WO2023061185A1 - 一种耐低温高强度滚珠丝杠用球化退火钢及其制造方法 - Google Patents

一种耐低温高强度滚珠丝杠用球化退火钢及其制造方法 Download PDF

Info

Publication number
WO2023061185A1
WO2023061185A1 PCT/CN2022/120821 CN2022120821W WO2023061185A1 WO 2023061185 A1 WO2023061185 A1 WO 2023061185A1 CN 2022120821 W CN2022120821 W CN 2022120821W WO 2023061185 A1 WO2023061185 A1 WO 2023061185A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel
temperature
rolling
spheroidizing
ball screw
Prior art date
Application number
PCT/CN2022/120821
Other languages
English (en)
French (fr)
Inventor
翟蛟龙
白云
樊启航
吴小林
刘谦
邵淑艳
李芸
张魁
陈泽雷
李茜
高磊
孟羽
廖书全
芦莎
Original Assignee
江阴兴澄特种钢铁有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江阴兴澄特种钢铁有限公司 filed Critical 江阴兴澄特种钢铁有限公司
Priority to DE112022000269.7T priority Critical patent/DE112022000269T5/de
Publication of WO2023061185A1 publication Critical patent/WO2023061185A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/46Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting
    • B21B1/463Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling metal immediately subsequent to continuous casting in a continuous process, i.e. the cast not being cut before rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/10Handling in a vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/32Soft annealing, e.g. spheroidising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/60Aqueous agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/84Controlled slow cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0075Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rods of limited length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • C22C33/06Making ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/003Cementite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the invention relates to the technical field of bar alloy steel, in particular to steel used in processing low-temperature-resistant high-strength ball screws and a manufacturing method thereof.
  • the ball screw In mechanical equipment, the ball screw is an indispensable transmission part for power and displacement transmission. According to the difference in the service environment, the ball screw used in some extreme environments must not only have the high precision and high wear resistance of the traditional screw , It also needs to meet the service requirements of maintaining high strength and toughness in harsh environments such as strong winds, huge waves, and severe cold in the polar regions of the earth.
  • the traditional ball screw uses high-carbon chromium bearing steel, such as GCr15 grade, etc. After quenching and tempering, this kind of material can only meet the service requirements of the rigidity of contact with the steel ball, and the toughness in low temperature environment cannot meet the requirements of extreme environment. Service requirements, and because the heat treatment deformation of high-carbon bearing steel is difficult to control, the axial expansion and contraction properties of this type of material are the main factors that lead to the substandard grinding accuracy of the final ball screw. In addition, due to the high carbon content of this type of steel, the grinding performance after quenching is poor, and the incidence of processing quality problems such as grinding cracks is high.
  • the invention proposes a new low-temperature-resistant high-strength ball screw steel and its production method, so that the processed ball screw product has ultra-high hardness, strength and wear resistance on the surface under extreme low temperature conditions, and also has Ultra-high low temperature toughness, and good dimensional stability during processing and use, to ensure the operational precision of the final screw during service.
  • JIS G 0561 method is used to test the end hardenability, J9mm hardness ⁇ 58HRC (hardness ⁇ 58HRC at a depth of 9mm from the surface).
  • the chemical composition of the spheroidizing annealed steel for the low-temperature-resistant high-strength ball screw of the present invention is C: 0.40-0.70%, Si: 1.20-1.80%, Mn: 1.00-1.60%, Cr: 0.80-1.20%.
  • C is an element necessary to ensure wear resistance. Carbon in steel improves hardness and strength by increasing martensitic transformation ability, thereby improving wear resistance. But the C content exceeding 0.77% will significantly increase the crack susceptibility and reduce the low temperature toughness.
  • the present invention controls its content to be 0.40-0.70%.
  • Si is a deoxidizer in the steelmaking process, and improves the hardness, strength, elastic limit and yield ratio of steel in the form of solid solution strengthening. It reduces the diffusion rate of C in ferrite so that the carbides precipitated during tempering are not easy to gather and improve the temper softening resistance of steel. In addition, Si reduces the oxidation during frictional heating and increases the cold deformation hardening rate of steel to improve the wear resistance of the material. But too high Si content will reduce the low temperature toughness. The present invention controls the Si content to be 1.20-1.80%.
  • Mn is an effective element for strengthening steel, and plays a role of solid solution strengthening to compensate for the loss of strength caused by the reduction of C content in steel. Moreover, Mn can improve the hardenability of steel and improve the hot workability of steel. Mn can eliminate the influence of S (sulfur): Mn can form MnS with a high melting point with S in iron and steel smelting, thereby weakening and eliminating the adverse effects of S. A high Mn content of 1.60% will significantly reduce the toughness of the steel. The content of Mn in the present invention is controlled at 1.00-1.60%.
  • Cr is a carbide forming element that can improve the hardenability, wear resistance and corrosion resistance of steel.
  • Part of Cr in steel replaces iron to form alloy cementite, which improves the tempering stability of steel; part of it dissolves into ferrite to produce solid solution strengthening, increasing the strength and hardness of ferrite.
  • the Cr content is too high, it will combine with carbon in the steel to easily form large carbides, which will reduce the contact fatigue life of the steel. Based on the above analysis, the range of Cr content in the present invention is determined to be 0.80-1.20%.
  • Al is a deoxidizer in the smelting process.
  • Al and N form dispersed fine aluminum nitride inclusions to refine the grains.
  • the range of Al content in the present invention is determined to be ⁇ 0.05%.
  • Ni exists in the form of solid solution in the steel.
  • Ni can reduce the stacking fault energy and significantly improve the low-temperature impact performance of the steel, but too high Ni will lead to an excessively high content of retained austenite in the steel , reduce strength and increase cost.
  • the range of Ni content in the present invention is determined to be 0.10-0.60%.
  • Cu element can form fine precipitates during tempering to improve the strength of steel, and Cu is also beneficial to improve the corrosion resistance of steel in extreme environments. However, excessive Cu tends to weaken the grain boundaries and lead to cracking.
  • the range of Cu content in the present invention is determined to be 0.30-0.80%.
  • Mo can refine the grains of steel, improve hardenability and thermal strength, and maintain sufficient strength and creep resistance at high temperatures. At the same time, it can suppress the brittleness of alloy steel caused by tempering. However, molybdenum alloys are precious alloys. In order to control costs and achieve expected effects, the present invention determines the range of Mo content to be 0.10-0.40%.
  • the Ca content will increase the number and size of point oxides in the steel. At the same time, due to the high hardness and poor plasticity of the point oxides, they will not deform when the steel is deformed, and it is easy to form voids at the interface, which will deteriorate the performance of the steel. At the same time combined with smelting cost control.
  • the range of Ca content in the present invention is determined to be ⁇ 0.001%.
  • Ti is harmful to steel is to remain in the steel in the form of titanium nitride and titanium carbonitride inclusions.
  • This kind of inclusion is hard and angular, which seriously affects the fatigue life of the material, especially when the purity is significantly improved and the number of other oxide inclusions is small, the hazard of titanium-containing inclusions is particularly prominent.
  • the range of Ti content in the present invention is determined to be ⁇ 0.003%.
  • Oxygen content represents the total amount of oxide inclusions, and the limitation of oxide brittle inclusions affects the service life of finished products. A large number of tests have shown that the reduction of oxygen content is significantly beneficial to improving the purity of steel, especially reducing the content of oxide brittle inclusions in steel grades. At the same time combined with smelting cost control.
  • the range of oxygen content in the present invention is determined to be ⁇ 0.0010%.
  • P in steel can seriously cause segregation during solidification, and P dissolves in ferrite to distort and coarse grains and increase cold brittleness.
  • the range of P content in the present invention is determined to be ⁇ 0.025%.
  • S causes hot brittleness of steel, reduces the ductility and toughness of steel, and combines smelting cost control at the same time.
  • the range of S content in the present invention is determined to be ⁇ 0.025%.
  • Sn, Sb, Pb and other trace elements are low-melting non-ferrous metals, which exist in steel, causing soft spots on the surface of parts and uneven hardness. Therefore, they are regarded as harmful elements in steel, and combined with smelting cost control .
  • the content ranges of these elements in the present invention are determined to be As ⁇ 0.04%, Sn ⁇ 0.03%, Sb ⁇ 0.005%, and Pb ⁇ 0.002%.
  • the manufacturing process of the above-mentioned steel for ball screw is electric furnace or converter—external refining—vacuum degassing—continuous casting—continuous rolling—shearing or sawing—stack cooling—spheroidizing annealing—finishing—putting into storage.
  • the main production process features are as follows:
  • the continuous casting process is combined with electromagnetic stirring and light reduction, and low superheat pouring is used to effectively improve and reduce the composition segregation of the continuous casting slab.
  • advanced equipment such as electromagnetic stirring and light reduction at the solidification end
  • the casting The density of the solidification structure of the slab has been improved, the porosity and shrinkage cavity in the center of the slab have been effectively controlled, the spacing of the secondary dendrite arms has been significantly improved, the central equiaxed crystal ratio has been significantly increased, and the grains have been refined, thus significantly The quality of the slab is improved and the composition segregation is reduced.
  • the smelted raw materials are first smelted, refined, and vacuum degassed to obtain molten steel with the target composition, and then the molten steel is cast into a continuous casting billet with specifications of 390mm ⁇ 510mm and above by continuous casting process;
  • the slab is cooled slowly in the pit to prevent cracking.
  • the slow cooling time is not less than 48 hours, and then the continuous casting slab is sent to a heating furnace with a neutral or weak oxidizing atmosphere for heating.
  • the heating temperature is 1000-1250 ° C, and the heating time is more than 5 hours.
  • the rolling temperature range is 1000°C-1200°C
  • the final rolling temperature is ⁇ 800°C
  • the rolling compression ratio is greater than 5
  • the intermediate billet is slowly cooled in the lower pit, and the lower pit
  • the temperature is ⁇ 500°C
  • the slow cooling time is not less than 48 hours.
  • the temperature of the preheating section is 650-900°C
  • the temperature of the heating section is 1000-1250°C
  • the temperature of the soaking section is 1000 -1250°C, in order to ensure that the billet is fully and evenly heated, the total heating time should be more than 2 hours.
  • the starting rolling temperature of rolling is 1000°C-1200°C
  • the final rolling temperature is ⁇ 800°C
  • the stack cooling is completed after rolling.
  • the matrix is ferrite and secondary cementite, and the microstructure has cementite particles that can be used for subsequent nucleation.
  • the two structures of ferrite and secondary cementite achieve dynamic equilibrium and coexist.
  • the two-stage isothermal spheroidization method is to control the size and spheroidization rate of the balls, so that the diameter of the spheroidized cementite is controlled at (0.1 ⁇ m-0.5 ⁇ m), preferably (0.3 ⁇ m-0.5 ⁇ m).
  • the isothermal spheroidization temperature is too high, the size of the ball is too large, the isothermal spheroidization temperature is too low, and the spheroidization rate is too low, which will affect the dimensional stability of the ball screw in the subsequent heat treatment process.
  • the final product is obtained through straightening and flaw detection.
  • the present invention has the advantages of:
  • the spherical cementite of the traditional GCr15 bearing steel is relatively thick, with a diameter of 1 to 3 ⁇ m.
  • the spherical cementite of the product of the present invention is smaller in size, with a diameter of (0.1 ⁇ m to 0.5 ⁇ m) and a spheroidization rate of 95 % above, and the rest is ferrite.
  • the structure distortion is small, the heat treatment deformation is small in the process of processing the screw product, and the dimensional accuracy is high, which can meet the accuracy requirements of the ball screw.
  • Fig. 1 is the tissue diagram of the spheroidizing annealing of embodiment 1 of the present invention
  • Fig. 2 is the tissue diagram of the spheroidizing annealing of embodiment 2 of the present invention.
  • Fig. 3 is a structure diagram of spheroidizing annealing in Example 3 of the present invention.
  • Fig. 4 is a diagram of the spheroidizing annealing process in the embodiment of the present invention.
  • Embodiments 1-3 give examples of the chemical composition and manufacturing method of the steel for the ball screw of the present invention respectively, and compare it with the GCr15 bearing steel commonly used in the market.
  • Example J9mm (HRC) this invention 1 59.48 this invention 2 59.65 this invention 3 59.91 GCr15 4 43.33
  • the cementite in the delivery state of the steel of the present invention is uniform and finer (generally 0.1-0.5 ⁇ m) spherical cementite
  • the spheroidized state exists, the spheroidization rate is over 95%, and the rest of the structure is ferrite.
  • the structure distortion is small, the heat treatment deformation is small in the process of processing the screw product, and the dimensional accuracy is high, which can meet the accuracy requirements of the ball screw.
  • the manufacturing process of the steel for ball screw in each embodiment is electric furnace or converter—external furnace refining—VD or RH vacuum degassing—continuous casting—continuous casting slab squared into intermediate slab—intermediate slab heated and rolled into lumber—spheroidizing annealing —Finishing—Packing into storage.
  • the tapping endpoint C of the three examples is controlled at 0.05-0.25%, the endpoint P is required to be ⁇ 0.025%, and the continuous casting superheat is controlled within 15-35°C.
  • the continuous casting slabs of each embodiment are subjected to the billet rolling process as shown in Table 7 below.
  • the intermediate billet is sent to the heating furnace and rolled into the target round bar.
  • the specific rolling process is: set the temperature of the preheating section to be controlled at 650-900°C, the temperature of the heating section to be controlled at 1000-1250°C, and the temperature of the soaking section to be controlled at 1100-1200°C, in order to ensure that the billet is fully and evenly heated, the total heating time is 2 hours or more.
  • the rolling start temperature is controlled at 900°C-1100°C
  • the final rolling temperature is controlled at above 800°C.
  • the rolled finished bar is subjected to spheroidizing annealing treatment, and the process is shown in the above-mentioned three-stage spheroidizing process diagram. After spheroidizing and annealing, the bar products are subjected to flaw detection and finally put into storage.
  • the low-temperature-resistant high-strength ball screw steel in the above embodiments of the present invention has less harmful elements such as oxygen, titanium, and non-metallic elements.
  • the level of inclusion control is clearly better.
  • the yield strength, tensile strength, low temperature impact and temper softening resistance of the present invention are significantly better than the traditional GCr15 bearing steel, and the yield strength is increased by nearly 400 MPa or more , the tensile strength is increased by 300MPa, the low temperature impact performance is increased by nearly 30J, and the hardness is increased by nearly 10HRC. Hardenability is also significantly better than traditional GCr15 bearing steel.

Abstract

本发明涉及一种耐低温高强度滚珠丝杠用球化退火钢,所述钢材的化学成分按质量百分比计为C:0.40~0.70%,Si:1.20~1.80%,Mn:1.00~1.60%,Cr:0.80~1.20%,S:≤0.025%,P≤0.025%,Ni:0.10~0.60%,Cu:0.30~0.80%,Mo:0.10~0.40%,Al≤0.05%,Ca≤0.0010%,Ti≤0.003%,O≤0.0010%,As≤0.04%,Sn≤0.03%,Sb≤0.005%,Pb≤0.002%,余量为Fe及不可避免的杂质。钢材的微观结构中渗碳体以直径为0.1~0.5μm优选0.3~0.5μm的球化状态存在,球化率达95%以上,其余组织为铁素体。

Description

一种耐低温高强度滚珠丝杠用球化退火钢及其制造方法 技术领域
本发明涉及棒材合金钢技术领域,尤其涉及应用于加工耐低温高强度滚珠丝杠的钢及其制造方法。
背景技术
在机械设备中,滚珠丝杠是不可或缺的动力和位移传递的传动零件,根据服役环境的差异,一些极端环境下服役的滚珠丝杠不仅要具备传统丝杠的高精度、高耐磨性,还需要满足在如地球两极地区狂风巨浪、严寒等恶劣环境下保持高强韧性的服役要求。
传统滚珠丝杠使用的是高碳铬轴承钢,如GCr15牌号等,此类材料经淬火+回火后只能满足与钢球接触刚度的服役要求,在低温环境下的韧性无法满足极端环境的服役要求,且由于高碳轴承钢的热处理变形很难控制,这类材料的轴向伸缩性能是导致最终滚珠丝杠研磨精度不达标的主要因素。另外,由于这类钢碳含量较高,淬火后的研磨加工性能较差,磨削裂纹等加工质量问题发生率很高。
发明内容
本发明提出一种新的耐低温高强度滚珠丝杠用钢及其生产方法,使加工的滚珠丝杠产品在极端的低温条件下表面具有超高硬度、强度和耐磨性的同时,还具有超高的低温韧性,且加工和使用过程尺寸稳定性好,保证最终丝杠服役过程的作业精密度。
为了实现上述目的,本申请滚珠丝杆用钢的力学性能达到如下水平或要求:
钢材中非金属夹杂物要求见下表1:
表1
Figure PCTCN2022120821-appb-000001
钢材在调质处理(例如880℃油淬+450℃水冷)后机械性能见表2:
表2
Figure PCTCN2022120821-appb-000002
钢材硬度:采用JIS G 0561法检验末端淬透性,J9mm硬度≥58HRC(距离表面9mm深部的硬度≥58HRC)。
本发明实现上述性能的具体技术方案:
本发明耐低温高强度滚珠丝杠用球化退火钢的化学成分按质量百分比计为C:0.40~0.70%,Si:1.20~1.80%,Mn:1.00~1.60%,Cr:0.80~1.20%,S:≤0.025%,P≤0.025%,Ni:0.10~0.60%,Cu:0.30~0.80%,Mo:0.10~0.40%,Al≤0.05%,Ca≤0.0010%,Ti≤0.003%,O≤0.0010%,As≤0.04%,Sn≤0.03%,Sb≤0.005%,Pb≤0.002%,余量为Fe及不可避免的杂质。
上述化学成分的设计依据如下:
1)C含量的确定
C是保证耐磨性所必要的元素,钢中的碳通过增加马氏体转变能力提高硬度和强度,进而提高耐磨性。但超过0.77%的C含量会显著增加裂纹敏感性和降低低温韧性。本发明控制其含量为0.40~0.70%。
2)Si含量的确定
Si是炼钢过程中的脱氧剂,并以固溶强化形式提高钢的硬度、强度、弹性极限和屈强比。它降低C在铁素体中的扩散速度使回火时析出的碳化物不易聚集,提高钢材的抗回火软化能力。另外,Si减少摩擦发热时的氧化作用和提高钢的冷变形硬化率从而提高材料的耐磨性。但是过高的Si含量会降低低温韧性。本发明控制Si含量为1.20~1.80%。
3)Mn含量的确定
Mn作为炼钢过程的脱氧元素,是对钢的强化有效的元素,起固溶强化作用以弥补钢中因C含量降低而引起的强度损失。而且Mn能提高钢的淬透性,改善钢的热加工性能。Mn能消除S(硫)的影响:Mn在钢铁冶炼中可与S形成高熔点的MnS,进而消弱和消除S的不良影响。Mn含量高与1.60%,会显著降低钢的韧性。本发明的Mn含量控制在1.00~1.60%。
4)Cr含量的确定
Cr是碳化物形成元素,能够提高钢的淬透性、耐磨性和耐腐蚀性能。钢中的Cr,一部分置换铁形成合金渗碳体,提高钢材的回火稳定性;一部分溶入铁素体中,产生固溶强化,提高铁素体的强度和硬度。但Cr含量过高,与钢中的碳结合,容易形成大块碳化物,这种大块的碳化物会降低钢材的接触疲劳寿命。综上分析,本发明Cr含量的范围确定为0.80-1.20%。
5)Al含量的确定
Al是冶炼过程中的脱氧剂,除为了降低钢水中的溶解氧之外,Al与N形成弥散细小的氮化铝夹杂可以细化晶粒。但Al含量超过0.05%时,钢水的流动性大幅下降,增加浇铸难度。本发明Al含量的范围确定为≤0.05%。
6)Ni含量的确定
Ni在钢中以固溶形式存在,在本发明的成分体系中,Ni可以降低层错能,显著的提高钢的低温冲击性能,但是过高的Ni会导致钢中残余奥氏体含量过高,降低强度,且增加成本。本发明Ni含量的范围确定为0.10~0.60%。
7)Cu含量的确定
Cu元素可以在回火时形成细微的析出物,提高钢的强度,同时Cu还有利于提高钢材在极端环境下的耐腐蚀能力。但是由于过高的Cu易导致晶界弱化以致开裂。本发明Cu含量的范围确定为0.30~0.80%。
8)Mo含量的确定
Mo能使钢的晶粒细化,提高淬透性和热强性能,在高温时保持足够的强度和抗蠕变能力。同时可以抑制合金钢由于回火而引起的脆性。但钼合金属于贵重合金,为控制成本并达到预期效果,本发明将Mo含量的范围确定为0.10~0.40%。
9)Ca含量的确定
Ca含量会增加钢中点状氧化物的数量和尺寸,同时由于点状氧化物硬度高,塑性差,在钢变形时其不变形,容易在交界面处形成空隙,使钢的性能变差。同时结合冶炼成本控制。本发明Ca含量的范围确定为≤0.001%。
10)Ti含量的确定
Ti对钢材危害方式是以氮化钛,碳氮化钛夹杂物的形式残留于钢中。这种夹杂物坚硬、呈棱角状,严重影响材料的疲劳寿命,特别是在纯洁度显著提高,其他氧化物夹杂数量很少的情况下,含钛夹杂物的危害尤为突出。同时结合冶炼成本控制。本发明Ti 含量的范围确定为≤0.003%。
11)O含量的确定
氧含量代表了氧化物夹杂总量的多少,氧化物脆性夹杂限制影响成品的使用寿命,大量试验表明,氧含量的降低对提高钢材纯净度特别是降低钢种氧化物脆性夹杂物含量显著有利。同时结合冶炼成本控制。本发明氧含量的范围确定为≤0.0010%。
12)P、S含量的确定
P在钢中会严重引起凝固时的偏析,P溶于铁素体使晶粒扭曲、粗大,且增加冷脆性。同时结合冶炼成本控制。本发明P含量的范围确定为≤0.025%。S使钢产生热脆性,降低钢的延展性和韧性,同时结合冶炼成本控制。本发明S含量的范围确定为≤0.025%。
13)As、Sn、Sb、Pb含量的确定
As、Sn、Sb、Pb等微量元素,均属低熔点有色金属,在钢材中存在,引起零件表面出现软点,硬度不均,因此将它们视为钢中的有害元素,同时结合冶炼成本控制。本发明这些元素含量的范围确定为As≤0.04%,Sn≤0.03%,Sb≤0.005%,Pb≤0.002%。
上述滚珠丝杠用钢的制造流程为电炉或转炉—炉外精炼—真空脱气—连铸—连轧—剪切或锯切—堆冷—球化退火—精整—打件入库。
主要生产工艺特点如下:
1、采用优质铁水、废钢及原辅料,以降低钢水中有害元素含量。加强精炼过程的脱氧,保证钢中残铝量,利用钢水中的良好的动力学条件,进行集中提前脱氧和真空脱气处理,使非金属夹杂物充分上浮,控制钢水中气体元素含量。在真空脱气后进行持续的软吹氩,让钢水中的夹杂物进一步上浮。连铸过程要进行保护防止钢水氧化。
2、连铸过程配合电磁搅拌及轻压下,并采用低过热度浇注,有效改善和降低连铸坯的成分偏析,尤其地,在增加凝固末端电磁搅拌及轻压下等先进设备后,铸坯凝固组织的致密度得到了提高,铸坯中心疏松和缩孔得到了有效控制,而二次枝晶臂间距得到明显改善,中心等轴晶率明显提高,晶粒得到细化,从而显著地改善了铸坯的质量,降低成分偏析。
3、本发明的产品将冶炼原料依次经初炼、精炼、真空脱气得到目标成分的钢水,然后采用连铸工艺,将钢水浇铸成规格为390mm×510mm及以上的连铸方坯;连铸坯下坑缓冷,防止开裂,缓冷时间不小于48小时,随后将连铸坯送至中性或弱氧化性气氛的加热炉内加热,加热温度为1000-1250℃,加热时间大于5小时;然后轧制成200mm× 200mm~300mm×300mm的中间坯,轧制温度区间为1000℃-1200℃,終轧温度≥800℃,轧制压缩比大于5,中间坯下坑缓冷,下坑温度≥500℃,缓冷时间不小于48小时。
再将中间坯重新加热并进一步完成轧制,将中间坯轧成目标规格,具体的加热工艺:预热段温度为650-900℃,加热段温度为1000-1250℃,均热段温度为1000-1250℃,为保证坯料充分均匀受热,总加热时间应为2小时以上。轧制的开轧温度为1000℃-1200℃,终轧温度为≥800℃,轧制完成后堆冷。
为保证钢材的在制作滚珠丝杠时的尺寸精度稳定性,需对上述钢材进行球化退火处理,使用如下球化退火工艺:
(1)在805±10℃的温度下保温7小时,使微观组织保持在铁素体和奥氏体的两相区,此时部分渗碳体溶于奥氏体形成二次渗碳体,基体为铁素体和二次渗碳体,该微观组织具有可用于后续形核的渗碳体质点,铁素体和二次渗碳体两种组织达到动态平衡、共存。
(2)水雾冷却,不同于轴承钢GCr15这类过共析钢,本发明的产品属于亚共析钢,需要采用水雾冷却来增加球化过冷驱动力。
(3)再进行两个阶段的等温球化过程:第一阶段是在745±10℃的温度区间保温5小时,第二阶段是在690±10℃的温度区间保温4.5小时,让步骤(1)所述的二次渗碳体充分以球状形态析出。两个阶段等温球化方式是为了控制球的大小和球化率,使球化后的渗碳体的直径控制在(0.1μm~0.5μm),优选(0.3μm-0.5μm)。
等温球化温度过高,球的规格过大,等温球化温度过低,球化率太低,而影响滚珠丝杠后续热处理加工过程的尺寸稳定性。
球化退火后的产品经矫直、探伤获得最终产品。
与现有技术相比,本发明的优点在于:
1)不同于传统GCr15轴承钢,化学成分进行了优化,从而显著提高钢材的淬透性、屈服强度和抗回火软化能力,且裂纹倾向小。
2)传统GCr15轴承钢的球状渗碳体比较粗大,直径为1~3μm,相比较,本发明产品的球状渗碳体规格更小,直径为(0.1μm~0.5μm),球化率达95%以上,其余组织为铁素体。组织畸变能小,加工丝杠产品过程中热处理变形小,尺寸精度高,能够满足滚珠丝杠的精度使用要求。
3)传统GCr15轴承钢的低温脆性非常大,-40℃下夏比冲击功AKU 2<10J),相比较,本发明产品不仅具有更高的屈服强度(≥1380MPa)和抗拉强度(≥1500MPa),而且具 有更优的低温韧性:-40℃下夏比冲击功AKU 2≥27J。
附图说明
图1为本发明实施例1的球化退火的组织图;
图2为本发明实施例2的球化退火的组织图;
图3为本发明实施例3的球化退火的组织图。
图4为本发明实施例中球化退火工艺图。
具体实施方式
以下结合实施例对本发明作进一步详细描述。
实施例1-3对本发明滚珠丝杠用钢的化学成分和制造方法分别举例,并于市场上通用的GCr15轴承钢对比。
各实施例的化学成分(wt%)参见表2、3
表2
Figure PCTCN2022120821-appb-000003
表3
Figure PCTCN2022120821-appb-000004
各实施例钢材的夹杂物见表4
表4
Figure PCTCN2022120821-appb-000005
各实施例的机械性能(880℃油淬+450℃水冷)对比见表5
表5
Figure PCTCN2022120821-appb-000006
各实施例钢材的末端淬透性数据见表6
表6
  实施例 J9mm(HRC)
本发明 1 59.48
本发明 2 59.65
本发明 3 59.91
GCr15 4 43.33
各实施例钢材的微观组织参见图1-3,不同于传统GCr15轴承钢粗大的球状渗碳体,本发明钢材交货状态渗碳体以均匀的更为细小的(一般0.1~0.5μm)球化状态存在,球化率达95%以上,其余组织为铁素体。组织畸变能小,加工丝杠产品过程中热处理变形小,尺寸精度高,能够满足滚珠丝杠的精度使用要求。
各实施例的滚珠丝杠用钢的制造流程为电炉或转炉—炉外精炼—VD或RH真空脱气—连铸—连铸坯开方成中间坯—中间坯加热轧制成材—球化退火—精整—打件入库。
具体的冶炼时,选用优质铁水、废钢及原辅料,选用优质脱氧剂及耐火材料。在电炉/转炉生产过程中,三个实施例的出钢终点C分别控制在0.05-0.25%,终点P要求≤0.025%,连铸过热度控制在15-35℃之内。
各实施例的连铸坯进行开坯轧制工艺如下表7所示。
表7
Figure PCTCN2022120821-appb-000007
将中间坯送至加热炉内轧制成目标圆棒,具体的轧制工艺为:设置预热段温度控制在650-900℃,加热段温度控制在1000-1250℃,均热段温度控制在1100-1200℃,为保证坯料充分均匀受热,总加热时间在2小时及以上。轧制开轧温度控制在900℃-1100℃,終轧温度控制在800℃以上,轧制完成后应缓慢冷却,使钢中AlN质点细小、均匀、充分 析出,从而细化晶粒并防止钢材出现混晶的情况,轧制完成后堆冷。将轧制的成品棒材进行球化退火处理,工艺见上述三段式球化工艺图。将球化退火后的棒材产品再经过探伤处理,最终打件入库。
由表2、3、4、5、6可知,本发明以上各实施例中的一种耐低温高强度滚珠丝杠用钢与传统的GCr15轴承钢相比,有害元素如氧、钛以及非金属夹杂物控制水平明显要好。特别是在机械性能方面,经同样的调质工艺处理后,本发明的屈服强度、抗拉强度、低温冲击和抗回火软化能力要明显优于传统的GCr15轴承钢,屈服强度提高将近400MPa以上,抗拉强度提高300MPa,低温冲击性能提高近30J以上,硬度提高近10HRC。淬透性也明显优于传统的GCr15轴承钢。
尽管以上详细地描述了本发明的优选实施例,但是应该清楚地理解,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

  1. 一种耐低温高强度滚珠丝杠用球化退火钢,其特征在于,所述钢材的化学成分按质量百分比计为C:0.40~0.70%,Si:1.20~1.80%,Mn:1.00~1.60%,Cr:0.80~1.20%,S:≤0.025%,P≤0.025%,Ni:0.10~0.60%,Cu:0.30~0.80%,Mo:0.10~0.40%,Al≤0.05%,Ca≤0.0010%,Ti≤0.003%,O≤0.0010%,As≤0.04%,Sn≤0.03%,Sb≤0.005%,Pb≤0.002%,余量为Fe及不可避免的杂质。
  2. 根据权利要求1所述的一种耐低温高强度滚珠丝杠用球化退火钢,其特征在于:钢材经过调质处理后,屈服强度≥1380MPa,抗拉强度≥1500MPa,延伸率≥9%,-40℃夏比冲击功AKU 2≥27J,采用JIS—G—0561法检验末端淬透性满足:J9mm硬度≥58HRC。
  3. 根据权利要求1所述的一种耐低温高强度滚珠丝杠用球化退火钢,其特征在于:所述钢材的微观结构中渗碳体以直径为0.1~0.5μm优选0.3~0.5μm的球化状态存在,球化率达95%以上,其余组织为铁素体。
  4. 一种如权利要求1所述的耐低温高强度滚珠丝杠用球化退火钢的制造方法,其特征在于:所述方法包括以下步骤:
    步骤一、将冶炼原料依次经电炉或转炉初炼、精炼、真空脱气获得钢水,然后对钢水和连铸,连铸出与钢材成品化学成分相符的规格为390×510mm及以上的连铸方坯;
    步骤二、连铸坯入缓冷坑缓冷,缓冷时间不小于48小时,随后将连铸坯送至中性或弱氧化性气氛的加热炉内加热后并轧制成200mm×200mm至300mm×300mm的中间坯;
    步骤三、将中间坯重新加热并轧制成目标规格;
    步骤四、而后将完成轧制的产品进行球化退火;
    步骤五、对球化退火后的产品矫直、探伤已获得合格的产品。
  5. 根据权利要求4所述的方法,其特征在于:步骤一,选用优质铁水、废钢及原辅料,选用优质脱氧剂及耐火材料,在电炉或转炉的初炼过程中,冶炼终点C含量控制在0.05-0.25%,终点P含量≤0.025%,连铸过程对凝固过程中的铸流实施电磁搅拌及轻压下,连铸的过热度为15-35℃。
  6. 根据权利要求4所述的方法,其特征在于:步骤二,对连铸坯的加热温度为1000-1250℃,加热时间大于5小时,轧制时设置开轧温度1000℃-1200℃,终轧温度≥ 800℃,轧制压缩比大于5,轧制获得的中间坯入坑缓冷,中间坯下坑时的温度≥500℃,缓冷时间≥48小时。
  7. 根据权利要求4所述的方法,其特征在于:步骤三,中间坯的加热方式:预热段温度控制在650-900℃,加热段温度控制在1000-1250℃,均热段温度控制在1000-1250℃,总加热时间在2小时以上;对中间坯轧制的开轧温度控制在1000℃-1200℃,终轧温度控制在800℃以上,轧制完成后将产品堆垛冷却。
  8. 根据权利要求4所述的方法,其特征在于:步骤四,球化退火工艺:首先将产品在805±10℃保温7小时以上;然后采用水雾冷却的方式将产品冷却到745℃±10℃,并在此温度下保温5小时以上;接着产品随炉冷却至690±10℃,并在此温度下保温4.5小时以上;最后产品随炉冷却至500±10℃出炉。
PCT/CN2022/120821 2021-10-12 2022-09-23 一种耐低温高强度滚珠丝杠用球化退火钢及其制造方法 WO2023061185A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112022000269.7T DE112022000269T5 (de) 2021-10-12 2022-09-23 Sphäroidisierter, geglühter Stahl für tieftemperaturbeständige hochfeste Kugelumlaufspindeln sowie Herstellungsverfahren dafür

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111186104.2 2021-10-12
CN202111186104.2A CN114134411B (zh) 2021-10-12 2021-10-12 一种耐低温高强度滚珠丝杠用球化退火钢及其制造方法

Publications (1)

Publication Number Publication Date
WO2023061185A1 true WO2023061185A1 (zh) 2023-04-20

Family

ID=80394763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/120821 WO2023061185A1 (zh) 2021-10-12 2022-09-23 一种耐低温高强度滚珠丝杠用球化退火钢及其制造方法

Country Status (3)

Country Link
CN (1) CN114134411B (zh)
DE (1) DE112022000269T5 (zh)
WO (1) WO2023061185A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114134411B (zh) * 2021-10-12 2022-07-29 江阴兴澄特种钢铁有限公司 一种耐低温高强度滚珠丝杠用球化退火钢及其制造方法
CN114959170B (zh) * 2022-05-31 2023-08-25 达力普石油专用管有限公司 一种降低全废钢电弧炉熔炼生产的碳锰钢中Pb含量的方法
CN115449704B (zh) * 2022-07-29 2023-07-25 江阴兴澄特种钢铁有限公司 一种新能源汽车轮毂轴承用钢及其生产方法
CN115852265B (zh) * 2022-11-08 2023-10-24 江阴兴澄特种钢铁有限公司 一种用于高温环境下的空心滚珠丝杠用钢管及其制造方法
CN116770191B (zh) * 2023-08-28 2023-10-27 张家港荣盛特钢有限公司 耐腐蚀疲劳弹簧钢丝、盘条及其生产方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004076093A (ja) * 2002-08-16 2004-03-11 Sanyo Special Steel Co Ltd 中炭素ボールネジシャフト用鋼の製造方法
CN107747034A (zh) * 2017-10-20 2018-03-02 江阴兴澄特种钢铁有限公司 一种铁路货车轴承用高碳铬轴承钢及其制备方法
CN110484837A (zh) * 2019-08-16 2019-11-22 江阴兴澄特种钢铁有限公司 一种滚珠丝杠用钢及其制造方法
CN110983178A (zh) * 2019-12-09 2020-04-10 江阴兴澄特种钢铁有限公司 一种滚珠丝杠轴承用钢及其制造方法
CN113249643A (zh) * 2021-03-23 2021-08-13 江阴兴澄特种钢铁有限公司 一种矿用高强度渗碳链条钢及其制备方法
CN114134411A (zh) * 2021-10-12 2022-03-04 江阴兴澄特种钢铁有限公司 一种耐低温高强度滚珠丝杠用球化退火钢及其制造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6027302B2 (ja) * 2009-12-22 2016-11-16 株式会社神戸製鋼所 高強度焼戻し省略ばね用鋼
JP5459197B2 (ja) * 2010-12-15 2014-04-02 新日鐵住金株式会社 機械構造用合金鋼鋼材
CN102560263B (zh) * 2012-01-10 2014-10-01 石家庄钢铁有限责任公司 保淬透性高强度低温韧性弹簧钢
CN111118398A (zh) * 2020-01-19 2020-05-08 石家庄钢铁有限责任公司 一种高淬透性高强度低温韧性弹簧钢及其生产方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004076093A (ja) * 2002-08-16 2004-03-11 Sanyo Special Steel Co Ltd 中炭素ボールネジシャフト用鋼の製造方法
CN107747034A (zh) * 2017-10-20 2018-03-02 江阴兴澄特种钢铁有限公司 一种铁路货车轴承用高碳铬轴承钢及其制备方法
CN110484837A (zh) * 2019-08-16 2019-11-22 江阴兴澄特种钢铁有限公司 一种滚珠丝杠用钢及其制造方法
CN110983178A (zh) * 2019-12-09 2020-04-10 江阴兴澄特种钢铁有限公司 一种滚珠丝杠轴承用钢及其制造方法
CN113249643A (zh) * 2021-03-23 2021-08-13 江阴兴澄特种钢铁有限公司 一种矿用高强度渗碳链条钢及其制备方法
CN114134411A (zh) * 2021-10-12 2022-03-04 江阴兴澄特种钢铁有限公司 一种耐低温高强度滚珠丝杠用球化退火钢及其制造方法

Also Published As

Publication number Publication date
DE112022000269T5 (de) 2024-01-18
CN114134411B (zh) 2022-07-29
CN114134411A (zh) 2022-03-04

Similar Documents

Publication Publication Date Title
WO2023061185A1 (zh) 一种耐低温高强度滚珠丝杠用球化退火钢及其制造方法
CN107904492B (zh) 一种低硅高碳铬轴承钢及其热轧生产方法
CN111455287A (zh) 一种500MPa级低屈强比耐候桥梁钢及其制造方法
CN112981236B (zh) 一种等速万向节内滚道用钢及其生产方法
WO2022160720A1 (zh) 一种球笼式万向节保持架用钢及其生产方法
WO2020062564A1 (zh) 一种超高钢q960e厚板及制造方法
CN108998725A (zh) 履带链轨节用35MnBM钢及其制备方法
CN109735770B (zh) 含石墨高强韧性贝氏体耐磨钢及其制备方法
CN111394639A (zh) 一种高耐磨齿轮钢的制造方法
CN114480806B (zh) 一种厚规格TiC粒子增强型马氏体耐磨钢板的制造方法
CN113832396B (zh) 一种长寿命适用于非常规油气作业压裂泵阀体用钢及其锻造方法
CN111850399B (zh) 具有良好耐磨性耐蚀塑料模具钢及其制备方法
WO2022228216A1 (zh) 一种高温渗碳齿轴用钢及其制造方法
CN114836694B (zh) 一种船用抗海水腐蚀疲劳超高强钢及制造方法
CN114134397B (zh) 一种适用于冷挤压滚珠丝母用钢及其生产方法
CN110819901B (zh) 一种高强度制动盘螺栓用钢及其热处理工艺
CN114875331B (zh) 一种具有优良心部疲劳性能的610MPa级厚钢板及其生产方法
CN111893393B (zh) 一种Mo-Ti合金耐磨中锰钢及其制备方法
CN115852265B (zh) 一种用于高温环境下的空心滚珠丝杠用钢管及其制造方法
CN115747645B (zh) 一种高强韧高接触疲劳大功率风电偏航轴承圈用钢、轴承圈及生产工艺
CN116200681B (zh) 一种高强度耐大气腐蚀的核电支撑用钢板及其制造方法
CN115537678B (zh) 一种高温渗碳齿轮用钢及其制造方法
CN117385270A (zh) 一种等速万向节球形壳用钢及其生产方法
CN117230374A (zh) 一种低内应力断裂韧性优良的960MPa级桥梁用结构钢及其制备方法
CN116875900A (zh) 船用抗海水腐蚀疲劳性能优异的800MPa级钢板及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22880125

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112022000269

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 2023554288

Country of ref document: JP