WO2020101234A1 - Method for preparing 2,5-furandimethanol and 2,5-tetrahydrofuran dimethanol from 5-hydroxymethylfurfural - Google Patents

Method for preparing 2,5-furandimethanol and 2,5-tetrahydrofuran dimethanol from 5-hydroxymethylfurfural Download PDF

Info

Publication number
WO2020101234A1
WO2020101234A1 PCT/KR2019/014695 KR2019014695W WO2020101234A1 WO 2020101234 A1 WO2020101234 A1 WO 2020101234A1 KR 2019014695 W KR2019014695 W KR 2019014695W WO 2020101234 A1 WO2020101234 A1 WO 2020101234A1
Authority
WO
WIPO (PCT)
Prior art keywords
furan
based compound
producing
dimethanol
hmf
Prior art date
Application number
PCT/KR2019/014695
Other languages
French (fr)
Korean (ko)
Inventor
김용진
미슈라디네쉬쿠마
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Publication of WO2020101234A1 publication Critical patent/WO2020101234A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/04Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • C07D307/10Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/12Radicals substituted by oxygen atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/005Spinels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/40Radicals substituted by oxygen atoms
    • C07D307/42Singly bound oxygen atoms

Definitions

  • the present invention relates to a method for producing 2,5-furandimethanol and 2,5-tetrahydrofuran dimethanol from 5-hydroxymethylperfural, and more specifically, to support a spinel structure supporting precious metal nanoparticles.
  • 5-Hydroxymethylfurfural (HMF) to 2,5-furandimethanol (FDM) and 2,5-tetrahydrofuran dimethanol (2,5) -Tetrahydrofuran dimethanol, THF-DM) relates to a method for selectively producing at least one furan-based compound selected from the group consisting of.
  • plastics based on various resins began to be mass-produced as consumer goods.
  • more than 300 million tons of plastic has been produced and consumed worldwide, exceeding steel production.
  • plastic is produced using naphtha from the oil refining process, depletion of petroleum resources and carbon dioxide emissions are a problem, and as it is used as the main material for disposable products, it is used for a long time before being discarded immediately after using the product.
  • carcinogens such as dioxin are released into the atmosphere, causing environmental problems, and research on alternative materials has been continuously conducted.
  • 5-hydroxymethylfurfural is produced from carbohydrate or cellulose in the presence of an acid catalyst, and the 5-hydroxymethylfurfural is based on biomass with significant industrial applicability. It is classified as one of 10 compounds.
  • 2,5-furandimethanol FDM
  • 2,5-tetrahydrofuran dimethanol 2,5-Tetrahydrofuran dimetanol, THF-DM
  • 2,5 through catalytic hydrogenation of HMF -Dimethylfuran 2,5-dimethylfuran
  • the 2,5-furan dimethanol and 2,5-tetrahydrofuran dimethanol can be used in various aspects such as the production of resins, polymers, and chemical fibers having various properties, and thus has great potential. Therefore, a hydrogenation method of HMF that can selectively produce 2,5-furandimethanol and 2,5-tetrahydrofuran dimethanol from HMF using a metal complex and a metal supported catalyst in various environments has been actively studied.
  • 2,5-furandimethanol and 2,5-tetrahydrofuran dimethanol can be selectively obtained in a single container, and 2,5-furandimethanol and 2,5-tetrahydrofuran dimethanol are respectively 90%.
  • a process that can be obtained with the above high yield is required.
  • the object of the present invention is selected from the group consisting of 2,5-furandimethanol and 2,5-tetrahydrofuran dimethanol from 5-hydroxymethylperfural using a spinel-structured support carrying precious metal nanoparticles as a catalyst. It is to provide a method for producing a furan-based compound capable of selectively obtaining 2,5-furandimethanol and 2,5-tetrahydrofuran dimethanol in a single container by preparing one or more furan-based compounds.
  • (a) 5-hydroxymethylfurfural (5-Hydroxymethylfurfural, HMF) hydrogenation reaction using a catalyst with hydrogen (H 2 ) 2,5-furandimethane (2,5 -Furandimethanol, FDM) and 2,5-tetrahydrofuran dimethanol (2,5-Tetrahydrofuran dimethanol, THF-DM) comprising the step of preparing a furan-based compound comprising at least one selected from the group consisting of, and
  • the catalyst is to provide a method for producing a furan-based compound, which comprises a spinel-structured support carrying noble metal nanoparticles.
  • the isolated 2,5-furan dimethanol or 2,5-tetrahydrofuran dimethanol will contain 0.1 to 20 ppm cobalt (Co), 0.1 to 60 ppm manganese (Mn), and 0.1 to 5 ppm ruthenium (Ru). Can be.
  • the support of the spinel structure is MnCo 2 O 4 , CoMn 2 O 4 , ZnAl 2 O 4 , FeAl 2 O 4 , CuFe 2 O 4 , ZnMn 2 O 4 , MnFe 2 O 4 , Fe 3 O 4 , TiFe 2 It may include one or more selected from the group consisting of O 4 , ZnFe 2 O 4 , Mg 2 SiO 4 , Fe 2 SiO 4 .
  • the noble metal nanoparticles may include one or more selected from the group consisting of platinum, palladium, and ruthenium.
  • the catalyst may be a MnCo 2 O 4 support having a spinel structure carrying ruthenium nanoparticles.
  • the step of preparing the furan-based compound is the reaction time, the pressure of the hydrogen, and the molar ratio (mol / mol) of 5-hydroxymethylperfural (HMF / Ru) to ruthenium (Ru) of the catalyst
  • HMF / Ru 5-hydroxymethylperfural
  • Ru ruthenium
  • the reaction time is 2.5 to 3.5 hr
  • the pressure of the hydrogen is 5 to 6 MPa
  • the molar ratio (mol / mol) of HMF / Ru is adjusted to 30 to 40 to 2,5- It may be a step of preparing furan dimethanol as a main product.
  • the reaction time is 15.5 to 16.5 hr
  • the pressure of the hydrogen is 6.5 to 9.5 MPa
  • the molar ratio (mol / mol) of HMF / Ru is adjusted to 45 to 105 to 2,5.
  • -Tetrahydrofuran may be a step of preparing methane as the main product.
  • the temperature of the step of preparing the furan-based compound may be 70 to 150 °C.
  • the precious metal nanoparticles may be 1 to 10% by weight based on the catalyst weight.
  • the precious metal nanoparticles may be 3 to 5% by weight based on the catalyst weight.
  • the precious metal nanoparticles may be 4% by weight based on the catalyst weight.
  • the step of preparing the furan-based compound may be a step performed in a single container.
  • the 5-hydroxymethylperfural may be derived from biomass including one or more selected from the group consisting of cellulose and polysaccharides.
  • the method for producing the furan-based compound is performed by a solution reaction using a solvent, and the solvent is methanol, ethanol, n-propanol, iso-propanol, butanol, pentanol, tetrahydrofuran, methyl tertiary butyl ether, hexane And it may include one or more selected from the group consisting of pentane.
  • the solvent may be methanol.
  • the average particle diameter (D 50 ) of the support having the spinel structure may be 2.0 to 4.0 ⁇ m.
  • the method for producing a furan-based compound of the present invention uses 2,5-furandimethanol and 2, in a single container by hydrogenation of 5-hydroxymethylperfural using a spinel-structured support carrying precious metal nanoparticles as a catalyst.
  • 5-Tetrahydrofuran dimethanol can be optionally obtained.
  • 2,5-furan dimethanol and 2,5-tetrahydrofuran dimethanol can be obtained in high yields of 90% or more, respectively.
  • 1 shows a schematic diagram of the conversion reaction of 5-hydroxymethylperfural.
  • Figure 2 shows the aspects of the hydrogenation product of 5-hydroxymethylperfural according to the reaction conditions.
  • Figure 3 shows the XRD pattern of the spinel structure of the support prepared according to Preparation Example 1.
  • Figure 5 shows a SEM picture that can identify a number of pores in the support of the spinel structure prepared according to Preparation Example 1.
  • FIG. 6 shows an SEM photograph of a microsphere of a spinel-structured support prepared according to Preparation Example 1.
  • Figure 7 shows the XPS of the support of the spinel structure of the precious metal nanoparticles prepared according to Preparation Example 2.
  • FIG. 9 shows the 1 H-NMR spectrum of 2,5-tetrahydrofuran dimethanol prepared according to Example 2 and subsequently purified and commercially available reagent 2,5-tetrahydrofuran dimethanol.
  • FIG. 10 shows the 13 C-NMR spectrum of 2,5-tetrahydrofuran dimethanol prepared according to Example 2 and subsequently purified and commercially available reagent 2,5-tetrahydrofuran dimethanol.
  • FIG. 11 is a schematic diagram showing the conversion rate of 5-hydroxymethylperfural and the yield of 2,5-furandiethanol according to the number of catalyst reuses when preparing 2,5-furandimethane according to Example 1.
  • FIG. 12 is a schematic diagram of 5-hydroxymethylperfuran conversion and 2,5-tetrahydrofuran dimethanol yield according to the number of catalyst reuses when preparing 2,5-tetrahydrofuran dimethanol according to Example 2.
  • first and second to be used below may be used to describe various components, but the components are not limited by the terms. The terms are used only for the purpose of distinguishing one component from other components.
  • first component may be referred to as a second component without departing from the scope of the present invention, and similarly, the second component may be referred to as a first component.
  • a component when referred to as being “formed” or “stacked” on another component, it may be formed or stacked directly attached to the front or one side of the surface of the other component, but may be intermediate. It should be understood that there may be other components in the.
  • 1 shows a schematic diagram of the conversion reaction of 5-hydroxymethylperfural.
  • 1, 2,5-furandimethanol and 2,5-tetrahydrofuran dimethanol can be selectively obtained from 5-hydroxymethylperfural.
  • Figure 2 shows the aspects of the hydrogenation product of 5-hydroxymethylperfural according to the reaction conditions.
  • the present invention is (a) 5-hydroxymethyl perfural (5-Hydroxymethylfurfural, HMF) hydrogenation reaction using hydrogen (H 2 ) and a catalyst to 2,5-furandiethanol (2, 5-Furandimethanol, FDM) and 2,5-tetrahydrofuran dimethanol (2,5-Tetrahydrofuran dimethanol, THF-DM) comprising the step of preparing a furan-based compound comprising at least one selected from the group consisting of,
  • the catalyst provides a method for producing a furan-based compound, which comprises a spinel-structured support carrying noble metal nanoparticles.
  • the isolated 2,5-furan dimethanol or 2,5-tetrahydrofuran dimethanol will contain 0.1 to 20 ppm cobalt (Co), 0.1 to 60 ppm manganese (Mn), and 0.1 to 5 ppm ruthenium (Ru). Can be.
  • the support of the spinel structure is MnCo 2 O 4 , CoMn 2 O 4 , ZnAl 2 O 4 , FeAl 2 O 4 , CuFe 2 O 4 , ZnMn 2 O 4 , MnFe 2 O 4 , Fe 3 O 4 , TiFe 2 O 4 , ZnFe 2 O 4 , Mg 2 SiO 4 , Fe 2 SiO 4 It may include one or more selected from the group consisting of, preferably selected from the group consisting of MnCo 2 O 4 and CoMn 2 O 4 It may contain one or more, more preferably MnCo 2 O 4 .
  • the precious metal may include one or more selected from the group consisting of platinum, palladium, and ruthenium, and preferably ruthenium.
  • the particle size of the noble metal nanoparticles may be 5 to 15 nm, and the noble metal nanoparticles of the 5 to 15 nm size may be efficiently contained in the support of the spinel structure.
  • noble metal particles can be uniformly dispersed in a structure in which a number of microspheres possessed by a spinel support are integrated, it is possible to induce a stable hydrogenation reaction of a furan compound.
  • the catalyst may be a MnCo 2 O 4 support having a spinel structure carrying ruthenium nanoparticles.
  • the step of preparing the furan-based compound is the reaction time, the pressure of the hydrogen, and the molar ratio (mol / mol) of 5-hydroxymethylperfural (HMF / Ru) to ruthenium (Ru) of the catalyst
  • HMF / Ru 5-hydroxymethylperfural
  • Ru ruthenium
  • the reaction time is 2.5 to 3.5 hr
  • the pressure of the hydrogen is 5 to 6 MPa
  • the molar ratio (mol / mol) of HMF / Ru is adjusted to 30 to 40 to 2,5- It may be a step in which furan dimethanol is prepared as a main product.
  • the reaction time is less than 2.5hr, the pressure of hydrogen is less than 5MPa and the molar ratio of HMF / Ru is less than 30, the yield of 2,5-furandimethane is low, the reaction time is 3.5hr, the pressure of hydrogen is 6MPa, and HMF / Ru When the molar ratio exceeds 40, the incidence of by-product 2,5-tetrahydrofuran dimethanol may increase, which is not preferable.
  • the reaction time is 15.5 to 16.5 hr
  • the pressure of the hydrogen is 6.5 to 9.5 MPa
  • the molar ratio (mol / mol) of HMF / Ru is adjusted to 45 to 105 to 2,5 -Tetrahydrofuran may be a step of preparing methane as the main product.
  • the reaction time is 15.5h, the pressure of hydrogen is less than 6.5MPa, and the HMF / Ru molar ratio is less than 45, the yield of 2,5-tetrahydrofuran dimethanol is low, the reaction time 16.5h, the pressure of hydrogen 9.5MPa, HMF / If the Ru molar ratio exceeds 105, the incidence of by-products may increase, which is not preferable.
  • the reaction temperature of the step of preparing the furan-based compound may be 70 to 150 ° C, preferably 80 to 120 ° C, more preferably 90 to 110 ° C, even more preferably 95 to 105 ° C have.
  • the reaction temperature is less than 80 ° C, the yield of the furan-based compound is low, and when it exceeds 150 ° C, a side reaction occurs and the catalyst is decomposed at a high temperature to 2,5-furan dimethanol and 2,5-tetrahydrofuran dimethanol. It is not preferable because it is difficult to prepare a furan-based compound containing one or more selected from the group consisting of.
  • the precious metal nanoparticles may be 1 to 10% by weight based on the catalyst weight, preferably 3 to 5% by weight, more preferably 4% by weight. If the noble metal nanoparticles are contained in less than 1% by weight, the yield of the furan-based compound may be lowered, and when it is included in 10% by weight or more, the furan-based compound may be rapidly hydrogenated to cause problems in process stability, and the noble metal particles Excessive use of is undesirable as it can affect the price increase of the catalyst.
  • the step of preparing the furan-based compound may be a step performed in a single container.
  • the HMF may be derived from biomass containing at least one selected from the group consisting of cellulose and polysaccharides.
  • the method for producing the furan-based compound is performed by a solution reaction using a solvent, and the solvent is methanol, ethanol, n-propanol, iso-propanol, butanol, pentanol, tetrahydrofuran, methyl tertiary butyl ether, hexane And it may include one or more selected from the group consisting of pentane, preferably may include methanol.
  • the average particle diameter (D 50 ) of the support having the spinel structure may be 2.0 to 4.0 ⁇ m.
  • the pale pink precipitate was collected by filtration, washed with distilled water and anhydrous ethanol, and then dried at 60 ° C. for 12 hours.
  • the obtained carbonate precursor (MnCo 2 CO 3 ) is calcined in an air (20% O 2 , 80% N 2 ) atmosphere at 425 ° C. (2 ° C./min) for 8 hours, and then naturally cooled to room temperature over 8 hours to cobalt- A manganese-based spinel structure support (MnCo 2 O 4 ) was prepared.
  • the mixture was purged with hydrogen at a pressure of 0.55 MPa and the atmosphere was evacuated three times. Thereafter, the mixture was stirred at 650 rpm, heated to 100 ° C., and the carbon dioxide pressure was raised to 8.2 MPa, and then reacted for 16 hours while maintaining the pressure at 8.2 MPa, and 2,5-tetrahydrofuran dimethanol (THF-DM) was used as the main product. It was prepared.
  • THF-DM was prepared as a main product in the same manner as in Example 2, except that the reaction temperature was performed at 80 ° C instead of 100 ° C.
  • THF-DM was prepared as the main product in the same manner as in Example 2, except that the reaction temperature was performed at 120 ° C instead of 100 ° C.
  • THF-DM was prepared as the main product in the same manner as in Example 2, except that the reaction pressure was performed at 5.5 MPa instead of 8 MPa.
  • THF-DM was prepared as the main product in the same manner as in Example 2, except that the reaction pressure was performed at 6.8 MPa instead of 8 MPa.
  • THF-DM was prepared as the main product in the same manner as in Example 2, except that the reaction pressure was performed at 8.85 MPa instead of 8 MPa.
  • Example 1 2,5-furandiethanol 8.0 0.40 33.6 20 100 5.5 3
  • Example 2 2,5-tetrahydrofuran dimethanol 8.0 0.40 50 20 100 8.2 16
  • Example 3 2,5-tetrahydrofuran dimethanol 8.0 0.40 50 30 80 8 16
  • Example 4 2,5-tetrahydrofuran dimethanol 8.0 0.40 50 30 120 8 16
  • Example 5 2,5-tetrahydrofuran dimethanol 8.0 0.40 50 30 100 5.5 16
  • Example 6 2,5-tetrahydrofuran dimethanol 8.0 0.40 50 30 100 6.8 16
  • Example 7 2,5-tetrahydrofuran dimethanol 8.0 0.40 50 30 100 8.85 16
  • Example 8 2,5-tetrahydrofuran dimethanol 8.0 0.27 75 30 100 8 16
  • Example 9 2,5-tetrahydrofuran dimethanol 8.0 0.27 75 30 100 8 16
  • Example 9 2,5-tetrahydrofuran dimethanol 8.0 0.27 75 30 100 8 16
  • Example 9 2,
  • FIG. 3 shows the XRD pattern of the cobalt-manganese-based spinel structure support (MnCo 2 O 4 ) prepared according to Preparation Example 1
  • Figure 4 is a cobalt-manganese-based spinel structure support according to Preparation Example 1 ( SEM image of MnCo 2 O 4 ).
  • FIG. 5 is a SEM image of confirming a number of pores on a support (MnCo 2 O 4 ) of a cobalt-manganese-based spinel structure prepared according to Preparation Example 1
  • FIG. 6 is a cobalt-manganese base prepared according to Preparation Example 1
  • the SEM photograph of the microspheres of the spinel structure support (MnCo 2 O 4 ) is shown.
  • MnCo 2 O 4 as a spinel structure has an average particle diameter (D 50 ) of 2.0 to 4.0 ⁇ m, and the structure is a structure in which a large number of microspheres of 30 to 60 nm are integrated. Can be.
  • the cobalt-manganese-based spinel structure support (MnCo 2 O 4 ) prepared according to Preparation Example 1 of the present invention has a unique structure and size, so that when the precious metal nanoparticles are reduced and included in the support, the nano It can be seen that the particles have an efficient structure that can be formed evenly distributed in the support.
  • XPS X-ray photoelectron spectroscopy
  • TLC Thin-layer chromatography
  • 2,5-furan dimethanol and 2,5-tetrahydrofuran dimethanol were not read by TLC (Thin-layer chromatography) using a UV lamp, so a KMnO 4 solution was used.
  • dilute 2,5-furan dimethanol and 2,5-tetrahydrofuran dimethanol solutions were measured after concentration because they were unreadable in the KMnO 4 solution.
  • FIG. 9 shows the 1 H-NMR spectrum (DMSO-d 6 ) of 2,5-tetrahydrofuran dimethanol prepared according to Example 2 and subsequently purified and commercially available reagent 2,5-tetrahydrofuran dimethanol
  • Figure 10 shows the 13 C-NMR spectrum of 2,5-tetrahydrofuran dimethanol prepared according to Example 2 and then purified separately and commercially available reagent 2,5-tetrahydrofuran dimethanol.
  • the conversion method of 5-hydroxymethylperfural (HMF), the yield and selectivity of 2,5-furandimethane (FDM), and the yield and selectivity calculation method of 2,5-tetrahydrofuran dimethanol (THF-DM) may be using the following equations 1 to 5.
  • C HMF in Tables 2 to 5 below represents the conversion rate of 5-hydroxymethylperfural
  • Y FDM is the yield of 2,5-furandimethane
  • Y THF -DM is the yield of 2,5-tetrahydrofuran dimethanol Indicates.
  • FIG. 11 is a schematic diagram of HMF conversion and FDM yield according to the number of catalyst reuses when manufacturing FDM according to Example 1
  • FIG. 12 is HMF conversion and THF according to catalyst reuse frequency when manufacturing THF-DM according to Example 2 -It is a diagram of DM yield.
  • the catalyst was simply recovered by filtration and reused.
  • Co Co
  • Mn manganese
  • 2,5-tetrahydrofuran dimethanol prepared according to Example 1 and then separated and purified according to Example 2 and then purified separately according to Example 2 and
  • the ruthenium (Ru) content was analyzed using an inductively coupled plasma mass spectrometer (ICP-MS) and the results are shown in Table 6.
  • the method for producing a furan-based compound of the present invention uses 2,5-furandimethanol and 2, in a single container by hydrogenation of 5-hydroxymethylperfural using a spinel-structured support carrying precious metal nanoparticles as a catalyst.
  • 5-Tetrahydrofuran dimethanol can be optionally obtained.
  • 2,5-furan dimethanol and 2,5-tetrahydrofuran dimethanol can be obtained in high yields of 90% or more, respectively.

Abstract

The present invention relates to a method for preparing furan-based compounds, comprising a step of preparing one or more furan-based compounds selected from the group consisting of 2,5-furandimethanol (FDM) and 2,5-5etrahydrofuran dimethanol (THF-DM) by hydrogenating 5-hydroxymethylfurfural (HMF) by using hydrogen (H2) and a catalyst, wherein the catalyst comprises a support having a spinel structure in which noble metal nanoparticles are supported. Therefore, 2,5-FDM and 2,5-THF-DM can be selectively and respectively obtained in high yields of 90% or more in a single container.

Description

5-히드록시메틸퍼퓨랄로부터 2,5-퓨란디메탄올 및 2,5-테트라히드로퓨란 디메탄올의 제조방법Method for preparing 2,5-furan dimethanol and 2,5-tetrahydrofuran dimethanol from 5-hydroxymethylperfural
본 발명은 5-히드록시메틸퍼퓨랄로부터 2,5-퓨란디메탄올 및 2,5-테트라히드로퓨란 디메탄올의 제조방법에 관한 것으로, 더욱 상세하게는 귀금속 나노입자가 담지된 스피넬 구조의 지지체를 촉매로 사용하여 5-히드록시메틸퍼퓨랄로(5-Hydroxymethylfurfural, HMF)부터 2,5-퓨란디메탄올(2,5-Furandimethanol, FDM) 및 2,5-테트라히드로퓨란 디메탄올(2,5-Tetrahydrofuran dimethanol, THF-DM)로 이루어진 군에서 선택된 1종 이상의 퓨란계 화합물을 선택적으로 제조하는 방법에 관한 것이다.The present invention relates to a method for producing 2,5-furandimethanol and 2,5-tetrahydrofuran dimethanol from 5-hydroxymethylperfural, and more specifically, to support a spinel structure supporting precious metal nanoparticles. 5-Hydroxymethylfurfural (HMF) to 2,5-furandimethanol (FDM) and 2,5-tetrahydrofuran dimethanol (2,5) -Tetrahydrofuran dimethanol, THF-DM) relates to a method for selectively producing at least one furan-based compound selected from the group consisting of.
제2차 세계대전을 기점으로 공업적 생산 체계를 갖추게 되면서 다양한 수지를 기초로 하는 플라스틱들이 소비재로 대량 생산되기 시작하였다. 특히 1970년대 후반부터는 철강의 생산량을 넘어서서 최근에는 3억톤이 넘는 플라스틱이 전세계에서 생산되고 소비되고 있다. 그러나, 플라스틱은 석유 정제과정에서 나온 나프타를 이용하여 생산되는 것이므로 석유자원의 고갈, 이산화탄소 배출이 문제되고 있으며, 일회용품의 주 재료로 사용되어 제품 사용 후 곧바로 폐기됨에 따라 다량의 플라스틱이 폐기되는데 오랜 기간 썩지 않아 매립이 어렵고 소각하는 경우 다이옥신을 비롯한 발암물질이 대기 상에 배출되어 환경 문제를 초래하고 있어 이에 대한 대체소재에 관한 연구가 지속적으로 진행되고 있다.As the industrial production system was established from the start of World War II, plastics based on various resins began to be mass-produced as consumer goods. In particular, from the late 1970s, more than 300 million tons of plastic has been produced and consumed worldwide, exceeding steel production. However, since plastic is produced using naphtha from the oil refining process, depletion of petroleum resources and carbon dioxide emissions are a problem, and as it is used as the main material for disposable products, it is used for a long time before being discarded immediately after using the product. When it is difficult to incinerate due to incorrosion, carcinogens such as dioxin are released into the atmosphere, causing environmental problems, and research on alternative materials has been continuously conducted.
플라스틱의 대체제로서 과학자들은 식물 속 전분이나 셀룰로오스를 이용하는 바이오 플라스틱 소재 개발에 전력을 다하고 있다. 일례로, 5-히드록시메틸퍼퓨랄(5-hydroxymethylfurfural, 이하 HMF)은 산 촉매의 존재 하에 탄수화물 또는 셀룰로오스로부터 생산되었으며, 상기 5-히드록시메틸퍼퓨랄은 상당한 산업 응용성을 가지는 바이오매스 기반의 화합물 10종 중 하나로 분류되고 있다.As a substitute for plastics, scientists are working hard to develop bioplastic materials that use starch or cellulose in plants. In one example, 5-hydroxymethylfurfural (HMF) is produced from carbohydrate or cellulose in the presence of an acid catalyst, and the 5-hydroxymethylfurfural is based on biomass with significant industrial applicability. It is classified as one of 10 compounds.
HMF의 촉매 수소화 반응을 통하여 2,5-퓨란디메탄올(2,5-furandimethanol, FDM), 2,5-테트라히드로퓨란 디메탄올(2,5-Tetrahydrofuran dimetanol, THF-DM), 및 2,5-디메틸퓨란(2,5-dimethylfuran) 등이 제조될 수 있다. 상기 2,5-퓨란디메탄올 및 2,5-테트라히드로퓨란 디메탄올은 수지, 고분자 및 다양한 특성을 가지는 화학섬유의 제조 등 다양한 방면에서 사용될 수 있어 잠재성이 뛰어나다. 따라서, 다양한 환경에서 금속 복합체 및 금속 담지촉매를 사용하여 HMF으로부터 2,5-퓨란디메탄올 및 2,5-테트라히드로퓨란 디메탄올을 선택적으로 제조할 수 있는 HMF의 수소화 방법이 활발히 연구되어 왔다.2,5-furandimethanol (FDM), 2,5-tetrahydrofuran dimethanol (2,5-Tetrahydrofuran dimetanol, THF-DM), and 2,5 through catalytic hydrogenation of HMF -Dimethylfuran (2,5-dimethylfuran) can be prepared. The 2,5-furan dimethanol and 2,5-tetrahydrofuran dimethanol can be used in various aspects such as the production of resins, polymers, and chemical fibers having various properties, and thus has great potential. Therefore, a hydrogenation method of HMF that can selectively produce 2,5-furandimethanol and 2,5-tetrahydrofuran dimethanol from HMF using a metal complex and a metal supported catalyst in various environments has been actively studied.
탄소 담지체에 플래티늄이 담지된 금속 담지 촉매를 사용할 경우 순도 90 내지 98%의 2,5-퓨란디메탄올이 제조되지만 플래티늄이 고가이므로 상용화가 거의 불가능하다. 플래티늄 이외의 니켈, 코발트, 구리, 루테늄 또는 팔라듐이 탄소 담지체에 담지된 금속 담지 촉매를 사용할 경우 2,5-퓨란디메탄올의 수율이 매우 낮다는 단점이 있다. 상기 기재된 촉매 의외의 촉매를 사용한 종래기술에서 선택적으로 2,5-퓨란디메탄올 및 2,5-테트라히드로퓨란 디메탄올을 제조할 경우, 2,5-퓨란디메탄올 및 2,5-테트라히드로퓨란 디메탄올 둘 중 하나만 90% 이상의 고수율로 얻을 수 있다.When using a metal-carrying catalyst in which platinum is supported on a carbon carrier, 2,5-furandimethane having a purity of 90 to 98% is produced, but commercialization is almost impossible because platinum is expensive. When nickel, cobalt, copper, ruthenium or palladium other than platinum is used as a metal-carrying catalyst supported on a carbon carrier, there is a disadvantage that the yield of 2,5-furandimethane is very low. When preparing 2,5-furandidimane and 2,5-tetrahydrofuran dimethanol selectively in the prior art using catalysts other than the catalysts described above, 2,5-furandidimethanol and 2,5-tetrahydrofuran Only one of dimethanol can be obtained with a high yield of 90% or more.
따라서, 단일 용기 내에서 2,5-퓨란디메탄올 및 2,5-테트라히드로퓨란 디메탄올을 선택적으로 얻을 수 있으며 2,5-퓨란디메탄올 및 2,5-테트라히드로퓨란 디메탄올을 각각 90% 이상의 고수율로 얻을 수 있는 공정이 필요하다.Thus, 2,5-furandimethanol and 2,5-tetrahydrofuran dimethanol can be selectively obtained in a single container, and 2,5-furandimethanol and 2,5-tetrahydrofuran dimethanol are respectively 90%. A process that can be obtained with the above high yield is required.
본 발명의 목적은 귀금속 나노입자가 담지된 스피넬 구조의 지지체를 촉매로 사용하여 5-히드록시메틸퍼퓨랄로부터 2,5-퓨란디메탄올 및 2,5-테트라히드로퓨란 디메탄올로 이루어진 군에서 선택된 1종 이상의 퓨란계 화합물을 제조함으로써, 단일 용기 내에서 2,5-퓨란디메탄올 및 2,5-테트라히드로퓨란 디메탄올을 선택적으로 얻을 수 있는 퓨란계 화합물 제조방법을 제공하는데 있다.The object of the present invention is selected from the group consisting of 2,5-furandimethanol and 2,5-tetrahydrofuran dimethanol from 5-hydroxymethylperfural using a spinel-structured support carrying precious metal nanoparticles as a catalyst. It is to provide a method for producing a furan-based compound capable of selectively obtaining 2,5-furandimethanol and 2,5-tetrahydrofuran dimethanol in a single container by preparing one or more furan-based compounds.
또한, 2,5-퓨란디메탄올 및 2,5-테트라히드로퓨란 디메탄올을 각각 90% 이상의 고수율로 얻을 수 있는 퓨란계 화합물 제조방법을 제공하는데 있다.In addition, it is to provide a method for producing a furan-based compound capable of obtaining 2,5-furan dimethanol and 2,5-tetrahydrofuran dimethanol in high yields of 90% or more, respectively.
본 발명의 일 측면에 따르면, (a) 5-히드록시메틸퍼퓨랄(5-Hydroxymethylfurfural, HMF)를 수소(H2)와 촉매를 사용하여 수소화 반응시켜 2,5-퓨란디메탄올(2,5-Furandimethanol, FDM) 및 2,5-테트라히드로퓨란 디메탄올(2,5-Tetrahydrofuran dimethanol, THF-DM)로 이루어진 군에서 선택된 1종 이상을 포함하는 퓨란계 화합물을 제조하는 단계를 포함하고, 상기 촉매는 귀금속 나노입자가 담지된 스피넬 구조의 지지체를 포함하는 것인, 퓨란계 화합물의 제조방법이 제공된다.According to an aspect of the present invention, (a) 5-hydroxymethylfurfural (5-Hydroxymethylfurfural, HMF) hydrogenation reaction using a catalyst with hydrogen (H 2 ) 2,5-furandimethane (2,5 -Furandimethanol, FDM) and 2,5-tetrahydrofuran dimethanol (2,5-Tetrahydrofuran dimethanol, THF-DM) comprising the step of preparing a furan-based compound comprising at least one selected from the group consisting of, and The catalyst is to provide a method for producing a furan-based compound, which comprises a spinel-structured support carrying noble metal nanoparticles.
또한, 상기 퓨란계 화합물의 제조방법이 상기 단계 (a) 후에, (b) 상기 2,5-퓨란디메탄올 또는 2,5-테트라히드로퓨란 디메탄올을 분리하는 단계;를 추가로 포함하고, 상기 분리된 2,5-퓨란디메탄올 또는 2,5-테트라히드로퓨란 디메탄올이 코발트(Co) 0.1 내지 20 ppm, 망간(Mn) 0.1 내지 60 ppm, 및 루테늄(Ru) 0.1 내지 5 ppm을 포함할 수 있다.In addition, the method for producing the furan-based compound after the step (a), (b) separating the 2,5-furan dimethanol or 2,5-tetrahydrofuran dimethanol; further comprises, The isolated 2,5-furan dimethanol or 2,5-tetrahydrofuran dimethanol will contain 0.1 to 20 ppm cobalt (Co), 0.1 to 60 ppm manganese (Mn), and 0.1 to 5 ppm ruthenium (Ru). Can be.
또한, 상기 스피넬 구조의 지지체가 MnCo2O4, CoMn2O4, ZnAl2O4, FeAl2O4, CuFe2O4, ZnMn2O4, MnFe2O4, Fe3O4, TiFe2O4, ZnFe2O4, Mg2SiO4, Fe2SiO4로 이루어진 군에서 선택되는 1종 이상을 포함할 수 있다.In addition, the support of the spinel structure is MnCo 2 O 4 , CoMn 2 O 4 , ZnAl 2 O 4 , FeAl 2 O 4 , CuFe 2 O 4 , ZnMn 2 O 4 , MnFe 2 O 4 , Fe 3 O 4 , TiFe 2 It may include one or more selected from the group consisting of O 4 , ZnFe 2 O 4 , Mg 2 SiO 4 , Fe 2 SiO 4 .
또한, 상기 귀금속 나노입자가 백금, 팔라듐, 및 루테늄으로 이루어진 군으로부터 선택된 1종 이상을 포함할 수 있다.In addition, the noble metal nanoparticles may include one or more selected from the group consisting of platinum, palladium, and ruthenium.
또한, 상기 촉매가 루테늄 나노입자가 담지된 스피넬 구조의 MnCo2O4 지지체일 수 있다.In addition, the catalyst may be a MnCo 2 O 4 support having a spinel structure carrying ruthenium nanoparticles.
또한, 상기 퓨란계 화합물을 제조하는 단계가 반응시간, 상기 수소의 압력, 및 상기 촉매의 루테늄(Ru)에 대한 5-히드록시메틸퍼퓨랄(HMF/Ru)의 몰 비율(mol/mol)로 이루어진 군에서 선택된 1종 이상의 반응조건을 조절하여 2,5-퓨란디메탄올 및 2,5-테트라히드로퓨란 디메탄올로 이루어진 군에서 선택된 어느 하나를 90% 이상의 수율(yield)과 90% 이상의 선택도(selectivity)로 제조하는 단계인 것일 수 있다.In addition, the step of preparing the furan-based compound is the reaction time, the pressure of the hydrogen, and the molar ratio (mol / mol) of 5-hydroxymethylperfural (HMF / Ru) to ruthenium (Ru) of the catalyst By controlling one or more reaction conditions selected from the group consisting of 2,5-furandimethane and 2,5-tetrahydrofuran dimethanol, any one selected from the group consisting of 90% or higher yield and 90% or higher selectivity It may be a step of manufacturing with (selectivity).
또한, 상기 퓨란계 화합물을 제조하는 단계가 반응시간을 2.5 내지 3.5hr, 상기 수소의 압력을 5 내지 6MPa, HMF/Ru의 몰 비율(mol/mol)을 30 내지 40으로 조절하여 2,5-퓨란디메탄올을 주 생성물로 제조하는 단계인 것일 수 있다.In addition, in the step of preparing the furan-based compound, the reaction time is 2.5 to 3.5 hr, the pressure of the hydrogen is 5 to 6 MPa, and the molar ratio (mol / mol) of HMF / Ru is adjusted to 30 to 40 to 2,5- It may be a step of preparing furan dimethanol as a main product.
또한, 상기 퓨란계 화합물을 제조하는 단계가 반응시간을 15.5 내지 16.5hr, 상기 수소의 압력을 6.5 내지 9.5MPa, HMF/Ru의 몰 비율(mol/mol)을 45 내지 105로 조절하여 2,5-테트라히드로퓨란 디메탄올을 주 생성물로 제조하는 단계인 것일 수 있다.In addition, in the step of preparing the furan-based compound, the reaction time is 15.5 to 16.5 hr, the pressure of the hydrogen is 6.5 to 9.5 MPa, and the molar ratio (mol / mol) of HMF / Ru is adjusted to 45 to 105 to 2,5. -Tetrahydrofuran may be a step of preparing methane as the main product.
또한, 상기 퓨란계 화합물을 제조하는 단계의 온도가 70 내지 150℃인 것일 수 있다.In addition, the temperature of the step of preparing the furan-based compound may be 70 to 150 ℃.
또한, 상기 귀금속 나노입자가 상기 촉매 중량을 기준으로 1 내지 10 중량%일 수 있다.In addition, the precious metal nanoparticles may be 1 to 10% by weight based on the catalyst weight.
또한, 상기 귀금속 나노입자가 상기 촉매 중량을 기준으로 3 내지 5 중량%일 수 있다.In addition, the precious metal nanoparticles may be 3 to 5% by weight based on the catalyst weight.
또한, 상기 귀금속 나노입자가 상기 촉매 중량을 기준으로 4 중량%일 수 있다.In addition, the precious metal nanoparticles may be 4% by weight based on the catalyst weight.
또한, 상기 퓨란계 화합물을 제조하는 단계가 단일 용기 내에서 수행되는 단계일 수 있다.In addition, the step of preparing the furan-based compound may be a step performed in a single container.
또한, 상기 5-히드록시메틸퍼퓨랄이 셀룰로오스 및 다당류로 이루어진 군에서 선택된 1종 이상을 포함하는 바이오매스로부터 유래된 것일 수 있다.In addition, the 5-hydroxymethylperfural may be derived from biomass including one or more selected from the group consisting of cellulose and polysaccharides.
또한, 상기 퓨란계 화합물의 제조방법이 용매를 사용하는 용액반응으로 수행되고, 상기 용매가 메탄올, 에탄올, n-프로판올, iso-프로판올, 부탄올, 펜탄올, 테트라히드로퓨란, 메틸삼차부틸에테르, 헥산 및 펜탄으로 이루어진 군에서 선택된 1종 이상을 포함할 수 있다.In addition, the method for producing the furan-based compound is performed by a solution reaction using a solvent, and the solvent is methanol, ethanol, n-propanol, iso-propanol, butanol, pentanol, tetrahydrofuran, methyl tertiary butyl ether, hexane And it may include one or more selected from the group consisting of pentane.
또한, 상기 용매가 메탄올일 수 있다.In addition, the solvent may be methanol.
또한, 상기 스피넬 구조의 지지체의 평균 입경(D50)이 2.0 내지 4.0 μm일 수 있다.In addition, the average particle diameter (D 50 ) of the support having the spinel structure may be 2.0 to 4.0 μm.
본 발명의 퓨란계 화합물 제조방법은 귀금속 나노입자가 담지된 스피넬 구조의 지지체를 촉매로 사용하여 5-히드록시메틸퍼퓨랄의 수소화 반응에 의해 단일 용기 내에서 2,5-퓨란디메탄올 및 2,5-테트라히드로퓨란 디메탄올을 선택적으로 얻을 수 있다.The method for producing a furan-based compound of the present invention uses 2,5-furandimethanol and 2, in a single container by hydrogenation of 5-hydroxymethylperfural using a spinel-structured support carrying precious metal nanoparticles as a catalyst. 5-Tetrahydrofuran dimethanol can be optionally obtained.
또한, 2,5-퓨란디메탄올 및 2,5-테트라히드로퓨란 디메탄올을 각각 90% 이상의 고수율로 얻을 수 있다.In addition, 2,5-furan dimethanol and 2,5-tetrahydrofuran dimethanol can be obtained in high yields of 90% or more, respectively.
이 도면들은 본 발명의 예시적인 실시예를 설명하는데 참조하기 위함이므로, 본 발명의 기술적 사상을 첨부한 도면에 한정해서 해석하여서는 아니 된다.Since these drawings are for reference to explain exemplary embodiments of the present invention, the technical spirit of the present invention should not be limited to the accompanying drawings.
도 1은 5-히드록시메틸퍼퓨랄의 전환 반응의 개략도를 나타낸 것이다.1 shows a schematic diagram of the conversion reaction of 5-hydroxymethylperfural.
도 2는 반응 조건 변화에 따른 5-히드록시메틸퍼퓨랄의 수소화 생성물의 양상을 나타낸 것이다.Figure 2 shows the aspects of the hydrogenation product of 5-hydroxymethylperfural according to the reaction conditions.
도 3은 제조예 1에 따라 제조된 스피넬 구조의 지지체의 XRD 패턴을 나타낸 것이다.Figure 3 shows the XRD pattern of the spinel structure of the support prepared according to Preparation Example 1.
도 4는 제조예 1에 따라 제조된 스피넬 구조의 지지체의 SEM 사진을 나타낸 것이다.4 shows an SEM photograph of a spinel-structured support prepared according to Preparation Example 1.
도 5는 제조예 1에 따라 제조된 스피넬 구조의 지지체에서 다수의 기공을 확인할 수 있는 SEM 사진을 나타낸 것이다.Figure 5 shows a SEM picture that can identify a number of pores in the support of the spinel structure prepared according to Preparation Example 1.
도 6은 제조예 1에 따라 제조된 스피넬 구조의 지지체의 미소구체에 대한 SEM 사진을 나타낸 것이다.FIG. 6 shows an SEM photograph of a microsphere of a spinel-structured support prepared according to Preparation Example 1.
도 7은 제조예 2에 따라 제조된 귀금속 나노입자가 담지된 스피넬 구조의 지지체의 XPS를 나타낸 것이다.Figure 7 shows the XPS of the support of the spinel structure of the precious metal nanoparticles prepared according to Preparation Example 2.
도 8은 실시예 2에 따라 제조된 2,5-테트라히드로퓨란 디메탄올을 포함하는 반응 혼합물의 고성능 액체 크로마토그램을 나타낸 것이다.8 shows a high performance liquid chromatogram of a reaction mixture comprising 2,5-tetrahydrofuran dimethanol prepared according to Example 2.
도 9는 실시예 2에 따라 제조되고 이후 분리 정제된 2,5-테트라히드로퓨란 디메탄올 및 시판 시약 2,5-테트라히드로퓨란 디메탄올의 1H-NMR 스펙트럼을 나타낸 것이다.FIG. 9 shows the 1 H-NMR spectrum of 2,5-tetrahydrofuran dimethanol prepared according to Example 2 and subsequently purified and commercially available reagent 2,5-tetrahydrofuran dimethanol.
도 10은 실시예 2에 따라 제조되고 이후 분리 정제된 2,5-테트라히드로퓨란 디메탄올 및 시판 시약 2,5-테트라히드로퓨란 디메탄올의 13C-NMR 스펙트럼을 나타낸 것이다.FIG. 10 shows the 13 C-NMR spectrum of 2,5-tetrahydrofuran dimethanol prepared according to Example 2 and subsequently purified and commercially available reagent 2,5-tetrahydrofuran dimethanol.
도 11은 실시예 1에 따라 2,5-퓨란디메탄올을 제조시 촉매 재사용 횟수에 따른 5-히드록시메틸퍼퓨랄 전환율 및 2,5-퓨란디메탄올 수율을 도식화한 것이다.FIG. 11 is a schematic diagram showing the conversion rate of 5-hydroxymethylperfural and the yield of 2,5-furandiethanol according to the number of catalyst reuses when preparing 2,5-furandimethane according to Example 1.
도 12는 실시예 2에 따라 2,5-테트라히드로퓨란 디메탄올을 제조시 촉매 재사용 횟수에 따른 5-히드록시메틸퍼퓨랄 전환율 및 2,5-테트라히드로퓨란 디메탄올 수율을 도식화한 것이다.FIG. 12 is a schematic diagram of 5-hydroxymethylperfuran conversion and 2,5-tetrahydrofuran dimethanol yield according to the number of catalyst reuses when preparing 2,5-tetrahydrofuran dimethanol according to Example 2.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 첨부된 도면을 참조하여 본 발명의 실시예를 상세히 설명하도록 한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art to which the present invention pertains may easily practice.
그러나, 이하의 설명은 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.However, the following description is not intended to limit the present invention to specific embodiments, and when it is determined that a detailed description of known technologies related to the present invention may obscure the subject matter of the present invention, the detailed description will be omitted. .
본원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 도는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used herein are only used to describe specific embodiments, and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this application, terms such as “include” or “have” are intended to indicate that a feature, number, step, operation, component, or combination thereof described in the specification exists, or that one or more other features or It should be understood that numbers, steps, operations, elements, or combinations thereof do not preclude the presence or addition possibilities of those in combination.
또한, 이하에서 사용될 제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다.Further, terms including ordinal numbers such as first and second to be used below may be used to describe various components, but the components are not limited by the terms. The terms are used only for the purpose of distinguishing one component from other components. For example, the first component may be referred to as a second component without departing from the scope of the present invention, and similarly, the second component may be referred to as a first component.
또한, 어떤 구성요소가 다른 구성요소 상에 "형성되어" 있다거나 "적층되어" 있다고 언급된 때에는, 그 다른 구성요소의 표면 상의 전면 또는 일면에 직접 부착되어 형성되어 있거나 적층되어 있을 수도 있지만, 중간에 다른 구성요소가 더 존재할 수도 있다고 이해되어야 할 것이다.Also, when a component is referred to as being “formed” or “stacked” on another component, it may be formed or stacked directly attached to the front or one side of the surface of the other component, but may be intermediate. It should be understood that there may be other components in the.
도 1은 5-히드록시메틸퍼퓨랄의 전환 반응의 개략도를 나타낸 것이다.1 shows a schematic diagram of the conversion reaction of 5-hydroxymethylperfural.
도 1을 참고하면, 5-히드록시메틸퍼퓨랄로부터 2,5-퓨란디메탄올 및 2,5-테트라히드로퓨란 디메탄올을 선택적으로 얻을 수 있다.1, 2,5-furandimethanol and 2,5-tetrahydrofuran dimethanol can be selectively obtained from 5-hydroxymethylperfural.
이하, 본 발명의 귀금속 나노입자가 담지된 스피넬 구조의 지지체를 촉매로 사용하여 5-히드록시메틸퍼퓨랄의 수소화 반응에 의해 2,5-퓨란디메탄올 및 2,5-테트라히드로퓨란 디메탄올로 이루어진 군에서 선택된 1종 이상의 퓨란계 화합물 제조방법에 대하여 상세히 설명하기로 한다. 다만, 이는 예시로서 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 후술할 청구범위의 범주에 의해 정이될 뿐이다.Hereinafter, using the support of the spinel structure carrying the noble metal nanoparticles of the present invention as a catalyst, hydrogenation of 5-hydroxymethylperfural to 2,5-furan dimethanol and 2,5-tetrahydrofuran dimethanol A method of preparing at least one furan-based compound selected from the group consisting will be described in detail. However, this is provided as an example, and the present invention is not limited thereby, and the present invention is merely defined by the scope of claims to be described later.
도 2는 반응 조건 변화에 따른 5-히드록시메틸퍼퓨랄의 수소화 생성물의 양상을 나타낸 것이다.Figure 2 shows the aspects of the hydrogenation product of 5-hydroxymethylperfural according to the reaction conditions.
도 2를 참고하면, 본 발명은 (a) 5-히드록시메틸퍼퓨랄(5-Hydroxymethylfurfural, HMF)를 수소(H2)와 촉매를 사용하여 수소화 반응시켜 2,5-퓨란디메탄올(2,5-Furandimethanol, FDM) 및 2,5-테트라히드로퓨란 디메탄올(2,5-Tetrahydrofuran dimethanol, THF-DM)로 이루어진 군에서 선택된 1종 이상을 포함하는 퓨란계 화합물을 제조하는 단계를 포함하고, 상기 촉매는 귀금속 나노입자가 담지된 스피넬 구조의 지지체를 포함하는 것인, 퓨란계 화합물의 제조방법을 제공한다.Referring to Figure 2, the present invention is (a) 5-hydroxymethyl perfural (5-Hydroxymethylfurfural, HMF) hydrogenation reaction using hydrogen (H 2 ) and a catalyst to 2,5-furandiethanol (2, 5-Furandimethanol, FDM) and 2,5-tetrahydrofuran dimethanol (2,5-Tetrahydrofuran dimethanol, THF-DM) comprising the step of preparing a furan-based compound comprising at least one selected from the group consisting of, The catalyst provides a method for producing a furan-based compound, which comprises a spinel-structured support carrying noble metal nanoparticles.
또한, 상기 퓨란계 화합물의 제조방법이 상기 단계 (a) 후에, (b) 상기 2,5-퓨란디메탄올 또는 2,5-테트라히드로퓨란 디메탄올을 분리하는 단계;를 추가로 포함하고, 상기 분리된 2,5-퓨란디메탄올 또는 2,5-테트라히드로퓨란 디메탄올이 코발트(Co) 0.1 내지 20 ppm, 망간(Mn) 0.1 내지 60 ppm, 및 루테늄(Ru) 0.1 내지 5 ppm을 포함할 수 있다. In addition, the method for producing the furan-based compound after the step (a), (b) separating the 2,5-furan dimethanol or 2,5-tetrahydrofuran dimethanol; further comprises, The isolated 2,5-furan dimethanol or 2,5-tetrahydrofuran dimethanol will contain 0.1 to 20 ppm cobalt (Co), 0.1 to 60 ppm manganese (Mn), and 0.1 to 5 ppm ruthenium (Ru). Can be.
또한, 상기 스피넬 구조의 지지체가 MnCo2O4, CoMn2O4, ZnAl2O4, FeAl2O4, CuFe2O4, ZnMn2O4, MnFe2O4, Fe3O4, TiFe2O4, ZnFe2O4, Mg2SiO4, Fe2SiO4로 이루어진 군에서 선택되는 1종 이상을 포함할 수 있고, 바람직하게는 MnCo2O4 및 CoMn2O4로 이루어진 군에서 선택되는 1종 이상, 보다 바람직하게는 MnCo2O4를 포함할 수 있다.In addition, the support of the spinel structure is MnCo 2 O 4 , CoMn 2 O 4 , ZnAl 2 O 4 , FeAl 2 O 4 , CuFe 2 O 4 , ZnMn 2 O 4 , MnFe 2 O 4 , Fe 3 O 4 , TiFe 2 O 4 , ZnFe 2 O 4 , Mg 2 SiO 4 , Fe 2 SiO 4 It may include one or more selected from the group consisting of, preferably selected from the group consisting of MnCo 2 O 4 and CoMn 2 O 4 It may contain one or more, more preferably MnCo 2 O 4 .
또한, 상기 귀금속이 백금, 팔라듐, 및 루테늄으로 이루어진 군에서 선택된 1종 이상을 포함할 수 있고, 바람직하게는 루테늄을 포함할 수 있다.In addition, the precious metal may include one or more selected from the group consisting of platinum, palladium, and ruthenium, and preferably ruthenium.
상기 귀금속 나노입자의 입자 크기가 5 내지 15nm일 수 있고, 상기 5 내지 15nm 크기의 귀금속 나노 입자는 상기 스피넬 구조의 지지체 내부에 효율적으로 포함될 수 있다. 또한, 스피넬 지지체가 가지는 다수의 미소구체가 집적된 구조 내에 귀금속 입자가 고르게 분산될 수 있어, 퓨란계 화합물의 안정적인 수소화 반응을 유도 할 수 있다.The particle size of the noble metal nanoparticles may be 5 to 15 nm, and the noble metal nanoparticles of the 5 to 15 nm size may be efficiently contained in the support of the spinel structure. In addition, since noble metal particles can be uniformly dispersed in a structure in which a number of microspheres possessed by a spinel support are integrated, it is possible to induce a stable hydrogenation reaction of a furan compound.
또한, 상기 촉매가 루테늄 나노입자가 담지된 스피넬 구조의 MnCo2O4 지지체일 수 있다.In addition, the catalyst may be a MnCo 2 O 4 support having a spinel structure carrying ruthenium nanoparticles.
또한, 상기 퓨란계 화합물을 제조하는 단계가 반응시간, 상기 수소의 압력, 및 상기 촉매의 루테늄(Ru)에 대한 5-히드록시메틸퍼퓨랄(HMF/Ru)의 몰 비율(mol/mol)로 이루어진 군에서 선택된 1종 이상의 반응조건을 조절하여 2,5-퓨란디메탄올 및 2,5-테트라히드로퓨란 디메탄올로 이루어진 군에서 선택된 어느 하나를 90% 이상의 수율(yield)과 90% 이상의 선택도(selectivity)로 제조하는 단계인 것일 수 있다.In addition, the step of preparing the furan-based compound is the reaction time, the pressure of the hydrogen, and the molar ratio (mol / mol) of 5-hydroxymethylperfural (HMF / Ru) to ruthenium (Ru) of the catalyst By controlling one or more reaction conditions selected from the group consisting of 2,5-furandimethane and 2,5-tetrahydrofuran dimethanol, any one selected from the group consisting of 90% or higher yield and 90% or higher selectivity It may be a step of manufacturing with (selectivity).
또한, 상기 퓨란계 화합물을 제조하는 단계가 반응 시간을 2.5 내지 3.5hr, 상기 수소의 압력을 5 내지 6MPa, HMF/Ru의 몰 비율(mol/mol)을 30 내지 40으로 조절하여 2,5-퓨란디메탄올을 주생성물로 제조하는 단계인 것일 수 있다. 상기 반응 시간이 2.5hr 미만, 수소의 압력이 5MPa 미만 및 HMF/Ru의 몰 비율이 30 미만일 경우 2,5-퓨란디메탄올의 수율이 낮고, 반응 시간 3.5hr, 수소의 압력 6MPa, HMF/Ru 몰 비율 40을 초과할 경우 부산물인 2,5-테트라히드로퓨란 디메탄올의 발생율이 높아질 수 있어 바람직하지 않다. In addition, in the step of preparing the furan-based compound, the reaction time is 2.5 to 3.5 hr, the pressure of the hydrogen is 5 to 6 MPa, and the molar ratio (mol / mol) of HMF / Ru is adjusted to 30 to 40 to 2,5- It may be a step in which furan dimethanol is prepared as a main product. When the reaction time is less than 2.5hr, the pressure of hydrogen is less than 5MPa and the molar ratio of HMF / Ru is less than 30, the yield of 2,5-furandimethane is low, the reaction time is 3.5hr, the pressure of hydrogen is 6MPa, and HMF / Ru When the molar ratio exceeds 40, the incidence of by-product 2,5-tetrahydrofuran dimethanol may increase, which is not preferable.
또한, 상기 퓨란계 화합물을 제조하는 단계가 반응 시간을 15.5 내지 16.5hr, 상기 수소의 압력을 6.5 내지 9.5MPa, HMF/Ru의 몰 비율(mol/mol)을 45 내지 105로 조절하여 2,5-테트라히드로퓨란 디메탄올을 주생성물로 제조하는 단계인 것일 수 있다. 상기 반응 시간이 15.5h, 수소의 압력이 6.5MPa 미만, HMF/Ru 몰 비율 45 미만일 경우 2,5-테트라히드로퓨란 디메탄올의 수율이 낮고, 반응 시간 16.5h, 수소의 압력 9.5MPa, HMF/Ru 몰 비율 105를 초과할 경우 부산물의 발생율이 높아질 수 있어 바람직하지 않다.In addition, in the step of preparing the furan-based compound, the reaction time is 15.5 to 16.5 hr, the pressure of the hydrogen is 6.5 to 9.5 MPa, and the molar ratio (mol / mol) of HMF / Ru is adjusted to 45 to 105 to 2,5 -Tetrahydrofuran may be a step of preparing methane as the main product. When the reaction time is 15.5h, the pressure of hydrogen is less than 6.5MPa, and the HMF / Ru molar ratio is less than 45, the yield of 2,5-tetrahydrofuran dimethanol is low, the reaction time 16.5h, the pressure of hydrogen 9.5MPa, HMF / If the Ru molar ratio exceeds 105, the incidence of by-products may increase, which is not preferable.
또한, 상기 퓨란계 화합물을 제조하는 단계의 반응 온도가 70 내지 150℃일 수 있고, 바람직하게는 80 내지 120℃, 보다 바람직하게는 90 내지 110℃, 보다 더욱 바람직하게는 95 내지 105℃일 수 있다. 상기 반응 온도가 80℃ 미만일 경우 퓨란계 화합물의 수율이 낮고, 150℃를 초과할 경우 부반응이 일어나고 촉매가 높은 온도에서 분해되어 2,5-퓨란디메탄올 및 2,5-테트라히드로퓨란 디메탄올로 이루어진 군에서 선택된 1종 이상을 포함하는 퓨란계 화합물을 제조하기 어려우므로 바람직하지 않다. In addition, the reaction temperature of the step of preparing the furan-based compound may be 70 to 150 ° C, preferably 80 to 120 ° C, more preferably 90 to 110 ° C, even more preferably 95 to 105 ° C have. When the reaction temperature is less than 80 ° C, the yield of the furan-based compound is low, and when it exceeds 150 ° C, a side reaction occurs and the catalyst is decomposed at a high temperature to 2,5-furan dimethanol and 2,5-tetrahydrofuran dimethanol. It is not preferable because it is difficult to prepare a furan-based compound containing one or more selected from the group consisting of.
또한, 상기 귀금속 나노입자가 상기 촉매 중량을 기준으로 1 내지 10 중량%일 수 있고, 바람직하게는 3 내지 5 중량%, 보다 바람직하게는 4 중량%일 수 있다. 상기 귀금속 나노 입자가 1 중량% 미만으로 포함되면 퓨란계 화합물의 수득율이 낮아질 수 있고, 10 중량% 이상으로 포함되면 퓨란계 화합물이 급격하게 수소화하여 공정상의 안정성에 문제가 발생될 수 있고, 귀금속 입자의 과도한 사용은 촉매의 가격 상승에 영향을 미칠 수 있어 바람직하지 않다. In addition, the precious metal nanoparticles may be 1 to 10% by weight based on the catalyst weight, preferably 3 to 5% by weight, more preferably 4% by weight. If the noble metal nanoparticles are contained in less than 1% by weight, the yield of the furan-based compound may be lowered, and when it is included in 10% by weight or more, the furan-based compound may be rapidly hydrogenated to cause problems in process stability, and the noble metal particles Excessive use of is undesirable as it can affect the price increase of the catalyst.
또한, 상기 퓨란계 화합물을 제조하는 단계가 단일 용기 내에서 수행되는 단계인 것일 수 있다.In addition, the step of preparing the furan-based compound may be a step performed in a single container.
또한, 상기 HMF가 셀룰로오스 및 다당류로 이루어진 군에서 선택된 1종 이상을 포함하는 바이오매스로부터 유래된 것일 수 있다.In addition, the HMF may be derived from biomass containing at least one selected from the group consisting of cellulose and polysaccharides.
또한, 상기 퓨란계 화합물의 제조방법이 용매를 사용하는 용액반응으로 수행되고, 상기 용매가 메탄올, 에탄올, n-프로판올, iso-프로판올, 부탄올, 펜탄올, 테트라히드로퓨란, 메틸삼차부틸에테르, 헥산 및 펜탄으로 이루어진 군에서 선택된 1종 이상을 포함할 수 있으며 바람직하게는 메탄올을 포함할 수 있다.In addition, the method for producing the furan-based compound is performed by a solution reaction using a solvent, and the solvent is methanol, ethanol, n-propanol, iso-propanol, butanol, pentanol, tetrahydrofuran, methyl tertiary butyl ether, hexane And it may include one or more selected from the group consisting of pentane, preferably may include methanol.
또한, 상기 스피넬 구조의 지지체의 평균 입경(D50)이 2.0 내지 4.0 μm일 수 있다.In addition, the average particle diameter (D 50 ) of the support having the spinel structure may be 2.0 to 4.0 μm.
[실시예] [Example]
이하, 본 발명의 바람직한 실시예를 들어 설명하도록 한다. 그러나 이는 예시를 위한 것으로서 이에 의하여 본 발명의 범위가 한정되는 것은 아니다.Hereinafter, a preferred embodiment of the present invention will be described. However, this is for illustrative purposes, and the scope of the present invention is not limited thereby.
제조예Manufacturing example 1: 코발트-망간 기반  1: Cobalt-manganese based 스피넬Spinel 구조의 지지체 Structure support
원료로서 상업적으로 구매 가능한 (CH3COO)2Coㆍ4H2O 6.53mol 및 Mn(CH3COO)2ㆍ4H2O 3.26mol (Co:Mn 몰 비율 2:1)을 40L의 물에 녹이고, 30분 동안 교반하여 균질화 하고, 동시에 (NH4)2SO4 5kg을 물 40L에 녹인 수용액을 준비하였다. 상기 두 용액을 천천히 혼합한 후 4시간 동안 교반하고, NH4HCO3 과포화수용액 (~5kg)을 상기 용액에 천천히 혼합 후 6시간 동안 교반하였다. Dissolve commercially available (CH 3 COO) 2 Co.4H 2 O 6.53 mol and Mn (CH 3 COO) 2 · 4H 2 O 3.26 mol (Co: Mn molar ratio 2: 1) in 40 L of water, The mixture was homogenized by stirring for 30 minutes, and at the same time, an aqueous solution in which 5 kg of (NH 4 ) 2 SO 4 was dissolved in 40 L of water was prepared. After slowly mixing the two solutions, the mixture was stirred for 4 hours, and the NH 4 HCO 3 supersaturated aqueous solution (~ 5 kg) was slowly mixed into the solution, followed by stirring for 6 hours.
여과를 통해 연분홍색 침전물을 회수하여 증류수 및 무수에탄올로 세척한 후 60℃에서 12시간 동안 건조하였다. 얻어진 탄산염 전구체(MnCo2CO3)는 425℃(2℃/min)의 공기(20% O2, 80% N2) 분위기에서 8시간 동안 소성한 뒤 8시간에 걸쳐 상온까지 자연 냉각하여 코발트-망간 기반 스피넬 구조의 지지체(MnCo2O4)를 제조하였다.The pale pink precipitate was collected by filtration, washed with distilled water and anhydrous ethanol, and then dried at 60 ° C. for 12 hours. The obtained carbonate precursor (MnCo 2 CO 3 ) is calcined in an air (20% O 2 , 80% N 2 ) atmosphere at 425 ° C. (2 ° C./min) for 8 hours, and then naturally cooled to room temperature over 8 hours to cobalt- A manganese-based spinel structure support (MnCo 2 O 4 ) was prepared.
제조예Manufacturing example 2: 루테늄 나노입자를  2: Ruthenium nanoparticles 담지한Loaded 코발트-망간 기반  Cobalt-manganese based 스피넬Spinel 구조의 지지체 Structure support
5L 2구 플라스크에 상기 제조예 1에 따라 제조된 MnCo2O4 입자 500g, RuCl3ㆍ3H2O 43.2g 및 증류수 2L를 넣고 냉각조에 담궈 질소 분위기에서 12시간 동안 교반하였다. 얻어진 혼합물을 교반하면서 NaBH4 수용액(RuCl3ㆍ3H2O의 10배)을 한 방울씩 가한 후 질소 분위기의 상온에서 하루 동안 500rpm으로 교반하여 Ru(Ⅲ)을 Ru(0)으로 환원시켰다. 이후, 여과를 통해 촉매를 회수하여 에탄올로 세척한 후 65℃, 진공 상태에서 하루 동안 건조하여 루테늄 나노입자를 담지한 코발트-망간 기반 스피넬 구조의 지지체(Ru/MnCo2O4, Ru 4wt%)를 제조하였다.MnCo 2 O 4 prepared according to Preparation Example 1 in a 5L 2-neck flask 500g of particles, RuCl 3 ㆍ 3H 2 O 43.2g and 2L of distilled water were added and immersed in a cooling bath and stirred in a nitrogen atmosphere for 12 hours. While stirring the obtained mixture, NaBH 4 aqueous solution (10 times of RuCl 3 ㆍ 3H 2 O) was added dropwise, followed by stirring at 500 rpm for 1 day at room temperature in a nitrogen atmosphere to reduce Ru (III) to Ru (0). Thereafter, the catalyst was recovered through filtration, washed with ethanol, and dried at 65 ° C. for 1 day in vacuum to support a cobalt-manganese-based spinel structure supporting ruthenium nanoparticles (Ru / MnCo 2 O 4 , Ru 4wt%) Was prepared.
실시예Example 1: FDM을  1: FDM 주생성물로As the main product 제조 Produce
자기 교반기 및 전기 히터가 장착된 고압의 스테인리스 스틸 반응기 100mL에 5-히드록시메틸퍼퓨랄 1.0g(8.0mmol), 용매로서 메탄올 30mL 및 촉매로서 상기 제조예 2에 따라 제조된 루테늄 나노입자를 담지한 코발트-망간 기반 스피넬 구조의 지지체(Ru/MnCo2O4, Ru 4wt%) 0.4g을 혼합하여 혼합물을 제조하였다. 이때, 루테늄 나노입자와 5-히드록시메틸퍼퓨랄의 몰 비율(HMF/Ru)은 33.6이다.100 mL of a high pressure stainless steel reactor equipped with a magnetic stirrer and an electric heater was loaded with 1.0 g (8.0 mmol) of 5-hydroxymethylperfural, 30 mL of methanol as a solvent, and ruthenium nanoparticles prepared according to Preparation Example 2 as a catalyst. A mixture was prepared by mixing 0.4 g of a cobalt-manganese-based spinel structure support (Ru / MnCo 2 O 4 , Ru 4wt%). At this time, the molar ratio (HMF / Ru) of ruthenium nanoparticles and 5-hydroxymethylperfural is 33.6.
상기 혼합물이 존재하는 반응기에 0.55MPa의 압력으로 수소를 퍼지한 후 대기를 3회 배기시켰다. 이후, 600rpm으로 교반하며 100℃까지 가열하고 수소 압력을 5.5MPa로 상승시킨 다음 압력을 5.5MPa로 유지하면서 3시간 동안 반응시켜 2,5-퓨란디메탄올(FDM)을 주생성물로 제조하였다.After purging hydrogen at a pressure of 0.55 MPa in the reactor in which the mixture was present, the atmosphere was evacuated three times. Thereafter, the mixture was stirred at 600 rpm, heated to 100 ° C, and the hydrogen pressure was raised to 5.5 MPa, and then reacted for 3 hours while maintaining the pressure at 5.5 MPa to prepare 2,5-furandiethanol (FDM) as a main product.
실시예Example 2:  2: THFTHF -DM을 -DM 주생성물로As the main product 제조 Produce
자기 교반기 및 전기 히터가 장착된 고압의 스테인리스 스틸 반응기 100mL에 5-히드록시메틸퍼퓨랄 1.0g(8.0mmol), 용매로서 메탄올 30mL, 촉매로서 상기 제조예 2에 따라 제조된 루테늄 나노입자를 담지한 코발트-망간 기반 스피넬 구조의 지지체(Ru/MnCo2O4, Ru 4wt%) 0.40g을 혼합하여 혼합물을 제조하였다. 이때, 루테늄 나노입자와 5-히드록시메틸퍼퓨랄의 몰 비율(HMF/Ru)은 50이다.100 mL of a high-pressure stainless steel reactor equipped with a magnetic stirrer and an electric heater was loaded with 1.0 g (8.0 mmol) of 5-hydroxymethylperfural, 30 mL of methanol as a solvent, and ruthenium nanoparticles prepared according to Preparation Example 2 as a catalyst. A mixture was prepared by mixing 0.40 g of a cobalt-manganese-based spinel structure support (Ru / MnCo 2 O 4 , Ru 4wt%). At this time, the molar ratio (HMF / Ru) of ruthenium nanoparticles and 5-hydroxymethylperfural is 50.
상기 혼합물에 0.55MPa 압력으로 수소를 반응기로 퍼지한 후 대기를 3회 배기시켰다. 이후, 650rpm으로 교반하며 100℃까지 가열하고 이산화탄소 압력을 8.2MPa로 상승시킨 다음 압력을 8.2MPa로 유지하면서 16시간 동안 반응시켜 2,5-테트라히드로퓨란 디메탄올(THF-DM)을 주생성물로 제조하였다.The mixture was purged with hydrogen at a pressure of 0.55 MPa and the atmosphere was evacuated three times. Thereafter, the mixture was stirred at 650 rpm, heated to 100 ° C., and the carbon dioxide pressure was raised to 8.2 MPa, and then reacted for 16 hours while maintaining the pressure at 8.2 MPa, and 2,5-tetrahydrofuran dimethanol (THF-DM) was used as the main product. It was prepared.
실시예Example 3:  3: THFTHF -DM을 -DM 주생성물로As the main product 제조 Produce
반응 온도를 100℃로 수행한 것 대신에 80℃로 수행한 것을 제외하고는 실시예 2와 동일한 방법으로 THF-DM을 주생성물로 제조하였다.THF-DM was prepared as a main product in the same manner as in Example 2, except that the reaction temperature was performed at 80 ° C instead of 100 ° C.
실시예Example 4:  4: THFTHF -DM을 -DM 주생성물로As the main product 제조 Produce
반응 온도를 100℃로 수행한 것 대신에 120℃로 수행한 것을 제외하고는 실시예 2와 동일한 방법으로 THF-DM을 주생성물로 제조하였다.THF-DM was prepared as the main product in the same manner as in Example 2, except that the reaction temperature was performed at 120 ° C instead of 100 ° C.
실시예Example 5:  5: THFTHF -DM을 -DM 주생성물로As the main product 제조 Produce
반응 압력을 8MPa로 수행한 것 대신에 5.5MPa로 수행한 것을 제외하고는 실시예 2와 동일한 방법으로 THF-DM을 주생성물로 제조하였다.THF-DM was prepared as the main product in the same manner as in Example 2, except that the reaction pressure was performed at 5.5 MPa instead of 8 MPa.
실시예Example 6:  6: THFTHF -DM을 -DM 주생성물로As the main product 제조 Produce
반응 압력을 8MPa로 수행한 것 대신에 6.8MPa로 수행한 것을 제외하고는 실시예 2와 동일한 방법으로 THF-DM을 주생성물로 제조하였다.THF-DM was prepared as the main product in the same manner as in Example 2, except that the reaction pressure was performed at 6.8 MPa instead of 8 MPa.
실시예Example 7:  7: THFTHF -DM을 -DM 주생성물로As the main product 제조 Produce
반응 압력을 8MPa로 수행한 것 대신에 8.85MPa로 수행한 것을 제외하고는 실시예 2와 동일한 방법으로 THF-DM을 주생성물로 제조하였다.THF-DM was prepared as the main product in the same manner as in Example 2, except that the reaction pressure was performed at 8.85 MPa instead of 8 MPa.
실시예Example 8:  8: THFTHF -DM을 -DM 주생성물로As the main product 제조 Produce
촉매를 0.40g 사용하여 루테늄 나노입자와 5-히드록시메틸퍼퓨랄의 몰 비율(HMF/Ru)을 50으로 한 것 대신에 촉매를 0.27g 사용하여 HMF/Ru 몰 비율을 75로 한 것을 제외하고는 실시예 2와 동일한 방법으로 THF-DM을 주생성물로 제조하였다.Instead of using a catalyst of 0.40 g to make the molar ratio (HMF / Ru) of ruthenium nanoparticles and 5-hydroxymethylperfural to 50, instead of using a catalyst of 0.27 g to make an HMF / Ru molar ratio of 75, In the same manner as in Example 2, THF-DM was prepared as the main product.
실시예Example 9:  9: THFTHF -DM을 -DM 주생성물로As the main product 제조 Produce
촉매를 0.40g 사용하여 루테늄 나노입자와 5-히드록시메틸퍼퓨랄의 몰 비율(HMF/Ru)을 50으로 한 것 대신에 촉매를 0.20g 사용하여 HMF/Ru 몰 비율을 100으로 한 것을 제외하고는 실시예 2와 동일한 방법으로 THF-DM을 주생성물로 제조하였다.Except that the molar ratio (HMF / Ru) of ruthenium nanoparticles and 5-hydroxymethylperfural was set to 50 using 0.40 g of the catalyst, and the HMF / Ru molar ratio was set to 100 using 0.20 g of the catalyst. In the same manner as in Example 2, THF-DM was prepared as the main product.
하기 표 1은 실시예 1 내지 9에 따른 퓨란계 화합물 제조의 반응 조건을 정리하여 나타낸 것이다.Table 1 below summarizes the reaction conditions for the preparation of furan compounds according to Examples 1 to 9.
구분division 주생성물Main product HMF 양(mmol)HMF amount (mmol) 촉매 양(g)Catalyst amount (g) HMF/Ru몰 비(mol/mol)HMF / Ru molar ratio (mol / mol) 용매 양(mL)Solvent amount (mL) 반응온도(℃)Reaction temperature (℃) 반응 압력(MPa)Reaction pressure (MPa) 반응 시간(h)Reaction time (h)
실시예 1Example 1 2,5-퓨란디메탄올2,5-furandiethanol 8.08.0 0.400.40 33.633.6 2020 100100 5.55.5 33
실시예 2Example 2 2,5-테트라히드로퓨란 디메탄올2,5-tetrahydrofuran dimethanol 8.08.0 0.400.40 5050 2020 100100 8.28.2 1616
실시예 3Example 3 2,5-테트라히드로퓨란 디메탄올2,5-tetrahydrofuran dimethanol 8.08.0 0.400.40 5050 3030 8080 88 1616
실시예 4Example 4 2,5-테트라히드로퓨란 디메탄올2,5-tetrahydrofuran dimethanol 8.08.0 0.400.40 5050 3030 120120 88 1616
실시예 5Example 5 2,5-테트라히드로퓨란 디메탄올2,5-tetrahydrofuran dimethanol 8.08.0 0.400.40 5050 3030 100100 5.55.5 1616
실시예 6Example 6 2,5-테트라히드로퓨란 디메탄올2,5-tetrahydrofuran dimethanol 8.08.0 0.400.40 5050 3030 100100 6.86.8 1616
실시예 7Example 7 2,5-테트라히드로퓨란 디메탄올2,5-tetrahydrofuran dimethanol 8.08.0 0.400.40 5050 3030 100100 8.858.85 1616
실시예 8Example 8 2,5-테트라히드로퓨란 디메탄올2,5-tetrahydrofuran dimethanol 8.08.0 0.270.27 7575 3030 100100 88 1616
실시예 9Example 9 2,5-테트라히드로퓨란 디메탄올2,5-tetrahydrofuran dimethanol 8.08.0 0.200.20 100100 3030 100100 88 1616
[시험예] [Test Example]
스피넬Spinel 구조의 지지체 구조 확인 Check the structure of the support structure
도 3은 제조예 1에 따라 제조된 코발트-망간 기반 스피넬 구조의 지지체(MnCo2O4)의 XRD 패턴을 나타낸 것이고, 도 4는 제조예 1에 따라 제조된 코발트-망간 기반 스피넬 구조의 지지체(MnCo2O4)의 SEM 사진을 나타낸 것이다. 도 5는 제조예 1에 따라 제조된 코발트-망간 기반 스피넬 구조의 지지체(MnCo2O4)에서 다수의 기공을 확인할 수 있는 SEM 사진이고, 도 6은 제조예 1에 따라 제조된 코발트-망간 기반 스피넬 구조의 지지체(MnCo2O4)의 미소구체에 대한 SEM 사진을 나타낸 것이다.Figure 3 shows the XRD pattern of the cobalt-manganese-based spinel structure support (MnCo 2 O 4 ) prepared according to Preparation Example 1, Figure 4 is a cobalt-manganese-based spinel structure support according to Preparation Example 1 ( SEM image of MnCo 2 O 4 ). FIG. 5 is a SEM image of confirming a number of pores on a support (MnCo 2 O 4 ) of a cobalt-manganese-based spinel structure prepared according to Preparation Example 1, and FIG. 6 is a cobalt-manganese base prepared according to Preparation Example 1 The SEM photograph of the microspheres of the spinel structure support (MnCo 2 O 4 ) is shown.
도 3을 참고하면, MnCo2O4가 잘 합성된 것을 확인할 수 있다.Referring to Figure 3, it can be seen that MnCo 2 O 4 was synthesized well.
도 4 내지 6을 참고하면, 스피넬 구조로서 MnCo2O4가 평균 입경(D50) 2.0 내지 4.0μm인 것을 확인할 수 있으며, 상기 구조는 30 내지 60nm의 미소구체가 다수 집적되어 이루어진 구조인 것을 확인할 수 있다. 또한, 본 발명의 제조예 1에 따라 제조된 코발트-망간 기반 스피넬 구조의 지지체(MnCo2O4)는 특유의 구조 및 사이즈를 가짐으로써, 귀금속 나노입자가 환원되어 지지체 내부에 포함되었을 경우 그 나노입자가 지지체 내에 고르게 분포되어 형성될 수 있는 효율적인 구조를 가지고 있음을 알 수 있다.4 to 6, it can be seen that MnCo 2 O 4 as a spinel structure has an average particle diameter (D 50 ) of 2.0 to 4.0 μm, and the structure is a structure in which a large number of microspheres of 30 to 60 nm are integrated. Can be. In addition, the cobalt-manganese-based spinel structure support (MnCo 2 O 4 ) prepared according to Preparation Example 1 of the present invention has a unique structure and size, so that when the precious metal nanoparticles are reduced and included in the support, the nano It can be seen that the particles have an efficient structure that can be formed evenly distributed in the support.
루테늄 나노입자 Ruthenium nanoparticles 담지된Supported 스피넬Spinel 구조의 지지체 구조 확인 Check the structure of the support structure
도 7은 제조예 2에 따라 제조된 루테늄 나노입자가 담지된 스피넬 구조의 지지체(Ru/MnCo2O4, Ru 4wt%)의 X-ray photoelectron spectroscopy(XPS)이다.7 is an X-ray photoelectron spectroscopy (XPS) of a spinel-structured support (Ru / MnCo 2 O 4 , Ru 4wt%) carrying ruthenium nanoparticles prepared according to Preparation Example 2.
도 7를 참고하면, 도 7의 (a)에서 Co, Mn, O 및 Ru이 존재하는 것을 확인할 수 있고, (d)에서는 O의 1s 스펙트럼으로부터 O 원자가 스피넬 격자 내에 존재하는 것을 확인할 수 있으며, (f)에서는 Ru의 3P3/2의 피크의 최대값이 Ru의 3d 지역인 455 내지 480eV에서 존재하는 것으로부터, Ru가 금속 입자임을 확인할 수 있다.Referring to FIG. 7, it can be confirmed that Co, Mn, O, and Ru are present in (a) of FIG. 7, and (d) it can be confirmed that O atoms are present in the spinel lattice from the 1s spectrum of O, In f), it can be confirmed that Ru is a metal particle since the maximum value of the peak of 3P 3/2 of Ru is present in the 3d region of Ru at 455 to 480 eV.
2,5-2,5- 퓨란디메탄올Furandimethanol 분리 정제 Separation tablets
실시예 1에 따라 제조된 2,5-퓨란디메탄올을 포함하는 반응 혼합물(미반응 HMF, 생성물 FDM 포함)에서 메탄올을 45℃에서 증발시키고, 60℃에서 1시간 더 증발시켜 농축된 혼합 액체를 제조하였다. 상기 농축된 혼합 액체에 실리카를 넣고 충분히 교반한 후 혼합 액체가 충분히 흡수되도록 소량의 아세톤을 넣고 하룻동안 교반시켰다. 다시 아세톤을 증발시킨 뒤, 혼합 액체가 흡수된 실리카에 용리액(에틸 아세테이트:헥산=1:2)을 넣은 뒤 컬럼을 통해 분리 및 정제 하였다. In a reaction mixture containing 2,5-furandimethane prepared according to Example 1 (including unreacted HMF and product FDM), methanol was evaporated at 45 ° C, and evaporated at 60 ° C for 1 hour to give a concentrated mixed liquid. It was prepared. After adding silica to the concentrated mixed liquid and sufficiently stirring, a small amount of acetone was added to sufficiently absorb the mixed liquid and stirred for one day. After evaporating acetone again, the eluent (ethyl acetate: hexane = 1: 2) was added to the silica absorbed by the mixed liquid, followed by separation and purification through a column.
2,5-2,5- 테트라히드로퓨란Tetrahydrofuran 디메탄올Dimethanol 분리 정제 Separation tablets
실시예 2에 따라 제조된 2,5-테트라히드로퓨란 디메탄올을 포함하는 반응 혼합물(미반응 HMF, 중간체 FDM 및 생성물 THF-DM 포함)에서 메탄올을 45℃에서 증발시키고, 60℃에서 1시간 더 증발시켜 농축된 혼합 액체를 제조하였다. 상기 농축된 혼합 액체에 실리카를 넣고 충분히 교반한 후 혼합 액체가 충분히 흡수되도록 소량의 아세톤을 넣고 하룻동안 교반시켰다. 다시 아세톤을 증발시킨 뒤, 혼합 액체가 흡수된 실리카에 용리액(에틸 아세테이트:헥산=1:2)을 넣은 뒤 컬럼을 통해 분리 및 정제 하였다. In a reaction mixture comprising 2,5-tetrahydrofuran dimethanol prepared according to Example 2 (including unreacted HMF, intermediate FDM and product THF-DM), methanol was evaporated at 45 ° C. and further at 60 ° C. for another hour. Evaporation gave a concentrated mixed liquid. After adding silica to the concentrated mixed liquid and sufficiently stirring, a small amount of acetone was added to sufficiently absorb the mixed liquid and stirred for one day. After evaporating acetone again, the eluent (ethyl acetate: hexane = 1: 2) was added to the silica absorbed by the mixed liquid, followed by separation and purification through a column.
도 8은 실시예 2에 따라 제조된 2,5-테트라히드로퓨란 디메탄올을 포함하는 반응 혼합물의 고성능 액체 크로마토그램을 나타낸 것이다. 8 shows a high performance liquid chromatogram of a reaction mixture comprising 2,5-tetrahydrofuran dimethanol prepared according to Example 2.
도 8을 참고하면, 처음 5-히드록시메틸퍼퓨랄이 분리되어 나오고, 이후 2,5-퓨란디메탄올, 2,5-테트라히드로퓨란 디메탄올 순서로 분리되는 것을 확인할 수 있다. Referring to FIG. 8, it can be seen that the first 5-hydroxymethylperfural is separated and then separated in the order of 2,5-furan dimethanol and 2,5-tetrahydrofuran dimethanol.
이후, 2,5-퓨란디메탄올 및 2,5-테트라히드로퓨란 디메탄올의 TLC(Thin-layer chromatography, 얇은층 크로마토그래피) 분석을 진행하였다. 이때, 2,5-퓨란디메탄올 및 2,5-테트라히드로퓨란 디메탄올은 UV 램프를 이용한 TLC(Thin-layer chromatography, 얇은층 크로마토그래피)로 판독이 불가능하므로 KMnO4 용액을 이용하였다. 또한, 묽은 2,5-퓨란디메탄올 및 2,5-테트라히드로퓨란 디메탄올 용액은 KMnO4 용액에서 판독이 불가능하므로 농축시킨 뒤 측정하였다.Then, TLC (Thin-layer chromatography) analysis of 2,5-furan dimethanol and 2,5-tetrahydrofuran dimethanol was performed. At this time, 2,5-furan dimethanol and 2,5-tetrahydrofuran dimethanol were not read by TLC (Thin-layer chromatography) using a UV lamp, so a KMnO 4 solution was used. In addition, dilute 2,5-furan dimethanol and 2,5-tetrahydrofuran dimethanol solutions were measured after concentration because they were unreadable in the KMnO 4 solution.
TLC 분석으로 2,5-퓨란디메탄올이 모두 분리되어 나온 시점부터 2,5-테트라히드로퓨란 디메탄올이 포함된 용리액을 취합하고 용리액을 증발시켜 분리 정제된 2,5-테트라히드로퓨란 디메탄올을 얻었다.From the time when all 2,5-furan dimethanol was separated by TLC analysis, 2,5-tetrahydrofuran dimethanol was collected and eluent was evaporated to separate and purified 2,5-tetrahydrofuran dimethanol. Got.
분리 정제된 2,5-Separately purified 2,5- 테트라히드로퓨란Tetrahydrofuran 디메탄올Dimethanol 구조 확인 Structure check
도 9는 실시예 2에 따라 제조되고 이후 분리 정제된 2,5-테트라히드로퓨란 디메탄올 및 시판 시약 2,5-테트라히드로퓨란 디메탄올의 1H-NMR 스펙트럼(DMSO-d6)을 나타낸 것이고, 도 10은 실시예 2에 따라 제조되고 이후 분리 정제된 2,5-테트라히드로퓨란 디메탄올 및 시판 시약 2,5-테트라히드로퓨란 디메탄올의 13C-NMR 스펙트럼을 나타낸 것이다.FIG. 9 shows the 1 H-NMR spectrum (DMSO-d 6 ) of 2,5-tetrahydrofuran dimethanol prepared according to Example 2 and subsequently purified and commercially available reagent 2,5-tetrahydrofuran dimethanol , Figure 10 shows the 13 C-NMR spectrum of 2,5-tetrahydrofuran dimethanol prepared according to Example 2 and then purified separately and commercially available reagent 2,5-tetrahydrofuran dimethanol.
도 9 내지 10을 참고하면, 실시예 2에 따라 제조되고 이후 분리 정제된 반응물이 2,5-테트라히드로퓨란 디메탄올인 것을 확인할 수 있다.9 to 10, it can be confirmed that the reactant prepared according to Example 2 and then separated and purified is 2,5-tetrahydrofuran dimethanol.
전환율, 수율 및 Conversion rate, yield and 선택율Selectivity 분석:  analysis: HPLCHPLC
실시예 1 내지 9의 반응이 종결된 후 상온이 될 때까지 기다리고, 생성된 혼합물을 바이알로 옮겨 고성능 액체 크로마토그래피(HPLC)를 이용하여 정량 분석하였다. 고성능 액체 크로마토그래피(HPLC) 장비(Agilent Technologies 1200 series, Bio-Rad Aminex HPX-87 H pre-packed column, and UV-detector)를 사용하여 분석하였으며, 물 중의 H2SO4(0.0005M)를 이동상으로 사용하였다. 또한, 5-히드록시메틸퍼퓨랄(HMF)의 전환율, 2,5-퓨란디메탄올(FDM)의 수율 및 선택율, 2,5-테트라히드로퓨란 디메탄올(THF-DM)의 수율 및 선택율 계산법은 하기 식 1 내지 5를 이용한 것일 수 있다.After the reactions of Examples 1 to 9 were terminated, it was waited until it reached room temperature, and the resulting mixture was transferred to a vial and quantitatively analyzed using high performance liquid chromatography (HPLC). Analysis was performed using a high performance liquid chromatography (HPLC) instrument (Agilent Technologies 1200 series, Bio-Rad Aminex HPX-87 H pre-packed column, and UV-detector), and H 2 SO 4 (0.0005M) in water was mobile phase. It was used as. In addition, the conversion method of 5-hydroxymethylperfural (HMF), the yield and selectivity of 2,5-furandimethane (FDM), and the yield and selectivity calculation method of 2,5-tetrahydrofuran dimethanol (THF-DM) It may be using the following equations 1 to 5.
[식 1] [Equation 1]
HMF의 전환율[%]=(HMF의 반응 몰 수)/(투입된 HMF의 몰 수)×100Conversion rate of HMF [%] = (number of moles of reaction of HMF) / (number of moles of HMF injected) x 100
[식 2] [Equation 2]
FDM의 수율[%]=(실제 FDM 생성 몰 수)/(이론적 FDM 생성 몰 수)×100FDM yield [%] = (Actual FDM generated moles) / (Theoretical FDM generated moles) × 100
[식 3] [Equation 3]
FDM의 선택율[%]=(FDM의 수율)/(HMF 전환율)×100FDM selectivity [%] = (FDM yield) / (HMF conversion) × 100
[식 4] [Equation 4]
THFDM의 수율[%]=(실제 THFDM 생성 몰 수)/(이론적 THFDM 생성 몰 수)×100Yield of THFDM [%] = (Actual THFDM production moles) / (Theoretical THFDM production moles) × 100
[식 5] [Equation 5]
THFDM의 선택율[%]=(THFDM의 수율)/(HMF 전환율)×100Selectivity of THFDM [%] = (Yield of THFDM) / (HMF conversion) × 100
하기 표 2 내지 5의 CHMF는 5-히드록시메틸퍼퓨랄의 전환율을 나타내고, YFDM은 2,5-퓨란디메탄올의 수율, YTHF -DM은 2,5-테트라히드로퓨란 디메탄올의 수율을 나타낸다.C HMF in Tables 2 to 5 below represents the conversion rate of 5-hydroxymethylperfural, Y FDM is the yield of 2,5-furandimethane, and Y THF -DM is the yield of 2,5-tetrahydrofuran dimethanol Indicates.
반응 조건에 따른 생성물의 변화Product changes according to reaction conditions
동일 촉매를 사용할 경우 반응 조건에 따른 생성물의 변화를 연구하였고 그 결과를 표 2에 나타내었다.When the same catalyst was used, the change of the product according to the reaction conditions was studied and the results are shown in Table 2.
구분division 생성물product 반응 시간(h)Reaction time (h) 반응 압력(H2, MPa)Reaction pressure (H 2 , MPa) HMF/Ru 몰 비율HMF / Ru molar ratio CHMF(%)C HMF (%) 수율(%)yield(%) 선택율(%)Selectivity (%)
실시예 1Example 1 FDM FDM 33 5.55.5 33.633.6 9797 92.292.2 95.095.0
실시예 2Example 2 THF-DMTHF-DM 1616 8.28.2 5050 98.798.7 97.397.3 99.099.0
상기 표 2에 따르면, FDM 및 THF-DM의 수율은 반응 조건을 조정함으로써 영향을 받는 것을 확인할 수 있다. FDM과 THF-DM의 수율은 각각 92.2%와 97.3%인 것을 확인할 수 있다. 또한, FDM은 중간체이므로 HMF 수소화로 THF-DM을 형성하기 위해 긴 반응시간이 필요한 것을 확인할 수 있다.According to Table 2, it can be seen that the yields of FDM and THF-DM are affected by adjusting reaction conditions. It can be seen that the yields of FDM and THF-DM are 92.2% and 97.3%, respectively. In addition, since FDM is an intermediate, it can be confirmed that a long reaction time is required to form THF-DM by HMF hydrogenation.
촉매 재사용 횟수에 따른 전환율 및 수율Conversion rate and yield according to the number of catalyst reuse
도 11은 실시예 1에 따라 FDM을 제조시 촉매 재사용 횟수에 따른 HMF 전환율 및 FDM 수율을 도식화한 것이고, 도 12는 실시예 2에 따라 THF-DM을 제조시 촉매 재사용 횟우에 따른 HMF 전환율 및 THF-DM 수율을 도식화한 것이다. 이때 촉매는 단순히 여과법으로 회수하여 재사용하였다.FIG. 11 is a schematic diagram of HMF conversion and FDM yield according to the number of catalyst reuses when manufacturing FDM according to Example 1, and FIG. 12 is HMF conversion and THF according to catalyst reuse frequency when manufacturing THF-DM according to Example 2 -It is a diagram of DM yield. At this time, the catalyst was simply recovered by filtration and reused.
도 11 내지 12를 참고하면, 촉매를 연속적으로 4번 재사용하는 동안 FDM 및 THF-DM의 수율이 크게 감소되지 않는 것을 확인할 수 있다. 따라서, Ru(4.0wt%)/MnCo2O4 촉매가 구조적으로 안정하고 사실상 튼튼하다는 것을 확인할 수 있다.11 to 12, it can be seen that the yields of FDM and THF-DM are not significantly reduced while the catalyst is reused four times continuously. Therefore, it can be confirmed that the Ru (4.0wt%) / MnCo 2 O 4 catalyst is structurally stable and practically strong.
반응 온도에 따른 전환율 및 수율Conversion and yield depending on reaction temperature
HMF로부터 THF-DM을 제조할 경우, 반응 온도에 따른 HMF의 전환율 및 THF-DM의 수율의 변화를 연구하였고 그 결과를 표 3에 나타내었다.When THF-DM was prepared from HMF, the conversion of HMF and the yield of THF-DM according to the reaction temperature were studied and the results are shown in Table 3.
구분division 반응 온도(℃)Reaction temperature (℃) CHMF C HMF YTHF -DM Y THF -DM YFDM Y FDM
실시예 2Example 2 100100 98.798.7 97.397.3 1.41.4
실시예 3Example 3 8080 7777 71.671.6 5.45.4
실시예 4Example 4 120120 99.199.1 97.297.2 1.81.8
상기 표 3에 따르면, HMF 1.0g(8.0mmol), 촉매(Ru(4.0wt%)/MnCo2O4) 0.40g, HMF/Ru 몰 비율 50, 메탄올(용매) 30mL, 반응 시간 16h, 반응 압력 8MPa, 교반 속도 600rpm의 동일한 조건에서 HMF를 수소화 하였을 때, 반응 온도를 100℃로 수행한 실시예 2의 THF-DM 수율이 97.3%로 가장 높은 것을 확인할 수 있다.According to Table 3, HMF 1.0g (8.0mmol), catalyst (Ru (4.0wt%) / MnCo 2 O 4 ) 0.40g, HMF / Ru molar ratio 50, methanol (solvent) 30mL, reaction time 16h, reaction pressure When HMF was hydrogenated under the same conditions of 8 MPa and a stirring speed of 600 rpm, it can be seen that the THF-DM yield of Example 2 performed at a reaction temperature of 100 ° C was the highest at 97.3%.
반응 압력에 따른 전환율 및 수율Conversion rate and yield depending on reaction pressure
HMF로부터 THF-DM을 제조할 경우, 반응 압력에 따른 HMF의 전환율 및 THF-DM의 수율의 변화를 연구하였고 그 결과를 표 4에 나타내었다.When THF-DM was prepared from HMF, the conversion of HMF and the yield of THF-DM according to the reaction pressure were studied and the results are shown in Table 4.
구분division 반응 압력(MPa)Reaction pressure (MPa) CHMF C HMF YTHF -DM Y THF -DM YFDM Y FDM
실시예 2Example 2 8.28.2 98.798.7 97.397.3 1.41.4
실시예 5Example 5 5.55.5 79.179.1 71.571.5 7.57.5
실시예 6Example 6 6.86.8 8181 77.977.9 3.13.1
실시예 7Example 7 8.858.85 9999 97.597.5 1.51.5
상기 표 4에 따르면, HMF 1.0g(8.0mmol), 촉매(Ru(4.0wt%)/MnCo2O4) 0.40g, HMF/Ru 몰 비율 50, 메탄올(용매) 30mL, 반응 시간 16h, 반응 온도 100℃, 교반 속도 600rpm의 동일한 조건에서 HMF를 수소화 하였을 때, 반응 압력을 9MPa로 수행한 실시예 7의 수율이 97.5%로 가장 높은 것을 확인할 수 있다. According to Table 4, HMF 1.0g (8.0mmol), catalyst (Ru (4.0wt%) / MnCo 2 O 4 ) 0.40g, HMF / Ru molar ratio 50, methanol (solvent) 30mL, reaction time 16h, reaction temperature When HMF was hydrogenated under the same conditions of 100 ° C. and a stirring speed of 600 rpm, it can be seen that the yield of Example 7 in which the reaction pressure was performed at 9 MPa was the highest at 97.5%.
HMFHMF // RuRu 몰 비율에 따른 전환율 및 수율 Conversion rate and yield according to mole ratio
HMF로부터 THF-DM을 제조할 경우, HMF/Ru 몰 비율에 따른 HMF의 전환율 및 THF-DM의 수율의 변화를 연구하였고 그 결과를 표 5에 나타내었다.When THF-DM was prepared from HMF, the conversion of HMF and the conversion of THF-DM according to the HMF / Ru molar ratio were studied and the results are shown in Table 5.
구분division HMF/Ru 몰 비율HMF / Ru molar ratio CHMF C HMF YTHF -DM Y THF -DM YFDM Y FDM
실시예 2Example 2 5050 98.798.7 97.397.3 1.41.4
실시예 8Example 8 7575 91.491.4 89.989.9 1.51.5
실시예 9Example 9 100100 84.584.5 80.580.5 44
상기 표 5에 따르면, HMF 1.0g(8.0mmol), 촉매(Ru(4.0wt%)/MnCo2O4) 0.40g, 메탄올(용매) 30mL, 반응 시간 16h, 반응 온도 100℃, 반응 압력 8MPa, 교반 속도 600rpm의 동일한 조건에서 HMF를 수소화 하였을 때, HMF/Ru 몰 비율 50으로 수행한 실시예 2의 수율이 97.3%로 가장 높은 것을 확인할 수 있다.According to Table 5, HMF 1.0g (8.0mmol), catalyst (Ru (4.0wt%) / MnCo 2 O 4 ) 0.40g, methanol (solvent) 30mL, reaction time 16h, reaction temperature 100 ℃, reaction pressure 8MPa, When HMF was hydrogenated under the same conditions of a stirring speed of 600 rpm, it was confirmed that the yield of Example 2 performed at a HMF / Ru molar ratio of 50 was the highest at 97.3%.
분리된 FDM과 Separated FDM and THFTHF -DM의 코발트(Co) 망간(Mn) 및 루테늄(-DM cobalt (Co) manganese (Mn) and ruthenium ( RuRu ) 함유량 분석) Content analysis
실시예 1에 따라 제조되고 이후 분리 정제된 2,5-퓨란디메탄올 및 실시예 2에 따라 제조되고 이후 분리 정제된 2,5-테트라히드로퓨란 디메탄올의 코발트(Co), 망간(Mn) 및 루테늄(Ru) 함유량을 유도 결합 플라즈마 질량 분석기(ICP-MS)를 사용하여 분석하였고 그 결과를 표 6에 나타내었다.Cobalt (Co), manganese (Mn) and 2,5-tetrahydrofuran dimethanol prepared according to Example 1 and then separated and purified according to Example 2 and then purified separately according to Example 2 and The ruthenium (Ru) content was analyzed using an inductively coupled plasma mass spectrometer (ICP-MS) and the results are shown in Table 6.
구분division 코발트 함유량(ppm)Cobalt content (ppm) 망간 함유량(ppm)Manganese content (ppm) 루테늄 함유량(ppm)Ruthenium content (ppm)
실시예 1Example 1 44 1111 0.70.7
실시예 2Example 2 1010 2525 22
상기 표 6에 따르면, 실시예 1에 따라 제조되고 이후 분리 정제된 2,5-퓨란디메탄올 및 실시예 2에 따라 제조되고 이후 분리 정제된 2,5-테트라히드로퓨란 디메탄올에 소량의 코발트, 망간 및 루테늄이 포함된 것을 확인할 수 있다. According to Table 6 above, a small amount of cobalt in 2,5-furandimethanol prepared according to Example 1 and then purified after purification and 2,5-tetrahydrofuran diethanol prepared according to Example 2 and subsequently purified, It can be seen that manganese and ruthenium are included.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is indicated by the following claims rather than the above detailed description, and it should be interpreted that all changes or modified forms derived from the meaning and scope of the claims and equivalent concepts thereof are included in the scope of the present invention. do.
본 발명의 퓨란계 화합물 제조방법은 귀금속 나노입자가 담지된 스피넬 구조의 지지체를 촉매로 사용하여 5-히드록시메틸퍼퓨랄의 수소화 반응에 의해 단일 용기 내에서 2,5-퓨란디메탄올 및 2,5-테트라히드로퓨란 디메탄올을 선택적으로 얻을 수 있다.The method for producing a furan-based compound of the present invention uses 2,5-furandimethanol and 2, in a single container by hydrogenation of 5-hydroxymethylperfural using a spinel-structured support carrying precious metal nanoparticles as a catalyst. 5-Tetrahydrofuran dimethanol can be optionally obtained.
또한, 2,5-퓨란디메탄올 및 2,5-테트라히드로퓨란 디메탄올을 각각 90% 이상의 고수율로 얻을 수 있다.In addition, 2,5-furan dimethanol and 2,5-tetrahydrofuran dimethanol can be obtained in high yields of 90% or more, respectively.

Claims (17)

  1. (a) 5-히드록시메틸퍼퓨랄(5-Hydroxymethylfurfural, HMF)를 수소(H2)와 촉매를 사용하여 수소화 반응시켜 2,5-퓨란디메탄올(2,5-Furandimethanol, FDM) 및 2,5-테트라히드로퓨란 디메탄올(2,5-Tetrahydrofuran dimethanol, THF-DM)로 이루어진 군에서 선택된 1종 이상을 포함하는 퓨란계 화합물을 제조하는 단계를 포함하고,(a) 5-Hydroxymethylfurfural (HMF) is hydrogenated using hydrogen (H 2 ) and a catalyst to react with 2,5-furandimethanol (FDM) and 2, Comprising the steps of preparing a furan-based compound comprising at least one selected from the group consisting of 5-tetrahydrofuran dimethanol (2,5-Tetrahydrofuran dimethanol, THF-DM),
    상기 촉매는 귀금속 나노입자가 담지된 스피넬 구조의 지지체를 포함하는 것인,The catalyst is to include a support of a spinel structure carrying the noble metal nanoparticles,
    퓨란계 화합물의 제조방법.Method for producing furan-based compound.
  2. 제1항에 있어서,According to claim 1,
    상기 퓨란계 화합물의 제조방법이 The method for producing the furan-based compound
    상기 단계 (a) 후에, (b) 상기 2,5-퓨란디메탄올 또는 2,5-테트라히드로퓨란 디메탄올을 분리하는 단계;를 추가로 포함하고,After the step (a), (b) separating the 2,5-furan dimethanol or 2,5-tetrahydrofuran dimethanol; further comprising,
    상기 분리된 2,5-퓨란디메탄올 또는 2,5-테트라히드로퓨란 디메탄올이 코발트(Co) 0.1 내지 20 ppm, 망간(Mn) 0.1 내지 60 ppm, 및 루테늄(Ru) 0.1 내지 5 ppm을 포함하는 것을 특징으로 하는 퓨란계 화합물의 제조방법.The isolated 2,5-furan dimethanol or 2,5-tetrahydrofuran dimethanol contains 0.1 to 20 ppm of cobalt (Co), 0.1 to 60 ppm of manganese (Mn), and 0.1 to 5 ppm of ruthenium (Ru) Method of producing a furan-based compound, characterized in that.
  3. 제1항에 있어서,According to claim 1,
    상기 스피넬 구조의 지지체가 MnCo2O4, CoMn2O4, ZnAl2O4, FeAl2O4, CuFe2O4, ZnMn2O4, MnFe2O4, Fe3O4, TiFe2O4, ZnFe2O4, Mg2SiO4, Fe2SiO4로 이루어진 군에서 선택되는 1종 이상을 포함하는 것을 특징으로 하는 퓨란계 화합물의 제조방법.The support of the spinel structure is MnCo 2 O 4 , CoMn 2 O 4 , ZnAl 2 O 4 , FeAl 2 O 4 , CuFe 2 O 4 , ZnMn 2 O 4 , MnFe 2 O 4 , Fe 3 O 4 , TiFe 2 O 4 , ZnFe 2 O 4 , Mg 2 SiO 4 , Fe 2 SiO 4 Method of producing a furan-based compound, characterized in that it comprises at least one selected from the group consisting of.
  4. 제1항에 있어서,According to claim 1,
    상기 귀금속 나노입자가 백금, 팔라듐, 및 루테늄으로 이루어진 군으로부터 선택된 1종 이상을 포함하는 것을 특징으로 하는 퓨란계 화합물의 제조방법.Method for producing a furan-based compound, characterized in that the noble metal nanoparticles include at least one selected from the group consisting of platinum, palladium, and ruthenium.
  5. 제1항에 있어서,According to claim 1,
    상기 촉매가 루테늄 나노입자가 담지된 스피넬 구조의 MnCo2O4 지지체인 것을 특징으로 하는 퓨란계 화합물의 제조방법.Method for producing a furan-based compound, characterized in that the catalyst is a MnCo 2 O 4 support having a spinel structure carrying ruthenium nanoparticles.
  6. 제1항에 있어서,According to claim 1,
    상기 퓨란계 화합물을 제조하는 단계가 반응시간, 상기 수소의 압력, 및 상기 촉매의 루테늄(Ru)에 대한 5-히드록시메틸퍼퓨랄(HMF/Ru)의 몰 비율(mol/mol)로 이루어진 군에서 선택된 1종 이상의 반응조건을 조절하여 2,5-퓨란디메탄올 및 2,5-테트라히드로퓨란 디메탄올로 이루어진 군에서 선택된 어느 하나를 90% 이상의 수율(yield)과 90% 이상의 선택도(selectivity)로 제조하는 단계인 것을 특징으로 하는 퓨란계 화합물의 제조방법.The step of preparing the furan-based compound consists of a reaction time, the pressure of the hydrogen, and a molar ratio (mol / mol) of 5-hydroxymethylperfural (HMF / Ru) to ruthenium (Ru) of the catalyst One or more selected from the group consisting of 2,5-furan dimethanol and 2,5-tetrahydrofuran dimethanol by adjusting one or more reaction conditions selected from 90% yield and selectivity of 90% or more Method for producing a furan-based compound, characterized in that the step of manufacturing.
  7. 제1항에 있어서,According to claim 1,
    상기 퓨란계 화합물을 제조하는 단계가 반응시간을 2.5 내지 3.5hr, 상기 수소의 압력을 5 내지 6MPa, HMF/Ru의 몰 비율(mol/mol)을 30 내지 40으로 조절하여 2,5-퓨란디메탄올을 주생성물로 제조하는 단계인 것을 특징으로 하는 퓨란계 화합물의 제조방법.In the step of preparing the furan-based compound, the reaction time is 2.5 to 3.5 hr, the hydrogen pressure is 5 to 6 MPa, and the molar ratio (mol / mol) of HMF / Ru is adjusted to 30 to 40 to 2,5-furandi Method for producing a furan-based compound, characterized in that the step of preparing methanol as a main product.
  8. 제1항에 있어서,According to claim 1,
    상기 퓨란계 화합물을 제조하는 단계가 반응 시간을 15.5 내지 16.5hr, 상기 수소의 압력을 6.5 내지 9.5MPa, HMF/Ru의 몰 비율(mol/mol)을 45 내지 105로 조절하여 2,5-테트라히드로퓨란 디메탄올을 주생성물로 제조하는 단계인 것을 특징으로 하는 퓨란계 화합물의 제조방법.In the step of preparing the furan compound, the reaction time is 15.5 to 16.5 hr, the pressure of the hydrogen is 6.5 to 9.5 MPa, and the molar ratio (mol / mol) of HMF / Ru is adjusted to 45 to 105 to 2,5-tetra. Method for producing a furan-based compound, characterized in that the step of producing a hydrofuran dimethanol as a main product.
  9. 제1항에 있어서,According to claim 1,
    상기 퓨란계 화합물을 제조하는 단계의 반응 온도가 70 내지 150℃인 것을 특징으로 하는 퓨란계 화합물의 제조방법.Method of producing a furan-based compound, characterized in that the reaction temperature of the step of preparing the furan-based compound is 70 to 150 ℃.
  10. 제1항에 있어서,According to claim 1,
    상기 귀금속 나노입자가 상기 촉매 중량을 기준으로 1 내지 10 중량%인 것을 특징으로 하는 퓨란계 화합물의 제조방법.Method for producing a furan-based compound, characterized in that the precious metal nanoparticles are 1 to 10% by weight based on the catalyst weight.
  11. 제10항에 있어서,The method of claim 10,
    상기 귀금속 나노입자가 상기 촉매 중량을 기준으로 3 내지 5 중량%인 것을 특징으로 하는 퓨란계 화합물의 제조방법.Method of producing a furan-based compound, characterized in that the precious metal nanoparticles are 3 to 5% by weight based on the catalyst weight.
  12. 제11항에 있어서,The method of claim 11,
    상기 귀금속 나노입자가 상기 촉매 중량을 기준으로 4 중량%인 것을 특징으로 하는 퓨란계 화합물의 제조방법.Method for producing a furan-based compound, characterized in that the precious metal nanoparticles are 4% by weight based on the catalyst weight.
  13. 제1항에 있어서, According to claim 1,
    상기 퓨란계 화합물을 제조하는 단계가 단일 용기 내에서 수행되는 단계인 것을 특징으로 하는 퓨란계 화합물의 제조방법.Method for producing a furan-based compound, characterized in that the step of preparing the furan-based compound is a step performed in a single container.
  14. 제1항에 있어서,According to claim 1,
    상기 5-히드록시메틸퍼퓨랄이 셀룰로오스 및 다당류로 이루어진 군에서 선택된 1종 이상을 포함하는 바이오매스로부터 유래된 것을 특징으로 하는 퓨란계 화합물의 제조방법.Method for producing a furan-based compound, characterized in that the 5-hydroxymethylperfural is derived from biomass containing at least one selected from the group consisting of cellulose and polysaccharides.
  15. 제1항에 있어서,According to claim 1,
    상기 퓨란계 화합물의 제조방법이 용매를 사용하는 용액반응으로 수행되고,The method for producing the furan-based compound is performed by a solution reaction using a solvent,
    상기 용매가 메탄올, 에탄올, n-프로판올, iso-프로판올, 부탄올, 펜탄올, 테트라히드로퓨란, 메틸삼차부틸에테르, 헥산 및 펜탄으로 이루어진 군에서 선택된 1종 이상을 포함하는 것을 특징으로 하는 퓨란계 화합물의 제조방법.The solvent is methanol, ethanol, n-propanol, iso-propanol, butanol, pentanol, tetrahydrofuran, methyl tert-butyl ether, hexane and pentane Furan-based compound characterized in that it comprises at least one member selected from the group consisting of Method of manufacturing.
  16. 제15항에 있어서,The method of claim 15,
    상기 용매가 메탄올인 것을 특징으로 하는 퓨란계 화합물의 제조방법.Method for producing a furan-based compound, characterized in that the solvent is methanol.
  17. 제1항에 있어서,According to claim 1,
    상기 스피넬 구조의 지지체의 평균 입경(D50)이 2.0 내지 4.0 μm인 것을 특징으로 하는 퓨란계 화합물의 제조방법.Method of manufacturing a furan-based compound, characterized in that the average particle diameter (D 50 ) of the support of the spinel structure is 2.0 to 4.0 μm.
PCT/KR2019/014695 2018-11-16 2019-11-01 Method for preparing 2,5-furandimethanol and 2,5-tetrahydrofuran dimethanol from 5-hydroxymethylfurfural WO2020101234A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0141631 2018-11-16
KR1020180141631A KR102133304B1 (en) 2018-11-16 2018-11-16 Method of preparing 2,5-furandimethanol and 2,5-tetrahydrofuran dimethanol from 5-hydroxymethylfurfural

Publications (1)

Publication Number Publication Date
WO2020101234A1 true WO2020101234A1 (en) 2020-05-22

Family

ID=70730531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/014695 WO2020101234A1 (en) 2018-11-16 2019-11-01 Method for preparing 2,5-furandimethanol and 2,5-tetrahydrofuran dimethanol from 5-hydroxymethylfurfural

Country Status (2)

Country Link
KR (1) KR102133304B1 (en)
WO (1) WO2020101234A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112742482A (en) * 2021-01-15 2021-05-04 广州大学 Catalyst for catalytic hydrogenation, preparation method and application thereof
CN113651780A (en) * 2021-09-27 2021-11-16 浙江糖能科技有限公司 Preparation method of 2, 5-tetrahydrofuran dimethanol
CN114573527A (en) * 2022-03-11 2022-06-03 湖南师范大学 Method for preparing 2, 5-dihydroxymethyl furan by transfer hydrogenation of 5-hydroxymethylfurfural
CN115490652A (en) * 2022-07-14 2022-12-20 中科国生(杭州)科技有限公司 Method for preparing 2,5-tetrahydrofuran dimethanol by hydrogen transfer catalysis of 5-hydroxymethylfurfural

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170104216A (en) * 2016-03-07 2017-09-15 한국생산기술연구원 Catalyst for producing 2,5- furandicarboxlic acid and method for producing 2,5- furandicarboxlic acid using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170104216A (en) * 2016-03-07 2017-09-15 한국생산기술연구원 Catalyst for producing 2,5- furandicarboxlic acid and method for producing 2,5- furandicarboxlic acid using the same

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ANGELA KUMALAPUTRI ET AL: "Tunable and Selective Conversion of 5-HMF to 2,5-Furandimethanol and 2,5-Dimethylfuran over Copper-Doped Porous Metal Oxides", CHEMSUSCHEM, vol. 7, no. 8, 2014, pages 2266 - 2275, XP055151918, ISSN: 1864-5631, DOI: 10.1002/cssc.201402095 *
DINESH KUMAR MISHRA ET AL: "MnCo2O4 spinel supported ruthenium catalyst for air-oxidation of HMF to FDCA under aqueous phase and base-free conditions", GREEN CHEMISTRY, vol. 19, no. 7, 1 January 2017 (2017-01-01), pages 1619 - 1623, XP055546055, ISSN: 1463-9262, DOI: 10.1039/C7GC00027H *
PETER PRIECEL ET AL: "Fast Catalytic Hydrogenation of 2,5-Hydroxymethylfurfural to 2,5-Dimethylfuran with Ruthenium on Carbon Nanotubes", INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, vol. 57, no. 6, 22 January 2018 (2018-01-22), pages 1991 - 2002, XP055707912, ISSN: 0888-5885, DOI: 10.1021/acs.iecr.7b04715 *
TING WANG ET AL: "Catalytic Transfer Hydrogenation of Biobased HMF to 2,5-Bis-(Hydroxymethyl)Furan over Ru/Co3O4", CATALYSTS, vol. 7, no. 3, 21 March 2017 (2017-03-21), pages 1 - 8, XP055707907, ISSN: 2073-4344, DOI: 10.3390/catal7030092 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112742482A (en) * 2021-01-15 2021-05-04 广州大学 Catalyst for catalytic hydrogenation, preparation method and application thereof
CN113651780A (en) * 2021-09-27 2021-11-16 浙江糖能科技有限公司 Preparation method of 2, 5-tetrahydrofuran dimethanol
CN114573527A (en) * 2022-03-11 2022-06-03 湖南师范大学 Method for preparing 2, 5-dihydroxymethyl furan by transfer hydrogenation of 5-hydroxymethylfurfural
CN115490652A (en) * 2022-07-14 2022-12-20 中科国生(杭州)科技有限公司 Method for preparing 2,5-tetrahydrofuran dimethanol by hydrogen transfer catalysis of 5-hydroxymethylfurfural
CN115490652B (en) * 2022-07-14 2023-09-19 中科国生(杭州)科技有限公司 Method for preparing 2, 5-tetrahydrofuran dimethanol by hydrogen transfer catalysis of 5-hydroxymethylfurfural

Also Published As

Publication number Publication date
KR20200057349A (en) 2020-05-26
KR102133304B1 (en) 2020-07-13

Similar Documents

Publication Publication Date Title
WO2020101234A1 (en) Method for preparing 2,5-furandimethanol and 2,5-tetrahydrofuran dimethanol from 5-hydroxymethylfurfural
WO2013105779A1 (en) Carbon nanotubes and method for manufacturing same
WO2019004777A1 (en) Method for preparing 2,5-furandimethylcarboxylate from hydroxymethylfurfural
WO2014051271A1 (en) Catalyst composition for the synthesis of multi-walled carbon nanotube
WO2015156582A1 (en) Composite metal catalyst composition, and method and apparatus for preparing 1,4-cyclohexanedimethanol using same
WO2011132957A2 (en) Nanometer-sized copper-based catalyst, production method thereof, and alcohol production method using the same through direct hydrogenation of carboxylic acid
WO2014092278A1 (en) Process for preparing fisher-tropsch catalyst
WO2021091182A1 (en) Formic acid manufacturing process and manufacturing apparatus using synthetic gas
WO2020009493A1 (en) Catalyst for preparing 1,2-pentanediol and method for preparing 1,2-pentanediol by using same
WO2016032284A1 (en) Preparation method for rod-shaped molybdenum oxide and preparation method for molybdenum oxide composite
WO2018182214A1 (en) Metal oxide catalyst, method for producing same, and method for producing alcohol using same
WO2020190047A1 (en) Heterogeneous hydrogenation catalyst, preparation method therefor, and method for hydrogenating carbon dioxide by using catalyst
WO2019107884A1 (en) Catalyst system for oxidative dehydrogenation reaction, reactor for butadiene production including same, and method for preparing 1,3-butadiene
WO2019143220A1 (en) Transition metal-based heterogeneous carbonylation reaction catalyst and method for producing lactone or succinic anhydride by using catalyst
WO2017126847A1 (en) Method for preparing 3-((2s,5s)-4-methylene-5-(3-oxopropyl)tetrahydrofurane-2-yl) propanol derivative, and intermediate therefor
WO2021133138A1 (en) Method for preparation of 1, 4-cyclohexanedimethanol
WO2018182102A1 (en) Metal selenide-supported catalyst, preparation method therefor, and urethane preparation method using same
WO2018139776A1 (en) Ferrite catalyst for oxidative dehydrogenation reaction, method for preparing same, and method for preparing butadiene by using same
CN112062769A (en) Process for preparing penta-and hepta-homopiperazinone derivatives by catalytic carbonylation of aminoalkyleneamine oxides
CN111533745A (en) Process for preparing tert-butyl-3- (aminomethyl) dihydro-5H-triazolodiazepine-8 (9H) -carboxylic acid ester
WO2022169165A1 (en) 1,4-cyclohexanedimethanol composition and purification method therefor
WO2022119070A1 (en) Selenium-based catalyst system for preparing carbonate derivative, and method for preparing carbonate derivative by using same
WO2018038505A1 (en) Propylene direct oxidation reaction catalyst, method for preparing same, and method for preparing propylene oxide through propylene direct oxidation reaction using same
KR100943528B1 (en) Process for preparing of n-methyl pyrrolidone
EP3941911A1 (en) Method for the synthesis of 2,5-furandicarboxylic acid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19884827

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19884827

Country of ref document: EP

Kind code of ref document: A1