符号,需要将第六符号在第一CC对应的时域资源上的映射位置向后回退2个符号,若映射位置为第一CC上的符号n,则计时起点符号为符号(n-2)。
基于上述第三种情况,在目标CC为第一CC的情况下,目标CC组中,属于第一TAG的CC的BAT为第一slot。
下面再结合附图,对上述第三种情况的另一种实现方式(参考CC为ACK所在CC,目标CC为第一CC)进行示例性地说明。
一种可能的情况:目标CC组中的CC属于同一个TAG。
假设ACK所在CC(以下称为CC0)属于TAG1,目标CC组中的CC均属于TAG2。若属于TAG2的CC中,CC1(即上述第一CC)的SCS最小,则将属于TAG2中CC1作为TAG2用于确定BAT的CC。
示例13:如图15所示,将T0(ACK在CC0上占用的最后一个符号,即第一符号)确定为计时起点符号,根据CC0的SCS,从T0开始的数Y个符号,根据CC0所在的TAG1对应的TA和TAG2对应的TA中的至少一个,将第Y个符号(即上述第六符号,记为T3)映射到CC1对应的时域资源上的T4(即上述第五符号),并将T4后的first slot作为第一slot,从而将该first slot作为属于TAG2的CC的BAT。
示例14:如图16所示,将T0(ACK在CC0上占用的最后一个符号,即第一符号)确定为计时起点符号,根据CC0的SCS,从T0开始的数Y个符号,将第Y个符号(即上述第六符号,记为T3)映射到CC1对应的时域资源上的T5(即上述第五符号),并将T5后的first slot作为第一slot,从而将该first slot作为属于TAG2的CC的BAT。
另一种可能的情况:目标CC组中的CC属于不同的TAG。
假设ACK所在CC(以下称为CC0)属于TAG1,目标CC组中的CC,一部分属于TAG2,另一部分属于TAG3。若属于TAG2的CC中,CC1的SCS最小,则将CC1作为TAG2对应的目标CC;属于TAG3的CC中,CC2的SCS最小,则将CC2作为TAG3对应的目标CC。
示例15:如图17所示,将T0(ACK在CC0上占用的最后一个符号,即第一符号)确定为计时起点符号,根据CC0的SCS,从T0开始的数Y个符号。然后,根据CC0所在的TAG1对应的TA和TAG2对应的TA中的至少一个,将第Y个符号(即上述第六符号,记为T3)映射到CC1对应的时域资源上的TAG2-T4(即TAG2对应的第五符号),并将TAG2-T4后的first slot作为第一slot,从而将该first slot作为属于TAG2的CC的BAT。并且根据CC0所在的TAG1对应的TA和TAG3对应的TA中的至少一个,将第Y个符号(即上述第六符号,记为T3)映射到CC2对应的时域资源上的TAG3-T4(即TAG3对应的第五符号),并将TAG3-T4后的first slot(第一个slot)作为第一slot,从而将该first slot作为属于TAG3的CC的BAT。
示例16:如图18所示,将T0(ACK在CC0上占用的最后一个符号,即第一符号)确定为计时起点符号,根据CC0的SCS,从T0开始的数Y个符号。然后,将第Y个符号(即上述第六符号,记为T3)映射到CC1对应的时域资源上的TAG2-T5(即TAG2对应的第五符号),并将TAG2-T5后的first slot(第一个slot)作为第一slot,从而将该first slot作为属于TAG2的CC的BAT。并且将第Y个符号(即上述第六符号,记为T3)映射到CC2对应的时域资源上的TAG3-T5(即TAG3对应的第五符号),并将TAG3-T5后的first slot(第一个slot)作为第一slot,从而将该first slot作为属于TAG3的CC的BAT。
本申请实施例提供的波束应用时间确定方法,由于属于一个TAG的CC在时域上具有一定的关联关系(比如SCS相同或SCS成倍数关系),因此在目标CC组中的CC属于不同TAG或目标CC组中的CC所属的TAG与ACK所在CC所属的TAG不同的情况下,通过确定参考CC对应的计时起点符号,并且确定目标CC对应的第一slot,以及根据第一slot,确定目标CC组中属于每个TAG的CC的BAT,可以使得目标CC组中属于同一个TAG的CC的波束生效时间一致,即可以使得属于同一个TAG的CC的波束对齐,从而可以正确地进行数据传输。
本申请实施例中,网络侧设备可以为一个CC所对应的小区配置多个BWP,该多个BWP包括激活BWP(active BWP)和非激活BWP(inactive BWP),在传输数据的过程中,通信设备(例如终端和网络侧设备)可以在CC的一个BWP(active BWP)对应的时域资源上发送或接收数据,因此可以通过确定CC对应的时域资源上的一个BWP(例如SCS最小的BWP)的波束应用时间,确定CC(或CC的所有BWP)的波束应用时间。
如图19所示,本申请实施例提供一种波束应用时间确定方法,该波束应用时间确定方法可以包括下述的步骤301-步骤303。
步骤301、通信设备根据第七符号,确定参考BWP对应的计时起点符号。
其中,上述第七符号可以波束指示信息的ACK占用的最后一个符号。
步骤302、通信设备根据计时起点符号,确定目标BWP对应的第四slot。
其中,上述目标BWP可以为ACK所在BWP或目标BWP组中所属CC属于第三TAG的第一BWP。
可以理解,上述ACK所在BWP可以为承载波束指示信息的ACK的BWP,具体可以为承载波束指示信息的ACK的CC的BWP。
步骤303、通信设备根据第四slot,确定目标BWP组中属于每个TAG的CC的BWP的BAT。
本申请实施例中,在终端接收到波束指示信息之后,终端可以向网络侧设备发送波束指示信息的ACK。然后,通信设备(终端和/或网络侧设备)可以根据上述第七符号(波束指示信息的ACK占用的最后一个符号),在参考BWP对应的时域资源上确定上述计时起点符号,并根据该计时起点符号在上述目标BWP对应的时域资源上确定第四slot,然后再根据该第四slot,确定目标BWP组中属于每个TAG的CC的BWP的BAT,即通信设备可以根据该第四slot,确定目标BWP组中的每个TAG的CC的BWP的BAT。
需要说明的是,本申请实施例中,上述目标BWP组中的BWP可以为应用上述波束指示信息的BWP。其中,该波束指示信息可以为公共波束(common beam)指示信息。
可选地,本申请实施例中,上述目标BWP组中的BWP所属CC和ACK所在BWP所属CC属于至少两个TAG。
可选地,本申请实施例中,目标BWP组中的BWP所属CC可以属于至少一个TAG。其中,在目标BWP组中的BWP所属CC属于一个TAG的情况下,ACK所在BWP所属CC所属的TAG与目标BWP组中的BWP所属CC所属的TAG不同;在目标BWP组中的BWP所属CC属于多个TAG的情况下,ACK所在BWP所属CC所属的TAG与目标BWP组中的BWP所属CC所属的TAG可以相同,也可以不同,具体可以根据实际使用需求确定,本申请对此不作限定。
可选地,本申请实施例中,在目标BWP组中的BWP所属CC属于至少两个TAG的情况下,该至少两个TAG对应同一个TCI状态池,或者该至少两个TAG对应不同 的TCI状态池。即,网络侧设备为目标BWP组中的BWP所属CC配置TCI state pool时,无论目标BWP组中的BWP所属CC属于几个TAG,可以为目标BWP组中的BWP所属CC配置一个TCI state pool,也可以根据目标BWP组中的BWP所属CC所属的TAG,为属于同一TAG的CC配置一个TCI state pool,为属于另一个TAG的CC配置另一个TCI state pool。
本申请实施例中,网络侧设备可以通过下行信息,例如下行控制信息(DCI),指示目标BWP组中的BWP所属CC对应的TCI state,然后根据该TCI state,确定目标BWP组中的BWP的下行公共波束信息和/或上行公共波束信息。
可选地,本申请实施例中,上述参考BWP(用于确定计时起点符号的BWP)可以为上述ACK所在BWP、上述第一BWP或目标BWP组所属CC属于第四TAG的第二BWP。
可以理解,在上述参考BWP为上述第二BWP的情况下,上述目标BWP组中的BWP所属CC可以属于多个TAG。
本申请实施例中,上述参考BWP不同时,确定的计时起点符号不同,且目标BWP也不同,从而确定的第四slot也不同。如此,目标BWP组中属于每个TAG的CC的BWP的BAT也不同。下面以参考BWP的三种情况,对本申请实施例提供的波束应用时间确定方法进行示例性地说明。
情况一:参考BWP为第一BWP,该第一BWP为属于第三TAG的CC中SCS最小的BWP。
基于上述情况一,在一种实现方式中,上述计时起点符号可以为根据第七符号确定的符号。可以理解,上述计时起点符号可以为第七符号在上述第一BWP对应的时域资源上的映射位置对应的符号。
在另一种实现方式中,计时起点符号可以为根据第七符号和第五TA确定的符号。其中,上述第五TA可以包括以下至少一项:第三TAG对应的TA、ACK所在BWP所属CC所属的TAG对应的TA。
可以理解,上述计时起点符号可以为第七符号在上述第一BWP对应的时域资源上的映射位置减去和/或加上第五TA后对应的符号。或者说,上述计时起点符号可以为第七符号在上述第一BWP对应的时域资源上的映射位置向后回退和/或向前前进第五TA后对应的符号。其中,向后回退是指向位于第七符号在上述第一BWP对应的时域资源上的映射位置之前(before)的符号数,向前前进是指向位于第七符号在上述第一BWP对应的时域资源上的映射位置之后(after/next)的符号数。如,所述映射位置在符号n,从符号n向后回退m个符号,则为符号(n-m),从符号n向前前进k个符号,则为符号(n+k)。
对于如何确定计时起点符号的举例,具体可以参见上述实施例中,在第一CC对应的时域资源上确定计时起点符号的相关举例,为避免重复,此处不再赘述。
本申请实施例中,上述ACK所在BWP所属CC所属的TAG与第三TAG可以为不同的TAG。
可选地,在上述情况一中,在上述目标BWP为上述第一BWP的情况下;第四slot可以为第一BWP对应的时域资源上,位于计时起点符号之后的Y个符号后的第一个slot。
需要说明的是,上述Y的值可以为网络侧设备配置的。其中,网络配置的每个Y可以对应一组CC、BWP、SCS中的至少一项。
可选地,基于上述情况一,目标BWP组中,属于第三TAG的CC的BWP的BAT为第四slot。
可以理解,对于上述情况一,通信设备可以通过确定属于第三TAG的CC中SCS最小的BWP的BAT,确定属于第三TAG的全部CC的BWP的BAT。
下面结合附图对上述情况一(参考BWP和目标BWP均为第一BWP)进行示例性地说明。
一种可能的情况:目标BWP组中的BWP所属CC属于同一个TAG。
假设ACK所在BWP(以下称为BWP0)所属CC属于TAG1,目标BWP组中的BWP所属CC均属于TAG2。若属于TAG2的CC中,BWP1(即上述第一BWP)的SCS最小,则将BWP1作为目标BWP组的参考(reference)BWP。
示例17:如图3所示,根据BWP0所属CC所属的TAG1对应的TA和TAG2对应的TA中的至少一个,将T0(ACK在BWP0上占用的最后一个符号,即第七符号)映射到BWP1对应的时域资源上的第一时间点T1(即计时起点符号),然后根据BWP1的SCS,从T1开始数Y个符号,将位于第Y个符号后的first slot作为第四slot,从而将该first slot作为属于TAG2的CC的BWP的BAT。
示例18:如图4所示,将T0(ACK在BWP0上占用的最后一个符号,即第七符号)映射到BWP1对应的时域资源上的第二时间点T2(即计时起点符号),然后根据BWP1的SCS,从T2开始数Y个符号,将位于第Y个符号后的first slot作为第四slot,从而将该first slot作为属于TAG2的CC的BWP的BAT。
另一种可能的情况:目标BWP组中的BWP属于不同的TAG。
假设ACK所在BWP(以下称为BWP0)所属CC属于TAG1,目标BWP组中的BWP所属CC中,一部分属于TAG2,另一部分属于TAG3。若属于TAG2的CC中,BWP1的SCS最小,则将BWP1作为TAG2对应的参考(reference)BWP;属于TAG3的CC中,BWP2的SCS最小,则将BWP2作为TAG3对应的参考BWP。
示例19:如图5所示,根据BWP0所属CC所属的TAG1对应的TA和TAG2对应的TA中的至少一个,将T0(ACK在BWP0上占用的最后一个符号,即第七符号)映射到BWP1对应的时域资源上的第一时间点TAG2-T1(即TAG2对应的计时起点符号),然后根据BWP1的SCS,从TAG2-T1开始数Y个符号,将位于第Y个符号(TAG2-T6)后的first slot(第一个slot)作为TAG2对应的第四slot,从而将该first slot作为属于TAG2的CC的BWP的BAT。并且,根据BWP0所属CC所属的TAG1对应的TA和TAG3对应的TA中的至少一个,将T0映射到BWP2对应的时域资源上的第一时间点TAG3-T1(即TAG3对应的计时起点符号),然后根据BWP2的SCS,从TAG3-T1开始数Y个符号,将位于第Y个符号(TAG3-T6)后的first slot(第一个slot)作为TAG3对应的第四slot,从而将该first slot作为属于TAG3的CC的BWP的BAT。
示例20:如图6所示,将T0(即第七符号)映射到BWP1对应的时域资源上的第二时间点TAG2-T2(即TAG2对应的计时起点符号),然后根据BWP1的SCS,从TAG2-T2开始数Y个符号,将位于第Y个符号(TAG2-T6)后的first slot作为TAG2对应的第四slot,从而将该first slot作为属于TAG2的CC的BWP的BAT。并且,将T0(即第七符号)映射到BWP2对应的时域资源上的第二时间点TAG3-T2(即TAG3对应的计时起点符号),然后根据BWP2的SCS,从TAG3-T2开始数Y个符号,将位于第Y个符号(TAG3-T6)后的first slot作为TAG3对应的第四slot,从而将该first slot作为属于TAG3的CC的BWP的BAT。
需要说明的是,对于每个TAG对应的Y的值可以相同,也可以不同,具体可以根据实际使用需求确定,本申请实施例不作限定。
另外,在目标BWP组中的BWP所属CC属于多个TAG的情况下,TAG的数量不作限定,例如2个TAG、3个TAG或4个TAG等,本申请是以2个TAG为例,进 行示例性说明的。对于目标BWP组中的BWP所属CC属于其它数量的TAG的实现方式,与目标BWP组中的BWP所属CC属于2个TAG的实现方式类似,为避免重复,本申请将不予赘述。
情况二:参考BWP为第二BWP,该第二BWP为上述目标BWP组中SCS最小的BWP。
基于上述情况二,在一种实现方式中,上述计时起点符号可以为根据第七符号确定的符号。可以理解,上述计时起点符号可以为第七符号映在上述第二BWP对应的时域资源上的映射位置对应的符号。
在另一种实现方式中,计时起点符号为根据第七符号和第六TA确定的符号。其中,上述第六TA可以包括以下至少一项:第四TAG对应的TA、ACK所在BWP所属CC所属的TAG对应的TA。
可以理解,上述计时起点符号可以为第七符号在上述第二BWP对应的时域资源上的映射位置减去和/或加上第六TA后对应的符号。或者说,上述计时起点符号可以为第七符号在上述第二BWP对应的时域资源上的映射位置向后回退和/或向前前进第六TA后对应的符号。其中,向后回退是指向位于第七符号在上述第二BWP对应的时域资源上的映射位置之前(before)的符号数,向前前进是指向位于第七符号在上述第二BWP对应的时域资源上的映射位置之后(after/next)的符号数。如,所述映射位置在符号n,从符号n向后回退m个符号,则为符号(n-m),从符号n向前前进k个符号,则为符号(n+k)。
对于如何确定计时起点符号的举例,具体可以参见上述实施例中,在第二CC对应的时域资源上确定计时起点符号的相关举例,为避免重复,此处不再赘述。
需要说明的是,基于上述情况二,上述ACK所在BWP所属CC所属的TAG与第三TAG和第四TAG可以为不同的TAG,也可以为相同的TAG,具体可以根据实际使用需求确定,本申请实施例不作限定。
另外,第三TAG和第四TAG可以为不同的TAG。
可选地,在上述情况二中,在目标BWP为上述第一BWP,第一BWP可以为属于第三TAG的CC中SCS最小的BWP的情况下,第四slot可以为第一BWP对应的时域资源上,位于第八符号之后的第一个slot。
可选地,在一些实施例中,上述第八符号可以为根据第五slot确定的符号。其中,上述第五slot可以为第二BWP对应的时域资源上,位于第九符号之后的第一个slot,该第九符号可以为第二BWP对应的时域资源上,位于计时起点符号之后的第Y个符号。可以理解,上述第八符号可以为第五slot(或理解为第五slot中的第一个符号)在第一BWP对应的时域资源上的映射位置对应的符号。
在另一些实施例中,上述第八符号可以为根据第五slot和第七TA确定的符号。其中,上述第七TA可以包括以下至少一项:第三TAG对应的TA、第四TAG对应的TA。
可以理解,上述第八符号可以为第五slot(例如第五slot的第一个符号)在上述第一BWP对应的时域资源上的映射位置减去和/或加上第七TA后对应的符号。或者说,上述第八符号可以为第五slot(例如第五slot的第一个符号)在上述第BWP对应的时域资源上的映射位置向后回退和/或向前前进第七TA后对应的符号。其中,向后回退是指向位于第五slot(例如第五slot的第一个符号)在上述第一BWP对应的时域资源上的映射位置之前(before)的符号数,向前前进是指向位于第五slot(例如第五slot的第一个符号)在上述第一BWP对应的时域资源上的映射位置之后(after/next)的符号数。如,所述映射位置在符号n,从符号n向后回退m个符号,则为符号(n-m), 从符号n向前前进k个符号,则为符号(n+k)。
对于如何根据第五slot确定第八符号的举例,具体可以参见上述实施例中,根据第二slot在第一CC对应的时域资源上确定第二符号的相关举例,为避免重复,此处不再赘述。
在另一些实施例中,上述第八符号可以为根据第九符号确定的符号。其中,第九符号可以为第二BWP对应的时域资源上,位于计时起点符号之后的第Y个符号。可以理解,上述第八符号可以为第九符号在第一BWP对应的时域资源上的映射位置对应的符号。
在又一些实施例中,第八符号为根据第九符号和第七TA确定的符号。其中,第七TA可以包括以下至少一项:第三TAG对应的TA、第四TAG对应的TA。
可以理解,上述第八符号可以为第九符号在上述第一BWP对应的时域资源上的映射位置减去和/或加上第七TA后对应的符号。或者说,上述第八符号可以为第九符号在上述第一BWP对应的时域资源上的映射位置向后回退和/或向前前进第七TA后对应的符号。其中,向后回退是指向位于第九符号在上述第一BWP对应的时域资源上的映射位置之前(before)的符号数,向前前进是指向位于第九符号在上述第一BWP对应的时域资源上的映射位置之后(after/next)的符号数。如,所述映射位置在符号n,从符号n向后回退m个符号,则为符号(n-m),从符号n向前前进k个符号,则为符号(n+k)。
对于如何根据第九符号确定第八符号的举例,具体可以参见上述实施例中,根据第三符号在第一CC对应的时域资源上确定第二符号的相关举例,为避免重复,此处不再赘述。
本申请实施例中,基于上述情况二,属于第三TAG的CC的BWP的BAT可以为第四slot;属于第四TAG的CC的BWP的BAT可以为第五slot。
可以理解,对于上述情况二,通信设备可以通过确定第一BWP(属于第三TAG的CC中SCS最小的BWP)的BAT,确定第三TAG中每个CC的BWP的BAT;并且通过确定第二BWP(目标BWP组中SCS最小的BWP)的BAT,确定第四TAG(第二BWP所属CC所属的TAG)中每个CC的BWP的BAT。
下面结合附图对上述情况二(参考BWP为第二BWP、目标BWP为第一BWP)进行示例性地说明。
假设ACK所在BWP(以下称为BWP0)所属CC属于TAGX,目标BWP组中的BWP所属CC,一部分属于TAG2,另一部分属于TAG3。若所属CC属于TAG2的CC中,BWP1的SCS最小,则将BWP1作为TAG2和TAG3共同的参考(reference)BWP。其中,TAGX可以与TAG2或TAG3相同,也可以与TAG2和TAG3均不同。
示例21:如图7所示,根据BWP0所属CC所属的TAGX的TA和TAG2对应的TA中的至少一个,将T0(ACK在BWP0上占用的最后一个符号,即第七符号)映射到BWP1对应的时域资源上的第一时间点T1(即计时起点符号);然后根据BWP1的SCS,从T1开始数Y个符号,将位于第Y个符号(T6,即上述第九符号)后的first slot(第一个slot)作为TAG2对应的第四slot,从而将该first slot作为属于TAG2的CC的BWP的BAT。并且根据TAG2的TA和TAG3的TA中的至少一个,将T6(即上述第九符号)映射到属于TAG3的CC中具有最小SCS的BWP2(即上述第一BWP)对应的时域资源上的T7(即上述第八符号),并将BWP2对应的时域资源上,位于T7之后的下一个slot作为BWP2的first slot,从而将位于T7之后的下一个slot作为属于TAG3的CC的BWP的BAT。
示例22:如图8所示,将T0(ACK在BWP0上占用的最后一个符号,即第七符 号)映射到BWP1上的第一时间点T1(即计时起点符号);然后根据BWP1的SCS,从T1开始数Y个符号,将位于第Y个符号(T6,即上述第九符号)后的first slot(第一个slot)作为TAG2对应的第四slot,从而将该first slot作为属于TAG2的CC的BWP的BAT。并且根据TAG2的TA和TAG3的TA中的至少一个,将T6(即上述第九符号)映射到属于TAG3的CC中具有最小SCS的BWP2(即上述第一BWP)的T7(即上述第八符号),并将BWP2对应的时域资源上,位于T7之后的下一个slot作为BWP2的first slot,从而将该BWP2的first slot作为属于TAG3的CC的BWP的BAT。
示例23:如图9所示,根据BWP0所在TAGX的TA和TAG2对应的TA中的至少一个,将T0(ACK在BWP0上占用的最后一个符号,即第七符号)映射到BWP1对应的时域资源上的第一时间点T1(即计时起点符号);然后根据BWP1的SCS,从T1开始数Y个符号,将位于第Y个符号(T6,即上述第九符号)后的first slot(第一个slot)作为TAG2对应的第四slot,从而将该first slot作为属于TAG2的CC的BWP的BAT。并且将T6(即上述第九符号)映射到属于TAG3的CC中具有最小SCS的BWP2(即上述第一BWP)对应的时域资源上的T7(即上述第八符号),并将BWP2对应的时域资源上,位于T7之后的下一个slot作为BWP2的first slot,从而将该first slot作为属于TAG3的CC的BWP的BAT。
示例24:如图10所示,将T0(ACK在BWP0上占用的最后一个符号,即第七符号)映射到BWP1对应的时域资源上的第一时间点T2(即计时起点符号);然后根据BWP1的SCS,从T2开始数Y个符号,将位于第Y个符号(T6,即上述第九符号)后的first slot(第一个slot)作为TAG2对应的第四slot,从而将该first slot作为属于TAG2的CC的BWP的BAT。并且将T6(即上述第九符号)映射到属于TAG3的CC中具有最小SCS的BWP2(即上述第一BWP)对应的时域资源上的T7(即上述第八符号),并将BWP2对应的时域资源上,位于T7之后的下一个slot作为BWP2的first slot,从而将该first slot作为属于TAG3的CC的BWP的BAT。
示例25:如图11所示,根据BWP0所在TAGX的TA和TAG2对应的TA中的至少一个,将T0(ACK在BWP0上占用的最后一个符号,即第七符号)映射到BWP1对应的时域资源上的第一时间点T1(即计时起点符号);然后根据BWP1的SCS,从T1开始数Y个符号,将位于第Y个符号(T6,即上述第九符号)之后的first slot(即上述第五slot)作为TAG2对应的第四slot,从而将该first slot作为属于TAG2的CC的BWP的BAT。并且根据TAG2的TA和TAG3的TA中的至少一个(或者不考虑TA),将位于T6之后的first slot(即上述第五slot)映射到属于TAG3的CC中具有最小SCS的BWP2(即上述第一BWP)对应的时域资源上的时间点,也就是将位于T6之后的first slot中的第一个符号映射到BWP2对应的时域资源上的符号位置,并将BWP2对应的时域资源上,位于该时间点之后的下一个slot作为属于TAG3中的CC的BWP的BAT。
示例26:如图12所示,将T0(ACK在BWP0上占用的最后一个符号,即第七符号)映射到BWP1对应的时域资源上的第一时间点T2(即计时起点符号);然后根据BWP1的SCS,从T2开始数Y个符号,将位于第Y个符号(T6,即上述第九符号)之后的first slot(即上述第五slot)作为TAG2对应的第四slot,从而将该first slot作为属于TAG2的CC的BWP的BAT。并且根据TAG2的TA和TAG3的TA中的至少一个(或者不考虑TA),将位于T6之后的first slot(即上述第五slot)映射到属于TAG3的CC中具有最小SCS的BWP2(即上述第一BWP)对应的时域资源上的一个时间点,也就是将位于T6之后的first slot中的第一个符号映射到BWP2对应的时域资源上的符号位置,并将BWP2对应的时域资源上,位于该时间点之后的下一个slot 作为属于TAG3的CC的BWP的BAT。
情况三:参考BWP为ACK所在BWP,ACK所在BWP为目标BWP组中的BWP和ACK所在BWP中SCS最小的BWP;
可选地,在上述情况三中,计时起点符号可以为第七符号。
基于上述情况三,在一种可能的实现方式中,目标BWP可以为ACK所在BWP。其中,第四slot可以为ACK所在BWP对应的时域资源上,位于计时起点符号之后的Y个符号后的第一个slot。
本申请实施例中,在目标BWP为ACK所在BWP的情况下,目标BWP组中,属于同一个TAG组的BWP的BAT为第六slot。
其中,上述第六slot可以为第三BWP对应的时域资源上,位于第十符号之后的第一个slot,第三BWP可以为属于同一个TAG组的CC中SCS最小的BWP。
在一种实现方式中,上述第十符号可以为根据第四slot确定的符号。可以理解,上述第十符号可以为第四slot在第三BWP对应的时域资源上的映射位置对应的符号。也就是说,上述第十符号可以为第四slot的第一个符号在第BWP对应的时域资源上的映射位置对应的符号。
在另一种实现方式中,第十符号为根据第四slot和第八TA确定的符号。其中,上述第八TA可以包括以下至少一项:第三BWP所属的TAG对应的TA、ACK所在BWP所属的TAG对应的TA。
可以理解,上述第十符号可以为第四slot在第三BWP对应的时域资源上的映射位置对应的符号减去和/或加上第八TA后对应的符号。或者说,上述第十符号可以为第四slot(比如第四slot的第一个符号)在上述第三BWP对应的时域资源上的映射位置向后回退和/或向前前进第八TA后对应的符号。其中,向后回退是指向位于第四slot(比如第四slot的第一个符号)在第三BWP对应的时域资源上的映射位置之前(before)的符号数,向前前进是指向位于第四slot(比如第四slot的第一个符号)在第三BWP对应的时域资源上的映射位置之后(after/next)的符号数。如,所述映射位置在符号n,从符号n向后回退m个符号,则为符号(n-m),从符号n向前前进k个符号,则为符号(n+k)。
对于如何确定上述第十符号的相关举例,具体可以参见上述实施例中,对确定第四符号的示例说明,为避免重复,此处不再赘述。
下面再结合附图,对上述情况三的一种实现方式(参考BWP和目标BWP均为ACK所在BWP)进行示例性地说明。
一种可能的情况:目标BWP组中的BWP所属CC属于同一个TAG。
假设ACK所在BWP(以下称为BWP0)所属CC属于TAG1,目标BWP组中的BWP所属CC均属于TAG2。若属于TAG2的CC中,BWP1(即上述第三BWP)的SCS最小,则将BWP1作为属于TAG2的CC中,用于确定BAT的BWP。
示例27:如图13所示,将T0(ACK在BWP0上占用的最后一个符号,即第七符号)确定为即计时起点符号,根据BWP0的SCS,从T0开始的数Y个符号,将位于第Y个符号后的first slot作为第四slot,从而根据BWP0所在的TAG1对应的TA和TAG2对应的TA中的至少一个(或不考虑TA),将该first slot映射到BWP1(即上述第三BWP)对应的时域资源上的一个时间点,并将BWP1对应的时域资源上,位于该时间点之后的下一个slot作为属于TAG2的CC的BWP的BAT。
另一种可能的情况:目标BWP组中的BWP所属CC属于不同的TAG。
假设ACK所在BWP(以下称为BWP0)所属CC属于TAG1,目标BWP组中的BWP所属CC,一部分属于TAG2,另一部分属于TAG3。若属于TAG2的CC中,BWP1 的SCS最小,则将BWP1作为TAG2对应的第三BWP;属于TAG3的CC中,BWP2的SCS最小,则将BWP2作为TAG3对应的第三BWP。
示例28:如图14所示,将T0(ACK在BWP0上占用的最后一个符号,即第七符号)确定为即计时起点符号,根据BWP0的SCS,从T0开始的数Y个符号,将位于第Y个符号后的first slot(第一个slot)作为第四slot。然后根据BWP0所在的TAG1对应的TA和TAG2对应的TA中的至少一个(或不考虑TA),将该first slot映射到BWP1(即TAG2对应的第三BWP)对应的时域资源上的一个时间点,并将BWP1对应的时域资源上,位于该时间点之后的下一个slot作为属于TAG2的CC的BWP的BAT。并且根据BWP0所在的TAG1对应的TA和TAG3对应的TA中的至少一个(或不考虑TA),将该first slot映射到BWP2(即TAG3对应的第三BWP)对应的时域资源上的一个时间点,并将BWP2对应的时域资源上,位于该时间点之后的下一个slot作为属于TAG3的CC的BWP的BAT。
基于上述情况三,在另一种可能的实现方式中,目标BWP为第一BWP,该第一BWP为第三TAG中SCS最小的BWP。在该种情况下,第四slot可以为第一BWP对应的时域资源上,位于第十一符号之后的第一个slot。
在一种实现方式中,上述第十一符号可以为根据第十二符号确定的符号。其中,上述第十二符号可以为ACK所在BWP对应的时域资源上,位于计时起点符号之后的第Y个符号。可以理解,第十一符号可以为第十二符号在第一BWP对应的时域资源上的映射位置对应的符号。
在另一种实现方式中,上述第十一符号可以为根据第十二符号和第五TA确定的符号。其中,上述第五TA可以包括以下至少一项:第三TAG对应的TA、ACK所在BWP所属的TAG对应的TA。
可以理解,第十一符号可以为第十二符号在第一BWP对应的时域资源上的映射位置对应的符号减去和/或加上第五TA后对应的符号。或者说,上述第十一符号可以为第十二符号在上述第一BWP对应的时域资源上的映射位置向后回退和/或向前前进第五TA后对应的符号。其中,向后回退是指向位于第十二符号在上述第一BWP对应的时域资源上的映射位置之前(before)的符号数,向前前进是指向位于第十二符号在上述第一BWP对应的时域资源上的映射位置之后(after/next)的符号数。如,所述映射位置在符号n,从符号n向后回退m个符号,则为符号(n-m),从符号n向前前进k个符号,则为符号(n+k)。
对于如何确定上述第十一符号的相关举例,具体可以参见上述实施例中,对确定第五符号的示例说明,为避免重复,此处不再赘述。
基于上述情况三,在目标BWP为第一BWP的情况下,目标BWP组中,属于第三TAG的CC的BWP的BAT为第四slot。
下面再结合附图,对上述情况三的另一种实现方式(参考BWP为ACK所在BWP,目标BWP为第一BWP)进行示例性地说明。
一种可能的情况:目标BWP组中的BWP所属CC属于同一个TAG。
假设ACK所在BWP(以下称为BWP0)所属CC属于TAG1,目标BWP组中的BWP所属CC均属于TAG2。若属于TAG2的CC中,BWP1(即上述第三BWP)的SCS最小,则将BWP1作为属于TAG2的CC中,用于确定BAT的BWP。
示例29:如图15所示,将T0(ACK在BWP0上占用的最后一个符号,即第七符号)确定为计时起点符号,根据BWP0的SCS,从T0开始的数Y个符号,根据BWP0所在的TAG1对应的TA和TAG2对应的TA中的至少一个,将第Y个符号(即上述第十二符号,记为T3)映射到BWP1对应的时域资源上的T4(即上述第十一符号), 并将T4之后的first slot作为第四slot,从而将该first slot作为属于TAG2的CC的BWP的BAT。
示例30:如图16所示,将T0(ACK在BWP0上占用的最后一个符号,即第七符号)确定为计时起点符号,根据BWP0的SCS,从T0开始的数Y个符号,将第Y个符号(即上述第十二符号,记为T3)映射到BWP1对应的时域资源上的T5(即上述第十一符号),并将T5之后的first slot作为第四slot,从而将该first slot作为属于TAG2的CC的BWP的BAT。
另一种可能的情况:目标BWP组中的BWP所属CC属于不同的TAG。
假设ACK所在BWP(以下称为BWP0)所属CC属于TAG1,目标BWP组中的BWP所属CC,一部分属于TAG2,另一部分属于TAG3。若属于TAG2的CC中,BWP1的SCS最小,则将BWP1作为TAG2对应的目标BWP;属于TAG3的CC中,BWP2的SCS最小,则将BWP2作为TAG3对应的目标BWP。
示例31:如图17所示,将T0(ACK在BWP0上占用的最后一个符号,即第七符号)确定为计时起点符号,根据BWP0的SCS,从T0开始的数Y个符号。然后,根据BWP0所在的TAG1对应的TA和TAG2对应的TA中的至少一个,将第Y个符号(即上述第十二符号,记为T3)映射到BWP1对应的时域资源上的TAG2-T4(即TAG2对应的第十一符号),并将位于TAG2-T4之后的first slot作为第四slot,从而将该first slot作为属于TAG2的CC的BWP的BAT。并且根据BWP0所在的TAG1对应的TA和TAG3对应的TA中的至少一个,将第Y个符号(即上述第十二符号,记为T3)映射到BWP2对应的时域资源上的TAG3-T4(即TAG3对应的第十一符号),并将位于TAG3-T4之后的first slot作为第四slot,从而将该first slot作为属于TAG3的CC的BWP的BAT。
示例32:如图18所示,将T0(ACK在BWP0上占用的最后一个符号,即第七符号)确定为计时起点符号,根据BWP0的SCS,从T0开始的数Y个符号。然后,将第Y个符号(即上述第十二符号,记为T3)映射到BWP1对应的时域资源上的TAG2-T4(即TAG2对应的第十一符号),并将位于TAG2-T5之后的first slot作为第四slot,从而将该first slot作为属于TAG2的CC的BWP的BAT。并且将第Y个符号(即上述第十二符号,记为T3)映射到BWP2对应的时域资源上的TAG3-T5(即TAG3对应的第十一符号),并将位于TAG3-T5之后的first slot作为第四slot,从而将该first slot作为属于TAG3的CC的BWP的BAT。
本申请实施例提供的波束应用时间确定方法,由于属于一个TAG的CC的BWP在时域上具有一定的关联关系(比如SCS相同或SCS成倍数关系),因此在目标BWP组中的BWP所属CC属于不同TAG或目标BWP组中的BWP所属CC所属的TAG与ACK所在BWP所属CC所属的TAG不同的情况下,通过确定参考BWP对应的计时起点符号,并且确定目标BWP对应的第一slot,以及根据第一slot,确定目标BWP组中属于每个TAG的CC的BWP的BAT,可以使得目标BWP组中所属CC属于同一个TAG的BWP的波束生效时间一致,即可以使得所属CC属于同一个TAG的BWP的波束对齐,从而可以正确地进行数据传输。
需要说明的是,本申请实施例提供的波束应用时间确定方法,执行主体可以为波束应用时间确定装置,或者,该波束应用时间确定装置中的用于执行波束应用时间确定方法的控制模块。本申请实施例中以BAT确定执行波束应用时间确定方法为例,说明本申请实施例提供的波束应用时间确定装置。
如图20所示,本申请实施例提供一种波束应用时间确定装置400,该波束应用时间确定装置400包括确定模块401;确定模块401,用于根据第一符号,确定参考CC 对应的计时起点符号,第一符号为波束指示信息的ACK占用的最后一个符号;并根据计时起点符号,确定目标CC对应的第一slot,目标CC为ACK所在CC或目标CC组中属于第一TAG的第一CC;以及根据第一slot,确定目标CC组中属于每个TAG的CC的BAT。
可选地,参考CC为ACK所在CC、第一CC或目标CC组中属于第二TAG的第二CC。
可选地,参考CC为第一CC,第一CC为第一TAG中子载波间隔SCS最小的CC;计时起点符号为根据第一符号确定的符号;或者计时起点符号为根据第一符号和第一时间提前量TA确定的符号;其中,第一TA包括以下至少一项:第一TAG对应的TA、ACK所在CC所属的TAG对应的TA。
可选地,目标CC为第一CC;第一slot为第一CC对应的时域资源上,位于计时起点符号之后的Y个符号后的第一个slot。
可选地,目标CC组中,属于第一TAG的CC的BAT为第一slot。
可选地,参考CC为第二CC,第二CC为目标CC组中SCS最小的CC;计时起点符号为根据第一符号确定的符号;或者计时起点符号为根据第一符号和第二TA确定的符号;其中,第二TA包括以下至少一项:第二TAG对应的TA、ACK所在CC所属的TAG对应的TA。
可选地,目标CC为第一CC,第一CC为第一TAG中SCS最小的CC;第一slot为第一CC对应的时域资源上,位于第二符号之后的第一个slot。
可选地,第二符号为根据第二slot确定的符号;或者第二符号为根据第二slot和第三TA确定的符号;其中,第二slot为第二CC对应的时域资源上,位于第三符号之后的第一个slot,第三符号为第二CC对应的时域资源上,位于计时起点符号之后的第Y个符号,第三TA包括以下至少一项:第一TAG对应的TA、第二TAG对应的TA。
可选地,第二符号为根据第三符号确定的符号,或者第二符号为根据第三符号和第三TA确定的符号;其中,第三符号为第二CC对应的时域资源上,位于计时起点符号之后的第Y个符号,第三TA包括以下至少一项:第一TAG对应的TA、第二TAG对应的TA。
可选地,属于第一TAG的CC的BAT为第一slot,属于第二TAG的CC的BAT为第二slot。
可选地,参考CC为ACK所在CC,ACK所在CC为目标CC组中的CC和ACK所在CC中SCS最小的CC;计时起点符号为第一符号。
可选地,目标CC为ACK所在CC;第一slot为ACK所在CC对应的时域资源上,位于计时起点符号之后的Y个符号后的第一个slot。
可选地,目标CC组中,属于同一个TAG组的CC的BAT为第三slot;其中,第三slot为第三CC对应的时域资源上,位于第四符号之后的第一个slot,第三CC为同一个TAG组中SCS最小的CC。
可选地,第四符号为根据第一slot确定的符号;或者第四符号为根据第一slot和第四TA确定的符号;其中,第四TA包括以下至少一项:第三CC所属的TAG对应的TA、ACK所在CC所属的TAG对应的TA。
可选地,目标CC为第一CC,第一CC为第一TAG中SCS最小的CC;第一slot为第一CC对应的时域资源上,位于第五符号之后的第一个slot。
可选地,第五符号为根据第六符号确定的符号;或者第五符号为根据第六符号和第一TA确定的符号;其中,第六符号为ACK所在CC对应的时域资源上,位于计时起点符号之后的第Y个符号,第一TA包括以下至少一项:第一TAG对应的TA、ACK 所在CC所属的TAG对应的TA。
可选地,目标CC组中,属于第一TAG的CC的BAT为第一slot。
可选地,目标CC组中的CC和ACK所在CC属于至少两个TAG。
可选地,目标CC组中的CC属于至少两个TAG;至少两个TAG对应同一个TCI状态池,或者至少两个TAG对应不同的TCI状态池
本申请实施例提供的BTA确定装置,由于属于一个TAG的CC在时域上具有一定的关联关系(比如SCS相同或SCS成倍数关系),因此在目标CC组中的CC属于不同TAG或目标CC组中的CC所属的TAG与ACK所在CC所属的TAG不同的情况下,通过确定参考CC对应的计时起点符号,并且确定目标CC对应的第一slot,以及根据第一slot,确定目标CC组中属于每个TAG的CC的BAT,可以使得目标CC组中属于同一个TAG的CC的波束生效时间一致,即可以使得属于同一个TAG的CC的波束对齐,从而可以正确地进行数据传输。
如图20所示,本申请实施例提供一种波束应用时间确定装置400,该波束应用时间确定装置400包括确定模块401;确定模块401,用于根据第七符号,确定参考BWP对应的计时起点符号,第七符号为波束指示信息的ACK占用的最后一个符号;并根据计时起点符号,确定目标BWP对应的第四slot,目标BWP为ACK所在BWP或目标BWP组中所属载波单元CC属于第三TAG的第一BWP;以及根据第四slot,确定目标BWP组中属于每个TAG的CC的BWP的BAT。
可选地,参考BWP为ACK所在BWP、第一BWP或目标BWP组中所属CC属于第四TAG的第二BWP。
可选地,参考BWP为第一BWP,第一BWP为属于第三TAG的CC中SCS最小的BWP;计时起点符号为根据第七符号确定的符号;或者计时起点符号为根据第七符号和第五TA确定的符号;其中,第五TA包括以下至少一项:第三TAG对应的TA、ACK所在BWP所属CC所属的TAG对应的TA。
可选地,目标BWP为第一BWP;第四slot为第一BWP对应的时域资源上,位于计时起点符号之后的Y个符号后的第一个slot。
可选地,目标BWP组中,属于第三TAG的CC的BWP的BAT为第四slot。
可选地,参考BWP为第二BWP,第二BWP为目标BWP组中SCS最小的BWP;计时起点符号为根据第七符号确定的符号;或者计时起点符号为根据第七符号和第六TA确定的符号;其中,第六TA包括以下至少一项:第四TAG对应的TA、ACK所在BWP所属CC所属的TAG对应的TA。
可选地,目标BWP为第一BWP,第一BWP为属于第三TAG的CC中SCS最小的BWP;第四slot为第一BWP对应的时域资源上,位于第八符号之后的第一个slot。
可选地,第八符号为根据第五slot确定的符号;或者第八符号为根据第五slot和第七TA确定的符号;其中,第五slot为第二BWP对应的时域资源上,位于第九符号之后的第一个slot,第九符号为第二BWP对应的时域资源上,位于计时起点符号之后的第Y个符号,第七TA包括以下至少一项:第三TAG对应的TA、第四TAG对应的TA。
可选地,第八符号为根据第九符号确定的符号,或者第八符号为根据第九符号和第七TA确定的符号;其中,第九符号为第二BWP对应的时域资源上,位于计时起点符号之后的第Y个符号,第七TA包括以下至少一项:第三TAG对应的TA、第四TAG对应的TA。
可选地,属于第三TAG的CC的BWP的BAT为第四slot,属于第四TAG的CC的BWP的BAT为第五slot。
可选地,参考BWP为ACK所在BWP,ACK所在BWP为目标BWP组中的BWP和ACK所在BWP中SCS最小的BWP;计时起点符号为第七符号。
可选地,目标BWP为ACK所在BWP;第四slot为ACK所在BWP对应的时域资源上,位于计时起点符号之后的Y个符号后的第一个slot。
可选地,目标BWP组中,属于同一个TAG组的CC的BWP的BAT为第六slot;其中,第六slot为第三BWP对应的时域资源上,位于第十符号之后的第一个slot,第三BWP为属于同一个TAG组的CC中SCS最小的BWP。
可选地,第十符号为根据第四slot确定的符号;或者第十符号为根据第四slot和第八TA确定的符号;其中,第八TA包括以下至少一项:第三BWP所属CC所属的TAG对应的TA、ACK所在BWP所属CC所属的TAG对应的TA。
可选地,目标BWP为第一BWP,第一BWP为第三TAG中的CC包括的BWP中SCS最小的BWP;第四slot为第一BWP对应的时域资源上,位于第十一符号之后的第一个slot。
可选地,第十一符号为根据第十二符号确定的符号;或者第十一符号为根据第十二符号和第五TA确定的符号;其中,第十二符号为ACK所在BWP对应的时域资源上,位于计时起点符号之后的第Y个符号,第五TA包括以下至少一项:第一TAG对应的TA、ACK所在BWP所属CC所属的TAG对应的TA。
可选地,目标BWP组中,属于第三TAG的CC的BWP的BAT为第四slot。
可选地,目标BWP组中的BWP所属CC和ACK所在BWP所属CC属于至少两个TAG。
可选地,目标BWP组中的BWP所属CC属于至少两个TAG;至少两个TAG对应同一个TCI状态池,或者至少两个TAG对应不同的TCI状态池。
本申请实施例提供的BTA确定装置,由于属于一个TAG的CC的BWP在时域上具有一定的关联关系(比如SCS相同或SCS成倍数关系),因此在目标BWP组中的BWP所属CC属于不同TAG或目标BWP组中的BWP所属CC所属的TAG与ACK所在BWP所属CC所属的TAG不同的情况下,通过确定参考BWP对应的计时起点符号,并且确定目标BWP对应的第一slot,以及根据第一slot,确定目标BWP组中属于每个TAG的CC的BWP的BAT,可以使得目标BWP组中所属CC属于同一个TAG的BWP的波束生效时间一致,即可以使得所属CC属于同一个TAG的BWP的波束对齐,从而可以正确地进行数据传输。
本申请实施例中的波束应用时间确定装置可以是装置,具有操作系统的装置或电子设备,也可以是终端中的部件、集成电路、或芯片。该装置或电子设备可以是移动终端,也可以为非移动终端。示例性的,移动终端可以包括但不限于上述所列举的终端11的类型,非移动终端可以为服务器、网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例提供的波束应用时间确定装置能够实现上述方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,如图21所示,本申请实施例还提供一种通信设备500,包括处理器501,存储器502,存储在存储器502上并可在处理器501上运行的程序或指令,例如,该通信设备500为终端时,该程序或指令被处理器501执行时实现上述波束应用时间确定方法实施例的各个过程,且能达到相同的技术效果。该通信设备500为网络侧设备时,该程序或指令被处理器501执行时实现上述波束应用时间确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,处理器用于根据第一符号,确定参考CC对应的计时起点符号,第一符号为波束指示信息的ACK占用的最后一个符号;并根据计时起点符号,确定目标CC对应的第一slot,目标CC为ACK所在CC或目标CC组中属于第一TAG的第一CC;以及根据第一slot,确定目标CC组中属于每个TAG的CC的BAT。或者,处理器用于根据第七符号,确定参考BWP对应的计时起点符号,第七符号为波束指示信息的ACK占用的最后一个符号;并根据计时起点符号,确定目标BWP对应的第四slot,目标BWP为ACK所在BWP或目标BWP组中所属载波单元CC属于第三TAG的第一BWP;以及根据第四slot,确定目标BWP组中属于每个TAG的CC的BWP的BAT该终端实施例是与上述终端侧方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图22为实现本申请实施例的一种终端的硬件结构示意图。
该终端100包括但不限于:射频单元101、网络模块102、音频输出单元103、输入单元104、传感器105、显示单元106、用户输入单元107、接口单元108、存储器109、以及处理器110等中的至少部分部件。
本领域技术人员可以理解,终端100还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器110逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图22中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元104可以包括图形处理器(Graphics Processing Unit,GPU)1041和麦克风1042,图形处理器1041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元106可包括显示面板1061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板1061。用户输入单元107包括触控面板1071以及其他输入设备1072。触控面板1071,也称为触摸屏。触控面板1071可包括触摸检测装置和触摸控制器两个部分。其他输入设备1072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元101将来自网络侧设备的下行数据接收后,给处理器110处理;另外,将上行的数据发送给网络侧设备。通常,射频单元101包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器109可用于存储软件程序或指令以及各种数据。存储器109可主要包括存储程序或指令区和存储数据区,其中,存储程序或指令区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器109可以包括高速随机存取存储器,还可以包括非易失性存储器,其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。
处理器110可包括一个或多个处理单元;可选的,处理器110可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作系统、用户界面和应用程序或指令等,调制解调处理器主要处理无线通信,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器110中。
其中,处理器110,用于根据第一符号,确定参考CC对应的计时起点符号,第一 符号为波束指示信息的ACK占用的最后一个符号;并根据计时起点符号,确定目标CC对应的第一slot,目标CC为ACK所在CC或目标CC组中属于第一TAG的第一CC;以及根据第一slot,确定目标CC组中属于每个TAG的CC的BAT。
本申请实施例提供的终端,由于属于一个TAG的CC在时域上具有一定的关联关系(比如SCS相同或SCS成倍数关系),因此在目标CC组中的CC属于不同TAG或目标CC组中的CC所属的TAG与ACK所在CC所属的TAG不同的情况下,通过确定参考CC对应的计时起点符号,并且确定目标CC对应的第一slot,以及根据第一slot,确定目标CC组中属于每个TAG的CC的BAT,可以使得目标CC组中属于同一个TAG的CC的波束生效时间一致,即可以使得属于同一个TAG的CC的波束对齐,从而可以正确地进行数据传输。
或者,处理器110,用于根据第七符号,确定参考BWP对应的计时起点符号,第七符号为波束指示信息的ACK占用的最后一个符号;并根据计时起点符号,确定目标BWP对应的第四slot,目标BWP为ACK所在BWP或目标BWP组中所属载波单元CC属于第三TAG的第一BWP;以及根据第四slot,确定目标BWP组中属于每个TAG的CC的BWP的BAT。
本申请实施例提供的终端,由于属于一个TAG的CC的BWP在时域上具有一定的关联关系(比如SCS相同或SCS成倍数关系),因此在目标BWP组中的BWP所属CC属于不同TAG或目标BWP组中的BWP所属CC所属的TAG与ACK所在BWP所属CC所属的TAG不同的情况下,通过确定参考BWP对应的计时起点符号,并且确定目标BWP对应的第一slot,以及根据第一slot,确定目标BWP组中属于每个TAG的CC的BWP的BAT,可以使得目标BWP组中所属CC属于同一个TAG的BWP的波束生效时间一致,即可以使得所属CC属于同一个TAG的BWP的波束对齐,从而可以正确地进行数据传输。
本申请实施例还提供一种网络侧设备,包括处理器和通信接口,处理器用于根据第一符号,确定参考CC对应的计时起点符号,第一符号为波束指示信息的ACK占用的最后一个符号;并根据计时起点符号,确定目标CC对应的第一slot,目标CC为ACK所在CC或目标CC组中属于第一TAG的第一CC;以及根据第一slot,确定目标CC组中属于每个TAG的CC的BAT。或者,处理器用于根据第七符号,确定参考BWP对应的计时起点符号,第七符号为波束指示信息的ACK占用的最后一个符号;并根据计时起点符号,确定目标BWP对应的第四slot,目标BWP为ACK所在BWP或目标BWP组中所属载波单元CC属于第三TAG的第一BWP;以及根据第四slot,确定目标BWP组中属于每个TAG的CC的BWP的BAT。该网络侧设备实施例是与上述网络侧设备方法实施例对应的,上述方法实施例的各个实施过程和实现方式均可适用于该网络侧设备实施例中,且能达到相同的技术效果。
可选地,本申请实施例还提供了一种网络侧设备。如图23所示,该网络侧设备700包括:天线71、射频装置72、基带装置73。天线71与射频装置72连接。在上行方向上,射频装置72通过天线71接收信息,将接收的信息发送给基带装置73进行处理。在下行方向上,基带装置73对要发送的信息进行处理,并发送给射频装置72,射频装置72对收到的信息进行处理后经过天线71发送出去。
上述频带处理装置可以位于基带装置73中,以上实施例中网络侧设备执行的方法可以在基带装置73中实现,该基带装置73包括处理器74和存储器75。
基带装置73例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图23所示,其中一个芯片例如为处理器74,与存储器75连接,以调用存储器75中的程序,执行以上方法实施例中所示的网络侧设备操作。
该基带装置73还可以包括网络接口76,用于与射频装置72交互信息,该接口例如为通用公共无线接口(common public radio interface,简称CPRI)。
具体地,本发明实施例的网络侧设备还包括:存储在存储器75上并可在处理器74上运行的指令或程序,处理器74调用存储器75中的指令或程序执行图20所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述波束应用时间确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述波束应用时间确定方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (43)

  1. 一种波束应用时间确定方法,包括:
    通信设备根据第一符号,确定参考载波单元CC对应的计时起点符号,所述第一符号为波束指示信息的响应消息ACK占用的最后一个符号;
    所述通信设备根据所述计时起点符号,确定目标CC对应的第一时隙slot,所述目标CC为ACK所在CC或目标CC组中属于第一时间提前量组TAG的第一CC;
    所述通信设备根据所述第一slot,确定所述目标CC组中属于每个TAG的CC的波束应用时间BAT。
  2. 根据权利要求1所述的方法,其中,所述参考CC为所述第一CC,所述第一CC为所述第一TAG中子载波间隔SCS最小的CC;
    所述计时起点符号为根据所述第一符号确定的符号;或者
    所述计时起点符号为根据所述第一符号和第一时间提前量TA确定的符号;
    其中,所述第一TA包括以下至少一项:所述第一TAG对应的TA、所述ACK所在CC所属的TAG对应的TA。
  3. 根据权利要求2所述的方法,其中,所述目标CC为所述第一CC;
    所述第一slot为所述第一CC对应的时域资源上,位于所述计时起点符号之后的Y个符号后的第一个slot。
  4. 根据权利要求3所述的方法,其中,目标CC组中,属于所述第一TAG的CC的BAT为所述第一slot。
  5. 根据权利要求1所述的方法,其中,所述参考CC为所述第二CC,所述第二CC为所述目标CC组中SCS最小的CC;
    所述计时起点符号为根据所述第一符号确定的符号;或者
    所述计时起点符号为根据所述第一符号和第二TA确定的符号;
    其中,所述第二TA包括以下至少一项:所述第二TAG对应的TA、所述ACK所在CC所属的TAG对应的TA。
  6. 根据权利要求5所述的方法,其中,所述目标CC为所述第一CC,所述第一CC为所述第一TAG中SCS最小的CC;
    所述第一slot为所述第一CC对应的时域资源上,位于第二符号之后的第一个slot。
  7. 根据权利要求6所述的方法,其中,
    所述第二符号为根据第二slot确定的符号;或者
    所述第二符号为根据第二slot和第三TA确定的符号;
    其中,所述第二slot为所述第二CC对应的时域资源上,位于第三符号之后的第一个slot,所述第三符号为所述第二CC对应的时域资源上,位于计时起点符号之后的第Y个符号,所述第三TA包括以下至少一项:所述第一TAG对应的TA、所述第二TAG对应的TA。
  8. 根据权利要求6所述的方法,其中,
    所述第二符号为根据第三符号确定的符号,或者
    所述第二符号为根据第三符号和第三TA确定的符号;
    其中,所述第三符号为所述第二CC对应的时域资源上,位于计时起点符号之后的第Y个符号,所述第三TA包括以下至少一项:所述第一TAG对应的TA、所述第二TAG对应的TA。
  9. 根据权利要求6至8中任一项所述的方法,其中,
    属于所述第一TAG的CC的BAT为所述第一slot,属于所述第二TAG的CC的 BAT为第二slot。
  10. 根据权利要求1所述的方法,其中,所述参考CC为所述ACK所在CC,所述ACK所在CC为所述目标CC组中的CC和所述ACK所在CC中SCS最小的CC;
    所述计时起点符号为所述第一符号。
  11. 根据权利要求10所述的方法,其中,所述目标CC为所述ACK所在CC;
    所述第一slot为所述ACK所在CC对应的时域资源上,位于所述计时起点符号之后的Y个符号后的第一个slot。
  12. 根据权利要求11所述的方法,其中,所述目标CC组中,属于同一个TAG组的CC的BAT为第三slot;
    其中,所述第三slot为第三CC对应的时域资源上,位于第四符号之后的第一个slot,所述第三CC为所述同一个TAG组中SCS最小的CC。
  13. 根据权利要求12所述的方法,其中,
    所述第四符号为根据所述第一slot确定的符号;或者
    所述第四符号为根据所述第一slot和第四TA确定的符号;
    其中,所述第四TA包括以下至少一项:所述第三CC所属的TAG对应的TA、所述ACK所在CC所属的TAG对应的TA。
  14. 根据权利要求10所述的方法,其中,所述目标CC为所述第一CC,所述第一CC为所述第一TAG中SCS最小的CC;
    所述第一slot为所述第一CC对应的时域资源上,位于第五符号之后的第一个slot。
  15. 根据权利要求14所述的方法,其中,
    所述第五符号为根据第六符号确定的符号;或者
    所述第五符号为根据第六符号和第一TA确定的符号;
    其中,所述第六符号为所述ACK所在CC对应的时域资源上,位于所述计时起点符号之后的第Y个符号,所述第一TA包括以下至少一项:所述第一TAG对应的TA、所述ACK所在CC所属的TAG对应的TA。
  16. 根据权利要求14或15所述的方法,其中,所述目标CC组中,属于所述第一TAG的CC的BAT为所述第一slot。
  17. 根据权利要求1所述的方法,其中,所述目标CC组中的CC和所述ACK所在CC属于至少两个TAG。
  18. 根据权利要求1所述的方法,其中,所述目标CC组中的CC属于至少两个TAG;
    所述至少两个TAG对应同一个传输配置指示TCI状态池,或者所述至少两个TAG对应不同的TCI状态池。
  19. 一种波束应用时间确定方法,其中,包括:
    通信设备根据第七符号,确定参考带宽部分BWP对应的计时起点符号,所述第七符号为波束指示信息的响应消息ACK占用的最后一个符号;
    所述通信设备根据所述计时起点符号,确定目标BWP对应的第四时隙slot,所述目标BWP为ACK所在BWP或目标BWP组中所属载波单元CC属于第三时间提前量组TAG的第一BWP;
    所述通信设备根据所述第四slot,确定所述目标BWP组中属于每个TAG的CC的BWP的波束应用时间BAT。
  20. 根据权利要求19所述的方法,其中,所述参考BWP为所述第一BWP,所述第一BWP为属于所述第三TAG的CC中子载波间隔SCS最小的BWP;
    所述计时起点符号为根据所述第七符号确定的符号;或者
    所述计时起点符号为根据所述第七符号和第五TA确定的符号;
    其中,所述第五TA包括以下至少一项:所述第三TAG对应的TA、所述ACK所在BWP所属CC所属的TAG对应的TA。
  21. 根据权利要求20所述的方法,其中,所述目标BWP为所述第一BWP;
    所述第四slot为所述第一BWP对应的时域资源上,位于所述计时起点符号之后的Y个符号后的第一个slot。
  22. 根据权利要求21所述的方法,其中,目标BWP组中,属于所述第三TAG的CC的BWP的BAT为所述第四slot。
  23. 根据权利要求19所述的方法,其特征在于,所述参考BWP为所述第二BWP,所述第二BWP为所述目标BWP组中SCS最小的BWP;
    所述计时起点符号为根据所述第七符号确定的符号;或者
    所述计时起点符号为根据所述第七符号和第六TA确定的符号;
    其中,所述第六TA包括以下至少一项:所述第四TAG对应的TA、所述ACK所在BWP所属CC所属的TAG对应的TA。
  24. 根据权利要求23所述的方法,其中,所述目标BWP为所述第一BWP,所述第一BWP为属于所述第三TAG的CC中SCS最小的BWP;
    所述第四slot为所述第一BWP对应的时域资源上,位于第八符号之后的第一个slot。
  25. 根据权利要求24所述的方法,其中,
    所述第八符号为根据第五slot确定的符号;或者
    所述第八符号为根据第五slot和第七TA确定的符号;
    其中,所述第五slot为所述第二BWP对应的时域资源上,位于第九符号之后的第一个slot,所述第九符号为所述第二BWP对应的时域资源上,位于计时起点符号之后的第Y个符号,所述第七TA包括以下至少一项:所述第三TAG对应的TA、所述第四TAG对应的TA。
  26. 根据权利要求24所述的方法,其中,
    所述第八符号为根据第九符号确定的符号,或者
    所述第八符号为根据第九符号和第七TA确定的符号;
    其中,所述第九符号为所述第二BWP对应的时域资源上,位于计时起点符号之后的第Y个符号,所述第七TA包括以下至少一项:所述第三TAG对应的TA、所述第四TAG对应的TA。
  27. 根据权利要求24至26中任一项所述的方法,其中,
    属于所述第三TAG的CC的BWP的BAT为所述第四slot,属于所述第四TAG的CC的BWP的BAT为第五slot。
  28. 根据权利要求19所述的方法,其特征在于,所述参考BWP为所述ACK所在BWP,所述ACK所在BWP为所述目标BWP组中的BWP和所述ACK所在BWP中SCS最小的BWP;
    所述计时起点符号为所述第七符号。
  29. 根据权利要求28所述的方法,其中,所述目标BWP为所述ACK所在BWP;
    所述第四slot为所述ACK所在BWP对应的时域资源上,位于所述计时起点符号之后的Y个符号后的第一个slot。
  30. 根据权利要求29所述的方法,其中,所述目标BWP组中,属于同一个TAG组的CC的BWP的BAT为第六slot;
    其中,所述第六slot为第三BWP对应的时域资源上,位于第十符号之后的第一个 slot,所述第三BWP为属于所述同一个TAG组的CC中SCS最小的BWP。
  31. 根据权利要求30所述的方法,其中,
    所述第十符号为根据所述第四slot确定的符号;或者
    所述第十符号为根据所述第四slot和第八TA确定的符号;
    其中,所述第八TA包括以下至少一项:所述第三BWP所属CC所属的TAG对应的TA、所述ACK所在BWP所属CC所属的TAG对应的TA。
  32. 根据权利要求28所述的方法,其中,所述目标BWP为所述第一BWP,所述第一BWP为所述第三TAG中的CC包括的BWP中SCS最小的BWP;
    所述第四slot为所述第一BWP对应的时域资源上,位于第十一符号之后的第一个slot。
  33. 根据权利要求32所述的方法,其中,
    所述第十一符号为根据第十二符号确定的符号;或者
    所述第十一符号为根据第十二符号和第五TA确定的符号;
    其中,所述第十二符号为所述ACK所在BWP对应的时域资源上,位于所述计时起点符号之后的第Y个符号,所述第五TA包括以下至少一项:所述第一TAG对应的TA、所述ACK所在BWP所属CC所属的TAG对应的TA。
  34. 根据权利要求32或33所述的方法,其中,所述目标BWP组中,属于所述第三TAG的CC的BWP的BAT为所述第四slot。
  35. 根据权利要求19所述的方法,其特征在于,所述目标BWP组中的BWP所属CC和所述ACK所在BWP所属CC属于至少两个TAG。
  36. 根据权利要求19所述的方法,其特征在于,所述目标BWP组中的BWP所属CC属于至少两个TAG;
    所述至少两个TAG对应同一个传输配置指示TCI状态池,或者所述至少两个TAG对应不同的TCI状态池。
  37. 一种波束应用时间确定装置,包括:
    确定模块,用于根据第一符号,确定参考载波单元CC对应的计时起点符号,所述第一符号为波束指示信息的响应消息ACK占用的最后一个符号;并根据所述计时起点符号,确定目标CC对应的第一时隙slot,所述目标CC为ACK所在CC或目标CC组中属于第一时间提前量组TAG的第一CC;以及根据所述第一slot,确定所述目标CC组中属于每个TAG的CC的波束应用时间BAT。
  38. 一种波束应用时间确定装置,包括:
    确定模块,用于根据第七符号,确定参考带宽部分BWP对应的计时起点符号,所述第七符号为波束指示信息的响应消息ACK占用的最后一个符号;并根据所述计时起点符号,确定目标BWP对应的第四时隙slot,所述目标BWP为ACK所在BWP或目标BWP组中所属载波单元CC属于第三时间提前量组TAG的第一BWP;以及根据所述第四slot,确定所述目标BWP组中属于每个TAG的CC的BWP的波束应用时间BAT。
  39. 一种通信设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至36中任一项所述的波束应用时间确定方法的步骤。
  40. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1-36中任一项所述的波束应用时间确定方法的步骤。
  41. 一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1-36任一项所述的波束应用时 间确定方法。
  42. 一种计算机程序产品,所述程序产品被至少一个处理器执行以实现如权利要求1-36任一项所述的波束应用时间确定方法。
  43. 一种波束应用时间确定装置,包括所述装置被配置成用于执行如权利要求1-36任一项所述的波束应用时间确定方法。
PCT/CN2022/127417 2021-10-27 2022-10-25 波束应用时间确定方法、装置及通信设备 WO2023072087A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111258237.6 2021-10-27
CN202111258237.6A CN116032442A (zh) 2021-10-27 2021-10-27 波束应用时间确定方法、装置及通信设备

Publications (1)

Publication Number Publication Date
WO2023072087A1 true WO2023072087A1 (zh) 2023-05-04

Family

ID=86069451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/127417 WO2023072087A1 (zh) 2021-10-27 2022-10-25 波束应用时间确定方法、装置及通信设备

Country Status (2)

Country Link
CN (1) CN116032442A (zh)
WO (1) WO2023072087A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111357336A (zh) * 2017-11-17 2020-06-30 高通股份有限公司 特定于波束的定时提前组
CN111684843A (zh) * 2017-11-17 2020-09-18 华为技术有限公司 一种波束配置方法和装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111357336A (zh) * 2017-11-17 2020-06-30 高通股份有限公司 特定于波束的定时提前组
CN111684843A (zh) * 2017-11-17 2020-09-18 华为技术有限公司 一种波束配置方法和装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "Enhancements to Multi-Beam Operation", 3GPP TSG RAN WG1 #106-E, R1-2107570, 7 August 2021 (2021-08-07), XP052038479 *
MODERATOR (SAMSUNG): "Moderator summary for multi-beam enhancement", 3GPP TSG RAN WG1 #104B-E, R1-2103220, 12 April 2021 (2021-04-12), XP051995137 *

Also Published As

Publication number Publication date
CN116032442A (zh) 2023-04-28

Similar Documents

Publication Publication Date Title
US20240022460A1 (en) Guard period determination method and apparatus, terminal and storage medium
WO2023011588A1 (zh) Pdcch监测方法、相关设备及可读存储介质
WO2023284801A1 (zh) Tci状态确定方法、装置、终端及网络侧设备
WO2023072087A1 (zh) 波束应用时间确定方法、装置及通信设备
WO2023284796A1 (zh) Tci状态的指示方法、装置、终端和网络侧设备
WO2023051609A1 (zh) 下行控制信道监测方法、装置及通信设备
WO2023078330A1 (zh) 信息确定方法、装置、终端及可读存储介质
WO2023116905A1 (zh) 定位参考信号的处理方法、设备及可读存储介质
WO2023066341A1 (zh) 信息配置方法、装置、网络侧设备及终端
WO2023051552A1 (zh) 定位参考信号prs的处理方法、装置、设备及介质
WO2024012558A1 (zh) Srs与上行资源的冲突处理方法、终端及网络侧设备
WO2023131240A1 (zh) Gap冲突的处理方法、装置、终端及网络侧设备
WO2022242677A1 (zh) 波束应用时间的确定方法、装置及通信设备
WO2022152273A1 (zh) Srs传输方法、装置、设备及存储介质
WO2023036151A1 (zh) 时隙配置方法、终端及网络侧设备
WO2023066340A1 (zh) 信息上报方法、接收方法、终端、网络侧设备和存储介质
US20230396398A1 (en) Method and device for indicating scs of initial downlink bwp
WO2022242557A1 (zh) 控制信道监测方法和设备
WO2023202603A1 (zh) 条件切换的配置方法、终端及网络侧设备
WO2023011532A1 (zh) 波束应用时间的确定方法、终端及网络侧设备
WO2022257934A1 (zh) Pdcch监听方法、终端及网络侧设备
WO2023151650A1 (zh) 信息激活方法、终端及网络侧设备
WO2023207976A1 (zh) 物理随机接入信道传输资源确定方法、装置、终端和设备
WO2023284800A1 (zh) Srs的传输方法、装置、终端及网络侧设备
WO2023186156A1 (zh) Dmrs端口信息的指示方法、终端及网络侧设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22885964

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE