WO2023060875A1 - 一种大功率y结型波导环形器 - Google Patents

一种大功率y结型波导环形器 Download PDF

Info

Publication number
WO2023060875A1
WO2023060875A1 PCT/CN2022/089494 CN2022089494W WO2023060875A1 WO 2023060875 A1 WO2023060875 A1 WO 2023060875A1 CN 2022089494 W CN2022089494 W CN 2022089494W WO 2023060875 A1 WO2023060875 A1 WO 2023060875A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal copper
waveguide
water
fixedly connected
power
Prior art date
Application number
PCT/CN2022/089494
Other languages
English (en)
French (fr)
Inventor
张辉
慕振成
傅世年
欧阳华甫
荣林艳
周文中
王博
万马良
谢哲新
李松
刘美飞
Original Assignee
散裂中子源科学中心
中国科学院高能物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 散裂中子源科学中心, 中国科学院高能物理研究所 filed Critical 散裂中子源科学中心
Publication of WO2023060875A1 publication Critical patent/WO2023060875A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/30Auxiliary devices for compensation of, or protection against, temperature or moisture effects ; for improving power handling capability
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/04Fixed joints
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/32Non-reciprocal transmission devices
    • H01P1/38Circulators
    • H01P1/383Junction circulators, e.g. Y-circulators
    • H01P1/39Hollow waveguide circulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports

Definitions

  • the invention relates to the technical field of waveguide circulators, in particular to a high-power Y-junction waveguide circulator.
  • the radio frequency power source designed by the Institute of High Energy Physics, Chinese Academy of Sciences for boron neutron cancer therapy (BNCT) needs to be protected by a circulator to prevent damage to core components caused by high power reflection.
  • the stable operation of the core components of the BNCT power source plays a decisive role in the entire treatment system.
  • a reliable and stable circulator is the key to ensure the safe operation of the core components.
  • a high-power circulator is a very important device in a microwave radio frequency system. When the load standing wave is relatively high, it will cause the output window to ignite and damage the power device. Since the characteristics of the load in BNCT applications vary in a wide range, it will cause great fluctuations in the working state of the power source. In order to reduce such effects, a circulator will be inserted between the power source and the load. In order to adapt to the harsh load change characteristics in practical applications, high-power circulators must not only be able to withstand relatively large incident power, but also require the ability to withstand total reflection power for 24 hours.
  • the insertion loss of the circulator is also a very important indicator, because the insertion loss directly determines the power absorbed by the ferrite of the circulator, the more the absorbed power, the higher the temperature of the ferrite, which not only affects the circulator
  • the heat dissipation unit brings a great burden and the performance of the circulator will deteriorate rapidly when the temperature is too high, resulting in system instability.
  • the circulator can withstand total reflection for 24 hours and the insertion loss is less than 0.2dB, and has good index characteristics in the range of 20°C to 60°C.
  • the existing circulators do not have the function of cooling down.
  • the ferrite will overheat and cause the gyromagnetic effect to be lost. If the device itself loses a lot, it will cause increased power reflection, device burnout, etc., and Conventional circulators are not convenient for mating connections.
  • the purpose of the present invention is to provide a high-power Y-junction waveguide circulator to solve the problem of
  • the existing circulators proposed in the above-mentioned background technology do not have the function of cooling. Under high continuous power conditions, the overheating of the ferrite will cause the loss of the gyromagnetic effect, and the traditional circulators are not easy to match and connect.
  • the present invention provides the following technical solutions: a high-power Y-junction waveguide circulator, the Y-junction circulator consists of a ferrite-loaded central circular cavity area, three intersecting 120-degree waveguides It is composed of a movable ladder-like matching structure.
  • a high-power Y-junction waveguide circulator including a waveguide, a number of stainless steel support columns are fixedly connected around the outside of the waveguide, and the two ends of the stainless steel support columns are fixedly connected with magnetic shielding plates through screws.
  • Conductive coils are fixedly connected to the corresponding surface of the magnetic shielding plate and the waveguide, a metal copper cooling plate is arranged inside the waveguide, and a matching structure is installed on the inner wall of the waveguide.
  • the metal copper heat sink is provided with two and the inside of the metal copper heat sink is provided with a water channel, and one end of the two metal copper heat sinks is fixedly connected with a first Metal copper water pipes, one end of the two first metal copper water pipes extends to the outer wall of the waveguide and is connected with a first water distribution pipe, and a water inlet pipe is fixedly connected to the surface of the first water distribution pipes.
  • a group of second metal copper water pipes are fixedly connected to both sides of the other ends of the two metal copper heat sinks, and one end of the two groups of second metal copper water pipes Both are interspersed and extended to the outer wall of the waveguide and are fixedly connected with a second water distribution pipe.
  • the two second water distribution pipes are fixedly connected through a communication pipe, and the middle part of the communication pipe is fixedly connected with an outlet pipe.
  • the matching mechanism includes three long holes opened on the inner wall of the waveguide, and a fixing screw is provided for sliding inside the long hole, and one end of the fixing screw is fixedly connected There is a ladder matching block, and the ladder matching block is slidably connected inside the long hole through a fixing screw.
  • both sides of the metal copper heat sink are bonded with ferrite through silica gel, and there is a certain distance between the two metal copper heat sinks .
  • the ferrite is made of garnet-type material, and the ferrite is composed of a plurality of small ferrite blocks, which are bonded to the metal copper cooling plate through silicon rubber.
  • a magnetic steel is installed in the middle of the conductive coil.
  • the present invention discloses a high-power Y-junction waveguide circulator, which can be used for isolation, ringing, direction change of microwave radio frequency signals and protection of microwave radio frequency devices , and ensure good transmission characteristics, small leakage, and low insertion loss.
  • the present invention mainly transmits the temperature of the ferrite to the surface of the metal copper heat dissipation plate through the provided metal copper heat dissipation plate to increase the temperature of the metal copper heat dissipation plate.
  • the cooling water is passed into the water inlet pipe and flows into the metal
  • the copper heat dissipation plate flows along the water channel to take away the heat, the cooling water enters the second metal copper water pipe and flows into the second water distribution pipe, and finally converges into the inside of the connecting pipe, and flows out through the outlet pipe connected in the middle of the connecting pipe to realize heat dissipation;
  • the present invention is equipped with a matching mechanism.
  • the matching structure is a ladder matching block of metal aluminum alloy. There are three ladder matching blocks in total. It has good matching performance.
  • Fig. 1 is the front view structure schematic diagram of the present invention
  • Fig. 2 is a schematic diagram of the internal structure of the present invention.
  • Fig. 3 is the schematic diagram of the cross-sectional structure of the metal copper cooling plate of the present invention.
  • Fig. 4 is a schematic diagram of the installation structure of the ladder matching block of the present invention.
  • Fig. 5 is a working principle diagram of the present invention.
  • Waveguide 1. Waveguide; 2. Stainless steel support column; 3. Magnetic shielding plate; 4. Conductive coil; 5. Metal copper cooling plate; 51. The first metal copper water pipe; 52. The second metal copper water pipe; 1 water distribution pipe; 7, water inlet pipe; 8, second water distribution pipe; 9, connecting pipe; 10, water outlet pipe; 11, long hole; 12, fixing screw; 13, step matching block; magnetic steel.
  • a high-power Y-junction waveguide circulator is composed of a central circular cavity area loaded by a ferrite 14, three intersecting waveguides 1 of 120 degrees and a movable stepped matching structure.
  • a high-power Y-junction waveguide circulator including a waveguide 1, a number of stainless steel support columns 2 are fixedly connected around the outside of the waveguide 1, and both ends of the stainless steel support columns 2 are fixedly connected with magnetic shielding plates 3 through screws, and two magnetic
  • the conductive coil 4 is fixedly connected to the corresponding surface of the shielding plate 3 and the waveguide 1
  • a metal copper cooling plate 5 is provided inside the waveguide 1
  • a matching structure is installed on the inner wall of the waveguide 1 .
  • two metal copper cooling discs 5 are provided with water passages inside the metal copper cooling discs 5, and one end of the two metal copper cooling discs 5 is fixedly connected with a first metal copper water pipe 51, and two second metal copper water pipes 51 are fixedly connected.
  • One end of a metal copper water pipe 51 extends to the outer wall of the waveguide 1 and is jointly connected with the first water distribution pipe 6, the surface of the first water distribution pipe 6 is fixedly connected with the water inlet pipe 7, and the other ends of the two metal copper cooling plates 5 are on both sides Both are fixedly connected with a group of second metal copper water pipes 52, and one end of the two groups of second metal copper water pipes 52 is inserted and extended to the outer wall of the waveguide 1 and is fixedly connected with a second water distribution pipe 8, and the two second water distribution pipes 8 pass through
  • the communication pipe 9 is fixedly connected, and the middle part of the communication pipe 9 is fixedly connected with a water outlet pipe 10 .
  • the temperature of the ferrite 14 will be higher, and the temperature of the ferrite 14 will be transferred to the surface of the metal copper heat sink 5 so that the temperature of the metal copper heat sink 5 will rise.
  • the temperature of the ferrite 14 will be transferred to the surface of the metal copper heat sink 5 so that the temperature of the metal copper heat sink 5 will rise.
  • into the inside of the water inlet pipe 7 flows into the inside of the first water distribution pipe 6 through the water inlet pipe 7, and then flows into the first metal copper water pipe 51 through the first water distribution pipe 6, and the cooling water enters the two metal copper water pipes through the first metal copper water pipe 51.
  • the cooling water absorbs the heat of the metal copper heat dissipation plate 5 to cool it down during the circulation process, and the cooling water flows through the other end of the metal copper heat dissipation plate 5 and enters the second end of the copper heat dissipation plate 5.
  • the two-metal copper water pipe 52 flows into the second water distribution pipe 8, and finally converges to the inside of the connecting pipe 9, and flows out through the outlet pipe 10 connected to the middle of the connecting pipe 9 to realize cooling and heat dissipation, and reduce the temperature of the ferrite 14 to ensure stable operation. .
  • the matching mechanism includes three elongated holes 11 provided on the inner wall of the waveguide 1, inside the elongated holes 11, a fixing screw 12 is slidably arranged, and one end of the fixing screw 12 is fixedly connected with a step matching block 13, the step matching block 13 is slidably connected inside the elongated hole 11 through the fixing screw 12.
  • the matching structure is a stepped matching block 13 of metal aluminum alloy, and there are three in total.
  • the stepped matching block 13 can move inside the long hole 11 along with the fixing screw 12, which is convenient for adjustment and makes the port have good matching performance.
  • both sides of the metal copper cooling plate 5 are bonded with ferrite 14 using garnet-type materials through silica gel, more specifically, a garnet series (YIG) ferrite block is used, and two metal copper There is a certain distance between the cooling discs 5 .
  • YIG garnet series
  • the ferrite 14 bonded on both sides of the metal copper heat sink 5 belongs to a semiconductor, and it is utilized as a magnetic medium. Keep enough distance between the two metal copper heat sinks 5 to prevent the occurrence of fire.
  • a magnetic steel 15 is installed in the middle of the conductive coil 4 .
  • a magnetic steel 15 is installed in the middle of the conductive coil 4, and its effect is to increase the magnetic field intensity.
  • the magnetic steel 15 concentrates the magnetic force lines around the conductive coil 4 and circulates from the magnetic steel 15.
  • the magnetic shielding plate 3 is installed on the conductive coil 4.
  • the main functions are: reduce the influence of the external magnetic field on the bias magnetic field of the circulator, protect the microwave and radio frequency devices around the circulator from the influence of the circulator magnetic field, and provide a low reluctance channel to improve the magnetic circuit efficiency of the circulator , to reduce the magnet size.
  • a high-power Y-junction waveguide circulator of the present invention is composed of a ferrite-loaded central circular cavity area, three intersecting waveguides 1 of 120 degrees and a movable stepped matching structure ;
  • the principle of microwave ferrite is that the ferrite is in a magnetized state when a constant and stable magnetic field is applied, and the ferrite presents different magnetic permeability to the left-handed magnetic field and the right-handed magnetic field, so the resident of the TM110 mode The wave field will rotate in one direction, so that the microwave radio frequency signal can only be transmitted in one direction.
  • the Y-junction circulator of the present invention adopts a movable ladder-like matching form.
  • the port matching performance of the circulator can be good, and the parts are few, and the processing is simple; at the same time, the metal plate water-cooling structure is adopted, which is convenient for installation. , good cooling effect. It can ensure that the ferrite is in the center of the cavity, and there is enough space between the conductors to ensure that there will be no sparking during high-power operation.
  • a high-power Y-junction waveguide circulator disclosed by the invention can be used for isolation, ringing, direction change of microwave radio frequency signals and protection of microwave radio frequency devices, and ensures good transmission characteristics, small leakage and low insertion loss;
  • the metal copper cooling plate, the temperature of the ferrite is transferred to the surface of the metal copper cooling plate to increase the temperature of the metal copper cooling plate.
  • the cooling water is passed into the water inlet pipe and flows into the metal copper cooling plate along the water channel Taking heat away, the cooling water enters the second metal copper water pipe and flows into the second water distribution pipe, and finally converges into the inside of the connecting pipe, and flows out through the outlet pipe connected in the middle of the connecting pipe to realize heat dissipation; and the movable stepped matching structure is
  • the stepped matching blocks can move inside the long hole with the fixing screws connected at the bottom, which is convenient for adjustment and makes the port have good matching performance.

Landscapes

  • Non-Reversible Transmitting Devices (AREA)

Abstract

一种大功率Y结型波导环形器,所述的Y结型环形器由一个铁氧体加载的中心圆形腔区域、三个相交120度的波导和可移动阶梯状的匹配结构所构成;本发明可用于微波射频信号的隔离、环形、方向改变和微波射频器件的保护,且保证传输特性好、泄露小、插损低;通过设有的金属铜散热盘,铁氧体温度传递到金属铜散热盘表面使得金属铜散热盘温度升高,此时将冷却水通入进水管内部,并流入到金属铜散热盘中沿着水道流动带走热量,冷却水通过连通管分为两路,分别进入两个金属铜水管中并流入到金属散热盘内部,最终汇流到连通管内部,通过连通管中部连接的出水管流出,实现散热;并且可移动阶梯状的匹配结构为金属铝合金的阶梯匹配块,方便调节,使端口具有良好的匹配性能。

Description

一种大功率Y结型波导环形器
本申请要求于2021年10月15日提交中国专利局、申请号为202111200310.4、发明名称为“一种大功率Y结型波导环形器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及波导环形器技术领域,具体为一种大功率Y结型波导环形器。
背景技术
中国科学院高能物理研究所设计的用于硼中子治癌设备(BNCT)的射频功率源需要用环形器加以保护,防止大功率反射造成核心器件损坏。BNCT功率源核心器件的稳定运行对整个治疗系统具有决定性作用,一款可靠稳定的环形器是保证核心器件安全工作的关键。
大功率环行器是微波射频系统中非常重要的一个器件。当负载驻波比较高时,会导致输出窗打火,损坏功率器件。由于BNCT应用中,负载的特性是大范围变化的,所以会对功率源的工作状态造成很大的波动,为了减少这样的影响,会在功率源与负载之间插入环行器。为了适应实际应用中苛刻的负载变化特性,大功率环行器不但要能够承受住比较大的入射功率,并且要求具备能够24小时承受全反射功率的能力。另外环行器的插入损耗也是非常重要的一个指标,因为插入损耗直接决定了环行器铁氧体吸收的功率大小,吸收功率越多,铁氧体的温度就会越高,这不但对环行器的散热单元带来很大的负担而且当温度过高时环行器的性能会迅速恶化,造成系统不稳定。通过对铁氧体材料的选择、结构的优化设计等,实现环行器可24小时承受全反射并且插入损耗小于0.2dB,在20℃~60℃范围内都具有良好的指标特性。
目前现有的环形器不具有降温的功能,在高连续功率情况下会发生铁氧体过温导致失去旋磁效应,如果器件本身损耗很大会造成功率的反射增 大,器件烧毁等现象,且传统的环形器不便于匹配连接。
发明内容
针对目前在大功率Y结型波导环形器的铁氧体安装、冷却形式和环形器的匹配方式上存在的技术不足,本发明的目的在于提供一种大功率Y结型波导环形器,以解决上述背景技术提出的现有的环形器不具有降温的功能,在高连续功率情况下会发生铁氧体过温导致失去旋磁效应,且传统的环形器不便于匹配连接的问题。
为实现上述目的,本发明提供如下技术方案:一种大功率Y结型波导环形器,所述Y结型环形器由一个铁氧体加载的中心圆形腔区域、三个相交120度的波导和可移动阶梯状的匹配结构所构成。
一种大功率Y结型波导环形器,包括波导,所述波导的外部四周固定连接有若干不锈钢支撑柱,所述不锈钢支撑柱的两端均通过螺杆固定连接有磁屏蔽板,两块所述磁屏蔽板与波导对应表面均固定连接有导电线圈,所述波导的内部设有金属铜散热盘,所述波导的内壁还安装有匹配结构。
为了使得进行散热,作为本发明一种优选方案:所述金属铜散热盘设置有两个且金属铜散热盘的内部开设有水道,两个所述金属铜散热盘的一端均固定连接有第一金属铜水管,两个所述第一金属铜水管的一端穿插延伸至波导的外壁且共同连接有第一分水管,所述第一分水管的表面固定连接有进水管。
为了使得将冷却水循环排出,作为本发明一种优选方案:两个所述金属铜散热盘的另一端两侧均固定连接有一组第二金属铜水管,两组所述第二金属铜水管的一端均穿插延伸至波导的外壁且固定连接有第二分水管,两个所述第二分水管之间通过连通管固定连接,所述连通管的中部固定连接有出水管。
为了使得便于匹配连接,作为本发明一种优选方案:所述匹配机构包括开设在波导的内壁的三个长孔,所述长孔的内部滑动设有固定螺钉,所述固定螺钉的一端固定连接有阶梯匹配块,所述阶梯匹配块通过固定螺钉滑动连接在长孔内部。
为了使得防止大功率时出现打火,作为本发明一种优选方案:所述金 属铜散热盘的两面均通过硅胶粘接有铁氧体,两个所述金属铜散热盘之间相距一定的距离。
为了使得方便使用,所述铁氧体采用石榴石型材料,铁氧体由多个小铁氧体块组合而成,通过硅橡胶与金属铜散热盘粘接。
为了使得增加磁场强度,作为本发明一种优选方案:所述导电线圈的中部安装有磁钢。
与现有技术相比,本发明的有益效果是:(1)本发明公开了一种大功率Y结型波导环形器,可用于微波射频信号的隔离、环形、方向改变和微波射频器件的保护,且保证传输特性好、泄露小、插损低。
(2)本发明主要通过设有的金属铜散热盘,铁氧体温度传递到金属铜散热盘表面使得金属铜散热盘温度升高,此时将冷却水通入进水管内部,并流入到金属铜散热盘中沿着水道流动带走热量,冷却水进入第二金属铜水管中并流入到第二分水管内部,最终汇流到连通管内部,通过连通管中部连接的出水管流出,实现散热;
(3)本发明通过设有的匹配机构,匹配结构为金属铝合金的阶梯匹配块,一共设置有三个,阶梯匹配块可以随着底部连接的固定螺钉在长孔内部移动,方便调节,使端口具有良好的匹配性能。
附图说明
图1为本发明的主视结构示意图;
图2为本发明的内部结构示意图;
图3为本发明的金属铜散热盘剖面结构示意图;
图4为本发明的阶梯匹配块安装结构示意图;
图5为本发明的工作原理图。
图中:1、波导;2、不锈钢支撑柱;3、磁屏蔽板;4、导电线圈;5、金属铜散热盘;51、第一金属铜水管;52、第二金属铜水管;6、第一分水管;7、进水管;8、第二分水管;9、连通管;10、出水管;11、长孔;12、固定螺钉;13、阶梯匹配块;14、铁氧体;15、磁钢。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1-4,本发明提供一种技术方案:
一种大功率Y结型波导环形器,Y结型环形器由一个铁氧体14加载的中心圆形腔区域、三个相交120度的波导1和可移动阶梯状的匹配结构所构成。
一种大功率Y结型波导环形器,包括波导1,波导1的外部四周固定连接有若干不锈钢支撑柱2,不锈钢支撑柱2的两端均通过螺杆固定连接有磁屏蔽板3,两块磁屏蔽板3与波导1对应表面均固定连接有导电线圈4,波导1的内部设有金属铜散热盘5,波导1的内壁还安装有匹配结构。
在本实施例中:金属铜散热盘5设置有两个且金属铜散热盘5的内部开设有水道,两个金属铜散热盘5的一端均固定连接有第一金属铜水管51,两个第一金属铜水管51的一端穿插延伸至波导1的外壁且共同连接有第一分水管6,第一分水管6的表面固定连接有进水管7,两个金属铜散热盘5的另一端两侧均固定连接有一组第二金属铜水管52,两组第二金属铜水管52的一端均穿插延伸至波导1的外壁且固定连接有第二分水管8,两个第二分水管8之间通过连通管9固定连接,连通管9的中部固定连接有出水管10。
具体使用时:当吸收功率越多,铁氧体14的温度就会越高,铁氧体14温度传递到金属铜散热盘5表面使得金属铜散热盘5温度升高,此时将冷却水通入进水管7内部,通过进水管7流入到第一分水管6内部,再由第一分水管6分流到第一金属铜水管51中,冷却水通过第一金属铜水管51进入到两个金属铜散热盘5中,由于金属铜散热盘5内部开设有水道使得冷却水在流通过程中吸收金属铜散热盘5的热量对其进行降温,冷却水流经金属铜散热盘5另一端时进入到第二金属铜水管52中并流入到第二分水管8内部,最终汇流到连通管9内部,通过连通管9中部连接的出水管 10流出,实现冷却散热,降低铁氧体14的温度保证稳定运行。
在本实施例中:匹配机构包括开设在波导1的内壁的三个长孔11,长孔11的内部滑动设有固定螺钉12,固定螺钉12的一端固定连接有阶梯匹配块13,阶梯匹配块13通过固定螺钉12滑动连接在长孔11内部。
具体使用时:匹配结构为金属铝合金的阶梯匹配块13,共有三个,阶梯匹配块13可以随着固定螺钉12在长孔11内部移动,方便调节,使端口具有良好的匹配性能。
在本实施例中:金属铜散热盘5的两面均通过硅胶粘接有采用石榴石型材料的铁氧体14,更具体的是采用石榴石系列(YIG)铁氧体块,两个金属铜散热盘5之间相距一定的距离。
具体使用时:金属铜散热盘5的两面粘接的铁氧体14属于半导体,它是作为磁性介质而被利用,两个金属铜散热盘5之间留出足够的距离防止大功率工作时出现打火。
在本实施例中:导电线圈4的中部安装有磁钢15。
具体使用时:导电线圈4中间安装有磁钢15,其作用是增加磁场强度,磁钢15把导电线圈4周围的磁力线都集中,从磁钢15中流通,磁屏蔽板3安装在导电线圈4和磁钢15的外侧,作用主要有:减少外部磁场对环形器偏置磁场的影响,保护环形器周围微波射频器件不受环形器磁场的影响,提供一个低磁阻通道提高环形器磁路效率,减小磁体尺寸。
本发明的一种大功率Y结型波导环形器,Y结型环形器由一个铁氧体加载的中心圆形腔区域、三个相交120度的波导1和可移动阶梯状的匹配结构所构成;如图5所示,微波铁氧体的原理是在外加恒稳磁场时铁氧体处于磁化状态,铁氧体对左旋磁场和右旋磁场呈现出不同的磁导率,那么TM110模的驻波场将会向一个方向旋转,使得微波射频信号只能向一个方向传输。
环形器入射波、反射波,传输系数和反射系数关系如式(1)所示:
Figure PCTCN2022089494-appb-000001
环形器要想做到绝对的匹配是不可能的,但可以使反射和泄露很小。这就要求S21=S32=S12≈0dB,S11=S22=S33≈S12=S23=S31。实际工作中通常通过调节铁氧体的直径使传输系数减小,调节恒稳磁场使环形器输入端的反射系数最小。
本发明Y结型环形器采用可移动阶梯状匹配形式,采用此种匹配结构形式,可实现环形器的端口匹配性能良好,并且零部件少,加工简单;同时采用金属盘水冷结构形式,便于安装,冷却效果好。可以保证铁氧体处于腔体的中心位置,且导体间距留有足够空间,保证在大功率工作时不会发生打火现象。
本发明公开的一种大功率Y结型波导环形器,可用于微波射频信号的隔离、环形、方向改变和微波射频器件的保护,且保证传输特性好、泄露小、插损低;通过设有的金属铜散热盘,铁氧体温度传递到金属铜散热盘表面使得金属铜散热盘温度升高,此时将冷却水通入进水管内部,并流入到金属铜散热盘中沿着水道流动带走热量,冷却水进入第二金属铜水管中并流入到第二分水管内部,最终汇流到连通管内部,通过连通管中部连接的出水管流出,实现散热;并且可移动阶梯状的匹配结构为金属铝合金的阶梯匹配块,一共设置有三个,阶梯匹配块可以随着底部连接的固定螺钉在长孔内部移动,方便调节,使端口具有良好的匹配性能。
本说明中未作详细描述的内容属于本领域专业技术人员公知的现有技术,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (8)

  1. 一种大功率Y结型波导环形器,其特征在于:所述的Y结型环形器由一个铁氧体(14)加载的中心腔体区域、水冷结构、三个相交120度的波导(1)和可移动阶梯状的匹配结构所构成。
  2. 根据权利要求1所述的一种大功率Y结型波导环形器,其特征在于:所述的波导(1)为铝合金波导,所述波导(1)的外部四周固定连接有若干不锈钢支撑柱(2),所述不锈钢支撑柱(2)的两端均通过螺杆固定连接有磁屏蔽板(3),两块所述磁屏蔽板(3)与波导(1)对应表面均固定连接有导电线圈(4),所述波导(1)的内部设有金属铜散热盘(5),所述金属铜散热盘(5)的上下表面粘贴有铁氧体(14),所述波导(1)的内壁还安装有匹配结构。
  3. 根据权利要求2所述的一种大功率Y结型波导环形器,其特征在于:所述金属铜散热盘(5)设置有两个且金属铜散热盘(5)的内部开设有水道,两个所述金属铜散热盘(5)的一端均固定连接有第一金属铜水管(51),两个所述第一金属铜水管(51)的一端穿插延伸至波导(1)的外壁且共同连接有第一分水管(6),所述第一分水管(6)的表面固定连接有进水管(7)。
  4. 根据权利要求2所述的一种大功率Y结型波导环形器,其特征在于:两个所述金属铜散热盘(5)的另一端两侧均固定连接有一组第二金属铜水管(52),两组所述第二金属铜水管(52)的一端均穿插延伸至波导(1)的外壁且固定连接有第二分水管(8),两个所述第二分水管(8)之间通过连通管(9)固定连接,所述连通管(9)的中部固定连接有出水管(10)。
  5. 根据权利要求1或2所述的一种大功率Y结型波导环形器,其特征在于:所述匹配机构包括开设在波导(1)的内壁的三个长孔(11),所述长孔(11)的内部滑动设有固定螺钉(12),所述固定螺钉(12)的一端固定连接有阶梯匹配块(13),所述阶梯匹配块(13)通过固定螺钉(12)滑动连接在长孔(11)内部。
  6. 根据权利要求2所述的一种大功率Y结型波导环形器,其特征在于:所述金属铜散热盘(5)的两面均通过硅胶粘接有铁氧体(14),两个所述金属铜散热盘(5)之间相距一定的距离。
  7. 根据权利要求6所述的一种大功率Y结型波导环形器,其特征在于:所述铁氧体(14)采用石榴石型材料,铁氧体(14)由多个小铁氧体块组合而成,通过硅橡胶与金属铜散热盘(5)粘接。
  8. 根据权利要求1所述的一种大功率Y结型波导环形器,其特征在于:所述导电线圈(4)的中部安装有磁钢(15)。
PCT/CN2022/089494 2021-10-15 2022-04-27 一种大功率y结型波导环形器 WO2023060875A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111200310.4A CN113839164B (zh) 2021-10-15 2021-10-15 一种大功率y结型波导环形器
CN202111200310.4 2021-10-15

Publications (1)

Publication Number Publication Date
WO2023060875A1 true WO2023060875A1 (zh) 2023-04-20

Family

ID=78969045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/089494 WO2023060875A1 (zh) 2021-10-15 2022-04-27 一种大功率y结型波导环形器

Country Status (2)

Country Link
CN (1) CN113839164B (zh)
WO (1) WO2023060875A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117739355A (zh) * 2024-02-21 2024-03-22 山西三水能源股份有限公司 一种生物质供热锅炉烟气减碳超净排放机器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114709578B (zh) * 2022-06-07 2022-09-13 西南应用磁学研究所(中国电子科技集团公司第九研究所) 一种基于陶瓷导热的l波段大功率波导环行器

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3781704A (en) * 1972-03-30 1973-12-25 Cutler Hammer Inc High isolation circulator arrangement for low noise reflection type amplifiers
US4697158A (en) * 1986-04-15 1987-09-29 Electromagnetic Sciences, Inc. Reduced height waveguide circulator
US4794352A (en) * 1986-10-04 1988-12-27 Ant Nachrichtentechnik Gmbh High power junction circulator for high frequencies
US5128635A (en) * 1989-07-10 1992-07-07 Ant Nachrichtentechnik Gmbh High power ferrite circulator having heating and cooling means
WO2002067361A1 (en) * 2001-02-21 2002-08-29 Saab Ab Microwave circulator
CN203562497U (zh) * 2013-11-14 2014-04-23 湖南航天工业总公司 一种大功率连续波环形器
CN204189937U (zh) * 2014-08-25 2015-03-04 西南应用磁学研究所 高功率环行器
CN206003937U (zh) * 2016-08-31 2017-03-08 苏州赫斯康通信科技有限公司 一种6GHz低互调宽带波导环形器
CN209217172U (zh) * 2018-12-17 2019-08-06 南京国睿微波器件有限公司 一种高功率毫米波差相移水冷环行器
CN211829156U (zh) * 2020-03-30 2020-10-30 成都欧拉微波元器件有限公司 一种p波段大功率波导水冷环行器
CN112332057A (zh) * 2020-11-24 2021-02-05 成都欧拉微波元器件有限公司 一种大功率l波段隔离器
CN216015666U (zh) * 2021-10-15 2022-03-11 散裂中子源科学中心 一种大功率波导环形器

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3527189A1 (de) * 1985-07-30 1987-02-12 Ant Nachrichtentech Hohlleiterverzweigungszirkulator fuer grosse hochfrequenzleistungen
JP3646532B2 (ja) * 1997-10-13 2005-05-11 株式会社村田製作所 非可逆回路素子
US7280004B2 (en) * 2005-04-14 2007-10-09 Ems Technologies, Inc. Latching ferrite waveguide circulator without E-plane air gaps
CN202997019U (zh) * 2012-12-24 2013-06-12 南京广顺电子技术研究所 一种分体式波导隔离器
CN103022608B (zh) * 2012-12-28 2016-03-02 南京广顺电子技术研究所 一种多层铁氧体波导结构
US8803628B1 (en) * 2013-07-24 2014-08-12 Honeywell International Inc. Circulator with ferrite element attached to waveguide sidewalls
CN106532211A (zh) * 2016-12-05 2017-03-22 南京信息工程大学 一种x波段波导环形器
CN210136996U (zh) * 2019-08-02 2020-03-10 深圳市华扬通信技术有限公司 一种微型宽频段波导隔离器
CN111883901B (zh) * 2020-08-03 2022-06-03 中国电子科技集团公司第九研究所 提高高频同轴环行器/隔离器易生产性的装配及调试方法
CN213093322U (zh) * 2020-09-21 2021-04-30 陕西青朗万城环保科技有限公司 一种减少微波反射的装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3781704A (en) * 1972-03-30 1973-12-25 Cutler Hammer Inc High isolation circulator arrangement for low noise reflection type amplifiers
US4697158A (en) * 1986-04-15 1987-09-29 Electromagnetic Sciences, Inc. Reduced height waveguide circulator
US4794352A (en) * 1986-10-04 1988-12-27 Ant Nachrichtentechnik Gmbh High power junction circulator for high frequencies
US5128635A (en) * 1989-07-10 1992-07-07 Ant Nachrichtentechnik Gmbh High power ferrite circulator having heating and cooling means
WO2002067361A1 (en) * 2001-02-21 2002-08-29 Saab Ab Microwave circulator
CN203562497U (zh) * 2013-11-14 2014-04-23 湖南航天工业总公司 一种大功率连续波环形器
CN204189937U (zh) * 2014-08-25 2015-03-04 西南应用磁学研究所 高功率环行器
CN206003937U (zh) * 2016-08-31 2017-03-08 苏州赫斯康通信科技有限公司 一种6GHz低互调宽带波导环形器
CN209217172U (zh) * 2018-12-17 2019-08-06 南京国睿微波器件有限公司 一种高功率毫米波差相移水冷环行器
CN211829156U (zh) * 2020-03-30 2020-10-30 成都欧拉微波元器件有限公司 一种p波段大功率波导水冷环行器
CN112332057A (zh) * 2020-11-24 2021-02-05 成都欧拉微波元器件有限公司 一种大功率l波段隔离器
CN216015666U (zh) * 2021-10-15 2022-03-11 散裂中子源科学中心 一种大功率波导环形器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117739355A (zh) * 2024-02-21 2024-03-22 山西三水能源股份有限公司 一种生物质供热锅炉烟气减碳超净排放机器
CN117739355B (zh) * 2024-02-21 2024-05-07 山西三水能源股份有限公司 一种生物质供热锅炉烟气减碳超净排放装置

Also Published As

Publication number Publication date
CN113839164B (zh) 2022-08-12
CN113839164A (zh) 2021-12-24

Similar Documents

Publication Publication Date Title
WO2023060875A1 (zh) 一种大功率y结型波导环形器
CN216015666U (zh) 一种大功率波导环形器
US3617951A (en) Broadband circulator or isolator of the strip line or microstrip type
CN210296588U (zh) 毫米波太赫兹大功率全带宽波导隔离器
CN101826648B (zh) 基于波导的功率合成器
CN114709578B (zh) 一种基于陶瓷导热的l波段大功率波导环行器
CN203367456U (zh) 微波大功率宽带同轴干式负载器件
CN107919515B (zh) 一种仅存TE0n模式的强场模式滤波器
CN116154437B (zh) 一种短毫米波高功率法拉第隔离器
WO2023097959A1 (zh) 一种高功率铁氧体负载
CN208014680U (zh) 冷却装置和变频器
CN111697296A (zh) 一种强迫液冷非互易性微波器件
US3389352A (en) Low loss microwave transmission lines across cryogenic temperature barriers
US3212028A (en) Gyromagnetic isolator with low reluctance material within single ridge and fluid coolant adjacent waveguide
US3309634A (en) Transmission line attenuators for high power
US4280111A (en) Waveguide circulator having cooling means
CN110011011B (zh) 一种仅存tm模式的强场模式滤波器
Panahi et al. An efficient high power RF dummy-load
CN208093702U (zh) 一种多节宽带隔离器
CN220652319U (zh) 一种高隔离高功率四合一双定向耦合器装置
US20230155269A1 (en) High power isolator having cooling channel structure
CN206076472U (zh) 一种正交场放大器
US3205459A (en) Waveguide termination with magnetic metal walls wherein the curie temperature thereof is exceeded during operation
CN202997020U (zh) 一种多层铁氧体波导结构
CN219610714U (zh) 一种耐低温宽带环行器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22879825

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE