WO2023059086A1 - Metal phosphide catalyst and method for preparing high value-added compound by using same - Google Patents

Metal phosphide catalyst and method for preparing high value-added compound by using same Download PDF

Info

Publication number
WO2023059086A1
WO2023059086A1 PCT/KR2022/015030 KR2022015030W WO2023059086A1 WO 2023059086 A1 WO2023059086 A1 WO 2023059086A1 KR 2022015030 W KR2022015030 W KR 2022015030W WO 2023059086 A1 WO2023059086 A1 WO 2023059086A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
nickel
cobalt
reaction
acid
Prior art date
Application number
PCT/KR2022/015030
Other languages
French (fr)
Korean (ko)
Inventor
서정길
라권딘 레이벨레퀴암바오
니구스 게브레실라제말렛
홍대호
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Publication of WO2023059086A1 publication Critical patent/WO2023059086A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/04Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • C07D307/06Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to ring carbon atoms
    • C07D307/08Preparation of tetrahydrofuran
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/185Phosphorus; Compounds thereof with iron group metals or platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/185Phosphorus; Compounds thereof with iron group metals or platinum group metals
    • B01J27/1853Phosphorus; Compounds thereof with iron group metals or platinum group metals with iron, cobalt or nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • B01J37/105Hydropyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/26Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D307/30Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/32Oxygen atoms

Definitions

  • the present disclosure relates to a metal phosphide catalyst and a method for preparing a high addition compound using the same. More specifically, the present disclosure provides a metal phosphide-based catalyst having a yolk-shell structure and an organic acid, particularly an organic acid derived from biomass such as levulinic acid or a derivative thereof, through a hydrogenation reaction using the same as a fuel It relates to a method for converting high-value compounds that can be used as raw materials such as additives, bioplastics, and solvents.
  • Biomass is used broadly to include all substances of biological origin, while used narrowly to mean substances derived primarily from vegetable sources such as corn, soybean, linseed, sugarcane and palm oil. do. However, it can generally be extended to all organisms currently living, or metabolic by-products that play a part in the carbon cycle.
  • Lignocellulosic biomass can be exemplified as the most widely used biomass, which can be widely used in the production of biofuels and biochemicals.
  • Lignocellulosic biomass is a combination of cellulose, hemicellulose and lignin in a complex and rigid structure. Recently, studies on the production of various chemical substances using materials formed through the saccharification step of lignocellulosic biomass have been actively conducted.
  • organic acids derived from biomass such as levulinic acid (LA) are used as starting materials for the synthesis of commercially useful compounds, such as acid hydrolysis of biomass (eg, hexose).
  • LA levulinic acid
  • commercially useful compounds such as acid hydrolysis of biomass (eg, hexose).
  • Diphenolic acid, acetacrylic acid, 1,4-pentanediol, acrylic acid, aminolevulate, gamma-valerolactone (GVL) and 2-methyltetrahydrofuran (2-MTHF) are compounds that can be prepared from these levulinic acids. ) and the like can be exemplified.
  • gamma-valerolactone (GVL) and 2-methyltetrahydrofuran (2-MTHF) can be produced by hydrogenation using a catalyst.
  • levulinic acid is dehydrated by primary hydrogenation.
  • Dehydration and cyclization are performed to form gamma-valerolactone, and 2-methyltetrahydrofuran is formed by further hydrogenation (secondary hydrogenation) and cyclization along with dehydration.
  • a noble metal catalyst as a hydrogenation catalyst of an organic acid such as levulinic acid (or a derivative thereof) has been reported (eg, US Patent Publication No. 2003/0055270, CN105566258 A, etc.), and nickel phosphide It is also known when a phosphide catalyst of a transition metal is used like a phosphide catalyst (eg, CN112824395 A, etc.).
  • the conversion reaction using a catalyst according to the prior art is generally carried out in a liquid medium, that is, a solvent, and after completion of the reaction, since the product must be separated from the solvent, an additional separation and purification process is required.
  • it is intended to provide a transition metal phosphide-based catalyst capable of producing a high value-added compound from an organic acid in high yield by exhibiting improved hydrogenation activity compared to the prior art and a method for preparing the same.
  • it is intended to provide a conversion process capable of effectively preparing a high value-added compound from an organic acid or a derivative thereof using the above-described transition metal phosphide-based hydrogenation catalyst even in the absence of a solvent.
  • Ni x Co y P Represented by the general formula Ni x Co y P (x and y are the molar ratios of Ni and Co, ranging from 1:0.2 to 5), in the presence of a metal phosphide catalyst having a yoke-cell structure, to an organic acid or its derivative
  • a metal phosphide catalyst having a yoke-cell structure Represented by the general formula Ni x Co y P (x and y are the molar ratios of Ni and Co, ranging from 1:0.2 to 5)
  • the hydrogenation reaction may involve a cyclization reaction.
  • the organic acid is levulinic acid
  • the hydrogenation reaction is carried out in one step or at least two steps
  • gamma-valerolactone is formed by the first-step hydrogenation reaction
  • 2-methyltetrahydrofuran (2-MTHF) may be formed by the at least two-step hydrogenation reaction.
  • the hydrogenation reaction may be performed without using a solvent.
  • the first hydrogenation reaction is carried out under conditions of a temperature of 120 to 300 ° C. and a hydrogen pressure of 10 to 50 bar, and
  • the secondary hydrogenation reaction may be performed under conditions of a temperature of 180 to 320 °C and a hydrogen pressure of 30 to 80 bar.
  • the overall size (diameter) of the catalyst is 10 to 100 nm, the thickness of the cell layer is 1 to 10 nm, and the size (diameter) of the yoke is in the range of 5 to 50 nm.
  • Ni x Co y P (x and y are the molar ratio of Ni and Co and range from 1: 0.2 to 5) through a substitution reaction of the nickel-cobalt hydroxide with a phosphide agent under an inert gas atmosphere and elevated temperature conditions (i) conversion to a nickel-cobalt phosphide catalyst having a yolk-cell structure;
  • a nickel-cobalt phosphide catalyst in which the overall size (diameter) of the nickel-cobalt phosphide catalyst is in the range of 10 to 100 nm, the thickness of the cell layer is 1 to 10 nm, and the size (diameter) of the yoke is in the range of 5 to 50 nm;
  • a method for preparing the catalyst is provided.
  • the weight ratio of the yoke in the metal phosphide catalyst having a yoke-cell structure may be in the range of 1:1.5 to 5.
  • the acid amount (NH 3 -TPD) of the metal phosphide catalyst may be in the range of 200 to 600 mmol/g.
  • the molar ratio of the reduced form of the metal to the unreduced form of the metal in the metal phosphide catalyst may be in the range of 1:2 to 5.
  • a metal phosphide catalyst having a yoke-cell structure is an inexpensive transition metal (i.e., base metal) compared to conventional organic acid (specifically, biomass-derived organic acid) hydrogenation technology. While using as an active metal, it is possible to improve economic feasibility by achieving good organic acid conversion and selectivity for target compounds (specifically, compounds that can be used as raw materials for biofuels and/or fuel additives, solvents, and bioplastics). there is. In addition, when carried out as a liquid phase reaction, since the target compound can be obtained by hydrogenating the reactant as it is without requiring the use of a separate solvent, post-treatment steps such as separation of the solvent from the reaction product can be omitted. It is also advantageous in terms of commercialization. Therefore, a wide range of applications is expected in the future.
  • 1 is a diagram showing various reaction mechanisms involved in the hydrogenation reaction of levulinic acid according to an exemplary embodiment
  • Figure 2 shows the preparation of the transition metal phosphide catalyst, (a, b) Ni-Co glycerate precursor (generated from the first hydrothermal synthesis reaction), (c, d) Ni-Co phosphide precursor (second hydrothermal synthesis reaction generated from), (eg) Ni 2 Co 1 P, (h) CoP precursor, (i) CoP, and (j) NiP, respectively;
  • Figure 3 shows (a-c) TEM images of nickel-cobalt phosphide catalysts with a yolk-cell structure at different magnifications, (d) HRTEM images recorded from the basal plane, (e, f) HAADF-STEM images and EDS elemental (Ni, Co and P) mapping by (energy-dispersive X-ray spectroscopy);
  • FIG. 5 shows (a, b) nickel-cobalt phosphide catalysts (Ni 2 Co 1 P-150 °C and Ni 2 Co 1 P-100 °C) prepared by performing a second hydrothermal synthesis reaction at 150 ° C and 100 ° C, respectively. , and (c) Ni—Cu/Al 2 O 3 TEM images showing each structure;
  • FIG. 6 is a graph showing H 2 -TPD and NH 3 -TPD results of various transition metal phosphide catalysts, respectively;
  • NiP, Ni 2 Co 1 P, and CoP shows XPS spectra of NiP, Ni 2 Co 1 P, and CoP, (a) Ni 2p spectra for NiP and Ni 2 Co 1 P, respectively, (b) Co 2p spectra for Ni 2 Co 1 P and CoP, respectively. , and (c) P 2p spectra for NiP, Ni 2 Co 1 P and CoP, respectively;
  • 9 is a graph showing the conversion and selectivity measured by hydrogenation of levulinic acid to gamma-valerolactone using various transition metal phosphide catalysts under solvent-free conditions, respectively;
  • FIG. 10 is a graph showing conversion and selectivity measured by hydrogenation of levulinic acid to gamma-valerolactone using various solvents in the presence of a Ni 2 Co 1 P catalyst;
  • FIG. 11 is a graph showing the conversion and selectivity measured by hydrogenating reactants (or substrates) of various levulinic acid esters with gamma-valerolactone in the presence of a Ni 2 Co 1 P catalyst, respectively;
  • nickel-cobalt phosphide catalysts Ni 2 Co 1 P-100° C. and Ni 2 Co 1 P-150° C.
  • Ni 2 Co 1 P-100° C. and Ni 2 Co 1 P-150° C. prepared by performing second hydrothermal synthesis reactions at 100° C. and 150° C., respectively
  • commercial nickel-copper / Alumina catalyst Ni-Cu/Al 2 O 3
  • GTL gamma-valerolactone
  • LA levulinic acid
  • a “heterogeneous catalyst” may refer to a catalyst that is present in a different phase from the reactants during a catalytic reaction, for example, a catalyst that does not dissolve in a reaction medium.
  • a heterogeneous catalyst in order for a reaction to occur, at least one reactant needs to be diffused and adsorbed on the surface of the heterogeneous catalyst, and after the reaction, a product needs to be desorbed from the surface of the heterogeneous catalyst.
  • Biomass usually refers to organic matter produced through photosynthesis, but may be understood as a concept including organic waste such as livestock manure and food waste.
  • Various biomass known in the art e.g. corn, soybean, linseed, vegetable sources such as sugarcane and palm oil, and more specifically, rice straw, wheat straw, starch-containing grains, corn cobs, corn cob, rice husks, paper products, timber, sawdust, agricultural waste, grasses, sugar sorghum, cotton, flax, bamboo, abaca, algae, fruit husks, algae, palm waste, stems, roots and leaves of plants, etc.).
  • carbohydrates obtained by saccharification or degradation from the above-mentioned biomass such as starch, sugars, specifically monosaccharides (glucose, fructose, galactose, xylose, arabinose, mannose, etc.), disaccharides (sucrose, lactose, maltose, cellobiose, etc.), other (oligo)saccharides, and the like.
  • crystalline can refer to any solid-state material that is typically ordered to have a valence lattice structure (eg, three-dimensional order), typically X - It can be specified by ray diffraction analysis (XRD), nuclear magnetic resonance analysis (NMR), differential scanning calorimetry (DSC), or a combination thereof.
  • XRD ray diffraction analysis
  • NMR nuclear magnetic resonance analysis
  • DSC differential scanning calorimetry
  • Catalyst may refer to a component that increases the rate of a reaction and participates in an electrolysis reaction itself, but can participate in a reaction without being consumed by the reaction itself.
  • the "hydrothermal synthesis reaction” may refer to a reaction in which a material is synthesized using water or an aqueous solution under high temperature and high pressure conditions as a liquid phase synthesis method.
  • contacts may also be understood to include not only direct contact, but also contact through the intervening of other components or members.
  • an organic acid eg, levulinic acid
  • a derivative thereof eg, an ester compound of an organic acid
  • a binary functional metal phosphide catalyst capable of converting high value compounds such as 2-methyltetrahydrofuran (2-MTHF) is provided.
  • a metal active site for hydrogenation and cyclization specifically, dehydration/cyclic compound
  • a metal phosphide catalyst specifically, a transition metal phosphide catalyst, and more specifically, a combination of two base metals among group VIII metals on the periodic table may be used.
  • the metal phosphide catalyst may be a nickel-cobalt phosphide catalyst represented by the general formula Ni x Co y P.
  • the molar ratio of nickel (Ni): cobalt (Co) in the catalyst is, for example, 1: about 0.2 to 5, specifically 1: about 0.3 to 3, more specifically 1: about 0.4 to 2, particularly specifically 1: It can be adjusted in the range of about 0.5 to 1.
  • the transition metal phosphide catalyst can be a catalyst represented by the formula Ni 2 Co 1 P.
  • the relative amount of cobalt in the combination of the two transition metals is too low or too high, it may have an undesirable effect on the selectivity for the target product (specifically, GVL), so it is appropriate to adjust it within the above range. can be advantageous
  • the metal phosphide catalyst according to the present embodiment may have a spherical shape, and particularly has a yolk-shell structure, wherein the "yoke-shell structure" includes at least one particle in a central compartment ( That is, it may mean a hollow structure having a yoke), and specifically, an empty space may exist because at least a portion of the cell layer and the yoke are spaced apart. In some cases, all surfaces of the yoke may be spaced apart from the cell layer. may be At this time, a point to note is that the cell layer and the yoke are made of the same nickel-cobalt phosphide material.
  • the space between the cell layer and the yoke can function as a nano-sized reaction region, and the contact area between the yoke and the reactant located while being spaced apart from the inner surface of the cell layer increases, and the hydrogenation reaction performed in the cell layer The product of is transferred to the yoke side, where additional hydrogenation can occur.
  • This yoke-cell structure is a morphological characteristic that differentiates it from nickel phosphide (NiP) catalysts or cobalt phosphide (CoP) catalysts.
  • the overall size (diameter) of the metal phosphide catalyst may range, for example, from about 10 to 100 nm, specifically from about 20 to 80 nm, more specifically from about 40 to 60 nm, particularly It may have a size of about 50 nm. It may be advantageous to adjust within the above-mentioned range considering that the smaller the catalyst size, the larger the surface area, and the higher the possibility of collision with the reactants, the higher the reaction rate.
  • the thickness of the cell layer in the core-shell structured metal phosphide catalyst ranges, for example, from about 1 to 10 nm, specifically from about 2 to 8 nm, more specifically from about 4 to 6 nm, In particular, it may be on the order of 5 nm.
  • the thickness of the cell layer is too thin, deactivation of the yoke portion in the cell layer may be induced, whereas if the cell layer is too thick, the mass transfer efficiency of the reactant is reduced because the cell layer is rigid. Due to the increase in the ratio of the cell layer in the catalyst, the space in which the reaction can occur is reduced and the reaction efficiency may be lowered, so it is preferable to properly adjust within the above range.
  • the size (diameter) of the yoke in the catalyst may range, for example, from about 5 to 50 nm, specifically from about 10 to 40 nm, more specifically from about 20 to 30 nm, and particularly from about 25 nm to about 25 nm. It may be at the nm level.
  • the yoke functions as a primary active site where the reaction can occur, while the empty space functions as a passage that can increase the mass transfer efficiency and has a significant effect on the effective reaction. It can be adjusted appropriately within the range.
  • the ratio occupied by the yoke existing inside the cell layer may act as a factor affecting deactivation of the catalyst.
  • the weight ratio of yoke occupied in the catalyst may be, for example, 1: about 1.5 to 5, specifically 1: about 1.8 to 4, and more specifically 1: 2 to 3. there is.
  • the metal phosphide catalyst is required to contain acid sites of a certain level or higher.
  • the acid amount (or the amount of acid sites) of the catalyst can be measured by NH 3 -TPD, for example, about 200 to 600 mmol / g, specifically about 250 to 550 mmol / g, more specifically about 300 to 450 mmol/g.
  • the acid amount of metal phosphide catalysts can be explained by the presence of unreduced metal and/or P-OH species in the catalyst.
  • the molar ratio of the reduced form of the metal to the unreduced form of the metal in the catalyst is in the range of 1 : about 2 to 5, specifically 1 : about 2.5 to 4.5, more specifically 1 : about 3 to 4. can be determined.
  • the number of acid sites (or acid amount) in the catalyst can have a greater effect on the conversion of GVL to 2-MTHF, which is the second step in the hydrogenation reaction pathway of an organic acid (specifically, levlinic acid) or a derivative thereof, This is because a larger amount of acid sites are required for the conversion of 1,4-PDO to 2-MTHF.
  • the metal phosphide catalyst having a yoke-cell structure may exhibit crystallinity, and as cobalt is introduced into nickel, it may exhibit an effect of increasing or improving crystallinity, which is XRD It can be identified from well defined peaks in the pattern.
  • the metal phosphide catalyst has a lattice fringe ranging, for example, from about 0.1 to 0.4 nm, specifically from about 0.15 to 0.35 nm, more specifically from about 0.2 to 0.4 nm, and particularly from about 0.23 to 0.27 nm. fringe).
  • the above crystal characteristics may correspond to the (111) and (201) planes, for example.
  • the metal phosphide specifically, the nickel-cobalt phosphide catalyst may be a bulk catalyst and may be applied in the form of powder or pellets.
  • the bulk catalyst may be a powder catalyst, and its specific surface area (BET) is, for example, about 10 to 80 m 2 /g, specifically about 15 to 70 m 2 /g, more Specifically, it may be in the range of about 30 to 60 m 2 /g, but this may be understood as an exemplary meaning.
  • BET specific surface area
  • the transition metal phosphide catalyst according to an exemplary embodiment can exhibit good hydrogen adsorption activity, when measured using H 2 -TPD (hydrogen temperature-programmed desorption),
  • the chemisorbed amount (mol) of hydrogen atoms per mole (mol) of total metal is, for example, about 100 to 250 mmol/g, specifically about 120 to 220 mmol/g, over the temperature range of 50 to 250 °C, More specifically, it may range from about 150 to 200 mmol/g, but this can be understood as an example.
  • the metal phosphide catalyst is subjected to at least two hydrothermal synthesis reactions (hydrothermal treatment) using a nickel (Ni) precursor and a cobalt (Co) precursor, followed by phosphidation. can be manufactured in this way.
  • the nickel precursor may typically be a water-soluble nickel compound, specifically a nickel compound having an oxidation number of 2, and particularly in a hydrated or hydrated form.
  • the nickel compound may be at least one selected from nickel halides (specifically, nickel chloride, nickel bromide, etc.), nickel acetate, nickel nitrate, nickel sulfate, nickel carbonate, nickel hydroxide, etc. It can be a hydrate.
  • the nickel precursor is nickel(II) chloride hexahydrate (NiCl 2 6H 2 O), nickel nitrate (Ni(NO 3 ) 2 6H 2 O) and nickel (II) sulfate heptahydrate ( NiSO 4 ⁇ 7H 2 O) may be at least one selected from the group consisting of.
  • the cobalt precursor may also typically be a water-soluble cobalt compound, specifically a cobalt compound having an oxidation number of 2.
  • the cobalt compound may be at least one selected from cobalt nitrate, cobalt sulfate, cobalt acetate, cobalt carbonate, cobalt halide (eg, cobalt chloride, cobalt bromide, etc.), and specifically may be in the form of a hydrate thereof.
  • cobalt nitrate Co(NO 3 ) 2 6H 2 O
  • cobalt sulfate (II) heptahydrate CoSO 4 7H 2 O
  • the metal precursor when a metal having an oxidation number of 2 is used, it is advantageous in that a larger amount of Lewis acid sites can be formed in the catalyst.
  • the metal precursor when a hydrate is used as the metal precursor, the metal precursor can be better dissolved in the solvent.
  • a nickel-cobalt precursor solution may be prepared by dissolving a nickel precursor and a cobalt precursor in a solvent in consideration of the ratio between nickel and cobalt in the final catalyst.
  • a solvent for dissolving the nickel precursor and the cobalt precursor as described above, in forming the yoke-cell structure, a kind that can be converted into a material that provides a self-sacrificing template function can be used.
  • a solvent having one hydroxyl group specifically at least a dihydric alcohol.
  • a mixed solvent of at least a dihydric alcohol (ie, a polyhydric alcohol) and a monohydric alcohol can be exemplified.
  • the at least dihydric alcohol may be, for example, at least one selected from glycerol and ethylene glycol.
  • the monohydric alcohol may be, for example, at least one selected from ethanol, isopropyl alcohol, and the like.
  • the volume ratio of at least dihydric alcohol: monohydric alcohol in such a mixed solvent is, for example, 1: about 1 to 10, specifically 1: about 1.5 to 7, more specifically 1: about 2 to 5. It can be.
  • the total concentration of the nickel precursor and the cobalt precursor in the aqueous metal precursor solution may be, for example, about 30 to 150 mM, specifically about 50 to 100 mM, and more specifically about 60 to 90 mM.
  • a first hydrothermal synthesis reaction may be performed.
  • the hydrothermal synthesis reaction temperature may be adjusted in the range of, for example, about 150 to 220 ° C, specifically about 160 to 200 ° C, more specifically about 170 to 190 ° C, and the reaction time, for example, about 4 to 10 hours, specifically about 5 to 9 hours, more specifically about 6 to 8 hours.
  • a metal (nickel-cobalt) precipitate may be formed.
  • a separation and purification step known in the art may be performed, and the metal precipitate may be washed and dried exemplarily through solid-liquid separation (eg, filtering, centrifugation, etc.).
  • alcohol eg, methanol, ethanol, etc.
  • water washing and/or water washing may be performed, or washing may be performed with a mixed solvent of alcohol and water.
  • drying may be performed by a known drying method such as a method known in the art, heat drying, vacuum drying, or the like.
  • the drying temperature may be adjusted within the range of, for example, about 40 to 90 ° C., specifically about 50 to 80 ° C., and the drying time is typically, for example, about 3 to 10 hours, specifically about 4 to 7 hours.
  • the metal precipitate thus obtained is affected by the medium used in the first hydrothermal synthesis.
  • glycerol when used as a polyhydric alcohol, it may be in the form of metal glycerate.
  • the metal precipitate is added to an aqueous medium (specifically deionized water).
  • the content of the metal precipitate is, for example, about 2 to 8% (w / w), specifically about 3 to 6% (w / w), more specifically about 3.5 to 5.5% (w / w) , In particular, it may be specifically adjusted in the range of about 3.75 to 5% (w / w).
  • the reaction temperature may be set in the range of, for example, about 130 to 170 °C, specifically about 140 to 165 °C, and more specifically about 145 to 160 °C, particularly in the first hydrothermal synthesis. Compared to the reaction, for example, it may be set at a lower temperature of about 20 to 40 °C, specifically about 25 to 35 °C. In this regard, when the second hydrothermal synthesis reaction temperature falls short of or exceeds a certain level, a cell layer is not formed in the final metal phosphide catalyst, making it difficult to provide a yoke-cell structure. It may be advantageous to carry out hydrothermal synthesis in the range.
  • the second hydrothermal synthesis reaction time may be adjusted in the range of, for example, about 1 to 8 hours, specifically about 2 to 6 hours, and more specifically about 3 to 4 hours, but this will be understood as an example. can
  • a metal hydroxide specifically, nickel-cobalt hydroxide may be formed by the second hydrothermal synthesis reaction, which corresponds to a precursor or intermediate for forming a metal phosphide.
  • a separation and purification step may be performed as an optional step, which is similar to that described in relation to the first hydrothermal synthesis reaction product (metal precipitate) (however, water may be used as a washing liquid).
  • a phosphidation reaction may be performed on the metal hydroxide, and a substitution reaction using a phosphide agent may be used.
  • the phosphide agent may typically be at least one selected from hypophosphates, phosphine gas, red phosphorus, etc., specifically sodium hypophosphate, and more specifically sodium hypophosphate hydrate.
  • the substitution reaction may be carried out under inert atmosphere and elevated temperature conditions.
  • the inert atmosphere gas may be at least one selected from argon, neon, nitrogen, and the like, and more specifically, argon.
  • the substitution reaction temperature may be set in the range of, for example, about 280 to 400 °C, specifically about 300 to 370 °C, and more specifically about 320 to 360 °C, wherein the temperature increase rate is, for example, about 0.5 °C. to 5 °C/min, specifically about 0.8 to 3 °C/min, and more specifically about 1 to 2 °C/min.
  • the substitution reaction may be performed over, for example, about 2 to 10 hours, specifically about 2.5 to 8 hours, and more specifically about 3 to 5 hours, but this can be understood as an example.
  • phosphine (PH 3 ) gas can be generated, and this phosphi gas reacts with metal hydroxide to It is believed to be capable of forming phosphides. Therefore, instead of using sodium hypophosphate hydrate, phosphine (PH 3 ) gas may be directly used to perform the phosphidation reaction.
  • the phosphidation reaction of metal hydroxide with sodium hypophosphate hydrate may be performed in a tubular furnace.
  • two crucibles are placed at both ends in the tubular furnace, and an inert gas can be flowed.
  • a crucible in which a phosphide agent such as sodium hypophosphate is located is disposed upstream
  • a crucible in which metal hydroxide is located Is disposed downstream
  • the phosphine gas converted under elevated temperature conditions in the upstream crucible is transferred to the downstream crucible by argon and reacts with the metal hydroxide to form a metal phosphide catalyst.
  • the metal phosphide catalyst according to the present embodiment is easy to recover the activity to the initial activity or a level close thereto through regeneration.
  • the regeneration process includes simple separation (solid-liquid separation such as filter, centrifugation, etc.), washing (e.g., washing at least once with alcohol and/or water), and drying (e.g., about 40 to 90 ° C. for about 3 to 10 hours).
  • a process for producing various high value-added compounds from organic acids or derivatives thereof through hydrogenation using a metal phosphide catalyst having a yoke-cell structure wherein the metal phosphide catalyst has the general formula Ni It may be a nickel-cobalt phosphide catalyst represented by x Co y P.
  • the organic acid may be an organic acid typically derived from biomass, for example, an organic acid having 1 to 8 carbon atoms, specifically 2 to 7 carbon atoms, more specifically 4 to 6 carbon atoms, , especially an organic acid having 5 carbon atoms.
  • the derivative of an organic acid may be an ester compound.
  • These organic acids can form cyclic compounds while undergoing a hydrogenation reaction in the presence of a metal phosphide catalyst.
  • the organic acid is levulinic acid, succinic acid, fumaric acid, itaconic acid, aspartic acid, 2,5-furandicarboxylic acid, glutaric acid, lactic acid, etc. It may be at least one selected from.
  • the organic acid may be levulinic acid, and as described above, dehydration/cyclization may occur through hydrogenation to form gamma-valerolactone (GVL) (first hydrogenation step).
  • VTL gamma-valerolactone
  • two types of reaction routes for converting levulinic acid to gamma-valerolactone are known (as an intermediate, via lactone and via 4-hydroxypentanoic acid). In a specific example, it is believed to be via 4-hydroxypentanoic acid.
  • Gamma-valerolactone (GVL) is a raw material used in the synthesis of adipic acid, a precursor of polyamides such as polyamide 6,6 and polyamide 4,6.
  • the first hydrogenation reaction may be performed by introducing an organic acid and a catalyst into a reactor, supplying or injecting hydrogen into the reactor until a predetermined pressure is reached, and performing the reaction under elevated temperature conditions.
  • the hydrogenation temperature may be adjusted in the range of, for example, about 120 to 300 ° C, specifically about 150 to 250 ° C, more specifically about 170 to 200 ° C, and the reaction pressure (hydrogen pressure or hydrogen partial pressure), For example, it is appropriately adjustable in the range of about 10 to 50 bar, specifically about 15 to 40 bar, and more specifically about 20 to 35 bar.
  • the hydrogenation temperature and pressure affect the conversion rate of the reactants and the selectivity of the product, it may be desirable to properly adjust them within the above-mentioned range, but it can be changed depending on the type of organic acid, the activity of the catalyst, whether or not a solvent is used, etc. .
  • These reaction conditions indicate that the reaction can be carried out at lower temperatures (i.e., milder conditions) due to the intrinsic metallicity and acidic nature of the active phosphide in the catalyst.
  • the nickel-cobalt phosphide catalyst according to the present embodiment can adsorb hydrogen at a lower temperature. This can be explained by the fact that it exists and can be activated.
  • the hydrogenation reaction time may be adjusted in the range of, for example, about 1 to 10 hours, specifically about 2 to 8 hours, and more specifically about 3 to 6 hours.
  • the reactant organic acid specifically, levulinic acid
  • the weight ratio of the catalyst is 1: about 0.015 to 0.03, specifically 1: about 0.018 to 0.026, and more specifically 1: about 0.02 to about 0.026. It may be in the range of 0.025, particularly at the level of 1 : 0.023.
  • the ratio of reactant to catalyst can affect the conversion of the reactants and the selectivity for the target product, and also that a relatively increased amount of catalyst can provide more active sites for the catalyst. , it is advantageous to adjust within the above range.
  • the hydrogenation reaction may be performed in a continuous mode as well as a batch mode, for example, a fixed bed reactor, a semi-batch reactor, and the like may be used. More typically, a batch mode may be employed.
  • the target compound specifically gamma-valerolactone
  • This separation and recovery process is known in the art and may be performed using, for example, distillation, extraction, separation membrane, flash drum, and the like.
  • the conversion of the organic acid (particularly levulinic acid) in the primary hydrogenation reaction is, for example, at least about 45% (specifically at least about 70%, more specifically at least about 80%, particularly specifically at least about 80%). at least about 95%, substantially up to 100%), and the selectivity for its cyclization products (particularly gamma-valerolactone) is, for example, at least about 70% (specifically at least about 90%, more specifically at least about 95%, particularly up to substantially 100%).
  • the metal phosphide catalyst according to the present embodiment can be used to convert a hydrogenation product (or cyclization reaction) of an organic acid into another type of high value-added compound or cyclic compound through an additional hydrogenation reaction.
  • the converted gamma-valerolactone is converted into the above-mentioned metal phosphide catalyst (new catalyst or regenerated catalyst) in the presence of
  • 2-methyltetrahydrofuran (2-MTHF) may be produced by performing a dehydration/cyclization reaction again. (secondary hydrogenation reaction).
  • 2-methyltetrahydrofuran (2-MTHF) can be applied as a biofuel, solvent, etc., and can replace THF, which has been widely used in the past. In particular, it exhibits low water miscibility, high stability and low volatility compared to THF, and can be applied to pharmaceutical manufacturing processes and the like.
  • the hydrogenation reaction temperature may be adjusted in the range of, for example, about 180 to 320 ° C, specifically about 200 to 280 ° C, more specifically about 220 to 250 ° C, and also the reaction pressure (hydrogen pressure or hydrogen partial pressure). ) Is, for example, about 30 to 80 bar, specifically about 40 to 70 bar, more specifically about 45 to 60 bar can be appropriately adjusted in the range.
  • the hydrogenation temperature and pressure are appropriately controlled within the above-mentioned range as they affect the conversion of the first hydrogenation product (eg, GVL) and the selectivity for the second hydrogenation product (eg, 2-MTHF).
  • the reaction time may be adjusted in the range of, for example, about 2 to 15 hours, specifically about 5 to 12 hours, and more specifically about 6 to 10 hours.
  • the weight ratio of the reactant primary hydrogenation product (eg, GVL): catalyst is 1: about 0.015 to 0.04, specifically 1: about 0.016 to 0.033, more specifically 1: about 0.02 to about 0.02. It may be in the range of 0.03, and in particular, it may be at the level of 1:0.026.
  • the ratio of the reactants (i.e., the primary hydrogenation product) to the catalyst can affect the conversion of the reactants and the selectivity for the target compound of the secondary hydrogenation reaction as described above, so it is controlled within the aforementioned range. it is advantageous
  • the secondary hydrogenation reaction may be carried out in a continuous mode as well as a batch mode similar to the first hydrogenation reaction, and in the continuous mode, for example, a fixed bed reactor, a semi-batch reactor, etc. may be used.
  • the target compound specifically 2-methyltetrahydrofuran (2-MTHF)
  • 2-MTHF 2-methyltetrahydrofuran
  • This separation and recovery process is known in the art and may be performed using, for example, distillation, extraction, separation membrane, flash drum, and the like.
  • the conversion rate of the cyclic compound (particularly, gamma-valerolactone) as a reactant in the secondary hydrogenation reaction is, for example, at least about 45% (specifically at least about 65%, more specifically at least about 70%, and also up to about 80%), and the selectivity to other cyclic compounds (particularly 2-MTHF) obtained by further hydrogenation is, for example, at least about 40% (specifically at least about 44%, more specifically at least about 48%, but also up to about 55%).
  • the conversion reaction can be carried out in the absence of a liquid medium (solvent) not only in the first hydrogenation reaction, but also in the second hydrogenation reaction.
  • a liquid medium solvent
  • the need to separate the reaction product from the solvent in a subsequent step can be eliminated.
  • a reactant organic acid for example, levulinic acid
  • a cyclic compound gamma-valerolactone
  • a solvent used together to form primary and / or a secondary hydrogenation reaction can be performed.
  • the usable solvent may be at least one selected from protic polar solvents and/or aprotic polar solvents, and may act as a hydrogen donor without affecting the dehydration/cyclization reaction accompanying the hydrogenation reaction. It can be selected from possible types.
  • usable solvents include, for example, aliphatic alcohols having 1 to 5 carbon atoms (specifically, methanol, ethanol, isopropanol, sec-butanol, etc. as primary and/or secondary alcohols), dioxane (specifically, 1, 4-dioxane), water, and the like.
  • the volume ratio of reactant an organic acid in the first hydrogenation reaction and a cyclic compound such as GVL in the second hydrogenation reaction
  • solvent is, for example, 1: about 4 to 15, specifically 1: about 6 to 12, More specifically, it may be adjusted in the range of about 8 to 10.
  • a phosphide-based catalyst is synthesized and used to synthesize gamma-valerolactone (GVL) and 2-methyltetrahydrofuran (2-MTHF) from levulinic acid according to the reaction mechanism shown in FIG. 1, respectively.
  • VTL gamma-valerolactone
  • 2-MTHF 2-methyltetrahydrofuran
  • Nickel nitrate hexahydrate Ni(NO 3 ) 2 6H 2 O
  • cobalt nitrate hexahydrate Co(NO 3 ) 2 6H 2 O
  • pretreatment was performed by adsorbing hydrogen at 200° C. for 2 hours under a flow of 50 mL/min of helium, and then under a flow of 50 mL/min of 10% H 2 /Ar.
  • the physically adsorbed hydrogen was removed over 1 hour at 100 °C under a 50 mL/min flow of helium.
  • the remaining hydrogen was removed by raising the temperature to 300 °C in a furnace at a heating rate of 5 °C/min under a flow of helium of 30 mL/min.
  • - NH 3 -TPD was performed using a Microtrac MRB BELCAT II. Specifically, in the pretreatment step, pretreatment was performed by adsorbing ammonia under a flow of 50 mL of helium at 200° C. for 2 hours, followed by a flow of 5% NH 3 /He of 50 mL/min. In the ammonia desorption step, physically adsorbed ammonia was removed over 1 hour at 100° C. under a flow of 50 mL/min of helium. The remaining ammonia was removed by raising the furnace temperature to 800 °C at a heating rate of 5 °C/min under a flow of helium of 30 mL/min.
  • a nickel-cobalt phosphide catalyst containing nickel and cobalt in various ratios was synthesized through two hydrothermal synthesis steps and a phosphide step.
  • a predetermined ratio of nickel precursor (Ni(NO 3 ) 2 6H 2 O) and cobalt precursor (Co(NO 3 ) 2 6H 2 O) was mixed with glycerol and isopropyl alcohol at a volume ratio of 1:3.5. It was added to the mixed solvent and dissolved until a transparent and pink solution was obtained. At this time, the concentration of all metals (nickel and cobalt) in the precursor solution was 62.5 mM.
  • the obtained nickel-cobalt precursor solution was put into a Teflon-lined reactor (200 mL), and a first hydrothermal synthesis reaction (hydrothermal treatment) was performed at 180° C. for 6 hours, followed by cooling. Then, the precipitate, i.e., Ni-Co glycerate, was collected through centrifugation, subsequently washed several times with ethanol and deionized water, and then dried in an oven maintained at 60° C. for 6 hours. .
  • Ni-Co hydroxide obtained in the previous step 1 g was pulverized into fine powder and put into crucibles at different positions in the tubular electric furnace. did At this time, the crucible into which sodium hypophosphate hydrate was introduced was positioned upstream, and phosphide reaction was performed at 350 ° C. for 3 hours at a heating rate of 1 ° C./min while flowing argon gas into the electric furnace. As a result, nickel- Cobalt phosphide powder was obtained. The powder thus obtained was expressed as Ni x Co y P (x and y represent the mole fraction of Ni:Co).
  • a cobalt precursor (Co(NO 3 ) 2 6H 2 O) was added to a mixed solvent in which glycerol and isopropyl alcohol were mixed in a volume ratio of 1: 4, and dissolved until a transparent and pink solution was obtained. . At this time, the concentration of cobalt in the precursor solution was 62.5mM.
  • the obtained cobalt precursor solution was put into a Teflon-lined reactor (200 mL), and a hydrothermal synthesis reaction (hydrothermal treatment) was performed at 180° C. for 6 hours, followed by cooling. Then, the precipitate, that is, Co glycerate, was collected through centrifugation, subsequently washed several times with ethanol and deionized water, and then dried in an oven maintained at 60° C. for 6 hours.
  • NiP nickel phosphide
  • Nickel phosphide powder ( _ _ NiP) was obtained.
  • CoP cobalt phosphide
  • NiP nickel phosphide
  • CoP and NiP synthesized in Comparative Examples 1 and 2 were mixed together at a weight ratio of 1:1 and then ground to prepare a uniform physical mixture.
  • GVL and 2-MTHF were prepared according to the procedures of Examples 2 and 3, respectively.
  • the amount of product was measured by High-Performance Liquid Chromatography (HPLC), Shimadzu UHPLC Nexera, SCL-40 equipped with Agilent Hi-Plax Ca (7.7 x 300 mm, 8 ⁇ m) and 2410 refractive index detector. was used.
  • HPLC High-Performance Liquid Chromatography
  • Shimadzu UHPLC Nexera SCL-40 equipped with Agilent Hi-Plax Ca (7.7 x 300 mm, 8 ⁇ m) and 2410 refractive index detector. was used.
  • Ni—Co glycerate precursor resulting from the first hydrothermal reaction
  • Ni—Co phosphide precursor resulting from the second hydrothermal reaction
  • SEM images of (eg) Ni 2 Co 1 P, (h) CoP precursor, (i) CoP, and (j) NiP are shown in FIG. 2 .
  • the precipitate formed from the first hydrothermal synthesis reaction (or first hydrothermal treatment) has a spherical shape.
  • the precipitate generated from the first hydrothermal synthesis reaction has a spherical shape composed of interconnected nanosheets. You can see that it is going through a change. The change in the shape of the precipitate is such that the precipitate in the first hydrothermal synthesis reaction is hydrolyzed to form a nanosheet.
  • Ni 2+ and Co 2+ ions react with hydroxyl groups of water in the second hydrothermal synthesis reaction to form nanosheets on the surface. It can be seen as synthesizing sheets.
  • the addition of cobalt plays an important role in maintaining the shape of the precursor.
  • FIGS. 3a to 3c TEM images at different magnifications are shown in FIGS. 3a to 3c.
  • HRTEM high-resolution TEM
  • HAADF-STEM HAADF-STEM
  • the nickel-cobalt phosphide catalyst was composed of interconnected nanosheets and had a spherical yoke-cell structure.
  • the yoke-cell structure in the above-described catalyst it can function as a kind of nano-reactor, wherein the yoke is an active site where a reaction can occur, and the empty space between the cell layer and the yoke is It functions as a pathway to increase mass transfer efficiency.
  • a hollow shell can encapsulate the active site to prevent deactivation of the catalyst.
  • nickel-cobalt phosphide catalysts prepared by setting the second hydrothermal synthesis reaction temperature to 150 ° C and 100 ° C (Ni 2 Co 1 P - 150 ° C and Ni 2 Co 1 P - 100 ° C), and Ni 2 Co 1 P - 100 ° C, a commercial catalyst -Cu/Al 2 O 3 A TEM image showing each structure is shown in FIG. 5 .
  • Ni 2 Co 1 P-150 ° C As described above, a clear yoke-cell structure was exhibited, but in Ni 2 Co 1 P-100 ° C, solid spherical particles composed of interconnected nanosheets has In addition, it was confirmed that the Ni-Cu/Al 2 O 3 catalyst had agglomerated particles located on the upper side of the alumina support.
  • the hydrogen activity and hydrogen adsorption abilities of various metal phosphides can be compared, and single metal cobalt phosphide (CoP) showed the weakest hydrogen adsorption and activity, CoP ⁇ Ni 1 Co 3 P ⁇ NiP ⁇ Ni 1 Co 2 P ⁇ Ni 1 Co 1 P ⁇ Ni 2 Co 1 P ⁇ Ni 3 Co 1 P
  • CoP single metal cobalt phosphide
  • nickel-cobalt phosphide exhibits improved hydrogen activating ability compared to single metal cobalt phosphide and nickel phosphide, and nickel is added to phosphide to improve the activating ability of catalysts. It was confirmed that it can act as the main active ingredient in
  • the acidity strength and the distribution of each of the weakly acidic, intermediately acidic and strong acidic regions could be adjusted by varying the molar ratio between nickel and cobalt.
  • the single metal cobalt phosphide had both a weak acid site and a strong acid site, while nickel phosphide was mainly composed of a weak acid site.
  • nickel-cobalt phosphide Ni 2 Co 1 P contains all of a weak acid site, an intermediate acid site, and a strong acid site.
  • FIG. 7 XPS spectra of NiP, Ni 2 Co 1 P and CoP are shown in FIG. 7 .
  • FIG. 7a is the Ni 2p spectrum for NiP and Ni 2 Co 1 P, respectively
  • FIG. 7b is the Co 2p spectrum for Ni 2 Co 1 P and CoP, respectively
  • FIG. 7c is the NiP, Ni 2 Co 1 P and CoP, respectively. is the P 2p spectrum for
  • peaks located at 857.7 eV and 874.4 eV in the 2p spectrum of nickel correspond to Ni 2p 3/2 and 2p 1/2 of Ni 2+ , respectively.
  • Peaks located at 853.6 eV and 871.0 eV correspond to Ni 2p 3/2 and Ni 2p 1/2 of reduced Ni ⁇ + in Ni—P, respectively.
  • peaks located at 782.5 eV and 798.7 eV correspond to Co 2p 3/2 and Co 2p 1/2 of Co 2+ or oxidized Co components, respectively.
  • the peaks located at 779.3 eV and 793.7 eV correspond to Co 2p 3/2 and Co 2p 1/2 of the Co component in Co—P that has a partial positive charge from Co metal (Co ⁇ 2+ ), respectively.
  • NiP, CoP, NiCoP, Ni 5 P 4 , NiP 2 , Ni 3 Co 1 P, Ni 2 Co 1 P, Ni 1 Co 1 P, Ni 1 Co 2 P, Ni 1 XRD patterns for each of Co 3 P and CoP are shown in FIG. 8 .
  • the BET specific surface area and pore volume for each of Co 3 P and CoP were measured and are shown in Table 1 below.
  • a binary metal phosphide (particularly, Ni 2 Co 1 P) provides better catalytic activity than single metal phosphides, CoP and NiP, and also a physical mixture of CoP and NiP can be obtained from levlinic acid by gamma - It was confirmed that both cobalt and nickel act in the complete conversion to valerolactone. In addition, among the binary metal phosphide catalysts, Ni 2 Co 1 P showed the best activity.
  • the active site of the Ni 2 Co 1 P catalyst comes from a bifunctional nature, contains cobalt and nickel components that provide hydrogenation active sites, and the remaining phosphate contains an acidic site, providing the necessary activity for the dehydration/cyclization reaction.
  • the activity of the catalyst significantly improved.
  • the overall catalytic activity was CoP ⁇ NiP ⁇ Ni 1 Co 3 P ⁇ Ni 1 Co 2 P ⁇ Ni 1 Co 1 P ⁇ Ni 3 Co 1 P ⁇ Ni 2 Co 1 P.
  • the CoP catalyst showed a rather high GVL selectivity of 74.6%, but the conversion rate of levulinic acid was at a low level of 29.1%. This is because, as confirmed in the H 2 -TPD results, the CoP catalyst has insufficient hydrogen activating ability to initiate the conversion of levulinic acid. On the other hand, the CoP catalyst contains a large amount of strong acid sites, enabling conversion from HPA to GVL.
  • the hydrogenation reaction was performed under different reaction conditions in the presence of the Ni 2 Co 1 P catalyst, which was evaluated to exhibit the best activity among binary metal phosphide catalysts, and the results are shown in Table 2 below.
  • the highest levulinic acid conversion and GVL yield were obtained when the hydrogenation reaction was performed under solvent-free conditions.
  • GVL functions as a solvent when LA is hydrogenated into GVL, and it is believed that the produced GVL can promote the formation of GVL from LA.
  • the reaction under solvent-free conditions is advantageous in promoting the sustainability of GVL production.
  • Ni 2 Co 1 P -100 ° C and Ni 2 Co 1 P - 150 ° C Two types of nickel-cobalt phosphide catalysts (Ni 2 Co 1 P -100 ° C and Ni 2 Co 1 P - 150 ° C) prepared by varying the second hydrothermal synthesis reaction temperature and a commercial nickel-copper / alumina catalyst (Ni- Figure 12 shows the levulinic acid conversion rate and selectivity for gamma-valerolactone in the reaction of preparing gamma-valerolactone (GVL) from levulinic acid (LA) in the presence of Cu/Al 2 O 3 ). was At this time, the hydrogenation reaction was performed for 4 hours under conditions of a temperature of 80 °C and a hydrogen pressure of 30 bar.
  • the Ni 2 Co 1 P-150° C. catalyst has a yoke-cell structure
  • the Ni 2 Co 1 P-100° C. catalyst has a non-yoke-cell structure and is rigid (ie, solid). represents the form.
  • the Ni 2 Co 1 P-100° C. catalyst exhibited catalytic performance equivalent to that of the Ni 2 Co 1 P-150° C. catalyst in the first reaction.
  • the reaction was continuously and repeatedly performed, the catalytic performance rapidly deteriorated.
  • the Ni—Cu/Al 2 O 3 catalyst exhibited relatively low levulinic acid conversion and GVL yield, and exhibited the most rapid catalyst performance degradation, especially when repeatedly used.
  • the rapid deactivation observed in these two catalysts, especially the Ni—Cu/Al 2 O 3 catalyst is believed to be due to sintering of the metal particles.
  • the Ni 2 Co 1 P catalyst contains a sufficient amount of acid sites to facilitate the dehydration reaction from 1,4-PDO to 2-MTHF.
  • the selectivity for 2-MTHF was relatively low during the secondary hydrogenation reaction in the one-pot two-step reaction. That is, in the conversion of GVL to 2-MTHF, when the NiP catalyst was used, the selectivity for 2-MTHF was high, but the conversion rate to GVL was low during the first hydrogenation reaction.
  • the acid site of NiP can facilitate the dehydration reaction from the formed 1,4-PDO to 2-MTHF, thereby improving the selectivity to 2-MTHF.
  • the metal activity of NiP is insufficient, the conversion to GVL during the primary hydrogenation reaction is insufficient.
  • the first hydrogenation step from levlinic acid to GVL depends on the composition of the active metal in the catalyst, whereas the second hydrogenation step from GVL to 2-MTHF is mainly influenced by the amount of acid sites.

Abstract

Disclosed are: a metal phosphide-based catalyst having a yolk-shell structure; and a method for converting, through hydrogenation, an organic acid, especially, an organic acid, such as levulinic acid, derived from biomass, or a derivative thereof into a high value-added compound that can be used as a raw material for a fuel additive, bioplastic, a solvent, or the like.

Description

금속 포스파이드 촉매 및 이를 이용한 고부가화합물의 제조방법Metal phosphide catalyst and method for producing high value added compounds using the same
본 개시 내용은 금속 포스파이드 촉매 및 이를 이용한 고부가화합물의 제조방법에 관한 것이다. 보다 구체적으로, 본 개시 내용은 요크-셀(yolk-shell) 구조를 갖는 금속 포스파이드계 촉매 및 이를 이용하여 수소화 반응을 통하여 유기산, 특히 레블린산과 같이 바이오매스로부터 유래하는 유기산 또는 이의 유도체를 연료첨가제, 바이오플라스틱, 용매 등의 원료로 사용 가능한 고부가 화합물로 전환하는 방법에 관한 것이다. The present disclosure relates to a metal phosphide catalyst and a method for preparing a high addition compound using the same. More specifically, the present disclosure provides a metal phosphide-based catalyst having a yolk-shell structure and an organic acid, particularly an organic acid derived from biomass such as levulinic acid or a derivative thereof, through a hydrogenation reaction using the same as a fuel It relates to a method for converting high-value compounds that can be used as raw materials such as additives, bioplastics, and solvents.
인류의 발전을 이끌었던 석유 에너지는 자원의 유한성, 편중성, 환경오염 등의 문제점으로 인하여 최근 바이오매스에 의하여 석유 자원을 전체적/부분적으로 대체하고자 하는 연구가 활발히 이루어지고 있다. Petroleum energy, which has led the development of mankind, has recently been actively researched to replace petroleum resources in whole or in part with biomass due to problems such as resource finiteness, centralization, and environmental pollution.
바이오매스는 광범위하게는 생물학적 기원(biological origin)으로부터 유래된 모든 물질을 포함하는 한편, 좁게는 주로 옥수수, 콩, 아마인, 사탕수수 및 팜 오일과 같은 식물성 소스로부터 유래하는 물질을 의미하는 것으로 사용된다. 그러나, 일반적으로는 현재 살아있는 모든 유기체, 또는 탄소 사이클에서 일 부분을 차지하는 대사 부산물까지 확장될 수 있다.Biomass is used broadly to include all substances of biological origin, while used narrowly to mean substances derived primarily from vegetable sources such as corn, soybean, linseed, sugarcane and palm oil. do. However, it can generally be extended to all organisms currently living, or metabolic by-products that play a part in the carbon cycle.
가장 널리 사용되는 바이오매스로서 리그노셀룰로오스계 바이오매스를 예시할 수 있는데, 바이오 연료 및 바이오 화학물질 생산에 광범위하게 이용될 수 있다. 리그노셀룰로오스계 바이오매스는 셀룰로오스, 헤미셀룰로오스 및 리그닌이 복잡하고 단단한 구조로 결합되어 있다. 최근, 리그노셀룰로오스계 바이오매스의 당화 단계를 거쳐 형성되는 물질을 이용하여 다양한 화학물질을 제조하는 연구가 활발히 진행되고 있다.Lignocellulosic biomass can be exemplified as the most widely used biomass, which can be widely used in the production of biofuels and biochemicals. Lignocellulosic biomass is a combination of cellulose, hemicellulose and lignin in a complex and rigid structure. Recently, studies on the production of various chemical substances using materials formed through the saccharification step of lignocellulosic biomass have been actively conducted.
이와 관련하여, 바이오매스로부터 유래된 유기산, 예를 들면 레블린산(LA)은 상업적으로 유용한 화합물들의 합성을 위한 출발 물질로서, 예를 들면 바이오매스(예를 들면, 헥소오스)의 산 가수분해, 프록토오스의 탈수 반응 등에 의하여 생성될 수 있다. 이러한 레블린산으로부터 제조될 수 있는 화합물로서 디페놀산, 아세트아크릴산, 1,4-펜탄디올, 아크릴산, 아미노레불레이트, 감마-발레로락톤(GVL) 및 2-메틸테트라하이드로퓨란(2-MTHF) 등을 예시할 수 있다.In this regard, organic acids derived from biomass, such as levulinic acid (LA), are used as starting materials for the synthesis of commercially useful compounds, such as acid hydrolysis of biomass (eg, hexose). , can be produced by the dehydration reaction of fructose. Diphenolic acid, acetacrylic acid, 1,4-pentanediol, acrylic acid, aminolevulate, gamma-valerolactone (GVL) and 2-methyltetrahydrofuran (2-MTHF) are compounds that can be prepared from these levulinic acids. ) and the like can be exemplified.
대표적으로, 촉매를 이용한 수소화 반응에 의하여 감마-발레로락톤(GVL) 및 2-메틸테트라하이드로퓨란(2-MTHF)을 제조할 수 있는데, 이 경우 레블린산을 1차 수소화 반응시킴에 따라 탈수 반응(dehydration) 및 고리화 반응(cyclaization)이 수행되어 감마-발레로락톤이 형성되고, 추가적인 수소화(2차 수소화) 반응을 통하여 다시 탈수 반응과 함께 고리화 반응이 수행됨으로써 2-메틸테트라하이드로퓨란을 형성하게 된다.Typically, gamma-valerolactone (GVL) and 2-methyltetrahydrofuran (2-MTHF) can be produced by hydrogenation using a catalyst. In this case, levulinic acid is dehydrated by primary hydrogenation. Dehydration and cyclization are performed to form gamma-valerolactone, and 2-methyltetrahydrofuran is formed by further hydrogenation (secondary hydrogenation) and cyclization along with dehydration. will form
이와 같이 레블린산(또는 이의 유도체)과 같은 유기산의 수소화 촉매로서 귀금속 촉매를 사용하는 시도가 보고된 바 있고(예를 들면, 미국특허공개번호 제2003/0055270호, CN105566258 A 등), 니켈 포스파이드 촉매와 같이 전이금속의 포스파이드 촉매를 사용하는 경우 역시 알려져 있다(예를 들면, CN112824395 A 등).As such, an attempt to use a noble metal catalyst as a hydrogenation catalyst of an organic acid such as levulinic acid (or a derivative thereof) has been reported (eg, US Patent Publication No. 2003/0055270, CN105566258 A, etc.), and nickel phosphide It is also known when a phosphide catalyst of a transition metal is used like a phosphide catalyst (eg, CN112824395 A, etc.).
그러나, 전술한 종래기술 중 귀금속계 촉매의 경우, 고가의 귀금속 성분을 사용하기 때문에 경제성 면에서 바람직하지 않고, 상대적으로 높은 수소 압력에서 반응을 수행할 필요가 있다. 또한, 니켈 포스파이드 촉매의 경우, 유기산의 전환율 및 타겟 생성물(예를 들면, 레블린산으로부터 감마-발레로락톤(GVL) 및 2-메틸테트라하이드로퓨란(2-MTHF)을 제조하는 경우)에 대한 선택도가 낮기 때문에 전체 수율에 있어서 개선 필요성이 있다.However, in the case of the noble metal-based catalyst among the above-mentioned prior art, since expensive precious metal components are used, it is not preferable in terms of economic efficiency, and it is necessary to carry out the reaction at a relatively high hydrogen pressure. In addition, in the case of a nickel phosphide catalyst, the conversion rate of organic acids and target products (eg, when preparing gamma-valerolactone (GVL) and 2-methyltetrahydrofuran (2-MTHF) from levlinic acid) Since the selectivity is low, there is a need to improve the overall yield.
더욱이, 종래기술에 따른 촉매를 이용한 전환 반응은 일반적으로 액상 매질, 즉 용매 내에서 수행되는데, 반응 완료 후에는 용매로부터 생성물을 분리해야 하므로 추가적인 분리 정제 프로세스가 요구된다.Moreover, the conversion reaction using a catalyst according to the prior art is generally carried out in a liquid medium, that is, a solvent, and after completion of the reaction, since the product must be separated from the solvent, an additional separation and purification process is required.
따라서, 전술한 종래기술의 한계를 극복하고, 보다 온화한 조건(추가적으로 무용매 조건)에서도 높은 전환율 및 선택도로 유기산을 고부가 화합물로 전환시킬 수 있는 수소화 촉매에 대한 필요성이 요구되고 있다.Therefore, there is a need for a hydrogenation catalyst capable of converting organic acids into high value-added compounds with high conversion rate and selectivity even under milder conditions (additionally, solvent-free conditions), overcoming the limitations of the prior art.
본 개시 내용의 일 구체예에서는 종래 기술에 비하여 개선된 수소화 활성을 나타내어 유기산으로부터 고부가 화합물을 고수율로 제조할 수 있는 전이금속 포스파이드계 촉매 및 이의 제조방법을 제공하고자 한다.In one embodiment of the present disclosure, it is intended to provide a transition metal phosphide-based catalyst capable of producing a high value-added compound from an organic acid in high yield by exhibiting improved hydrogenation activity compared to the prior art and a method for preparing the same.
본 개시 내용의 다른 구체예에서는 전술한 전이금속 포스파이드계 수소화 촉매를 이용하여 무용매 조건에서도 유기산 또는 이의 유도체로부터 고부가 화합물을 효과적으로 제조할 수 있는 전환 공정을 제공하고자 한다.In another embodiment of the present disclosure, it is intended to provide a conversion process capable of effectively preparing a high value-added compound from an organic acid or a derivative thereof using the above-described transition metal phosphide-based hydrogenation catalyst even in the absence of a solvent.
본 개시 내용의 제1 면에 따르면,According to the first aspect of the present disclosure,
일반식 NixCoyP(x 및 y는 Ni 및 Co의 몰 비로서 1 : 0.2 내지 5의 범위임)로 표시되며, 요크-셀 구조를 갖는 금속 포스파이드 촉매의 존재 하에서 유기산 또는 이의 유도체에 대한 수소화 반응을 수행하는 단계를 포함하는 유기산의 전환 방법이 제공된다.Represented by the general formula Ni x Co y P (x and y are the molar ratios of Ni and Co, ranging from 1:0.2 to 5), in the presence of a metal phosphide catalyst having a yoke-cell structure, to an organic acid or its derivative A method for converting an organic acid comprising performing a hydrogenation reaction is provided.
예시적 구체예에 따르면, 상기 수소화 반응은 고리화 반응을 수반할 수 있다. According to an exemplary embodiment, the hydrogenation reaction may involve a cyclization reaction.
예시적 구체예에 따르면, 상기 유기산은 레블린산이며, 상기 수소화 반응은 1 단계 또는 적어도 2 단계에 걸쳐 수행되며,According to an exemplary embodiment, the organic acid is levulinic acid, and the hydrogenation reaction is carried out in one step or at least two steps,
여기서, 상기 1 단계 수소화 반응에 의하여 감마-발레로락톤(GVL)이 형성되는 한편, 상기 적어도 2 단계 수소화 반응에 의하여 2-메틸테트라하이드로퓨란(2-MTHF)이 형성될 수 있다.Here, while gamma-valerolactone (GVL) is formed by the first-step hydrogenation reaction, 2-methyltetrahydrofuran (2-MTHF) may be formed by the at least two-step hydrogenation reaction.
예시적 구체예에 따르면, 상기 수소화 반응은 용매의 사용 없이 수행될 수 있다.According to an exemplary embodiment, the hydrogenation reaction may be performed without using a solvent.
예시적 구체예에 따르면, 상기 1차 수소화 반응은 120 내지 300 ℃의 온도, 및 10 내지 50 bar의 수소 압력 조건 하에서 수행되고, 그리고According to an exemplary embodiment, the first hydrogenation reaction is carried out under conditions of a temperature of 120 to 300 ° C. and a hydrogen pressure of 10 to 50 bar, and
상기 2차 수소화 반응은 180 내지 320 ℃의 온도, 및 30 내지 80 bar의 수소 압력 조건 하에서 수행될 수 있다.The secondary hydrogenation reaction may be performed under conditions of a temperature of 180 to 320 °C and a hydrogen pressure of 30 to 80 bar.
본 개시 내용의 제2 면에 따르면,According to a second aspect of the present disclosure,
일반식 NixCoyP(x 및 y는 Ni 및 Co의 몰 비로서 1 : 0.2 내지 5의 범위임)로 표시되는 요크-셀 구조의 금속 포스파이드 촉매로서,A metal phosphide catalyst with a yoke-cell structure represented by the general formula Ni x Co y P (x and y are the molar ratios of Ni and Co and range from 1:0.2 to 5),
(i) 상기 촉매의 전체 사이즈(직경)는 10 내지 100 nm, 셀 층의 두께는 1 내지 10 nm, 그리고 요크의 사이즈(직경)는 5 내지 50 nm 범위인 촉매가 제공된다.(i) The overall size (diameter) of the catalyst is 10 to 100 nm, the thickness of the cell layer is 1 to 10 nm, and the size (diameter) of the yoke is in the range of 5 to 50 nm.
본 개시 내용의 제3 면에 따르면, According to a third aspect of the present disclosure,
a) 니켈 전구체 및 코발트 전구체를 용매에 용해시켜 니켈 및 코발트의 전구체 용액을 제조하는 단계;a) preparing a nickel and cobalt precursor solution by dissolving a nickel precursor and a cobalt precursor in a solvent;
b) 상기 전구체 용액을 제1 수열합성 반응시켜 니켈-코발트를 함유하는 침전물을 형성하는 단계;b) subjecting the precursor solution to a first hydrothermal synthesis reaction to form a precipitate containing nickel-cobalt;
c) 상기 침전물을 제2 수열합성 반응시켜 니켈-코발트 수산화물을 형성하는 단계; 및c) subjecting the precipitate to a second hydrothermal synthesis reaction to form nickel-cobalt hydroxide; and
d) 상기 니켈-코발트 수산화물을 비활성 가스 분위기 및 승온 조건 하에서 포스파이드제에 의한 치환 반응을 통하여 일반식 NixCoyP(x 및 y는 Ni 및 Co의 몰 비로서 1 : 0.2 내지 5의 범위임)로 표시되는 요크-셀 구조의 니켈-코발트 포스파이드 촉매로 전환시키는 단계;d) Ni x Co y P (x and y are the molar ratio of Ni and Co and range from 1: 0.2 to 5) through a substitution reaction of the nickel-cobalt hydroxide with a phosphide agent under an inert gas atmosphere and elevated temperature conditions (i) conversion to a nickel-cobalt phosphide catalyst having a yolk-cell structure;
를 포함하며, Including,
(i) 니켈-코발트 포스파이드 촉매의 전체 사이즈(직경)는 10 내지 100 nm, 셀 층의 두께는 1 내지 10 nm, 그리고 요크의 사이즈(직경)는 5 내지 50 nm 범위인 니켈-코발트 포스파이드 촉매의 제조방법이 제공된다.(i) a nickel-cobalt phosphide catalyst in which the overall size (diameter) of the nickel-cobalt phosphide catalyst is in the range of 10 to 100 nm, the thickness of the cell layer is 1 to 10 nm, and the size (diameter) of the yoke is in the range of 5 to 50 nm; A method for preparing the catalyst is provided.
예시적 구체예에 따르면, 상기 요크-셀 구조의 금속 포스파이드 촉매 내에서 요크가 차지하는 중량 비는 1 : 1.5 내지 5의 범위일 수 있다. According to an exemplary embodiment, the weight ratio of the yoke in the metal phosphide catalyst having a yoke-cell structure may be in the range of 1:1.5 to 5.
예시적 구체예에 따르면, 상기 금속 포스파이드 촉매의 산량(NH3-TPD)은 200 내지 600 mmol/g 범위일 수 있다.According to an exemplary embodiment, the acid amount (NH 3 -TPD) of the metal phosphide catalyst may be in the range of 200 to 600 mmol/g.
예시적 구체예에 따르면, 상기 금속 포스파이드 촉매 중 금속의 환원된 형태 : 금속의 환원되지 않은 형태의 몰 비는 1 : 2 내지 5의 범위일 수 있다.According to an exemplary embodiment, the molar ratio of the reduced form of the metal to the unreduced form of the metal in the metal phosphide catalyst may be in the range of 1:2 to 5.
본 개시 내용의 구체예에 따른 요크-셀 구조의 금속 포스파이드 촉매는 종래의 유기산(구체적으로, 바이오매스-유래 유기산)의 수소화 반응 기술과 대비하면 저렴한 전이금속(즉, 비금속(base metal))을 활성 금속으로 사용하면서도 양호한 유기산의 전환율, 그리고 타겟 화합물(구체적으로, 바이오 연료 및/또는 연료첨가제, 용매, 바이오 플라스틱 등의 원료로 활용 가능한 화합물)에 대한 선택도를 달성함으로써 경제성을 제고할 수 있다. 또한, 액상 반응으로 수행할 경우, 별도의 용매 사용을 필요로 하지 않고 반응물을 그대로 수소화 반응시켜 타겟 화합물을 수득할 수 있기 때문에 반응 생성물로부터 용매의 분리와 같은 후처리 공정을 생략할 수 있는 등, 상용화 측면에서도 유리하다. 따라서, 향후 광범위한 적용이 기대된다.A metal phosphide catalyst having a yoke-cell structure according to an embodiment of the present disclosure is an inexpensive transition metal (i.e., base metal) compared to conventional organic acid (specifically, biomass-derived organic acid) hydrogenation technology. While using as an active metal, it is possible to improve economic feasibility by achieving good organic acid conversion and selectivity for target compounds (specifically, compounds that can be used as raw materials for biofuels and/or fuel additives, solvents, and bioplastics). there is. In addition, when carried out as a liquid phase reaction, since the target compound can be obtained by hydrogenating the reactant as it is without requiring the use of a separate solvent, post-treatment steps such as separation of the solvent from the reaction product can be omitted. It is also advantageous in terms of commercialization. Therefore, a wide range of applications is expected in the future.
도 1은 예시적 구체예에 따라 레블린산의 수소화 반응에서 수반되는 다양한 반응 메커니즘을 보여주는 도면이고;1 is a diagram showing various reaction mechanisms involved in the hydrogenation reaction of levulinic acid according to an exemplary embodiment;
도 2는 전이금속 포스파이드 촉매의 제조 시, (a, b) Ni-Co 글리세레이트 전구체(제1 수열합성 반응으로부터 생성됨), (c, d) Ni-Co 포스파이드 전구체(제2 수열합성 반응으로부터 생성됨), (e-g) Ni2Co1P, (h) CoP 전구체, (i) CoP, 및 (j) NiP 각각의 SEM 사진이고;Figure 2 shows the preparation of the transition metal phosphide catalyst, (a, b) Ni-Co glycerate precursor (generated from the first hydrothermal synthesis reaction), (c, d) Ni-Co phosphide precursor (second hydrothermal synthesis reaction generated from), (eg) Ni 2 Co 1 P, (h) CoP precursor, (i) CoP, and (j) NiP, respectively;
도 3은, (a-c) 상이한 배율의 요크-셀 구조의 니켈-코발트 포스파이드 촉매의 TEM 사진, (d) 기저면(basal plane)으로부터 기록된 HRTEM 사진, (e, f) HAADF-STEM 사진 및 EDS(energy-dispersive X-ray spectroscopy)에 의한 원소(Ni, Co 및 P) 맵핑이고;Figure 3 shows (a-c) TEM images of nickel-cobalt phosphide catalysts with a yolk-cell structure at different magnifications, (d) HRTEM images recorded from the basal plane, (e, f) HAADF-STEM images and EDS elemental (Ni, Co and P) mapping by (energy-dispersive X-ray spectroscopy);
도 4는 Ni2Co1P 촉매의 HRTEM 사진이고;4 is an HRTEM picture of the Ni 2 Co 1 P catalyst;
도 5는 (a, b) 150 ℃ 및 100 ℃에서 각각 제2 수열합성 반응을 수행하여 제조된 니켈-코발트 포스파이드 촉매(Ni2Co1P-150℃ 및 Ni2Co1P-100℃), 및 (c) Ni-Cu/Al2O3 각각의 구조를 나타내는 TEM 사진이고; 5 shows (a, b) nickel-cobalt phosphide catalysts (Ni 2 Co 1 P-150 °C and Ni 2 Co 1 P-100 °C) prepared by performing a second hydrothermal synthesis reaction at 150 ° C and 100 ° C, respectively. , and (c) Ni—Cu/Al 2 O 3 TEM images showing each structure;
도 6은 다양한 전이금속 포스파이드 촉매의 H2-TPD 및 NH3-TPD 결과를 각각 나타내는 그래프이고;6 is a graph showing H 2 -TPD and NH 3 -TPD results of various transition metal phosphide catalysts, respectively;
도 7은 NiP, Ni2Co1P 및 CoP의 XPS 스펙트럼으로서, (a) NiP 및 Ni2Co1P 각각에 대한 Ni 2p 스펙트럼, (b) Ni2Co1P 및 CoP 각각에 대한 Co 2p 스펙트럼, 그리고 (c) NiP, Ni2Co1P 및 CoP 각각에 대한 P 2p 스펙트럼이고;7 shows XPS spectra of NiP, Ni 2 Co 1 P, and CoP, (a) Ni 2p spectra for NiP and Ni 2 Co 1 P, respectively, (b) Co 2p spectra for Ni 2 Co 1 P and CoP, respectively. , and (c) P 2p spectra for NiP, Ni 2 Co 1 P and CoP, respectively;
도 8은 다양한 Ni 및/또는 Co의 포스파이드(NiP, CoP, NiCoP, Ni5P4, NiP2, Ni3Co1P, Ni2Co1P, Ni1Co1P, Ni1Co2P, Ni1Co3P 및 CoP) 각각에 대한 XRD 패턴이고;8 shows various Ni and/or Co phosphides (NiP, CoP, NiCoP, Ni 5 P 4 , NiP 2 , Ni3Co1P, Ni 2 Co 1 P, Ni 1 Co 1 P, Ni 1 Co 2 P, Ni 1 Co 3 P and CoP) XRD patterns for each;
도 9는 무용매 조건 하에서 다양한 전이금속 포스파이드 촉매를 이용하여 레블린산을 감마-발레로락톤으로 수소화 반응시켜 측정된 전환율 및 선택도를 각각 나타내는 그래프이고;9 is a graph showing the conversion and selectivity measured by hydrogenation of levulinic acid to gamma-valerolactone using various transition metal phosphide catalysts under solvent-free conditions, respectively;
도 10은 Ni2Co1P 촉매의 존재 하에서 다양한 용매를 이용하여 레블린산을 감마-발레로락톤으로 수소화 반응시켜 측정된 전환율 및 선택도를 각각 나타내는 그래프이고;10 is a graph showing conversion and selectivity measured by hydrogenation of levulinic acid to gamma-valerolactone using various solvents in the presence of a Ni 2 Co 1 P catalyst;
도 11은 Ni2Co1P 촉매의 존재 하에서 다양한 레블린산 에스테르의 반응물(또는 기재)를 감마-발레로락톤으로 수소화 반응시켜 측정된 전환율 및 선택도를 각각 나타내는 그래프이고; 그리고FIG. 11 is a graph showing the conversion and selectivity measured by hydrogenating reactants (or substrates) of various levulinic acid esters with gamma-valerolactone in the presence of a Ni 2 Co 1 P catalyst, respectively; and
도 12는 100 ℃ 및 150 ℃에서 각각 제2 수열합성 반응을 수행하여 제조된 니켈-코발트 포스파이드 촉매(Ni2Co1P-100℃ 및 Ni2Co1P-150℃) 및 상용 니켈-구리/알루미나 촉매(Ni-Cu/Al2O3) 각각의 존재 하에서 레블린산(LA)으로부터 감마-발레로락톤(GVL)을 제조하는 반응의 레블린산 전환율 및 감마-발레로락톤에 대한 선택도를 나타내는 그래프이다.12 shows nickel-cobalt phosphide catalysts (Ni 2 Co 1 P-100° C. and Ni 2 Co 1 P-150° C.) prepared by performing second hydrothermal synthesis reactions at 100° C. and 150° C., respectively, and commercial nickel-copper / Alumina catalyst (Ni-Cu/Al 2 O 3 ) Levulinic acid conversion rate and selection for gamma-valerolactone in the reaction of preparing gamma-valerolactone (GVL) from levulinic acid (LA) in the presence of each It is a graph that represents
본 발명은 하기의 설명에 의하여 모두 달성될 수 있다. 하기의 설명은 본 발명의 바람직한 구체예를 기술하는 것으로 이해되어야 하며, 본 발명이 반드시 이에 한정되는 것은 아니다. 또한, 첨부된 도면은 이해를 돕기 위한 것으로, 본 발명이 이에 한정되는 것은 아니며, 개별 구성에 관한 세부 사항은 후술하는 관련 기재의 구체적 취지에 의하여 적절히 이해될 수 있다.The present invention can all be achieved by the following description. The following description should be understood as describing preferred embodiments of the present invention, but the present invention is not necessarily limited thereto. In addition, the accompanying drawings are for understanding, and the present invention is not limited thereto, and details of individual components can be properly understood by the specific purpose of the related description to be described later.
본 명세서에서 사용되는 용어는 하기와 같이 정의될 수 있다.Terms used in this specification may be defined as follows.
"불균일계 촉매"는 촉매 반응 과정에서 반응물과 상이한 상(phase)으로 존재하는 촉매를 의미할 수 있는 바, 예를 들면 반응 매질 내에서 용해되지 않는 촉매를 의미할 수 있다. 불균일계 촉매의 경우, 반응이 일어나기 위하여는 적어도 하나의 반응물이 불균일계 촉매의 표면으로 확산되어 흡착되어야 하며, 반응 후에는 생성물이 불균일계 촉매의 표면으로부터 탈착될 필요가 있다. A “heterogeneous catalyst” may refer to a catalyst that is present in a different phase from the reactants during a catalytic reaction, for example, a catalyst that does not dissolve in a reaction medium. In the case of a heterogeneous catalyst, in order for a reaction to occur, at least one reactant needs to be diffused and adsorbed on the surface of the heterogeneous catalyst, and after the reaction, a product needs to be desorbed from the surface of the heterogeneous catalyst.
"바이오매스"는 통상적으로 광합성으로 생성되는 유기물을 의미하나, 가축분뇨, 음식 쓰레기 등의 유기성 폐기물도 포함하는 개념으로 이해될 수 있다. 넓은 의미로는 식물성 바이오매스, 구체적으로 셀룰로오스, 헤미셀룰로오스 및/또는 리그닌(즉, 리그노셀룰로오스계 바이오매스)을 포함하는 당업계에 공지된 다양한 생물자원(예를 들면, 옥수수, 콩, 아마인, 사탕수수 및 팜 오일과 같은 식물성 소스 등을 포함하며, 좀 더 구체적으로, 볏짚, 밀짚, 전분-포함 곡물, 옥수수속, 옥수수 대, 벼 껍질, 종이 제품, 목재, 톱밥, 농업 폐기물, 잔디, 사탕수수, 면, 아마, 대나무, 마닐라삼, 조류, 과일껍질, 해조류, 팜 폐기물, 식물의 줄기, 뿌리 및 잎 등)을 포함할 수 있다. 보다 구체적으로는 전술한 바이오매스로부터 당화 또는 분해되어 얻어지는 탄수화물(carbohydrates), 예를 들면 전분(starch), 당류(sugars), 구체적으로 모노사카라이드(글루코오스, 프럭토오스, 갈락토오스, 자일로오스, 아라비노오스, 만노오스 등), 디사카라이드(수크로오스, 락토오스, 말토오스, 셀로비오스 등), 기타 (올리고)사카라이드 등을 포함할 수 있다."Biomass" usually refers to organic matter produced through photosynthesis, but may be understood as a concept including organic waste such as livestock manure and food waste. Various biomass known in the art (e.g. corn, soybean, linseed, vegetable sources such as sugarcane and palm oil, and more specifically, rice straw, wheat straw, starch-containing grains, corn cobs, corn cob, rice husks, paper products, timber, sawdust, agricultural waste, grasses, sugar sorghum, cotton, flax, bamboo, abaca, algae, fruit husks, algae, palm waste, stems, roots and leaves of plants, etc.). More specifically, carbohydrates obtained by saccharification or degradation from the above-mentioned biomass, such as starch, sugars, specifically monosaccharides (glucose, fructose, galactose, xylose, arabinose, mannose, etc.), disaccharides (sucrose, lactose, maltose, cellobiose, etc.), other (oligo)saccharides, and the like.
"결정성" 또는 "결정질"이라는 용어는 전형적으로 원자가 격자 구조(예를 들면 3차원적 규칙성(three-dimensional order))를 갖도록 정렬된 임의의 고상 물질을 의미할 수 있는 바, 일반적으로 X-선 회절 분석(XRD), 핵자기 공명 분석(NMR), 시차 주사 열량측정법(DSC) 또는 이들의 조합에 의하여 특정할 수 있다.The term "crystalline" or "crystalline" can refer to any solid-state material that is typically ordered to have a valence lattice structure (eg, three-dimensional order), typically X - It can be specified by ray diffraction analysis (XRD), nuclear magnetic resonance analysis (NMR), differential scanning calorimetry (DSC), or a combination thereof.
"촉매"는 반응의 속도를 증가시키며, 그 자체가 전기분해 반응에 참여하기는 하나, 반응 자체에 의하여 소모되지 않으면서 반응에 참여할 수 있는 성분을 의미할 수 있다."Catalyst" may refer to a component that increases the rate of a reaction and participates in an electrolysis reaction itself, but can participate in a reaction without being consumed by the reaction itself.
"수열합성 반응"은 액상 합성법으로서 고온 및 고압 조건 하에서 물 또는 수용액을 이용하여 물질을 합성하는 반응을 의미할 수 있다.The "hydrothermal synthesis reaction" may refer to a reaction in which a material is synthesized using water or an aqueous solution under high temperature and high pressure conditions as a liquid phase synthesis method.
"상에" 또는 "상측에" 및 "하측에" 또는 "아래에"와 같은 용어는 구성 요소 또는 부재 간의 상대적인 위치 관계를 기술하는 것으로 이해될 수 있으며, "상측에 위치한다" 또는 "하측에 위치한다"는 용어는 특정 대상과 접촉된 상태뿐만 아니라 접촉되지 않은 상태에서 상대적인 위치 관계를 표현하는 것으로 이해될 수 있다.Terms such as “above” or “upper” and “lower” or “below” may be understood to describe the relative positional relationship between components or elements, and may be understood as “located above” or “below”. The term "located" may be understood to express a relative positional relationship in a non-contact state as well as a state in contact with a specific object.
본 명세서에서 임의의 구성 요소 또는 부재가 다른 구성 요소 또는 부재와 "연결된다"고 기재되어 있는 경우, 달리 언급되지 않는 한, 상기 다른 구성 요소 또는 부재와 직접 연결되어 있는 경우뿐만 아니라, 다른 구성 요소 또는 부재의 개재 하에서 연결되어 있는 경우도 포함되는 것으로 이해될 수 있다. In this specification, when any component or member is described as "connected" to another component or member, unless otherwise stated, not only when directly connected to the other component or member, but also to the other component. Or it can be understood that it is also included when connected under the interposition of a member.
이와 유사하게, "접촉한다"는 용어 역시 반드시 직접적으로 접촉하는 경우뿐만 아니라, 다른 구성 요소 또는 부재의 개재 하에서 접촉하는 경우도 포함될 수 있는 것으로 이해될 수 있다.Similarly, the term "contacts" may also be understood to include not only direct contact, but also contact through the intervening of other components or members.
어떠한 구성요소를 "포함"한다고 할 때, 이는 별도의 언급이 없는 한, 다른 구성요소를 더 포함할 수 있음을 의미한다. When a component is referred to as "include", it means that it may further include other components unless otherwise stated.
금속 포스파이드 촉매metal phosphide catalyst
본 개시 내용의 일 구체예에 따르면, 수소화 반응을 통하여, 유기산(예를 들면, 레블린산) 또는 이의 유도체(예를 들면, 유기산의 에스테르 화합물)를 감마-발레로락톤(GVL) 및/또는 2-메틸테트라하이드로퓨란(2-MTHF)과 같은 고부가 화합물로 전환시킬 수 있는 2원 기능성 금속 포스파이드 촉매가 제공된다. 이와 관련하여, 레블린산을 GVL 및/또는 2-MTHF와 같은 고리형 화합물(헤테로고리형 화합물)로 전환시키기 위하여는 수소화를 위한 금속 활성점(site), 그리고 고리화(구체적으로 탈수/고리화) 반응을 위한 산점(acidic site)을 갖는 2원 기능성(bifunctional) 촉매 특성을 가질 필요가 있다. According to one embodiment of the present disclosure, through a hydrogenation reaction, an organic acid (eg, levulinic acid) or a derivative thereof (eg, an ester compound of an organic acid) is converted to gamma-valerolactone (GVL) and/or A binary functional metal phosphide catalyst capable of converting high value compounds such as 2-methyltetrahydrofuran (2-MTHF) is provided. In this regard, in order to convert levulinic acid into a cyclic compound (heterocyclic compound) such as GVL and/or 2-MTHF, a metal active site for hydrogenation and cyclization (specifically, dehydration/cyclic compound) It is necessary to have bifunctional catalytic properties with an acidic site for the reaction.
일 구체예에 따른 금속 포스파이드 촉매는, 구체적으로 전이금속 포스파이드 촉매, 보다 구체적으로 주기율표 상의 VIII족 금속 중 2종의 비금속(base metal)의 조합을 사용할 수 있다. 특정 구체예에 따르면, 금속 포스파이드 촉매는 일반식 NixCoyP로 표시되는 니켈-코발트 포스파이드 촉매일 수 있다. 이때, 촉매 내 니켈(Ni) : 코발트(Co)의 몰 비는, 예를 들면 1 :약 0.2 내지 5, 구체적으로 1 : 약 0.3 내지 3, 보다 구체적으로 1 : 약 0.4 내지 2, 특히 구체적으로 1 : 약 0.5 내지 1의 범위에서 조절될 수 있다. 특정 구체예에 따르면, 전이금속 포스파이드 촉매는 화학식 Ni2Co1P으로 표시되는 촉매일 수 있다. 이때, 2종의 전이 금속 조합 내 코발트의 상대적인 량이 지나치게 낮거나 높은 경우에는 타겟 생성물(구체적으로 GVL)에 대한 선택도에 바람직하지 않은 영향을 미칠 수 있는 만큼, 전술한 범위 내에서 적절히 조절하는 것이 유리할 수 있다.A metal phosphide catalyst according to one embodiment, specifically, a transition metal phosphide catalyst, and more specifically, a combination of two base metals among group VIII metals on the periodic table may be used. According to certain embodiments, the metal phosphide catalyst may be a nickel-cobalt phosphide catalyst represented by the general formula Ni x Co y P. At this time, the molar ratio of nickel (Ni): cobalt (Co) in the catalyst is, for example, 1: about 0.2 to 5, specifically 1: about 0.3 to 3, more specifically 1: about 0.4 to 2, particularly specifically 1: It can be adjusted in the range of about 0.5 to 1. According to certain embodiments, the transition metal phosphide catalyst can be a catalyst represented by the formula Ni 2 Co 1 P. At this time, if the relative amount of cobalt in the combination of the two transition metals is too low or too high, it may have an undesirable effect on the selectivity for the target product (specifically, GVL), so it is appropriate to adjust it within the above range. can be advantageous
본 구체예에 따른 금속 포스파이드 촉매는 구형의 형상을 가질 수 있으며, 특히 요크-셀(yolk-shell) 구조를 갖는 바, "요크-셀 구조"는 중앙 공간(compartment)에 적어도 하나의 입자(즉, 요크)를 갖는 중공(hollow) 구조를 의미할 수 있고, 구체적으로 셀 층의 적어도 일부와 요크가 이격되어 빈 공간이 존재할 수 있으며, 경우에 따라서는 요크의 모든 표면이 셀 층과 이격될 수도 있다. 이때, 주목할 점은 셀 층과 요크가 동일한 니켈-코발트 포스파이드 재질로 이루어진다는 것이다. 이 경우, 셀 층과 요크 사이의 공간이 나노사이즈의 반응 영역으로 기능할 수 있게 되는데, 셀 층의 내면과 이격되면서 위치하는 요크와 반응물 간의 접촉 면적이 증가하게 되고, 셀 층에서 수행된 수소화 반응의 생성물이 요크 측으로 이동하여 추가적인 수소화 반응이 일어날 수 있다. 이러한 요크-셀 구조는 니켈 포스파이드(NiP) 촉매, 또는 코발트 포스파이드(CoP) 촉매와는 차별화되는 형태학적 특성이다.The metal phosphide catalyst according to the present embodiment may have a spherical shape, and particularly has a yolk-shell structure, wherein the "yoke-shell structure" includes at least one particle in a central compartment ( That is, it may mean a hollow structure having a yoke), and specifically, an empty space may exist because at least a portion of the cell layer and the yoke are spaced apart. In some cases, all surfaces of the yoke may be spaced apart from the cell layer. may be At this time, a point to note is that the cell layer and the yoke are made of the same nickel-cobalt phosphide material. In this case, the space between the cell layer and the yoke can function as a nano-sized reaction region, and the contact area between the yoke and the reactant located while being spaced apart from the inner surface of the cell layer increases, and the hydrogenation reaction performed in the cell layer The product of is transferred to the yoke side, where additional hydrogenation can occur. This yoke-cell structure is a morphological characteristic that differentiates it from nickel phosphide (NiP) catalysts or cobalt phosphide (CoP) catalysts.
예시적 구체예에 따르면, 금속 포스파이드 촉매의 전체 사이즈(직경)는, 예를 들면 약 10 내지 100 nm, 구체적으로 약 20 내지 80 nm, 보다 구체적으로 약 40 내지 60 nm 범위일 수 있으며, 특히 약 50 nm의 사이즈를 가질 수 있다. 촉매 사이즈가 작을수록 보다 넓은 표면적을 갖게 되고, 반응물과의 충돌 가능성이 높아짐에 따라 반응 속도가 증가하는 점을 고려하여 전술한 범위 내에서 조절하는 것이 유리할 수 있다.According to an exemplary embodiment, the overall size (diameter) of the metal phosphide catalyst may range, for example, from about 10 to 100 nm, specifically from about 20 to 80 nm, more specifically from about 40 to 60 nm, particularly It may have a size of about 50 nm. It may be advantageous to adjust within the above-mentioned range considering that the smaller the catalyst size, the larger the surface area, and the higher the possibility of collision with the reactants, the higher the reaction rate.
예시적 구체예에 따르면, 코어-셀 구조의 금속 포스파이드 촉매 내 셀 층의 두께는, 예를 들면 약 1 내지 10 nm, 구체적으로 약 2 내지 8 nm, 보다 구체적으로 약 4 내지 6 nm 범위, 특히 대략 5 nm 수준일 수 있다. 이와 관련하여, 셀 층의 두께가 지나치게 얇은 경우에는 셀 층 내의 요크 부분의 비활성화(deactivation) 현상이 유발될 수 있는 반면, 지나치게 두꺼운 경우에는 셀 층이 견고해져 반응물의 물질 전달 효율이 감소하며, 또한 촉매 내 셀 층의 비율 증가로 인하여 반응이 일어날 수 있는 공간이 축소되어 반응 효율이 낮아질 수 있는 만큼, 전술한 범위 내에서 적절히 조절하는 것이 바람직하다.According to an exemplary embodiment, the thickness of the cell layer in the core-shell structured metal phosphide catalyst ranges, for example, from about 1 to 10 nm, specifically from about 2 to 8 nm, more specifically from about 4 to 6 nm, In particular, it may be on the order of 5 nm. In this regard, if the thickness of the cell layer is too thin, deactivation of the yoke portion in the cell layer may be induced, whereas if the cell layer is too thick, the mass transfer efficiency of the reactant is reduced because the cell layer is rigid. Due to the increase in the ratio of the cell layer in the catalyst, the space in which the reaction can occur is reduced and the reaction efficiency may be lowered, so it is preferable to properly adjust within the above range.
예시적 구체예에 있어서, 촉매 내 요크의 사이즈(직경)는, 예를 들면 약 5 내지 50 nm, 구체적으로 약 10 내지 40 nm, 보다 구체적으로 약 20 내지 30 nm 범위일 수 있고, 특히 대략 25 nm 수준일 수 있다. 이와 관련하여, 요크는 반응이 일어날 수 있는 주요 활성 부위(primary active site)로 기능하는 한편, 빈 공간은 물질 전달 효율을 높일 수 있는 통로로 기능하여 반응이 효과적으로 일어나는데 중대한 영향을 미치는 만큼, 전술한 범위 내에서 적절히 조절할 수 있다. 또한, 셀 층 내부에 존재하는 요크가 차지하는 비율은 촉매의 비활성화에 영향을 미치는 요인으로 작용할 수 있다. 상기의 점을 고려할 때, 요크가 촉매 내에서 차지하는 중량 비는, 예를 들면 1 : 약 1.5 내지 5, 구체적으로 1: 약 1.8 내지 4, 보다 구체적으로 1 : 2 내지 3의 범위에서 조절될 수 있다. In an exemplary embodiment, the size (diameter) of the yoke in the catalyst may range, for example, from about 5 to 50 nm, specifically from about 10 to 40 nm, more specifically from about 20 to 30 nm, and particularly from about 25 nm to about 25 nm. It may be at the nm level. In this regard, the yoke functions as a primary active site where the reaction can occur, while the empty space functions as a passage that can increase the mass transfer efficiency and has a significant effect on the effective reaction. It can be adjusted appropriately within the range. In addition, the ratio occupied by the yoke existing inside the cell layer may act as a factor affecting deactivation of the catalyst. Considering the above points, the weight ratio of yoke occupied in the catalyst may be, for example, 1: about 1.5 to 5, specifically 1: about 1.8 to 4, and more specifically 1: 2 to 3. there is.
예시적 구체예에 따르면, 전술한 바와 같이 유기산 또는 이의 유도체의 고리화(구체적으로 탈수/고리화) 반응을 위하여는 금속 포스파이드 촉매가 일정 수준 이상의 산점을 함유할 것이 요구된다. 이때, 촉매의 산량(또는 산점의 량)은 NH3-TPD에 의하여 측정될 수 있는 바, 예를 들면 약 200 내지 600 mmol/g, 구체적으로 약 250 내지 550 mmol/g, 보다 구체적으로 약 300 내지 450 mmol/g의 범위일 수 있다. 다만, 산량이 지나치게 큰 경우에는 타겟 수소화 생성물(구체적으로 GVL)의 추가적인 수소화 빛 탈수화 반응으로 인하여 선택도가 감소하는 현상이 일어날 수 있는 만큼, 전술한 범위에서 적절히 조절하는 것이 유리할 수 있다. 본 개시 내용이 특정 이론에 구속되는 것은 아니지만, 금속 포스파이드 촉매가 산성을 나타내는 것은 촉매 내 환원되지 않은 금속 및/또는 P-OH 종의 존재로부터 유래된 것으로 설명할 수 있다. 예시적으로, 촉매 중 금속의 환원된 형태 : 금속의 환원되지 않은 형태의 몰 비는 1 : 약 2 내지 5, 구체적으로 1 : 약 2.5 내지 4.5, 보다 구체적으로 1 : 약 3 내지 4의 범위에서 정하여질 수 있다. According to an exemplary embodiment, as described above, for the cyclization (specifically, dehydration/cyclization) reaction of an organic acid or a derivative thereof, the metal phosphide catalyst is required to contain acid sites of a certain level or higher. At this time, the acid amount (or the amount of acid sites) of the catalyst can be measured by NH 3 -TPD, for example, about 200 to 600 mmol / g, specifically about 250 to 550 mmol / g, more specifically about 300 to 450 mmol/g. However, if the acid amount is too large, it may be advantageous to properly adjust within the above-mentioned range as a phenomenon in which the selectivity may decrease due to additional hydrogenation or dehydration of the target hydrogenation product (specifically, GVL). While the present disclosure is not bound by any particular theory, the acidity of metal phosphide catalysts can be explained by the presence of unreduced metal and/or P-OH species in the catalyst. Illustratively, the molar ratio of the reduced form of the metal to the unreduced form of the metal in the catalyst is in the range of 1 : about 2 to 5, specifically 1 : about 2.5 to 4.5, more specifically 1 : about 3 to 4. can be determined.
더 나아가, 촉매 내 산점의 수(또는 산량)는 유기산(구체적으로 레블린산) 또는 이의 유도체의 수소화 반응 경로 중 제2 단계인 GVL로부터 2-MTHF로의 전환에 보다 많은 영향을 미칠 수 있는 바, 이는 1,4-PDO로부터 2-MTHF로의 전환을 위하여는 보다 많은 량의 산점이 요구되기 때문이다. Furthermore, the number of acid sites (or acid amount) in the catalyst can have a greater effect on the conversion of GVL to 2-MTHF, which is the second step in the hydrogenation reaction pathway of an organic acid (specifically, levlinic acid) or a derivative thereof, This is because a larger amount of acid sites are required for the conversion of 1,4-PDO to 2-MTHF.
한편, 예시적 구체예에 따르면, 요크-셀 구조의 금속 포스파이드 촉매는 결정성을 나타낼 수 있는 바, 니켈에 코발트가 도입됨에 따라 결정성이 증가 또는 향상되는 효과를 나타낼 수 있는 바, 이는 XRD 패턴에서 양호하게 정의된 피크로부터 확인 가능하다. 이와 관련하여, 금속 포스파이드 촉매는, 예를 들면 약 0.1 내지 0.4 nm, 구체적으로 약 0.15 내지 0.35 nm, 보다 구체적으로 약 0.2 내지 0.4 nm, 특히 구체적으로 약 0.23 내지 0.27 nm 범위의 격자 프린지(lattice fringe)를 가질 수 있다. 전술한 결정 특성은, 예를 들면 (111) 및 (201) 면에 대응될 수 있다. On the other hand, according to an exemplary embodiment, the metal phosphide catalyst having a yoke-cell structure may exhibit crystallinity, and as cobalt is introduced into nickel, it may exhibit an effect of increasing or improving crystallinity, which is XRD It can be identified from well defined peaks in the pattern. In this regard, the metal phosphide catalyst has a lattice fringe ranging, for example, from about 0.1 to 0.4 nm, specifically from about 0.15 to 0.35 nm, more specifically from about 0.2 to 0.4 nm, and particularly from about 0.23 to 0.27 nm. fringe). The above crystal characteristics may correspond to the (111) and (201) planes, for example.
예시적 구체예에 따르면, 상기 금속 포스파이드, 구체적으로 니켈-코발트 포스파이드 촉매는 벌크형 촉매일 수 있으며, 파우더, 펠렛 등의 형태로 적용 가능하다. 예시적 구체예에 따르면, 벌크형 촉매는 파우더형 촉매일 수 있는 바, 이의 비표면적(BET)은, 예를 들면 약 10 내지 80 m2/g, 구체적으로 약 15 내지 70 m2/g, 보다 구체적으로 약 30 내지 60 m2/g의 범위일 수 있으나, 이는 예시적인 의미로 이해될 수 있다.According to an exemplary embodiment, the metal phosphide, specifically, the nickel-cobalt phosphide catalyst may be a bulk catalyst and may be applied in the form of powder or pellets. According to an exemplary embodiment, the bulk catalyst may be a powder catalyst, and its specific surface area (BET) is, for example, about 10 to 80 m 2 /g, specifically about 15 to 70 m 2 /g, more Specifically, it may be in the range of about 30 to 60 m 2 /g, but this may be understood as an exemplary meaning.
한편, 예시적 구체예에 따른 전이금속 포스파이드 촉매, 구체적으로 니켈-코발트 포스파이드 촉매는 양호한 수소 흡착 활성을 나타낼 수 있는 바, H2-TPD(hydrogen temperature-programmed desorption)을 이용하여 측정 시, 전체 금속의 몰(mol) 당 수소원자의 화학흡착량(mol)은, 50 내지 250 ℃의 온도 범위에 걸쳐, 예를 들면 약 100 내지 250 mmol/g, 구체적으로 약 120 내지 220 mmol/g, 보다 구체적으로 약 150 내지 200 mmol/g의 범위일 수 있으나, 이는 예시적인 취지로 이해될 수 있다.On the other hand, the transition metal phosphide catalyst according to an exemplary embodiment, specifically the nickel-cobalt phosphide catalyst, can exhibit good hydrogen adsorption activity, when measured using H 2 -TPD (hydrogen temperature-programmed desorption), The chemisorbed amount (mol) of hydrogen atoms per mole (mol) of total metal is, for example, about 100 to 250 mmol/g, specifically about 120 to 220 mmol/g, over the temperature range of 50 to 250 °C, More specifically, it may range from about 150 to 200 mmol/g, but this can be understood as an example.
요크-셀 구조의 금속 포스파이드 촉매의 제조방법Manufacturing method of metal phosphide catalyst with yoke-cell structure
이하에서는 금속으로서 니켈 및 코발트를 사용한 요크-셀 구조의 금속 포스파이드 촉매(벌크형)의 제조방법을 중심으로 설명한다.Hereinafter, a method for preparing a metal phosphide catalyst (bulk type) having a yoke-cell structure using nickel and cobalt as metals will be mainly described.
일 구체예에 따르면, 금속 포스파이드 촉매는, 니켈(Ni) 전구체 및 코발트(Co) 전구체를 사용하여 적어도 2회의 수열합성 반응(수열처리)을 수행한 다음, 포스파이드화(phosphidation)를 수행하는 방식으로 제조될 수 있다.According to one embodiment, the metal phosphide catalyst is subjected to at least two hydrothermal synthesis reactions (hydrothermal treatment) using a nickel (Ni) precursor and a cobalt (Co) precursor, followed by phosphidation. can be manufactured in this way.
예시적 구체예에 따르면, 니켈 전구체는, 전형적으로는 수용성 니켈 화합물일 수 있는 바, 구체적으로 산화수가 2인 니켈 화합물일 수 있으며, 특히 수화된 형태 또는 수화물 형태일 수 있다. 예를 들면, 니켈 화합물은 할로겐화 니켈(구체적으로 염화니켈, 브롬화니켈 등), 아세트산니켈, 질산니켈, 황산니켈, 탄산니켈, 수산화니켈 등으로부터 선택되는 적어도 하나일 수 있고, 구체적으로 상기 나열된 종류의 수화물일 수 있다. 특정 구체예에 따르면, 니켈 전구체는 염화니켈(II)·6수화물(NiCl2·6H2O), 질산니켈(Ni(NO3)2·6H2O) 및 황산니켈(II)·7수화물(NiSO4·7H2O)로 이루어지는 군으로부터 선택되는 적어도 하나일 수 있다. 한편, 코발트 전구체 역시 전형적으로는 수용성 코발트 화합물일 수 있는 바, 구체적으로 산화수가 2인 코발트 화합물일 수 있다. 예시적으로, 코발트 화합물은 질산코발트, 황산코발트, 아세트산코발트, 탄산코발트, 할로겐화 코발트(예를 들면, 염화코발트, 브롬화코발트 등) 등으로부터 선택되는 적어도 하나일 수 있고, 구체적으로 이들의 수화물 형태일 수 있다. 보다 구체적으로는 염화코발트(II)·6수화물(CoCl2·6H2O), 질산코발트(Co(NO3)2·6H2O) 및 황산코발트(II)·7수화물(CoSO4·7H2O)로 이루어지는 군으로부터 선택되는 적어도 하나일 수 있다. 이와 같이, 산화수가 2인 금속을 사용할 경우, 촉매 내에 보다 많은 량의 루이스 산점이 형성될 수 있는 점에서 유리하다. 또한, 금속 전구체로서 수화물을 사용할 경우, 금속 전구체가 용매 내에 보다 양호하게 용해될 수 있다. According to an exemplary embodiment, the nickel precursor may typically be a water-soluble nickel compound, specifically a nickel compound having an oxidation number of 2, and particularly in a hydrated or hydrated form. For example, the nickel compound may be at least one selected from nickel halides (specifically, nickel chloride, nickel bromide, etc.), nickel acetate, nickel nitrate, nickel sulfate, nickel carbonate, nickel hydroxide, etc. It can be a hydrate. According to certain embodiments, the nickel precursor is nickel(II) chloride hexahydrate (NiCl 2 6H 2 O), nickel nitrate (Ni(NO 3 ) 2 6H 2 O) and nickel (II) sulfate heptahydrate ( NiSO 4 ·7H 2 O) may be at least one selected from the group consisting of. Meanwhile, the cobalt precursor may also typically be a water-soluble cobalt compound, specifically a cobalt compound having an oxidation number of 2. Illustratively, the cobalt compound may be at least one selected from cobalt nitrate, cobalt sulfate, cobalt acetate, cobalt carbonate, cobalt halide (eg, cobalt chloride, cobalt bromide, etc.), and specifically may be in the form of a hydrate thereof. can More specifically, cobalt(II) chloride hexahydrate (CoCl 2 6H 2 O), cobalt nitrate (Co(NO 3 ) 2 6H 2 O) and cobalt sulfate (II) heptahydrate (CoSO 4 7H 2 O) may be at least one selected from the group consisting of. As such, when a metal having an oxidation number of 2 is used, it is advantageous in that a larger amount of Lewis acid sites can be formed in the catalyst. In addition, when a hydrate is used as the metal precursor, the metal precursor can be better dissolved in the solvent.
최종 촉매 내 니켈 및 코발트 간의 비를 고려하여 니켈 전구체 및 코발트 전구체를 용매 내에 용해시켜 니켈-코발트 전구체 용액을 제조할 수 있다. 이때, 니켈 전구체 및 코발트 전구체를 용해시키기 위한 용매로서 전술한 바와 같이 요크-셀 구조를 형성함에 있어서 자가-희생 템플릿 기능을 제공하는 물질로 전환시킬 수 있는 종류를 사용할 수 있는 바, 이를 위하여는 적어도 1개의 히드록시기(hydroxyl group)를 갖는 용매, 구체적으로는 적어도 2가의 알코올을 포함하는 것이 유리할 수 있다. 특정 구체예에 따르면, 전구체 용액 제조를 위한 용매로서, 예를 들면 적어도 2가의 알코올(즉, 다가 알코올) 및 1가 알코올의 혼합 용매를 예시할 수 있다. 구체적으로, 적어도 2가의 알코올은, 예를 들면 글리세롤, 에틸렌글리콜 등으로부터 선택되는 적어도 하나일 수 있다. 또한, 1가 알코올은, 예를 들면 에탄올, 이소프로필 알코올 등으로부터 선택되는 적어도 하나일 수 있다.A nickel-cobalt precursor solution may be prepared by dissolving a nickel precursor and a cobalt precursor in a solvent in consideration of the ratio between nickel and cobalt in the final catalyst. At this time, as the solvent for dissolving the nickel precursor and the cobalt precursor, as described above, in forming the yoke-cell structure, a kind that can be converted into a material that provides a self-sacrificing template function can be used. For this purpose, at least It may be advantageous to include a solvent having one hydroxyl group, specifically at least a dihydric alcohol. According to a specific embodiment, as the solvent for preparing the precursor solution, for example, a mixed solvent of at least a dihydric alcohol (ie, a polyhydric alcohol) and a monohydric alcohol can be exemplified. Specifically, the at least dihydric alcohol may be, for example, at least one selected from glycerol and ethylene glycol. Also, the monohydric alcohol may be, for example, at least one selected from ethanol, isopropyl alcohol, and the like.
이러한 혼합 용매에서 적어도 2가의 알코올 : 1가 알코올의 체적 비는, 예를 들면 1 : 약 1 내지 10, 구체적으로 1 : 약 1.5 내지 7, 보다 구체적으로 1 : 약 2 내지 5의 범위 내에서 조절될 수 있다. 또한, 금속 전구체 수용액 내 니켈 전구체 및 코발트 전구체의 전체 농도는, 예를 들면 약 30 내지 150 mM, 구체적으로 약 50 내지 100 mM, 보다 구체적으로 약 60 내지 90 mM 범위에서 조절될 수 있다.The volume ratio of at least dihydric alcohol: monohydric alcohol in such a mixed solvent is, for example, 1: about 1 to 10, specifically 1: about 1.5 to 7, more specifically 1: about 2 to 5. It can be. In addition, the total concentration of the nickel precursor and the cobalt precursor in the aqueous metal precursor solution may be, for example, about 30 to 150 mM, specifically about 50 to 100 mM, and more specifically about 60 to 90 mM.
상술한 바와 같이 금속 전구체 용액을 제조한 후에는 제1 수열합성 반응을 수행할 수 있다. 이때, 수열합성 반응 온도는, 예를 들면 약 150 내지 220 ℃, 구체적으로 약 160 내지 200 ℃, 보다 구체적으로 약 170 내지 190 ℃의 범위에서 조절될 수 있고, 또한 반응 시간은, 예를 들면 약 4 내지 10 시간, 구체적으로 약 5 내지 9 시간, 보다 구체적으로 약 6 내지 8 시간의 범위에서 정하여질 수 있다. 제1 수열합성 반응을 통하여, 금속(니켈-코발트)의 침전물이 형성될 수 있다. 선택적으로(optionally), 당업계에서 공지된 분리 정제 단계를 거칠 수 있는 바, 예시적으로 고액 분리(예를 들면, 필터링, 원심 분리 등)를 통하여 금속 침전물을 세척하고 건조시킬 수 있다. 이때, 알코올(예를 들면, 메탄올, 에탄올 등) 세척 및/또는 수 세척을 수행할 수도 있고, 또는 알코올 및 물의 혼합 용매로 세척할 수도 있다. 또한, 건조는 당업계에서 공지된 방법, 열 건조, 진공 건조 등과 같은 공지의 건조 방식으로 수행될 수 있다. 예시적으로, 열 건조 방식의 경우, 건조 온도는, 예를 들면 약 40 내지 90 ℃, 구체적으로 약 50 내지 80 ℃ 범위 내에서 조절될 수 있으며, 또한 건조 시간은, 전형적으로 예를 들면 약 3 내지 10 시간, 구체적으로 약 4 내지 7 시간 범위일 수 있다.As described above, after preparing the metal precursor solution, a first hydrothermal synthesis reaction may be performed. At this time, the hydrothermal synthesis reaction temperature may be adjusted in the range of, for example, about 150 to 220 ° C, specifically about 160 to 200 ° C, more specifically about 170 to 190 ° C, and the reaction time, for example, about 4 to 10 hours, specifically about 5 to 9 hours, more specifically about 6 to 8 hours. Through the first hydrothermal synthesis reaction, a metal (nickel-cobalt) precipitate may be formed. Optionally, a separation and purification step known in the art may be performed, and the metal precipitate may be washed and dried exemplarily through solid-liquid separation (eg, filtering, centrifugation, etc.). At this time, alcohol (eg, methanol, ethanol, etc.) washing and/or water washing may be performed, or washing may be performed with a mixed solvent of alcohol and water. In addition, drying may be performed by a known drying method such as a method known in the art, heat drying, vacuum drying, or the like. Illustratively, in the case of the thermal drying method, the drying temperature may be adjusted within the range of, for example, about 40 to 90 ° C., specifically about 50 to 80 ° C., and the drying time is typically, for example, about 3 to 10 hours, specifically about 4 to 7 hours.
이와 같이 수득된 금속 침전물은 제1 수열합성 시 사용된 매질에 의하여 영향을 받는데, 전술한 바와 같이 다가 알코올로서 글리세롤을 사용하는 경우에는 금속 글리세레이트 형태일 수 있다.The metal precipitate thus obtained is affected by the medium used in the first hydrothermal synthesis. As described above, when glycerol is used as a polyhydric alcohol, it may be in the form of metal glycerate.
그 다음, 금속 침전물에 대하여 제2 수열 합성 반응을 수행한다. 이를 위하여, 금속 침전물을 수계 매질(구체적으로 탈이온수)에 첨가한다. 예시적으로, 금속 침전물의 함량은, 예를 들면 약 2 내지 8%(w/w), 구체적으로 약 3 내지 6%(w/w), 보다 구체적으로 약 3.5 내지 5.5%(w/w), 특히 구체적으로 약 3.75 내지 5%(w/w)의 범위에서 조절될 수 있다. 제2 수열 합성 반응의 경우, 반응 온도는, 예를 들면 약 130 내지 170 ℃, 구체적으로 약 140 내지 165 ℃, 보다 구체적으로 약 145 내지 160 ℃의 범위에서 정하여질 수 있으며, 특히 제1 수열 합성 반응에 비하여, 예를 들면 약 20 내지 40 ℃, 구체적으로 약 25 내지 35 ℃ 더 낮은 온도로 설정될 수 있다. 이와 관련하여, 제2 수열 합성 반응 온도가 일정 수준에 미달하거나, 또는 이를 초과할 경우에는 최종 금속 포스파이드 촉매 내에 셀 층이 형성하지 않아 요크-셀 구조를 제공하기 곤란할 수 있는 만큼, 전술한 온도 범위에서 수열합성을 수행하는 것이 유리할 수 있다. 또한, 제2 수열합성 반응 시간은, 예를 들면 약 1 내지 8 시간, 구체적으로 약 2 내지 6 시간, 보다 구체적으로 약 3 내지 4 시간의 범위에서 조절될 수 있으나, 이는 예시적인 취지로 이해될 수 있다.Then, a second hydrothermal synthesis reaction is performed on the metal precipitate. To this end, the metal precipitate is added to an aqueous medium (specifically deionized water). Illustratively, the content of the metal precipitate is, for example, about 2 to 8% (w / w), specifically about 3 to 6% (w / w), more specifically about 3.5 to 5.5% (w / w) , In particular, it may be specifically adjusted in the range of about 3.75 to 5% (w / w). In the case of the second hydrothermal synthesis reaction, the reaction temperature may be set in the range of, for example, about 130 to 170 °C, specifically about 140 to 165 °C, and more specifically about 145 to 160 °C, particularly in the first hydrothermal synthesis. Compared to the reaction, for example, it may be set at a lower temperature of about 20 to 40 °C, specifically about 25 to 35 °C. In this regard, when the second hydrothermal synthesis reaction temperature falls short of or exceeds a certain level, a cell layer is not formed in the final metal phosphide catalyst, making it difficult to provide a yoke-cell structure. It may be advantageous to carry out hydrothermal synthesis in the range. In addition, the second hydrothermal synthesis reaction time may be adjusted in the range of, for example, about 1 to 8 hours, specifically about 2 to 6 hours, and more specifically about 3 to 4 hours, but this will be understood as an example. can
상술한 바와 같이, 제2 수열 합성 반응에 의하여 금속 수산화물, 구체적으로 니켈-코발트 수산화물이 형성될 수 있으며, 이는 금속 포스파이드를 형성하기 위한 전구체 또는 중간체에 해당된다. 또한, 선택적 단계로서 분리 정제 단계를 거칠 수 있는 바, 이는 제1 수열 합성 반응 생성물(금속 침전물)과 관련하여 기재한 바와 유사한 방식이다(다만, 세척액으로 물을 사용할 수 있음).As described above, a metal hydroxide, specifically, nickel-cobalt hydroxide may be formed by the second hydrothermal synthesis reaction, which corresponds to a precursor or intermediate for forming a metal phosphide. In addition, a separation and purification step may be performed as an optional step, which is similar to that described in relation to the first hydrothermal synthesis reaction product (metal precipitate) (however, water may be used as a washing liquid).
그 다음, 금속 수산화물에 대하여 포스파이드화 반응을 수행할 수 있는데, 포스파이드제를 이용한 치환 반응을 이용할 수 있다. 일 예로서, 포스파이드제는, 전형적으로 치아인산염, 포스핀 가스, 적린(red phosphorus) 등으로부터 선택되는 적어도 하나일 수 있으며, 구체적으로 치아인산나트륨, 보다 구체적으로 치아인산나트륨 수화물일 수 있다. 이와 관련하여, 치환 반응은, 비활성 분위기 및 승온 조건에서 수행될 수 있다. 예시적으로, 비활성 분위기 가스는, 아르콘, 네온, 질소 등으로부터 선택되는 적어도 하나일 수 있고, 보다 구체적으로는 아르곤일 수 있다. 또한, 치환 반응 온도는, 예를 들면 약 280 내지 400 ℃, 구체적으로 약 300 내지 370 ℃, 보다 구체적으로 약 320 내지 360 ℃의 범위에서 정하여질 수 있으며, 이때 승온 속도는, 예를 들면 약 0.5 내지 5 ℃/분, 구체적으로 약 0.8 내지 3 ℃/분, 보다 구체적으로 약 1 내지 2 ℃/분의 범위에서 조절 가능하다. 이외에도, 치환 반응은, 예를 들면 약 2 내지 10 시간, 구체적으로 약 2.5 내지 8 시간, 보다 구체적으로 약 3 내지 5 시간에 걸쳐 수행될 수 있으나, 이는 예시적 취지로 이해될 수 있다. Then, a phosphidation reaction may be performed on the metal hydroxide, and a substitution reaction using a phosphide agent may be used. As an example, the phosphide agent may typically be at least one selected from hypophosphates, phosphine gas, red phosphorus, etc., specifically sodium hypophosphate, and more specifically sodium hypophosphate hydrate. In this regard, the substitution reaction may be carried out under inert atmosphere and elevated temperature conditions. Illustratively, the inert atmosphere gas may be at least one selected from argon, neon, nitrogen, and the like, and more specifically, argon. In addition, the substitution reaction temperature may be set in the range of, for example, about 280 to 400 °C, specifically about 300 to 370 °C, and more specifically about 320 to 360 °C, wherein the temperature increase rate is, for example, about 0.5 °C. to 5 °C/min, specifically about 0.8 to 3 °C/min, and more specifically about 1 to 2 °C/min. In addition, the substitution reaction may be performed over, for example, about 2 to 10 hours, specifically about 2.5 to 8 hours, and more specifically about 3 to 5 hours, but this can be understood as an example.
본 개시 내용이 특정 이론에 구속되는 것은 아니지만, 전술한 구체예에서 치아인산나트륨 수화물의 경우, 승온 조건 하에서 포스핀(PH3) 가스를 생성할 수 있고, 이러한 포스피 가스가 금속 수산화물과 반응하여 포스파이드를 형성할 수 있는 것으로 판단된다. 따라서, 치아인산나트륨 수화물을 사용하는 대신에 포스핀(PH3) 가스를 직접 사용하여 포스파이드화 반응을 수행할 수도 있다.Although the present disclosure is not bound by a particular theory, in the case of sodium hypophosphate hydrate in the above-described embodiment, under elevated temperature conditions, phosphine (PH 3 ) gas can be generated, and this phosphi gas reacts with metal hydroxide to It is believed to be capable of forming phosphides. Therefore, instead of using sodium hypophosphate hydrate, phosphine (PH 3 ) gas may be directly used to perform the phosphidation reaction.
예시적 구체예에 따르면, 치아인산나트륨 수화물을 이용한 금속 수산화물의 포스파이드화 반응은 튜브형 로(furnace) 내에서 수행될 수 있다. 이때, 튜브형 로 내에 2개의 도가니를 양 단부에 배치하고, 비활성 가스를 흘려줄 수 있으며, 2개의 도가니 중 치아인산나트륨과 같은 포스파이드제가 위치하는 도가니가 상류에 배치되고, 금속 수산화물이 위치하는 도가니가 하류에 배치되며, 상류 측 도가니에서 승온 조건 하에서 전환된 포스핀 가스가 아르곤에 의하여 하류 측 도가니 측으로 이송되어 금속 수산화물과 반응함으로써 금속 포스파이드 촉매를 형성할 수 있다.According to an exemplary embodiment, the phosphidation reaction of metal hydroxide with sodium hypophosphate hydrate may be performed in a tubular furnace. At this time, two crucibles are placed at both ends in the tubular furnace, and an inert gas can be flowed. Among the two crucibles, a crucible in which a phosphide agent such as sodium hypophosphate is located is disposed upstream, and a crucible in which metal hydroxide is located Is disposed downstream, and the phosphine gas converted under elevated temperature conditions in the upstream crucible is transferred to the downstream crucible by argon and reacts with the metal hydroxide to form a metal phosphide catalyst.
한편, 본 구체예에 따른 금속 포스파이드 촉매는 재생을 통하여 초기 활성 또는 이에 근접하는 수준으로 활성을 회복하기 용이하다. 이와 관련하여, 재생 과정은 간단한 분리(필터, 원심 분리 등의 고-액 분리), 세척(예를 들면, 알코올 및/또는 물을 이용하여 적어도 1회 세척), 및 건조(예를 들면, 약 40 내지 90 ℃에서 약 3 내지 10 시간)에 의하여 수행될 수 있다.On the other hand, the metal phosphide catalyst according to the present embodiment is easy to recover the activity to the initial activity or a level close thereto through regeneration. In this regard, the regeneration process includes simple separation (solid-liquid separation such as filter, centrifugation, etc.), washing (e.g., washing at least once with alcohol and/or water), and drying (e.g., about 40 to 90 ° C. for about 3 to 10 hours).
유기산 또는 이의 유도체의 전환(고리화) 반응Conversion (cyclization) reaction of organic acids or their derivatives
본 개시 내용의 일 구체예 따르면, 요크-셀 구조의 금속 포스파이드 촉매를 이용한 수소화 반응을 통하여 유기산 또는 이의 유도체로부터 다양한 고부가 화합물을 제조하는 프로세스가 제공되는 바, 이때 금속 포스파이드 촉매는 일반식 NixCoyP로 표시되는 니켈-코발트 포스파이드 촉매일 수 있다.According to one embodiment of the present disclosure, there is provided a process for producing various high value-added compounds from organic acids or derivatives thereof through hydrogenation using a metal phosphide catalyst having a yoke-cell structure, wherein the metal phosphide catalyst has the general formula Ni It may be a nickel-cobalt phosphide catalyst represented by x Co y P.
예시적 구체예에 따르면, 유기산은 전형적으로 바이오매스로부터 유래하는 유기산일 수 있는 바, 예를 들면 탄소수 1 내지 8, 구체적으로 탄소수 2 내지 7, 보다 구체적으로 탄소수 4 내지 6 범위의 유기산일 수 있고, 특히 탄소수 5의 유기산일 수 있다. 또한, 유기산의 유도체는 에스테르 화합물일 수 있다. 이러한 유기산은 금속 포스파이드 촉매의 존재 하에서 수소화 반응을 거치면서 고리형 화합물을 형성할 수 있다. 일 예로서, 유기산은 레블린산, 숙신산, 푸마르산, 이타콘산, 아스파르트산, 2,5-퓨란디카르복시산(2,5-furandicarboxylic acid), 글루타르산(glucaric acid), 락트산(lactic acid) 등으로부터 선택되는 적어도 하나일 수 있다. 또한, 수소화 반응을 통하여 생성되는 고려형 화합물과 관련하여, 유기산으로 레블린산 및/또는 이의 유도체(구체적으로, 에스테르)를 사용할 경우, 감마-발레로락톤(GVL) 및/또는 2-메틸테트라하이드로퓨란(2-MTHF)이 생성될 수 있다. 또한, 유기산으로 숙신산 또는 푸마르산을 사용할 경우에는 부티로락톤 및 테트라하이드로퓨란이 생성될 수 있다. 이외에도, 유기산으로 이타콘산을 사용할 경우에는 3-메틸부티로락톤 및 3-메틸테트라하이드로퓨란을 제조할 수 있다. 전술한 바와 같이 유기산의 수소화 반응을 통한 고리형 화합물의 생성은 당업계에 공지되어 있는 만큼, 세부적인 기재는 생략하기로 한다. According to an exemplary embodiment, the organic acid may be an organic acid typically derived from biomass, for example, an organic acid having 1 to 8 carbon atoms, specifically 2 to 7 carbon atoms, more specifically 4 to 6 carbon atoms, , especially an organic acid having 5 carbon atoms. Also, the derivative of an organic acid may be an ester compound. These organic acids can form cyclic compounds while undergoing a hydrogenation reaction in the presence of a metal phosphide catalyst. As an example, the organic acid is levulinic acid, succinic acid, fumaric acid, itaconic acid, aspartic acid, 2,5-furandicarboxylic acid, glutaric acid, lactic acid, etc. It may be at least one selected from. In addition, in relation to the type compound produced through a hydrogenation reaction, when levulinic acid and/or a derivative thereof (specifically, an ester) is used as an organic acid, gamma-valerolactone (GVL) and/or 2-methyltetra Hydrofuran (2-MTHF) can be produced. In addition, when succinic acid or fumaric acid is used as an organic acid, butyrolactone and tetrahydrofuran may be produced. In addition, when itaconic acid is used as an organic acid, 3-methylbutyrolactone and 3-methyltetrahydrofuran can be produced. As described above, since the production of cyclic compounds through hydrogenation of organic acids is known in the art, detailed descriptions thereof will be omitted.
- 1차 수소화 반응- 1st hydrogenation reaction
특정 구체예에 있어서, 유기산은 레블린산일 수 있으며, 전술한 바와 같이 수소화 반응을 거치면서 탈수/고리화 반응이 일어나 감마-발레로락톤(GVL)을 형성할 수 있다(1차 수소화 단계). 이와 관련하여, 레블린산을 감마-발레로락톤으로 전환시키는 반응 루트는 크게 2가지 종류(중간체로서, 락톤을 경유하는 경우 및 4-히드록시펜탄산을 경유하는 경우)가 알려져 있는 바, 본 구체예에서는 4-히드록시펜탄산을 경유하는 것으로 판단된다. 감마-발레로락톤(GVL)은 폴리아미드 6,6 및 폴리아미드 4,6과 같은 폴리아미드의 전구체인 아디프산의 합성에 사용되는 원료이다.In a specific embodiment, the organic acid may be levulinic acid, and as described above, dehydration/cyclization may occur through hydrogenation to form gamma-valerolactone (GVL) (first hydrogenation step). In this regard, two types of reaction routes for converting levulinic acid to gamma-valerolactone are known (as an intermediate, via lactone and via 4-hydroxypentanoic acid). In a specific example, it is believed to be via 4-hydroxypentanoic acid. Gamma-valerolactone (GVL) is a raw material used in the synthesis of adipic acid, a precursor of polyamides such as polyamide 6,6 and polyamide 4,6.
예시적 구체예에 따르면, 1차 수소화 반응은 반응기 내에 유기산 및 촉매를 투입하고, 반응기 내에 수소를 소정 압력에 도달할 때까지 공급 또는 주입하고 승온 조건 하에서 반응을 수행할 수 있다. 이때, 수소화 온도는, 예를 들면 약 120 내지 300 ℃, 구체적으로 약 150 내지 250 ℃, 보다 구체적으로 약 170 내지 200 ℃ 범위에서 조절될 수 있고, 또한 반응 압력(수소 압력 또는 수소 부분압)은, 예를 들면 약 10 내지 50 bar, 구체적으로 약 15 내지 40 bar, 보다 구체적으로 약 20 내지 35 bar의 범위에서 적절히 조절 가능하다. 수소화 온도 및 압력은 반응물의 전환률 및 생성물의 선택도에 영향을 미치는 만큼, 전술한 범위 내에서 적절히 조절하는 것이 바람직할 수 있으나, 유기산의 종류, 촉매의 활성, 용매의 사용 유무 등에 따라 변경 가능하다. 이러한 반응 조건은 촉매 내 활성 포스파이드 고유의 금속성(intrinsic metallicity) 및 산 특성으로 인하여 보다 낮은 온도(즉, 보다 온화한 조건)에서 반응을 수행할 수 있음을 지시한다. 이는 (i) 저렴한 비금속(base metal)을 사용하는 점, (ii) 바이메탈(bimetal) 촉매 시스템을 통하여 반응물의 전환률을 증가시키고 타겟 생성물에 대한 선택도를 높일 수 있는 점, 및 (iii) 무용매(solvent-free) 반응을 수행함에 따라 용매의 분리 공정을 요하지 않는 점과 함께 본 구체예에 따른 공정을 종래기술과 차별화하는 추가적인 장점에 상당한다. 본 개시 내용이 특정 이론에 구속되는 것은 아니지만, 수소화 반응은 촉매의 표면에 수소의 흡착 및 활성으로부터 개시되는 바, 본 구체예에 따른 니켈-코발트 포스파이드 촉매에서는 보다 낮은 온도에서 수소를 흡착할 수 있고 활성화할 수 있기 때문으로 설명할 수 있다. 이외에도, 수소화 반응 시간은, 예를 들면 약 1 내지 10 시간, 구체적으로 약 2 내지 8 시간, 보다 구체적으로 약 3 내지 6 시간의 범위에서 조절될 수 있다. According to an exemplary embodiment, the first hydrogenation reaction may be performed by introducing an organic acid and a catalyst into a reactor, supplying or injecting hydrogen into the reactor until a predetermined pressure is reached, and performing the reaction under elevated temperature conditions. At this time, the hydrogenation temperature may be adjusted in the range of, for example, about 120 to 300 ° C, specifically about 150 to 250 ° C, more specifically about 170 to 200 ° C, and the reaction pressure (hydrogen pressure or hydrogen partial pressure), For example, it is appropriately adjustable in the range of about 10 to 50 bar, specifically about 15 to 40 bar, and more specifically about 20 to 35 bar. As the hydrogenation temperature and pressure affect the conversion rate of the reactants and the selectivity of the product, it may be desirable to properly adjust them within the above-mentioned range, but it can be changed depending on the type of organic acid, the activity of the catalyst, whether or not a solvent is used, etc. . These reaction conditions indicate that the reaction can be carried out at lower temperatures (i.e., milder conditions) due to the intrinsic metallicity and acidic nature of the active phosphide in the catalyst. These are (i) the use of inexpensive base metals, (ii) the ability to increase the conversion rate of reactants and increase the selectivity for target products through a bimetal catalyst system, and (iii) the absence of solvents. (solvent-free) It is equivalent to an additional advantage that differentiates the process according to the present embodiment from the prior art with the fact that it does not require a separation process of the solvent as the reaction is performed. Although the present disclosure is not bound by any particular theory, since the hydrogenation reaction is initiated from the adsorption and activity of hydrogen on the surface of the catalyst, the nickel-cobalt phosphide catalyst according to the present embodiment can adsorb hydrogen at a lower temperature. This can be explained by the fact that it exists and can be activated. In addition, the hydrogenation reaction time may be adjusted in the range of, for example, about 1 to 10 hours, specifically about 2 to 8 hours, and more specifically about 3 to 6 hours.
예시적 구체예에 따르면, 반응물인 유기산(구체적으로 레블린산) 또는 이의 유도체 : 촉매의 중량 비는 1 : 약 0.015 내지 0.03, 구체적으로 1 : 약 0.018 내지 0.026, 보다 구체적으로 1 : 약 0.02 내지 0.025 범위일 수 있고, 특히 1 : 0.023 수준일 수 있다. 반응물 대 촉매의 비는 반응물의 전환 및 타겟 생성물에 대한 선택도에 영향을 미칠 수 있고, 또한 촉매의 량이 상대적으로 증가할수록 보다 많은 촉매의 활성점(acitive sites)을 제공할 수 있는 점을 고려할 때, 전술한 범위 내에서 조절하는 것이 유리하다. According to an exemplary embodiment, the reactant organic acid (specifically, levulinic acid) or its derivative: the weight ratio of the catalyst is 1: about 0.015 to 0.03, specifically 1: about 0.018 to 0.026, and more specifically 1: about 0.02 to about 0.026. It may be in the range of 0.025, particularly at the level of 1 : 0.023. Considering that the ratio of reactant to catalyst can affect the conversion of the reactants and the selectivity for the target product, and also that a relatively increased amount of catalyst can provide more active sites for the catalyst. , it is advantageous to adjust within the above range.
예시적 구체예에 따르면, 수소화 반응은 회분식 모드뿐만 아니라 연속 모드로 수행될 수 있는 바, 예를 들면 고정층 반응기, 반회분식 반응기 등을 이용할 수 있다. 보다 전형적으로는 회분식 모드를 채택할 수 있다.According to an exemplary embodiment, the hydrogenation reaction may be performed in a continuous mode as well as a batch mode, for example, a fixed bed reactor, a semi-batch reactor, and the like may be used. More typically, a batch mode may be employed.
전술한 반응이 완료되면, 수소화 생성물로부터 타겟 화합물, 구체적으로 감마-발레로락톤을 분리하여 회수할 수 있다. 이러한 분리 회수 과정은, 당업계에서 공지되어 있는 바, 예를 들면 증류, 추출, 분리막, 플래시 드럼 등을 이용하여 수행될 수 있다.When the above reaction is completed, the target compound, specifically gamma-valerolactone, can be separated and recovered from the hydrogenation product. This separation and recovery process is known in the art and may be performed using, for example, distillation, extraction, separation membrane, flash drum, and the like.
예시적 구체예에 따르면, 1차 수소화 반응에서 유기산(특히, 레블린산)의 전환율은, 예를 들면 적어도 약 45%(구체적으로 적어도 약 70%, 보다 구체적으로 적어도 약 80%, 특히 구체적으로 적어도 약 95%, 실질적으로는 100%까지)일 수 있고, 이의 고리화 생성물(특히, 감마-발레로락톤)에 대한 선택도는, 예를 들면 적어도 약 70%(구체적으로 적어도 약 90%, 보다 구체적으로 적어도 약 95%, 특히 실질적으로 100%까지)일 수 있다.According to an exemplary embodiment, the conversion of the organic acid (particularly levulinic acid) in the primary hydrogenation reaction is, for example, at least about 45% (specifically at least about 70%, more specifically at least about 80%, particularly specifically at least about 80%). at least about 95%, substantially up to 100%), and the selectivity for its cyclization products (particularly gamma-valerolactone) is, for example, at least about 70% (specifically at least about 90%, more specifically at least about 95%, particularly up to substantially 100%).
- 2차 수소화 반응- Secondary hydrogenation reaction
예시적 구체예에 따르면, 본 구체예에 따른 금속 포스파이드 촉매는 유기산의 수소화 생성물(또는 고리화 반응)을 추가적인 수소화 반응을 통하여 다른 종류의 고부가 화합물 또는 고리형 화합물로 전환시키는데 사용될 수 있다.According to an exemplary embodiment, the metal phosphide catalyst according to the present embodiment can be used to convert a hydrogenation product (or cyclization reaction) of an organic acid into another type of high value-added compound or cyclic compound through an additional hydrogenation reaction.
일 예로서, 앞선 1차 수소화 반응 시 유기산으로 레블린산을 감마-발레로락톤으로 전환시킨 경우, 전환된 감마-발레로락톤을 전술한 금속 포스파이드 촉매(신규 촉매 또는 재생 촉매)의 존재 하에서 추가적인 수소화 반응을 통하여 탈고리화 중간체(예를 들면, 1,4-펜탄디올)를 형성한 후에 다시 탈수/고리화 반응을 수행하여 2-메틸테트라하이드로퓨란(2-MTHF)를 생성할 수 있다(2차 수소화 반응). 2-메틸테트라하이드로퓨란(2-MTHF)은 바이오연료, 용매 등으로 적용 가능하며, 특히 기존에 널리 사용된 THF를 대체할 수 있다. 특히, THF에 비하여 낮은 수혼화성, 높은 안정성 및 낮은 휘발성을 나타내며, 약품 제조 프로세스 등에 적용될 수 있다.As an example, when levulinic acid is converted to gamma-valerolactone with an organic acid during the first hydrogenation reaction, the converted gamma-valerolactone is converted into the above-mentioned metal phosphide catalyst (new catalyst or regenerated catalyst) in the presence of After forming a decyclization intermediate (eg, 1,4-pentanediol) through an additional hydrogenation reaction, 2-methyltetrahydrofuran (2-MTHF) may be produced by performing a dehydration/cyclization reaction again. (secondary hydrogenation reaction). 2-methyltetrahydrofuran (2-MTHF) can be applied as a biofuel, solvent, etc., and can replace THF, which has been widely used in the past. In particular, it exhibits low water miscibility, high stability and low volatility compared to THF, and can be applied to pharmaceutical manufacturing processes and the like.
이와 관련하여, 수소화 반응 온도는, 예를 들면 약 180 내지 320 ℃, 구체적으로 약 200 내지 280 ℃, 보다 구체적으로 약 220 내지 250 ℃ 범위에서 조절될 수 있고, 또한 반응 압력(수소 압력 또는 수소 부분압)은, 예를 들면 약 30 내지 80 bar, 구체적으로 약 40 내지 70 bar, 보다 구체적으로 약 45 내지 60 bar의 범위에서 적절히 조절 가능하다. 수소화 온도 및 압력은 1차 수소화 생성물(예를 들면, GVL)의 전환율 및 2차 수소화 생성물(예를 들면, 2-MTHF)에 대한 선택도에 영향을 미치는 만큼, 전술한 범위 내에서 적절히 조절하는 것이 바람직할 수 있으나, 이는 예시적 취지로 이해될 수 있다. 이외에도, 반응 시간은, 예를 들면 약 2 내지 15 시간, 구체적으로 약 5 내지 12 시간, 보다 구체적으로 약 6 내지 10 시간의 범위에서 조절될 수 있다. In this regard, the hydrogenation reaction temperature may be adjusted in the range of, for example, about 180 to 320 ° C, specifically about 200 to 280 ° C, more specifically about 220 to 250 ° C, and also the reaction pressure (hydrogen pressure or hydrogen partial pressure). ) Is, for example, about 30 to 80 bar, specifically about 40 to 70 bar, more specifically about 45 to 60 bar can be appropriately adjusted in the range. The hydrogenation temperature and pressure are appropriately controlled within the above-mentioned range as they affect the conversion of the first hydrogenation product (eg, GVL) and the selectivity for the second hydrogenation product (eg, 2-MTHF). However, this can be understood for illustrative purposes. In addition, the reaction time may be adjusted in the range of, for example, about 2 to 15 hours, specifically about 5 to 12 hours, and more specifically about 6 to 10 hours.
예시적 구체예에 따르면, 반응물인 1차 수소화 생성물(예를 들면, GVL) : 촉매의 중량 비는 1 : 약 0.015 내지 0.04, 구체적으로 1 : 약 0.016 내지 0.033, 보다 구체적으로 1 : 약 0.02 내지 0.03의 범위일 수 있고, 특히 1 : 0.026의 수준일 수 있다. 이처럼, 반응물(즉, 1차 수소화 생성물) 대 촉매의 비는 전술한 바와 같이 반응물의 전환율 및 2차 수소화 반응의 타겟 화합물에 대한 선택도에 영향을 미칠 수 있는 만큼, 전술한 범위 내에서 조절하는 것이 유리하다. According to an exemplary embodiment, the weight ratio of the reactant primary hydrogenation product (eg, GVL): catalyst is 1: about 0.015 to 0.04, specifically 1: about 0.016 to 0.033, more specifically 1: about 0.02 to about 0.02. It may be in the range of 0.03, and in particular, it may be at the level of 1:0.026. As such, the ratio of the reactants (i.e., the primary hydrogenation product) to the catalyst can affect the conversion of the reactants and the selectivity for the target compound of the secondary hydrogenation reaction as described above, so it is controlled within the aforementioned range. it is advantageous
예시적 구체예에 따르면, 2차 수소화 반응은 1차 수소화 반응에서와 유사하게 회분식 모드뿐만 아니라 연속 모드로 수행될 수 있으며, 연속 모드에서는 예를 들면 고정층 반응기, 반회분식 반응기 등을 이용할 수 있다.According to an exemplary embodiment, the secondary hydrogenation reaction may be carried out in a continuous mode as well as a batch mode similar to the first hydrogenation reaction, and in the continuous mode, for example, a fixed bed reactor, a semi-batch reactor, etc. may be used.
전술한 반응이 완료되면, 수소화 반응 생성물로부터 타겟 화합물, 구체적으로 2-메틸테트라하이드로퓨란(2-MTHF)을 분리하여 회수할 수 있다. 이러한 분리 회수 과정은, 당업계에서 공지되어 있는 바, 예를 들면 증류, 추출, 분리막, 플래시 드럼 등을 이용하여 수행될 수 있다.When the above reaction is completed, the target compound, specifically 2-methyltetrahydrofuran (2-MTHF), can be separated and recovered from the hydrogenation reaction product. This separation and recovery process is known in the art and may be performed using, for example, distillation, extraction, separation membrane, flash drum, and the like.
예시적 구체예에 따르면, 2차 수소화 반응에서 반응물인 고리형 화합물(특히, 감마-발레로락톤)의 전환율은, 예를 들면 적어도 약 45%(구체적으로 적어도 약 65%, 보다 구체적으로 적어도 약 70%, 또한 약 80%까지)일 수 있고, 또한 추가적인 수소화 반응에 의하여 수득된 다른 고리형 화합물(특히, 2-MTHF)에 대한 선택도는, 예를 들면 적어도 약 40%(구체적으로 적어도 약 44%, 보다 구체적으로 적어도 약 48%, 또한 약 55%까지)일 수 있다.According to an exemplary embodiment, the conversion rate of the cyclic compound (particularly, gamma-valerolactone) as a reactant in the secondary hydrogenation reaction is, for example, at least about 45% (specifically at least about 65%, more specifically at least about 70%, and also up to about 80%), and the selectivity to other cyclic compounds (particularly 2-MTHF) obtained by further hydrogenation is, for example, at least about 40% (specifically at least about 44%, more specifically at least about 48%, but also up to about 55%).
본 구체예에서 주목할 점은 1차 수소화 반응뿐만 아니라, 2차 수소화 반응에서도 액상 매질(용매)의 부존재 하에서 전환 반응을 수행할 수 있다는 것이다. 이와 같이, 용매를 사용하지 않을 경우, 후속 단계에서 반응 생성물을 용매로부터 분리할 필요성을 제거할 수 있음은 전술한 바와 같다.A point to be noted in this embodiment is that the conversion reaction can be carried out in the absence of a liquid medium (solvent) not only in the first hydrogenation reaction, but also in the second hydrogenation reaction. As described above, when no solvent is used, the need to separate the reaction product from the solvent in a subsequent step can be eliminated.
한편, 택일적 구체예에 따르면, 레블린산의 전환이 낮을 경우, 반응물인 유기산(예를 들면, 레블린산) 또는 고리형 화합물(감마-발레로락톤)과 용매를 함께 사용하여 1차 및/또는 2차 수소화 반응을 수행할 수 있다. 이때, 사용 가능한 용매는 양성자성 극성 용매 및/또는 비양성자성 극성 용매로부터 선택되는 적어도 하나일 수 있으며, 수소화 반응에서 수반되는 탈수/고리화 반응에 영향을 미치지 않고, 수소 도너(donor)로 작용할 수 있는 종류로부터 선택될 수 있다. 일 예로서, 사용 가능한 용매는, 예를 들면 탄소수 1 내지 5의 지방족 알코올(구체적으로, 1차 및/또는 2차 알코올로서 메탄올, 에탄올, 이소프로판올, sec-부탄올 등), 다이옥산(구체적으로 1,4-다이옥산), 물 등으로부터 선택되는 적어도 하나일 수 있다. 또한, 반응물(1차 수소화 반응에서는 유기산, 그리고 2차 수소화 반응에서는 GVL과 같은 고리형 화합물) : 용매의 체적 비는, 예를 들면 1 : 약 4 내지 15, 구체적으로 1 : 약 6 내지 12, 보다 구체적으로 약 8 내지 10의 범위에서 조절될 수 있다.On the other hand, according to an alternative embodiment, when the conversion of levulinic acid is low, a reactant organic acid (for example, levulinic acid) or a cyclic compound (gamma-valerolactone) and a solvent are used together to form primary and / or a secondary hydrogenation reaction can be performed. At this time, the usable solvent may be at least one selected from protic polar solvents and/or aprotic polar solvents, and may act as a hydrogen donor without affecting the dehydration/cyclization reaction accompanying the hydrogenation reaction. It can be selected from possible types. As an example, usable solvents include, for example, aliphatic alcohols having 1 to 5 carbon atoms (specifically, methanol, ethanol, isopropanol, sec-butanol, etc. as primary and/or secondary alcohols), dioxane (specifically, 1, 4-dioxane), water, and the like. In addition, the volume ratio of reactant (an organic acid in the first hydrogenation reaction and a cyclic compound such as GVL in the second hydrogenation reaction): solvent is, for example, 1: about 4 to 15, specifically 1: about 6 to 12, More specifically, it may be adjusted in the range of about 8 to 10.
이하, 본 발명의 이해를 돕기 위해 바람직한 실시예를 제시하지만, 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐 본 발명이 이에 한정되는 것은 아니다. Hereinafter, preferred embodiments are presented to aid understanding of the present invention, but the following examples are provided to more easily understand the present invention, but the present invention is not limited thereto.
실시예Example
이하에서는 포스파이드계 촉매를 합성하고, 이를 이용하여 도 1에 도시된 반응 메커니즘에 따라 레블린산으로부터 감마-발레로락톤(GVL) 및 2-메틸테트라하이드로퓨란(2-MTHF)를 각각 합성하는 실험예를 기재한다.Hereinafter, a phosphide-based catalyst is synthesized and used to synthesize gamma-valerolactone (GVL) and 2-methyltetrahydrofuran (2-MTHF) from levulinic acid according to the reaction mechanism shown in FIG. 1, respectively. An experimental example is described.
실시예 및 비교예에서 사용된 물질은 하기와 같다.Materials used in Examples and Comparative Examples are as follows.
물질 및 시약Substances and Reagents
- 질산니켈 6수화물(Ni(NO3)2·6H2O) 및 질산코발트 6수화물(Co(NO3)2·6H2O) 각각은 Alfa Aesar사로부터 구입하였다.- Nickel nitrate hexahydrate (Ni(NO 3 ) 2 6H 2 O) and cobalt nitrate hexahydrate (Co(NO 3 ) 2 6H 2 O) were each purchased from Alfa Aesar.
- 글리세롤, 이소프로필 알코올 및 에탄올 각각은 Alfa Aesar, 대정화금, 대정화금사로부터 구입하였다.- Glycerol, isopropyl alcohol and ethanol were each purchased from Alfa Aesar, Daejeong Chemical and Gold, and Daejeong Chemical and Gold.
- 탈이온수는 실험실에서 자체적으로 제작하였다.- Deionized water was prepared in-house in the laboratory.
- 치아인산나트륨 수화물은 Alfa Aesar사로부터 구입하였다.- Sodium hypophosphate hydrate was purchased from Alfa Aesar.
- 레블린산은 Acros Organics사로부터 구입하였다.- Levulinic acid was purchased from Acros Organics.
- 모든 화학물질은 추가 정제과정을 거치지 않고 입수된 상태 그대로 사용하였다. - All chemicals were used as received without further purification.
분석 장치analysis device
샘플 분석은 하기의 장비를 이용하여 수행되었다.Sample analysis was performed using the following equipment.
- SEM 분석은 Helios 50 scanning electron microscope을 이용하여 수행하였다.- SEM analysis was performed using a Helios 50 scanning electron microscope.
- TEM 분석은 JEM-F200 microscope을 이용하여 수행하였다. - TEM analysis was performed using a JEM-F200 microscope.
- EDS(energy-dispersive X-ray spectroscopy) 분석은 JEOL-JEM 2100F Transmission Electron Microscope을 이용하여 수행하였다. - EDS (energy-dispersive X-ray spectroscopy) analysis was performed using a JEOL-JEM 2100F Transmission Electron Microscope.
- H2-TPD는 Microtrac MRB BELCAT II을 이용하여 수행하였다. 구체적으로, 전처리 단계에서, 헬륨 50 mL/min 흐름 하에 200 ℃에서 2 시간 동안, 그 다음 10% H2/Ar 50 mL/min 흐름 하에 수소를 흡착시켜 전처리하였다. 수소 탈착 단계에 있어서, 물리적으로 흡착된 수소는 헬륨 50 mL/min 흐름 하에 100 ℃에서 1 시간에 걸쳐 제거되었다. 나머지 수소는 헬륨 30 mL/min 흐름 하에 퍼니스(furnace)를 5 ℃/min의 승온 속도로 300 ℃까지 승온시켜 제거하였다.- H 2 -TPD was performed using a Microtrac MRB BELCAT II. Specifically, in the pretreatment step, pretreatment was performed by adsorbing hydrogen at 200° C. for 2 hours under a flow of 50 mL/min of helium, and then under a flow of 50 mL/min of 10% H 2 /Ar. In the hydrogen desorption step, the physically adsorbed hydrogen was removed over 1 hour at 100 °C under a 50 mL/min flow of helium. The remaining hydrogen was removed by raising the temperature to 300 °C in a furnace at a heating rate of 5 °C/min under a flow of helium of 30 mL/min.
- NH3-TPD는 Microtrac MRB BELCAT II을 이용하여 수행하였다. 구체적으로, 전처리 단계에서, 헬륨 50 mL 흐름 하에 200 ℃에서 2 시간 동안, 그 다음 5% NH3/He 50 mL/min 흐름 하에 암모니아를 흡착시켜 전처리하였다. 암모니아 탈착 단계에 있어서, 물리적으로 흡착된 암모니아는 헬륨 50 mL/min 흐름 하에 100 ℃에서 1 시간에 걸쳐 제거되었다. 나머지 암모니아는 헬륨 30 mL/min 흐름 하에 퍼니스 온도를 5 ℃/min 승온 속도로 800 ℃까지 승온시켜 제거하였다.- NH 3 -TPD was performed using a Microtrac MRB BELCAT II. Specifically, in the pretreatment step, pretreatment was performed by adsorbing ammonia under a flow of 50 mL of helium at 200° C. for 2 hours, followed by a flow of 5% NH 3 /He of 50 mL/min. In the ammonia desorption step, physically adsorbed ammonia was removed over 1 hour at 100° C. under a flow of 50 mL/min of helium. The remaining ammonia was removed by raising the furnace temperature to 800 °C at a heating rate of 5 °C/min under a flow of helium of 30 mL/min.
실시예 1Example 1
니켈-코발트 포스파이드 촉매의 합성Synthesis of nickel-cobalt phosphide catalysts
본 실시예에서는 2회에 걸친 수열합성 단계 및 포스파이드화 단계를 거쳐 니켈 및 코발트가 다양한 비로 함유된 니켈-코발트 포스파이드 촉매를 합성하였다.In this example, a nickel-cobalt phosphide catalyst containing nickel and cobalt in various ratios was synthesized through two hydrothermal synthesis steps and a phosphide step.
소정 비율의 니켈 전구체(Ni(NO3)2·6H2O) 및 코발트 전구체(Co(NO3)2·6H2O)를 글리세롤(glycerol) 및 이소프로필 알코올이 1 : 3.5의 체적 비로 혼합된 혼합 용매에 투입하여 투명하면서 분홍색을 나타내는 용액이 얻어질 때까지 용해시켰다. 이때, 전구체 용액 내 전체 금속(니켈 및 코발트)의 농도는 62.5mM이었다. A predetermined ratio of nickel precursor (Ni(NO 3 ) 2 6H 2 O) and cobalt precursor (Co(NO 3 ) 2 6H 2 O) was mixed with glycerol and isopropyl alcohol at a volume ratio of 1:3.5. It was added to the mixed solvent and dissolved until a transparent and pink solution was obtained. At this time, the concentration of all metals (nickel and cobalt) in the precursor solution was 62.5 mM.
얻어진 니켈-코발트 전구체 용액을 테플론-라이닝된(Teflon-lined) 반응기(200 mL)에 투입하여 180 ℃에서 6시간 동안 1차 수열 합성 반응(수열 처리)을 수행하여 냉각시켰다. 그 다음, 원심 분리를 통하여 침전물, 즉 Ni-Co 글리세레이트(glycerate)를 수집하였고, 후속적으로 에탄올 및 탈이온수로 수회에 걸쳐 세척한 후, 60 ℃로 유지되는 오븐 내에서 6시간 동안 건조시켰다.The obtained nickel-cobalt precursor solution was put into a Teflon-lined reactor (200 mL), and a first hydrothermal synthesis reaction (hydrothermal treatment) was performed at 180° C. for 6 hours, followed by cooling. Then, the precipitate, i.e., Ni-Co glycerate, was collected through centrifugation, subsequently washed several times with ethanol and deionized water, and then dried in an oven maintained at 60° C. for 6 hours. .
이후, 니켈-코발트 전구체의 침전물 4 g을 탈이온수 80 mL에 첨가하여 현탁액을 제조하였고, 150 ℃에서 3시간 동안 2차 수열합성 반응(수열 처리)을 수행하여 Ni-Co 수산화물의 침전물을 형성하였다. 후속적으로, 1차 수열합성 반응 생성물의 분리 정제와 유사하게 침전물을 탈이온수로 세척하고 건조시켜 파우더를 수득하였다.Thereafter, 4 g of the precipitate of the nickel-cobalt precursor was added to 80 mL of deionized water to prepare a suspension, and a secondary hydrothermal synthesis reaction (hydrothermal treatment) was performed at 150 ° C. for 3 hours to form a precipitate of Ni—Co hydroxide. . Subsequently, similarly to the separation and purification of the primary hydrothermal synthesis reaction product, the precipitate was washed with deionized water and dried to obtain a powder.
앞선 단계에서 수득된 Ni-Co 수산화물의 파우더 1 g 및 치아인산나트륨 수화물(NaH2PO2·H2O) 20 g을 고운 가루 형태로 분쇄하고, 튜브형 전기로 내에서 각각 다른 위치의 도가니에 투입하였다. 이때, 치아인산나트륨 수화물이 투입된 도가니가 상류에 위치하도록 하였으며, 전기로 내에 아르곤 가스를 흘려주면서 350 ℃에서 3시간 동안 1 ℃/분의 승온 속도로 포스파이드화 반응을 수행하였으며, 그 결과 니켈-코발트 포스파이드 파우더를 수득하였다. 이와 같이 수득된 파우더를 NixCoyP로 표시하였다(x 및 y는 Ni:Co의 몰 분율을 나타냄).1 g of the powder of Ni-Co hydroxide obtained in the previous step and 20 g of sodium hypohydride hydrate (NaH 2 PO 2 H 2 O) were pulverized into fine powder and put into crucibles at different positions in the tubular electric furnace. did At this time, the crucible into which sodium hypophosphate hydrate was introduced was positioned upstream, and phosphide reaction was performed at 350 ° C. for 3 hours at a heating rate of 1 ° C./min while flowing argon gas into the electric furnace. As a result, nickel- Cobalt phosphide powder was obtained. The powder thus obtained was expressed as Ni x Co y P (x and y represent the mole fraction of Ni:Co).
비교예 1Comparative Example 1
코발트 포스파이드(CoP) 촉매의 합성Synthesis of cobalt phosphide (CoP) catalysts
코발트 전구체(Co(NO3)2·6H2O)를 글리세롤(glycerol) 및 이소프로필 알코올이 1 : 4의 체적비로 혼합한 혼합 용매에 투입하여 투명하면서 분홍색을 나타내는 용액이 얻어질 때까지 용해시켰다. 이때, 전구체 용액 내 코발트의 농도는 62.5mM이었다.A cobalt precursor (Co(NO 3 ) 2 6H 2 O) was added to a mixed solvent in which glycerol and isopropyl alcohol were mixed in a volume ratio of 1: 4, and dissolved until a transparent and pink solution was obtained. . At this time, the concentration of cobalt in the precursor solution was 62.5mM.
얻어진 코발트 전구체 용액을 테플론-라이닝된(Teflon-lined) 반응기(200 mL)에 투입하여 180 ℃에서 6시간 동안 수열 합성 반응(수열 처리)을 수행하여 냉각시켰다. 그 다음, 원심 분리를 통하여 침전물, 즉 Co 글리세레이트(glycerate)를 수집하였고, 후속적으로 에탄올 및 탈이온수로 수회에 걸쳐 세척한 후, 60 ℃로 유지되는 오븐 내에서 6시간 동안 건조시켰다.The obtained cobalt precursor solution was put into a Teflon-lined reactor (200 mL), and a hydrothermal synthesis reaction (hydrothermal treatment) was performed at 180° C. for 6 hours, followed by cooling. Then, the precipitate, that is, Co glycerate, was collected through centrifugation, subsequently washed several times with ethanol and deionized water, and then dried in an oven maintained at 60° C. for 6 hours.
이후, 코발트 전구체의 침전물 4 g을 탈이온수 80 mL에 첨가하여 현탁액을 제조하였고, 150 ℃에서 3시간 동안 2차 수열합성 반응(수열 처리)을 수행하여 Co 수산화물의 침전물을 형성하였다. 후속적으로, 1차 수열합성 반응 생성물의 분리 정제와 유사하게 침전물을 탈이온수로 세척하고 건조시켜 파우더를 수득하였다.Thereafter, 4 g of the precipitate of the cobalt precursor was added to 80 mL of deionized water to prepare a suspension, and a secondary hydrothermal synthesis reaction (hydrothermal treatment) was performed at 150 ° C. for 3 hours to form a precipitate of Co hydroxide. Subsequently, similarly to the separation and purification of the primary hydrothermal synthesis reaction product, the precipitate was washed with deionized water and dried to obtain a powder.
앞선 단계에서 수득된 Co 수산화물의 파우더 1 g 및 치아인산나트륨 수화물(NaH2PO2ㅇH2O) 20 g을 고운 가루 형태로 분쇄하고, 튜브형 전기로 내에서 각각 다른 위치의 도가니에 투입하였다. 이때, 치아인산나트륨 수화물이 투입된 도가니가 상류에 위치하도록 하였으며, 전기로 내에 아르곤 가스를 흘려주면서 350 ℃에서 3시간 동안 1 ℃/분의 승온 속도로 포스파이드화 반응을 수행하였으며, 그 결과 코발트 포스파이드 파우더(CoP)를 수득하였다.1 g of powder of Co hydroxide obtained in the previous step and 20 g of sodium hypothia phosphate hydrate (NaH 2 PO 2 ㅇH 2 O) were pulverized into fine powder and placed in crucibles at different positions in a tubular electric furnace. At this time, the crucible into which sodium hypophosphate hydrate was introduced was positioned upstream, and phosphidation reaction was performed at 350 ° C. for 3 hours at a heating rate of 1 ° C./min while flowing argon gas into the electric furnace. As a result, cobalt phosphide Pied powder (CoP) was obtained.
비교예 2Comparative Example 2
니켈 포스파이드(NiP) 촉매의 합성Synthesis of nickel phosphide (NiP) catalysts
코발트 전구체(Co(NO3)2·6H2O) 대신에 니켈 전구체(Ni(NO3)2·6H2O)를 사용한 것을 제외하고는 비교예 1에서와 동일한 절차에 따라 니켈 포스파이드 파우더(NiP)를 수득하였다. Nickel phosphide powder ( _ _ NiP) was obtained.
비교예 3Comparative Example 3
코발트 포스파이드(CoP) 및 니켈 포스파이드(NiP)의 혼합 촉매 제조Mixed catalyst preparation of cobalt phosphide (CoP) and nickel phosphide (NiP)
1:1의 중량 비로 비교예 1 및 2에서 각각 합성된 CoP 및 NiP를 함께 혼합한 후에 그라인딩하여 균일한 물리적 혼합물을 제조하였다.CoP and NiP synthesized in Comparative Examples 1 and 2, respectively, were mixed together at a weight ratio of 1:1 and then ground to prepare a uniform physical mixture.
실시예 2Example 2
감마-발레로락톤(GVL)의 합성Synthesis of gamma-valerolactone (GVL)
레블린산(LA)을 무용매(solvent-free) 조건 하에서 수소화 반응시켜 감마-발레로락톤(GVL)을 합성하기 위하여 100mL 스테인리스 스틸(SUS 316L) 재질의 고압 반응기를 사용하였다. In order to synthesize gamma-valerolactone (GVL) by hydrogenating levulinic acid (LA) under solvent-free conditions, a 100 mL stainless steel (SUS 316L) high-pressure reactor was used.
30 mL의 LA 및 0.8 g의 촉매를 반응기에 충진하고, 반응기 상단부에 교반기를 장착하였다. 이후, 반응기를 밀봉하고, 아르곤 가스로 3회에 걸쳐 퍼징하여 기상 불순물의 흔적을 제거한 후, 30 bar의 수소 가스로 가압하였다. 목표 압력까지 도달하자마자 반응기를 180 ℃로 4 시간에 걸쳐 가열하였고, 교반을 시작하였다(교반 속도: 800 rpm). 이때, 반응의 시작점은 목표 온도로 도달한 시간으로 기록하였다. 수소화 반응이 완료되면, 교반을 중단하고 반응기를 상온으로 냉각한 다음, 필터링을 거쳐 혼합물 형태의 반응 생성물과 촉매를 분리하였다.30 mL of LA and 0.8 g of catalyst were charged into the reactor, and an agitator was attached to the top of the reactor. Thereafter, the reactor was sealed, purged with argon gas three times to remove traces of gaseous impurities, and then pressurized with hydrogen gas at 30 bar. Upon reaching the target pressure, the reactor was heated to 180° C. over 4 hours, and stirring was started (stirring speed: 800 rpm). At this time, the starting point of the reaction was recorded as the time when the target temperature was reached. When the hydrogenation reaction was completed, stirring was stopped, the reactor was cooled to room temperature, and the reaction product in the form of a mixture and the catalyst were separated through filtering.
실시예 3Example 3
2-메틸테트라하이드로퓨란(2-MTHF)의 합성Synthesis of 2-methyltetrahydrofuran (2-MTHF)
레블린산(LA)을 무용매(solvent-free) 조건 하에서 수소화 반응시켜 2-메틸테트라하이드로퓨란(2-MTHF)을 합성하기 위하여 100mL 스테인리스 스틸(SUS 316L) 재질의 고압 반응기를 사용하였으며, 원-폿(one-pot)의 2 단계 수소화 반응을 수행하였다. In order to synthesize 2-methyltetrahydrofuran (2-MTHF) by hydrogenating levulinic acid (LA) under solvent-free conditions, a 100mL stainless steel (SUS 316L) high-pressure reactor was used. - One-pot two-step hydrogenation reaction was performed.
30 mL의 LA 및 0.8g의 촉매를 반응기에 충진하고, 반응기 상단부에 교반기를 장착하여 실시예 2에서와 같이 감마-발레로락톤(GVL)을 합성하였다. 구체적으로, 반응기를 밀봉하고, 아르곤 가스로 3회에 걸쳐 퍼징하여 기상 불순물의 흔적을 제거한 후, 30 bar의 수소 가스로 가압하였다. 목표 압력까지 도달하자마자 반응기를 180 ℃로 4 시간에 걸쳐 가열하였고, 교반을 시작하였다(교반 속도: 800 rpm). 이때, 반응의 시작점은 목표 온도로 도달한 시간으로 기록하였다. 수산화 반응이 완료되면, 교반을 중단하고 반응기를 상온으로 냉각한 다음, 필터링을 거쳐 혼합물 형태의 반응 생성물과 촉매를 분리하였다. 분리된 촉매는 에탄올과 물의 혼합액으로 세척하였고, 60 ℃에서 6시간 동안 건조시킨 후에 2차 수소화 반응에 재사용하였다. 1차 수소화 단계에서는, 100%의 LA 전환율 및 100%의 GVL 선택도를 달성하였다.30 mL of LA and 0.8 g of catalyst were charged into a reactor, and a stirrer was installed at the top of the reactor to synthesize gamma-valerolactone (GVL) as in Example 2. Specifically, the reactor was sealed, purged with argon gas three times to remove traces of gaseous impurities, and then pressurized with hydrogen gas at 30 bar. Upon reaching the target pressure, the reactor was heated to 180° C. over 4 hours, and stirring was started (stirring speed: 800 rpm). At this time, the starting point of the reaction was recorded as the time when the target temperature was reached. When the hydroxylation reaction was completed, stirring was stopped, the reactor was cooled to room temperature, and the reaction product in the form of a mixture and the catalyst were separated through filtering. The separated catalyst was washed with a mixture of ethanol and water, dried at 60 °C for 6 hours, and then reused for the secondary hydrogenation reaction. In the first hydrogenation step, LA conversion of 100% and GVL selectivity of 100% were achieved.
2차 수소화 단계는 30 mL의 GVL 및 0.8 g의 재사용 촉매를 상단부에 교반기가 장착된 반응기에 충진하고 밀봉한 다음, 아르곤 가스로 3회에 걸쳐 퍼징하여 기상 불순물의 흔적을 제거한 후, 50 bar의 수소 가스로 가압하였다. 목표 압력까지 도달하자마자 반응기를 230 ℃로 12 시간에 걸쳐 가열하였고, 교반을 시작하였다(교반 속도: 800 rpm). 이때, 반응의 시작점은 목표 온도로 도달한 시간으로 기록하였다. 수소화 반응이 완료되면, 교반을 중단하고 반응기를 상온으로 냉각한 다음, 반응 과정에서 생성된 가스를 배출한 다음, 필터링을 거쳐 혼합물 형태의 반응 생성물과 촉매를 분리하였다.In the second hydrogenation step, 30 mL of GVL and 0.8 g of reusable catalyst were filled and sealed in a reactor equipped with an agitator at the top, and then purged with argon gas three times to remove traces of gaseous impurities, followed by 50 bar Pressurized with hydrogen gas. Upon reaching the target pressure, the reactor was heated to 230° C. over 12 hours, and stirring was started (stirring speed: 800 rpm). At this time, the starting point of the reaction was recorded as the time when the target temperature was reached. When the hydrogenation reaction was completed, stirring was stopped, the reactor was cooled to room temperature, the gas generated in the reaction process was discharged, and then the reaction product in the form of a mixture and the catalyst were separated through filtering.
비교예 4 내지 6Comparative Examples 4 to 6
비교예 1 내지 3 각각에서 제조된 금속 포스파이드 촉매를 사용하고, 실시예 2 및 3 각각의 절차에 따라 GVL 및 2-MTHF를 제조하였다.Using the metal phosphide catalyst prepared in Comparative Examples 1 to 3, respectively, GVL and 2-MTHF were prepared according to the procedures of Examples 2 and 3, respectively.
생성물 분석product analysis
실시예 2 및 3, 그리고 비교예 4 내지 6 각각에 있어서, 생성물의 순도는 1H, 13C 핵 자기 공명(NMR) 스펙트로스코피로 평가하였는 바, Bruker Advanced II spectrometer를 사용하여 400 MHz의 속도 및 13 kHz의 회전 속도로 작동시켰다. In each of Examples 2 and 3 and Comparative Examples 4 to 6, the purity of the product was evaluated by 1H, 13C nuclear magnetic resonance (NMR) spectroscopy, using a Bruker Advanced II spectrometer at a rate of 400 MHz and 13 kHz operated at a rotational speed of
생성물의 량은 고성능 액상 크로마토그래피(High-Performance Liquid Chromatography; HPLC)로 측정하였으며, Agilent Hi-Plax Ca (7.7 x 300 mm, 8 μm)와 2410 refractive index detector가 장착된 Shimadzu UHPLC Nexera, SCL-40를 사용하였다.The amount of product was measured by High-Performance Liquid Chromatography (HPLC), Shimadzu UHPLC Nexera, SCL-40 equipped with Agilent Hi-Plax Ca (7.7 x 300 mm, 8 μm) and 2410 refractive index detector. was used.
결과 및 토의Results and discussion
가. 촉매의 특성화go. Catalyst characterization
- SEM 분석- SEM analysis
금속 포스파이드 촉매의 제조 시, (a, b) Ni-Co 글리세레이트 전구체(제1 수열합성 반응으로부터 생성됨), (c, d) Ni-Co 포스파이드 전구체(제2 수열합성 반응으로부터 생성됨), (e-g) Ni2Co1P, (h) CoP 전구체, (i) CoP, 및 (j) NiP 각각의 SEM 사진을 도 2에 나타내었다.In preparing the metal phosphide catalyst, (a, b) Ni—Co glycerate precursor (resulting from the first hydrothermal reaction), (c, d) Ni—Co phosphide precursor (resulting from the second hydrothermal reaction), SEM images of (eg) Ni 2 Co 1 P, (h) CoP precursor, (i) CoP, and (j) NiP are shown in FIG. 2 .
도 2a 및 도 2b에 따르면, 제1 수열합성 반응(또는 제1 수열처리)으로부터 형성된 침전물은 구(spherical) 형상을 갖고 있다. 또한, 도 2c 및 도 2d를 참조하면, 제2 수열합성 반응(또는 제2 수열처리) 후에는 제1 수열합성 반응으로부터 생성된 침전물이 상호 연결된 나노시트(nanosheet)로 구성된 구 형상을 나타내는 형태적 변화를 거치게 됨을 알 수 있다. 이와 같은 침전물의 형태 변화는 제1 수열합성 반응의 침전물이 가수분해되어 나노시트를 형성하는 바, 구체적으로 Ni2+ 및 Co2+ 이온은 제2 수열합성 반응에서 물의 히드록시기와 반응하여 표면에 나노시트를 합성하는 것으로 볼 수 있다. 이때, 코발트의 첨가는 전구체의 형태 유지에 중요한 기능을 담당한다. 2a and 2b, the precipitate formed from the first hydrothermal synthesis reaction (or first hydrothermal treatment) has a spherical shape. In addition, referring to FIGS. 2C and 2D, after the second hydrothermal synthesis reaction (or the second hydrothermal treatment), the precipitate generated from the first hydrothermal synthesis reaction has a spherical shape composed of interconnected nanosheets. You can see that it is going through a change. The change in the shape of the precipitate is such that the precipitate in the first hydrothermal synthesis reaction is hydrolyzed to form a nanosheet. Specifically, Ni 2+ and Co 2+ ions react with hydroxyl groups of water in the second hydrothermal synthesis reaction to form nanosheets on the surface. It can be seen as synthesizing sheets. At this time, the addition of cobalt plays an important role in maintaining the shape of the precursor.
- TEM 분석- TEM analysis
니켈-코발트 포스파이드 촉매에 대하여 TEM 분석을 수행하였으며, 상이한 배율의 TEM 사진을 도 3a 내지 도 3c에 나타내었다. 또한, 고해상도 TEM(HRTEM) 사진을 도 3d에 나타내었고, HAADF-STEM 사진을 도 3e에 나타내었다.TEM analysis was performed on the nickel-cobalt phosphide catalyst, and TEM images at different magnifications are shown in FIGS. 3a to 3c. In addition, the high-resolution TEM (HRTEM) picture is shown in FIG. 3d, and the HAADF-STEM picture is shown in FIG. 3e.
상기 도면을 참조하면, 니켈-코발트 포스파이드 촉매는 상호 연결된 나노시트로 이루어지고, 구형의 요크-셀 구조를 갖고 있음을 확인하였다. 이와 관련하여, 상술한 촉매 내 요크-셀 구조의 경우, 일종의 나노-반응기(nano-reactor)로 기능할수 있는데, 이때 요크는 반응이 일어날 수 있는 활성 부위, 그리고 셀 층과 요크 사이의 빈 공간은 물질 전달 효율을 증가시키는 경로로 기능한다. 또한, 중공의 셀 (hollow shell)은 활성 부위를 캡슐화하여 촉매의 비활성화를 방지할 수 있다.Referring to the figure, it was confirmed that the nickel-cobalt phosphide catalyst was composed of interconnected nanosheets and had a spherical yoke-cell structure. In this regard, in the case of the yoke-cell structure in the above-described catalyst, it can function as a kind of nano-reactor, wherein the yoke is an active site where a reaction can occur, and the empty space between the cell layer and the yoke is It functions as a pathway to increase mass transfer efficiency. In addition, a hollow shell can encapsulate the active site to prevent deactivation of the catalyst.
또한, Ni2Co1P 촉매의 HRTEM 사진을 도 4에 나타내었다.In addition, the HRTEM picture of the Ni 2 Co 1 P catalyst is shown in FIG. 4 .
상기 도면을 참조하면, Ni2Co1P 촉매의 경우에는 0.24 nm 및 0.26 nm의 격자 프린지가 관찰되었는 바, 각각 니켈-코발트 포스파이드의 (111) 면 및 (201) 면에 대응된다. 이와 관련하여, SAED 패턴 내의 여러 불연속적인 밝은 점들은 이러한 결과를 뒷받침하는데, 각각 니켈-코발트 포스파이드의 (111) 면, (201) 면, 및 (210) 면으로 인덱스될 수 있다.Referring to the figure, in the case of the Ni 2 Co 1 P catalyst, lattice fringes of 0.24 nm and 0.26 nm were observed, corresponding to the (111) and (201) planes of nickel-cobalt phosphide, respectively. In this regard, several discrete bright spots in the SAED pattern support this result, which can be indexed to the (111), (201), and (210) planes of nickel-cobalt phosphide, respectively.
한편, 제2 수열합성 반응 온도를 150 ℃ 및 100 ℃로 설정하여 제조된 니켈-코발트 포스파이드 촉매(Ni2Co1P-150℃ 및 Ni2Co1P-100℃), 그리고 상용 촉매인 Ni-Cu/Al2O3 각각의 구조를 나타내는 TEM 사진을 도 5에 나타내었다.On the other hand, nickel-cobalt phosphide catalysts prepared by setting the second hydrothermal synthesis reaction temperature to 150 ° C and 100 ° C (Ni 2 Co 1 P - 150 ° C and Ni 2 Co 1 P - 100 ° C), and Ni 2 Co 1 P - 100 ° C, a commercial catalyst -Cu/Al 2 O 3 A TEM image showing each structure is shown in FIG. 5 .
상기 도면을 참조하면, Ni2Co1P-150℃의 경우, 전술한 바와 같이 명확한 요크-셀 구조를 나타내었으나, Ni2Co1P-100℃는 상호 연결된 나노시트로 구성된 견고한 구 형태의 입자를 갖고 있다. 또한, Ni-Cu/Al2O3 촉매는 알루미나 지지체의 상측에 응집된(agglomerated) 입자가 위치하고 있음을 확인하였다.Referring to the figure, in the case of Ni 2 Co 1 P-150 ° C, as described above, a clear yoke-cell structure was exhibited, but in Ni 2 Co 1 P-100 ° C, solid spherical particles composed of interconnected nanosheets has In addition, it was confirmed that the Ni-Cu/Al 2 O 3 catalyst had agglomerated particles located on the upper side of the alumina support.
- EDS(energy-dispersive X-ray spectroscopy) 분석- EDS (energy-dispersive X-ray spectroscopy) analysis
니켈-코발트 포스파이드 촉매에 대하여 EDS 분석을 수행하였으며, 그 결과를 도 3f에 나타내었다. 상기 도면으로부터, 니켈-코발트 포스파이드 촉매 내에 코발트, 니켈 및 인 원자가 함유되어 있음을 확인할 수 있었다.EDS analysis was performed on the nickel-cobalt phosphide catalyst, and the results are shown in FIG. 3f. From the figure, it was confirmed that cobalt, nickel, and phosphorus atoms were contained in the nickel-cobalt phosphide catalyst.
- 산점 및 수소 활성능 분석- Analysis of acid point and hydrogen activity
레블린산의 수소화 반응에 의하여 고리형 화합물을 합성함에 있어서 촉매의 산 특성 및 수소 활성능이 중요한 요인으로 작용하는 점을 고려하여, 다양한 전이금속 포스파이드에 대한 H2-TPD 및 NH3-TPD 분석을 수행하였다. 그 결과를 도 6a 및 도 6b에 각각 나타내었다.Considering that the acid properties and hydrogen activity of catalysts act as important factors in synthesizing cyclic compounds by hydrogenation of levulinic acid, H 2 -TPD and NH 3 -TPD for various transition metal phosphides analysis was performed. The results are shown in Figures 6a and 6b, respectively.
도 6a로부터 다양한 금속 포스파이드의 수소 활성능 및 수소 흡착능을 대비할 수 있는 바,, 단일 금속 코발트 포스파이드(CoP)가 가장 약한 수소 흡착 및 활성 능을 나타내었으며, CoP < Ni1Co3P < NiP < Ni1Co2P < Ni1Co1P < Ni2Co1P < Ni3Co1P와 같은 결과를 얻었다. 일반적으로 니켈-코발트 포스파이드는 단일 금속 코발트 포스파이드 및 니켈 포스파이드에 비하여 개선된 수소 활성능을 나타내고, 또한 포스파이드에 니켈을 첨가하면 촉매의 활성 능력이 향상되는 등, 니켈이 수소 활성능에 있어서 주된 활성 성분으로 작용할 수 있음을 확인하였다.As can be seen from FIG. 6a, the hydrogen activity and hydrogen adsorption abilities of various metal phosphides can be compared, and single metal cobalt phosphide (CoP) showed the weakest hydrogen adsorption and activity, CoP < Ni 1 Co 3 P < NiP < Ni 1 Co 2 P < Ni 1 Co 1 P < Ni 2 Co 1 P < Ni 3 Co 1 P In general, nickel-cobalt phosphide exhibits improved hydrogen activating ability compared to single metal cobalt phosphide and nickel phosphide, and nickel is added to phosphide to improve the activating ability of catalysts. It was confirmed that it can act as the main active ingredient in
또한, 도 6b로부터 촉매의 산성도를 대비할 수 있는 바, 니켈과 코발트 간의 몰 비를 달리하여 산성 세기, 그리고 약산성 부위, 중간 산성 부위 및 강산성 부위 각각의 분포를 조절할 수 있었다. 분석 결과, 단일 금속 코발트 포스파이드의 경우에는 약산 부위 및 강산 부위를 모두 갖고 있는 한편, 니켈 포스파이드의 경우에는 는 주로 약산 부위로 구성되어 있음을 확인하였다. 또한, 니켈-코발트 포스파이드(Ni2Co1P)는 약산 부위, 중간 산성 부위 및 강산 부위 모두를 함유하고 있음을 확인하였다. 산량(acidic amount)의 대비 결과, CoP < Ni1Co3P < Ni1Co2P < Ni1Co1P < Ni2Co1P < Ni3Co1P < NiP와 같이 정리할 수 있다. 또한, 환원된 형태의 금속 성분은 수소화 반응에서 금속 활성점으로 기능하는데, 환원되지 않은 금속 성분(Ni2+ 및 Co2+)은 포스파이드 촉매의 산성 부위를 제공한다. In addition, as can be compared with the acidity of the catalyst from FIG. 6B, the acidity strength and the distribution of each of the weakly acidic, intermediately acidic and strong acidic regions could be adjusted by varying the molar ratio between nickel and cobalt. As a result of the analysis, it was confirmed that the single metal cobalt phosphide had both a weak acid site and a strong acid site, while nickel phosphide was mainly composed of a weak acid site. In addition, it was confirmed that nickel-cobalt phosphide (Ni 2 Co 1 P) contains all of a weak acid site, an intermediate acid site, and a strong acid site. As a result of the acid amount comparison, CoP < Ni 1 Co 3 P < Ni 1 Co 2 P < Ni 1 Co 1 P < Ni 2 Co 1 P < Ni 3 Co 1 P < NiP. In addition, the metal component in the reduced form functions as a metal active site in the hydrogenation reaction, and the non-reduced metal component (Ni 2+ and Co 2+ ) provides an acidic site of the phosphide catalyst.
- XPS 스펙트럼 분석- XPS spectrum analysis
NiP, Ni2Co1P 및 CoP의 XPS 스펙트럼을 도 7에 나타내었다. 이때, 도 7a는 NiP 및 Ni2Co1P 각각에 대한 Ni 2p 스펙트럼, 도 7b는 Ni2Co1P 및 CoP 각각에 대한 Co 2p 스펙트럼, 그리고 도 7c는 NiP, Ni2Co1P 및 CoP 각각에 대한 P 2p 스펙트럼이다. XPS spectra of NiP, Ni 2 Co 1 P and CoP are shown in FIG. 7 . At this time, FIG. 7a is the Ni 2p spectrum for NiP and Ni 2 Co 1 P, respectively, FIG. 7b is the Co 2p spectrum for Ni 2 Co 1 P and CoP, respectively, and FIG. 7c is the NiP, Ni 2 Co 1 P and CoP, respectively. is the P 2p spectrum for
도 7a를 참조하면, 니켈의 2p 스펙트럼에서 857.7 eV 및 874.4 eV에 위치하는 피크들은 각각 Ni2+의 Ni 2p3/2 및 2p1/2에 해당한다. 853.6 eV 및 871.0 eV에 위치한 피크들은 각각 Ni-P 내 환원된 Niδ+의 Ni 2p3/2 및 Ni 2p1/2 에 대응한다. Referring to FIG. 7A , peaks located at 857.7 eV and 874.4 eV in the 2p spectrum of nickel correspond to Ni 2p 3/2 and 2p 1/2 of Ni 2+ , respectively. Peaks located at 853.6 eV and 871.0 eV correspond to Ni 2p 3/2 and Ni 2p 1/2 of reduced Ni δ+ in Ni—P, respectively.
도 7b에 있어서, 782.5 eV 및 798.7 eV에 위치한 피크들은 각각 Co2+ 또는 산화된 Co 성분의 Co 2p3/2 및 Co 2p1/2에 해당된다. 또한, 779.3 eV 및 793.7 eV에 위치한 피크들은 각각 Co 금속(Coδ2+)으로부터 부분적으로 양전하를 갖는 Co-P 내의 Co 성분의 Co 2p3/2 및 Co 2p1/2에 대응한다. In FIG. 7B, peaks located at 782.5 eV and 798.7 eV correspond to Co 2p 3/2 and Co 2p 1/2 of Co 2+ or oxidized Co components, respectively. In addition, the peaks located at 779.3 eV and 793.7 eV correspond to Co 2p 3/2 and Co 2p 1/2 of the Co component in Co—P that has a partial positive charge from Co metal (Co δ2+ ), respectively.
또한, 도 7c로부터 인(P)의 2p 스펙트럼을 확인하였는 바, 단일 금속 포스파이드 및 이중 금속 포스파이드의 표면에 2개의 성분이 존재하였다. 대략 134 eV에 위치한 피크는 포스파이드의 산화로부터 기인하는, 환원되지 않은 인산염(phosphate) 성분 (PO4 3-)에 대응하는 한편, 대략 129 eV의 더 낮은 결합 에너지를 갖는 피크는 부분적으로 환원된 인 성분 (Pδ-) 또는 포스파이드 상(phase)에 해당된다. 이때, 이중 금속 Ni2Co1P는 단일금속 NiP 및 CoP의 Ni 및 Co 성분과 유사한 특성을 갖고 있었는데, 피크의 작은 시프트는 이중 금속 Ni2Co1P 내 니켈과 코발트 간의 전자 상호작용에 의한 것으로 볼 수 있다. In addition, as confirmed by the 2p spectrum of phosphorus (P) from FIG. 7c, two components were present on the surface of the single metal phosphide and the double metal phosphide. The peak located at approximately 134 eV corresponds to the unreduced phosphate component (PO 4 3- ) resulting from the oxidation of phosphide, while the peak with lower binding energy of approximately 129 eV is partially reduced. It corresponds to the phosphorus component (P δ- ) or phosphide phase. At this time, the double metal Ni 2 Co 1 P had similar characteristics to the Ni and Co components of single metal NiP and CoP, and the small shift in the peak was attributed to the electronic interaction between nickel and cobalt in the double metal Ni 2 Co 1 P. can see.
상술한 XPS 결과로부터, 촉매 내에서 Mδ+ (M=Ni, Co) 및 Pδ- 성분의 공존은 합성된 금속 포스파이드 내에서 니켈, 코발트 및 인 사이에 공유 결합이 형성되었고, 니켈-코발트 포스파이드가 성공적으로 합성되었음을 알 수 있다.From the above XPS results, the coexistence of M δ+ (M=Ni, Co) and P δ- components in the catalyst led to the formation of covalent bonds between nickel, cobalt and phosphorus in the synthesized metal phosphide, and nickel-cobalt It can be seen that the phosphide was successfully synthesized.
- XRD 분석- XRD analysis
다양한 Ni 및/또는 Co의 포스파이드(NiP, CoP, NiCoP, Ni5P4, NiP2, Ni3Co1P, Ni2Co1P, Ni1Co1P, Ni1Co2P, Ni1Co3P 및 CoP) 각각에 대한 XRD 패턴을 도 8에 나타내었다.Phosphides of various Ni and/or Co (NiP, CoP, NiCoP, Ni 5 P 4 , NiP 2 , Ni 3 Co 1 P, Ni 2 Co 1 P, Ni 1 Co 1 P, Ni 1 Co 2 P, Ni 1 XRD patterns for each of Co 3 P and CoP) are shown in FIG. 8 .
상기 도면을 참조하면, XRD 피크의 세기 및 너비를 통하여, 각각의 촉매들이 갖는 결정화도(crystallinity)가 코발트의 추가에 의하여 크게 영향을 받음을 확인할 수 있다. 코발트계 이중 금속 포스파이드(CoP, Ni1Co3P 및 Ni1Co2P)는 비정질(amorphous)을 나타내는 반면, 니켈계 이중 금속 포스파이드(NiP, Ni3Co1P 및 Ni2Co1P)는 잘 정돈된(well-defined) 피크들을 나타내었다, 이는 결정질 구조가 강화되었음을 지시한다.Referring to the figure, it can be confirmed that the crystallinity of each catalyst is greatly affected by the addition of cobalt through the intensity and width of the XRD peaks. Cobalt-based double metal phosphides (CoP, Ni 1 Co 3 P and Ni 1 Co 2 P) are amorphous, whereas nickel-based double metal phosphides (NiP, Ni 3 Co 1 P and Ni 2 Co 1 P) are amorphous. ) showed well-defined peaks, indicating that the crystalline structure was enhanced.
또한, 이중 금속 포스파이드 모두 니켈-코발트 포스파이드의 (111) 면 및 (300) 면에 대응하는 피크를 나타내었는 바, 이로부터 니켈 코발트 포스파이드가 성공적으로 합성되었음을 확인하였다. 특히, 니켈 : 코발트의 몰 비가 증가함에 따라 니켈-코발트 포스파이드의 피크 세기가 더욱 증가함을 확인하였다. 이외에도, Ni2Co1P 및 Ni3Co1P의 XRD 패턴에서 니켈-코발트 포스파이드의 (201) 면 및 (210) 면과 관련된 44.9ㅀ 및 48.1ㅀ에 위치한 추가적인 피크가 관찰되었는 바, 후술하는 수소화 반응 테스트를 통하여 높은 결정성을 갖는 포스파이드가 촉매의 활성에 바람직한 영향을 미치는 점은 주목할 만하다.In addition, all of the double metal phosphides exhibited peaks corresponding to the (111) plane and the (300) plane of nickel-cobalt phosphide, from which it was confirmed that nickel cobalt phosphide was successfully synthesized. In particular, it was confirmed that the peak intensity of nickel-cobalt phosphide further increased as the molar ratio of nickel:cobalt increased. In addition, additional peaks located at 44.9ㅀ and 48.1ㅀ related to the (201) and (210) planes of nickel-cobalt phosphide were observed in the XRD patterns of Ni 2 Co 1 P and Ni 3 Co 1 P, which will be described later. It is noteworthy that the phosphide having high crystallinity has a favorable effect on the activity of the catalyst through the hydrogenation test.
- 비표면적 및 포어 체적 분석- Specific surface area and pore volume analysis
다양한 Ni 및/또는 Co의 포스파이드(NiP, CoP, NiCoP, Ni5P4, NiP2, Ni3Co1P, Ni2Co1P, Ni1Co1P, Ni1Co2P, Ni1Co3P 및 CoP) 각각에 대한 BET 비표면적 및 포어 체적을 측정하여 하기 표 1에 나타내었다.Phosphides of various Ni and/or Co (NiP, CoP, NiCoP, Ni 5 P 4 , NiP 2 , Ni 3 Co 1 P, Ni 2 Co 1 P, Ni 1 Co 1 P, Ni 1 Co 2 P, Ni 1 The BET specific surface area and pore volume for each of Co 3 P and CoP) were measured and are shown in Table 1 below.
Figure PCTKR2022015030-appb-img-000001
Figure PCTKR2022015030-appb-img-000001
상기 표에 따르면, 포스파이드에 코발트를 첨가함에 따라 비표면적 및 포어 체적이 증가하는 것을 확인하였다. According to the above table, it was confirmed that the specific surface area and pore volume increased as cobalt was added to the phosphide.
나. 레블린산을 감마-발레로락톤으로 전환 시 활성 평가me. Evaluation of activity in the conversion of levulinic acid to gamma-valerolactone
- 촉매에 따른 전환율 및 선택도 분석- Analysis of conversion rate and selectivity according to catalyst
앞서 제조된 금속 포스파이드 촉매의 존재 하에서 레블린산으로부터 감마-발레로락톤을 제조하는 실험에서 측정된 전환율 및 선택도를 각각 나타내는 그래프를 도 9에 나타내었다.9 shows graphs showing conversion and selectivity, respectively, measured in an experiment for preparing gamma-valerolactone from levulinic acid in the presence of the previously prepared metal phosphide catalyst.
상기 도면을 참조하면, 2원 금속 포스파이드(특히, Ni2Co1P)가 단일 금속 포스파이드인 CoP 및 NiP보다 양호한 촉매 활성을 제공하고, 또한 CoP와 NiP의 물리적 혼합물은 레블린산으로부터 감마-발레로락톤으로의 완전 전환에 있어서 코발트 및 니켈 모두가 작용한다는 점을 확인하였다. 또한, 2원 금속 포스파이드 촉매 중 Ni2Co1P가 가장 양호한 활성을 나타내었다. Referring to the figure, a binary metal phosphide (particularly, Ni 2 Co 1 P) provides better catalytic activity than single metal phosphides, CoP and NiP, and also a physical mixture of CoP and NiP can be obtained from levlinic acid by gamma - It was confirmed that both cobalt and nickel act in the complete conversion to valerolactone. In addition, among the binary metal phosphide catalysts, Ni 2 Co 1 P showed the best activity.
촉매 특성화 결과에서 알 수 있듯이, Ni2Co1P 촉매의 활성 부위는 2원 기능성(bifunctional nature)으로부터 비롯된 것으로, 수소화 활성 부위를 제공하는 코발트 및 니켈 성분을 함유하고 있으며, 나머지 포스페이트(phosphate)에 의한 산성 부위를 함유하고 있어, 탈수/고리화 반응에 필요한 활성을 제공한다. 특히, 촉매 내 2원 금속 중 니켈의 상대적인 함량이 증가할수록 촉매의 활성능이 현저히 개선되었는데, 전체적인 촉매 활성은 CoP < NiP < Ni1Co3P <Ni1Co2P < Ni1Co1P < Ni3Co1P < Ni2Co1P의 순이었다. As can be seen from the catalyst characterization results, the active site of the Ni 2 Co 1 P catalyst comes from a bifunctional nature, contains cobalt and nickel components that provide hydrogenation active sites, and the remaining phosphate contains an acidic site, providing the necessary activity for the dehydration/cyclization reaction. In particular, as the relative content of nickel among the binary metals in the catalyst increased, the activity of the catalyst significantly improved. The overall catalytic activity was CoP < NiP < Ni 1 Co 3 P < Ni 1 Co 2 P < Ni 1 Co 1 P < Ni 3 Co 1 P < Ni 2 Co 1 P.
도 9에 따른 촉매 스크리닝 결과를 다시 참고하면, CoP 촉매가 74.6%의 다소 높은 GVL 선택도를 나타내었으나, 레블린산의 전환율은 29.1%로 낮은 수준이었다. 이는 H2-TPD 결과에서 확인된 바와 같이, CoP 촉매의 경우에는 레블린산의 전환을 개시하기 위한 수소 활성화능이 충분하지 않기 때문이다. 반면, CoP 촉매는 다량의 강산점을 함유하고 있어 HPA로부터 GVL로의 전환이 가능하다. 이러한 결과는 레블린산으로부터 HPA로의 수소화 반응이 포스파이드의 수소화능 및 금속 함량(metallicity)과 관련되어 있고, HPA로부터 GVL로의 탈수 반응은 촉매의 산 특성과 관련되어 있음을 시사한다. Referring again to the catalyst screening results according to FIG. 9, the CoP catalyst showed a rather high GVL selectivity of 74.6%, but the conversion rate of levulinic acid was at a low level of 29.1%. This is because, as confirmed in the H 2 -TPD results, the CoP catalyst has insufficient hydrogen activating ability to initiate the conversion of levulinic acid. On the other hand, the CoP catalyst contains a large amount of strong acid sites, enabling conversion from HPA to GVL. These results suggest that the hydrogenation reaction from levulinic acid to HPA is related to the hydrogenation ability and metallicity of phosphide, and the dehydration reaction from HPA to GVL is related to the acid properties of the catalyst.
- 반응 조건의 최적화- Optimization of reaction conditions
2원 금속 포스파이드 촉매 중 가장 양호한 활성을 나타내는 것으로 평가된 Ni2Co1P 촉매의 존재 하에서 반응 조건을 달리하면서 수소화 반응을 수행하였는 바, 그 결과를 하기 표 2에 나타내었다.The hydrogenation reaction was performed under different reaction conditions in the presence of the Ni 2 Co 1 P catalyst, which was evaluated to exhibit the best activity among binary metal phosphide catalysts, and the results are shown in Table 2 below.
Figure PCTKR2022015030-appb-img-000002
Figure PCTKR2022015030-appb-img-000002
상기 표에 따르면, 180 ℃의 온도 및 30 bar 압력 조건 하에서 4 시간 동안 수소화 반응을 수행한 경우, 레블린산의 전환율 및 감마-발레로락톤에 대한 선택되는 대략 100%에 도달하였으며, 다른 부생성물은 거의 형성되지 않았다. According to the above table, when the hydrogenation reaction was performed for 4 hours at a temperature of 180 ° C. and a pressure of 30 bar, the conversion of levulinic acid and the selection for gamma-valerolactone reached approximately 100%, and other by-products was hardly formed.
- 용매를 사용한 수소화 반응 시 용매에 의한 영향 평가- Evaluate the effect of the solvent in the hydrogenation reaction using the solvent
수소화 반응 시 용매를 사용할 경우, 이의 영향력을 테스트하여 다양한 반응 조건하에서 촉매의 다용성(versatility)을 평가하였다. 이를 위하여, 용매로서 1차 알코올(즉, 메탄올 및 에탄올), 2차 알코올(이소프로판올 및 2-부탄올(sec-부탄올)), 1,4-다이옥, 및 물을 용매로 사용하였으며, Ni2Co1P 촉매의 존재 하에서 수소화 반응을 수행하여 측정된 전환율 및 선택도를 무용매 조건 하에서 얻어진 결과와 함께 도 10에 나타내었다. When a solvent is used in the hydrogenation reaction, the influence thereof was tested to evaluate the versatility of the catalyst under various reaction conditions. To this end, primary alcohols (ie, methanol and ethanol), secondary alcohols (isopropanol and 2-butanol (sec-butanol)), 1,4-diox, and water were used as solvents, Ni 2 Co 1 Conversion and selectivity measured by conducting a hydrogenation reaction in the presence of a P catalyst are shown in FIG. 10 together with the results obtained under solvent-free conditions.
상기 도면에 따르면, 용매로 알코올을 사용하는 경우에는 레블린산의 전환율 및 GVL 수율에 대한 정량적 분석은 가능하였으나, 레블린산이 메틸 레블리네이트, 에틸 레블리네이트 등으로 에스테르화한 후에 바로 수소화 반응이 일어나기 때문에 GVL에 대한 선택도는 감소하였다. 다만, 2차 알코올을 사용할 경우, 1차 알코올에 비하여 개선된 결과가 얻어졌는 바, 이때 이소프로판올 및 2-부탄올에 대한 GVL의 선택도는 각각 78% 및 83%이었다. 이는 2차 알코올의 환원능이 보다 양호하기 때문으로 판단된다. 또한, 용매로서 1,4-다이옥산을 사용한 경우, GVL에 대한 선택도는 86%로 상대적으로 높았으나, 해당 용매의 독성 및 잠재적인 위험성을 감안하면 상용 규모에 적용하는데 한계가 있을 것으로 판단된다. According to the figure, in the case of using alcohol as a solvent, quantitative analysis of the conversion rate of levlinic acid and the yield of GVL was possible, but the hydrogenation reaction immediately after esterification of levlinic acid with methyl revlinate, ethyl leblinate, etc. As this occurs, the selectivity for GVL is reduced. However, when secondary alcohol was used, improved results were obtained compared to primary alcohol, wherein the selectivity of GVL for isopropanol and 2-butanol was 78% and 83%, respectively. This is considered to be because the reducing ability of the secondary alcohol is better. In addition, when 1,4-dioxane was used as a solvent, the selectivity for GVL was relatively high at 86%, but considering the toxicity and potential hazards of the solvent, it is judged that there will be limitations in application on a commercial scale.
이와 관련하여, 용매로서 친환경적인 물을 사용할 경우에 가장 높은 레블린산의 전환율(88%) 및 GVL에 대한 선택도(98%)를 얻을 수 있음은 주목할 만하다. 이는 물이 높은 수소 표면 농도를 갖고 있어 레블린산과 물 사이의 강한 상호 작용으로 인하여 반응 활성 에너지가 감소한 점으로부터 기인하는 것으로 판단된다. In this regard, it is noteworthy that the highest conversion of levulinic acid (88%) and selectivity to GVL (98%) can be obtained when environmentally friendly water is used as the solvent. It is believed that this is due to the fact that the reaction activation energy is reduced due to the strong interaction between levulinic acid and water because water has a high hydrogen surface concentration.
한편, 가장 높은 레블린산의 전환율 및 GVL 수율은 무용매 조건 하에서 수소화 반응을 수행하는 경우에 얻어졌다. GVL은 LA를 GVL로 수소화 반응할 경우에 용매로 기능하여 생성된 GVL이 LA부터 GVL의 형성을 촉진할 수 있는 것으로 판단된다. 이와 같이, 무용매 조건 하에서의 반응은 GVL 생성의 지속가능성을 촉진시키는 점에서 유리하다.On the other hand, the highest levulinic acid conversion and GVL yield were obtained when the hydrogenation reaction was performed under solvent-free conditions. GVL functions as a solvent when LA is hydrogenated into GVL, and it is believed that the produced GVL can promote the formation of GVL from LA. As such, the reaction under solvent-free conditions is advantageous in promoting the sustainability of GVL production.
- 반응물에 따른 영향 분석- Analysis of the effect of reactants
Ni2Co1P 촉매의 존재 하에서 다양한 레블린산 에스테르의 반응물 또는 기재를 감마-발레로락톤으로 수소화 반응시켜 측정된 전환율 및 선택도를 각각 도 11에 나타내었다.Conversion and selectivity measured by hydrogenating reactants or substrates of various levulinic acid esters with gamma-valerolactone in the presence of a Ni 2 Co 1 P catalyst are shown in FIG. 11 , respectively.
상기 도면을 참조하면, Ni2Co1P 촉매의 사용 시 레블린산 에스테르를 반응물로 사용하는 경우에도 GVL를 수득할 수 있음을 확인하였다. 특히, 메틸 레블리네이트를 반응물(기질)로 사용한 경우, GVL에 대한 선택도는 82%의 높은 수준이었다. 반면, 부틸 레블리네이트 및 에틸 레블리네이트는 메틸 레블리네이트에 비하여 저하된 결과를 나타내었는 바, 이는 해당 에스테르 내 긴 알킬 사슬에 의한 입체 장애 때문인 것으로 판단된다. 에스테르의 경우, GVL 선택도의 감소는 GVL로의 락톤화(lactonization)을 방해하는 벌크 중간체인 4-히드록시 알킬 레블리네이트가 형성되기 때문이다. 그럼에도 불구하고, 전술한 결과는 Ni2Co1P 촉매가 레블린산 에스테르에 대하여도 양호한 활성을 나타내는 점은 주목할 만하다.Referring to the above figure, it was confirmed that GVL can be obtained even when levulinic acid ester is used as a reactant when a Ni 2 Co 1 P catalyst is used. In particular, when methyl leblinate was used as a reactant (substrate), the selectivity for GVL was as high as 82%. On the other hand, butyl and ethyl levellinate showed lower results than methyl levellinate, which is considered to be due to steric hindrance by the long alkyl chain in the ester. In the case of esters, the decrease in GVL selectivity is due to the formation of a bulk intermediate, 4-hydroxy alkyl leblinate, which interferes with lactonization to GVL. Nevertheless, it is noteworthy that the above results show that the Ni 2 Co 1 P catalyst also exhibits good activity toward levulinic acid esters.
- 금속 포스파이드 촉매 제조 시 수열합성 반응 온도가 수소화 반응에 미치는 영향 평가- Evaluation of the effect of hydrothermal synthesis reaction temperature on hydrogenation reaction when preparing metal phosphide catalyst
제2 수열합성 반응 온도를 달리하여 제조된 2종의 니켈-코발트 포스파이드 촉매(Ni2Co1P-100℃ 및 Ni2Co1P-150℃) 및 상용 니켈-구리/알루미나 촉매(Ni-Cu/Al2O3) 각각의 존재 하에서 레블린산(LA)으로부터 감마-발레로락톤(GVL)을 제조하는 반응의 레블린산 전환율 및 감마-발레로락톤에 대한 선택도를 도 12에 나타내었다. 이때, 수소화 반응은 80 ℃의 온도 및 30 bar 수소압 조건 하에, 4 시간 동안 수행하였다. 또한, 무용매 조건 하에서 30 mL의 레블린산을 반응시켰고, 0.8 g의 촉매를 사용하였다. 도 5와 관련하여 설명한 바와 같이, Ni2Co1P-150℃ 촉매는 요크-셀 구조를 갖는 반면, Ni2Co1P-100℃ 촉매는 요크-셀 구조가 아닌 견고한(즉, 속이 찬) 형태를 나타낸다.Two types of nickel-cobalt phosphide catalysts (Ni 2 Co 1 P -100 ° C and Ni 2 Co 1 P - 150 ° C) prepared by varying the second hydrothermal synthesis reaction temperature and a commercial nickel-copper / alumina catalyst (Ni- Figure 12 shows the levulinic acid conversion rate and selectivity for gamma-valerolactone in the reaction of preparing gamma-valerolactone (GVL) from levulinic acid (LA) in the presence of Cu/Al 2 O 3 ). was At this time, the hydrogenation reaction was performed for 4 hours under conditions of a temperature of 80 °C and a hydrogen pressure of 30 bar. In addition, 30 mL of levulinic acid was reacted under solvent-free conditions, and 0.8 g of catalyst was used. As described with respect to FIG. 5, the Ni 2 Co 1 P-150° C. catalyst has a yoke-cell structure, whereas the Ni 2 Co 1 P-100° C. catalyst has a non-yoke-cell structure and is rigid (ie, solid). represents the form.
도 12a를 참조하면, Ni2Co1P-100℃ 촉매는 첫 번째 반응에서 Ni2Co1P-150℃ 촉매와 대등한 수준의 촉매 성능을 나타내었다. 그러나, 연속적으로 반복하여 반응을 수행할 경우, 촉매 성능이 급격히 저하되었다. 또한, Ni-Cu/Al2O3 촉매는 비교적 낮은 레블린산 전환율 및 GVL 수율을 나타내었으며, 특히 반복 사용할 경우에 가장 급격한 촉매 성능 저하를 나타내었다. 이러한 2종의 촉매, 특히 Ni-Cu/Al2O3 촉매에서 관찰되는 빠른 비활성화는, 금속 입자의 소결(sintering) 때문으로 판단된다.Referring to FIG. 12a, the Ni 2 Co 1 P-100° C. catalyst exhibited catalytic performance equivalent to that of the Ni 2 Co 1 P-150° C. catalyst in the first reaction. However, when the reaction was continuously and repeatedly performed, the catalytic performance rapidly deteriorated. In addition, the Ni—Cu/Al 2 O 3 catalyst exhibited relatively low levulinic acid conversion and GVL yield, and exhibited the most rapid catalyst performance degradation, especially when repeatedly used. The rapid deactivation observed in these two catalysts, especially the Ni—Cu/Al 2 O 3 catalyst, is believed to be due to sintering of the metal particles.
반면, Ni2Co1P-150℃ 촉매의 경우, 요크-셀 구조로부터 기인한 촉매의 활성점 보호 효과로 인하여 촉매 성능이 일정하게 유지되었다. On the other hand, in the case of the Ni 2 Co 1 P-150 °C catalyst, the catalytic performance was maintained constant due to the active point protection effect of the catalyst resulting from the yoke-cell structure.
다. 레블린산을 2-메틸테트라하이드로퓨란으로 전환 시 활성 평가all. Evaluation of activity in the conversion of levulinic acid to 2-methyltetrahydrofuran
앞서 제조된 금속 포스파이드 촉매 중 가장 양호한 활성을 나타내는 것으로 평가된 Ni2Co1P 촉매 및 비교예로서 니켈 포스파이드(NiP) 촉매 각각의 존재 하에서 레블린산으로부터 2-메틸테트라하이드로퓨란을 제조하는 실험에서 측정된 전환율 및 선택도를 각각 하기 표 3에 나타내었다.Preparing 2-methyltetrahydrofuran from levulinic acid in the presence of each of the Ni 2 Co 1 P catalyst and a nickel phosphide (NiP) catalyst as a comparative example, which were evaluated to exhibit the best activity among the previously prepared metal phosphide catalysts. Conversion and selectivity measured in the experiment are shown in Table 3, respectively.
Figure PCTKR2022015030-appb-img-000003
Figure PCTKR2022015030-appb-img-000003
상기 표로부터, Ni2Co1P 촉매는 1,4-PDO로부터 2-MTHF로의 탈수 반응을 용이하도록 하는 산점을 충분한 량으로 함유하고 있음을 확인할 수 있다. 다만, Ni2Co1P 촉매의 경우, 원-폿 방식의 2 단계 반응에서 2차 수소화 반응 시 2-MTHF에 대한 선택도는 상대적으로 낮았다. 즉, GVL로부터 2-MTHF로의 전환에 있어서, NiP 촉매를 사용할 경우에는 2-MTHF에 대한 선택도는 높았으나, 1차 수소화 반응 시 GVL로의 전환율이 낮았다. 이와 관련하여, NiP의 산점은 형성된 1,4-PDO로부터 2-MTHF로의 탈수 반응을 용이하게 하여, 2-MTHF에 대한 선택도를 개선할수 있다. 그러나, NiP의 금속 활성은 불충분하여, 1차 수소화 반응 시 GVL로의 전환은 불충분하다. 이처럼, 레블린산으로부터 GVL로의 1차 수소화 반응 단계는 촉매 내 활성 금속의 조성에 의존하는 반면, GVL로부터 2-MTHF로의 2차 수소화 반응 단계는 산점의 량에 의하여 주로 영향을 받는 것으로 판단된다.From the table above, it can be seen that the Ni 2 Co 1 P catalyst contains a sufficient amount of acid sites to facilitate the dehydration reaction from 1,4-PDO to 2-MTHF. However, in the case of the Ni 2 Co 1 P catalyst, the selectivity for 2-MTHF was relatively low during the secondary hydrogenation reaction in the one-pot two-step reaction. That is, in the conversion of GVL to 2-MTHF, when the NiP catalyst was used, the selectivity for 2-MTHF was high, but the conversion rate to GVL was low during the first hydrogenation reaction. In this regard, the acid site of NiP can facilitate the dehydration reaction from the formed 1,4-PDO to 2-MTHF, thereby improving the selectivity to 2-MTHF. However, since the metal activity of NiP is insufficient, the conversion to GVL during the primary hydrogenation reaction is insufficient. As such, it is believed that the first hydrogenation step from levlinic acid to GVL depends on the composition of the active metal in the catalyst, whereas the second hydrogenation step from GVL to 2-MTHF is mainly influenced by the amount of acid sites.
본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 이용될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.Simple modifications or changes of the present invention can be easily used by those skilled in the art, and all such modifications or changes can be considered to be included in the scope of the present invention.

Claims (19)

  1. 일반식 NixCoyP(x 및 y는 Ni 및 Co의 몰 비로서 1 : 0.2 내지 5의 범위임)로 표시되며, 요크-셀 구조를 갖는 금속 포스파이드 촉매의 존재 하에서 유기산 또는 이의 유도체에 대한 수소화 반응을 수행하는 단계를 포함하는 유기산의 전환 방법.Represented by the general formula Ni x Co y P (x and y are the molar ratios of Ni and Co, ranging from 1:0.2 to 5), in the presence of a metal phosphide catalyst having a yoke-cell structure, to an organic acid or its derivative A method for converting an organic acid comprising the step of performing a hydrogenation reaction for
  2. 제1항에 있어서, 상기 수소화 반응은 고리화 반응을 수반하는 것을 특징으로 하는 방법.2. The method of claim 1, wherein the hydrogenation reaction involves a cyclization reaction.
  3. 제1항에 있어서, 상기 유기산은 레블린산, 숙신산, 푸마르산, 이타콘산, 아스파르트산, 2,5-퓨란디카르복시산, 글루타르산 및 락트산으로 이루어지는 군으로부터 선택되는 적어도 하나인 것을 특징으로 하는 방법.The method of claim 1, wherein the organic acid is at least one selected from the group consisting of levulinic acid, succinic acid, fumaric acid, itaconic acid, aspartic acid, 2,5-furandicarboxylic acid, glutaric acid, and lactic acid. .
  4. 제3항에 있어서, 상기 유기산은 레블린산이며, 상기 수소화 반응은 1 단계 또는 적어도 2 단계에 걸쳐 수행되며,The method of claim 3, wherein the organic acid is levulinic acid, and the hydrogenation reaction is carried out in one step or at least two steps,
    여기서, 상기 1 단계 수소화 반응에 의하여 감마-발레로락톤(GVL)이 형성되는 한편, 상기 적어도 2 단계 수소화 반응에 의하여 2-메틸테트라하이드로퓨란(2-MTHF)이 형성되는 것을 특징으로 하는 방법.Here, gamma-valerolactone (GVL) is formed by the first-step hydrogenation reaction, while 2-methyltetrahydrofuran (2-MTHF) is formed by the at least two-step hydrogenation reaction.
  5. 제1항에 있어서, 상기 수소화 반응은 용매의 사용 없이 수행되는 것을 특징으로 하는 방법.The method according to claim 1, wherein the hydrogenation reaction is carried out without the use of a solvent.
  6. 제4항에 있어서, 상기 1차 수소화 반응은 120 내지 300 ℃의 온도, 및 10 내지 50 bar의 수소 압력 조건 하에서 수행되고, 그리고The method of claim 4, wherein the primary hydrogenation reaction is carried out under conditions of a temperature of 120 to 300 ° C. and a hydrogen pressure of 10 to 50 bar, and
    상기 2차 수소화 반응은 180 내지 320 ℃의 온도, 및 30 내지 80 bar의 수소 압력 조건 하에서 수행되는 것을 특징으로 하는 방법.The secondary hydrogenation reaction is characterized in that carried out under conditions of a temperature of 180 to 320 ℃, and a hydrogen pressure of 30 to 80 bar.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서, 유기산 또는 이의 유도체 : 촉매의 중량 비는 1 : 0.015 내지 0.03의 범위에서 조절되는 것을 특징으로 하는 방법.7. The method according to any one of claims 1 to 6, characterized in that the weight ratio of organic acid or derivative thereof:catalyst is controlled in the range of 1:0.015 to 0.03.
  8. 일반식 NixCoyP(x 및 y는 Ni 및 Co의 몰 비로서 1 : 0.2 내지 5의 범위임)로 표시되는 요크-셀 구조의 금속 포스파이드 촉매로서,A metal phosphide catalyst with a yoke-cell structure represented by the general formula Ni x Co y P (x and y are the molar ratios of Ni and Co and range from 1:0.2 to 5),
    (i) 상기 촉매의 전체 사이즈(직경)는 100 내지 500 nm, 셀 층의 두께는 20 내지 100 nm, 그리고 요크의 사이즈(직경)는 5 내지 50 nm 범위인 촉매.(i) The overall size (diameter) of the catalyst is in the range of 100 to 500 nm, the thickness of the shell layer is in the range of 20 to 100 nm, and the size (diameter) of the yoke is in the range of 5 to 50 nm.
  9. 제8항에 있어서, 상기 요크-셀 구조의 금속 포스파이드 촉매 내에서 요크가 차지하는 중량 비는 1 : 1.5 내지 5의 범위에서 정하여지는 것을 특징으로 하는 촉매.[Claim 9] The catalyst according to claim 8, wherein the weight ratio of the yoke in the yoke-cell structured metal phosphide catalyst is set in the range of 1:1.5 to 5.
  10. 제8항에 있어서, 상기 금속 포스파이드 촉매의 산량(NH3-TPD)은 200 내지 600 mmol/g 범위인 것을 특징으로 하는 촉매.The catalyst according to claim 8, wherein the metal phosphide catalyst has an acid amount (NH 3 -TPD) in the range of 200 to 600 mmol/g.
  11. 제8항에 있어서, 상기 금속 포스파이드 촉매 중 금속의 환원된 형태 : 금속의 환원되지 않은 형태의 몰 비는 1 : 2 내지 5의 범위인 것을 특징으로 하는 촉매.9. The catalyst according to claim 8, wherein the molar ratio of the reduced form of metal to the non-reduced form of metal in the metal phosphide catalyst is in the range of 1:2 to 5.
  12. 제11항에 있어서, 상기 금속 포스파이드 촉매는 H2-TPD에 의한 측정 시, 전체 금속의 몰(mol) 당 수소원자의 화학흡착량(mol)이, 50 내지 250 ℃의 온도 범위에 걸쳐 100 내지 250 mmol/g의 범위인 것을 특징으로 하는 촉매.The method of claim 11, wherein the metal phosphide catalyst has a chemical adsorption amount (mol) of hydrogen atoms per mole (mol) of the total metal, as measured by H 2 -TPD, over a temperature range of 50 to 250 ° C. to 250 mmol/g.
  13. a) 니켈 전구체 및 코발트 전구체를 용매에 용해시켜 니켈 및 코발트의 전구체 용액을 제조하는 단계;a) preparing a nickel and cobalt precursor solution by dissolving a nickel precursor and a cobalt precursor in a solvent;
    b) 상기 전구체 용액을 제1 수열합성 반응시켜 니켈-코발트를 함유하는 침전물을 형성하는 단계;b) subjecting the precursor solution to a first hydrothermal synthesis reaction to form a precipitate containing nickel-cobalt;
    c) 상기 침전물을 제2 수열합성 반응시켜 니켈-코발트 수산화물을 형성하는 단계; 및c) subjecting the precipitate to a second hydrothermal synthesis reaction to form nickel-cobalt hydroxide; and
    d) 상기 니켈-코발트 수산화물을 비활성 가스 분위기 및 승온 조건 하에서 포스파이드제에 의한 치환 반응을 통하여 일반식 NixCoyP(x 및 y는 Ni 및 Co의 몰 비로서 1 : 0.2 내지 5의 범위임)로 표시되는 요크-셀 구조의 니켈-코발트 포스파이드 촉매로 전환시키는 단계;d) Ni x Co y P (x and y are the molar ratio of Ni and Co and range from 1: 0.2 to 5) through a substitution reaction of the nickel-cobalt hydroxide with a phosphide agent under an inert gas atmosphere and elevated temperature conditions (i) conversion to a nickel-cobalt phosphide catalyst having a yolk-cell structure;
    를 포함하며, Including,
    (i) 니켈-코발트 포스파이드 촉매의 전체 사이즈(직경)는 10 내지 100 nm, 셀 층의 두께는 1 내지 10 nm, 그리고 요크의 사이즈(직경)는 5 내지 50 nm 범위인 니켈-코발트 포스파이드 촉매의 제조방법.(i) a nickel-cobalt phosphide catalyst in which the overall size (diameter) of the nickel-cobalt phosphide catalyst is in the range of 10 to 100 nm, the thickness of the cell layer is 1 to 10 nm, and the size (diameter) of the yoke is in the range of 5 to 50 nm; A method for preparing a catalyst.
  14. 제13항에 있어서, 상기 니켈 전구체 및 상기 코발트 전구체 각각은 산화수가 2인 화합물로서,The method of claim 13, wherein each of the nickel precursor and the cobalt precursor is a compound having an oxidation number of 2,
    상기 니켈 전구체는 염화니켈(II)·6수화물(NiCl2·6H2O), 질산니켈(Ni(NO3)2·6H2O) 및 황산니켈(II)·7수화물(NiSO4·7H2O)로 이루어지는 군으로부터 선택되는 적어도 하나이고, 그리고The nickel precursor is nickel (II) chloride hexahydrate (NiCl 2 6H 2 O), nickel nitrate (Ni(NO 3 ) 2 6H 2 O) and nickel sulfate (II) heptahydrate (NiSO 4 7H 2 O) at least one selected from the group consisting of, and
    상기 코발트 전구체는 염화코발트(II)·6수화물(CoCl2·6H2O), 질산코발트(Co(NO3)2·6H2O) 및 황산코발트(II)·7수화물(CoSO4·7H2O)로 이루어지는 군으로부터 선택되는 적어도 하나인 것을 특징으로 하는 방법.The cobalt precursor is cobalt(II) chloride hexahydrate (CoCl 2 6H 2 O), cobalt nitrate (Co(NO 3 ) 2 6H 2 O), and cobalt(II) sulfate heptahydrate (CoSO 4 7H 2 A method characterized in that it is at least one selected from the group consisting of O).
  15. 제13항에 있어서, 상기 단계 a)에서 사용되는 용매는 적어도 2가의 알코올 및 1가 알코올의 혼합 용매로서,The method of claim 13, wherein the solvent used in step a) is a mixed solvent of at least a dihydric alcohol and a monohydric alcohol,
    상기 적어도 2가의 알코올은 글리세롤 및 에틸렌글리콜로 이루어지는 군으로부터 선택되는 적어도 하나이고, 그리고The at least dihydric alcohol is at least one selected from the group consisting of glycerol and ethylene glycol, and
    상기 1가 알코올은 에탄올 및 이소프로필 알코올로 이루어지는 군으로부터 선택되는 적어도 하나인 것을 특징으로 하는 방법.The method, characterized in that the monohydric alcohol is at least one selected from the group consisting of ethanol and isopropyl alcohol.
  16. 제13항에 있어서, 상기 제1 수열합성 반응은 150 내지 220 ℃의 온도에서 4 내지 10 시간 동안 수행되고, 그리고The method of claim 13, wherein the first hydrothermal synthesis reaction is carried out at a temperature of 150 to 220 ° C. for 4 to 10 hours, and
    상기 제2 수열합성 반응은 130 내지 170 ℃의 온도에서 1 내지 8 시간 동안 수행되는 것을 특징으로 하는 방법.The second hydrothermal synthesis reaction is characterized in that it is carried out at a temperature of 130 to 170 ℃ for 1 to 8 hours.
  17. 제13항에 있어서, 상기 포스파이드제는 치아인산염, 포스핀 가스 및 적린(red phosphorus)으로 이루어지는 군으로부터 선택되는 적어도 하나인 것을 특징으로 하는 방법.14. The method of claim 13, wherein the phosphide agent is at least one selected from the group consisting of thiaphosphate, phosphine gas and red phosphorus.
  18. 제13항에 있어서, 상기 단계 d) 중 비활성 가스는 아르콘, 네온 및 질소로 이루어지는 군으로부터 선택되는 적어도 하나이고, 그리고 승온 조건은 280 내지 400 ℃의 온도 및 0.5 내지 5 ℃/분의 승온 속도 범위에서 설정되는 것을 특징으로 하는 방법. 14. The method of claim 13, wherein the inert gas in step d) is at least one selected from the group consisting of argon, neon, and nitrogen, and the temperature raising condition ranges from 280 to 400 ° C and a temperature rising rate of 0.5 to 5 ° C / min. A method characterized in that set in.
  19. 제13항에 있어서, 상기 단계 d)는 2개의 도가니를 양 단부에 배치된 튜브형 로 내에서 수행되고,14. The method of claim 13, wherein step d) is carried out in a tubular furnace with two crucibles disposed at both ends,
    이때, 상기 2개의 도가니 중 포스파이드제가 위치하는 도가니가 상류에 배치되고, 니켈-코발트 수산화물이 위치하는 도가니가 하류에 배치되며, 그리고 비활성 가스가 상기 튜브형 로에 유입되는 것을 특징으로 하는 방법.At this time, among the two crucibles, a crucible in which the phosphide agent is located is disposed upstream, a crucible in which nickel-cobalt hydroxide is located is disposed downstream, and an inert gas is introduced into the tubular furnace. Method characterized in that.
PCT/KR2022/015030 2021-10-06 2022-10-06 Metal phosphide catalyst and method for preparing high value-added compound by using same WO2023059086A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0132222 2021-10-06
KR1020210132222A KR102654667B1 (en) 2021-10-06 2021-10-06 Metal Phosphide Catalysts and Method for Preparing High Value Compounds Using the Same

Publications (1)

Publication Number Publication Date
WO2023059086A1 true WO2023059086A1 (en) 2023-04-13

Family

ID=85804531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/015030 WO2023059086A1 (en) 2021-10-06 2022-10-06 Metal phosphide catalyst and method for preparing high value-added compound by using same

Country Status (2)

Country Link
KR (1) KR102654667B1 (en)
WO (1) WO2023059086A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110028217A (en) * 2009-09-11 2011-03-17 한국화학연구원 Preparation of cyclic compounds from c4-c6 organic acid
KR20150063002A (en) * 2013-11-29 2015-06-08 주식회사 엘지화학 Yolk-shell particle, catalyst comprising the same and manufacturing method thereof
CN107876072A (en) * 2017-11-10 2018-04-06 中国石油大学(北京) A kind of hydrogenation catalyst and its preparation method and application
CN109364962A (en) * 2018-09-30 2019-02-22 中国科学院山西煤炭化学研究所 Phosphatization nickel-base catalyst and its preparation method and application for acetone selection plus hydrogen
CN112824395A (en) * 2019-11-20 2021-05-21 中国科学院大连化学物理研究所 Method for preparing gamma-valerolactone from levulinic acid

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110028217A (en) * 2009-09-11 2011-03-17 한국화학연구원 Preparation of cyclic compounds from c4-c6 organic acid
KR20150063002A (en) * 2013-11-29 2015-06-08 주식회사 엘지화학 Yolk-shell particle, catalyst comprising the same and manufacturing method thereof
CN107876072A (en) * 2017-11-10 2018-04-06 中国石油大学(北京) A kind of hydrogenation catalyst and its preparation method and application
CN109364962A (en) * 2018-09-30 2019-02-22 中国科学院山西煤炭化学研究所 Phosphatization nickel-base catalyst and its preparation method and application for acetone selection plus hydrogen
CN112824395A (en) * 2019-11-20 2021-05-21 中国科学院大连化学物理研究所 Method for preparing gamma-valerolactone from levulinic acid

Also Published As

Publication number Publication date
KR20230049287A (en) 2023-04-13
KR102654667B1 (en) 2024-04-03

Similar Documents

Publication Publication Date Title
WO2011132957A2 (en) Nanometer-sized copper-based catalyst, production method thereof, and alcohol production method using the same through direct hydrogenation of carboxylic acid
WO2019004777A1 (en) Method for preparing 2,5-furandimethylcarboxylate from hydroxymethylfurfural
Arancon et al. Valorisation of corncob residues to functionalised porous carbonaceous materials for the simultaneous esterification/transesterification of waste oils
WO2020101234A1 (en) Method for preparing 2,5-furandimethanol and 2,5-tetrahydrofuran dimethanol from 5-hydroxymethylfurfural
WO2010085108A2 (en) Scaffold materials-transition metal hydride complexes, intermediates therefor and method for preparing the same
WO2013105779A1 (en) Carbon nanotubes and method for manufacturing same
RU2008113245A (en) METHOD FOR PRODUCING NANOTUBES FROM RENEWABLE RAW MATERIALS
KR20120043050A (en) Polymeric precursors for caigas aluminum-containing photovoltaics
WO2009153214A1 (en) Process for the manufacture of an intermediate in the synthesis of dabigatran
CN107469802B (en) Catalyst for producing aromatic hydrocarbon-rich biofuel and preparation method thereof
WO2023059086A1 (en) Metal phosphide catalyst and method for preparing high value-added compound by using same
WO2016032284A1 (en) Preparation method for rod-shaped molybdenum oxide and preparation method for molybdenum oxide composite
WO2012070747A2 (en) Method for producing polylactic acid and a highly conductive polymer, and apparatus for producing highly conductive polylactic acid polymer
WO2018088736A1 (en) Catalyst for preparing dimethyl ether from synthetic gas and method for producing same
WO2014119870A1 (en) Fischer-tropsch synthesis catalyst comprising coo phase particles and method for preparing liquid hydrocarbon from natural gas using same
WO2020235809A1 (en) Method for preparing ether compound from furan-based compound using nickel phosphide catalyst
WO2018048236A1 (en) Nickel-based catalyst molded body for steam methane reforming and use thereof
WO2014116011A1 (en) Method for upgrading biomass-derived mixed organic acid
WO2016171516A1 (en) Method for producing liquid or solid hydrocarbons from synthesis gas via fischer-tropsch synthesis which does not carry out separate reduction pre-treatment for catalyst activation
WO2010113011A2 (en) Novel catalyst composition for biodiesel production and process for preparing the same
CN114436981A (en) Preparation method of UV-1130 reduction intermediate
WO2016053004A1 (en) Molybdenum oxide composite and preparation method therefor
WO2018038505A1 (en) Propylene direct oxidation reaction catalyst, method for preparing same, and method for preparing propylene oxide through propylene direct oxidation reaction using same
WO2024058368A1 (en) Iron-based catalyst, method for producing same, and hydrocarbon production methods using same
WO2014077602A1 (en) Method for manufacturing reduced graphene oxide using solid hydrazine derivative

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22878907

Country of ref document: EP

Kind code of ref document: A1