WO2023060941A1 - 一种在太阳能电池基底表面制备电极膜层的方法 - Google Patents

一种在太阳能电池基底表面制备电极膜层的方法 Download PDF

Info

Publication number
WO2023060941A1
WO2023060941A1 PCT/CN2022/101421 CN2022101421W WO2023060941A1 WO 2023060941 A1 WO2023060941 A1 WO 2023060941A1 CN 2022101421 W CN2022101421 W CN 2022101421W WO 2023060941 A1 WO2023060941 A1 WO 2023060941A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode material
solar cell
energy
metal electrode
cell substrate
Prior art date
Application number
PCT/CN2022/101421
Other languages
English (en)
French (fr)
Inventor
肖平
熊继光
赵志国
刘家梁
李梦洁
赵东明
秦校军
张赟
董超
王雪玲
许世森
刘入维
梁思
Original Assignee
中国华能集团清洁能源技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团清洁能源技术研究院有限公司 filed Critical 中国华能集团清洁能源技术研究院有限公司
Publication of WO2023060941A1 publication Critical patent/WO2023060941A1/zh
Priority to US18/449,506 priority Critical patent/US20230387342A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • C23C26/02Coating not provided for in groups C23C2/00 - C23C24/00 applying molten material to the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/40Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a p-i-n structure, e.g. having a perovskite absorber between p-type and n-type charge transport layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention belongs to the technical field of solar cells, in particular to a method for preparing an electrode film layer on the surface of a solar cell substrate.
  • the process of preparing solar cells involves depositing electrode materials on the surface of the substrate.
  • the most common electrode material deposition method is thermal evaporation, but this method requires higher temperature and will generate greater heat radiation, which will damage the substrate. material (such as a layer of perovskite material) to cause damage.
  • the object of the present invention is to provide a method for preparing an electrode film layer on the surface of a solar cell substrate, which can effectively reduce the damage to the solar cell substrate during the preparation process of the electrode film layer.
  • the invention provides a method for preparing an electrode film layer on the surface of a solar cell substrate, comprising the following steps:
  • the energy of the low-energy bombardment is 30-80eV.
  • the vacuum condition is 5 ⁇ 10 -5 ⁇ 5 ⁇ 10 -3 Pa.
  • the vacuum condition is 1 ⁇ 10 -4 ⁇ 1 ⁇ 10 -3 Pa.
  • the metal electrode material is gold, silver, copper, iron, aluminum, cadmium, molybdenum, titanium, tin, tungsten, zinc, gallium, germanium, arsenic, selenium, rhodium, palladium, indium, One or more of antimony, osmium, iridium, platinum, thallium, bismuth and polonium.
  • the metal electrode material is one or more of gold, silver and copper.
  • the ion source is an argon plasma source, a Hall ion source or a Kaufmann ion source.
  • the solar cell substrate is a substrate provided with a perovskite material layer.
  • the solar cell substrate includes a hole transport layer, a perovskite material layer and an electron transport layer in contact with each other.
  • the thickness of the deposition is 50-300 nm.
  • the thickness of the deposition is 100-200 nm.
  • the invention provides a method for preparing an electrode film layer on the surface of a solar battery substrate.
  • the method provided by the present invention includes the following steps: a) heating and melting the metal electrode material under vacuum conditions to obtain a metal electrode material melt; b) bombarding the metal electrode material melt with an ion source at low energy to sputter-deposit it on An electrode film layer is formed on the surface of the solar cell substrate; the energy of the low-energy bombardment is 30-80eV.
  • the electrode material is firstly heated to melt, and then deposited on the surface of the substrate by bombarding the melt of the electrode material with low-energy particles.
  • this method does not need to heat the electrode material to the vaporized state, it can significantly reduce the thermal radiation during the deposition of the electrode material and reduce the thermal radiation damage to the substrate; at the same time, because the method uses low-energy particle bombardment, it can also effectively avoid Impact damage to substrates caused by high-energy particle bombardment.
  • the method provided by the invention can effectively reduce the damage to the solar cell substrate in the preparation process of the electrode film layer, has low energy consumption, and has good market prospects.
  • the invention provides a method for preparing an electrode film layer on the surface of a solar cell substrate, comprising the following steps:
  • the vacuum condition is preferably 5 ⁇ 10 -5 to 5 ⁇ 10 -3 Pa, more preferably 1 ⁇ 10 -4 to 1 ⁇ 10 -3 Pa, specifically, 1 ⁇ 10 -4 Pa, 2 ⁇ 10 -4 Pa, 3 ⁇ 10 -4 Pa , 4 ⁇ 10 -4 Pa, 5 ⁇ 10 -4 Pa, 6 ⁇ 10 -4 Pa, 7 ⁇ 10 -4 Pa, 8 ⁇ 10 -4 Pa, 9 ⁇ 10 -4 Pa or 1 ⁇ 10 -3 Pa.
  • the metal electrode material includes but not limited to gold, silver, copper, iron, aluminum, cadmium, molybdenum, titanium, tin, tungsten, zinc, gallium, germanium, arsenic, One or more of selenium, rhodium, palladium, indium, antimony, osmium, iridium, platinum, thallium, bismuth and polonium, preferably one or more of gold, silver and copper.
  • the heating and melting temperature is greater than the melting temperature of the metal electrode material under vacuum conditions, and is less than the boiling point temperature of the metal electrode material under vacuum conditions; more specifically Specifically, when copper is selected as the metal electrode material, the temperature for heating and melting is preferably 1060-1082°C; when gold is selected for the metal electrode material, the temperature for heating and melting is preferably 1040-1064°C; when the When silver is selected as the metal electrode material, the heating and melting temperature is preferably 940-961°C.
  • the ion source includes but not limited to an argon plasma source, a Hall ion source or a Kaufmann ion source.
  • the energy of the low-energy bombardment is 30-80eV, specifically 30eV, 35eV, 40eV, 45eV, 50eV, 55eV, 60eV, 65eV, 70eV, 75eV or 80eV.
  • the solar cell substrate is preferably a substrate provided with a perovskite material layer, and more preferably includes a contact hole transport layer, a perovskite material layer and an electron transport layer. layer.
  • the thickness of the deposition is preferably 50-300nm, more preferably 100-200nm, specifically 100nm, 110nm, 120nm, 130nm, 140nm, 150nm, 160nm, 170nm, 180nm, 190nm or 200nm.
  • the electrode material is firstly heated to melt, and then deposited on the surface of the substrate by bombarding the melt of the electrode material with low-energy particles. Since this method does not need to heat the electrode material to the vaporized state, it can significantly reduce the thermal radiation during the deposition of the electrode material and reduce the thermal radiation damage to the substrate; at the same time, because the method uses low-energy particle bombardment, it can also effectively avoid Impact damage to substrates caused by high-energy particle bombardment.
  • the method provided by the invention can effectively reduce the damage to the solar cell substrate in the preparation process of the electrode film layer, has low energy consumption, and has a good market prospect.
  • the concrete steps of evaporation electrode are as follows:
  • step b) using an argon plasma source to bombard the copper melt obtained in step a) with an energy of 30 eV, so that it is sputter-deposited on the surface of the transport layer of the substrate to form a 150 nm thick copper electrode film;
  • the temperature of the chamber and the substrate was detected, and the result was: the temperature of the chamber was 65.5°C, and the temperature of the substrate was 66.1°C.
  • the concrete steps of evaporation electrode are as follows:
  • step b) using a Hall ion source to bombard the gold melt obtained in step a) with an energy of 80 eV, so that it is sputter-deposited on the surface of the transport layer of the substrate to form a 100 nm thick gold electrode film;
  • the temperature of the chamber and the substrate was detected, and the result was: the temperature of the chamber was 62.2°C, and the temperature of the substrate was 61.4°C.
  • step b) using a Kaufman ion source, bombarding the silver melt obtained in step a) with an energy of 55 eV, making it sputter-deposited on the surface of the transport layer of the substrate to form a 120 nm thick silver electrode film;
  • the temperature of the chamber and the substrate was detected, and the result was: the temperature of the chamber was 56.2°C, and the temperature of the substrate was 55.4°C.
  • Example 2 For the same batch of battery sheets prepared by the method in Example 1, copper electrodes were prepared by traditional thermal evaporation method when preparing metal electrodes, and the thickness was also 150 nm. Among them, the cabin temperature detection value is 81.3°C, and the base temperature is 80.2°C.
  • gold electrodes were prepared by traditional thermal evaporation when preparing metal electrodes, and the thickness was also 100nm. Among them, the cabin temperature detection value is 75.6°C, and the base temperature is 76.3°C.
  • silver electrodes were prepared by traditional thermal evaporation method when preparing metal electrodes, and the thickness was also 120 nm. Among them, the cabin temperature detection value is 67.3°C, and the base temperature is 66.7°C.

Landscapes

  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Photovoltaic Devices (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种在太阳能电池基底表面制备电极膜层的方法,该方法包括以下步骤:a)在真空条件下将金属电极材料加热熔融,得到金属电极材料熔体;b)用离子源低能轰击所述金属电极材料熔体,使其溅射沉积在太阳能电池基底表面,形成电极膜层;低能轰击的能量为30~80eV。该方法不需要将电极材料加热至蒸发态,可以显著减少电极材料沉积过程中的热辐射,降低基底的热辐射损伤;同时,由于该方法采用的是低能粒子轰击,因此还可以有效避免高能粒子轰击对基底造成的冲击损伤,能够有效减少电极膜层制备过程中对太阳能电池基底的损伤,且能耗较低,具有良好的市场前景。

Description

一种在太阳能电池基底表面制备电极膜层的方法
本申请要求于2021年10月14日提交中国专利局、申请号为202111198189.6、发明名称为“一种在太阳能电池基底表面制备电极膜层的方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于太阳能电池技术领域,尤其涉及一种在太阳能电池基底表面制备电极膜层的方法。
背景技术
随着人们意识到石化能源是不可再生的、有限的,并且伴随着全球性环境污染与生态破环,世界各国开始加强清洁能源的开发,从而推动了太阳能电池的发展,效率不断提高,单晶体硅电池的效率已经从20世纪50年代的6%提高到目前的24.7%,多晶体硅电池的效率达到了20.3%,在薄膜电池的研究工作中,非晶硅薄膜电池效率达到了13%,碲化镉(CdTe)效率达到了16.4%,铜铟硒(CIS)的效率达到19.5%。而多结叠层光电池的研究更是取得了长足的进步,聚光条件下GaInP/Ga(In)As/Ge多结光电池的转化效率已经突破了40%。
在太阳能电池的制备过程中,涉及在基底表面沉积电极材料的环节,目前最为常见的电极材料沉积方法为热蒸发,但该方法对温度要求更高,会产生较大的热辐射,从而对基底材料(如钙钛矿材料层)造成损伤。
发明内容
有鉴于此,本发明的目的在于提供一种在太阳能电池基底表面制备电极膜层的方法,该方法能有效减少电极膜层制备过程中对太阳能电池基底的损伤。
本发明提供了一种在太阳能电池基底表面制备电极膜层的方法,包括以下步骤:
a)在真空条件下将金属电极材料加热熔融,得到金属电极材料熔体;
b)用离子源低能轰击所述金属电极材料熔体,使其溅射沉积在太阳能电池基底表面,形成电极膜层;
所述低能轰击的能量为30~80eV。
优选的,步骤a)中,所述真空条件为5×10 -5~5×10 -3Pa。
更优选的,步骤a)中,所述真空条件为1×10 -4~1×10 -3Pa。
优选的,步骤a)中,所述金属电极材料为金、银、铜、铁、铝、镉、钼、钛、锡、钨、锌、镓、锗、砷、硒、铑、钯、铟、锑、锇、铱、铂、铊、铋和钋中的一种或多种。
更优选的,步骤a)中,所述金属电极材料为金、银和铜中的一种或多种。
优选的,步骤b)中,所述离子源为氩气等离子体源、霍尔离子源或考夫曼离子源。
优选的,步骤b)中,所述太阳能电池基底为设置有钙钛矿材料层的基底。
更优选的,步骤b)中,所述太阳能电池基底包括相接触的空穴传输层、钙钛矿材料层和电子传输层。
优选的,步骤b)中,所述沉积的厚度为50~300nm。
更优选的,步骤b)中,所述沉积的厚度为100~200nm。
与现有技术相比,本发明提供了一种在太阳能电池基底表面制备电极膜层的方法。本发明提供的方法包括以下步骤:a)在真空条件下将金属电极材料加热熔融,得到金属电极材料熔体;b)用离子源低能轰击所述金属电极材料熔体,使其溅射沉积在太阳能电池基底表面,形成电极膜层;所述低能轰击的能量为30~80eV。本发明提供的方法首先加热电极材料至熔融,之后通过对电极材料熔体进行低能粒子轰击使其沉积到基底表面。由于该方法不需要将电极材料加热至蒸发态,因此可以显著减少电极材料沉积过程中的热辐射,降低基底的热辐射损伤;同时,由于该方法采用的是低能粒子轰击,因此还可以有效避免高能粒子轰击对基底造成的冲击损伤。本发明提供的方法可以有效减少电极膜层制备过程中对太阳能电池基底的损伤,且能耗较低,具有良好的市场前景。
具体实施方式
下面对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供了一种在太阳能电池基底表面制备电极膜层的方法,包括以下步骤:
a)在真空条件下将金属电极材料加热熔融,得到金属电极材料熔体;
b)用离子源低能轰击所述金属电极材料熔体,使其溅射沉积在太阳能电池基底表面,形成电极膜层。
在本发明提供的方法中,步骤a)中,所述真空条件优选为5×10 -5~5×10 -3Pa,更优选为1×10 -4~1×10 -3Pa,具体可为1×10 -4Pa、2×10 -4Pa、3×10 -4Pa、4×10 -4Pa、5×10 -4Pa、6×10 -4Pa、7×10 -4Pa、8×10 -4Pa、9×10 -4Pa或1×10 -3Pa。
在本发明提供的方法中,步骤a)中,所述金属电极材料包括但不限于金、银、铜、铁、铝、镉、钼、钛、锡、钨、锌、镓、锗、砷、硒、铑、钯、铟、锑、锇、铱、铂、铊、铋和钋中的一种或多种,优选为金、银和铜中的一种或多种。
在本发明提供的方法中,步骤a)中,所述加热熔融的温度大于所述金属电极材料在真空条件下的熔融温度,且小于所述金属电极材料在真空条件下的沸点温度;更具体来说,当所述金属电极材料选择铜时,则加热熔融的温度优选为1060~1082℃;当所述金属电极材料选择金时,则加热熔融的温度优选为1040-1064℃;当所述金属电极材料选择银时,则加热熔融的温度优选为940-961℃。
在本发明提供的方法中,步骤b)中,所述离子源包括但不限于氩气等离子体源、霍尔离子源或考夫曼离子源。
在本发明提供的方法中,步骤b)中,所述低能轰击的能量为30~80eV,具体可为30eV、35eV、40eV、45eV、50eV、55eV、60eV、65eV、70eV、 75eV或80eV。
在本发明提供的方法中,步骤b)中,所述太阳能电池基底优选为设置有钙钛矿材料层的基底,更优选为包括相接触的空穴传输层、钙钛矿材料层和电子传输层。
在本发明提供的方法中,步骤b)中,所述沉积的厚度优选为50~300nm,更优选为100~200nm,具体可为100nm、110nm、120nm、130nm、140nm、150nm、160nm、170nm、180nm、190nm或200nm。
本发明提供的方法首先加热电极材料至熔融,之后通过对电极材料熔体进行低能粒子轰击使其沉积到基底表面。由于该方法不需要将电极材料加热至蒸发态,因此可以显著减少电极材料沉积过程中的热辐射,降低基底的热辐射损伤;同时,由于该方法采用的是低能粒子轰击,因此还可以有效避免高能粒子轰击对基底造成的冲击损伤。本发明提供的方法可以有效减少电极膜层制备过程中对太阳能电池基底的损伤,且能耗较低,具有良好的市场前景。
为更清楚起见,下面通过以下实施例进行详细说明。
实施例1
以磁控溅射方法在基底表面制备NiO x空穴传输层;再以刮涂法制备钙钛矿层,钙钛矿前体为MAPbI 3,MAI∶PbI 2=1:1(摩尔比),浓度1mol/L,溶剂DMF;退火后,以蒸镀法制备C60电子传输层;最后蒸镀电极,得到电池片。其中,蒸镀电极的具体步骤如下:
a)在1×10 -4Pa压力下将金属电极材料铜加热至1060~1082℃,使接近或成为熔体状态;
b)用氩气等离子体源,以30ev的能量低能轰击步骤a)得到的铜熔体,使其溅射沉积在基底的传输层表面,形成150nm厚的铜电极膜层;
溅射沉积的过程中,对舱室和基底的温度进行检测,结果为:舱室温度65.5℃,基底温度66.1℃。
实施例2
以旋涂法依次在基底表面制备SnO 2电子传输层和钙钛矿层,钙钛矿 前体为MAPbI 3,MAI∶PbI 2=1:1.05(摩尔比),浓度1mol/L,溶剂DMF∶DMSO=9∶1(体积比);退火后,旋涂制备Spiro-OMeTAD空穴传输层;最后蒸镀电极,得到电池片。其中,蒸镀电极的具体步骤如下:
a)在5×10 -3Pa压力下将金属电极材料金加热至1040~1064℃,使接近或成为熔体状态;
b)用霍尔离子源,以80ev的能量低能轰击步骤a)得到的金熔体,使其溅射沉积在基底的传输层表面,形成100nm厚的金电极膜层;
溅射沉积的过程中,对舱室和基底的温度进行检测,结果为:舱室温度62.2℃,基底温度61.4℃。
实施例3
以旋涂法制备PEDOT:PSS空穴传输层;再以刮涂法制备钙钛矿层,钙钛矿前体为FA 0.75MA 0.25PbI 3,浓度1.2mol/L,溶剂DMF;退火后,以蒸镀法制备C60电子传输层;最后蒸镀电极,得到电池片。其中,蒸镀电极的具体步骤如下:
a)在1×10 -3Pa压力下将金属电极材料银加热至940~961℃,使接近或成为熔体状态;
b)用考夫曼离子源,以55ev的能量低能轰击步骤a)得到的银熔体,使其溅射沉积在基底的传输层表面,形成120nm厚的银电极膜层;
溅射沉积的过程中,对舱室和基底的温度进行检测,结果为:舱室温度56.2℃,基底温度55.4℃。
对比例1
以实施例1中的方法制备的同一批电池片,在制备金属电极时采用传统热蒸发的方法制备铜电极,厚度同样为150nm。其中,舱室温度检测值为81.3℃,基底温度80.2℃。
对比例2
以实施例2中的方法制备的同一批电池片,在制备金属电极时采用传 统热蒸发的方法制备金电极,厚度同样为100nm。其中,舱室温度检测值为75.6℃,基底温度76.3℃。
对比例3
以实施例3中的方法制备的同一批电池片,在制备金属电极时采用传统热蒸发的方法制备银电极,厚度同样为120nm。其中,舱室温度检测值为67.3℃,基底温度66.7℃。
电池片效率检测
采用AAA级稳态太阳模拟器和I-V测试系统,对实施例1~3和对比例1~3制备的同一批次的电池片进行效率检测,每组实施例和对比例均抽样检测4个样品,检测结果详见表1:
表1 电池片效率对比如下表
Figure PCTCN2022101421-appb-000001
由表中数据可以看出,在采用本发明的方法制备金属电极时,电池效率有所提升,从侧面印证了本发明方法制备电极对钙钛矿电池膜层的损伤相对较低。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。对所公开的实施例的上述说明,使本领域专技术人员能够实现或使用本发明,对这些实施例的多种修改对本领域专业技术人员来说将是显而易见的。本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖性特点相一致的最宽的范围。

Claims (10)

  1. 一种在太阳能电池基底表面制备电极膜层的方法,包括以下步骤:
    a)在真空条件下将金属电极材料加热熔融,得到金属电极材料熔体;
    b)用离子源低能轰击所述金属电极材料熔体,使其溅射沉积在太阳能电池基底表面,形成电极膜层;
    所述低能轰击的能量为30~80eV。
  2. 根据权利要求1所述的方法,其特征在于,步骤a)中,所述真空条件为5×10 -5~5×10 -3Pa。
  3. 根据权利要求2所述的方法,其特征在于,步骤a)中,所述真空条件为1×10 -4~1×10 -3Pa。
  4. 根据权利要求1所述的方法,其特征在于,步骤a)中,所述金属电极材料为金、银、铜、铁、铝、镉、钼、钛、锡、钨、锌、镓、锗、砷、硒、铑、钯、铟、锑、锇、铱、铂、铊、铋和钋中的一种或多种。
  5. 根据权利要求4所述的方法,其特征在于,步骤a)中,所述金属电极材料为金、银和铜中的一种或多种。
  6. 根据权利要求1所述的方法,其特征在于,步骤b)中,所述离子源为氩气等离子体源、霍尔离子源或考夫曼离子源。
  7. 根据权利要求1所述的方法,其特征在于,步骤b)中,所述太阳能电池基底为设置有钙钛矿材料层的基底。
  8. 根据权利要求7所述的方法,其特征在于,步骤b)中,所述太阳能电池基底包括相接触的空穴传输层、钙钛矿材料层和电子传输层。
  9. 根据权利要求1所述的方法,其特征在于,步骤b)中,所述沉积的厚度为50~300nm。
  10. 根据权利要求9所述的方法,其特征在于,步骤b)中,所述沉积的厚度为100~200nm。
PCT/CN2022/101421 2021-10-14 2022-06-27 一种在太阳能电池基底表面制备电极膜层的方法 WO2023060941A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/449,506 US20230387342A1 (en) 2021-10-14 2023-08-14 Method for preparing electrode film layer on surface of solar cell substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111198189.6A CN113930763B (zh) 2021-10-14 2021-10-14 一种在太阳能电池基底表面制备电极膜层的方法
CN202111198189.6 2021-10-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/449,506 Continuation US20230387342A1 (en) 2021-10-14 2023-08-14 Method for preparing electrode film layer on surface of solar cell substrate

Publications (1)

Publication Number Publication Date
WO2023060941A1 true WO2023060941A1 (zh) 2023-04-20

Family

ID=79279469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/101421 WO2023060941A1 (zh) 2021-10-14 2022-06-27 一种在太阳能电池基底表面制备电极膜层的方法

Country Status (3)

Country Link
US (1) US20230387342A1 (zh)
CN (1) CN113930763B (zh)
WO (1) WO2023060941A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113930763B (zh) * 2021-10-14 2023-11-07 华能新能源股份有限公司 一种在太阳能电池基底表面制备电极膜层的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4336277A (en) * 1980-09-29 1982-06-22 The Regents Of The University Of California Transparent electrical conducting films by activated reactive evaporation
CN106684247A (zh) * 2017-03-15 2017-05-17 中南大学 一种钙钛矿太阳能电池及其制备方法
CN110061136A (zh) * 2019-03-26 2019-07-26 西南石油大学 一种背接触式钙钛矿太阳电池及其制备方法
CN110246926A (zh) * 2019-05-30 2019-09-17 辽宁科技大学 一种制备全无机钙钛矿太阳能电池的磁控溅射方法
CN112831756A (zh) * 2020-12-31 2021-05-25 苏州佑伦真空设备科技有限公司 一种自动化的真空蒸镀方法
WO2021193990A1 (ko) * 2020-03-25 2021-09-30 한국전력공사 버퍼 일체형 투명전극을 구비한 페로브스카이트 태양전지 및 이의 제조 방법
CN113930763A (zh) * 2021-10-14 2022-01-14 华能新能源股份有限公司 一种在太阳能电池基底表面制备电极膜层的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2063513A6 (zh) * 1969-10-20 1971-07-09 Radiotechnique Compelec
JP4993916B2 (ja) * 2006-01-31 2012-08-08 昭和シェル石油株式会社 Inハンダ被覆銅箔リボン導線及びその接続方法
JP2012149321A (ja) * 2011-01-20 2012-08-09 Taiheiyo Cement Corp スパッタリングターゲットおよびその製造方法
CN105390554A (zh) * 2015-12-22 2016-03-09 常州天合光能有限公司 太阳电池电极的制备方法
CN108258128B (zh) * 2018-01-17 2020-09-04 杭州纤纳光电科技有限公司 一种具有界面修饰层的钙钛矿太阳能电池及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4336277A (en) * 1980-09-29 1982-06-22 The Regents Of The University Of California Transparent electrical conducting films by activated reactive evaporation
CN106684247A (zh) * 2017-03-15 2017-05-17 中南大学 一种钙钛矿太阳能电池及其制备方法
CN110061136A (zh) * 2019-03-26 2019-07-26 西南石油大学 一种背接触式钙钛矿太阳电池及其制备方法
CN110246926A (zh) * 2019-05-30 2019-09-17 辽宁科技大学 一种制备全无机钙钛矿太阳能电池的磁控溅射方法
WO2021193990A1 (ko) * 2020-03-25 2021-09-30 한국전력공사 버퍼 일체형 투명전극을 구비한 페로브스카이트 태양전지 및 이의 제조 방법
CN112831756A (zh) * 2020-12-31 2021-05-25 苏州佑伦真空设备科技有限公司 一种自动化的真空蒸镀方法
CN113930763A (zh) * 2021-10-14 2022-01-14 华能新能源股份有限公司 一种在太阳能电池基底表面制备电极膜层的方法

Also Published As

Publication number Publication date
CN113930763B (zh) 2023-11-07
US20230387342A1 (en) 2023-11-30
CN113930763A (zh) 2022-01-14

Similar Documents

Publication Publication Date Title
Wu et al. Nanostructured CdS: O film: preparation, properties, and application
WO2000014812A1 (en) Photovaltaic devices comprising zinc stannate buffer layer and method for making
TW200834944A (en) Doping techniques for group IB III AVIA compound layers
CN102870234B (zh) 制造基于硫属化物的光伏电池的方法
US8390122B2 (en) Sputtering targets including excess cadmium for forming a cadmium stannate layer
Compaan et al. 14% sputtered thin‐film solar cells based on CdTe
WO2023060941A1 (zh) 一种在太阳能电池基底表面制备电极膜层的方法
CN108735828A (zh) 一种异质结背接触太阳能电池及其制备方法
EP2383362B1 (en) Devices and methods of protecting a cadmium sulfide layer for further processing
US8053350B2 (en) Methods of forming a conductive transparent oxide film layer for use in a cadmium telluride based thin film photovoltaic device
WO2014036489A1 (en) METHOD OF CONTROLLING THE AMOUNT OF Cu DOPING WHEN FORMING A BACK CONTACT OF A PHOTOVOLTAIC CELL
Caudevilla et al. Indium tin oxide obtained by high pressure sputtering for emerging selective contacts in photovoltaic cells
EP2371990B1 (en) Methods of forming a conductive transparent oxide film layer for use in a cadmium telluride based thin film photovoltaic device
WO2024113808A1 (zh) 太阳电池及太阳电池的制备方法
KR20100085769A (ko) CdS/CdTe 박막 태양전지 및 그 제조 방법
CN115295658A (zh) 一种无溶剂化全无机钙钛矿太阳能电池及其制备方法
Aïssa et al. Impact of the oxygen content on the optoelectronic properties of the indium-tin-oxide based transparent electrodes for silicon heterojunction solar cells
CN110718595A (zh) 基于溶液法制备的氧化物-金属复合电子传输层及包括其的晶硅太阳电池
TWI634669B (zh) 大面積薄膜太陽能電池的製法
Bothwell et al. Efficiency advances in Thin CdSeTe/CdTe solar cells with CdMgTe at the back
Sun et al. Effects of Sb-doping on the grain growth of CIGS thin films fabricated by electrodeposition
CN110518129B (zh) 一种用于叠层电池透明电极的高透过率缓冲层结构的制备方法
CN115915871A (zh) 一种复合电子传输层及其制备方法和应用
CN117460379A (zh) 一种透明电极及其制备方法、钙钛矿/晶硅异质结叠层太阳电池
CN115623798A (zh) 绒面平滑处理的钙钛矿/硅叠层太阳电池及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22879888

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE