WO2023060558A1 - 阀门扭矩控制系统及其控制方法 - Google Patents

阀门扭矩控制系统及其控制方法 Download PDF

Info

Publication number
WO2023060558A1
WO2023060558A1 PCT/CN2021/124109 CN2021124109W WO2023060558A1 WO 2023060558 A1 WO2023060558 A1 WO 2023060558A1 CN 2021124109 W CN2021124109 W CN 2021124109W WO 2023060558 A1 WO2023060558 A1 WO 2023060558A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
torque
drive
pulse signal
control unit
Prior art date
Application number
PCT/CN2021/124109
Other languages
English (en)
French (fr)
Inventor
施镇乾
Original Assignee
施镇乾
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 施镇乾 filed Critical 施镇乾
Priority to PCT/CN2021/124109 priority Critical patent/WO2023060558A1/zh
Priority to US17/694,673 priority patent/US11493141B1/en
Publication of WO2023060558A1 publication Critical patent/WO2023060558A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • F16K31/046Actuating devices; Operating means; Releasing devices electric; magnetic using a motor with electric means, e.g. electric switches, to control the motor or to control a clutch between the valve and the motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/44Mechanical actuating means
    • F16K31/53Mechanical actuating means with toothed gearing
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D17/00Control of torque; Control of mechanical power
    • G05D17/02Control of torque; Control of mechanical power characterised by the use of electric means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K37/00Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given
    • F16K37/0025Electrical or magnetic means
    • F16K37/0041Electrical or magnetic means for measuring valve parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K37/00Special means in or on valves or other cut-off apparatus for indicating or recording operation thereof, or for enabling an alarm to be given
    • F16K37/0058Optical means, e.g. light transmission, observation ports

Definitions

  • the present disclosure relates to a torque control system for a valve and a control method thereof.
  • Valves are mechanical products subject to internal pressure, so they must have sufficient strength and rigidity to ensure long-term use without cracking or deformation.
  • the opening and closing force and opening and closing torque refer to the force or torque that must be applied to open or close the valve.
  • the valve opening and closing torque is an important performance index reflecting the comprehensive level of the valve. Most of the traditional valve operating devices directly output fixed torque based on software algorithms to open or close the valve according to relevant national standards.
  • the inventor of the present application has noticed that in currently known devices for controlling the valve torque, the fixed torque is generally output directly according to the software algorithm. Although the basic function of switching the valve can be satisfied to a certain extent, due to the valve and The connection relationship between the handles changes randomly according to the actual situation.
  • the traditional valve control module cannot judge the open position and the fully closed position of the valve, and it is troublesome to install; and the opening and closing torque values required for different types of valves are different. Moreover, it is impossible to know the opening and closing torque value of the valve under actual working conditions.
  • the operating torque applied by the driving device to the valve often has the problem of excessive torque selection and damage to the valve, or insufficient torque selection and failure to drive.
  • An exemplary embodiment of the present disclosure provides a torque control system for controlling the torque applied to the valve during opening and closing of the valve, the torque control system comprising:
  • a drive unit comprising drive means operatively connected to the valve to drive the valve between a fully open position and a fully closed position;
  • a detection unit configured to detect information related to the operation of the drive device and generate a corresponding drive device operation signal
  • control unit is configured to: receive the drive device operation signal from the detection unit; obtain a control parameter for controlling the operating torque of the drive device based on the drive device operation signal; The obtained control parameters generate a control instruction; and output the control instruction to the driving unit to change the operating parameters of the driving device, so as to adjust the torque exerted by the driving device on the valve.
  • the torque control system is configured to: make the driving device drive the valve with a predetermined minimum operating torque based on the initial control command output by the control unit; make the detection unit generating the drive device operation signal in response to operation of the drive device, the drive device operation signal comprising a pulse signal;
  • control unit obtain the number of pulse signals and the time interval of pulse signals based on the pulse signal, and compare the obtained number of pulse signals and the time interval of pulse signals with the predetermined number of pulse signals and the predetermined time interval pre-stored in the control unit respectively. Pulse signal time intervals are compared to determine whether the torque applied by the drive device to the valve is insufficient, and
  • control unit When it is determined that the torque applied by the drive device to the valve is insufficient, the control unit is output to the drive unit to increase the torque to increase the torque applied to the valve by the drive device. .
  • the torque control system is configured to: when the obtained pulse signal time interval is greater than the predetermined pulse signal time interval and the obtained pulse signal number is less than the predetermined pulse signal number, then It is determined that the torque applied by the drive device to the valve is insufficient.
  • the torque control system is configured to: when it is determined that the torque applied by the drive device to the valve is insufficient, the control unit outputs the torque increase instruction to the drive unit And the operating parameters of the driving device are changed in a pulse width modulation manner, so that the torque exerted by the driving device on the valve is gradually increased until reaching a predetermined maximum operating torque of the driving device.
  • the torque increase command output by the control unit to the drive unit changes the operating parameters of the drive device in a pulse width modulation manner so that the drive device applies The torque on the valve is increased in increments of 10%.
  • control unit can be configured to change the operating parameters of the driving device in a voltage feedback adjustment manner or a current feedback adjustment manner, so as to apply the driving device to the valve. to adjust the torque.
  • the detection unit includes a pulse detector, the pulse detector is installed to be associated with the drive unit and generates a pulse signal in response to the operation of the drive device, and the detection unit It also includes a current sensor, the current sensor is installed on the driving device and is configured to detect the operating current of the driving device and generate a current signal during the opening and closing process of the valve, and the torque control system is configured to : make the control unit obtain the locked rotor current of the driving device based on the current signal from the current sensor, and compare the obtained locked rotor current with the predetermined locked rotor current stored in the control unit in advance comparison to determine whether the valve is in the fully open position or the fully closed position, and in the event that the valve is determined to be in the fully open position or the fully closed position, output stop to the drive unit A torque output command stops the drive from applying torque to the valve.
  • the pulse detector may include a Hall sensor or a photoelectric coupling device.
  • the torque control system is configured: when the obtained pulse signal time interval is greater than the predetermined pulse signal time interval, the obtained pulse signal number is greater than the predetermined pulse signal number, and the When the obtained locked-rotor current is greater than the preset locked-rotor current, it is determined that the valve is in the fully open position or the fully closed position, so that the control unit outputs a stop torque output command to the drive unit so that The drive stops applying torque to the valve.
  • the torque control system further includes an alarm unit, and the torque control system is configured to: when the torque applied by the drive device to the valve exceeds a predetermined threshold of the drive device In the case of the above maximum operating torque, the control unit outputs a stop torque output command to the drive unit to stop the drive device from applying torque to the valve and sends an alarm command to the alarm unit to make the alarm The unit sounds an alarm.
  • the torque control system is configured to: perform two corrections on the valve to obtain the distance between the fully open position and the fully closed position of the valve.
  • the torque control system is configured to: in the first correction of the valve, make the driving device drive the valve in a first direction, and obtain and store the first pulse signal number corresponding to one of the fully open position and the fully closed position of the valve; after obtaining the first pulse signal number, the second correction of the valve wherein, the driving device drives the valve in a second direction opposite to the first direction, and the fully open position and the fully closed position of the valve are obtained and stored by the control unit a second pulse signal number corresponding to the other position; and causing the control unit to calculate the relationship between the fully open position of the valve and the valve based on the first pulse signal number and the second pulse signal number The distance between fully closed positions.
  • the present application also provides a method for controlling the torque applied to the valve during the opening and closing process of the valve through the torque control system, the method comprising:
  • the control instruction is output to the driving unit to change the operating parameters of the driving device, so as to adjust the torque exerted by the driving device on the valve.
  • the method also includes:
  • the detection unit causing the detection unit to output a pulse signal in response to detecting the operation of the driving device
  • Pulse signal time intervals are compared to determine whether the torque applied by the drive device to the valve is insufficient, and if it is determined that the torque applied by the drive device to the valve is insufficient, output to the drive unit A torque increase command causes the drive to increase the torque applied to the valve.
  • the method includes: when the time interval of the obtained pulse signal is greater than the predetermined time interval of the pulse signal and the number of the obtained pulse signal is smaller than the predetermined number of pulse signals, then determine The drive is not applying enough torque to the valve.
  • the method includes: when it is determined that the torque applied by the drive device to the valve is insufficient, the control unit outputs the torque increase instruction to the drive unit and The operating parameters of the driving device are changed in a pulse width modulation manner, so that the torque exerted by the driving device on the valve is gradually increased until reaching a predetermined maximum operating torque of the driving device.
  • the method includes: when it is determined that the torque applied by the drive device to the valve is insufficient, the control unit outputs the torque increase instruction to the drive unit and The operating parameters of the driving device are changed in a pulse width modulation manner so that the torque exerted by the driving device on the valve is incremented by 10% each time.
  • the method further includes: during the opening and closing process of the valve, the current sensor detects the working current of the driving device and generates a current signal, so that the control unit based on the The locked-rotor current of the driving device is obtained from the current signal of the current sensor, and the obtained locked-rotor current is compared with the preset locked-rotor current stored in the control unit to determine whether the valve is in the The fully open position or the fully closed position, and in the case of determining that the valve is in the fully open position or the fully closed position, outputting a stop torque output command to the drive unit so that the drive unit Stop applying torque to the valve.
  • the method further includes: when the obtained pulse signal time interval is greater than the predetermined pulse signal time interval, the obtained pulse signal number is greater than the predetermined pulse signal number, and the obtained When the locked-rotor current is greater than the predetermined locked-rotor current, it is determined that the valve is in the fully open position or the fully closed position, so that the control unit outputs a stop torque output command to the drive unit so that the The drive stops applying torque to the valve.
  • the method includes: when the torque applied by the driving device on the valve exceeds the predetermined maximum operating torque of the driving device, causing the control unit to outputting a stop torque output command to the drive unit to stop the drive device from applying torque to the valve and sending an alarm command to the alarm unit to cause the alarm unit to sound an alarm.
  • the method includes: obtaining the minimum operating torque by calibrating the valve, wherein obtaining the minimum operating torque by calibrating the valve includes:
  • control unit When the control unit receives the pulse signal output by the detection unit in response to detecting the operation of the drive device, record the current torque applied by the drive device on the valve through the control unit; as well as
  • the method further includes: obtaining the predetermined number of pulse signals by calibrating the valve, wherein the obtaining the predetermined number of pulse signals by calibrating the valve includes:
  • the method includes: performing two calibrations on the valve to obtain the distance between the fully open position and the fully closed position of the valve.
  • the method includes: in the first correction of the valve, causing the driving device to drive the valve in a first direction, and obtaining and storing the same value as The number of first pulse signals corresponding to one of the fully open position and the fully closed position of the valve;
  • the driving device After obtaining the first number of pulse signals, in the second correction of the valve, the driving device is made to drive the valve in a second direction opposite to the first direction, and through the control the unit obtains and stores a second pulse signal number corresponding to the other of the fully open position and the fully closed position of the valve;
  • the control unit is caused to calculate the distance between the fully open position and the fully closed position of the valve based on the first pulse signal number and the second pulse signal number.
  • the method includes: in the first calibration of the valve, causing the control unit to determine that the valve has been in the fully open position or the fully closed position, so as to output a stop torque output command to the drive unit to stop the drive device from applying torque to the valve and obtain the first pulse signal number:
  • the operating current of the drive device detected by the current sensor is greater than a first predetermined locked-rotor current
  • the number of pulse signals obtained by the control unit is greater than a first predetermined number of pulse signals
  • the pulse signal time interval obtained by the control unit is greater than the first predetermined pulse signal time interval.
  • the initial torque value of the driving device is set to be 30% of the rated output torque of the driving device.
  • the drive device in the first calibration of the valve, when the number of pulse signals obtained by the control unit is less than the first predetermined number of pulse signals, the number of pulse signals obtained by the control unit When the time interval of the pulse signal is less than the first predetermined pulse signal time interval, and the operating current of the drive device detected by the current sensor is less than the first predetermined stall current, the drive device continues to The valve is driven in the first direction.
  • the method includes: in the first correction of the valve, when the number of pulse signals obtained by the control unit is less than the first predetermined number of pulse signals, the When the pulse signal time interval obtained by the control unit is greater than the first predetermined pulse signal time interval, and the operating current of the drive device detected by the current sensor is greater than the first predetermined locked-rotor current, the The drive device drives the valve in a second direction opposite to the first direction, and if the drive device drives the valve in the second direction, in response to the The number of pulse signals obtained by the control unit is less than the first predetermined number of pulse signals and it is determined that the torque applied by the drive device to the valve is insufficient.
  • the method includes: in the first correction of the valve, when it is determined that the torque applied by the drive device to the valve is insufficient, the control unit sends The drive unit outputs the torque increase command and changes the operating parameters of the drive device in a pulse width modulation manner, so that the torque applied by the drive device to the valve increases incrementally by 10% each time , until a predetermined first maximum operating torque of the driving device is reached.
  • the method includes: during the first calibration of the valve, increasing the torque applied by the drive device to the valve to a value greater than the first maximum operating torque case, it is determined that the first calibration fails.
  • the method includes determining that the first calibration of the valve is successful under the following circumstances:
  • the driving device drives the valve along the second direction, in response to the number of pulse signals obtained by the control unit being greater than the first predetermined number of pulse signals, the driving device The valve is driven in the first direction, and the torque increase command output from the control unit to the drive unit changes the operating parameters of the drive device in a pulse width modulation manner so that the A 20% increase in the torque exerted by the drive on said valve;
  • the number of pulse signals obtained by the control unit is greater than the first predetermined number of pulse signals.
  • the method includes: determining that the valve has been in the fully open position or the fully closed position in the first calibration of the valve by the control unit, so as to provide When the drive unit outputs a stop torque output command to stop the drive device from applying torque to the valve and obtain the first number of pulse signals, a second correction is performed on the valve.
  • the method includes: in the second correction of the valve, the control unit determines that the valve has been in a fully open position or a fully closed position in response to the following conditions, Thereby outputting a stop torque output instruction to the drive unit so that the drive device stops applying torque to the valve and obtaining the second pulse signal number:
  • the operating current of the drive device detected by the current sensor is greater than the first predetermined locked-rotor current
  • the number of pulse signals obtained by the control unit is greater than a second predetermined number of pulse signals
  • the pulse signal time interval obtained by the control unit is greater than the first predetermined pulse signal time interval.
  • the method includes: in the second correction of the valve, when the pulse signal time interval obtained by the control unit is greater than the first predetermined pulse signal time interval, When the number of pulse signals obtained by the control unit is less than the second predetermined number of pulse signals, and the operating current of the driving device detected by the current sensor is greater than the first predetermined locked-rotor current, It is determined that the torque applied by the drive device to the valve is insufficient.
  • the method includes: in the second correction of the valve, when it is determined that the torque applied by the drive device to the valve is insufficient, the control unit sends The torque increase command output by the drive unit changes the operating parameters of the drive device in a pulse width modulation manner, so that the torque applied by the drive device to the valve gradually increases until it reaches a predetermined value. up to the second maximum operating torque of the drive.
  • the fully open position and the fully closed position of the valve can be automatically judged without manually operating the valve.
  • the control unit of the torque control system can obtain control parameters based on the operating signal of the driving device detected by the detection unit, and output control instructions to the driving unit to change the operating parameters of the driving device, so as to control the torque applied by the driving device on the valve. Adjustment, so that the operating torque required by the valve can be accurately output through the torque control system of the present application, so that there is no situation where the operating torque is too large to damage the valve or the operating torque is too small to drive the valve, and the power utilization efficiency is improved. .
  • FIG. 1 shows a schematic block diagram of a torque control system according to an exemplary embodiment of the present disclosure
  • Fig. 2 shows a perspective view of a driving device according to an exemplary embodiment of the present disclosure
  • FIG. 3 shows a schematic workflow diagram of a first correction in the process of determining the distance between a fully open position and a fully closed position of a valve according to an exemplary embodiment of the present disclosure
  • FIG. 4 shows a schematic workflow diagram of a second correction in the process of determining the distance between a fully open position and a fully closed position of a valve according to an exemplary embodiment of the present disclosure.
  • FIG. 1 shows a schematic block diagram of a torque control system according to an exemplary embodiment of the present disclosure
  • FIG. 2 shows a perspective view of a driving device according to an exemplary embodiment of the present disclosure.
  • the torque control system 1 as an exemplary embodiment of the present application is used to control the torque applied to the valve during the opening and closing process of the valve.
  • the torque control system 1 includes: a drive unit 10, a drive unit 10 includes a driving device, the driving device is operatively connected to the valve to drive the valve between the fully open position and the fully closed position; the detection unit 20 is used to perform information related to the work of the driving device Detecting and generating a corresponding driving device operating signal; and a control unit 30 configured to: receive the driving device operating signal from the detection unit 20; obtain a control for controlling the operating torque of the driving device based on the driving device operating signal parameters; generate control instructions based on the obtained control parameters; and output control instructions to the drive unit 10 to change the operating parameters of the drive device, so as to adjust the torque exerted by the drive device on the valve.
  • the torque control system 1 is configured to: make the driving device drive the valve with a predetermined minimum operating torque based on the initial control command output by the control unit 30; make the detection unit 20 respond to the driving device
  • the working signal of the driving device is generated by the work of the driving device, and the working signal of the driving device includes a pulse signal;
  • the control unit is made to obtain the number of pulse signals and the time interval of the pulse signal based on the pulse signal, and the obtained number of pulse signals and the time interval of the pulse signal are respectively compared with the pre-stored
  • the number of predetermined pulse signals in the control unit is compared with the time interval of the predetermined pulse signal to determine whether the torque applied by the drive device to the valve is insufficient, and in the case of insufficient torque applied by the drive device to the valve, the control unit 30 outputs a torque increase command to the drive unit 10 to increase the torque exerted by the drive on the valve.
  • under-torque applied to a valve means that the operating torque currently applied to the valve is not sufficient to push the valve.
  • the torque control system 1 is configured to: when the obtained pulse signal time interval is greater than the predetermined pulse signal time interval and the obtained pulse signal number is less than the predetermined pulse signal number, then it is determined to drive The device is not applying enough torque to the valve.
  • the time interval between the pulse signals obtained by the control unit will be less than 100ms, and the time interval between the pulse signals will gradually increase to 100-200ms as the advancing distance decreases or cannot be advanced. or above, when the time interval between impulse signals exceeds 200ms, it will be judged that the valve has reached the end point and the propulsion will be stopped immediately.
  • the torque control system 1 is configured such that: when it is determined that the torque applied by the drive device to the valve is insufficient, the control unit outputs a torque increase command to the drive unit 10 and uses a pulse width modulation Change the operating parameters of the driving device so that the torque exerted by the driving device on the valve is gradually increased until the predetermined maximum operating torque of the driving device is reached.
  • control unit can change the operating parameters of the drive device in the manner of voltage feedback regulation or current feedback regulation, so that the torque applied by the drive device to the valve gradually increases until it reaches the predetermined maximum value of the drive device. operating torque.
  • the predetermined maximum operating torque of the drive is 80% of the rated output torque of the electric motor.
  • the torque increase command output by the control unit to the drive unit 10 changes the operating parameters of the drive device in a pulse width modulation manner so that the torque applied by the drive device to the valve increases by 10% each time way to increase. It should be understood that, each time a torque increase command is received, the torque exerted by the drive device on the valve can be incremented in other ways according to specific circumstances.
  • the detection unit 20 may include a pulse detector, and the pulse detector may include, for example, the Hall sensor 102 .
  • the Hall sensor 102 is installed to be associated with the output shaft of the driving device 101 in the drive unit, or is installed to be associated with the transmission part or the speed change part in the power train in the drive unit, and generates
  • the detecting unit 20 also includes a current sensor, which is installed on the driving device and configured to detect the working current of the driving device and generate a current signal during the opening and closing process of the valve.
  • the driving device 101 includes an electric motor (or motor).
  • the Hall sensor 102 in the initial non-working state, the Hall sensor 102 is installed so that it is relatively stationary with the motor casing, and when the motor rotates, the output shaft of the motor drives the pinion 103 on which the magnet 104 is installed to rotate, and the pinion Every time the magnet 104 on the 103 rotates relative to the Hall sensor 102, the Hall sensor 102 triggers a pulse signal, and the control unit obtains the number of pulse signals and the time interval of the pulse signal based on the pulse signal, and then calculates the number of pulse signals obtained and the time interval of the pulse signal The pulse signal time interval is compared with the predetermined number of pulse signals and the predetermined pulse signal time interval pre-stored in the control unit to judge whether the torque applied by the drive device to the valve is insufficient, and to determine whether the torque applied by the drive device to the valve is insufficient.
  • control unit 30 is made to output a torque increase command to the drive unit 10 to increase the torque applied to the valve by the drive device 101 .
  • the control accuracy of the control unit is improved by using the Hall element to detect the pulse signal generated by the motor rotation.
  • control unit may include a microcontroller unit (MCU) and/or a chip.
  • MCU microcontroller unit
  • the pulse detector may include a photocoupling device, and the photocoupling device may include a light-emitting component and a light sensor.
  • the motor is provided with a pinion, and the pinion is provided with a small hole.
  • a light-emitting part is installed, and a light sensor is installed on the other side of the pinion.
  • the output shaft or the transmission shaft of the motor drives the pinion with the small hole to rotate.
  • the small hole on the pinion allows the light emitted by the light-emitting part to pass through intermittently.
  • the control unit obtains the number of pulse signals and the time interval of the pulse signal based on the pulse signal, and then compares the obtained number of pulse signals and the time interval of the pulse signal with the pre-stored in the control unit
  • the predetermined number of pulse signals is compared with the predetermined pulse signal time interval to determine whether the torque applied by the drive device to the valve is insufficient, and when it is determined that the torque applied by the drive device to the valve is insufficient, the control unit 30 sends a signal to the drive unit 10.
  • the torque increase command is output to increase the torque applied by the drive device 101 to the valve.
  • the torque control system is configured to: make the control unit obtain the locked rotor current of the drive device based on the current signal from the current sensor, and compare the obtained locked rotor current with the pre-stored in the control unit Compared with the preset locked-rotor current, it is judged whether the valve is in the fully open position or the fully closed position, and when it is determined that the valve is in the fully open position or the fully closed position, output a stop torque output command to the drive unit 10 so that the drive device 101 Stop applying torque to the valve.
  • the motor stall is a situation in which the motor still outputs torque when the speed is zero.
  • the motor may stop due to excessive load , in which case the motor stall occurs, and the stall current is sensed by the current sensor.
  • the torque control system is configured: when the obtained pulse signal time interval is greater than the predetermined pulse signal time interval, the obtained pulse signal number is greater than the predetermined pulse signal number, and the obtained stall current is greater than the predetermined stall current In the case of current flow, it is determined that the valve is in a fully open position or a fully closed position, so that the control unit outputs a stop torque output command to the drive unit 10 so that the drive device 101 stops applying torque to the valve.
  • the torque control system further includes an alarm unit, and the torque control system is configured to: when the torque applied by the drive device on the valve exceeds a predetermined maximum operating torque of the drive device, the control unit sends a signal to the drive unit 20 A stop torque output command is output to stop the drive device from applying torque to the valve and an alarm command is sent to the alarm unit to cause the alarm unit to sound an alarm.
  • the torque control system is configured to obtain the distance between the fully open position and the fully closed position (or between the starting point and the end point) of the valve by performing two corrections on the valve.
  • the torque control system is configured to:
  • the driving device is made to drive the valve in the first direction, and the number of first pulse signals corresponding to one of the fully open position and the fully closed position of the valve is obtained and stored by the control unit;
  • the driving device After obtaining the first number of pulse signals, in the second correction of the valve, the driving device is made to drive the valve in the second direction opposite to the first direction, and the fully open position and the fully open position of the valve are obtained and stored by the control unit. the second number of pulses corresponding to the other of the closed positions;
  • the control unit is caused to calculate the distance between the fully open position and the fully closed position of the valve based on the first pulse signal number and the second pulse signal number.
  • the control unit adjusts the torque applied by the driving device to the valve, so that the torque control system of the present application can accurately output the torque required by the valve.
  • Torque protect the valve from damage and increase the service life of the valve, while improving power utilization efficiency.
  • the fully open position and the fully closed position of the valve can be automatically judged without manually operating the valve, so that the rotation path of the valve during the opening and closing process can be accurately determined.
  • the control command is output to the drive unit to change the working parameters of the drive device, so as to adjust the torque exerted by the drive device on the valve.
  • the method further includes: based on the initial control command output by the control unit, causing the drive device to drive the valve with a minimum operating torque; causing the detection unit to output a pulse signal in response to detecting the operation of the drive device;
  • the control unit obtains the pulse signal number and the pulse signal time interval based on the pulse signal, and compares the obtained pulse signal number and the pulse signal time interval with the predetermined pulse signal number and the predetermined pulse signal time interval respectively stored in the control unit, To determine whether the torque applied by the drive device to the valve is insufficient, and if it is determined that the torque applied to the valve by the drive device is insufficient, output a torque increase command to the drive unit to increase the torque applied to the valve by the drive device.
  • the method further includes: when the obtained pulse signal time interval is greater than the predetermined pulse signal time interval and the obtained pulse signal number is less than the predetermined pulse signal number, then determining that the driving device is applied to the valve insufficient torque.
  • the method includes: when it is determined that the torque applied by the drive device to the valve is insufficient, the control unit outputs a torque increase command to the drive unit and changes the operating parameters of the drive device in a pulse width modulation manner, Thereby, the torque exerted by the driving device on the valve is gradually increased until a predetermined maximum operating torque of the driving device is reached.
  • the method includes: when it is determined that the torque applied by the drive device to the valve is insufficient, the control unit outputs a torque increase command to the drive unit and changes the operating parameters of the drive device in a pulse width modulation manner to The torque applied by the drive to the valve is increased in increments of 10%.
  • the method further includes: during the opening and closing process of the valve, the current sensor detects the working current of the driving device and generates a current signal, so that the control unit obtains the blocking current of the driving device based on the current signal from the current sensor. and compare the obtained locked rotor current with the preset locked rotor current stored in the control unit to judge whether the valve is in a fully open position or a fully closed position, and when judging that the valve is in a fully open position or fully closed In the case of the position, output a stop torque output command to the drive unit to stop the drive device from applying torque to the valve.
  • the method further includes: when the obtained pulse signal time interval is greater than the predetermined pulse signal time interval, the obtained pulse signal number is greater than the predetermined pulse signal number, and the obtained locked rotor current is greater than the predetermined locked rotor In the case of current flow, it is determined that the valve is in a fully open position or a fully closed position, so that the control unit outputs a stop torque output command to the drive unit so that the drive device stops applying torque to the valve.
  • the method further includes: when the torque applied by the driving device on the valve exceeds a predetermined maximum operating torque of the driving device, causing the control unit to output a stop torque output instruction to the driving unit to make the driving device Stop applying torque to the valve and send an alarm command to the alarm unit to cause the alarm unit to sound an alarm.
  • the method includes: obtaining the minimum operating torque by calibrating the valve, wherein the obtaining the minimum operating torque by calibrating the valve includes: during the calibrating process of the valve, causing the driving device to operate at a predetermined
  • the minimum initial torque value drives the valve; when the torque applied by the drive device to the valve is insufficient, the control unit outputs a torque increase command to the drive unit to gradually increase the torque applied by the drive device to the valve;
  • the unit receives the pulse signal output by the detection unit in response to detecting the operation of the drive device, record the current torque applied by the drive device on the valve through the control unit; and increase 5% to 10% on the basis of the current torque, Thereby obtaining the minimum operating torque.
  • the valve is calibrated to obtain the minimum operating torque. Since the torque value recorded by the control unit is increased by 5% to 10%, the obtained minimum operating torque can be suitable for the situation where the valve is rusted.
  • the method includes: obtaining the predetermined number of pulse signals by calibrating the valve, wherein, obtaining the predetermined number of pulse signals by calibrating the valve includes: obtaining the predetermined number of pulse signals by calculation and calculating the predetermined number of pulse signals
  • the number is stored in the control unit; during the calibration process of the valve, the pulse signal number and the pulse signal time interval obtained by the control unit based on the pulse signal from the detection unit are respectively greater than the predetermined pulse signal pre-stored in the control unit
  • the current pulse signal number is recorded by the control unit; and the current pulse signal number is reduced by 5% to 10%.
  • the obtained number of pulse signals can be the number of pulses required for the actual switch of the valve. Since the number of pulse signals recorded by the control unit is reduced by 5% to 10 %, which prevents damage to the valve due to excessive turning of the handle of the valve.
  • the method includes: performing two corrections on the valve to obtain the fully open position of the valve Distance from fully closed position.
  • the motor in the first correction of the valve (as shown in FIG. 3 ), the motor is made to drive the valve in the first direction, and the fully open position and the fully closed position of the valve are obtained and stored by the control unit.
  • the number of first pulse signals corresponding to a position of after obtaining the first number of pulse signals, in the second correction of the valve (as shown in Figure 4), make the motor move toward the valve in the second direction opposite to the first direction driving, and obtaining and storing a second pulse signal number corresponding to the other of the fully open position and the fully closed position of the valve by the control unit; and making the control unit based on the first pulse signal number and the second pulse signal number Calculates the distance between the valve's fully open and fully closed positions.
  • the method includes: in the first calibration of the valve, causing the control unit to determine that the valve has been in a fully open position or a fully closed position in response to the following conditions, thereby outputting a stop torque output command to the drive unit so that The motor stops applying torque to the valve and gets the first number of pulses:
  • the operating current of the motor detected by the current sensor is greater than the first predetermined locked-rotor current
  • the number of pulse signals obtained by the control unit is greater than the first predetermined number of pulse signals
  • the pulse signal time interval obtained by the control unit is greater than the first predetermined pulse signal time interval.
  • the first predetermined locked rotor current is 180 mA. It should be understood that the first predetermined locked-rotor current of 180mA is only an example, and the first predetermined locked-rotor current may be any value according to the specific structure and type of the valve.
  • the motor is tested in advance to determine the maximum value of the locked rotor current when the rotor is locked and the average value of the current during normal operation, and based on the maximum value of the locked rotor current and the average value of the current during normal operation average value to determine the predetermined stall current.
  • the first predetermined number of pulse signals is 200, and the time interval of the first pulse signals is 200 ms. It should be understood that the predetermined number of pulse signals of 200 and the time interval of pulse signals of 200 ms are just examples, and the predetermined number of pulse signals and the time interval of pulse signals can be set to any value according to the specific mechanical design of the valve and the required rotation range of the valve.
  • the method includes: in the first calibration of the valve, the initial torque value of the motor is set to 30% of the rated output torque of the motor. Also, the number of boosts for the motor is set to 1.
  • the first predetermined locked-rotor current is set to 180mA
  • the first predetermined number of pulse signals is set to 200
  • the time interval of the first pulse signal is set to 200ms.
  • the method includes: in the first calibration of the valve, when the number of pulse signals obtained by the control unit is less than 200, the time interval of the pulse signals obtained by the control unit is less than 200ms, and the operating current of the motor detected by the current sensor is When the value is less than 180mA, the motor continues to drive the valve along the first direction.
  • the method includes: in the first calibration of the valve, when the number of pulse signals obtained by the control unit is less than 200, the time interval of the pulse signals obtained by the control unit is greater than 200 ms, and is detected by the current sensor When the operating current of the motor is greater than 180mA, the motor drives the valve in the second direction opposite to the first direction, and when the motor drives the valve in the second direction, responding to the control unit If the number of pulse signals obtained is less than 200, it is determined that the torque applied by the motor to the valve is insufficient.
  • the control unit In the first correction of the valve, when it is determined that the torque applied by the motor to the valve is insufficient, the control unit outputs a torque increase command to the drive unit and changes the operating parameters of the motor in a pulse width The torque on the valve is increased in increments of 10% until a predetermined first maximum operating torque of the motor is reached.
  • the initial torque value of the motor is set to 30N ⁇ m.
  • the predetermined first maximum operating torque is 80% of the rated output torque of the electric machine.
  • the first maximum operating torque is 80 N ⁇ m. It should be understood that 80 N ⁇ m is just an example, and the first maximum operating torque can be set to any value according to the actual structure of the valve.
  • the first calibration of the valve is successful under the following conditions: in the first calibration of the valve, the number of pulse signals obtained by the control unit is less than 200, and the time interval of pulse signals obtained by the control unit is greater than 200ms, and the operating current of the motor detected by the current sensor is greater than 180mA, make the motor drive the valve in the second direction opposite to the first direction; in the case of the motor driving the valve in the second direction , in response to the number of pulse signals obtained by the control unit being greater than the first predetermined number of pulse signals, the motor continues to drive the valve in the first direction, and the torque increase command output by the control unit to the drive unit is pulse-width modulated
  • the way to change the working parameters of the motor is to increase the torque applied by the motor to the valve; and the torque applied to the valve by the motor increases until the number of pulse signals obtained by the control unit is greater than 200.
  • the motor is driven in the first direction and the number of pulse signals obtained is less than 200, then the motor is driven in the second direction opposite to the first direction. If the number of pulse signals obtained is greater than 200, it is determined that it can be pushed.
  • the control unit will determine that the direction of the last correction is close to/reached the starting point (fully open/fully open and close position), and immediately stop the current action, so that the motor moves along the direction of the last time. Continue to advance in the first direction, and at the same time add 20% to the current torque value to prevent the valve from rusting in the future, until the condition of stopping the advance is reached.
  • the control unit judges that the valve has been in the fully open position or the fully closed position during the first calibration of the valve, so as to output a stop torque output command to the drive unit so that the motor stops applying torque to the valve and obtains the first pulse
  • a second calibration is performed on the valve.
  • the control unit will determine that the current position is the starting point of the valve, and record the number of pulse signals collected when the first calibration is successful.
  • the valve will start with The same method is pushed to the end point, and the number of pulse signals collected is recorded to obtain the distance between the start point and the end point, that is, the distance between the fully open position and the fully closed position of the valve is calculated.
  • the predetermined locked-rotor current is set to 180mA
  • the second predetermined pulse signal number is set to 480
  • the pulse signal time interval is set to 200ms.
  • the control unit determines that the valve has been in the fully open position or the fully closed position in response to the following conditions, thereby outputting a stop torque output command to the drive unit so that the motor stops applying torque to the valve and obtaining the second number of pulse signals: detected by the current sensor
  • the working current of the motor is greater than 180mA; the number of pulse signals obtained by the control unit is greater than 480; and the time interval of the pulse signals obtained by the control unit is greater than 200ms.
  • the time interval of the pulse signal obtained by the control unit is greater than 200ms, the number of pulse signals obtained by the control unit is less than 480, and the operation of the motor detected by the current sensor When the current is greater than 180mA, it is determined that the torque applied by the motor to the valve is insufficient.
  • the control unit in the second calibration of the valve, when it is determined that the torque applied by the motor to the valve is insufficient, the control unit outputs a torque increase command to the drive unit, and changes the working parameters of the motor in a pulse width modulation manner , so that the torque exerted by the motor on the valve gradually increases until it reaches the predetermined second maximum operating torque of the motor. It should be understood that the control unit can also change the operating parameters of the motor, such as changing the operating torque of the motor, by means of voltage feedback regulation or current feedback regulation.
  • the second maximum operating torque is 100% of the rated output torque of the electric machine. In some embodiments, the second maximum operating torque is 100 N ⁇ m. It should be understood that 100 N ⁇ m is just an example, and the second maximum operating torque can be set to any value according to actual design requirements.
  • the present disclosure provides a torque control system and a control method thereof.
  • the torque control system is configured to automatically determine the fully open and fully closed positions of the valve without manual operation of the valve.
  • the control unit of the torque control system can obtain control parameters based on the operating signal of the driving device detected by the detection unit, and output control instructions to the driving unit to change the operating parameters of the driving device, so as to control the torque applied by the driving device on the valve. Therefore, the torque control system of the present application can accurately output the torque required by the valve, so that there is no situation that the operating torque is too large to damage the valve or the operating torque is too small to be driven, and the power utilization efficiency is improved.
  • the detection unit, control unit, torque control system, etc. of the present disclosure are reproducible and can be applied in various industrial applications.
  • the torque control system of the present disclosure can be applied to a method for controlling the torque applied to the valve during the opening and closing process of the valve.

Abstract

一种扭矩控制系统(1)及其控制方法。扭矩控制系统(1)配置成能够在不需要手动操作阀门的情况下,自动判断阀门的完全打开位置和完全关闭位置。此外,扭矩控制系统(1)的控制单元(30)能够基于由检测单元(20)检测的驱动装置工作信号而获得控制参数,并且向驱动单元(10)输出控制指令以改变驱动装置的工作参数,从而对驱动装置施加在阀门上的扭矩进行调节,因此能够通过扭矩控制系统(1)来精确输出阀门所需要的操作扭矩,以使得不存在操作扭矩过大而损坏阀门或者操作扭矩过小而无法驱动的情况,并且提高了动力利用效率。

Description

阀门扭矩控制系统及其控制方法 技术领域
本公开涉及用于阀门扭矩控制系统及其控制方法。
背景技术
本部分提供了与本公开有关的背景信息,但是这些信息并不必然构成现有技术。
阀门是承受内压的机械产品,因而必须具有足够的强度和刚度,以保证长期使用而不发生破裂或产生变形。起闭力和启闭扭矩是指阀门开启或关闭所必须施加的作用力或力矩。阀门启闭扭矩是体现阀门综合水平的一项重要性能指标。传统的阀门操纵装置大多数根据国家的相关标准基于软件算法直接输出固定扭矩以使阀门打开或关闭。
发明内容
本部分提供本公开的一般概要,而不是本公开的全部范围或全部特征的全面披露。
本申请的发明人注意到,在目前已知的用于控制阀门扭矩的装置中,一般根据软件算法直接输出固定扭矩,虽然一定程度上可以满足基本的对阀门进行开关的功能,但是由于阀门与把手之间的连接关系根据实际情况是随机变化的,传统的阀门控制模块不能判断阀门的打开位置与完全关闭位置,安装的时候比较麻烦;而且不同类型的阀门所需的启闭扭矩值不同,而且无法了解阀门在实际工况下的启闭扭矩值,驱动装置施加在阀门上的操作扭矩往往存在扭矩选择过剩而损坏阀门或者扭矩选择不足而无法驱动的问题。
因此,存在对现有的扭矩控制模块进行改进的需要,以克服或缓解上述技术问题的全部或者至少一部分。
本公开的示例性实施方式提供了一种扭矩控制系统,所述扭矩控制系统用于在阀门的启闭过程中对施加在所述阀门上的扭矩进行控制,所述扭矩控制系统包括:
驱动单元,所述驱动单元包括驱动装置,所述驱动装置工作地连接至所述阀门,以在所述阀门的完全打开位置与完全关闭位置之间对所述阀门进行驱动;
检测单元,所述检测单元用于对与所述驱动装置的工作相关的信息进行检测并生成相应的驱动装置工作信号;以及
控制单元,所述控制单元配置成:接收来自所述检测单元的所述驱动装置工作信号;基于所述驱动装置工作信号获得用于对所述驱动装置的操作扭矩进行控制的控制参数;基于所获得的控制参数生成控制指令;以及,向所述驱动单元输出所述控制指令以改变所述驱动装置的工作参数,从而对所述驱动装置施加在所述阀门上的扭矩进行调节。
在一些可选的实施方式中,扭矩控制系统配置成:基于所述控制单元输出的初始控制指令,使所述驱动装置以预先确定的最小操作扭矩对所述阀门进行驱动;使所述检测单元响应于所述驱动装置的工作而生成所述驱动装置工作信号,所述驱动装置工作信号包括脉冲信号;
使所述控制单元基于所述脉冲信号获得脉冲信号数和脉冲信号时间间隔,并且将所获得的脉冲信号数和脉冲信号时间间隔分别与预先存储在所述控制单元中的预定脉冲信号数和预定脉冲信号时间间隔进行比较,以判断所述驱动装置施加在所述阀门上的扭矩是否不足,以及
在判定所述驱动装置施加在所述阀门上的扭矩不足的情况下,使所述控制单元向所述驱动单元输出扭矩增大指令以使所述驱动装置施加在所述阀门上的扭矩增大。
在一些可选的实施方式中,扭矩控制系统配置成:在所获得的脉冲信号时间间隔大于所述预定脉冲信号时间间隔并且所获得的脉冲信号数小于所述预定脉冲信号数的情况下,则判定所述驱动装置施加在所述阀门上的扭矩不足。
在一些可选的实施方式中,扭矩控制系统配置成:在判定所述驱动装置施加在所述阀门上的扭矩不足的情况下,所述控制单元向所述驱动单元输出所述扭矩增大指令并且以脉冲宽度调制的方式改变所述驱动装置的工作参数,从而使所述驱动装置施加在所述阀门上的扭矩逐渐增加,直至达到预先确定的所述驱动装置的最大操作扭矩为止。
在一些可选的实施方式中,所述控制单元向所述驱动单元输出的所述扭矩增大指令以脉冲宽度调制的方式改变所述驱动装置的工作参数以使所述驱动装置施加在所述阀门上的扭矩以每次增加10%的方式递增。
在一些可选的实施方式中,所述控制单元可以配置成以电压反馈调节的方式或电流反馈调节的方式来改变所述驱动装置的工作参数,从而对所述驱动装置施加在所述阀门上的扭矩进行调节。
在一些可选的实施方式中,所述检测单元包括脉冲检测器,所述脉冲检测器安装成与所述驱动单元相关联并且响应于所述驱动装置的工作而生成脉冲信号,所述检测单元还包括电流传感器,所述电流传感器安装在所述驱动装置上并且配置成在所述阀门的启闭过程中对所述驱动装置的工作电流进行检测并生成电流信号,所述扭矩控制系统配置成:使所述控制单元基于来自所述电流传感器的所述电流信号获得所述驱动装置的堵转电流,并且将所获得的堵转电流与预先存储在所述控制单元中的预定堵转电流进行比较,以判断所述阀门是否处于所述完全打开位置或所述完全关闭位置,以及在判定所述阀门处于所述完全打开位置或所述完全关闭位置的情况下,向所述驱动单元输出停止扭矩输出指令以使所述驱动装置停止向所述阀门施加扭矩。
在一些可选的实施方式中,脉冲检测器可以包括霍尔传感器或光电耦合装置。
在一些可选的实施方式中,所述扭矩控制系统配置成:在所获得的脉冲信号时间间隔大于所述预定脉冲信号时间间隔、所获得的脉冲信号数大于所述预定脉冲信号数、并且所获得的堵转电流大于所述预定堵转电流的情况下,判定所述阀门处于所述完全打开位置或所述完全关闭位置,使所述控制单元向所述驱动单元输出停止扭矩输出指令以使所述驱动装置停止向所述阀门施加扭矩。
在一些可选的实施方式中,所述扭矩控制系统还包括报警单元,所述扭矩控制系统配置成:在所述驱动装置施加在所述阀门上的扭矩超过预先确定的所述驱动装置的所述最大操作扭矩的情况下,使所述控制 单元向所述驱动单元输出停止扭矩输出指令以使所述驱动装置停止向所述阀门施加扭矩并且向所述报警单元发出报警指令以使所述报警单元发出警报。
在一些可选的实施方式中,所述扭矩控制系统配置成:通过对所述阀门进行两次校正,以获得所述阀门的所述完全打开位置与所述完全关闭位置之间的距离。
在一些可选的实施方式中,所述扭矩控制系统配置成:在所述阀门的第一校正中,使所述驱动装置沿第一方向对所述阀门进行驱动,并且通过所述控制单元获得并存储与所述阀门的所述完全打开位置和所述完全关闭位置中的一个位置相对应的第一脉冲信号数;在获得所述第一脉冲信号数之后,在所述阀门的第二校正中,使所述驱动装置沿与所述第一方向相反的第二方向对所述阀门进行驱动,并且通过所述控制单元获得并存储与所述阀门的所述完全打开位置和所述完全关闭位置中的另一个位置相对应的第二脉冲信号数;以及使所述控制单元基于所述第一脉冲信号数和所述第二脉冲信号数计算所述阀门的所述完全打开位置与所述完全关闭位置之间的距离。
本申请还提供了通过扭矩控制系统在阀门的启闭过程中对施加在阀门上的扭矩进行控制的方法,所述方法包括:
检测与用于对所述阀门进行驱动的所述驱动装置的工作相关的信息并生成相应的驱动装置工作信号;
基于所述驱动装置工作信号获得用于对所述驱动装置的操作扭矩进行控制的控制参数;
基于所获得的控制参数生成控制指令;以及
向所述驱动单元输出所述控制指令以改变所述驱动装置的工作参数,从而对所述驱动装置施加在所述阀门上的扭矩进行调节。
在一些可选的实施方式中,所述方法还包括:
基于所述控制单元输出的初始控制指令,使所述驱动装置以最小操作扭矩对所述阀门进行驱动;
使所述检测单元响应于检测到所述驱动装置的工作而输出脉冲信号;
使所述控制单元基于所述脉冲信号获得脉冲信号数和脉冲信号时间间隔,并且将所获得的脉冲信号数和脉冲信号时间间隔分别与预先存储在所述控制单元中的预定脉冲信号数和预定脉冲信号时间间隔进行比较,以判断所述驱动装置施加在所述阀门上的扭矩是否不足,以及在判定所述驱动装置施加在所述阀门上的扭矩不足的情况下,向所述驱动单元输出扭矩增大指令以使所述驱动装置施加在所述阀门上的扭矩增大。
在一些可选的实施方式中,所述方法包括:在所获得的脉冲信号时间间隔大于所述预定脉冲信号时间间隔并且所获得的脉冲信号数小于所述预定脉冲信号数的情况下,则判定所述驱动装置施加在所述阀门上的扭矩不足。
在一些可选的实施方式中,所述方法包括:在判定所述驱动装置施加在所述阀门上的扭矩不足的情况下,所述控制单元向所述驱动单元输出所述扭矩增大指令并且以脉冲宽度调制的方式改变所述驱动装置的工作参数,从而使所述驱动装置施加在所述阀门上的扭矩逐渐增加,直至达到预先确定的所述驱动装置的最大操作扭矩为止。
在一些可选的实施方式中,所述方法包括:在判定所述驱动装置施加在所述阀门上的扭矩不足的情况下,所述控制单元向所述驱动单元输出所述扭矩增大指令并且以脉冲宽度调制的方式改变所述驱动装置的工作参数以使所述驱动装置施加在所述阀门上的扭矩以每次增加10%的方式递增。
在一些可选的实施方式中,所述方法还包括:在所述阀门的启闭过程中通过电流传感器对所述驱动装置的工作电流进行检测并生成电流信号,使所述控制单元基于来自所述电流传感器的所述电流信号获得所述驱动装置的堵转电流,并且将所获得的堵转电流与预先存储在所述控制单元中的预定堵转电流进行比较,以判断所述阀门是否处于所述完全打开位置或所述完全关闭位置,以及在判定所述阀门处于所述完全打开位置或所述完全关闭位置的情况下,向所述驱动单元输出停止扭矩输出指令以使所述驱动装置停止向所述阀门施加扭矩。
在一些可选的实施方式中,所述方法还包括:在所获得的脉冲信号时间间隔大于所述预定脉冲信号时间间隔、所获得的脉冲信号数大于所述预定脉冲信号数、并且所获得的堵转电流大于所述预定堵转电流的情况下,判定所述阀门处于所述完全打开位置或所述完全关闭位置,使所述控制单元向所述驱动单元输出停止扭矩输出指令以使所述驱动装置停止向所述阀门施加扭矩。
在一些可选的实施方式中,所述方法包括:在所述驱动装置施加在所述阀门上的扭矩超过预先确定的所述驱动装置的所述最大操作扭矩的情况下,使所述控制单元向所述驱动单元输出停止扭矩输出指令以使所述驱动装置停止向所述阀门施加扭矩并且向所述报警单元发出报警指令以使所述报警单元发出警报。
在一些可选的实施方式中,所述方法包括:通过对所述阀门进行校准以获得所述最小操作扭矩,其中,通过对所述阀门进行校准以获得所述最小操作扭矩包括:
在所述阀门的校准过程中,使所述驱动装置以预先确定的最小的初始扭矩值对所述阀门进行驱动;
在所述驱动装置施加在所述阀门上的扭矩不足的情况下,通过所述控制单元向所述驱动单元操作扭矩增大指令以使所述驱动装置施加在所述阀门上的扭矩逐步增加;
在所述控制单元接收到所述检测单元响应于检测到所述驱动装置的工作而输出的脉冲信号的情况下,通过所述控制单元记录所述驱动装置施加在所述阀门上的当前扭矩;以及
在所述当前扭矩的基础上增加5%至10%,从而获得所述最小操作扭矩。
在一些可选的实施方式中,所述方法还包括:通过对所述阀门进行校准以获得所述预定脉冲信号数,其中,通过对所述阀门进行校准以获得所述预定脉冲信号数包括:
通过计算获得所述预定脉冲信号数并将所述预定脉冲信号数存储在所述控制单元中;
在所述阀门的校准过程中,在由于所述控制单元基于来自所述检测单元的脉冲信号所获得的脉冲信号数和脉冲信号时间间隔分别大于预先存储在所述控制单元中的所述预定脉冲信号数和所述预定脉冲时间间隔而判定所述阀门处于完全打开位置或完全关闭位置的情况下,通过所述控制单元记录当前的脉冲信号数;以及
在所述当前的脉冲信号数的基础上减小5%至10%,以获得所述预定脉冲信号数。
在一些可选的实施方式中,所述方法包括:通过对所述阀门进行两次校正,以获得所述阀门的所述完全打开位置与所述完全关闭位置之间的距离。
在一些可选的实施方式中,所述方法包括:在所述阀门的第一校正中,使所述驱动装置沿第一方向对所述阀门进行驱动,并且通过所述控制单元获得并存储与所述阀门的所述完全打开位置和所述完全关闭位置中的一个位置相对应的第一脉冲信号数;
在获得所述第一脉冲信号数之后,在所述阀门的第二校正中,使所述驱动装置沿与所述第一方向相反的第二方向对所述阀门进行驱动,并且通过所述控制单元获得并存储与所述阀门的所述完全打开位置和所述完全关闭位置中的另一个位置相对应的第二脉冲信号数;以及
使所述控制单元基于所述第一脉冲信号数和所述第二脉冲信号数计算所述阀门的所述完全打开位置与所述完全关闭位置之间的距离。
在一些可选的实施方式中,所述方法包括:在所述阀门的所述第一校正中,使所述控制单元响应于以下条件而判定所述阀门已处于所述完全打开位置或所述完全关闭位置,从而向所述驱动单元输出停止扭矩输出指令以使所述驱动装置停止向所述阀门施加扭矩并且获得所述第一脉冲信号数:
由所述电流传感器检测到的所述驱动装置的工作电流大于第一预定堵转电流;
由所述控制单元所获得的脉冲信号数大于第一预定脉冲信号数;以及
由所述控制单元所获得的脉冲信号时间间隔大于第一预定脉冲信号时间间隔。
在一些可选的实施方式中,在所述阀门的所述第一校正中,所述驱动装置的初始扭矩值设置为所述驱动装置的额定输出扭矩的30%。
在一些可选的实施方式中,在所述阀门的所述第一校正中,在由所述控制单元所获得的脉冲信号数小于所述第一预定脉冲信号数、由所述控制单元所获得的脉冲信号时间间隔小于所述第一预定脉冲信号时间间隔、并且由所述电流传感器检测到的所述驱动装置的工作电流小于所述第一预定堵转电流情况下,使所述驱动装置继续沿着所述第一方向对所述阀门进行驱动。
在一些可选的实施方式中,所述方法包括:在所述阀门的所述第一校正中,在由所述控制单元所获得的脉冲信号数小于所述第一预定脉冲信号数、由所述控制单元所获得的脉冲信号时间间隔大于所述第一预定脉冲信号时间间隔、并且由所述电流传感器检测到的所述驱动装置的工作电流大于所述第一预定堵转电流情况下,使所述驱动装置沿着与所述第一方向相反的第二方向对所述阀门进行驱动,以及在所述驱动装置沿着所述第二方向对所述阀门进行驱动的情况下,响应于由所述控制单元所获得的脉冲信号数小于所述第一预定脉冲信号数而判定所述驱动装置施加在所述阀门上的扭矩不足。
在一些可选的实施方式中,所述方法包括:在所述阀门的所述第一校正中,在判定所述驱动装置施加在所述阀门上的扭矩不足的情况下,所述控制单元向所述驱动单元输出所述扭矩增大指令并且以脉冲宽度调制的方式改变所述驱动装置的工作参数,以使所述驱动装置施加在所述阀门上的扭矩以每次增加10%的方式递增,直至达到预先确定的所述驱动装置的第一最大操作扭矩为止。
在一些可选的实施方式中,所述方法包括:在所述阀门的所述第一校正中,在所述驱动装置施加在所述阀门上的扭矩增加到大于所述第一最大操作扭矩的情况下,判定所述第一校正失败。
在一些可选的实施方式中,所述方法包括在如下情况下判定所述阀门的所述第一校正成功:
在所述阀门的所述第一校正中,在由所述控制单元所获得的脉冲信号数小于所述第一预定脉冲信号数、由所述控制单元所获得的脉冲信号时间间隔大于所述第一预定脉冲信号时间间隔、并且由所述电流传感器检测到的所述驱动装置的工作电流大于所述第一预定堵转电流情况下,使所述驱动装置沿着与所述第一方向相反的第二方向对所述阀门进行驱动;
在所述驱动装置沿着所述第二方向对所述阀门进行驱动的情况下,响应于由所述控制单元所获得的脉冲信号数大于所述第一预定脉冲信号数,使所述驱动装置沿所述第一方向对所述阀门进行驱动,且通过所述控制单元向所述驱动单元输出的所述扭矩增大指令以脉冲宽度调制的方式改变所述驱动装置的工作参数以使所述驱动装置施加在所述阀门上的扭矩增加20%;以及
在所述驱动装置施加在所述阀门上的扭矩增加20%之后,由所述控制单元所获得的脉冲信号数大于所述第一预定脉冲信号数。
在一些可选的实施方式中,所述方法包括:在所述控制单元于所述阀门的所述第一校正中判定所述阀门已处于所述完全打开位置或所述完全关闭位置,从而向所述驱动单元输出停止扭矩输出指令以使所述驱动装置停止向所述阀门施加扭矩并且获得所述第一脉冲信号数的情况下,对所述阀门进行第二校正。
在一些可选的实施方式中,所述方法包括:在所述阀门的所述第二校正中,所述控制单元响应于以下条件而判定出所述阀门已处于完全打开位置或完全关闭位置,从而向所述驱动单元输出停止扭矩输出指令以使所述驱动装置停止向所述阀门施加扭矩并且获得所述第二脉冲信号数:
由所述电流传感器检测到的所述驱动装置的工作电流大于所述第一预定堵转电流;
由所述控制单元所获得的脉冲信号数大于第二预定脉冲信号数;以及
由所述控制单元所获得的脉冲信号时间间隔大于所述第一预定脉冲信号时间间隔。
在一些可选的实施方式中,所述方法包括:在所述阀门的所述第二校正中,在由所述控制单元所获得的脉冲信号时间间隔大于所述第一预定脉冲信号时间间隔、由所述控制单元所获得的脉冲信号数小于所述第二预定脉冲信号数、并且由所述电流传感器检测到的所述驱动装置的工作电流大于所述第一预定堵转电流的情况下,判定所述驱动装置施加在所述阀门上的扭矩不足。
在一些可选的实施方式中,所述方法包括:在所述阀门的所述第二校正中,在判定所述驱动装置施加在所述阀门上的扭矩不足的情况下,所述控制单元向所述驱动单元输出的所述扭矩增大指令以脉冲宽度调制的方式改变所述驱动装置的工作参数,以使所述驱动装置施加在所述阀门上的扭矩逐渐增加,直至达到预先确定的所述驱动装置的第二最大操作扭矩为止。
根据本申请的扭矩控制系统及其控制方法,能够在不需要手动操作阀门的情况下,自动判断阀门的完全打开位置和完全关闭位置。此外,扭矩控制系统的控制单元能够基于由检测单元检测的驱动装置工作信 号而获得控制参数,并且向驱动单元输出控制指令以改变驱动装置的工作参数,从而对驱动装置施加在阀门上的扭矩进行调节,从而能够通过本申请的扭矩控制系统来精确输出阀门所需要的操作扭矩,以使得不存在操作扭矩过大而损坏阀门或者操作扭矩过小而无法驱动阀门的情况,并且提高了动力利用效率。
附图说明
参照下面结合附图对本公开的示例性实施方式的详细说明,可以更加容易地理解本公开的以上和其他目的、特点和优点。在所有附图中,相同的或对应的技术特征或组成部分将采用相同或对应的附图标记来表示。在附图中,各组成部分的尺寸和相对位置并不必然是按比例绘制出的。在附图中:
图1示出了根据本公开的示例性实施方式的扭矩控制系统的示意性框图;
图2示出了根据本公开的示例性实施方式的驱动装置的立体图;
图3示出了根据本公开的示例性实施方式的用于确定阀门的完全打开位置与完全关闭位置之间的距离的过程中的第一校正的示意性工作流程图;以及
图4示出了根据本公开的示例性实施方式的用于确定阀门的完全打开位置与完全关闭位置之间的距离的过程中的第二校正的示意性工作流程图。
具体实施方式
下面将参照附图借助于示例性实施方式对本公开进行详细描述。要注意的是,本公开的示例性实施方式旨在使得本领域的普通技术人员可以容易地实施本公开,本公开的各实施方式可以以许多不同的形式来实现,而不应当被解释为限于本公开中所阐述的实施方式。相应的,对本公开的以下详细描述仅仅是出于说明目的,而绝不是对本公开的限制。此外,在各个附图中采用相同的附图标记来表示相同的部件。
还需要说明的是,为了清楚起见,在说明书和附图中并未描述和示出实际的特定实施方式的所有特征,并且,为了避免不必要的细节模糊了本公开关注的技术方案,在附图和说明书中仅描述和示出了与本公开的技术方案密切相关的装置结构,而省略了与本公开的技术内容关系不大的且本领域技术人员已知的其他细节。
接下来,将参照图1和图2对根据本申请的示例性实施方式的扭矩控制系统进行详细地描述。图1示出了根据本公开的示例性实施方式的扭矩控制系统的示意性框图,并且图2示出了根据本公开的示例性实施方式的驱动装置的立体图。
如图1所示,作为本申请的示例性实施方式的扭矩控制系统1用于在阀门的启闭过程中对施加在阀门上的扭矩进行控制,扭矩控制系统1包括:驱动单元10,驱动单元10包括驱动装置,驱动装置工作地连接至阀门,以在阀门的完全打开位置与完全关闭位置之间对阀门进行驱动;检测单元20,检测单元20用于对与驱动装置的工作相关的信息进行检测并生成相应的驱动装置工作信号;以及控制单元30,控制单元30配置成:接收来自检测单元20的驱动装置工作信号;基于驱动装置工作信号获得用于对驱动装置的操作扭矩进行控制的控制参数;基于所获得的控制参数生成控制指令;以及向驱动单元10输出控制指令以改变驱动装置的工作参数,从而对驱动装置施加在阀门上的扭矩进行调节。
在本申请的示例性实施方式中,扭矩控制系统1配置成:基于控制单元30输出的初始控制指令,使驱动装置以预先确定的最小操作扭矩对阀门进行驱动;使检测单元20响应于驱动装置的工作而生成驱动装置工作信号,驱动装置工作信号包括脉冲信号;使控制单元基于脉冲信号获得脉冲信号数和脉冲信号时间间隔,并且将所获得的脉冲信号数和脉冲信号时间间隔分别与预先存储在控制单元中的预定脉冲信号数和预定脉冲信号时间间隔进行比较,以判断驱动装置施加在阀门上的扭矩是否不足,以及在判定驱动装置施加在阀门上的扭矩不足的情况下,使控制单元30向驱动单元10输出扭矩增大指令以使驱动装置施加在阀门上的扭矩增大。
在本申请的上下文中,施加在阀门上的扭矩不足指的是当前施加在阀门上的操作扭矩不足以推动阀门。
在本申请的示例性实施方式中,扭矩控制系统1配置成:在所获得的脉冲信号时间间隔大于预定脉冲信号时间间隔并且所获得的脉冲信号数小于预定脉冲信号数的情况下,则判定驱动装置施加在阀门上的扭矩不足。
在一些实施方式中,电机在一般运转过程中,控制单元所获得的脉冲信号时间间隔间会在100ms以下,时脉冲信号时间间隔间会随着推进距离减少或无法推进而逐渐增加到100~200ms或以上,当冲信号时间间隔间超过200ms时,就会判定为阀门到达终点并马上停上推进。
在本申请的示例性实施方式中,扭矩控制系统1配置成:在判定驱动装置施加在阀门上的扭矩不足的情况下,控制单元向驱动单元10输出扭矩增大指令并且以脉冲宽度调制的方式改变驱动装置的工作参数,从而使驱动装置施加在阀门上的扭矩逐渐增加,直至达到预先确定的驱动装置的最大操作扭矩为止。
在一些实施方式中,控制单元可以以电压反馈调节的方式或电流反馈调节的方式改变驱动装置的工作参数,从而使驱动装置施加在阀门上的扭矩逐渐增加,直至达到预先确定的驱动装置的最大操作扭矩为止。
在一些实施方式中,预先确定的驱动装置的最大操作扭矩为电机的额定输出扭矩的80%。
在本申请的示例性实施方式中,控制单元向驱动单元10输出的扭矩增大指令以脉冲宽度调制的方式改变驱动装置的工作参数以使驱动装置施加在阀门上的扭矩以每次增加10%的方式递增。应理解的是,在每次接收到扭矩增大指令时,驱动装置施加在阀门上的扭矩可以根据具体情况以其他方式进行递增。
在本申请的示例性实施方式中,检测单元20可以包括脉冲检测器,脉冲检测器可以包括例如霍尔传感器102。霍尔传感器102安装成与驱动单元中的驱动装置101的输出轴相关联,或者安装成与驱动单元中的传动系中的传动部分或变速部分相关联,并且响应于驱动装置101的工作而生成脉冲信号,检测单元20还包括电流传感器,电流传感器安装在驱动装置上并且配置成在阀门的启闭过程中对驱动装置的工作电流进行检测并生成电流信号。
在一些实施方式中,驱动装置101包括电机(或马达)。如图2所示,在初始非工作状态下,霍尔传感器102安装成与电机壳相对静止,在电机转动的情况下,电机的输出轴带动安装有磁体104的小齿轮103转动,小齿轮103上的磁体104每相对于霍尔传感器102旋转一次,则使霍尔传感器102触发一个脉冲信号,控制单元基于脉冲信号获得脉冲信号数和脉冲信号时间间隔,之后将所获得的脉冲信号数和脉冲信号 时间间隔分别与预先存储在控制单元中的预定脉冲信号数和预定脉冲信号时间间隔进行比较,以判断驱动装置施加在阀门上的扭矩是否不足,以及在判定驱动装置施加在阀门上的扭矩不足的情况下,使控制单元30向驱动单元10输出扭矩增大指令以使驱动装置101施加在阀门上的扭矩增大。通过利用霍尔元器件来检测电机旋转所产生的脉冲信号,提高了控制单元的控制精确度。
在一些实施方式中,控制单元可以包括微控制单元(MCU)和/或芯片。
在另外一些实施方式中,脉冲检测器可以包括光电耦合装置,该光电耦合装置可以包括发光部件和光线感应器,电机设置有一小齿轮,该小齿轮上设置有一小孔,在小齿轮的一侧安装有发光部件,在小齿轮的另一侧安装有光线感应器。在电机转动的情况下,电机的输出轴或传动轴带动设置有小孔的小齿轮转动,小齿轮上的小孔允许由发光部件发出的光间歇性地通过,小齿轮上的小孔每使光线通过一次,则光线感应器触发一个脉冲信号,控制单元基于脉冲信号获得脉冲信号数和脉冲信号时间间隔,之后将所获得的脉冲信号数和脉冲信号时间间隔分别与预先存储在控制单元中的预定脉冲信号数和预定脉冲信号时间间隔进行比较,以判断驱动装置施加在阀门上的扭矩是否不足,以及在判定驱动装置施加在阀门上的扭矩不足的情况下,使控制单元30向驱动单元10输出扭矩增大指令以使驱动装置101施加在阀门上的扭矩增大。
在本申请的示例性实施方式中,扭矩控制系统配置成:使控制单元基于来自电流传感器的电流信号获得驱动装置的堵转电流,并且将所获得的堵转电流与预先存储在控制单元中的预定堵转电流进行比较,以判断阀门是否处于完全打开位置或完全关闭位置,以及在判定阀门处于完全打开位置或完全关闭位置的情况下,向驱动单元10输出停止扭矩输出指令以使驱动装置101停止向阀门施加扭矩。
应理解的是,电机堵转是电机在转速为零时仍然输出扭矩的一种情况,当阀门在启闭期间到达完全打开位置或者完全关闭位置时,由于电机负载过大而可能导致电机停止转动,在这种情况下发生电机堵转,由电流传感器感测堵转电流。
在一些实施方式中,扭矩控制系统配置成:在所获得的脉冲信号时间间隔大于预定脉冲信号时间间隔、所获得的脉冲信号数大于预定脉冲信号数、并且所获得的堵转电流大于预定堵转电流的情况下,判定阀门处于完全打开位置或完全关闭位置,使控制单元向驱动单元10输出停止扭矩输出指令以使驱动装置101停止向阀门施加扭矩。
在一些实施方式中,扭矩控制系统还包括报警单元,扭矩控制系统配置成:在驱动装置施加在阀门上的扭矩超过预先确定的驱动装置的最大操作扭矩的情况下,使控制单元向驱动单元20输出停止扭矩输出指令以使驱动装置停止向阀门施加扭矩并且向报警单元发出报警指令以使报警单元发出警报。
在一些实施方式中,扭矩控制系统配置成:通过对阀门进行两次校正,以获得阀门的完全打开位置与完全关闭位置之间(或者起点与终点之间)的距离。
在一些实施方式中,扭矩控制系统配置成:
在阀门的第一校正中,使驱动装置沿第一方向对阀门进行驱动,并且通过控制单元获得并存储与阀门的完全打开位置和完全关闭位置中的一个位置相对应的第一脉冲信号数;
在获得第一脉冲信号数之后,在阀门的第二校正中,使驱动装置沿与第一方向相反的第二方向对阀门进行驱动,并且通过控制单元获得并存储与阀门的完全打开位置和完全关闭位置中的另一个位置相对应的第二脉冲信号数;以及
使控制单元基于第一脉冲信号数和第二脉冲信号数计算阀门的完全打开位置与完全关闭位置之间的距离。
在本申请的实施方式中,基于由检测单元实时检测的驱动装置工作信号,控制单元对驱动装置施加在阀门上的扭矩进行调节,从而能够通过本申请的扭矩控制系统来精确输出阀门所需要的扭矩,保护阀门免受损坏并且提高了阀门的使用寿命,同时提升了动力利用效率。此外,能够在不需要手动操作阀门的情况下,自动判断阀门的完全打开位置和完全关闭位置,从而能够精确确定阀门在开闭过程中的转动路径。
接下来,将对通过扭矩控制系统对施加在阀门上的扭矩进行控制的方法进行描述,所述方法包括:
检测与用于对阀门进行驱动的驱动装置的工作相关的信息并生成相应的驱动装置工作信号;
基于驱动装置工作信号获得用于对所述驱动装置的操作扭矩进行控制的控制参数;
基于所获得的控制参数生成控制指令;以及
向驱动单元输出控制指令以改变驱动装置的工作参数,从而对驱动装置施加在阀门上的扭矩进行调节。
在一些实施方式中,所述方法还包括:基于控制单元输出的初始控制指令,使驱动装置以最小操作扭矩对阀门进行驱动;使检测单元响应于检测到驱动装置的工作而输出脉冲信号;使控制单元基于脉冲信号获得脉冲信号数和脉冲信号时间间隔,并且将所获得的脉冲信号数和脉冲信号时间间隔分别与预先存储在控制单元中的预定脉冲信号数和预定脉冲信号时间间隔进行比较,以判断驱动装置施加在阀门上的扭矩是否不足,以及在判定驱动装置施加在阀门上的扭矩不足的情况下,向驱动单元输出扭矩增大指令以使驱动装置施加在阀门上的扭矩增大。
在一些实施方式中,所述方法还包括:在所获得的脉冲信号时间间隔大于预定脉冲信号时间间隔并且所获得的脉冲信号数小于预定脉冲信号数的情况下,则判定驱动装置施加在阀门上的扭矩不足。
在一些实施方式中,所述方法包括:在判定驱动装置施加在阀门上的扭矩不足的情况下,控制单元向驱动单元输出扭矩增大指令并且以脉冲宽度调制的方式改变驱动装置的工作参数,从而使驱动装置施加在阀门上的扭矩逐渐增加,直至达到预先确定的驱动装置的最大操作扭矩为止。
在一些实施方式中,所述方法包括:在判定驱动装置施加在阀门上的扭矩不足的情况下,控制单元向驱动单元输出扭矩增大指令并且以脉冲宽度调制的方式改变驱动装置的工作参数以使驱动装置施加在阀门上的扭矩以每次增加10%的方式递增。
在一些实施方式中,所述方法还包括:在阀门的启闭过程中通过电流传感器对驱动装置的工作电流进行检测并生成电流信号,使控制单元基于来自电流传感器的电流信号获得驱动装置的堵转电流,并且将所获得的堵转电流与预先存储在控制单元中的预定堵转电流进行比较,以判断阀门是否处于完全打开位置或完全关闭位置,以及在判定阀门处于完全打开位置或完全关闭位置的情况下,向驱动单元输出停止扭矩输 出指令以使驱动装置停止向阀门施加扭矩。
在一些实施方式中,所述方法还包括:在所获得的脉冲信号时间间隔大于预定脉冲信号时间间隔、所获得的脉冲信号数大于预定脉冲信号数、并且所获得的堵转电流大于预定堵转电流的情况下,判定阀门处于完全打开位置或完全关闭位置,使控制单元向驱动单元输出停止扭矩输出指令以使驱动装置停止向阀门施加扭矩。
在一些实施方式中,所述方法还包括:在驱动装置施加在阀门上的扭矩超过预先确定的驱动装置的最大操作扭矩的情况下,使控制单元向驱动单元输出停止扭矩输出指令以使驱动装置停止向阀门施加扭矩并且向报警单元发出报警指令以使报警单元发出警报。
在一些实施方式中,所述方法包括:通过对阀门进行校准以获得最小操作扭矩,其中,通过对阀门进行校准以获得最小操作扭矩包括:在阀门的校准过程中,使驱动装置以预先确定的最小的初始扭矩值对阀门进行驱动;在驱动装置施加在阀门上的扭矩不足的情况下,通过控制单元向驱动单元输出扭矩增大指令以使驱动装置施加在阀门上的扭矩逐步增加;在控制单元接收到检测单元响应于检测到驱动装置的工作而输出的脉冲信号的情况下,通过控制单元记录驱动装置施加在阀门上的当前扭矩;以及在当前扭矩的基础上增加5%至10%,从而获得最小操作扭矩。
通过上述步骤对阀门进行校准以获得最小操作扭矩,由于在控制单元所记录的扭矩值的基础上增加5%至10%,所获得的最小操作扭矩可以适于阀门出现生锈的情况。
在一些实施方式中,所述方法包括:通过对阀门进行校准以获得预定脉冲信号数,其中,通过对阀门进行校准以获得预定脉冲信号数包括:通过计算获得预定脉冲信号数并将预定脉冲信号数存储在控制单元中;在阀门的校准过程中,在由于控制单元基于来自所述检测单元的脉冲信号所获得的脉冲信号数和脉冲信号时间间隔分别大于预先存储在控制单元中的预定脉冲信号数和预定脉冲时间间隔而判定阀门处于完全打开位置或完全关闭位置的情况下,通过控制单元记录当前的脉冲信号数;以及在当前的脉冲信号数的基础上减小5%至10%,以获得预定脉冲信号数。
通过上述步骤对阀门进行校准以获得预定脉冲信号数,所获得的脉冲信号数可以为阀门实际开关所需的脉冲数,由于在控制单元所记录的脉冲信号数的基础上减小5%至10%,可以防止由于阀门的把手过度转动而对阀门造成损害。
接下来,将结合图3和图4对获得阀门的完全打开位置与完全关闭位置之间的距离的方法进行描述,所述方法包括:通过对阀门进行两次校正,以获得阀门的完全打开位置与完全关闭位置之间的距离。
在一些实施方式中,在阀门的第一校正(如图3所示)中,使电机沿第一方向对阀门进行驱动,并且通过控制单元获得并存储与阀门的完全打开位置和完全关闭位置中的一个位置相对应的第一脉冲信号数;在获得第一脉冲信号数之后,在阀门的第二校正(如图4所示)中,使电机沿与第一方向相反的第二方向对阀门进行驱动,并且通过控制单元获得并存储与阀门的完全打开位置和完全关闭位置中的另一个位置相对应的第二脉冲信号数;以及使控制单元基于第一脉冲信号数和第二脉冲信号数计算阀门的完全打开位置 与完全关闭位置之间的距离。
在一些实施方式中,所述方法包括:在阀门的第一校正中,使控制单元响应于以下条件而判定阀门已处于完全打开位置或完全关闭位置,从而向驱动单元输出停止扭矩输出指令以使电机停止向阀门施加扭矩并且获得第一脉冲信号数:
由电流传感器检测到的电机的工作电流大于第一预定堵转电流;
由控制单元所获得的脉冲信号数大于第一预定脉冲信号数;以及
由控制单元所获得的脉冲信号时间间隔大于第一预定脉冲信号时间间隔。
在一些实施方式中,第一预定堵转电流为180mA。应理解的是,第一预定堵转电流180mA仅是示例,第一预定堵转电流可以根据阀门的具体结构和类型而为任何数值。在一些实施方式中,预先对电机进行测试,以确定出现堵转时的堵转电流的最大值及正常运行时的电流的平均值,并且基于堵转电流的最大值及正常运行时的电流的平均值来确定预定堵转电流。
在一些实施方式中,第一预定脉冲信号数为200,第一脉冲信号时间间隔为200ms。应理解的是,预定脉冲信号数200和脉冲信号时间间隔200ms仅是示例,预定脉冲信号数和脉冲信号时间间隔可以根据阀门的具体机械设计和阀门需要转动的幅度而设置为任何数值。
在一些实施方式中,所述方法包括:在阀门的第一校正中,电机的初始扭矩值设置为电机的额定输出扭矩的30%。此外,电机的推进次数设置为1。
在一些实施方式中,在第一校正中,将第一预定堵转电流设置为180mA,将第一预定脉冲信号数设置为200,并且将第一脉冲信号时间间隔设置为200ms。所述方法包括:在阀门的第一校正中,在由控制单元所获得的脉冲信号数小于200、由控制单元所获得的脉冲信号时间间隔小于200ms、并且由电流传感器检测到的电机的工作电流小于180mA的情况下,使电机继续沿着第一方向对阀门进行驱动。
在一些实施方式中,所述方法包括:在阀门的第一校正中,在由控制单元所获得的脉冲信号数小于200、由控制单元所获得的脉冲信号时间间隔大于200ms、并且由电流传感器检测到的电机的工作电流大于180mA情况下,使电机沿着与第一方向相反的第二方向对阀门进行驱动,以及在电机沿着第二方向对阀门进行驱动的情况下,响应于由控制单元所获得的脉冲信号数小于200而判定电机施加在阀门上的扭矩不足。
在阀门的第一校正中,在判定电机施加在阀门上的扭矩不足的情况下,控制单元向驱动单元输出扭矩增大指令并且以脉冲宽度调制的方式改变电机的工作参数,以使电机施加在阀门上的扭矩以每次增加10%的方式递增,直至达到预先确定的电机的第一最大操作扭矩为止。
在一些实施方式中,电机的初始扭矩值设置为30N·m。在一些实施方式中,预先确定的第一最大操作扭矩为电机的额定输出扭矩的80%。在一些实施方式中,第一最大操作扭矩为80N·m。应理解的是,80N·m仅是示例,第一最大操作扭矩可以根据阀门的实际结构设置为任何值。
在阀门的第一校正中,在电机施加在阀门上的扭矩增加到大于80N·m的情况下,判定第一校正失败。
在一些实施方式中,在如下情况下判定阀门的第一校正成功:在阀门的第一校正中,在由控制单元所 获得的脉冲信号数小于200、由控制单元所获得的脉冲信号时间间隔大于200ms、并且由电流传感器检测到的电机的工作电流大于180mA情况下,使电机沿着与第一方向相反的第二方向对阀门进行驱动;在电机沿着第二方向对阀门进行驱动的情况下,响应于由控制单元所获得的脉冲信号数大于第一预定脉冲信号数,使电机沿第一方向继续对阀门进行驱动,且通过控制单元向驱动单元输出的扭矩增大指令以脉冲宽度调制的方式改变电机的工作参数以使电机施加在阀门上的扭矩增加;并且在电机施加在阀门上的扭矩增加,直到由控制单元所获得的脉冲信号数大于200。换言之,在一些示例中,如果电机沿着第一方向驱动,获得的脉冲信号数小于200后,则使电机沿着与第一方向相反的第二方向驱动,如果在沿第二方向驱动过程中获得的脉冲信号数大于200,判定为可以推动,控制单元会判定上次校正的方向接近/已达到起点(完全打开/完全开闭位置),并立即停止目前的动作,使电机沿着上次的第一方向继续推进,同时在当前的扭矩值的基础上加上20%以防止未来阀门出现生锈的情况,直至达到停止推进的条件为止。
在一些实施方式中,在控制单元于阀门的第一校正中判定阀门已处于完全打开位置或完全关闭位置,从而向驱动单元输出停止扭矩输出指令以使电机停止向阀门施加扭矩并且获得第一脉冲信号数的情况下,对阀门进行第二校正。在一些示例中,在第一次校正成功后,控制单元会判定当前位置为阀门的起点,并且记录第一次校正成功时收集的脉冲信号数,当用户进行第二次校正时,阀门会以同样的方法推至终点,并把收集到的脉冲信号数记录下来,得出起点与终点之间的距离,即计算出阀门的完全打开位置与完全关闭位置件的距离。
在阀门的第二校正中,将预定堵转电流设置为180mA,将第二预定脉冲信号数设置为480,并且将脉冲信号时间间隔设置为200ms。控制单元响应于以下条件而判定出阀门已处于完全打开位置或完全关闭位置,从而向驱动单元输出停止扭矩输出指令以使电机停止向阀门施加扭矩并且获得第二脉冲信号数:由电流传感器检测到的电机的工作电流大于180mA;由控制单元所获得的脉冲信号数大于480;以及由控制单元所获得的脉冲信号时间间隔大于200ms。
在一些实施方式中,在阀门的第二校正中,在由控制单元所获得的脉冲信号时间间隔大于200ms、由控制单元所获得的脉冲信号数小于480、并且由电流传感器检测到的电机的工作电流大于180mA的情况下,判定电机施加在阀门上的扭矩不足。
在一些实施方式中,在阀门的第二校正中,在判定电机施加在阀门上的扭矩不足的情况下,控制单元向驱动单元输出扭矩增大指令,以脉冲宽度调制的方式改变电机的工作参数,以使电机施加在阀门上的扭矩逐渐增加,直至达到预先确定的电机的第二最大操作扭矩为止。应理解的是,控制单元还可以以电压反馈调节的方式或电流反馈调节的方式来改变电机的工作参数,比如改变电机的操作扭矩。
在一些实施方式中,第二最大操作扭矩为电机的额定输出扭矩的100%。在一些实施方式中,第二最大操作扭矩为100N·m。应理解的是,100N·m仅是示例,第二最大操作扭矩可以根据实际设计需要设置为任何值。
以上参照附图并通过实施方式的描述对本公开进行了说明,但是本公开并不局限于上述实施方式。本 领域技术人员可以理解,在不脱离本公开技术思想的情况下可以进行修改和变型,这些修改和变型同样包含在本公开的保护范围内。
工业实用性
本公开提供了扭矩控制系统及其控制方法。扭矩控制系统配置成能够在不需要手动操作阀门的情况下,自动判断阀门的完全打开位置和完全关闭位置。此外,扭矩控制系统的控制单元能够基于由检测单元检测的驱动装置工作信号而获得控制参数,并且向驱动单元输出控制指令以改变驱动装置的工作参数,从而对驱动装置施加在阀门上的扭矩进行调节,因此能够通过本申请的扭矩控制系统来精确输出阀门所需要的扭矩,以使得不存在操作扭矩过大而损坏阀门或者操作扭矩过小而无法驱动的情况,并且提高了动力利用效率。
此外,可以理解的是,本公开的检测单元、控制单元、扭矩控制系统等是可以重现的,并且可以应用在多种工业应用中。例如,本公开的扭矩控制系统可以应用于在阀门的启闭过程中对施加在阀门上的扭矩进行控制的方法。

Claims (19)

  1. 一种扭矩控制系统,所述扭矩控制系统用于在阀门的启闭过程中对施加在所述阀门上的扭矩进行控制,所述扭矩控制系统包括:
    驱动单元,所述驱动单元包括驱动装置,所述驱动装置工作地连接至所述阀门,以在所述阀门的完全打开位置与完全关闭位置之间对所述阀门进行驱动;
    检测单元,所述检测单元用于对与所述驱动装置的工作相关的信息进行检测并生成相应的驱动装置工作信号;以及
    控制单元,所述控制单元配置成:接收来自所述检测单元的所述驱动装置工作信号;基于所述驱动装置工作信号获得用于对所述驱动装置的操作扭矩进行控制的控制参数;基于所获得的控制参数生成控制指令;以及,向所述驱动单元输出所述控制指令以改变所述驱动装置的工作参数,从而对所述驱动装置施加在所述阀门上的扭矩进行调节。
  2. 根据权利要求1所述的扭矩控制系统,其中,所述扭矩控制系统配置成:
    基于所述控制单元输出的初始控制指令,使所述驱动装置以预先确定的最小操作扭矩对所述阀门进行驱动;
    使所述检测单元响应于所述驱动装置的工作而生成所述驱动装置工作信号,所述驱动装置工作信号包括脉冲信号;
    使所述控制单元基于所述脉冲信号获得脉冲信号数和脉冲信号时间间隔,并且将所获得的脉冲信号数和脉冲信号时间间隔分别与预先存储在所述控制单元中的预定脉冲信号数和预定脉冲信号时间间隔进行比较,以判断所述驱动装置施加在所述阀门上的扭矩是否不足,以及
    在判定所述驱动装置施加在所述阀门上的扭矩不足的情况下,使所述控制单元向所述驱动单元输出扭矩增大指令以使所述驱动装置施加在所述阀门上的扭矩增大。
  3. 根据权利要求2所述的扭矩控制系统,其中,所述扭矩控制系统配置成:在所获得的脉冲信号时间间隔大于所述预定脉冲信号时间间隔并且所获得的脉冲信号数小于所述预定脉冲信号数的情况下,则判定所述驱动装置施加在所述阀门上的扭矩不足。
  4. 根据权利要求3所述的扭矩控制系统,其中,所述扭矩控制系统配置成:在判定所述驱动装置施加在所述阀门上的扭矩不足的情况下,所述控制单元向所述驱动单元输出所述扭矩增大指令并且以脉冲宽度调制的方式改变所述驱动装置的工作参数,从而使所述驱动装置施加在所述阀门上的扭矩逐渐增加,直至达到预先确定的所述驱动装置的最大操作扭矩为止。
  5. 根据权利要求1所述的扭矩控制系统,其中,所述控制单元配置成以电压反馈调节的方式或电流反馈调节的方式来改变所述驱动装置的工作参数,从而对所述驱动装置施加在所述阀门上的扭矩进行调节。
  6. 根据权利要求1至4中的任一项所述的扭矩控制系统,其中,所述检测单元包括脉冲检测器,所述脉冲检测器安装成与所述驱动单元相关联并且响应于所述驱动装置的工作而生成脉冲信号,所述检测单元还包括电流传感器,所述电流传感器安装在所述驱动装置上并且配置成在所述阀门的启闭过程中对所述驱动装置的工作电流进行检测并生成电流信号,
    其中,所述扭矩控制系统配置成:使所述控制单元基于来自所述电流传感器的所述电流信号获得所述驱动装置的堵转电流,并且将所获得的堵转电流与预先存储在所述控制单元中的预定堵转电流进行比较,以判断所述阀门是否处于所述完全打开位置或所述完全关闭位置,以及
    在判定所述阀门处于所述完全打开位置或所述完全关闭位置的情况下,向所述驱动单元输出停止扭矩输出指令以使所述驱动装置停止向所述阀门施加扭矩。
  7. 根据权利要求6所述的扭矩控制系统,其中,所述扭矩控制系统配置成:在所获得的脉冲信号时间间隔大于所述预定脉冲信号时间间隔、所获得的脉冲信号数大于所述预定脉冲信号数、并且所获得的堵转电流大于所述预定堵转电流的情况下,判定所述阀门处于所述完全打开位置或所述完全关闭位置,使所述控制单元向所述驱动单元输出停止扭矩输出指令以使所述驱动装置停止向所述阀门施加扭矩。
  8. 根据权利要求6或7所述的扭矩控制系统,其中,所述扭矩控制系统还包括报警单元,所述扭矩控制系统配置成:在所述驱动装置施加在所述阀门上的扭矩超过预先确定的所述驱动装置的所述最大操作扭矩的情况下,使所述控制单元向所述驱动单元输出停止扭矩输出指令以使所述驱动装置停止向所述阀门施加扭矩并且向所述报警单元发出报警指令以使所述报警单元发出警报。
  9. 根据权利要求1至8中的任一项所述的扭矩控制系统,其中,所述扭矩控制系统配置成:通过对所述阀门进行两次校正,以获得所述阀门的所述完全打开位置与所述完全关闭位置之间的距离。
  10. 根据权利要求9所述的扭矩控制系统,其中,所述扭矩控制系统配置成:
    在所述阀门的第一校正中,使所述驱动装置沿第一方向对所述阀门进行驱动,并且通过所述控制单元获得并存储与所述阀门的所述完全打开位置和所述完全关闭位置中的一个位置相对应的第一脉冲信号数;
    在获得所述第一脉冲信号数之后,在所述阀门的第二校正中,使所述驱动装置沿与所述第一方向相反的第二方向对所述阀门进行驱动,并且通过所述控制单元获得并存储与所述阀门的所述完全打开位置和所述完全关闭位置中的另一个位置相对应的第二脉冲信号数;以及
    使所述控制单元基于所述第一脉冲信号数和所述第二脉冲信号数计算所述阀门的所述完全打开位置与所述完全关闭位置之间的距离。
  11. 一种通过根据权利要求1至10中的任一项所述的扭矩控制系统在阀门的启闭过程中对施加在所述阀门上的扭矩进行控制的方法,所述方法包括:
    检测与用于对所述阀门进行驱动的所述驱动装置的工作相关的信息并生成相应的驱动装置工作 信号;
    基于所述驱动装置工作信号获得用于对所述驱动装置的操作扭矩进行控制的控制参数;
    基于所获得的控制参数生成控制指令;以及
    向所述驱动单元输出所述控制指令以改变所述驱动装置的工作参数,从而对所述驱动装置施加在所述阀门上的扭矩进行调节。
  12. 根据权利要求11所述的方法,其中,所述方法还包括:
    基于所述控制单元输出的初始控制指令,使所述驱动装置以最小操作扭矩对所述阀门进行驱动;
    使所述检测单元响应于检测到所述驱动装置的工作而输出脉冲信号;
    使所述控制单元基于所述脉冲信号获得脉冲信号数和脉冲信号时间间隔,并且将所获得的脉冲信号数和脉冲信号时间间隔分别与预先存储在所述控制单元中的预定脉冲信号数和预定脉冲信号时间间隔进行比较,以判断所述驱动装置施加在所述阀门上的扭矩是否不足,以及在判定所述驱动装置施加在所述阀门上的扭矩不足的情况下,向所述驱动单元输出扭矩增大指令以使所述驱动装置施加在所述阀门上的扭矩增大。
  13. 根据权利要求12所述的方法,其中,所述方法包括:在所获得的脉冲信号时间间隔大于所述预定脉冲信号时间间隔并且所获得的脉冲信号数小于所述预定脉冲信号数的情况下,则判定所述驱动装置施加在所述阀门上的扭矩不足。
  14. 根据权利要求13所述的方法,其中,所述方法包括:在判定所述驱动装置施加在所述阀门上的扭矩不足的情况下,所述控制单元向所述驱动单元输出所述扭矩增大指令并且以脉冲宽度调制的方式改变所述驱动装置的工作参数,从而使所述驱动装置施加在所述阀门上的扭矩逐渐增加,直至达到预先确定的所述驱动装置的最大操作扭矩为止。
  15. 根据权利要求11至14中的任一项所述的方法,其中,所述方法还包括:
    在所述阀门的启闭过程中通过电流传感器对所述驱动装置的工作电流进行检测并生成电流信号,
    使所述控制单元基于来自所述电流传感器的所述电流信号获得所述驱动装置的堵转电流,并且将所获得的堵转电流与预先存储在所述控制单元中的预定堵转电流进行比较,以判断所述阀门是否处于所述完全打开位置或所述完全关闭位置,以及
    在判定所述阀门处于所述完全打开位置或所述完全关闭位置的情况下,向所述驱动单元输出停止扭矩输出指令以使所述驱动装置停止向所述阀门施加扭矩。
  16. 根据权利要求15所述的方法,其中,所述方法还包括:在所获得的脉冲信号时间间隔大于所述预定脉冲信号时间间隔、所获得的脉冲信号数大于所述预定脉冲信号数、并且所获得的堵转电流大于所述预定堵转电流的情况下,判定所述阀门处于所述完全打开位置或所述完全关闭位置,使所述控制单元向所述驱动单元输出停止扭矩输出指令以使所述驱动装置停止向所述阀门施加扭矩。
  17. 根据权利要求13至16中的任一项所述的方法,其中,所述方法包括:在所述驱动装置施加在 所述阀门上的扭矩超过预先确定的所述驱动装置的所述最大操作扭矩的情况下,使所述控制单元向所述驱动单元输出停止扭矩输出指令以使所述驱动装置停止向所述阀门施加扭矩并且向所述报警单元发出报警指令以使所述报警单元发出警报。
  18. 根据权利要求15至17中的任一项所述的方法,其中,所述方法包括:通过对所述阀门进行两次校正,以获得所述阀门的所述完全打开位置与所述完全关闭位置之间的距离。
  19. 根据权利要求18所述的方法,其中,所述方法包括:
    在所述阀门的第一校正中,使所述驱动装置沿第一方向对所述阀门进行驱动,并且通过所述控制单元获得并存储与所述阀门的所述完全打开位置和所述完全关闭位置中的一个位置相对应的第一脉冲信号数;
    在获得所述第一脉冲信号数之后,在所述阀门的第二校正中,使所述驱动装置沿与所述第一方向相反的第二方向对所述阀门进行驱动,并且通过所述控制单元获得并存储与所述阀门的所述完全打开位置和所述完全关闭位置中的另一个位置相对应的第二脉冲信号数;以及
    使所述控制单元基于所述第一脉冲信号数和所述第二脉冲信号数计算所述阀门的所述完全打开位置与所述完全关闭位置之间的距离。
PCT/CN2021/124109 2021-10-15 2021-10-15 阀门扭矩控制系统及其控制方法 WO2023060558A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/124109 WO2023060558A1 (zh) 2021-10-15 2021-10-15 阀门扭矩控制系统及其控制方法
US17/694,673 US11493141B1 (en) 2021-10-15 2022-03-15 Valve torque control system and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/124109 WO2023060558A1 (zh) 2021-10-15 2021-10-15 阀门扭矩控制系统及其控制方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/694,673 Continuation US11493141B1 (en) 2021-10-15 2022-03-15 Valve torque control system and control method thereof

Publications (1)

Publication Number Publication Date
WO2023060558A1 true WO2023060558A1 (zh) 2023-04-20

Family

ID=83902578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/124109 WO2023060558A1 (zh) 2021-10-15 2021-10-15 阀门扭矩控制系统及其控制方法

Country Status (2)

Country Link
US (1) US11493141B1 (zh)
WO (1) WO2023060558A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4888996A (en) * 1987-12-22 1989-12-26 Movats Incorporated DC motor operated valve remote monitoring system
US5289885A (en) * 1992-01-23 1994-03-01 Makita Corporation Tightening tool
CN202469145U (zh) * 2012-03-27 2012-10-03 重庆杰诚逊自动化仪表有限公司 电动执行机构阀杆扭矩测量控制装置
CN102906553A (zh) * 2010-05-21 2013-01-30 斯奈克玛 用于确定旋转轴的扭矩和/或角速度的方法以及用于实施该方法的装置
CN103939667A (zh) * 2013-01-23 2014-07-23 西部电机株式会社 阀促动器、阀装置以及阀促动器的控制方法
CN112303314A (zh) * 2020-10-26 2021-02-02 江苏明通福路流体控制设备有限公司 一种集成智能阀门电动装置
CN112709855A (zh) * 2020-12-22 2021-04-27 金卡智能集团股份有限公司 阀门控制器、阀门控制方法和燃气表
CN112888886A (zh) * 2018-10-19 2021-06-01 福斯管理公司 具有预测自校准扭矩控制器的电子阀致动器
CN113167391A (zh) * 2018-12-06 2021-07-23 布雷国际有限公司 具有集成电子元件的智能阀转接器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5228645A (en) * 1992-04-13 1993-07-20 Marotta Scientific Controls, Inc. Rotary ball valve with lifting ball
US6543416B2 (en) * 1997-10-21 2003-04-08 Hitachi, Ltd. Electric-control-type throttle apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4888996A (en) * 1987-12-22 1989-12-26 Movats Incorporated DC motor operated valve remote monitoring system
US5289885A (en) * 1992-01-23 1994-03-01 Makita Corporation Tightening tool
CN102906553A (zh) * 2010-05-21 2013-01-30 斯奈克玛 用于确定旋转轴的扭矩和/或角速度的方法以及用于实施该方法的装置
CN202469145U (zh) * 2012-03-27 2012-10-03 重庆杰诚逊自动化仪表有限公司 电动执行机构阀杆扭矩测量控制装置
CN103939667A (zh) * 2013-01-23 2014-07-23 西部电机株式会社 阀促动器、阀装置以及阀促动器的控制方法
CN112888886A (zh) * 2018-10-19 2021-06-01 福斯管理公司 具有预测自校准扭矩控制器的电子阀致动器
CN113167391A (zh) * 2018-12-06 2021-07-23 布雷国际有限公司 具有集成电子元件的智能阀转接器
CN112303314A (zh) * 2020-10-26 2021-02-02 江苏明通福路流体控制设备有限公司 一种集成智能阀门电动装置
CN112709855A (zh) * 2020-12-22 2021-04-27 金卡智能集团股份有限公司 阀门控制器、阀门控制方法和燃气表

Also Published As

Publication number Publication date
US11493141B1 (en) 2022-11-08

Similar Documents

Publication Publication Date Title
RU2011107145A (ru) Сервосистема, приводное устройство с сервомотора, предохранительное устройство и способ управления сервосистемой
US8733319B2 (en) Electronic governor system and control device of the same
TW201206047A (en) Motor control device and control method of motor control device
JPH07241096A (ja) 電動モータの制御装置
US10288037B2 (en) Method for controlling a rotational speed threshold of a wind turbine, and a corresponding wind turbine
US4849677A (en) Temperature monitoring for a DC shunt-wound motor
CN108292128B (zh) 致动器和操作致动器的方法
WO2023060558A1 (zh) 阀门扭矩控制系统及其控制方法
JPH11270230A (ja) パワーウインド装置の挟み込み検知方法
CN109931865A (zh) 风门开合角度的检测装置及方法、烟机
JP2007516852A (ja) 流体力インパルスレンチ及び動力ねじジョイント締付け工具システムの動作調整方法
US11557991B2 (en) Control method of impact power tool
JP2002064996A (ja) ステッピングモーターの制御方法及び制御装置並びにモータードライバ
US8264179B2 (en) Method for control of synchronous electrical motors
US9963934B2 (en) Device and method for controlling speed of rolling door
KR102062468B1 (ko) 배연창 제어 장치 및 그 제어 방법
WO2013000202A1 (zh) 一种液压卷扬机构控制方法及系统
CN209570139U (zh) 风门开合角度的检测装置、烟机
US20220178468A1 (en) Valve with capability to self-anticipate failure
US8040091B2 (en) Method and apparatus for stall detection
US11408219B2 (en) Hatch door detection method and system, mobile platform, and plant protection vehicle
KR102178555B1 (ko) Bldc 모터 제어장치
US10954708B2 (en) Movable barrier opener with brushless DC motor
JP2007181330A (ja) モータ制御装置および制御方法
JP2018108639A (ja) 電動インパルススクリュードライバをそのモータの瞬間回転周波数に応じて制御する方法、及び対応する装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21960289

Country of ref document: EP

Kind code of ref document: A1