WO2023061026A1 - 一种多臂协同作业钻孔机器人 - Google Patents

一种多臂协同作业钻孔机器人 Download PDF

Info

Publication number
WO2023061026A1
WO2023061026A1 PCT/CN2022/112366 CN2022112366W WO2023061026A1 WO 2023061026 A1 WO2023061026 A1 WO 2023061026A1 CN 2022112366 W CN2022112366 W CN 2022112366W WO 2023061026 A1 WO2023061026 A1 WO 2023061026A1
Authority
WO
WIPO (PCT)
Prior art keywords
drilling
arm
telescopic
slideway
tunnel
Prior art date
Application number
PCT/CN2022/112366
Other languages
English (en)
French (fr)
Inventor
王大伟
冀晓莹
齐孟星
佟立国
徐士彬
邱晓杰
程爽
李再强
孟祥久
叶俊峰
Original Assignee
中铁九局集团有限公司
中铁九局集团电务工程有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中铁九局集团有限公司, 中铁九局集团电务工程有限公司 filed Critical 中铁九局集团有限公司
Priority to JP2023539072A priority Critical patent/JP7506897B2/ja
Publication of WO2023061026A1 publication Critical patent/WO2023061026A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/10Making by using boring or cutting machines
    • E21D9/1086Drives or transmissions specially adapted therefor
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B15/00Supports for the drilling machine, e.g. derricks or masts
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/02Drilling rigs characterised by means for land transport with their own drive, e.g. skid mounting or wheel mounting
    • E21B7/022Control of the drilling operation; Hydraulic or pneumatic means for activation or operation
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/10Making by using boring or cutting machines
    • E21D9/108Remote control specially adapted for machines for driving tunnels or galleries

Definitions

  • the invention belongs to the technical field of subway construction, and in particular relates to a multi-arm cooperative drilling robot.
  • the drilling of subway construction is often carried out by manual drilling, that is, using electric tools for drilling.
  • the overall cross-section is circular, and there are certain difficulties in both manual measurement and drilling, especially when drilling holes at high places on the ceiling and side walls, due to the high height and labor-intensive, the efficiency of manual drilling lower.
  • the punching operation not only has a large workload but also has a short interval between processes. In this case, it is necessary to increase manpower input or improve the punching efficiency.
  • the purpose of the present invention is to provide a multi-arm cooperative drilling robot, which can improve the construction efficiency of drilling operations in subway sections.
  • the present invention provides the following technical solutions:
  • a multi-arm cooperative drilling robot including a pallet truck and a drilling arm;
  • the trolley can move along the extension direction of the tunnel.
  • the trolley is equipped with a horizontally distributed platform. On the platform, there are multiple slideways extending along the length of the trolley. The multiple slideways are distributed in parallel on the platform.
  • At least one drilling arm is installed on the slideway; the drilling arm is slidably assembled on the slideway through the drilling arm base; The mechanism is installed on the base of the drilling arm to drive the telescopic arm to rotate along the cross-section of the tunnel;
  • the trolley is driven by the power unit, and the power unit and the drilling arm are electrically connected to the control center.
  • the control center can send cooperative drilling instructions to multiple drilling arms. Simultaneous drilling operations in the cross section;
  • the bottom of the drilling arm base is provided with a slider that is adapted to the guide rail.
  • the slider is in electrical contact with the guide rail and is slid to assemble along the guide rail; the guide rail is correspondingly connected to the power supply, and the slider is electrically connected to the drilling arm. , to supply power to the drilling arm;
  • At least one side of the base of the drilling arm extending into the slideway is provided with a positioning cylinder, and the positioning cylinder is pressed against the inner wall of the slideway to limit the position of the base of the drilling arm; Electrical isolation between vehicles and between any guide rails;
  • the telescopic arm is connected to the drill bit assembly through a verticality adjustment mechanism, and the verticality adjustment mechanism includes a plurality of first telescopic rods, and the plurality of first telescopic rods are evenly distributed in the circumferential direction of the drill bit assembly, and are movably connected with the drill bit assembly;
  • each first telescopic rod can be controlled independently, so that the drill bit of the drill bit assembly is perpendicular to the inner wall of the tunnel;
  • the verticality adjustment mechanism also includes a verticality adjustment cylinder block connected with the telescopic arm;
  • the transmission mechanism includes a main control motor and a rotation mechanism, the main shaft of the main control motor is connected to the rotation mechanism through a reducer, and the rotation mechanism is fixedly connected to the telescopic arm;
  • the telescopic arm consists of two telescopic cylinders arranged on the back.
  • the cylinder bodies of the two telescopic cylinders are fixedly connected. even;
  • the outer periphery of the drilling arm is provided with multiple groups of regulating arms, each group of regulating arms includes two regulating arm sections, the two ends of the two regulating arm sections close to each other are movably connected, and the two ends of the two regulating arm sections far away from each other are respectively connected to the
  • the verticality adjustment cylinder block is flexibly connected with the transmission mechanism.
  • the trolley can move along the extending direction of the tunnel, and the drilling arm can slide along the moving direction of the trolley; it can be seen that the position of the drilling arm in the extending direction of the tunnel is adjustable.
  • the trolley has a plurality of drilling arms arranged at intervals, and each drilling arm can rotate along the cross section of the tunnel. Therefore, the present invention can meet the drilling requirements of different positions of the tunnel by moving the trolley, sliding the drilling arm and rotating the drilling arm, and improves the efficiency of the tunnel drilling operation. Therefore, the present invention can be used as a special equipment for high-efficiency drilling of subway tunnels, and can greatly reduce labor costs.
  • Fig. 1 is a schematic side view of a multi-arm cooperative drilling robot in the present invention
  • Fig. 2 is the use state diagram of multi-arm cooperative operation drilling robot in the present invention
  • Fig. 3 is the structural representation of multi-arm cooperative operation drilling robot in the present invention.
  • Fig. 4 is the structural representation of comprehensive drilling arm among the present invention.
  • Fig. 5 is the structural representation of side drilling arm in the present invention.
  • Fig. 6 is a schematic diagram of the connection structure between the drilling arm and the pallet truck in the present invention.
  • Fig. 7 is a partial enlarged view of place A in Fig. 6;
  • Fig. 8 is a schematic diagram of the calculated dimensions of the moving position of the drilling arm in the present invention.
  • a multi-arm cooperative drilling robot includes a pallet truck 3 and a drilling arm.
  • the trolley 3 can move along the extension direction of the tunnel, and a plurality of drilling arms are arranged on the trolley 3;
  • a plurality of drilling arms are distributed at intervals on the trolley 3, and each drilling arm is rotatably connected with the trolley 3 to rotate along the cross-section of the tunnel;
  • Each drilling arm is slidably assembled with the pallet truck 3 to slide along the moving direction of the pallet truck.
  • the position change of the drilling arm in the extending direction of the tunnel can be realized through the movement of the trolley in the extending direction of the tunnel and/or the sliding of the drilling arm on the trolley, which can meet the needs of drilling at different positions in the axial direction of the tunnel.
  • the pallet truck 3 is provided with a table top distributed horizontally, and on the table top is provided with a plurality of slideways 7 extending along the length direction of the pallet truck, and the drilling arm is slidably assembled on the slideway 7 through the drilling arm base 6-27. , a plurality of slideways 7 are distributed in parallel and at intervals on the table. At least one drilling arm is installed on each slideway.
  • the drilling arm includes a telescopic arm, the top of the telescopic arm is provided with a drill assembly, and the tail of the telescopic arm is provided with a transmission mechanism; the transmission mechanism is installed on the base 6-27 of the drilling arm to drive the drilling arm around the cross section of the tunnel. Rotate (to drive the drilling arm to rotate around the axis of rotation of the transmission mechanism, the axis of rotation of the transmission mechanism is parallel to the extension direction of the slideway 7); the drilling range of the drilling arm is -30 ° to 210 °.
  • the movement of the drilling arm includes: 1. sliding along the slideway 7, 2. expansion and contraction along the axial direction of the drilling arm, and 3. swinging around the rotation axis of the transmission mechanism.
  • the trolley 3 is driven by a power unit, and the power unit and the drilling arm are electrically connected to the control center to send cooperative drilling instructions to multiple drilling arms.
  • Drilling arms on several skids can simultaneously drill within the same cross-section of the tunnel.
  • the drilling spacing is not limited, and can be adjusted arbitrarily within the range of -30° to 210° on the cross-section of the tunnel.
  • the multiple drilling arms on the same slideway can drill holes at different positions in the axial direction of the tunnel, and the distance between adjacent drilling arms on the same slideway can be adjusted.
  • the power unit provides power to the drilling arm through the guide rail 7-2 in the pallet truck 3 .
  • slideways 7 which are respectively the central slideway corresponding to the central axis of the subway tunnel and the side slideways located on both sides of the central slideway; the boreholes on the central slideway and the side slideway
  • the arms are the full-scale drilling arm 6 and the side drilling arm 5 respectively; the drilling range of the comprehensive drilling arm 6 is -20° ⁇ 210°; the drilling range of the side drilling arm 5 is -30° ⁇ 90°.
  • the number of drilling arms on each slideway 7 can be selected according to the actual needs of drilling and the length of the slideway 7, which can be 1, 2, 3, 4, 5 or 6 .
  • multiple groups of drilling arms can be provided on the trolley, and each group of drilling arms includes 3 drilling arms arranged on different slideways; the same group of drilling arms can work simultaneously in the same cross section of the tunnel; Multiple groups of drilling arms are correspondingly distributed at different positions in the axial direction of the tunnel, and they can perform drilling operations synchronously at multiple positions in the axial direction of the tunnel. Therefore, during the drilling operation, multiple sets of independent drilling data with different heights and different spacings can be set for drilling. The multiple sets of drilling arms operate simultaneously without interfering with each other, and can complete drilling operations of various hole specifications at one time. , High drilling efficiency.
  • a guide rail 7-2 is provided in the slideway 7; the bottom of the drilling arm base 6-27 is provided with a slide block 6-27-4 adapted to the guide rail 7-2, and the slide
  • the block 6-27-4 is in electrical contact with the guide rail 7-2, and is slidably assembled along the guide rail 7-2; the guide rail 7-2 is correspondingly connected to a power supply, and the slider is electrically connected to the drilling arm to supply power to the drilling arm.
  • two guide rails are provided in the same slideway, and the two guide rails 7 - 2 are symmetrically distributed on both sides of the central axis of the slideway 7 .
  • the slide block 6-27-4 is in frictional contact with the guide rail 7-2, so as to guide the power supply on the guide rail 7-2 to the power supply box inside the drilling arm base 6-27 through the bus bar.
  • the slide block 6-27-4 is provided with a chute adapted to the guide rail 7-2, the guide rail 7-2 is sleeved in the chute, and the groove wall of the chute is in frictional contact with the outer surface of the guide rail 7-2.
  • An infrared ranging sensor is installed on the slideway 7, which is used to locate the position of the drilling arm base 6-27 on the slideway.
  • At least one side of the drilling arm base 6-27 protruding into the slideway is provided with a positioning cylinder, and the positioning cylinder presses against the inner wall of the slideway to limit the drilling arm base.
  • both sides of the part of the drilling arm base 6-27 protruding into the slideway are provided with positioning cylinders.
  • the slideway 7 includes a limiting groove 7-1, and the guide rail 7-2 is arranged at the bottom of the limiting groove 7-1; through the limiting groove 7-1, the walking path of the drilling arm can be limited, and the drilling arm can also be prevented. The arm tilts, which improves the overall stability of the drilling arm.
  • the positioning cylinder includes a positioning cylinder body 6-27-1 and a positioning cylinder telescopic rod 6-27-2 inserted in the positioning cylinder body 6-27-1; preferably, the positioning cylinder telescopic rod 6-27-2
  • the end is provided with a friction plate 6-27-3.
  • the surface of the trolley 3 is provided with an insulating layer 7-3, so as to electrically isolate between the guide rail 7-2 and the trolley 3, between any guide rail 7-2, and between the guide rail 7-2 and the limiting groove 7-1.
  • a plurality of drilling arms are communicatively connected to the control center, and a control terminal correspondingly connected to the control center is provided on the drilling arms.
  • the casing of the drilling arm base 6-27 is provided with a control terminal, a power supply box, a communication module and an air pump to control the movement of the entire drilling arm.
  • Data and commands are transmitted between the control terminal and the drilling arm through the communication module.
  • the communication module transmits data to the control terminal, and transmits commands from the control terminal to the drilling arm.
  • the cart is provided with a distance acquisition module, and the distance acquisition module is connected to the control center through communication.
  • the distance acquisition module includes a wheel set 4, which is arranged at the bottom of the cart 3, and an encoder and a communication device are arranged inside the wheel set 4.
  • the traveling distance of the trolley 3 can be accurately determined through the number of rotations and angles of the wheel pair 4; the function of the encoder is to convert the angular displacement of the wheel pair 4 into an electrical signal to obtain encoder data; , send the encoder data to the control center through the communication device.
  • the distance error during each stop and walk of the trolley 3 does not affect the spacing positioning of the drilling arm.
  • the control center will add and subtract the encoder data (distance data) to precisely control the precise positioning of the drilling arm. details as follows:
  • the actual travel distance of the cart 3 is defined as S 1
  • the default travel distance is S 0
  • the travel error of the cart 3 is defined as S
  • S S 1 ⁇ S 0 .
  • S>0 the position of the drilling arm moves far away by S when the drilling command is started.
  • S ⁇ 0 the position of the drilling arm is near -S when the drilling command is started.
  • a certain reserved distance is reserved at both ends of the slideway 7 for drilling distance correction, and the absolute value of the walking error S of the cart 3 is smaller than the reserved distance.
  • the reserved distance can be adjusted as required, and the reserved distance is 1-2m (for example: 1m, 1.2m, 1.4m, 1.5m, 1.6m, 1.7m, 1.8m, 1.9m or 2m).
  • the power unit is a locomotive 1 .
  • the locomotive 1 and the pallet truck 3 move together, and the locomotive 1 stops and controls the walking distance of the pallet truck 3; the locomotive 1 provides power for the robot as a whole, provides 220V or 380V power for the drilling arm, and provides power for the motor and air pump. In addition, it provides 24V DC power for the control center after rectification.
  • the locomotive 1 is a fuel locomotive.
  • the locomotive 1 may also be a steam locomotive, a gas turbine locomotive or an electric locomotive.
  • the lower parts of the locomotive 1 and the trolley 3 are provided with steel rails 2 .
  • the steel rail 2 is laid along its axial direction in the tunnel, and the locomotive 1 and the trolley 3 can move linearly along the steel rail 2.
  • the lower part of the steel rail 2 is laid with a tunnel floor 8, the upper surface of the tunnel floor 8 is a plane, and the upper surface of the tunnel floor 8 is provided with two steel rails 2 arranged at intervals, and the two steel rails 2 are symmetrically distributed along the central axis of the tunnel floor 8, so that The centers of the locomotive 1 and the trolley 3 correspond to the central axis of the tunnel.
  • the transmission mechanism includes a main control motor 6-26, and the rotation axis of the transmission mechanism is the central axis of the main shaft of the main control motor 6-26.
  • the transmission mechanism also includes a rotation mechanism 6-25, the rotation mechanism 6-25 is fixedly connected to the telescopic arm, and the main control motor 6-26 is connected to the telescopic arm through the rotation mechanism 6-25; further preferably, the main control motor 6 -26 is connected with the rotating mechanism 6-25 through the speed reducer.
  • the speed reducer is a planetary gearbox.
  • the rotating mechanism 6-25 includes a housing and a fixed ring gear, the fixed ring gear is arranged in the housing, and the two are fixedly connected; the main shaft of the main control motor 6-26 is connected to the input shaft of the planetary gearbox through the main shaft gear, and the planetary gear The output shaft of the box is meshed with the fixed ring gear through the output gear. After the main shaft of the main control motor 6-26 is decelerated by the planetary gear box, it can drive the fixed ring gear to rotate, and then can drive the overall rotating mechanism 6-25 to rotate.
  • the output torque can be increased, and at the same time, the rotation angle can be precisely controlled, and the power of the main control motor 6-26 can be relatively reduced, the weight of the drilling arm can be reduced, and electric energy can be saved.
  • the reducer can also be a gear reducer or a worm reducer.
  • a verticality adjustment mechanism is provided between the telescopic arm and the drill bit assembly, and the verticality adjustment mechanism includes a verticality adjustment cylinder block 6-7 and a plurality of first telescopic rods 6-6 (for example: 2, 3, 4, 5, 6, 7 or 8), the verticality adjustment cylinder body 6-7 is connected with the telescopic arm, and a plurality of first telescopic rods are evenly distributed in the circumferential direction of the drill bit assembly
  • the telescopic state of each first telescopic rod 6-6 can be controlled separately, and each first telescopic rod 6-6 is movably connected with the drill bit assembly, so that the drill bit 6-1 of the drill bit assembly is perpendicular to the inner wall of the tunnel.
  • four first telescopic rods 6-6 are evenly distributed in the verticality adjustment cylinder body 6-7.
  • the specific structure of the drill bit assembly is: the drill bit assembly includes a drill bit 6-1 and a drilling motor 6-2, and the drilling motor 6-2 is used to drive the drill bit 6-1 to rotate to complete the drilling action.
  • the bottom of the drilling motor 6-2 is provided with a drilling motor base 6-4, and the first telescopic rod 6-6 is movably connected with the drilling motor base 6-4, and specifically adopts a ball head movable structure; the advancement of the verticality adjustment mechanism The length is determined by the drilling depth setpoint.
  • the verticality adjustment mechanism can make the drilling motor 6-2 adjust in the range of 0° ⁇ 45° along the central axis of the drilling arm, which can meet the verticality range requirement of the drilling arm 5 on the side.
  • a distance sensor 6-3 is installed on the drilling motor base 6-4; preferably, a plurality of distance sensors 6-3 (for example: 2, 3, 4) are installed on the drilling motor base 6-4 , 5, 6, 7 or 8), the quantity and the installation location of the distance sensor 6-3 correspond to the quantity and the installation location of the first telescopic rod 6-6 of the verticality adjustment mechanism.
  • the function of the distance sensor 6-3 is: 1. the distance between the drill bit 6-1 of the detection drilling arm and the inner wall of the tunnel, and when the distance is 1cm, start the drilling motor 6-2. 2. check the drill bit 6-1 and the tunnel Whether the inner wall is vertical: when the distances detected by each distance sensor 6-3 are consistent, the drilling motor 6-2 can be started; when the distances detected by each distance sensor 6-3 are inconsistent, and the error is less than 10mm, each independent The extension length of the first telescopic rod 6-6 is automatically adjusted to achieve a consistent distance; when the error is greater than 10mm, the cause of the fault needs to be checked.
  • the telescoping arm comprises a telescoping cylinder.
  • the telescopic arm includes two telescopic cylinders arranged on the back, and the cylinder bodies of the two telescopic cylinders are fixedly connected, wherein the telescopic rod of one telescopic cylinder is fixedly connected with the transmission mechanism, and the telescopic rod of the other telescopic cylinder Telescopic link is fixedly connected with verticality adjustment cylinder body 6-7.
  • the two telescopic cylinders are respectively an upper telescopic cylinder and a lower telescopic cylinder.
  • the overall height of the drilling arm is adjusted through the upper/lower telescopic cylinder, which is convenient for the transportation and height adjustment of the drilling arm.
  • the last telescopic cylinder includes an upper telescopic cylinder body 6-13, the lower telescopic cylinder includes a lower telescopic cylinder body 6-20, and the ends of the upper telescopic cylinder body 6-13 and the lower telescopic cylinder body 6-20 are fixed respectively.
  • An upper telescopic cylinder base 6-14 and a lower telescopic cylinder base 6-19 are provided, and the upper telescopic cylinder base 6-14 and the lower telescopic cylinder base 6-19 are connected by the first bolt 6-18.
  • each telescopic cylinder is provided with a top plate, and the overall strength of the multiple telescopic rods in the telescopic cylinder is improved by setting the top plate, so as to ensure the synchronous movement of the multiple telescopic rods in the same telescopic cylinder.
  • the top plate 6-24 of the lower telescopic cylinder is connected with the upper surface of the housing of the rotating mechanism 6-25 through the second bolt 6-21, and the telescopic rod 6-23 of the lower telescopic cylinder is connected with the top plate 6-24 of the lower telescopic cylinder through the third bolt.
  • This bolt connection structure has the advantages of firm connection and easy disassembly.
  • the bottom of verticality adjustment cylinder block 6-7 is fixed with verticality adjustment cylinder base 6-9.
  • the last telescopic cylinder telescopic link 6-12 is connected by the fourth bolt 6-11 with the upper telescopic cylinder top plate 6-10, and the upper telescopic cylinder top plate 6-10 is connected with the verticality adjustment cylinder base 6-9 by the fifth bolt 6-8.
  • the cylinder lengths of the upper telescopic cylinder and the lower telescopic cylinder are both 400mm, and the upper telescopic cylinder and the lower telescopic cylinder act synchronously, that is, the extension lengths of the telescopic rods 6-12 of the upper telescopic cylinder and the telescopic rods 6-23 of the lower telescopic cylinder are always consistent , and then control the length of the overall drilling arm.
  • the telescopic rod 6-23 of the lower telescopic cylinder can also be directly welded together with the housing of the rotating mechanism 6-25, and the two telescopic cylinders can be welded together, and the telescopic rod 6-12 of the upper telescopic cylinder can be welded together with the housing of the rotating mechanism 6-25.
  • the verticality adjustment cylinder bases 6-9 can be welded together.
  • the periphery of the drilling arm is provided with multiple sets of regulating arms (for example: 2 groups, 3 groups, 4 groups, 5 groups, 6 groups, 7 groups or 8 groups); further preferably, the periphery of the drilling arm is provided with 4 sets of adjustable arms.
  • the adjusting arm By arranging the adjusting arm, the overall mechanical strength of the drilling arm has been enhanced, preventing the upper telescopic cylinder telescopic rod 6-12 and the lower telescopic cylinder telescopic rod 6-23 from being overstressed and deformed and affecting the measurement accuracy.
  • Each group of regulating arms includes two regulating arm sections, the two ends of the two regulating arm sections close to each other are movably connected, and the two ends of the two regulating arm sections away from each other are respectively connected with the verticality adjusting cylinder block 6-7 and the transmission mechanism active connection.
  • the two regulating arm sections are respectively an upper regulating arm section 6-15 and a lower regulating arm section 6-17;
  • the upper end of the section 6-15 is hinged with the first fixing member 6-5;
  • the lower adjusting arm section 6-17 includes two hinged plates arranged at intervals, and the two hinged plates are respectively hinged on the upper adjusting arm section 6-15. on both sides to avoid interference between the upper adjusting arm section 6-15 and the lower adjusting arm section 6-17;
  • the lower end of -17 is hinged with the second fixing member 6-22.
  • the upper adjusting arm section 6-15 and the lower adjusting arm section 6-17 are connected by joint bolts 6-16.
  • the drilling arm further includes a vertical thrust cylinder 6-28 arranged between the drill bit assembly and the verticality adjustment mechanism to increase the thrust formation.
  • the bottom of the cylinder body of the vertical jacking cylinder is provided with a vertical jacking base, and the vertical jacking base is movably connected with the first telescopic rod 6-6 of the verticality adjustment mechanism, and the telescopic rod of the vertical jacking cylinder is fixed to the bottom of the drilling motor 6-2.
  • the side drilling arm 5 includes a vertical jacking cylinder 6-28.
  • the overall inclination angle of the drilling arm is controlled by the main control motor 6-26, and the positioning at different heights is realized through the adjustment of the inclination angle.
  • the position of the main shaft central axis of the main control motor 6-26 corresponding to the comprehensive drilling arm 6 on the center slideway is located at the center of the tunnel cross section, so the whole comprehensive drilling arm 6 is adjusted when the main control motor 6-26 angle is adjusted. It can always be perpendicular to the drilling position on the inner wall of the tunnel, which ensures the quality of the drilling.
  • the position calculation method of the drilling arm is:
  • the drilling height be H1 , the height difference between the drill bit 6-1 and the center position of the main control motor 6-26 is H ;
  • the radius is R
  • the center distance between the main control motor 6-26 corresponding to the full-scale drilling arm 6 and the side drilling arm 5 is L
  • the vertical push base to the drill bit 6-1 length is r (fixed value, its length is contracted state value, the propulsion distance is determined by the stroke of the vertical push cylinder)
  • the length of the vertical push base to the main control motor 6-26 after the drilling arm is extended is R'
  • the rotation angle of the vertical push base is ⁇ 1
  • the side drilling arm The rotating mechanism 6-25 rotates at angle ⁇ ', the projected length of r horizontal plane is a, the vertical projected length of R' is H', the projected length of R' horizontal plane is d, and the included angle between the axis of the comprehensive drilling arm and the horizontal plane is ⁇ 2 .
  • H 1 >H 0
  • H 1 the vertical projected length of R'
  • the position calculation principle of the comprehensive drilling arm 6 is:
  • the position calculation principle of side drilling arm 5 is:
  • the rotation angle of the vertical push base is ⁇ 1 , which can be obtained.
  • the side drilling arm 5 on the right side rotates clockwise; the side drilling arm 5 on the left side rotates counterclockwise.
  • the control center when the drilling height value H 1 of the drilling arm is input to the control center, the control center will compare H 1 with H 0 : when H 1 -H 0 >0 (as shown in Figure 8 shown), use the above method to locate in the upper half of the tunnel section; when H 1 -H 0 ⁇ 0, the rotation angle is rotated with reference to the horizontal plane.
  • the method is similar to the above method and will not be described again.
  • spacing/(single hole theoretical drilling time ⁇ quantity) speed (V).
  • Step 1 After the full-scale drilling arm 6 arrives at the positioning position, the full arm is unfolded, rotated from the center position to the set direction at a certain angle, and after pointing to the set height position, start the drilling motor 6-2, and advance through the verticality adjustment mechanism
  • the stroke controls the drilling depth
  • the advancing stroke value is the sum of the set drilling depth value and the safety distance from the drill bit 6-1 to the tunnel wall.
  • the drilling motor 6-2 counter-rotates to shrink the verticality adjustment mechanism.
  • Step 2 rotate to another drilling height position, repeat step 1.
  • Step 3 until the last task in the same section is completed, the drilling arm shrinks to the initial position, and after maintaining the vertical state, the full-scale drilling arm 6 advances a distance along the slideway 7, and the above steps are repeated.
  • the main difference between the execution procedures of the side drilling arm 5 and the full drilling arm 6 is: after the side drilling arm 5 arrives at the positioning position, the verticality adjustment mechanism first adjusts the inclination angle according to the set drilling height, and then adjusts the drilling arm length, then the side drilling arm 5 rotates to the set angle, and after pointing to the set height position, start the drilling motor 6-2 and the vertical jacking cylinder 6-28, and the pushing stroke value of the vertical jacking cylinder is the set drilling The sum of the depth value and the safe distance from the drill bit 6-1 to the tunnel wall. After finishing drilling, drilling motor 6-2 counter-rotates, and contraction vertically pushes cylinder 6-28.
  • the control center will judge the walking distance according to the encoder data, and then compare it with the walking standard value, and use the difference as the position correction data for the next operation of the drilling arm. Thereby ensuring the accuracy of the drilling spacing.
  • the control center prompts whether to enable position correction: If you click OK, start the punching command, repeat the above punching command, and the punching distance will continue to the punching position of the last parking, to achieve the same standard; if you click No , it will prompt whether to enable the last punching command, click Yes, the last command will be used, click No, it will prompt to re-enter the parameter value.
  • this application can set multiple sets of drilling heights and drilling spacing according to the specific conditions of the construction environment during use; the logic relationship can be automatically edited through the control center, and the number and spacing of the same slideway 7 can be automatically edited.
  • the drilling arm with the task completed first is arranged at the front, and the drilling arm with the slowest drilling speed is arranged at the back with a large amount of tasks; the hole positions in the same section of the tunnel should be completed by the same drilling arm.
  • the drilling arm 6 is mainly responsible for the hole positions in the range of 45° ⁇ 135° and missing supplementary holes, and the side drilling arms 5 on the left and right sides are respectively responsible for the hole positions of -30° to 90° within the respective drilling ranges.
  • the present invention can complete all hole positions within the length range of the pallet truck 3 at one time, and the drilling efficiency is significantly improved compared with manual and single-arm drilling.
  • the drilling arm adopts a multi-cylinder structure, which saves energy, has high efficiency, light weight and high precision.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Earth Drilling (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Abstract

提供一种多臂协同作业钻孔机器人,包括板车(3)可沿隧道延伸方向移动,板车上(3)设有台面,在台面上设有多个滑道(7),多个滑道(7)在台面上呈平行间隔分布,每个滑道(7)上安装有至少一个钻孔臂(5,6);钻孔臂(5,6)通过钻孔臂底座(6-27)滑动装配于滑道(7)上;钻孔臂(5,6)包括伸缩臂,伸缩臂的顶部设有钻头组件,伸缩臂的尾部设有传动机构;传动机构安装于钻孔臂底座(6-27)上,以驱动伸缩臂沿隧道的横截面进行转动;板车(3)通过动力装置进行驱动,动力装置和钻孔臂(5,6)电性连接在控制中心,控制中心可向多个钻孔臂(5,6)发送协同钻孔作业指令,多个滑道(7)上的钻孔臂(5,6)可在隧道的同一横截面内同时钻孔作业。可满足隧道不同位置的钻孔需求,提升了隧道打孔作业的效率。

Description

一种多臂协同作业钻孔机器人 技术领域
本发明属于地铁施工技术领域,具体涉及一种多臂协同作业钻孔机器人。
背景技术
目前,地铁施工打孔常采用人工打孔方式进行,即利用电动工具进行打孔。针对地铁隧道的特殊结构,整体为圆形截面,不论是人工测量还是打孔都存在一定的困难,尤其在顶棚和侧壁高处打孔时因高度较高且较耗费体力,人工打孔效率较低。
然而在地铁区间整体施工过程中打孔作业不仅工作量大而且工序间隔时间较少,在这样的情况下,就需要增加人力投入或者提高打孔效率。
针对以上施工现状,现有技术中暂无成熟的地铁隧道高效打孔专用设备,无法解决打孔施工效率低的瓶颈难题。
发明内容
本发明的目的是提供一种多臂协同作业钻孔机器人,能够提升地铁区间打孔作业的施工效率。
为了实现上述目的,本发明提供如下技术方案:
一种多臂协同作业钻孔机器人,包括板车和钻孔臂;
板车可沿隧道延伸方向移动,板车上设有水平分布的台面,在台面上设有多个沿板车长度方向延伸的滑道,多个滑道在台面上呈平行间隔分布,每个滑道上安装有至少一个钻孔臂;钻孔臂通过钻孔臂底座滑动装配于滑道上;钻孔臂包括伸缩臂,伸缩臂的顶部设有钻头组件,伸缩臂的尾部设有传动机构;传动机构安装于钻孔臂底座上,以驱动伸缩臂沿隧道的横截面进行转动;
板车通过动力装置进行驱动,动力装置和钻孔臂电性连接在控制中心,控制中心可向多个钻孔臂发送协同钻孔作业指令,多个滑道上的钻孔臂可在隧道的同一横截面内同时钻孔作业;
滑道内设有导轨,钻孔臂底座的底部设有与导轨适配的滑块,滑块与导 轨电性接触,并沿导轨滑动装配;导轨对应连接电源,滑块电性连接钻孔臂,以向钻孔臂供电;
同一滑道内设有两个导轨,两个导轨分布设置于滑道的两侧;
钻孔臂底座伸入滑道部分的至少一侧设有定位气缸,定位气缸顶紧滑道的内壁以对钻孔臂底座进行限位;板车的表面设有绝缘层,以使导轨与板车之间、任意导轨之间电气隔离;
伸缩臂与钻头组件之间通过垂直度调节机构连接,垂直度调节机构包括多个第一伸缩杆,多个第一伸缩杆在钻头组件的周向均布,并与钻头组件活动连接;
每个第一伸缩杆的伸缩状态可单独控制,以使钻头组件的钻头与隧道内壁垂直;
垂直度调节机构还包括与伸缩臂连接的垂直度调节气缸缸体;
传动机构包括主控电机和旋转机构,主控电机的主轴通过减速器与旋转机构传动连接,旋转机构与伸缩臂固定连接;
伸缩臂包括两个背向设置的伸缩气缸,两个伸缩气缸的缸体固定连接,其中一个伸缩气缸的伸缩杆与传动机构固连,另一个伸缩气缸的伸缩杆与垂直度调节气缸缸体固连;
钻孔臂的外周设有多组调节臂,每组调节臂包括两个调节臂段,两个调节臂段相互靠近的两端部活动连接,两个调节臂段相互远离的两端部分别与垂直度调节气缸缸体和传动机构活动连接。
有益效果:
一方面,板车可沿隧道延伸方向移动,钻孔臂可沿板车移动方向进行滑动;可见,钻孔臂在隧道延伸方向上的位置可调。另一方面,板车有多个间隔设置的钻孔臂,且各个钻孔臂可沿隧道的横截面进行转动。因此,本发明通过移动板车、滑动钻孔臂和转动钻孔臂,可满足隧道不同位置的钻孔需求,提升了隧道打孔作业的效率。因此,本发明可以作为一种地铁隧道高效打孔专用设备,且能大大减少人力成本。
附图说明
图1为本发明中多臂协同作业钻孔机器人的侧面示意图;
图2为本发明中多臂协同作业钻孔机器人的使用状态图;
图3为本发明中多臂协同作业钻孔机器人的结构示意图;
图4为本发明中全面钻孔臂的结构示意图;
图5为本发明中侧面钻孔臂的结构示意图;
图6为本发明中钻孔臂与板车的连接结构示意图;
图7为图6中A处的局部放大图;
图8为本发明中钻孔臂运动位置的计算尺寸示意图。
图中:1、机车;2、钢轨;3、板车;4、轮对;5、侧面钻孔臂;6、全面钻孔臂;6-1、钻头;6-2、钻孔电机、6-3、距离传感器;6-4、钻孔电机底座;6-5、第一固定构件;6-6、第一伸缩杆;6-7、垂直度调节气缸缸体;6-8、第五螺栓;6-9、垂直度调节气缸底座;6-10、上伸缩气缸顶板;6-11、第四螺栓;6-12、上伸缩气缸伸缩杆;6-13、上伸缩气缸缸体;6-14、上伸缩气缸底座;6-15、上调节臂段;6-16、关节螺栓;6-17、下调节臂段;6-18、第一螺栓;6-19、下伸缩气缸底座;6-20、下伸缩气缸缸体;6-21、第二螺栓;6-22、第二固定构件;6-23、下伸缩气缸伸缩杆;6-24、下伸缩气缸顶板;6-25、旋转机构;6-26、主控电机;6-27、钻孔臂底座;6-27-1、定位气缸缸体;6-27-2、定位气缸伸缩杆;6-27-3、摩擦片;6-27-4、滑块;6-28、垂直顶推气缸;7、滑道;7-1、限位槽;7-2、导轨;7-3、绝缘层;8、隧道地面。
具体实施方式
下面将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
如图1-8所示,一种多臂协同作业钻孔机器人,包括板车3和钻孔臂。
板车3可沿隧道延伸方向移动,在板车3上设有多个钻孔臂;
多个钻孔臂在板车3上间隔分布,每个钻孔臂均与板车3转动连接,以分别沿隧道的横截面进行转动;
每个钻孔臂均与板车3滑动装配,以分别沿板车的移动方向进行滑动。
在本发明中,通过板车在隧道延伸方向的移动和/或钻孔臂在板车上的滑动,可实现钻孔臂在隧道延伸方向的位置改变,可满足隧道轴向上不同位置的钻孔需求;通过钻孔臂的转动,可实现钻孔臂在隧道的横截面上的位置改变,可满足隧道的横截面内不同高度的钻孔需求。
具体为,板车3上设有水平分布的台面,在台面上设有多个沿板车长度方向延伸的滑道7,钻孔臂通过钻孔臂底座6-27滑动装配于滑道7上,多个滑道7在台面上平行间隔分布。每个滑道上安装有至少一个钻孔臂。
钻孔臂包括伸缩臂,伸缩臂的顶部设有钻头组件,伸缩臂的尾部设有传动机构;传动机构安装于钻孔臂底座6-27上,以驱动钻孔臂绕沿隧道的横截面进行转动(以驱动钻孔臂绕传动机构的转动轴线旋转,传动机构的转动轴线平行于滑道7的延伸方向);钻孔臂的打孔范围为-30°~210°。
因此,钻孔臂的运动包括:1.沿滑道7的滑动,2.沿钻孔臂的轴向的伸缩,3.绕传动机构的转动轴线的摆动。
板车3通过动力装置进行驱动,动力装置和钻孔臂电性连接在控制中心,以向多个钻孔臂发送协同钻孔作业指令。多个滑道上的钻孔臂可在隧道的同一横截面内同时钻孔作业。多个钻孔臂在隧道同一横截面内同时钻孔作业时,钻孔间距不受限制,可实现在隧道的横截面上-30°~210°范围内的任意调节。
当同一滑道上有多个钻孔臂时,同一滑道上的多个钻孔臂可在隧道轴向的不同位置进行钻孔,且同一滑道上的相邻钻孔臂之间的间距可调。
动力装置通过板车3中导轨7-2向钻孔臂提供电源。
在本发明的一个可选实施例中,滑道7有三个,分别为对应地铁隧道中心轴线的中心滑道和位于中心滑道两侧的侧滑道;中心滑道和侧滑道上的钻孔臂分别为全面钻孔臂6和侧面钻孔臂5;全面钻孔臂6的打孔范围为-20°~210°;侧面钻孔臂5的打孔范围为-30°~90°。每个滑道7上的钻孔臂的数量,可以根据钻孔实际需要及滑道7的长度进行选择,可以是1个,也可以是2个、3个、4个、5个或6个。
也就是说,板车上可以设有多组钻孔臂,每组钻孔臂包括设置于不同滑道上的3个钻孔臂;同一组钻孔臂可在隧道的同一横截面内同时作业;多组钻孔臂对应分布于隧道轴向上的不同位置,其可在隧道轴向上的多个位置同步进行钻孔作业。因此,在钻孔作业时,可设置多组不同高度、不同间距的独立钻孔数据进行钻孔,该多组钻孔臂同时作业互不干扰,可一次完成多种孔位规格的钻孔作业,钻孔效率高。在本发明的一个可选实施例中,滑道7内设有导轨7-2;钻孔臂底座6-27的底部设有与导轨7-2适配的滑块6-27-4,滑块6-27-4与导轨7-2电性接触,并沿导轨7-2滑动装配;导轨7-2对应连 接电源,滑块电性连接钻孔臂,以向钻孔臂供电。优选地,同一所述滑道内设有两个所述导轨,两个导轨7-2对称分布于滑道7中心轴线的两侧。具体为,滑块6-27-4与导轨7-2摩擦接触,以将导轨7-2上的电源通过母线接引至钻孔臂底座6-27内部的电源箱。滑块6-27-4上开设有与导轨7-2适配的滑槽,导轨7-2套接于滑槽内,滑槽的槽壁与导轨7-2的外表面摩擦接触。
滑道7上安装有红外测距传感器,用于对钻孔臂底座6-27在滑道上的位置进行定位。
在本发明的一个可选实施例中,钻孔臂底座6-27伸入滑道部分的至少一侧设有定位气缸,定位气缸顶紧滑道的内壁以对钻孔臂底座进行限位。优选地,钻孔臂底座6-27伸入滑道部分的两侧均设有定位气缸。具体为,滑道7包括限位槽7-1,导轨7-2设置于限位槽7-1底部;通过限位槽7-1,可限制钻孔臂的行走路径,还可防止钻孔臂倾翻,提升了钻孔臂整体稳定性。
定位气缸包括定位气缸缸体6-27-1和插装于定位气缸缸体6-27-1内的定位气缸伸缩杆6-27-2;优选地,定位气缸伸缩杆6-27-2的端部设有摩擦片6-27-3。具体为,当钻孔臂接受到命令定位完成后,两个定位气缸同步顶出,推动定位气缸伸缩杆6-27-2使前端摩擦片与限位槽7-1压紧,起到固定的作用,能够增强钻孔臂底座6-27的稳定性,防止钻孔过程中钻孔臂底座6-27晃动导致滑块6-27-4与导轨7-2接触不良的情况发生,有利于钻孔臂的整体稳定,保证钻孔的质量。
板车3的表面设有绝缘层7-3,以使导轨7-2与板车3之间、任意导轨7-2之间,导轨7-2与限位槽7-1之间电气隔离。
在本发明的一个可选实施例中,多个钻孔臂通讯连接于控制中心,在钻孔臂上设有对应连接控制中心的控制终端。
具体为,钻孔臂底座6-27的箱体内设有控制终端、电源箱、通信模块和气泵,以控制整个钻孔臂的动作。控制终端与钻孔臂之间通过通信模块进行数据和命令传输。通信模块向控制终端传送数据,并将控制终端的命令传输至钻孔臂。
在本发明的一个可选实施例中,板车上设有距离采集模块,距离采集模块通讯连接在控制中心。具体为,距离采集模块包括轮对4,轮对4设置于板车3的底部,轮对4内设有编码器和通信装置。通过轮对4的转动圈数和 角度可精准确定板车3行走距离;编码器的作用是把轮对4的角位移转换成电信号,得到编码器数据;在板车3每次启停时,通过通信装置将编码器数据发送至控制中心。板车3每次走停行走过程中的距离误差,不影响钻孔臂的间距定位,控制中心会对编码器数据(距离数据)进行加减,进而精准控制钻孔臂的精准定位。具体如下:
板车3的实际行走距离定义为S 1,默认走行距离为S 0,板车3的行走误差定义为S,S=S 1-S 0。当S>0时,启动打孔命令时钻孔臂位置远行S。当S<0时,启动打孔命令时钻孔臂位置近行-S。S=0,钻孔臂位置不调整。
滑道7的两端留有一定的预留距离,用于钻孔间距修正,板车3的行走误差S的绝对值要小于预留距离。预留距离可根据需要进行调整,该预留距离为1~2m(例如:1m、1.2m、1.4m、1.5m、1.6m、1.7m、1.8m、1.9m或2m)。
在本发明的一个可选实施例中,动力装置为机车1。具体为,机车1与板车3连体移动,通过机车1走停控制板车3行走距离;机车1为机器人整体提供电源,为钻孔臂提供220V或380V电源,为电机和气泵提供动力,此外经整流后为控制中心供24V直流电源。
优选地,机车1为燃油型机车。在其它可选实施例中,机车1还可以为蒸汽机车、燃气轮机车或电力机车。
优选地,机车1和板车3的下部设有钢轨2。在使用时,在隧道内沿其轴向铺设钢轨2,机车1和板车3可沿钢轨2做直线运动。
钢轨2的下部铺设有隧道地面8,隧道地面8的上表面为平面,隧道地面8上表面设有两条间隔设置的钢轨2,两条钢轨2沿隧道地面8的中心轴线对称分布,可使机车1和板车3的中心与隧道的中心轴线相对应。
在本发明的一个可选实施例中,传动机构包括主控电机6-26,传动机构的转动轴线为主控电机6-26主轴的中心轴线。
优选地,传动机构还包括旋转机构6-25,旋转机构6-25与伸缩臂固定连接,主控电机6-26通过旋转机构6-25与伸缩臂传动连接;进一步优选地,主控电机6-26通过减速器与旋转机构6-25传动连接。
在本发明的一个可选实施例中,减速器为行星齿轮箱。
旋转机构6-25、主控电机和行星齿轮箱之间的具体连接关系为:
旋转机构6-25包括壳体和固定齿圈,固定齿圈设于壳体内,且两者固定连接;主控电机6-26的主轴通过主轴齿轮与行星齿轮箱的输入轴传动连接,行星齿轮箱的输出轴通过输出齿轮与固定齿圈啮合连接。主控电机6-26的主轴通过行星齿轮箱减速后,可带动固定齿圈旋转,进而可带动整体旋转机构6-25进行旋转。通过设置行星齿轮箱,可以增大输出扭矩,同时能够精准控制旋转角度,还可相对减少主控电机6-26的功率,减轻钻孔臂重量,节约电能。
在其它可选实施例中,减速器还可以为齿轮减速器或蜗杆减速器。
在本发明的一个可选实施例中,伸缩臂与钻头组件之间设有垂直度调节机构,垂直度调节机构包括垂直度调节气缸缸体6-7和多个第一伸缩杆6-6(例如:2个、3个、4个、5个、6个、7个或8个),垂直度调节气缸缸体6-7与伸缩臂连接,多个第一伸缩杆在钻头组件的周向均布,每个第一伸缩杆6-6的伸缩状态可单独控制,每个第一伸缩杆6-6与钻头组件活动连接,以使钻头组件的钻头6-1与隧道内壁垂直。优选地,垂直度调节气缸缸体6-7内均布有4个第一伸缩杆6-6。
钻头组件的具体结构为:钻头组件包括钻头6-1和钻孔电机6-2,钻孔电机6-2用于驱动钻头6-1旋转,以完成钻孔动作。钻孔电机6-2的底部设有钻孔电机底座6-4,第一伸缩杆6-6与钻孔电机底座6-4活动连接,具体采用了球头活动结构;垂直度调节机构的推进长度通过钻孔深度设定值确定。
垂直度调节机构可使钻孔电机6-2沿钻孔臂中轴线方向在0°~45°范围调节,能够满足侧面钻孔臂5钻孔垂直度范围要求。
优选地,钻孔电机底座6-4上安装有距离传感器6-3;优选地,钻孔电机底座6-4上安装有多个距离传感器6-3(例如:2个、3个、4个、5个、6个、7个或8个),距离传感器6-3的数量及安装位置与垂直度调节机构的第一伸缩杆6-6的数量及安装位置相对应。
距离传感器6-3的作用为:1.探测钻孔臂的钻头6-1至隧道内壁的距离,当距离为1cm时,启动钻孔电机6-2。2.校核钻头6-1与隧道内壁是否垂直:当各个距离传感器6-3探测的距离一致时方可启动钻孔电机6-2;当各个距离传感器6-3探测的距离不一致时,且误差小于10mm时,可通过各个独立的第一伸缩杆6-6的伸出长度自动调节,达到距离一致;当误差大于10mm时, 需要检查故障原因。
在本发明的一个优选实施例中,钻孔电机底座6-4的四角安装有四个距离传感器6-3。在本发明的一个可选实施例中,伸缩臂包括一个伸缩气缸。
在本发明的一个优选实施例中,伸缩臂包括两个背向设置的伸缩气缸,两个伸缩气缸的缸体固定连接,其中一个伸缩气缸的伸缩杆与传动机构固连,另一个伸缩气缸的伸缩杆与垂直度调节气缸缸体6-7固定连接。
具体为,两个伸缩气缸分别为上伸缩气缸和下伸缩气缸。通过上/下伸缩气缸进行钻孔臂整体高度调节,方便钻孔臂的运输及高度调节。
上伸缩气缸包括上伸缩气缸缸体6-13,下伸缩气缸包括下伸缩气缸缸体6-20,上伸缩气缸缸体6-13和下伸缩气缸缸体6-20相互靠近的端部分别固设有上伸缩气缸底座6-14和下伸缩气缸底座6-19,上伸缩气缸底座6-14和下伸缩气缸底座6-19之间通过第一螺栓6-18连接。
每个伸缩气缸的自由端均设有顶板,通过设置顶板提升伸缩气缸内多个伸缩杆的整体强度,便于保证同一伸缩气缸内多个伸缩杆的同步运动。其中,下伸缩气缸顶板6-24与旋转机构6-25的壳体上表面通过第二螺栓6-21连接,下伸缩气缸伸缩杆6-23和下伸缩气缸顶板6-24通过第三螺栓连接,第二螺栓6-21和第三螺栓的位置不重合,且均布于下伸缩气缸顶板6-24上,该螺栓连接结构具有连接牢靠和便于拆卸的优点。垂直度调节气缸缸体6-7的下部固设有垂直度调节气缸底座6-9。上伸缩气缸伸缩杆6-12与上伸缩气缸顶板6-10通过第四螺栓6-11连接,上伸缩气缸顶板6-10与垂直度调节气缸底座6-9通过第五螺栓6-8连接。
上伸缩气缸和下伸缩气缸的缸体长度均为400mm,上伸缩气缸和下伸缩气缸同步动作,即上伸缩气缸伸缩杆6-12和下伸缩气缸伸缩杆6-23的伸出长度始终保持一致,进而控制整体钻孔臂的长度。
在其它可选实施例中,下伸缩气缸伸缩杆6-23还可以直接与旋转机构6-25的壳体焊接在一起,两个伸缩气缸可以焊接在一起,上伸缩气缸伸缩杆6-12与垂直度调节气缸底座6-9可以焊接在一起。
优选地,钻孔臂的外周设有多组调节臂(例如:2组、3组、4组、5组、6组、7组或8组);进一步优选地,钻孔臂的外周设有4组调节臂。通过设置调节臂,增强了钻孔臂的整体机械强度,防止了上伸缩气缸伸缩杆6-12和 下伸缩气缸伸缩杆6-23受力过大变形而影响测量精度。
每组调节臂包括两个调节臂段,两个调节臂段相互靠近的两端部活动连接,两个调节臂段相互远离的两端部分别与垂直度调节气缸缸体6-7和传动机构活动连接。
具体为,两个调节臂段分别为上调节臂段6-15和下调节臂段6-17;垂直度调节气缸缸体6-7外固设有第一固定构件6-5,上调节臂段6-15的上端部与第一固定构件6-5铰接在一起;下调节臂段6-17包括两个间隔设置的铰接板,两个铰接板分别铰接于上调节臂段6-15的两侧,以避免上调节臂段6-15和下调节臂段6-17之间发生干涉;旋转机构6-25的壳体外周固设有第二固定构件6-22,下调节臂段6-17的下端部与第二固定构件6-22铰接在一起。上调节臂段6-15和下调节臂段6-17通过关节螺栓6-16连接。
在本发明的一个可选实施例中,钻孔臂还包括设置于钻头组件与垂直度调节机构之间的垂直顶推气缸6-28,以增加推进形成。垂直顶推气缸的缸体底部设有垂直顶推底座,垂直顶推底座与垂直度调节机构的第一伸缩杆6-6活动连接,垂直顶推气缸伸缩杆与钻孔电机6-2底部固连。优选地,侧面钻孔臂5包括垂直顶推气缸6-28。
在本发明的工作原理和设计原理如下所述:
通过主控电机6-26控制钻孔臂的整体倾斜角,通过倾斜角度的调节实现不同高度的定位。
由于中心滑道上的全面钻孔臂6对应的主控电机6-26的主轴中心轴线的位置位于隧道横截面的圆心位置,所以,整个全面钻孔臂6在主控电机6-26角度调节时始终能够与隧道内壁钻孔位置垂直,保证了钻孔的质量。
如图8所示,当钻孔臂在隧道横截面的上半周进行打孔时,钻孔臂的位置计算方法为:
设打孔高度为H 1,钻头6-1与主控电机6-26主轴中心位置之间的高度差为H;全面钻孔臂6主控电机的主轴中心位置距地面高度为H 0,隧道半径为R,全面钻孔臂6与侧面钻孔臂5对应的主控电机6-26之间的中心距离为L,垂直顶推底座到钻头6-1长度为r(固定值,其长度为收缩状态值,推进距离由垂直顶推气缸行程决定),钻孔臂延伸后垂直顶推底座至主控电机6-26长度为R’,垂直顶推底座旋转角度为θ 1,侧面钻孔臂的旋转机构6-25转动角度 θ’,r水平面投影长度为a,R'垂直投影长度为H',R'水平面投影长度为d,全面钻孔臂轴线与水平面夹角为θ 2。图8中,由于钻孔臂位于隧道横截面的上半周,因此H 1>H 0,H 1=H+H 0
全面钻孔臂6的位置计算原理为:
打孔高度值为H 1,H=H 1-H 0,全面钻孔臂的旋转角度θ=90°-arcsinH/R,以图8为例,当选择右面时,顺时针旋转角度θ,选择左面时,逆时针旋转角度θ。
侧面钻孔臂5的位置计算原理为:
打孔高度值为H 1,H=H 1-H 0,θ 1和θ’的计算方法如下:
(1)θ 1计算方法
由正弦定理得:R’/sinθ 2=L/sinθ 1
推出:θ 1=arcsin(L*sinθ 2/R’),
Figure PCTCN2022112366-appb-000001
其中H’上式可得;
Figure PCTCN2022112366-appb-000002
L已知,a=r*cosθ 22=arcsinH/R(已知)。
所以垂直顶推底座旋转角度为θ 1可求。
(2)θ’计算方法
侧面钻孔臂的旋转机构6-25转动角度θ’=90°-arcsin H’/R’,
H’=H-rsinθ 2;θ 2=arcsinH/R(已知);
Figure PCTCN2022112366-appb-000003
其中H’上式可得,
Figure PCTCN2022112366-appb-000004
L已知,a=rcosθ 2
所以侧面钻孔臂的旋转机构6-25转动角度θ’可求。
进一步说明:
如图8所示,位于右侧的侧面钻孔臂5,顺时针旋转;位于左侧的侧面钻孔臂5,逆时针旋转。
此外,本发明在使用时,当向控制中心输入钻孔臂的打孔高度值H 1时,控制中心将对H 1与H 0作比较:当H 1-H 0>0时(如图8所示),采用上述方法在隧道截面上半周进行定位;当H 1-H 0<0,旋转角度以水平面为参考进行角度旋转,方法与上述方法类似,不再赘述。
本发明的具体使用方法如下:
1.在施工起始位置安装多臂协同作业钻孔机器人;并将各钻孔臂均归位 于板车3相对原点位置,各钻孔臂保持垂直收缩状态。
2.在机车1内部的控制平台上输入打孔位置相关数值,包括打孔高度、深度和间距。正常情况下,同一类型支吊架打孔数量和孔径尺寸相同。
控制中心对输入的数据进行判断后,按照施工速度的优先级做出分配决定,具体如下:间距/(单孔理论钻孔时间×数量)=速度(V)。在设定钻孔数据参数时,将整体隧道分为左右两侧,分别设置打孔高度和间距;按照计算速度的大小分配钻孔臂,计算打孔速度最快的孔位,分配给最前面的钻孔臂完成,以此类推。
3.启动开始打孔命令,按照逻辑优先级依次沿滑道7定位到打孔位置;关于同一滑道7内的钻孔臂,第二钻孔臂等第一钻孔臂完成一个间距任务后,再启动。
全面钻孔臂6:
步骤一,全面钻孔臂6到定位位置后,全臂展开,从中心位置向设定方向旋转一定角度,指向设定高度位置后,启动钻孔电机6-2,通过垂直度调节机构的推进行程控制钻孔深度,推进行程值为设定钻孔深度值与钻头6-1到隧道壁安全距离之和。完成钻孔后,钻孔电机6-2反转,收缩垂直度调节机构。
步骤二,旋转至另一钻孔高度位置,重复步骤一。
步骤三,直至同一截面内最后一次任务完成后,钻孔臂收缩至初始位置,并保持垂直状态后,全面钻孔臂6沿滑道7向前推进一个间距,重复以上步骤。
侧面钻孔臂5:
侧面钻孔臂5与全面钻孔臂6的执行程序主要区别为:侧面钻孔臂5到定位位置后,先根据设定钻孔高度,垂直度调节机构先调节倾斜角度,然后调节钻孔臂长度,接着侧面钻孔臂5旋转至设定角度,指向设定高度位置后,启动钻孔电机6-2和垂直顶推气缸6-28,垂直顶推气缸的推进行程值为设定钻孔深度值与钻头6-1到隧道壁安全距离之和。完成钻孔后,钻孔电机6-2反转,收缩垂直顶推气缸6-28。
5.板车3长度范围内钻孔全部完成后,启动机车1,前行一个车位。停车误差小于1.5米,停车后,控制中心会根据编码器数据判断行走距离,进而 与行走的标准值进行比对,将差值作为钻孔臂下次作业的位置修正数据。进而保证钻孔间距的准确性。
6.控制中心提示是否启用位置修正:若点击确认,启动开始打孔命令,重复上述打孔命令,此时打孔的间距将延续上次停车的打孔位置,实现同标准完成;若点击否,将提示是否启用上次打孔命令,点击是,将沿用上次命令,点击否,将提示重新输入参数值。
综上所述,本申请在使用时根据施工环境的具体情况,可设置多组钻孔高度和钻孔间距;通过控制中心可自动编辑逻辑关系,结合打孔数量和间距将同一滑道7内,最先完成的任务的钻孔臂排在最前面,将任务量大打孔速度最慢的钻孔臂安排在最后面;隧道同一截面内的孔位,应安排同一钻孔臂完成,全面钻孔臂6主要负责45°~135°范围内和遗漏补充的孔位,左右两侧的侧面钻孔臂5,分别负责各自打孔范围内-30°至90°的孔位。本发明可一次完成板车3长度范围内的所用孔位,相对人工和单臂打孔效率显著提高。
通过控制中心的优先级控制程序,实现多组钻孔臂同时作业,无间歇等待时间,效率更高。
钻孔臂采用多气缸结构,节约能源,效率高,重量轻,精度高。
可以理解的是,以上描述仅为示例性的,本申请实施例对此并不进行限定。

Claims (4)

  1. 一种多臂协同作业钻孔机器人,其特征在于,包括板车和钻孔臂;
    所述板车可沿隧道延伸方向移动,所述板车上设有水平分布的台面,在所述台面上设有多个沿板车长度方向延伸的滑道,多个所述滑道在所述台面上呈平行间隔分布,每个所述滑道上安装有至少一个所述钻孔臂;所述钻孔臂通过钻孔臂底座滑动装配于所述滑道上;所述钻孔臂包括伸缩臂,所述伸缩臂的顶部设有钻头组件,所述伸缩臂的尾部设有传动机构;所述传动机构安装于所述钻孔臂底座上,以驱动所述伸缩臂沿隧道的横截面进行转动;
    所述板车通过动力装置进行驱动,所述动力装置和所述钻孔臂电性连接在控制中心,所述控制中心可向多个所述钻孔臂发送协同钻孔作业指令,多个所述滑道上的所述钻孔臂可在隧道的同一横截面内同时钻孔作业;
    所述滑道内设有导轨,所述钻孔臂底座的底部设有与所述导轨适配的滑块,所述滑块与所述导轨电性接触,并沿所述导轨滑动装配;所述导轨对应连接电源,所述滑块电性连接所述钻孔臂,以向所述钻孔臂供电;
    同一所述滑道内设有两个所述导轨,两个所述导轨分布设置于所述滑道的两侧;
    所述钻孔臂底座伸入所述滑道部分的至少一侧设有定位气缸,所述定位气缸顶紧所述滑道的内壁以对所述钻孔臂底座进行限位;所述板车的表面设有绝缘层,以使所述导轨与所述板车之间、任意所述导轨之间电气隔离;所述伸缩臂与所述钻头组件之间通过垂直度调节机构连接,垂直度调节机构包括多个第一伸缩杆,多个所述第一伸缩杆在所述钻头组件的周向均布,并与所述钻头组件活动连接;
    每个所述第一伸缩杆的伸缩状态可单独控制,以使所述钻头组件的钻头 与隧道内壁垂直;
    所述垂直度调节机构还包括与所述伸缩臂连接的垂直度调节气缸缸体;
    所述传动机构包括主控电机和旋转机构,所述主控电机的主轴通过减速器与所述旋转机构传动连接,所述旋转机构与所述伸缩臂固定连接;
    所述伸缩臂包括两个背向设置的伸缩气缸,两个所述伸缩气缸的缸体固定连接,其中一个所述伸缩气缸的伸缩杆与所述传动机构固连,另一个所述伸缩气缸的伸缩杆与所述垂直度调节气缸缸体固连;
    所述钻孔臂的外周设有多组调节臂,每组调节臂包括两个调节臂段,两个调节臂段相互靠近的两端部活动连接,两个调节臂段相互远离的两端部分别与所述垂直度调节气缸缸体和所述传动机构活动连接。
  2. 根据权利要求1所述的多臂协同作业钻孔机器人,其特征在于,多个所述钻孔臂通讯连接于控制中心,在所述钻孔臂上设有对应连接所述控制中心的控制终端;
    所述板车上设有距离采集模块,所述距离采集模块通讯连接在所述控制中心。
  3. 根据权利要求1所述的多臂协同作业钻孔机器人,其特征在于,所述钻孔臂还包括设置于所述钻头组件与所述垂直度调节机构之间的垂直顶推气缸。
  4. 根据权利要求1所述的多臂协同作业钻孔机器人,其特征在于,所述台面上设有三个所述滑道,其中一个滑道为对应地铁隧道中心轴线的中心滑道,另外两个滑道为位于所述中心滑道两侧的侧滑道;
    所述中心滑道和所述侧滑道上的所述钻孔臂分别为全面钻孔臂和侧面钻孔臂。
PCT/CN2022/112366 2022-05-17 2022-08-15 一种多臂协同作业钻孔机器人 WO2023061026A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023539072A JP7506897B2 (ja) 2022-05-17 2022-08-15 複数アーム協調作業穿孔ロボット

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210531853.2A CN114622924B (zh) 2022-05-17 2022-05-17 一种多臂协同作业钻孔机器人
CN202210531853.2 2022-05-17

Publications (1)

Publication Number Publication Date
WO2023061026A1 true WO2023061026A1 (zh) 2023-04-20

Family

ID=81907346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/112366 WO2023061026A1 (zh) 2022-05-17 2022-08-15 一种多臂协同作业钻孔机器人

Country Status (3)

Country Link
JP (1) JP7506897B2 (zh)
CN (1) CN114622924B (zh)
WO (1) WO2023061026A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114622924B (zh) * 2022-05-17 2022-08-30 中铁九局集团电务工程有限公司 一种多臂协同作业钻孔机器人
CN115030657B (zh) * 2022-07-11 2023-02-03 西南交通大学 一种隧道灌锚施工设备
CN116591603A (zh) * 2023-07-17 2023-08-15 山东省煤田地质局第四勘探队 一种隧道施工用移动的钻探设备
CN117514021B (zh) * 2024-01-03 2024-05-03 陕西路桥集团有限公司 一种具有冷却及冲洗功能的隧道钻孔设备及钻孔方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103527094A (zh) * 2012-07-02 2014-01-22 江苏奥新科技有限公司 隧道用钻孔机
US20180080322A1 (en) * 2016-09-22 2018-03-22 Bouygues Travaux Publics Automated device for drilling a hole in the vault and walls of a tunnel and for installing an anchoring element into said hole
CN108915587A (zh) * 2018-07-17 2018-11-30 山西伟捷瑞铁路工程有限公司 自动找正基准在隧道壁精确定位钻孔的设备及方法
CN111594204A (zh) * 2020-04-13 2020-08-28 中北大学 一种采用气压驱动的隧道钻孔设备
CN111677457A (zh) * 2020-06-28 2020-09-18 中铁九局集团电务工程有限公司 一种钻孔臂
CN212079198U (zh) * 2020-04-24 2020-12-04 陈第夫 开凿角度可调式隧道工程施工用钻孔设备
WO2021077693A1 (zh) * 2019-10-23 2021-04-29 中国矿业大学 一种井下快速掘进的探掘支锚运一体机系统及其使用方法
CN114622924A (zh) * 2022-05-17 2022-06-14 中铁九局集团电务工程有限公司 一种多臂协同作业钻孔机器人
CN217421190U (zh) * 2022-05-17 2022-09-13 中铁九局集团电务工程有限公司 一种钻孔机器人的钻孔臂

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201931116U (zh) * 2010-11-22 2011-08-17 浙江万丰摩轮有限公司 轮毂多角度钻孔调节装置
CN210396621U (zh) * 2019-07-19 2020-04-24 济南黄河爆破工程有限责任公司 一种小断面隧道多头自动钻机
CN111740690A (zh) * 2020-07-07 2020-10-02 张东虎 一种自适应调节角度的太阳能板安装支架
CN214839793U (zh) * 2021-04-23 2021-11-23 胡文荟 一种用于历史建筑测绘的辅助工具
CN113482361B (zh) * 2021-07-07 2022-03-01 江苏省建筑工程集团第二工程有限公司 一种基于bim的工程施工装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103527094A (zh) * 2012-07-02 2014-01-22 江苏奥新科技有限公司 隧道用钻孔机
US20180080322A1 (en) * 2016-09-22 2018-03-22 Bouygues Travaux Publics Automated device for drilling a hole in the vault and walls of a tunnel and for installing an anchoring element into said hole
CN108915587A (zh) * 2018-07-17 2018-11-30 山西伟捷瑞铁路工程有限公司 自动找正基准在隧道壁精确定位钻孔的设备及方法
WO2021077693A1 (zh) * 2019-10-23 2021-04-29 中国矿业大学 一种井下快速掘进的探掘支锚运一体机系统及其使用方法
CN111594204A (zh) * 2020-04-13 2020-08-28 中北大学 一种采用气压驱动的隧道钻孔设备
CN212079198U (zh) * 2020-04-24 2020-12-04 陈第夫 开凿角度可调式隧道工程施工用钻孔设备
CN111677457A (zh) * 2020-06-28 2020-09-18 中铁九局集团电务工程有限公司 一种钻孔臂
CN114622924A (zh) * 2022-05-17 2022-06-14 中铁九局集团电务工程有限公司 一种多臂协同作业钻孔机器人
CN217421190U (zh) * 2022-05-17 2022-09-13 中铁九局集团电务工程有限公司 一种钻孔机器人的钻孔臂

Also Published As

Publication number Publication date
JP7506897B2 (ja) 2024-06-27
JP2024504910A (ja) 2024-02-02
CN114622924B (zh) 2022-08-30
CN114622924A (zh) 2022-06-14

Similar Documents

Publication Publication Date Title
WO2023061026A1 (zh) 一种多臂协同作业钻孔机器人
CN103437782B (zh) 液压自移式钢模台车及其施工方法
CN109611112B (zh) 一种隧道开挖掘进用多头凿岩钻机
CN105422143A (zh) 隧道施工智能台车
CN109594919B (zh) 一种煤矿用轨道行走式可折叠巷道架管机
CN105293315A (zh) 一种装配式建筑预制构件的吊装设备
CN110685701A (zh) 适用于空间受限的已运营车站内盾构机平移调头的方法
CN217421190U (zh) 一种钻孔机器人的钻孔臂
CN204457807U (zh) 一种隧道水沟电缆槽液压式模板台车
CN103953352A (zh) 封闭车站长距离盾构机快速过站调头施工方法
WO2020155600A1 (zh) 一种建筑施工系统及其施工方法
CN202325546U (zh) 侧滑式针梁底模台车
CN111155780B (zh) 螺杆洞封堵机器人及具有其的造楼系统
CN106869827B (zh) 一种自行走式动力猫道及其行走方法
WO2018095321A1 (zh) 一种伞钻的大臂自动定位装置及方法
CN216112480U (zh) 一种高精度管道顶推系统
CN206942771U (zh) 开挖台架
CN205243535U (zh) 一种用于台车的移动锁紧机构
CN114837026A (zh) 一种智能精调车及精调方法
CN111173445B (zh) 一种基于tbm法隧洞施工的钻孔用移动台车
CN113790069A (zh) 一种用于盾构地下对接的管片拼装注浆一体机
CN212027810U (zh) 一种3d打印地下空间建筑机器人及掘进机
CN110821525A (zh) 一种隧道初支喷射混凝土工作平台
CN114575903A (zh) 一种高边坡及大型洞室支护智能施工方法及施工装置
CN209339544U (zh) 一种建筑施工用墙体抹灰调平装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22879973

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023539072

Country of ref document: JP