WO2012070747A2 - Method for producing polylactic acid and a highly conductive polymer, and apparatus for producing highly conductive polylactic acid polymer - Google Patents

Method for producing polylactic acid and a highly conductive polymer, and apparatus for producing highly conductive polylactic acid polymer Download PDF

Info

Publication number
WO2012070747A2
WO2012070747A2 PCT/KR2011/006143 KR2011006143W WO2012070747A2 WO 2012070747 A2 WO2012070747 A2 WO 2012070747A2 KR 2011006143 W KR2011006143 W KR 2011006143W WO 2012070747 A2 WO2012070747 A2 WO 2012070747A2
Authority
WO
WIPO (PCT)
Prior art keywords
polylactic acid
producing
weight
lactic acid
highly conductive
Prior art date
Application number
PCT/KR2011/006143
Other languages
French (fr)
Korean (ko)
Other versions
WO2012070747A3 (en
Inventor
위순명
다카무라다카츠구
Original Assignee
Wy Soon Myung
Takamura Takstsugu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020100118544A external-priority patent/KR20120057014A/en
Priority claimed from KR1020110030276A external-priority patent/KR101290309B1/en
Application filed by Wy Soon Myung, Takamura Takstsugu filed Critical Wy Soon Myung
Priority to CN2011800030694A priority Critical patent/CN102712745A/en
Publication of WO2012070747A2 publication Critical patent/WO2012070747A2/en
Publication of WO2012070747A3 publication Critical patent/WO2012070747A3/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/0066Stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/001Feed or outlet devices as such, e.g. feeding tubes
    • B01J4/002Nozzle-type elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/823Preparation processes characterised by the catalyst used for the preparation of polylactones or polylactides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00094Jackets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00761Details of the reactor
    • B01J2219/00763Baffles
    • B01J2219/00779Baffles attached to the stirring means

Definitions

  • the present invention relates to a method for producing a polylactic acid and a highly conductive polylactic acid polymer, and an apparatus for manufacturing the same, and more particularly, to increase production yield and reduce costs, and to more easily produce a high molecular weight polylactic acid according to a use.
  • the present invention relates to a method for producing a polylactic acid and a method for producing a highly conductive polylactic acid polymer, which is economical in terms of time and cost, and an apparatus for manufacturing the same.
  • Plastic materials have contributed to modern people's abundant daily life and industrial development with various excellent functions and low prices, while environmental hormone leakage and intoxication caused by incineration or landfill of various waste vinyl, styrofoam, plastic containers, etc. Is a cause of serious environmental pollution such as detection of dioxins and air pollution caused by incomplete combustion of waste.
  • In order to solve the problem of plastic waste research is being conducted to solve the problem of plastic convenience and environmental pollution by adding a function of degradability after use while maintaining the processability, durability and mechanical properties of the plastic. .
  • degradable plastics are photodegradable plastics caused by chemical reactions such as photooxidation by photovoltaic light and ketone photolysis, oxidatively decomposed plastics which are decomposed by oxidation reactions under the influence of temperature, plastics and microorganisms decomposed by hydrolysis reaction. And plastics decomposed by enzymes and the like.
  • biodegradable polymers made of plant-derived natural polymers such as cellulose, pectin, hemicellulose, lignin, starch and rice straw are called natural polymer biodegradable polymers.
  • Starch is applied to starch foam containers, starch foam packaging materials, cushioning materials, etc. using foaming properties of foaming using its own adhesiveness, heat, or water.
  • Poly-Lactic Acid (PLA) which is chemically synthesized using L-lactic acid, fermented with microorganisms using starch, as a monomer, is cheaper than conventional PLA, and is used in a large amount. Processed PLA also has excellent hydrolysis resistance.
  • the polylactic acid has a problem in that the pH of the reaction solution is lowered during the fermentation of the lactic acid, and the activity of the lactic acid bacteria is often inhibited, so that lactic acid at a high concentration cannot be efficiently obtained. Therefore, it was necessary to strictly adjust the pH and temperature, in particular, the time required to liquefy and shorten the starch takes only 24 to 35 hours, there was a problem that it is expensive.
  • FIG. 1 is a conceptual diagram showing a conventional electrodialysis apparatus, as shown in the manufacturing process of the polylactic acid, there is an electrodialysis process of the lactic acid, conventionally the process is a device for performing the process of separating the lactate from the fermentation broth and lactate the lactate again There was a problem in that the equipment cost is high because it must be equipped with a separate device that functions to decompose and sodium hydroxide.
  • lactic refining process since the extracted and separated lactic acid by the electrodialysis apparatus contains various organic acids, it is necessary to remove them and to refine the pure lactic acid. This process is called lactic refining process. Conventionally, the process has been performed by ion adsorption separation method or electrodialysis method which focuses on selective adsorption of ion exchange resins, but there is a limitation that the process such as pretreatment must be divided into several times.
  • the present invention has been made to solve the above problems, the object of the present invention is not affected by the pH of the reaction in the lactic acid effect tablet, the temperature range is wide, the process time and cost of the efficient polylactic acid It is to provide a manufacturing method.
  • an object of the present invention can be carried out in one process and apparatus to separate the lactate from the fermentation broth and the process of separating the lactic acid and sodium hydroxide in the electrodialysis process of lactic acid, and does not require pretreatment, such as more efficient poly It is to provide a method for producing a lactic acid.
  • Another object of the present invention is to provide an apparatus for producing a highly conductive polylactic acid polymer capable of carrying out a substitution reaction and a polymerization reaction using a single device.
  • Method for producing a polylactic acid according to the present invention in order to achieve the above object is a gelatinization process of mixing the vegetable starch with water and then heated to gelatinize; A liquefaction step of adding lactic acid to the gelatinized starch and liquefying it by heating; A saccharification step of decomposing the liquefied starch into a monosaccharide liquid using a saccharifying enzyme; A fermentation step of lactically fermenting the monosaccharide solution to produce a fermentation broth; Electrodialysis step of separating and concentrating the lactate from the fermentation broth and separating the lactic acid from the lactate; Lactic acid purification process of heating the separated lactic acid to remove moisture and impurities; A lactide producing step of mixing the purified lactic acid with a metal oxide to produce lactide; A polymerization step of polymerizing the lactide to generate polylactic acid; And an impurity evaporation step of evaporating the unreacted material that is not polymerized by heating the polylactic acid.
  • the gelatinization process in the method for producing a polylactic acid according to the present invention is mixed with 70 to 80 parts by weight of water with respect to 20 to 30 parts by weight of the starch and heated to 90 to 105 °C while stirring at 70 to 100 RPM, 15 It is characterized by stirring for ⁇ 120 minutes.
  • the liquefaction process in the method of producing a polylactic acid according to the present invention is characterized by heating to 110 ⁇ 130 °C while stirring for 4-10 hours by adding 0.1 ⁇ 1.0% by weight of the lactic acid to the weight of the gelatinized starch. It is done.
  • the glycosylase is 0.1 to 1.0% amylase with respect to the weight of the starch
  • the temperature of the liquefied starch is 50 to 65 °C
  • pH is adjusted to 6.0 to 6.5
  • the pH is characterized by using an aqueous ammonia solution.
  • the fermentation process is based on the weight of the monosaccharide solution having a sugar content of 20 to 30, 0.01 to 0.1% of salt, 0.01 to 0.5% of manganese sulfate, 0.01 to 0.1% of ammonium phosphate, 0.1 to 1.0% skim milk powder, 0.1 to 1.0% soy milk, 0.1 to 1.0% waste molasses, 0.01 to 0.05% surfactant, 2 to 5% of the lactic acid bacteria culture medium is mixed with the above monosaccharide solution for 20 to 35 hours at 70 to 100 RPM It is characterized by stirring.
  • the fermentation process in the method of producing a polylactic acid according to the present invention is characterized in that it uses a fermentation apparatus equipped with a mechanism for concentrating the lactic acid produced by the fermentation.
  • the electrodialysis process is performed using an electrodialysis apparatus including an electrolytic chamber, a partition by a diaphragm, a solution circulation means, and an electrode, and the electrolytic chamber is an anolyte chamber and a fermentation broth. And a lactate / lactic acid generating chamber, a sodium hydroxide generating chamber, and a catholyte chamber, each electrolytic chamber being partitioned into an anionic permeable membrane and / or a cationic permeable membrane, wherein the electrode comprises an anode, a cathode, an auxiliary anode, and an auxiliary cathode. It is characterized by.
  • the lactic acid refining process in the method for producing a polylactic acid according to the present invention is dehydrated by heating to 120 ⁇ 130 °C while stirring the lactic acid at 70 ⁇ 100RPM in a pressure-resistant vessel and stirred for 1 to 2 hours at 150 ⁇ 160 °C Continuing to produce low molecular weight polylactic acid; And when the low molecular weight polylactic acid is produced, the stirring is stopped, the mixture is cooled to room temperature, crystallized, heated to 150 to 160 ° C, and the pressure in the pressure vessel is reduced to 70 to 100 RPM for 1 to 2 hours to reduce impurities. Transpiration to obtain a purified lactic acid; characterized in that it comprises a.
  • the lactide production process is carried out in a vanadium, nickel, iron, aluminum, titanium, selium, silicon, zircon, ruthenium, manganese, chromium, cobalt, platinum, thorium, palladium in a pressure resistant container.
  • Mixing 0.5-1% of at least one metal oxide in tin; Heating and stirring the lactic acid at 170 to 190 ° C. for 3 to 5 hours; And slowly cooling and crystallizing the lactic acid to produce lactide.
  • the polymerization process is stirred at a rate of 70 to 100 RPM while heating the lactide to a melting temperature, and the organic tin compound is 0.1 to 1% based on the weight of the lactide, Adding 0.1 to 1% of silalcohol and mixing for 3 to 5 hours at atmospheric pressure; Reducing the pressure while injecting an inert gas into the pressure resistant vessel, and heating and stirring the lactide at 160 to 170 ° C; And promoting the polymerization by using the polymerization promoter.
  • the impurity is a low molecular polylactic acid or lactide
  • the transpiration process may be performed at 70 to 100 RPM while reducing the pressure inside the pressure vessel and heating the temperature of the polylactic acid to 180 to 190 ° C. It is characterized by stirring for 1 to 2 hours.
  • the method for producing a polylactic acid according to the present invention is a gelatinization step of mixing the vegetable starch with water and then heating it to gelatinize; A liquefaction step of adding 0.2-1.0% of lactic acid to the weight of the gelatinized starch and liquefying by heating to 110-130 ° C .; A saccharification step of decomposing the liquefied starch into a monosaccharide liquid using a saccharifying enzyme; 0.01 to 0.1% of sodium salt, 0.01 to 0.5% of manganese sulfate, 0.01 to 0.1% of ammonium phosphate, 0.1 to 1.0% of skimmed milk powder, 0.1 to 1.0% of soy milk, 0.1 to 1.0% of waste molasses, Fermentation step of producing a fermentation broth by lactic acid fermentation by mixing 0.01 ⁇ 0.05% surfactant, 2 ⁇ 5% lactic acid bacteria culture medium to the monosaccharide solution; Electrodialysis step of neutralizing the lactic acid of the fermentation broth with sodium hydro
  • a lactide generation step of generating a tide A polymerization process of adding polylactic acid by ring-opening condensation polymerization by adding 0.1-1% of organotin compound and 0.1-1% of dodecyl alcohol to the weight of the lactide; And an impurity evaporation step of evaporating the unreacted material which is not polymerized by heating the temperature of the polylactic acid to 180 to 190 ° C.
  • Method for producing a highly conductive polylactic acid according to the present invention is added to 100 parts by weight of polylactic acid, 10 to 20 parts by weight of lactide and 5 to 10 parts by weight of polyglycolic acid in the reaction vessel, step S1, the reaction vessel 5 to 10 parts by weight of serine and 0.1 to 1 part by weight of dodecyl alcohol, followed by S2 step of adding an inert gas and irradiating electromagnetic waves and adding 0.1 to 1 part by weight of cerium acetate to the reaction vessel, and then stirring S3 step. Characterized in that.
  • step S1 to step S3 is characterized in that it is made at a temperature of 160 ⁇ 190 °C.
  • the step S1 is performed under reduced pressure at 0.1 to 0.5 atm, and the steps S2 and S3 are pressurized at 1 to 5 atm by adding nitrogen as an inert gas. Characterized in that the state is made.
  • the polylactic acid in the method for producing a highly conductive polylactic acid according to the present invention is characterized in that the molecular weight of 5,000 ⁇ 10,000.
  • step S1 in the method for producing a highly conductive polylactic acid according to the present invention is characterized by further adding 0.1-10 parts by weight of ammonium vanadate as a catalyst and 0.1-10 parts by weight of vanadium oxide.
  • the step of adding an inert gas to pressurized to 2 to 3 atm characterized in that it further comprises a step S5 to discharge the reactants in the reactor.
  • the method of maintaining the temperature of the steps S1 to S3 in the method for producing a highly conductive polylactic acid according to the present invention is characterized in that the heat medium is heated by a heater, heat is transferred to the reaction vessel through the heated heat medium. do.
  • the apparatus for producing a highly conductive polylactic acid the upper portion is provided with a raw material inlet, nitrogen / electromagnetic inlet and nitrogen outlet, the lower portion is equipped with a reaction vessel, a stirrer for stirring the reactants in the reaction vessel, reaction A heat supply unit for heating the vessel, a nitrogen / electromagnetic wave inlet connected to a nitrogen / electromagnetic inlet for supplying electromagnetic waves and nitrogen gas to a reactant in the reaction vessel, and a decompression pump for reducing the inside of the reaction vessel in connection with a nitrogen outlet; do.
  • the heat supply part surrounds the side and bottom surfaces of the reaction vessel and includes a heat transfer jacket having a heat medium embedded therein, and a heater for supplying heat to the heat transfer jacket. It is characterized in that the oil.
  • the nitrogen / electromagnetic wave supply part is located in the reaction vessel through the nitrogen / electromagnetic inlet and supplies a nitrogen and electromagnetic wave to the reactant, and is connected to the horn antenna and the nitrogen inlet It characterized in that it comprises a waveguide and a magnetron oscillator is connected to the waveguide and generates an electromagnetic wave.
  • the nitrogen / electromagnetic inlet in the manufacturing apparatus of the highly conductive polylactic acid according to the present invention is characterized in that installed at a position separated by 3/8 of the diameter of the reaction vessel (D) in the center of the reaction vessel.
  • the production method of the polylactic acid according to the present invention can reduce the equipment required for the production of polylactic acid, thereby increasing the production yield and the effect of reducing the cost.
  • the polylactic acid production method according to the present invention has the effect of optimizing the frequency and output of the electromagnetic wave in the synthesis step to produce a polylactic acid having a desired molecular weight in a short time.
  • the manufacturing method and apparatus for manufacturing a highly conductive polylactic acid polymer according to the present invention can ensure high conductivity by applying the optimum conditions of temperature, pressure and weight ratio that can be commercialized polylactic acid in electronic components, efficiency This is excellent in effect of reducing the manufacturing cost.
  • the method for producing a highly conductive polylactic acid polymer according to the present invention and its manufacturing apparatus have an effect that can be easily and efficiently produced.
  • the manufacturing method and apparatus for manufacturing the highly conductive polylactic acid polymer according to the present invention can perform the substitution reaction and the polymerization reaction in a single device, and are economical in terms of time and cost.
  • FIG. 1 is a conceptual diagram showing the structure of a conventional electrodialysis apparatus.
  • Figure 2 is a process diagram showing one embodiment of a method for producing a polylactic acid according to the present invention.
  • FIG 3 is a cross-sectional view showing the structure of the saccharification apparatus of the method for producing a polylactic acid according to the present invention.
  • Figure 4 is a graph showing the change in pH and the number of lactic acid bacteria of fermentation broth in the method of producing a polylactic acid according to the present invention.
  • 5A and 5B are cross-sectional views showing the structure of a fermentation apparatus equipped with a mechanism for concentrating lactic acid in the method for producing polylactic acid according to the present invention.
  • Figure 6 is a conceptual diagram showing the structure of the electrodialysis apparatus in the method of producing a polylactic acid according to the present invention.
  • FIG. 7 is a cross-sectional view showing the structure of a fermentation apparatus equipped with a mechanism for concentrating a legacy showing the structure of the polymerization apparatus in the method for producing a polylactic acid according to the present invention.
  • FIG. 8 is a graph showing the lactic acid purification process in the method for producing a polylactic acid according to the present invention as a change in reaction time and temperature.
  • FIG. 9 is a process chart showing the yield of the lactic acid purified in the method for producing a polylactic acid according to the present invention.
  • FIG. 10 is a graph illustrating a process of lactide production and polymerization of polymer polylactic acid in the method for producing polylactic acid according to the present invention.
  • FIG. 11 is a cross-sectional view showing the positional relationship between a polymerization apparatus and a polymerization accelerator in the method for producing a polylactic acid according to the present invention.
  • FIG. 12 is a cross-sectional view showing the structure of a polymerization accelerator in the method for producing a polylactic acid according to the present invention.
  • FIG. 13 is a graph showing data obtained by measuring the electromagnetic wave intensity distribution of the polymerization accelerator in the polymerization method according to the present invention by inserting a measurement probe inside the polymerization apparatus.
  • FIG. 14 is a cross-sectional view showing the structure of the measurement probe used in FIG. 13.
  • FIG. 15 is a conceptual diagram illustrating a moving state of contents in a polymerization apparatus in the method for producing a polylactic acid according to the present invention.
  • FIG. 16 is a graph showing data obtained by measuring molecular weight by irradiating electromagnetic waves in a polymerization apparatus in the method of producing a polylactic acid according to the present invention.
  • 17 is a process chart showing one embodiment of a method for producing a highly conductive polylactic acid polymer according to the present invention.
  • FIG. 18 is a conceptual diagram showing a high conductivity polylactic acid polymer manufacturing apparatus according to the present invention.
  • FIG. 19 is a conceptual diagram illustrating a nitrogen / electromagnetic wave supply unit of the highly conductive polylactic acid polymer production apparatus according to the present invention.
  • 20 is a conceptual view illustrating the position of the nitrogen / electromagnetic inlet of the high conductivity polylactic acid polymer manufacturing apparatus according to the present invention.
  • FIG. 21 is a conceptual diagram illustrating a state in which a reactant moves in a reaction container of the apparatus for preparing a highly conductive polylactic acid polymer according to the present invention.
  • FIG. 2 is a process diagram showing an embodiment of a method for producing a polylactic acid according to the present invention, the gelatinization step of mixing the vegetable starch with water and then heated to gelatinization as shown (S10); A liquefaction process of adding lactic acid to the gelatinized starch and liquefying by heating; A saccharification step (S30) of decomposing the liquefied starch into a monosaccharide liquid using a saccharifying enzyme; Fermentation process (S40) for producing a fermentation broth by lactic fermentation of the monosaccharide solution; Electrodialysis step (S50) of separating and concentrating the lactate from the fermentation broth and separating the lactic acid from the lactate; Lactic acid refining process (S60) for removing the water and impurities by heating the separated lactic acid; A lactide generating step (S70) of generating the lactide by mixing the purified lactic acid with a metal oxide; A polymerization step of polymerizing the lactide to form
  • Gelatinization process is a mixture of vegetable starch with water in a stirring apparatus and gelatinization by heating
  • starch is a rice starch
  • cassava (cassava) starch sweet potato starch, potato starch, wheat starch, Corn starch (corn starch) or the like can be used.
  • the gelatinization process is heated to 90 ⁇ 105 °C, preferably 95 ⁇ 100 °C while stirring at 70 ⁇ 100 RPM by mixing 70 to 80 parts by weight of water with respect to 20 to 30 parts by weight of starch, the temperature of the starch is 90 °C When it reaches 15-120 minutes, Preferably it is made to stir and heat at 70-100 RPM for 30 to 60 minutes, and gelatinizes.
  • the liquefaction step (S20) is to liquefy by adding lactic acid to the gelatinized starch, heating.
  • the lactic acid is a 50% solution of L-lactic acid having a molecular weight of 800 to 1000.
  • the liquefaction process is added to 0.1 ⁇ 1.0% by weight of L-Lactic acid (L-Latic Acid) to the weight of the gelatinized starch while stirring for 4 to 10 hours to 110 ⁇ 130 °C, preferably 120 ⁇ 150 °C It is heated and liquefied by stirring for 5 to 10 hours, preferably 7 to 8 hours in a pressurized environment of 1.2 to 2.0 kg / cm 2.
  • L-Lactic acid L-Latic Acid
  • the saccharification step (S30) is to decompose the liquefied starch into monosaccharide liquid using a saccharifying enzyme.
  • the glycosylase is 0.1 to 1.0% by weight of amylase, preferably glycoamylase, based on the weight of starch.
  • amylase preferably glycoamylase
  • the use of Amanose AF-6 results in a reaction time of 10-15 hours compared to Amanose T-10S. This can be reduced to 7-8 hours at.
  • the temperature of the liquefied starch is set to 50-65 ° C., preferably 50-65 ° C., and the pH is adjusted to 6.0-6.5, and the pH is preferably adjusted by adjusting the hydrogen ion concentration (pH) using an aqueous ammonia solution.
  • 0.1 to 1.0% by weight of the glycated enzyme is added to the added starch and stirred for 5 to 12 hours, preferably 6 to 10 hours, more preferably 7 to 8 hours to monosaccharide.
  • the hydrolysis method by lactic acid of the present invention it is possible to use the lactic acid solution obtained by the lactic acid fermentation or electrodialysis step or the lactic acid solution obtained by the lactic acid purification step as it is, and the cost and reaction time can be shortened.
  • FIG. 3 is a cross-sectional view showing the structure of the saccharification device of the polylactic acid production method according to the present invention, as shown in the saccharification device 200 is largely a container 210, the stirring blade 232 for stirring the contents and It is composed of a stirring apparatus 230 and an electric heater 250 and a water cooling jacket 270 that can adjust the temperature, the upper side of the vessel is provided with a condenser 290 and a condensate reservoir 292.
  • a gelatinization process, a liquefaction process, and a saccharification process may be continuously performed.
  • Fermentation process is to produce a fermentation broth by lactic fermentation of a monosaccharide solution.
  • the fermentation step is 0.01 to 0.1% by weight of salt, 0.01 to 0.5% by weight of manganese sulfate, 0.01 to 0.1% by weight of ammonium phosphate, 0.1 to 1.0% by weight of skim milk powder, soy milk, based on the total weight of the monosaccharide solution having a sugar content of 20 to 30.
  • 0.1 to 1.0% by weight, 0.1 to 1.0% by weight of molasses, 0.01 to 0.05% by weight of surfactant, 2 to 5% by weight of lactic acid bacteria culture medium is preferably mixed with the above monosaccharide solution and stirred at 70 to 100 RPM for 20 to 35 hours.
  • lactic acid bacteria and additives are added to the liquid sugar of 20 ⁇ 30 Brix, and the nutrients (for example, manganese, nitrogen, polyphenols, etc.) and corona precipitation required for propagation of monosaccharides and lactic acid bacteria in the fermentation apparatus in the process of lactic acid fermentation.
  • the surfactant eg, sucrose fatty acid ester, etc.
  • the hydrogen ion concentration (pH) is adjusted to a neutral region (pH 6.5 to 7.5) using ammonia It is preferable.
  • the temperature of the contents was adjusted to 38-42 ° C., which is suitable for the growth of lactic acid bacteria, and 2-5% by weight of Lactobacillus L Plantarm culture medium (3-5 billion cells of viable bacteria in 1 g of culture solution) was added at 70-100 RPM. Stir.
  • the growth of bacteria is inhibited by the lactic acid in the fermentation broth, so it is preferable to adjust the pH using sodium hydroxide so that the pH of the fermentation broth is not lower than 3.5.
  • Figure 4 is a graph showing a change in the pH and the number of lactic acid bacteria of fermentation broth in the method of producing a polylactic acid according to the present invention, as shown in the fermentation is close to the end of the starch in the fermentation broth is less proliferation of lactic acid bacteria Since the lactic acid production rate is extremely slow, the lactic acid enrichment apparatus will be described later.
  • Figure 5a and 5b is a cross-sectional view showing the structure of the fermentation apparatus equipped with a mechanism for concentrating the lactic acid in the method for producing a polylactic acid according to the present invention, a negative electrode which is a net-shaped electrode formed in the center of the fermentation apparatus as shown
  • an acidic salt mainly through a cylindrical diaphragm 324 (such as a cationic permeable membrane) with the cathode 328 and the fermentation chamber 322 interposed therebetween.
  • Sodium lactate moves inside the diaphragm 324.
  • the concentration chamber 326 provided inside the diaphragm 324.
  • lactate is concentrated in the concentration chamber 326 inside the diaphragm.
  • the volume ratio between the fermentation chamber 322 and the concentration chamber 326 is about 10: 1
  • the volume ratio of 1: 1-20: 1 is sufficient to perform the function.
  • the ratio is large and the fermentation efficiency is also improved. In practice, it is preferable to set the upper limit to about 30: 1.
  • Electrodialysis process is to separate and concentrate the lactate in the fermentation broth, and to separate the lactic acid from the lactate.
  • FIG. 6 is a conceptual diagram showing the structure of the electrodialysis apparatus in the method for producing a polylactic acid according to the present invention, as shown in the electrodialysis process is an electrolytic chamber 410, anion permeable membrane 451, cationic permeable membrane ( 453), an electrodialysis apparatus including a solution circulation means and an electrode, wherein the electrolytic chamber 410 includes an anolyte chamber 412, a fermentation broth 414, a lactate / lactic acid solution chamber 416, and sodium hydroxide.
  • the solution chamber 418 and the catholyte chamber 419 are sequentially arranged, and each electrolytic chamber is partitioned into an anion permeable membrane 451 and / or a cationic permeable membrane 453, and the electrode is an anode 431 and a cathode. 433, the auxiliary anode 435, and the auxiliary cathode 437 are preferable.
  • a sodium sulfate solution having a concentration of 10 to 20% as an electrolyte is circulated in the anolyte chamber 412 and the catholyte chamber 419 in the same circulation circuit to circulate the filtered fermentation broth in the fermentation broth 414.
  • clear water is circulated in the lactate / lactic acid solution chamber 416 and 0.1N sodium hydroxide solution is circulated in the sodium hydroxide solution chamber 418.
  • the auxiliary anode 435 and the auxiliary cathode 437 conduct a DC current between the anode 431 and the cathode 433 in a floating (no connection) state.
  • the hydroxyl ion (OH ⁇ ) in the fermentation broth 414 passes through the anion permeable membrane 451 separating the anolyte chamber 412 and the fermentation broth 414 and moves toward the electrode liquid chamber 412.
  • H + hydrogen ions
  • the lactate in the fermentation broth passes through the cationic permeation membrane 453 separating the fermentation broth 414 and the lactate / lactic acid solution chamber 416 and moves toward the lactate / lactic acid solution chamber 416.
  • the sodium ions are transferred from the lactate solution to the sodium hydroxide solution chamber 418, thereby releasing the lactate / lactic acid solution chamber 416. Lactic acid solution of) becomes lactic acid solution.
  • the sodium hydroxide concentrated in the sodium hydroxide solution chamber 418 may be used for neutralizing the fermentation broth in the fermentation process.
  • the electrodialysis apparatus of the present invention has the function of separating the lactate from the fermentation broth and the function of decomposing the lactate into lactic acid and sodium hydroxide at the same time, so that the process using two electrodialysis apparatuses in the past can be completed in one unit, which is reasonable and equipment cost. You can make about half.
  • Lactic acid purification process is to remove the water and impurities by heating the separated lactic acid. This is because the lactic acid extracted and separated by the electrodialysis process includes various organic acids, and thus it is necessary to purify the lactic acid (crude acid).
  • FIG. 7 is a cross-sectional view showing the structure of a fermentation apparatus equipped with a mechanism for concentrating a legacy showing the structure of the polymerization apparatus in the method for producing a polylactic acid according to the present invention, wherein the polymerization apparatus continuously stirs the contents as shown.
  • Possible stirring device 530 and stirring blade 532, electric heater 550 capable of heating the contents at 190 ° C or higher, inert gas injection device (not shown), pressure reduction device (not shown) in the vessel, evaporate cooling recovery device (Not shown) is provided with a pressure-resistant container 510, the pressure-resistant container 510 is a polymerization promoter 560 is connected. It is possible to continuously perform lactic acid purification, lactide production, polymer polylactic acid (PLA) polymerization, polylactic acid purification, etc. using the polymerization apparatus 500.
  • PLA polymer polylactic acid
  • Figure 8 is a graph showing the lactic acid purification process in the production method of the polylactic acid according to the present invention as a change in the reaction time and temperature, as shown in the lactic acid purification process is agitation of the lactic acid at 70 ⁇ 100 RPM in the pressure vessel Dehydrating by heating to 120 ⁇ 130 °C while continuing stirring for 1 to 2 hours at 150 ⁇ 160 °C to produce a low molecular polylactic acid; And when the low molecular weight polylactic acid is produced, the stirring is stopped, the mixture is cooled to room temperature, crystallized, and then heated again to 150 to 160 ° C. At this time, if the temperature is higher than 160 ° C, not only impurities but also evaporation of the lactic acid are purified. The yield of the inherited heritage becomes bad.
  • Figure 9 is a process chart showing the yield of the lactic acid is purified in the method for producing a polylactic acid according to the present invention, as shown in the water of 10 ⁇ 15wt% in the process of heating and dehydrating crude oil in the lactic refining process, In the process of producing polylactic acid (PLA), it can be seen that 5 to 6 wt% of water is discharged during the reheating process. The refined lactic acid is 75-80 wt% of the crude oil added.
  • the lactide generating step (S70) is to mix the purified lactic acid with a metal oxide to produce lactide.
  • FIG. 10 is a graph illustrating a process of lactide generation and polymerization of a polymer polylactic acid in the method for preparing polylactic acid according to the present invention.
  • FIG. 7 or FIG. 1 to 2 by mixing 0.5-1 wt% of one or more metal oxides of vanadium, nickel, iron, aluminum, titanium, selium, silicon, zircon, ruthenium, manganese, chromium, cobalt, platinum, thorium, palladium and tin in the container Stirring for sufficient time to mix well;
  • the inert gas is injected into the pressure-resistant container at atmospheric pressure to atmospheric pressure + 50 mmHg, and the contents are cooled and crystallized to produce lactide.
  • the lactide is an ester compound in which two molecules of ⁇ -hydroxy acid are cyclized between a carboxyl group and a hydroxy group, and there are three isomers of D-, L-, and DL-lactide.
  • FIG. 11 is a cross-sectional view showing the positional relationship between a polymerization apparatus and a polymerization accelerator in the method for producing a polylactic acid according to the present invention
  • FIG. 12 is a cross-sectional view showing the structure of the polymerization accelerator in a method for producing a polylactic acid according to the present invention.
  • the polymerization step (S80) is to polymerize the lactide to form a polylactic acid.
  • the polymerization process is stirred at a rate of 70 ⁇ 100 RPM while heating the lactide to the melting temperature, 0.1 to 1% by weight of the organic tin compound, 0.1 to 1% by weight of dodecyl alcohol with respect to the weight of the lactide
  • the polymerization process is stirred at a rate of 70 ⁇ 100 RPM while heating the lactide to the melting temperature, 0.1 to 1% by weight of the organic tin compound, 0.1 to 1% by weight of dodecyl alcohol with respect to the weight of the lactide
  • the polymerization promoter 560 By mixing at atmospheric pressure for 3 to 5 hours; Decompressing -20 to -50 mmHg while injecting an inert gas into the pressure resistant container, and heating and stirring the lactide at 160 to 170 ° C; And promoting the polymerization by using the polymerization promoter 560.
  • the frequency of the electromagnetic wave is 2 to 3 GHz, preferably 2.4 to 2.5 GHz, more preferably 2.45 GHz, and the output is preferably 10 to 30 W per kg of contents.
  • FIG. 13A, 13B, and 13C are graphs showing data obtained by measuring the electromagnetic wave intensity distribution of the polymerization accelerator in the polymerization apparatus by inserting a measurement probe inside the polymerization apparatus, and FIG. 14 is used in FIG. 13.
  • FIG. 14 is used in FIG. 13.
  • As a sectional view showing the structure of the measurement probe it can be seen that the intensity distribution of the electromagnetic wave varies depending on the degree to which the polymerization accelerator 560 is separated from the center of the polymerization vessel.
  • the electromagnetic wave emitted from the horn-shaped antenna 567 not only directly irradiates the surface of the contents but also reflects the reflected waves reflected inside the polymerization vessel, and the contents are moved while being stirred from the stirring device 530.
  • the polymerization accelerator 560 is installed at the position described above, the contents can be uniformly irradiated.
  • a member e.g., mica plate, etc.
  • the nitrogen gas inlet 563 is provided to the waveguide 561. It is desirable to install.
  • the other end of the waveguide 561 is connected to the inside of the polymerization apparatus 500. Nitrogen gas flows into the waveguide 561 and is supplied from the opening of the horn antenna 567 to the inside of the polymerization apparatus. Accordingly, it is possible to prevent vapor from the inside of the waveguide 561 from entering and to supply the inside of the polymerization apparatus without loss of electromagnetic waves.
  • the exhaust condenser and the vacuum pump are connected to the polymerization apparatus to reduce the pressure, and since nitrogen gas flows, steam of the contents does not penetrate and solidify inside the waveguide.
  • FIG. 15 is a conceptual diagram illustrating a moving state of contents in a polymerization apparatus in the method for producing a polylactic acid according to the present invention. As shown in FIG. While swirling to move to the right, the outer edge portion is faster compared to the center, so the electromagnetic wave distribution shown in Figure 13c it is possible that the contents are uniformly irradiated.
  • FIG. 16 is a graph showing data obtained by measuring molecular weight by irradiating electromagnetic waves in a polymerization apparatus in the method of preparing polylactic acid according to the present invention.
  • PLA polymerization was performed under the same conditions using the polymerization apparatus of the present invention.
  • the reaction time to 65,000dt which is the lower limit of the practical molecular weight, is 18 to 20 hours, whereas it can be seen that 28 to 32 hours are required when the electromagnetic wave is not irradiated.
  • the molecular weight reached at the reaction time of 32 hours was 70,000 to 75,000dt when the electromagnetic wave was not irradiated.
  • 100,000 to 110,000dt was found to be well polymerized.
  • Magnetron oscillator with 10KW output generates 2.45GHz electromagnetic wave
  • the variable reactance type regulator adjusts the electromagnetic radiation output to output 10, 30, 50, 100 (W / kg) per kilot of lactide.
  • the change of molecular weight was tested while changing, and the result was shown as follows.
  • Impurity evaporation step (S90) is to heat the polylactic acid to evaporate unreacted material that is not polymerized.
  • the impurity is a low molecular polylactic acid or lactide
  • the transpiration process is to reduce the pressure inside the pressure vessel -50 ⁇ 100mmHg and stirred for 1 to 2 hours at 70 ⁇ 100RPM while heating the temperature of the polylactic acid to 180 ⁇ 190 °C It is preferable.
  • a method for producing a polylactic acid according to the present invention is a gelatinization process of mixing the vegetable starch with water and then heating it to gelatinize;
  • a liquefaction step of adding 0.2-1.0 wt% of lactic acid to the weight of the gelatinized starch and liquefying by heating to 110-130 ° C .;
  • a saccharification step of decomposing the liquefied starch into a monosaccharide liquid using a saccharifying enzyme; 0.01 to 0.1% by weight of salt, 0.01 to 0.5% by weight of manganese sulfate, 0.01 to 0.1% by weight of ammonium phosphate, skim milk powder 0.1 to 1.0% by weight, soy milk 0.1 to 1.0% by weight, waste molasses 0.1
  • a fermentation step of producing a fermentation broth by lactic fermentation by mixing 1.0 wt%, 0.01 to 0.05 wt% surfactant, and 2 to 5 wt% of lactic acid bacteria culture medium to the monosaccharide solution
  • a lactide producing step of generating lactide A polymerization step of forming a polylactic acid by adding ringing-condensation polymerization by adding 0.1-1% by weight of organotin compound and 0.1-1% by weight of dodecyl alcohol to the weight of the lactide; And an impurity evaporation step of evaporating the unreacted material that is not polymerized by heating the temperature of the polylactic acid to 180 to 190 ° C.
  • FIG. 17 is a process diagram showing an embodiment of a method for producing a highly conductive polylactic acid polymer according to the present invention, as shown in the manufacturing method of the highly conductive polylactic acid polymer according to the present invention is 100 parts by weight of polylactic acid in the reaction vessel S1 step of adding 10 to 20 parts by weight of lactide and 5 to 10 parts by weight of polyglycolic acid, followed by stirring; S2 step of adding 5 to 10 parts by weight of serine and 0.1 to 1 part by weight of dodecyl alcohol in the reaction vessel, inert gas and irradiating electromagnetic waves; And S3 step of adding 0.1-1 part by weight of cerium acetate to the reaction vessel, followed by stirring.
  • step S1 step is to put a raw material, such as 100 parts by weight of polylactic acid, 10 to 20 parts by weight of lactide and 5 to 10 parts by weight of polyglycolic acid (glycollic acid) in the reaction vessel, and then stirred. And the step S1 can be made in a reduced pressure at a temperature of 160 ⁇ 190 °C and 0.1 ⁇ 0.5 atm.
  • a raw material such as 100 parts by weight of polylactic acid, 10 to 20 parts by weight of lactide and 5 to 10 parts by weight of polyglycolic acid (glycollic acid)
  • the step S1 according to the present invention may be made by adding 0.1 to 10 parts by weight of ammonium vanadate (NH 4 VO 3) as a catalyst and 0.1 to 10 parts by weight of vanadium oxide.
  • the vanadium oxide according to the present invention is one selected from vanadium monoxide (VO), vanadium dioxide (VO 2 ), vanadium trioxide (V 2 O 3 ) and vanadium pentoxide (V 2 O 5 ).
  • Lactide according to the present invention is an ester compound in which two molecules of ⁇ -hydroxy acid are cyclized between a carboxy group and a hydroxyl group, and all three isomers of D-, L-, and DL-lactide can be used.
  • Formula 1 shows a state in which a lactic acid is converted into a polylactic acid.
  • the polylactic acid (PLA, Poly Lactic Acid) according to the present invention has lactide (Lactid) coexisting, and the lactide forms a ring-shaped peptide. Since it can form, it is preferable to use the low molecular weight polylactic acid whose average molecular weight is 2,000-10,000, Preferably 5,000-10,000.
  • step S2 5-10 parts by weight of serine and 0.1-1 part by weight of dodecyl alcohol are added to the reaction vessel, and an inert gas is added thereto to irradiate electromagnetic waves. Irradiating electromagnetic waves to the reactants according to the present invention promotes N-H substitution reactions and condensation polymerization reactions that are converted from lactide to cyclic peptides.
  • step S2 may be made in a state pressurized to 1 to 5 atm by adding nitrogen as an inert gas.
  • Serine (serine) is a-amino acid, the chemical formula is HOCH 2 CH (NH 2 ) COOH, one kind of amino acid that is soluble in water but not soluble in alcohol or ether.
  • any of hydrophilic amino acids asparagine, cysteine, glutamine, glycine, threonine, tyrosine, lysine, aspartic acid, glutamic acid, arginine, and histidine may be used in addition to serine.
  • Formula 2 shows a state in which a lactide is converted into a cyclic peptide, and the cyclic peptide has a plurality of side chains, thereby facilitating the bonding of metal atoms to be described later.
  • R is an amino acid
  • S3 step according to the present invention is to add 0.1 to 1 parts by weight of cerium acetate (Acetic Acid cerium, Ce) to the reaction vessel, and then stirred.
  • Cerium according to the present invention is one of the rare earth elements belonging to the lanthanide group of the periodic table.
  • any one of cerium nitrate, cerium ammonium nitrate, and cerium chloride may be selected and used instead of cerium acetate.
  • a compound containing other rare earth elements can be used.
  • step S3 may be made in a state pressurized to 1 to 5 atm by adding nitrogen as an inert gas.
  • Formula 3 shows a metal atom group bonded to the side chain of the cyclic polypeptide, and a metal atom group such as cerium may be bonded to the amino acid (R) of the polypeptide to generate a highly conductive polylactic acid polymer.
  • M is a metal atom group
  • R is an amino acid
  • S4 step according to the present invention is to maintain a temperature of 160 ⁇ 190 °C in a state in which the agitation of the step S3 is stopped and reduced to 0.1 to 0.5 atm.
  • step S5 after the step S4 is completed, an inert gas is added to pressurize to 2 to 3 atmospheres to discharge the reactants in the reactor.
  • Step S1 to S3 of the present invention is made at a reaction temperature of 160 ⁇ 190 °C, if less than 160 °C may not be a smooth reaction or the reaction proceeds slowly. And when the steps S1 to S3 is more than 190 ° C evaporation of the reactants a lot, the reaction does not proceed smoothly.
  • the apparatus for producing a highly conductive polylactic acid polymer according to the present invention includes a raw material inlet 112a and 112b, a nitrogen / electromagnetic inlet 114 and a nitrogen outlet 116 in the upper portion, and a reactant outlet 118 in the lower portion.
  • Reaction vessel 110 is provided; An agitator (130) for stirring the reactants in the reaction vessel (110); A heat supply unit 150 for heating the reaction vessel 110; A nitrogen / electromagnetic wave supply unit 170 connected to the nitrogen / electromagnetic wave inlet 114 to supply electromagnetic waves and nitrogen gas to a reactant in the reaction vessel 110; And a decompression pump 190 connected to the nitrogen outlet 116 to depressurize the inside of the reaction vessel 110.
  • the heat supply unit 150 surrounds the side and bottom surfaces of the reaction vessel 110 and has a heat transfer jacket 152 having a heat medium therein, and a heater 154 for supplying heat to the heat transfer jacket 152. Include.
  • the heat medium uses a silicone-based oil having a smaller specific heat than the reactant, and the heat transferred to the reactant is indirectly made through the heat medium.
  • the nitrogen / electromagnetic wave supply unit 170 is a reaction vessel 110 through a nitrogen / electromagnetic wave inlet 114.
  • a horn antenna 172 for supplying nitrogen and electromagnetic waves to a reactant
  • a waveguide 176 connected to the horn antenna 172 and provided with a nitrogen inlet 174
  • a waveguide 176 and an electromagnetic wave It may include a magnetron oscillator 178 to generate.
  • pressurization in the reaction vessel 110 is performed by injecting nitrogen gas which is an inert gas, and decompression is performed by a pressure reduction pump 190 connected with the reaction vessel 110.
  • a heat exchanger 180 is provided between the reaction vessel 110 and the decompression pump 190 to adjust the temperature of the gas flowing into the decompression pump 190.
  • Figure 20 is a conceptual diagram illustrating the position of the nitrogen / electromagnetic inlet of the high conductivity polylactic acid polymer manufacturing apparatus according to the present invention, as shown, the nitrogen / electromagnetic inlet 114 is based on the center of the reaction vessel 110 It can be installed at a position 3/8 of the diameter (D) of the reaction vessel, when installed in this position, the amount of electromagnetic radiation is uniformly distributed over the entire surface of the reactant.
  • electromagnetic waves radiated from the horn-shaped horn antenna 172 not only directly irradiate the surface of the reactant but also reflect the reflected wave reflected from the inside of the reaction vessel, and the reactant is uniformly moved by being stirred by the stirrer 130.
  • a survey will be available.
  • a member e.g., mica plate, etc.
  • a member having a low transmission loss of electromagnetic waves is installed to physically shield the magnetron oscillator and the waveguide 176, and the nitrogen inlet port of the waveguide 176. It is desirable to install 174.
  • Nitrogen gas according to the present invention flows into the waveguide 176 and is supplied to the reaction vessel through the horn horn antenna 567. As the nitrogen gas is supplied, the vapor of the reactant may be prevented from infiltrating into the waveguide 176, the pressure control required for the reaction may be performed, and the cyclic polypeptide may be generated.
  • FIG. 21 is a conceptual diagram illustrating a state in which a reactant moves in a reaction container of the apparatus for preparing a highly conductive polylactic acid polymer according to the present invention. As shown in FIG. However, the entire reactant is swirled to the right in the polymerization apparatus, but the outer edge portion is faster than the center, so it is possible to receive the electromagnetic wave uniformly.
  • step S1 100 parts by weight of polylactic acid having an average molecular weight of 5,000 to 10,000, 5 to 10 parts by weight of polyglycolic acid, and 10 to 20 parts by weight of lactide are added. And 0.1-10 weight part of ammonium vanadate which is a catalyst, and 0.1-10 weight part of vanadium oxides which are a catalyst are added and stirred to a reaction container. At this time, by operating a heater to heat the temperature in the reaction vessel to 160 ⁇ 190 °C, the pressure in the reaction vessel is adjusted to 0.1 ⁇ 0.5 atm using a pressure reducing pump.
  • step S2 5-10 parts by weight of serine and 0.1-1 part by weight of dodecyl alcohol are added to the reaction vessel, and nitrogen and electromagnetic waves are supplied to the reactants through a nitrogen / electromagnetic wave supply part.
  • the electromagnetic wave is irradiated with a frequency of 2.45 GHz from a magnetron oscillator with a rated output of 3 kW and 30 to 100 W per kg of reactant, and during irradiation, the temperature in the reaction vessel is maintained at 160 to 190 ° C. and the pressure is 1 to 5 atm.
  • step S3 0.1-1 part by weight of dodecyl alcohol and 0.1-1 part by weight of cerium acetate are added and stirred.
  • step S4 the temperature of 160-190 ° C. is maintained while the supply and stirring of electromagnetic waves and nitrogen are stopped, and the pressure is reduced to 0.1 to 0.5 atm.
  • the reactant discharged according to Example 1 is a highly conductive polylactic acid combined with cerium (metal atom group) To prepare.
  • reaction vessel 112a, 112b raw material inlet
  • stirring blade 150 heat supply
  • stirring blade 250 electric heater
  • condenser 292 condensate storage
  • body 312 lactic acid concentrate outlet
  • concentration chamber 328 cathode
  • stirring device 332 stirring blade
  • thermal insulation jacket 400 electrodialysis apparatus
  • electrolytic cell 412 anolyte chamber
  • fermentation broth 416 lactate / lactic acid solution chamber

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

The present invention relates to a method for producing polylactic acid, and more particularly, to a method for producing polylactic acid, which can increase production yield and reduce costs, and which can more conveniently produce a high molecular weight polylactic acid according to the use thereof. Also, the present invention relates to a method for producing a highly conductive polylactic acid polymer, which is economical in terms of time and cost as a highly conductive polylactic acid can be efficiently produced, and to an apparatus for producing the highly conductive polylactic acid polymer. According to the present invention, the method for producing the highly conductive polylactic acid comprises: a step S1 of adding and mixing 100 parts by weight of polylactic acid, 10 to 20 parts by weight of lactide, and 5 to 10 parts by weight of polyglycolic acid in a reaction vessel; a step S2 of adding 5 to 10 parts by weight of serine and 0.1 to 1 part by weight of dodecyl alcohol into the reaction vessel, and then feeding inert gas therein and irradiating same with electromagnetic waves; and a step S3 of adding 0.1 to 1 part by weight of acetic acid selenium into the reaction vessel, and then mixing.

Description

폴리유산과 고전도성 폴리유산 중합체의 제조방법 및 고전도성 폴리유산 중합체의 제조장치Method for producing polylactic acid and highly conductive polylactic acid polymer and apparatus for producing highly conductive polylactic acid polymer
본 발명은 폴리유산과 고전도성 폴리유산 중합체의 제조방법 및 그 제조장치에 관한 것으로, 보다 상세하게는 생산수율의 상승과 비용을 절감되고, 용도에 따른 고분자량의 폴리유산을 보다 간편하게 생산할 수 있는 폴리유산의 제조방법과 효율적으로 고전도성 폴리유산을 제조할 수 있어, 시간ㆍ비용면에서 경제적인 고전도성 폴리유산 중합체의 제조방법 및 그 제조장치에 관한 것이다.The present invention relates to a method for producing a polylactic acid and a highly conductive polylactic acid polymer, and an apparatus for manufacturing the same, and more particularly, to increase production yield and reduce costs, and to more easily produce a high molecular weight polylactic acid according to a use. The present invention relates to a method for producing a polylactic acid and a method for producing a highly conductive polylactic acid polymer, which is economical in terms of time and cost, and an apparatus for manufacturing the same.
플라스틱 소재는 다양하고 우수한 기능 및 저렴한 가격으로 현대인의 풍요로운 일상생활과 산업발달에 큰 공헌을 해 온 반면 대량으로 발생 되는 각종 폐비닐, 스티로폼, 플라스틱 용기 등의 소각이나 매립에 따른 환경호르몬 누출, 맹독성의 다이옥신 검출, 폐기물의 불완전 연소에 의한 대기오염 발생 등과 같은 심각한 환경오염의 원인으로 대두되고 있다. 이러한 플라스틱 폐기물의 문제를 해결하기 위하여 사용할 때는 플라스틱의 가공성, 내구성, 기계적 성질을 유지하면서 추가로 사용 후에는 분해성이라는 기능을 부가하여 플라스틱의 편리성과 환경오염 문제 해결을 할 수 있는 연구가 진행되고 있다.Plastic materials have contributed to modern people's abundant daily life and industrial development with various excellent functions and low prices, while environmental hormone leakage and intoxication caused by incineration or landfill of various waste vinyl, styrofoam, plastic containers, etc. Is a cause of serious environmental pollution such as detection of dioxins and air pollution caused by incomplete combustion of waste. In order to solve the problem of plastic waste, research is being conducted to solve the problem of plastic convenience and environmental pollution by adding a function of degradability after use while maintaining the processability, durability and mechanical properties of the plastic. .
한편, 분해성 플라스틱이란 태양광에 의한 광산화, 케톤 광분해 등 화학반응에 의한 광분해성 플라스틱, 온도 등의 영향에 의한 산화반응에 의해 분해되는 플라스틱인 산화분해 플라스틱, 가수분해반응에 의해 분해되는 플라스틱 및 미생물, 효소 등에 의해 분해되는 플라스틱이 있다. 여기에서 식물에서 유래한 천연고분자인 셀룰로오스, 펙틴, 헤미셀룰로오스, 리그닌, 전분, 볏짚을 기초로 만들어진 생분해성 고분자를 천연 고분자계 생분해성 고분자라고 한다. 이러한 생분해성 고분자를 다양한 분야에 응용함으로써, 환경오염을 줄일 수 있게 된다.On the other hand, degradable plastics are photodegradable plastics caused by chemical reactions such as photooxidation by photovoltaic light and ketone photolysis, oxidatively decomposed plastics which are decomposed by oxidation reactions under the influence of temperature, plastics and microorganisms decomposed by hydrolysis reaction. And plastics decomposed by enzymes and the like. Here, biodegradable polymers made of plant-derived natural polymers such as cellulose, pectin, hemicellulose, lignin, starch and rice straw are called natural polymer biodegradable polymers. By applying such a biodegradable polymer to various fields, it is possible to reduce environmental pollution.
전분은 그 자체의 점착성, 열 또는 물을 이용하여 발포되는 발포성을 이용하여 전분 발포 용기, 전분 발포 포장재, 완충재 등에 적용되어 실용화되고 있는 실정이다. 전분 등을 이용해 미생물로 발효해 만든 L-유산을 단량체로 이용하여 화학 합성된 폴리유산(Poly Latic Acid, PLA)이 기존의 합성 PLA보다 가격이 저렴하여 많은 양이 사용되고 있으며 필름이나 섬유에 2차 가공된 PLA는 내가수분해성도 뛰어나다.Starch is applied to starch foam containers, starch foam packaging materials, cushioning materials, etc. using foaming properties of foaming using its own adhesiveness, heat, or water. Poly-Lactic Acid (PLA), which is chemically synthesized using L-lactic acid, fermented with microorganisms using starch, as a monomer, is cheaper than conventional PLA, and is used in a large amount. Processed PLA also has excellent hydrolysis resistance.
다만, 폴리유산은 유산을 발효과정에서 반응액의 pH가 저하되고, 유산균의 활성이 저해되는 일이 많아 고농도의 유산을 효율적으로 얻지 못한다는 문제점이 있었다. 따라서, pH와 온도를 엄밀히 조정할 필요가 있었으며, 특히 전분을 액화시키고 단량화시키는 데 까지 걸리는 시간만 24 내지 35시간이 걸리고, 비용도 많이 든다는 문제가 있었다. However, the polylactic acid has a problem in that the pH of the reaction solution is lowered during the fermentation of the lactic acid, and the activity of the lactic acid bacteria is often inhibited, so that lactic acid at a high concentration cannot be efficiently obtained. Therefore, it was necessary to strictly adjust the pH and temperature, in particular, the time required to liquefy and shorten the starch takes only 24 to 35 hours, there was a problem that it is expensive.
도 1은 종래의 전기투석장치를 나타내는 개념도로서 도시된 바와 같이 폴리유산의 제조공정 중에서 유산을 전기투석공정이 있으나, 종래에는 공정은 발효액에서부터 유산염을 분리하는 공정을 수행하는 장치와 다시 유산염을 유산과 수산화나트륨으로 분해하는 기능을 하는 장치가 별도로 구비해야 하므로 설비비용이 많이 소요된다는 문제가 있었다. 1 is a conceptual diagram showing a conventional electrodialysis apparatus, as shown in the manufacturing process of the polylactic acid, there is an electrodialysis process of the lactic acid, conventionally the process is a device for performing the process of separating the lactate from the fermentation broth and lactate the lactate again There was a problem in that the equipment cost is high because it must be equipped with a separate device that functions to decompose and sodium hydroxide.
또한, 전기투석장치에 의한 추출 분리된 유산은 각종 유기산을 포함하고 있기 때문에 그것들을 제거하여 순수한 유산으로 정제할 필요가 있다. 이 공정을 유산정제공정이라 하며, 종래에는 이온교환수지의 선택흡착성에 착안한 이온흡착분리법이나 전기투석법에 따라 행해져 왔으나 사전처리 등의 과정을 몇 번으로 나누어 행해야만 하는 제약이 있었다.In addition, since the extracted and separated lactic acid by the electrodialysis apparatus contains various organic acids, it is necessary to remove them and to refine the pure lactic acid. This process is called lactic refining process. Conventionally, the process has been performed by ion adsorption separation method or electrodialysis method which focuses on selective adsorption of ion exchange resins, but there is a limitation that the process such as pretreatment must be divided into several times.
고분자의 PLA를 합성하는 공정에 있어서, 전자파를 이용하면 반응이 촉진되는 것이 이전부터 알려져 있었으며 전자레인지 안에 유리용기 등이 내장되어 있어 해당 용기에 소량의 시료를 주입하여 실험하는 연구용 실험장치 등이 발표되어 있었으나 내용물의 양에 따른 주파수나 출력이 적정화되어 있지 않아 공정의 효율이 떨어지고, 그에 따라 생산비용이 상승한다는 문제가 있었다.In the process of synthesizing PLA of polymers, it is known that the reaction is accelerated by using electromagnetic waves, and there is a research apparatus for experimenting by injecting a small amount of sample into the container because a glass container is built in the microwave oven. Although the frequency and output according to the amount of the contents are not optimized, the efficiency of the process is lowered and the production cost increases accordingly.
다만 폴리유산을 2차 가공하여 전자파 실드 재료나 각종 도전성 부품, 전지, 캐퍼시터 등의 재료에 대한 연구는 아직 미미한 실정이다.However, research on materials such as electromagnetic shielding materials, various conductive parts, batteries, capacitors, etc. by processing polylactic acid secondary is still insignificant.
이에 본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 목적은 유산발효과정에서 반응의 pH에 영향을 받지 않고, 온도조정의 범위가 넓어 공정시간 및 비용면에서 효율적인 폴리유산의 제조방법을 제공하는 것이다.Accordingly, the present invention has been made to solve the above problems, the object of the present invention is not affected by the pH of the reaction in the lactic acid effect tablet, the temperature range is wide, the process time and cost of the efficient polylactic acid It is to provide a manufacturing method.
또한, 본 발명의 목적은 유산의 전기투석공정에서 발효액에서 유산염을 분리하는 공정과 유산과 수산화나트륨을 분리하는 공정을 하나의 공정 및 장치로 수행할 수 있으며, 사전처리 등이 필요 없어 보다 효율적인 폴리유산의 제조방법을 제공하는 것이다.In addition, an object of the present invention can be carried out in one process and apparatus to separate the lactate from the fermentation broth and the process of separating the lactic acid and sodium hydroxide in the electrodialysis process of lactic acid, and does not require pretreatment, such as more efficient poly It is to provide a method for producing a lactic acid.
또한, 본 발명의 목적은 원하는 고분자량의 폴리유산을 간편하게 생산할 수 있는 폴리유산의 제조방법을 제공하는 것이다.It is also an object of the present invention to provide a method for producing a polylactic acid which can easily produce a polylactic acid of a desired high molecular weight.
본 발명의 또 다른 목적은 폴리유산을 전자부품에 이용할 수 있도록 온도, 압력 및 중량비 등의 최적의 조건을 적용하여 고전도성을 확보하는 것은 물론 제조원가도 줄일 수 있는 고전도성 폴리유산 중합체의 제조방법을 제공하는 것이다.It is still another object of the present invention to provide a method for producing a highly conductive polylactic acid polymer which can reduce the manufacturing cost as well as ensure high conductivity by applying optimal conditions such as temperature, pressure, and weight ratio so that polylactic acid can be used in electronic parts. To provide.
또한, 본 발명의 목적은 원하는 고전도성의 폴리유산 중합체를 간편하고 효율적으로 제조할 수 있는 고전도성 폴리유산 중합체의 제조방법을 제공하는 것이다.It is also an object of the present invention to provide a method for producing a highly conductive polylactic acid polymer which can easily and efficiently produce a desired highly conductive polylactic acid polymer.
또한, 본 발명의 또 다른 목적은 단일 장치를 이용하여 치환반응과 중합반응을 수행할 수 있는 고전도성 폴리유산 중합체의 제조장치를 제공하는 것이다.Another object of the present invention is to provide an apparatus for producing a highly conductive polylactic acid polymer capable of carrying out a substitution reaction and a polymerization reaction using a single device.
상기한 목적을 달성하기 위하여 본 발명에 따른 폴리유산의 제조방법은 식물성 전분을 물과 혼합한 후 가열하여 호화시키는 호화공정; 상기 호화된 전분에 유산을 첨가하고 가열하여 액화시키는 액화공정; 상기 액화된 전분을 당화효소를 이용하여 단당액으로 분해하는 당화공정; 상기 단당액을 유산발효시켜 발효액을 생성하는 발효공정; 상기 발효액에서 유산염을 분리 및 농축하고, 상기 유산염에서 유산을 분리시키는 전기투석공정; 상기 분리된 유산을 가열하여 수분 및 불순물을 제거하는 유산정제공정; 상기 정제된 유산을 금속산화물과 혼합시켜 락티드를 생성하는 락티드 생성공정; 상기 락티드를 중합반응시켜 폴리유산을 생성하는 중합공정; 및 상기 폴리유산을 가열하여 중합반응하지 않은 미반응물질을 증산시키는 불순물 증산공정;을 포함하는 것을 특징으로 한다.Method for producing a polylactic acid according to the present invention in order to achieve the above object is a gelatinization process of mixing the vegetable starch with water and then heated to gelatinize; A liquefaction step of adding lactic acid to the gelatinized starch and liquefying it by heating; A saccharification step of decomposing the liquefied starch into a monosaccharide liquid using a saccharifying enzyme; A fermentation step of lactically fermenting the monosaccharide solution to produce a fermentation broth; Electrodialysis step of separating and concentrating the lactate from the fermentation broth and separating the lactic acid from the lactate; Lactic acid purification process of heating the separated lactic acid to remove moisture and impurities; A lactide producing step of mixing the purified lactic acid with a metal oxide to produce lactide; A polymerization step of polymerizing the lactide to generate polylactic acid; And an impurity evaporation step of evaporating the unreacted material that is not polymerized by heating the polylactic acid.
또한, 본 발명에 따른 폴리유산의 제조방법에서 상기 호화공정은 상기 전분 20~30 중량부에 대하여 물 70~80 중량부를 혼합하여 70~100 RPM으로 교반하면서 90~105℃로 가열한 후, 15~120분간 교반하는 것을 특징으로 한다.In addition, the gelatinization process in the method for producing a polylactic acid according to the present invention is mixed with 70 to 80 parts by weight of water with respect to 20 to 30 parts by weight of the starch and heated to 90 to 105 ℃ while stirring at 70 to 100 RPM, 15 It is characterized by stirring for ~ 120 minutes.
또한, 본 발명에 따른 폴리유산의 제조방법에서 상기 액화공정은 상기 호화된 전분의 중량에 대하여 상기 유산 0.1~1.0중량%를 첨가하여 4~10 시간동안 교반하면서 110~130℃로 가열하는 것을 특징으로 한다.In addition, the liquefaction process in the method of producing a polylactic acid according to the present invention is characterized by heating to 110 ~ 130 ℃ while stirring for 4-10 hours by adding 0.1 ~ 1.0% by weight of the lactic acid to the weight of the gelatinized starch. It is done.
또한, 본 발명에 따른 폴리유산의 제조방법에서 상기 당화효소는 상기 전분의 중량에 대하여 0.1~1.0%의 아밀라아제이고, 상기 액화된 전분의 온도는 50~65℃, pH는 6.0~6.5로 조정하는 것이며, 상기 pH는 암모니아 수용액을 이용하여 조정하는 것을 특징으로 한다.In addition, in the method for producing a polylactic acid according to the present invention, the glycosylase is 0.1 to 1.0% amylase with respect to the weight of the starch, the temperature of the liquefied starch is 50 to 65 ℃, pH is adjusted to 6.0 to 6.5 The pH is characterized by using an aqueous ammonia solution.
또한, 본 발명에 따른 폴리유산의 제조방법에서 상기 발효공정은 당도가 20~30인 상기 단당액의 중량에 대하여 식염 0.01~0.1%, 황산망간 0.01~0.5%, 인산암모니움 0.01~0.1%, 탈지분유 0.1~1.0%, 두유 0.1~1.0%, 폐당밀 0.1~1.0%, 계면활성제 0.01~0.05%, 유산균 배양액 2~5%를 상기 단당액에 혼합하고, 70~100RPM으로 20~35 시간동안 교반하는 것을 특징으로 한다.In addition, in the method of producing a polylactic acid according to the present invention, the fermentation process is based on the weight of the monosaccharide solution having a sugar content of 20 to 30, 0.01 to 0.1% of salt, 0.01 to 0.5% of manganese sulfate, 0.01 to 0.1% of ammonium phosphate, 0.1 to 1.0% skim milk powder, 0.1 to 1.0% soy milk, 0.1 to 1.0% waste molasses, 0.01 to 0.05% surfactant, 2 to 5% of the lactic acid bacteria culture medium is mixed with the above monosaccharide solution for 20 to 35 hours at 70 to 100 RPM It is characterized by stirring.
또한, 본 발명에 따른 폴리유산의 제조방법에서 상기 발효공정은 상기 발효에 의하여 생성된 유산을 농축시키는 기구가 장착되는 발효장치를 이용하는 것을 특징으로 한다.In addition, the fermentation process in the method of producing a polylactic acid according to the present invention is characterized in that it uses a fermentation apparatus equipped with a mechanism for concentrating the lactic acid produced by the fermentation.
또한, 본 발명에 따른 폴리유산의 제조방법에서 상기 전기투석공정은 전해실, 격막에 의한 칸막이, 용액순환수단, 전극을 포함하는 전기투석장치를 이용하여 이루어지는 것이고, 상기 전해실은 양극액실, 발효액실, 유산염/유산 생성실, 수산화 나트륨 생성실, 음극액실을 포함하며, 각각의 전해실은 음이온 투과막 및/또는 양이온 투과막으로 구획되고, 상기 전극은 양극, 음극, 보조양극, 보조음극을 포함하는 것을 특징으로 한다.In addition, in the polylactic acid production method according to the present invention, the electrodialysis process is performed using an electrodialysis apparatus including an electrolytic chamber, a partition by a diaphragm, a solution circulation means, and an electrode, and the electrolytic chamber is an anolyte chamber and a fermentation broth. And a lactate / lactic acid generating chamber, a sodium hydroxide generating chamber, and a catholyte chamber, each electrolytic chamber being partitioned into an anionic permeable membrane and / or a cationic permeable membrane, wherein the electrode comprises an anode, a cathode, an auxiliary anode, and an auxiliary cathode. It is characterized by.
또한, 본 발명에 따른 폴리유산의 제조방법에서 상기 유산정제공정은 상기 유산을 내압용기에서 70~100RPM으로 교반을 하면서 120~130℃로 가열하여 탈수시킨 후 150~160℃에서 1~2시간 교반을 계속하여 저분자 폴리유산을 생성하는 단계; 및 상기 저분자 폴리유산이 생성되면, 교반을 정지시킨 후 상온까지 냉각시켜 결정화 한 뒤, 150~160℃로 가열하고, 상기 내압용기 내의 압력을 감압하여 1~2시간 70~100RPM으로 교반하여 불순물을 증산시켜 정제된 유산을 얻는 단계;를 포함하는 것을 특징으로 한다.In addition, the lactic acid refining process in the method for producing a polylactic acid according to the present invention is dehydrated by heating to 120 ~ 130 ℃ while stirring the lactic acid at 70 ~ 100RPM in a pressure-resistant vessel and stirred for 1 to 2 hours at 150 ~ 160 ℃ Continuing to produce low molecular weight polylactic acid; And when the low molecular weight polylactic acid is produced, the stirring is stopped, the mixture is cooled to room temperature, crystallized, heated to 150 to 160 ° C, and the pressure in the pressure vessel is reduced to 70 to 100 RPM for 1 to 2 hours to reduce impurities. Transpiration to obtain a purified lactic acid; characterized in that it comprises a.
또한, 본 발명에 따른 폴리유산의 제조방법에서 상기 락티드 생성공정은 내압용기 내에 바나듐, 니켈, 철, 알루미늄, 티탄, 셀륨, 실리콘, 지르콘, 루테늄, 망간, 크롬, 코발트, 백금, 토륨, 팔라듐, 주석 중에서 어느 하나 이상의 금속 산화물을 0.5~1% 혼합하는 단계; 상기 유산을 170~190℃에서 3~5시간 가열, 교반하는 단계; 및 상기 유산을 서서히 냉각 및 결정화시켜 락티드를 생성하는 단계;를 포함하는 것을 특징으로 한다.In the polylactic acid production method according to the present invention, the lactide production process is carried out in a vanadium, nickel, iron, aluminum, titanium, selium, silicon, zircon, ruthenium, manganese, chromium, cobalt, platinum, thorium, palladium in a pressure resistant container. Mixing 0.5-1% of at least one metal oxide in tin; Heating and stirring the lactic acid at 170 to 190 ° C. for 3 to 5 hours; And slowly cooling and crystallizing the lactic acid to produce lactide.
또한, 본 발명에 따른 폴리유산의 제조방법에서 상기 중합공정은 상기 락티드를 융해온도까지 가열하면서 70~100RPM의 속도로 교반하고, 상기 락티드의 중량에 대하여 유기주석화합물 0.1~1%, 도데실알콜 0.1~1%를 첨가하여 대기압에서 3~5시간 혼합하는 단계; 내압용기 내에 불활성 가스를 주입하면서 감압하고, 상기 락티드를 160~170℃에서 가열, 교반하는 단계; 및 중합촉진장치를 이용하여 중합을 촉진하는 단계;를 포함하는 것을 특징으로 한다.In addition, in the method for producing a polylactic acid according to the present invention, the polymerization process is stirred at a rate of 70 to 100 RPM while heating the lactide to a melting temperature, and the organic tin compound is 0.1 to 1% based on the weight of the lactide, Adding 0.1 to 1% of silalcohol and mixing for 3 to 5 hours at atmospheric pressure; Reducing the pressure while injecting an inert gas into the pressure resistant vessel, and heating and stirring the lactide at 160 to 170 ° C; And promoting the polymerization by using the polymerization promoter.
또한, 본 발명에 따른 폴리유산의 제조방법에서 상기 불순물은 저분자 폴리유산 또는 락티드이고, 상기 증산공정은 내압용기 내를 감압하고 상기 폴리유산의 온도를 180~190℃로 가열하면서 70~100RPM으로 1~2시간 교반하는 것을 특징으로 한다.In addition, in the method for producing a polylactic acid according to the present invention, the impurity is a low molecular polylactic acid or lactide, and the transpiration process may be performed at 70 to 100 RPM while reducing the pressure inside the pressure vessel and heating the temperature of the polylactic acid to 180 to 190 ° C. It is characterized by stirring for 1 to 2 hours.
또한, 본 발명에 따른 폴리유산의 제조방법은 식물성 전분을 물과 혼합한 후 가열하여 호화시키는 호화공정; 상기 호화된 전분의 중량에 대하여 유산 0.2~1.0%를 첨가하고 110~130℃로 가열하여 액화시키는 액화공정; 상기 액화된 전분을 당화효소를 이용하여 단당액으로 분해하는 당화공정; 상기 단당액의 중량에 대하여 식염을 0.01~0.1%, 황산망간 0.01~0.5%, 인산암모니움 0.01~0.1%, 탈지분유 0.1~1.0중량%, 두유 0.1~1.0%, 폐당밀 0.1~1.0%, 계면활성제 0.01~0.05%, 유산균 배양액 2~5%를 상기 단당액에 혼합하여 유산발효시켜 발효액을 생성하는 발효공정; 상기 발효액의 유산을 수산화나트륨으로 중화시켜 유산염을 만든 뒤에 상기 유산염에서 유산과 수산화나트륨으로 분해시키는 전기투석공정; 상기 분리된 유산을 120~130℃로 가열하여 탈수시킨 후, 150~160℃로 가열하여 저분자 폴리유산을 생성하는 유산정제공정; 상기 정제된 유산을 바나듐, 니켈, 철, 알루미늄, 티탄, 셀륨, 실리콘, 지르콘, 루테늄, 망간, 크롬, 코발트, 백금, 토륨, 팔라듐, 주석 중에서 어느 하나 이상의 금속 산화물 0.5~1%와 혼합하여 락티드를 생성하는 락티드 생성공정; 상기 락티드의 중량에 대하여 유기주석화합물 0.1~1%, 도데실알콜 0.1~1%를 첨가하여 교반, 혼합하여 개환축중합반응시켜 폴리유산을 형성하는 중합공정; 및 상기 폴리유산의 온도를 180~190℃로 가열하여 중합반응하지 않은 미반응물질을 증산시키는 불순물 증산공정;을 포함하는 것을 특징으로 한다.In addition, the method for producing a polylactic acid according to the present invention is a gelatinization step of mixing the vegetable starch with water and then heating it to gelatinize; A liquefaction step of adding 0.2-1.0% of lactic acid to the weight of the gelatinized starch and liquefying by heating to 110-130 ° C .; A saccharification step of decomposing the liquefied starch into a monosaccharide liquid using a saccharifying enzyme; 0.01 to 0.1% of sodium salt, 0.01 to 0.5% of manganese sulfate, 0.01 to 0.1% of ammonium phosphate, 0.1 to 1.0% of skimmed milk powder, 0.1 to 1.0% of soy milk, 0.1 to 1.0% of waste molasses, Fermentation step of producing a fermentation broth by lactic acid fermentation by mixing 0.01 ~ 0.05% surfactant, 2 ~ 5% lactic acid bacteria culture medium to the monosaccharide solution; Electrodialysis step of neutralizing the lactic acid of the fermentation broth with sodium hydroxide to make lactate and decomposing the lactic acid and the sodium hydroxide from the lactate; Lactic acid refining process of heating the separated lactic acid to 120 ~ 130 ℃, and then heated to 150 ~ 160 ℃ to produce a low molecular polylactic acid; The purified lactic acid is mixed with 0.5-1% of any one or more metal oxides of vanadium, nickel, iron, aluminum, titanium, selium, silicon, zircon, ruthenium, manganese, chromium, cobalt, platinum, thorium, palladium, and tin. A lactide generation step of generating a tide; A polymerization process of adding polylactic acid by ring-opening condensation polymerization by adding 0.1-1% of organotin compound and 0.1-1% of dodecyl alcohol to the weight of the lactide; And an impurity evaporation step of evaporating the unreacted material which is not polymerized by heating the temperature of the polylactic acid to 180 to 190 ° C.
본 발명에 따른 고전도성 폴리유산의 제조방법은 반응용기에 폴리유산 100중량부, 락티드 10~20중량부 및 폴리글리콜산 5~10중량부를 첨가한 후, 교반하는 S1단계, 상기 반응용기에 세린 5~10중량부 및 도데실 알코올 0.1~1중량부를 넣은 후, 불활성 가스를 투입하고 전자파를 조사하는 S2단계 및 반응용기에 아세트산 세륨 0.1~1중량부를 첨가한 후, 교반하는 S3단계를 포함하는 것을 특징으로 한다.Method for producing a highly conductive polylactic acid according to the present invention is added to 100 parts by weight of polylactic acid, 10 to 20 parts by weight of lactide and 5 to 10 parts by weight of polyglycolic acid in the reaction vessel, step S1, the reaction vessel 5 to 10 parts by weight of serine and 0.1 to 1 part by weight of dodecyl alcohol, followed by S2 step of adding an inert gas and irradiating electromagnetic waves and adding 0.1 to 1 part by weight of cerium acetate to the reaction vessel, and then stirring S3 step. Characterized in that.
또한, 본 발명에 따른 고전도성 폴리유산의 제조방법에서 S1단계 내지 S3단계는 160~190℃의 온도에서 이루어지는 것을 특징으로 한다.In addition, in the method for producing a highly conductive polylactic acid according to the present invention, step S1 to step S3 is characterized in that it is made at a temperature of 160 ~ 190 ℃.
또한, 본 발명에 따른 고전도성 폴리유산의 제조방법에서 S1단계는 0.1~0.5기압으로 감압한 상태에서 이루어지며, 상기 S2단계 및 S3단계는 불활성 가스인 질소를 투입하여 1~5기압으로 가압한 상태에서 이루어지는 것을 특징으로 한다.In addition, in the method for producing a highly conductive polylactic acid according to the present invention, the step S1 is performed under reduced pressure at 0.1 to 0.5 atm, and the steps S2 and S3 are pressurized at 1 to 5 atm by adding nitrogen as an inert gas. Characterized in that the state is made.
또한, 본 발명에 따른 고전도성 폴리유산의 제조방법에서 폴리유산은 분자량이 5,000~10,000인 것을 특징으로 한다.In addition, the polylactic acid in the method for producing a highly conductive polylactic acid according to the present invention is characterized in that the molecular weight of 5,000 ~ 10,000.
또한, 본 발명에 따른 고전도성 폴리유산의 제조방법에서 S1단계는 반응용기에 촉매인 바나진산 암모늄 0.1~10중량부 및 산화바나듐 0.1~10중량부를 더 더 첨가하여 이루어지는 것을 특징으로 한다.In addition, the step S1 in the method for producing a highly conductive polylactic acid according to the present invention is characterized by further adding 0.1-10 parts by weight of ammonium vanadate as a catalyst and 0.1-10 parts by weight of vanadium oxide.
또한, 본 발명에 따른 고전도성 폴리유산의 제조방법에서 S3단계의 교반을 중지한 상태에서, 160~190℃의 온도를 유지하고 0.1~0.5기압으로 감압하는 S4단계를 더 포함하는 것을 특징으로 한다.In addition, in the manufacturing method of the highly conductive polylactic acid according to the present invention, in the state in which the agitation of the step S3 is stopped, maintaining the temperature of 160 ~ 190 ℃ and characterized in that it further comprises S4 step of reducing the pressure to 0.1 to 0.5 atm. .
또한, 본 발명에 따른 고전도성 폴리유산의 제조방법에서 S4단계가 종료된 후, 불활성 가스를 투입하여 2~3기압으로 가압하여 반응기 내의 반응물을 배출시키는 S5단계를 더 포함하는 것을 특징으로 한다.In addition, after the step S4 is finished in the method for producing a highly conductive polylactic acid according to the present invention, the step of adding an inert gas to pressurized to 2 to 3 atm, characterized in that it further comprises a step S5 to discharge the reactants in the reactor.
또한, 본 발명에 따른 고전도성 폴리유산의 제조방법에서 S1단계 내지 S3단계의 온도를 유지하는 방식은 히터에 의해 열매체가 가열되고, 가열된 열매체를 통해 반응용기에 열이 전달되어 이루어지는 것을 특징으로 한다.In addition, the method of maintaining the temperature of the steps S1 to S3 in the method for producing a highly conductive polylactic acid according to the present invention is characterized in that the heat medium is heated by a heater, heat is transferred to the reaction vessel through the heated heat medium. do.
또한, 본 발명에 따른 고전도성 폴리유산의 제조장치는 상부에는 원료 유입구, 질소/전자파 유입구 및 질소 배출구가 구비되고, 하부에는 반응물 배출구가 구비되는 반응용기, 반응용기 내의 반응물을 교반시키는 교반기, 반응용기를 가열시키는 열공급부, 질소/전자파 유입구와 연결되어 반응용기 내의 반응물에 전자파 및 질소가스를 공급하는 질소/전자파 공급부 및 질소 배출구와 연결되어 반응용기 내를 감압시키는 감압펌프를 포함하는 것을 특징으로 한다.In addition, the apparatus for producing a highly conductive polylactic acid according to the present invention, the upper portion is provided with a raw material inlet, nitrogen / electromagnetic inlet and nitrogen outlet, the lower portion is equipped with a reaction vessel, a stirrer for stirring the reactants in the reaction vessel, reaction A heat supply unit for heating the vessel, a nitrogen / electromagnetic wave inlet connected to a nitrogen / electromagnetic inlet for supplying electromagnetic waves and nitrogen gas to a reactant in the reaction vessel, and a decompression pump for reducing the inside of the reaction vessel in connection with a nitrogen outlet; do.
또한, 본 발명에 따른 고전도성 폴리유산의 제조장치에서 열공급부는 상기 반응용기의 측면과 하면을 감싸고 내부에는 열매체가 내장된 열전달 자켓, 상기 열전달 자켓에 열을 공급하는 히터를 포함하고, 열매체는 실리콘 오일인 것을 특징으로 한다.In addition, in the apparatus for producing a highly conductive polylactic acid according to the present invention, the heat supply part surrounds the side and bottom surfaces of the reaction vessel and includes a heat transfer jacket having a heat medium embedded therein, and a heater for supplying heat to the heat transfer jacket. It is characterized in that the oil.
또한, 본 발명에 따른 고전도성 폴리유산의 제조장치에서 질소/전자파 공급부는 상기 질소/전자파 유입구를 통해 반응용기 내에 위치하여 반응물에 질소 및 전자파를 공급하는 혼 안테나, 상기 혼 안테나와 연결되고 질소 유입구가 구비되는 도파관 및 상기 도판관과 연결되고 전자파를 발생시키는 마그네트론발진기를 포함하는 것을 특징으로 한다.In addition, in the manufacturing apparatus of the highly conductive polylactic acid according to the present invention, the nitrogen / electromagnetic wave supply part is located in the reaction vessel through the nitrogen / electromagnetic inlet and supplies a nitrogen and electromagnetic wave to the reactant, and is connected to the horn antenna and the nitrogen inlet It characterized in that it comprises a waveguide and a magnetron oscillator is connected to the waveguide and generates an electromagnetic wave.
또한, 본 발명에 따른 고전도성 폴리유산의 제조장치에서 질소/전자파 유입구는 반응용기의 중심에서 반응용기 직경(D)의 3/8 만큼 떨어진 위치에 설치되는 것을 특징으로 한다.In addition, the nitrogen / electromagnetic inlet in the manufacturing apparatus of the highly conductive polylactic acid according to the present invention is characterized in that installed at a position separated by 3/8 of the diameter of the reaction vessel (D) in the center of the reaction vessel.
이상과 같은 구성의 본 발명에 따른 폴리유산의 제조방법에 의하면 고분자량의 폴리유산을 보다 간편하게 제조할 수 있다는 효과가 있다.According to the method for producing a polylactic acid according to the present invention having the above configuration, there is an effect that the polylactic acid having a high molecular weight can be more easily produced.
또한, 본 발명에 따른 폴리유산의 제조방법에 의하면 폴리유산의 제조에 필요한 설비를 줄일 수 있으며, 그에 따라 생산수율의 상승과 비용을 절감되는 효과가 있다.In addition, according to the production method of the polylactic acid according to the present invention can reduce the equipment required for the production of polylactic acid, thereby increasing the production yield and the effect of reducing the cost.
또한, 본 발명에 따른 폴리유산의 제조방법에 의하면 합성공정에서 전자파의 주파수와 출력을 최적화하여 원하는 분자량의 폴리유산을 단시간에 제조할 수 있는 효과가 있다.In addition, the polylactic acid production method according to the present invention has the effect of optimizing the frequency and output of the electromagnetic wave in the synthesis step to produce a polylactic acid having a desired molecular weight in a short time.
또한, 본 발명에 따른 고전도성 폴리유산 중합체의 제조방법 및 그 제조장치는 폴리유산을 전자부품에 상용화할 수 있는 온도, 압력 및 중량비의 최적의 조건을 적용하여 고전도성을 확보할 수 있고, 효율이 우수하여 제조원가를 줄이는 효과가 있다.In addition, the manufacturing method and apparatus for manufacturing a highly conductive polylactic acid polymer according to the present invention can ensure high conductivity by applying the optimum conditions of temperature, pressure and weight ratio that can be commercialized polylactic acid in electronic components, efficiency This is excellent in effect of reducing the manufacturing cost.
또한, 본 발명에 따른 고전도성 폴리유산 중합체의 제조방법 및 그 제조장치는 간편하고 효율적으로 제조할 수 있는 효과가 있다.In addition, the method for producing a highly conductive polylactic acid polymer according to the present invention and its manufacturing apparatus have an effect that can be easily and efficiently produced.
또한,본 발명에 따른 고전도성 폴리유산 중합체의 제조방법 및 그 제조장치는 단일 장치로 치환반응과 중합반응을 수행할 수 있고, 시간ㆍ비용면에서 경제적이다.Moreover, the manufacturing method and apparatus for manufacturing the highly conductive polylactic acid polymer according to the present invention can perform the substitution reaction and the polymerization reaction in a single device, and are economical in terms of time and cost.
도 1은 종래의 전기투석장치의 구조를 도시하는 개념도이다.1 is a conceptual diagram showing the structure of a conventional electrodialysis apparatus.
도 2는 본 발명에 따른 폴리유산의 제조방법의 일실시예를 도시하는 공정도이다.Figure 2 is a process diagram showing one embodiment of a method for producing a polylactic acid according to the present invention.
도 3은 본 발명에 따른 폴리유산의 제조방법의 당화장치의 구조를 도시하는 단면도이다.3 is a cross-sectional view showing the structure of the saccharification apparatus of the method for producing a polylactic acid according to the present invention.
도 4는 본 발명에 따른 폴리유산의 제조방법에서 발효액의 pH 및 유산균 수의 변화를 도시하는 그래프이다.Figure 4 is a graph showing the change in pH and the number of lactic acid bacteria of fermentation broth in the method of producing a polylactic acid according to the present invention.
도 5a 및 5b는 본 발명에 따른 폴리유산의 제조방법에서 유산을 농축시키는 기구가 장착된 발효장치의 구조를 도시하는 단면도이다.5A and 5B are cross-sectional views showing the structure of a fermentation apparatus equipped with a mechanism for concentrating lactic acid in the method for producing polylactic acid according to the present invention.
도 6은 본 발명에 따른 폴리유산의 제조방법에서 전기투석장치의 구조를 도시하는 개념도이다.Figure 6 is a conceptual diagram showing the structure of the electrodialysis apparatus in the method of producing a polylactic acid according to the present invention.
도 7은 본 발명에 따른 폴리유산의 제조방법에서 중합장치의 구조를 도시하는 유산을 농축시키는 기구가 장착된 발효장치의 구조를 도시하는 단면도이다.7 is a cross-sectional view showing the structure of a fermentation apparatus equipped with a mechanism for concentrating a legacy showing the structure of the polymerization apparatus in the method for producing a polylactic acid according to the present invention.
도 8은 본 발명에 따른 폴리유산의 제조방법에서 유산정제공정을 반응시간과 온도의 변화로 도시하는 그래프이다.8 is a graph showing the lactic acid purification process in the method for producing a polylactic acid according to the present invention as a change in reaction time and temperature.
도 9는 본 발명에 따른 폴리유산의 제조방법에서 유산이 정제되는 수율을 도시하는 공정도이다.9 is a process chart showing the yield of the lactic acid purified in the method for producing a polylactic acid according to the present invention.
도 10은 본 발명에 따른 폴리유산의 제조방법에서 락티드 생성과 고분자 폴리유산의 중합의 공정을 설명하는 그래프이다.10 is a graph illustrating a process of lactide production and polymerization of polymer polylactic acid in the method for producing polylactic acid according to the present invention.
도 11은 본 발명에 따른 폴리유산의 제조방법에서 중합장치와 중합촉진장치의 위치관계를 도시하는 단면도이다.11 is a cross-sectional view showing the positional relationship between a polymerization apparatus and a polymerization accelerator in the method for producing a polylactic acid according to the present invention.
도 12는 본 발명에 따른 폴리유산의 제조방법에서 중합촉진장치의 구조를 도시하는 단면도이다.12 is a cross-sectional view showing the structure of a polymerization accelerator in the method for producing a polylactic acid according to the present invention.
도 13은 본 발명에 따른 폴리유산의 제조방법에서 중합촉진장치의 전자파강도분포를 중합장치 내부에서 계측프로브를 삽입하여 실측한 데이터를 도시하는 그래프이다.FIG. 13 is a graph showing data obtained by measuring the electromagnetic wave intensity distribution of the polymerization accelerator in the polymerization method according to the present invention by inserting a measurement probe inside the polymerization apparatus.
도 14는 도 13에서 사용한 계측프로브의 구조를 도시하는 단면도이다.14 is a cross-sectional view showing the structure of the measurement probe used in FIG. 13.
도 15는 본 발명에 따른 폴리유산의 제조방법에서 중합장치 내의 내용물의 이동상황을 도시하는 개념도이다.FIG. 15 is a conceptual diagram illustrating a moving state of contents in a polymerization apparatus in the method for producing a polylactic acid according to the present invention.
도 16은 본 발명에 따른 폴리유산의 제조방법에서 중합장치에서 전자파를 조사하여 분자량을 계측한 데이터를 도시하는 그래프이다.FIG. 16 is a graph showing data obtained by measuring molecular weight by irradiating electromagnetic waves in a polymerization apparatus in the method of producing a polylactic acid according to the present invention. FIG.
도 17은 본 발명에 따른 고전도성 폴리유산 중합체의 제조방법의 일실시예를 도시하는 공정도이다.17 is a process chart showing one embodiment of a method for producing a highly conductive polylactic acid polymer according to the present invention.
도 18는 본 발명에 따른 고전도성 폴리유산 중합체 제조장치를 도시하는 개념도이다.18 is a conceptual diagram showing a high conductivity polylactic acid polymer manufacturing apparatus according to the present invention.
도 19는 본 발명에 따른 고전도성 폴리유산 중합체 제조장치의 질소/전자파 공급부를 도시하는 개념도이다.19 is a conceptual diagram illustrating a nitrogen / electromagnetic wave supply unit of the highly conductive polylactic acid polymer production apparatus according to the present invention.
도 20은 본 발명에 따른 고전도성 폴리유산 중합체 제조장치의 질소/전자파 유입구의 위치를 설명하는 개념도이다.20 is a conceptual view illustrating the position of the nitrogen / electromagnetic inlet of the high conductivity polylactic acid polymer manufacturing apparatus according to the present invention.
도 21은 본 발명에 따른 고전도성 폴리유산 중합체 제조장치의 반응용기 내에서 반응물이 이동하는 모습을 도시하는 개념도이다.FIG. 21 is a conceptual diagram illustrating a state in which a reactant moves in a reaction container of the apparatus for preparing a highly conductive polylactic acid polymer according to the present invention.
이하 본 발명의 바람직한 실시예에 대하여 첨부된 도면을 참조하여 보다 구체적으로 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
본 발명의 설명에서 동일 또는 유사한 구성요소는 동일 또는 유사한 도면번호를 부여하고, 그 자세한 설명은 생략하기로 한다.In the description of the present invention, the same or similar components are given the same or similar reference numerals, and detailed description thereof will be omitted.
도 2는 본 발명에 따른 폴리유산의 제조방법의 일실시예를 도시하는 공정도로서, 도시된 바와 같이 식물성 전분을 물과 혼합한 후 가열하여 호화시키는 호화공정(S10); 상기 호화된 전분에 유산을 첨가하고 가열하여 액화시키는 액화공정(S20); 상기 액화된 전분을 당화효소를 이용하여 단당액으로 분해하는 당화공정(S30); 상기 단당액을 유산발효시켜 발효액을 생성하는 발효공정(S40); 상기 발효액에서 유산염을 분리 및 농축하고, 상기 유산염에서 유산을 분리시키는 전기투석공정(S50); 상기 분리된 유산을 가열하여 수분 및 불순물을 제거하는 유산정제공정(S60); 상기 정제된 유산을 금속산화물과 혼합시켜 락티드를 생성하는 락티드 생성공정(S70); 상기 락티드를 중합반응시켜 폴리유산을 형성하는 중합공정(S80); 및 상기 폴리유산을 가열하여 중합반응하지 않은 미반응물질을 증산시키는 불순물 증산공정(S90);을 포함하는 것이다.Figure 2 is a process diagram showing an embodiment of a method for producing a polylactic acid according to the present invention, the gelatinization step of mixing the vegetable starch with water and then heated to gelatinization as shown (S10); A liquefaction process of adding lactic acid to the gelatinized starch and liquefying by heating; A saccharification step (S30) of decomposing the liquefied starch into a monosaccharide liquid using a saccharifying enzyme; Fermentation process (S40) for producing a fermentation broth by lactic fermentation of the monosaccharide solution; Electrodialysis step (S50) of separating and concentrating the lactate from the fermentation broth and separating the lactic acid from the lactate; Lactic acid refining process (S60) for removing the water and impurities by heating the separated lactic acid; A lactide generating step (S70) of generating the lactide by mixing the purified lactic acid with a metal oxide; A polymerization step of polymerizing the lactide to form a polylactic acid (S80); And an impurity evaporation step (S90) for heating the polylactic acid to evaporate the unreacted material that is not polymerized.
호화공정(S10)은 교반장치에 식물성 전분을 물과 혼합한 후 가열하여 호화(gelatination)시키는 것으로서, 전분(starch)은 쌀 전분, 카사바(cassava), 전분, 고구마 전분, 감자 전분, 밀 전분, 옥수수 전분(콘스타치) 등을 이용할 수 있다.Gelatinization process (S10) is a mixture of vegetable starch with water in a stirring apparatus and gelatinization by heating, starch (starch) is a rice starch, cassava (cassava) starch, sweet potato starch, potato starch, wheat starch, Corn starch (corn starch) or the like can be used.
한편, 호화공정은 전분 20~30 중량부에 대하여 물 70~80 중량부를 혼합하여 70~100 RPM으로 교반하면서 90~105℃, 바람직하게는 95~100℃로 가열하고, 전분의 온도가 90℃에 달했을 때 15~120분간, 바람직하게는 30~60분간 70~100RPM으로 교반, 가열을 지속시켜 호화시키는 것이다.On the other hand, the gelatinization process is heated to 90 ~ 105 ℃, preferably 95 ~ 100 ℃ while stirring at 70 ~ 100 RPM by mixing 70 to 80 parts by weight of water with respect to 20 to 30 parts by weight of starch, the temperature of the starch is 90 ℃ When it reaches 15-120 minutes, Preferably it is made to stir and heat at 70-100 RPM for 30 to 60 minutes, and gelatinizes.
액화공정(S20)은 호화된 전분에 유산을 첨가하고 가열하여 액화시키는 것이다. The liquefaction step (S20) is to liquefy by adding lactic acid to the gelatinized starch, heating.
상기 유산은 분자량 800~1000의 L-유산 50% 용액인 것이 바람직하다.It is preferable that the lactic acid is a 50% solution of L-lactic acid having a molecular weight of 800 to 1000.
또한, 액화공정은 상기 호화된 전분의 중량에 대하여 L-유산(L-Latic Acid) 0.1~1.0중량%를 첨가하여 4~10 시간 동안 교반하면서 110~130℃, 바람직하게는 120~150℃로 가열하고, 1.2~2.0kg/㎠의 가압환경 하에서 5~10시간, 바람직하게는 7~8시간 교반하여 액화시키는 것이다.In addition, the liquefaction process is added to 0.1 ~ 1.0% by weight of L-Lactic acid (L-Latic Acid) to the weight of the gelatinized starch while stirring for 4 to 10 hours to 110 ~ 130 ℃, preferably 120 ~ 150 ℃ It is heated and liquefied by stirring for 5 to 10 hours, preferably 7 to 8 hours in a pressurized environment of 1.2 to 2.0 kg / cm 2.
당화공정(S30)은 액화된 전분을 당화효소를 이용하여 단당액으로 분해하는 것이다.The saccharification step (S30) is to decompose the liquefied starch into monosaccharide liquid using a saccharifying enzyme.
당화효소는 전분의 중량에 대하여 0.1~1.0중량%의 아밀라아제, 바람직하게는 글리코아밀라아제인 것이며, 구체적으로는 아마노제 AF-6을 사용하는 것이 아마노제 T-10S에 비해 반응시간을 10~15시간에서 7~8시간으로 줄일 수 있게 된다.The glycosylase is 0.1 to 1.0% by weight of amylase, preferably glycoamylase, based on the weight of starch. Specifically, the use of Amanose AF-6 results in a reaction time of 10-15 hours compared to Amanose T-10S. This can be reduced to 7-8 hours at.
액화된 전분의 온도는 50~65℃, 바람직하게는 50~65℃로 맞추고, pH는 6.0~6.5로 조정하는 것이며, 상기 pH는 암모니아 수용액을 이용하여 수소이온농도(pH)를 조정하는 것이 바람직하다. The temperature of the liquefied starch is set to 50-65 ° C., preferably 50-65 ° C., and the pH is adjusted to 6.0-6.5, and the pH is preferably adjusted by adjusting the hydrogen ion concentration (pH) using an aqueous ammonia solution. Do.
그리고 당화효소를 투입된 전분량에 대하여 0.1~1.0 중량% 첨가하고 5~12시간, 바람직하게는 6~10시간, 더욱 바람직하게는 7~8시간 동안 교반하여 단당화시키는 것이다. And 0.1 to 1.0% by weight of the glycated enzyme is added to the added starch and stirred for 5 to 12 hours, preferably 6 to 10 hours, more preferably 7 to 8 hours to monosaccharide.
본 발명의 유산에 의한 가수분해법을 이용함으로서 유산발효 내지 전기투석공정에 의해 얻어지는 유산용액 또는 유산정제공정에서 얻어지는 유산용액을 그대로 이용하는 것이 가능하며, 비용 및 반응시간을 단축할 수 있게 된다.By using the hydrolysis method by lactic acid of the present invention, it is possible to use the lactic acid solution obtained by the lactic acid fermentation or electrodialysis step or the lactic acid solution obtained by the lactic acid purification step as it is, and the cost and reaction time can be shortened.
도 3은 본 발명에 따른 폴리유산의 제조방법의 당화장치의 구조를 도시하는 단면도로서, 도시된 바와 같이 당화장치(200)는 크게 용기(210), 내용물을 교반하기 위한 교반날개(232)와 교반장치(230) 및 온도를 조절할 수 있는 전기히터(250) 및 수냉자켓(270)으로 구성되고, 상기 용기의 상부 일측에는 응축기(290)와 응축액저장소(292)가 구비된다.3 is a cross-sectional view showing the structure of the saccharification device of the polylactic acid production method according to the present invention, as shown in the saccharification device 200 is largely a container 210, the stirring blade 232 for stirring the contents and It is composed of a stirring apparatus 230 and an electric heater 250 and a water cooling jacket 270 that can adjust the temperature, the upper side of the vessel is provided with a condenser 290 and a condensate reservoir 292.
상기 당화장치(200)에서는 호화공정, 액화공정 및 당화공정이 연속적으로 수행할 수 있다.In the saccharification apparatus 200, a gelatinization process, a liquefaction process, and a saccharification process may be continuously performed.
아래는 종래의 전분당화방법과의 공정상 차이점을 비교한 것이다.The following is a comparison of process differences with the conventional starch saccharification method.
표 1
Figure PCTKR2011006143-appb-T000001
Table 1
Figure PCTKR2011006143-appb-T000001
발효공정(S40)은 단당액을 유산발효시켜 발효액을 생성하는 것이다.Fermentation process (S40) is to produce a fermentation broth by lactic fermentation of a monosaccharide solution.
상기 발효공정은 당도가 20~30인 상기 단당액의 총중량에 대하여 식염 0.01~0.1중량%, 황산망간 0.01~0.5중량%, 인산암모니움 0.01~0.1중량%, 탈지분유 0.1~1.0중량%, 두유 0.1~1.0중량%, 폐당밀 0.1~1.0중량%, 계면활성제 0.01~0.05중량%, 유산균 배양액 2~5중량%를 상기 단당액에 혼합하고, 70~100RPM으로 20~35 시간동안 교반하는 것이 바람직하다.The fermentation step is 0.01 to 0.1% by weight of salt, 0.01 to 0.5% by weight of manganese sulfate, 0.01 to 0.1% by weight of ammonium phosphate, 0.1 to 1.0% by weight of skim milk powder, soy milk, based on the total weight of the monosaccharide solution having a sugar content of 20 to 30. 0.1 to 1.0% by weight, 0.1 to 1.0% by weight of molasses, 0.01 to 0.05% by weight of surfactant, 2 to 5% by weight of lactic acid bacteria culture medium is preferably mixed with the above monosaccharide solution and stirred at 70 to 100 RPM for 20 to 35 hours. Do.
또한, 당도 20~30 Brix의 액당에 유산균과 첨가제를 더해 유산발효시키는 공정에서 발효장치에 단당액과 유산균의 번식에 필요한 영양성분(예를 들어, 망간, 질소분, 폴리페놀류 등) 및 코로니나 침전을 발생되지 않도록 계면활성제 (예를 들어, 자당 지방산 에스테르 등)을 필요량을 첨가하여 1~2시간 교반 시킨 후에 수소이온 농도(pH)를 암모니아수를 이용하여 중성영역(pH 6.5~7.5)로 조정하는 것이 바람직하다.In addition, lactic acid bacteria and additives are added to the liquid sugar of 20 ~ 30 Brix, and the nutrients (for example, manganese, nitrogen, polyphenols, etc.) and corona precipitation required for propagation of monosaccharides and lactic acid bacteria in the fermentation apparatus in the process of lactic acid fermentation. After agitation of the surfactant (eg, sucrose fatty acid ester, etc.) by adding the necessary amount for 1 to 2 hours, the hydrogen ion concentration (pH) is adjusted to a neutral region (pH 6.5 to 7.5) using ammonia It is preferable.
내용물의 온도를 유산균의 생육에 적합한 온도인 38~42℃로 조절한 상태에서 유산균(Lactobacillus L Plantarm) 배양액(배양액 1g중의 생균수가 30~50억 Cell)을 2~5중량% 더하여 70~100RPM에서 교반한다. The temperature of the contents was adjusted to 38-42 ° C., which is suitable for the growth of lactic acid bacteria, and 2-5% by weight of Lactobacillus L Plantarm culture medium (3-5 billion cells of viable bacteria in 1 g of culture solution) was added at 70-100 RPM. Stir.
발효의 진행에 따라 발효액 안의 유산에 의해 균의 활생이 저해되기 때문에 발효액의 pH가 3.5이하가 되지 않도록 수산화 나트륨을 이용하여 pH를 조정하는 것이 바람직하다. As the fermentation progresses, the growth of bacteria is inhibited by the lactic acid in the fermentation broth, so it is preferable to adjust the pH using sodium hydroxide so that the pH of the fermentation broth is not lower than 3.5.
도 4는 본 발명에 따른 폴리유산의 제조방법에서 발효액의 pH 및 유산균 수의 변화를 도시하는 그래프로서, 도시된 바와 같이 발효가 마지막에 가까워지면 발효액 중의 전분이 적어지게 되어 유산균의 증식도 완만해지며 유산생성속도도 극단적으로 느려지기 때문에 후술할 유산농축기구를 작동하게 된다. Figure 4 is a graph showing a change in the pH and the number of lactic acid bacteria of fermentation broth in the method of producing a polylactic acid according to the present invention, as shown in the fermentation is close to the end of the starch in the fermentation broth is less proliferation of lactic acid bacteria Since the lactic acid production rate is extremely slow, the lactic acid enrichment apparatus will be described later.
도 5a 및 5b는 본 발명에 따른 폴리유산의 제조방법에서 유산을 농축시키는 기구가 장착된 발효장치의 구조를 도시하는 단면도로서, 도시된 바와 같이 발효장치에 중심부에 설치 형성된 그물형태의 전극인 음극(328)과 본체(310)를 양극으로 하는 회로에 직류전류를 통하는 것에 의해 음극(328)과 발효실(322)을 사이에 두고 원통형의 격막(324)(양이온 투과막 등)을 통하여 유산염(주로 유산나트륨)이 격막(324)의 내측에 이동한다.Figure 5a and 5b is a cross-sectional view showing the structure of the fermentation apparatus equipped with a mechanism for concentrating the lactic acid in the method for producing a polylactic acid according to the present invention, a negative electrode which is a net-shaped electrode formed in the center of the fermentation apparatus as shown By passing a direct current through a circuit using the anode 328 and the main body 310 as an anode, an acidic salt (mainly through a cylindrical diaphragm 324 (such as a cationic permeable membrane) with the cathode 328 and the fermentation chamber 322 interposed therebetween. Sodium lactate) moves inside the diaphragm 324.
또한, 발효개시시에는 격막(324) 내측에 구비되는 농축실(326)에는 맑은 물을 충진해 놓는다. 이에 따라 발효실(322)에는 유산균의 유해를 포함한 발효 잔사물이나 생균이 남아 격막의 내측인 농축실(326)에는 유산염이 농축된다. 발효실(322)과 농축실(326)과의 용적비를 약 10:1로 하였으나, 1:1~20:1의 용적비로 하여도 충분히 기능을 수행할 수 있으며, 용적비를 크게 하는 쪽이 유산염의 농축비율도 크게 되며 발효의 효율도 좋아 지게 된다. 실용적으로는 30:1정도를 상한으로 하는 것이 바람직하다.In addition, at the start of fermentation, clear water is filled in the concentration chamber 326 provided inside the diaphragm 324. As a result, fermentation residues or live bacteria containing harmful lactic acid bacteria remain in the fermentation chamber 322, and lactate is concentrated in the concentration chamber 326 inside the diaphragm. Although the volume ratio between the fermentation chamber 322 and the concentration chamber 326 is about 10: 1, the volume ratio of 1: 1-20: 1 is sufficient to perform the function. The larger the volume ratio is, the more concentrated the lactate is. The ratio is large and the fermentation efficiency is also improved. In practice, it is preferable to set the upper limit to about 30: 1.
전기투석공정(S50)은 상기 발효액에서 유산염을 분리 및 농축하고, 상기 유산염에서 유산을 분리시키는 것이다.Electrodialysis process (S50) is to separate and concentrate the lactate in the fermentation broth, and to separate the lactic acid from the lactate.
도 6은 본 발명에 따른 폴리유산의 제조방법에서 전기투석장치의 구조를 도시하는 개념도로서, 도시된 바와 같이 상기 전기투석공정은 전해실(410), 음이온투과막(451), 양이온투과막(453), 용액순환수단, 전극을 포함하는 전기투석장치를 이용하여 이루어지는 것이고, 상기 전해실(410)은 양극액실(412), 발효액실(414), 유산염/유산용액실(416), 수산화나트륨용액실(418), 음극액실(419)이 순차적으로 배치되는 것이며, 각각의 전해실은 음이온투과막(451) 및/또는 양이온투과막(453)으로 구획되고, 상기 전극은 양극(431), 음극(433), 보조양극(435), 보조음극(437)을 포함하는 것이 바람직하다.6 is a conceptual diagram showing the structure of the electrodialysis apparatus in the method for producing a polylactic acid according to the present invention, as shown in the electrodialysis process is an electrolytic chamber 410, anion permeable membrane 451, cationic permeable membrane ( 453), an electrodialysis apparatus including a solution circulation means and an electrode, wherein the electrolytic chamber 410 includes an anolyte chamber 412, a fermentation broth 414, a lactate / lactic acid solution chamber 416, and sodium hydroxide. The solution chamber 418 and the catholyte chamber 419 are sequentially arranged, and each electrolytic chamber is partitioned into an anion permeable membrane 451 and / or a cationic permeable membrane 453, and the electrode is an anode 431 and a cathode. 433, the auxiliary anode 435, and the auxiliary cathode 437 are preferable.
양극액실(412) 및 음극액실(419)에 전해액으로서 농도 10~20%의 황산나트륨 용액을 동일 순환회로로서 순환시켜 발효액실(414)에 여과가 끝난 발효액을 순환시킨다. 또한, 유산염/유산용액실(416)에 맑은 물을 순환시키며 수산화나트륨용액실(418)에 0.1N 수산화나트륨용액을 순환시킨다. A sodium sulfate solution having a concentration of 10 to 20% as an electrolyte is circulated in the anolyte chamber 412 and the catholyte chamber 419 in the same circulation circuit to circulate the filtered fermentation broth in the fermentation broth 414. In addition, clear water is circulated in the lactate / lactic acid solution chamber 416 and 0.1N sodium hydroxide solution is circulated in the sodium hydroxide solution chamber 418.
발효액에 포함된 유산염을 분리하는 것에는 보조양극(435) 및 보조음극(437)은 플로우팅(무접속)상태에서 양극(431) 및 음극(433) 간에 직류전류를 통전한다. 이때 발효액실(414) 안의 수산이온(OH-)은 양극액실(412)과 발효액실(414)을 구분하는 음이온 투과막(451)을 투과하여 전극액실(412) 쪽으로 이동한다. In the separation of the lactate contained in the fermentation broth, the auxiliary anode 435 and the auxiliary cathode 437 conduct a DC current between the anode 431 and the cathode 433 in a floating (no connection) state. At this time, the hydroxyl ion (OH ) in the fermentation broth 414 passes through the anion permeable membrane 451 separating the anolyte chamber 412 and the fermentation broth 414 and moves toward the electrode liquid chamber 412.
한편, 양극액실(412)에서 발효액실(414)로 수소이온(H+)가 이동한다. 발효액 안의 유산염은 발효액실(414)과 유산염/유산용액실(416)을 구분하는 양이온투과막(453)을 투과하여 유산염/유산용액실(416) 쪽으로 이동한다. Meanwhile, hydrogen ions (H + ) are moved from the anolyte chamber 412 to the fermentation broth 414. The lactate in the fermentation broth passes through the cationic permeation membrane 453 separating the fermentation broth 414 and the lactate / lactic acid solution chamber 416 and moves toward the lactate / lactic acid solution chamber 416.
또한 수산화나트륨용액실(418)에는 유산염/유산용액실(416)부터 나트륨이온(Na+)과 수소이온(H+)이 이동하여 음극액실(419)부터 수소이온(OH-)가 이동한다. 그 결과, 유산염/유산용액실(416)에는 유산염이 분리 농축된다. In addition, sodium ions (Na + ) and hydrogen ions (H + ) move from the sodium hydroxide / lactic acid solution chamber 416 to the sodium hydroxide solution chamber 418, and hydrogen ions (OH ) move from the catholyte chamber 419. As a result, the lactate is separated and concentrated in the lactate / lactic acid solution chamber 416.
한편, 유산염의 분리 농축이 종료되면 보조양극(435)과 보조음극(437)에 직류전류를 흘려 유산염용액에서 나트륨이온을 수산화나트륨용액실(418)로 이동시키는 것에 의해 유산염/유산용액실(416)의 유산염용액은 유산용액이 된다. 수산화나트륨용액실(418)에서 농축된 수산화 나트륨은 발효공정에서 발효액 중화용으로 사용할 수 있다. On the other hand, when the separation and concentration of the lactate is completed, by flowing a direct current through the auxiliary cathode 435 and the auxiliary cathode 437, the sodium ions are transferred from the lactate solution to the sodium hydroxide solution chamber 418, thereby releasing the lactate / lactic acid solution chamber 416. Lactic acid solution of) becomes lactic acid solution. The sodium hydroxide concentrated in the sodium hydroxide solution chamber 418 may be used for neutralizing the fermentation broth in the fermentation process.
이러한 본 발명의 전기투석장치는 발효액에서부터 유산염을 분리하는 기능과 유산염을 유산과 수산화 나트륨으로 분해하는 기능을 동시에 가져 종래 2대의 전기투석장치를 사용하였던 공정을 1대로 끝낼 수 있기 때문에 합리적이며 설비비용을 약 절반으로 할 수 있다.The electrodialysis apparatus of the present invention has the function of separating the lactate from the fermentation broth and the function of decomposing the lactate into lactic acid and sodium hydroxide at the same time, so that the process using two electrodialysis apparatuses in the past can be completed in one unit, which is reasonable and equipment cost. You can make about half.
유산정제공정(S60)은 상기 분리된 유산을 가열하여 수분 및 불순물을 제거하는 것이다. 전기투석공정에 의해 추출 분리된 유산은 각종 유기산을 포함하는 것으로 품질이 나쁜 유산(조유산)이므로 정제할 필요가 있기 때문이다.Lactic acid purification process (S60) is to remove the water and impurities by heating the separated lactic acid. This is because the lactic acid extracted and separated by the electrodialysis process includes various organic acids, and thus it is necessary to purify the lactic acid (crude acid).
도 7은 본 발명에 따른 폴리유산의 제조방법에서 중합장치의 구조를 도시하는 유산을 농축시키는 기구가 장착된 발효장치의 구조를 도시하는 단면도로서, 도시된 바와 같이 중합장치는 내용물을 연속적으로 교반 가능한 교반장치(530) 및 교반날개(532), 내용물을 190℃이상에서 가열가능한 전기히터(550), 불활성가스 주입기구(미도시), 용기 내 감압기구(미도시), 증발물 냉각회수기구(미도시)가 장착된 내압용기(510)를 구비하고, 상기 내압용기(510)에는 중합촉진장치(560)가 연결되는 것이다. 중합장치(500)를 이용하여 유산(lactic acid)정제, 락티드(lactide)생성, 고분자 폴리유산(PLA)중합, 폴리유산정제 등을 연속으로 실행하는 것이 가능하다. 7 is a cross-sectional view showing the structure of a fermentation apparatus equipped with a mechanism for concentrating a legacy showing the structure of the polymerization apparatus in the method for producing a polylactic acid according to the present invention, wherein the polymerization apparatus continuously stirs the contents as shown. Possible stirring device 530 and stirring blade 532, electric heater 550 capable of heating the contents at 190 ° C or higher, inert gas injection device (not shown), pressure reduction device (not shown) in the vessel, evaporate cooling recovery device (Not shown) is provided with a pressure-resistant container 510, the pressure-resistant container 510 is a polymerization promoter 560 is connected. It is possible to continuously perform lactic acid purification, lactide production, polymer polylactic acid (PLA) polymerization, polylactic acid purification, etc. using the polymerization apparatus 500.
도 8은 본 발명에 따른 폴리유산의 제조방법에서 유산정제공정을 반응시간과 온도의 변화로 도시하는 그래프로서, 도시된 바와 같이 상기 유산정제공정은 상기 유산을 내압용기에서 70~100RPM으로 교반을 하면서 120~130℃로 가열하여 탈수시킨 후 150~160℃에서 1~2시간 교반을 계속하여 저분자 폴리유산을 생성하는 단계; 및 상기 저분자 폴리유산이 생성되면, 교반을 정지시킨 후 상온까지 냉각시켜 결정화한 후, 다시 150~160℃로 가열하는 것이며 이 때 온도가 160℃보다 높으면 불순물뿐만 아니라 유산의 증발도 많이 이루어지므로 정제된 유산의 수율이 나쁘게 된다.Figure 8 is a graph showing the lactic acid purification process in the production method of the polylactic acid according to the present invention as a change in the reaction time and temperature, as shown in the lactic acid purification process is agitation of the lactic acid at 70 ~ 100 RPM in the pressure vessel Dehydrating by heating to 120 ~ 130 ℃ while continuing stirring for 1 to 2 hours at 150 ~ 160 ℃ to produce a low molecular polylactic acid; And when the low molecular weight polylactic acid is produced, the stirring is stopped, the mixture is cooled to room temperature, crystallized, and then heated again to 150 to 160 ° C. At this time, if the temperature is higher than 160 ° C, not only impurities but also evaporation of the lactic acid are purified. The yield of the inherited heritage becomes bad.
내압용기 내의 압력을 -50~-20mmHg 감압하여 1~2시간 70~100RPM으로 교반하면서 불순물을 증산시켜 정제된 유산을 얻는 단계;를 포함하는 것이 바람직하며, 압력을 -50mmHg 미만으로 더욱 감압하는 경우에도 유산의 수율이 나쁘게 된다.To reduce the pressure in the pressure-resistant vessel by -50 ~ -20mmHg to obtain a purified lactic acid by increasing the impurities while stirring at 70 ~ 100RPM for 1-2 hours, it is preferable to include, when the pressure is further reduced to less than -50mmHg Edo miscarriage yield becomes bad.
도 9는 본 발명에 따른 폴리유산의 제조방법에서 유산이 정제되는 수율을 도시하는 공정도로서, 도시된 바와 같이 유산정제공정에서 조유산을 가열탈수하는 과정에서 10~15wt%의 수분이, 저분자의 폴리유산(PLA)가 생성되는 과정에서 5~6 wt%의 수분이, 재가열하는 과정에서 5~6wt%의 수분이 배출되는 것을 알 수 있다. 정제된 유산은 투입한 조유산의 75~80wt%가 된다.Figure 9 is a process chart showing the yield of the lactic acid is purified in the method for producing a polylactic acid according to the present invention, as shown in the water of 10 ~ 15wt% in the process of heating and dehydrating crude oil in the lactic refining process, In the process of producing polylactic acid (PLA), it can be seen that 5 to 6 wt% of water is discharged during the reheating process. The refined lactic acid is 75-80 wt% of the crude oil added.
락티드 생성공정(S70)은 정제된 유산을 금속산화물과 혼합시켜 락티드를 생성하는 것이다.The lactide generating step (S70) is to mix the purified lactic acid with a metal oxide to produce lactide.
도 10은 본 발명에 따른 폴리유산의 제조방법에서 락티드 생성과 고분자 폴리유산의 중합의 공정을 설명하는 그래프로서, 도 7 또는 도 10에 도시된 바와 같이 상기 락티드(lactide) 생성공정은 내압용기 내에 바나듐, 니켈, 철, 알루미늄, 티탄, 셀륨, 실리콘, 지르콘, 루테늄, 망간, 크롬, 코발트, 백금, 토륨, 팔라듐, 주석 중에서 어느 하나 이상의 금속 산화물을 0.5~1중량% 혼합하여 1~2시간 교반하여 충분히 혼합하는 단계; 내압용기 내에 불활성 가스를 주입압력이 대기압 내지 대기압 + 50mmHg 정도로 하여 내용물을 냉각 결정화시켜 락티드를 생성하는 것이다. FIG. 10 is a graph illustrating a process of lactide generation and polymerization of a polymer polylactic acid in the method for preparing polylactic acid according to the present invention. As shown in FIG. 7 or FIG. 1 to 2 by mixing 0.5-1 wt% of one or more metal oxides of vanadium, nickel, iron, aluminum, titanium, selium, silicon, zircon, ruthenium, manganese, chromium, cobalt, platinum, thorium, palladium and tin in the container Stirring for sufficient time to mix well; The inert gas is injected into the pressure-resistant container at atmospheric pressure to atmospheric pressure + 50 mmHg, and the contents are cooled and crystallized to produce lactide.
또한, 상기 정제된 유산과 상기 금속산화물을 혼합한 후 혼합물의 온도를170~190℃에서 3~5시간 가열, 교반하는 것이 바람직하다.In addition, after mixing the purified lactic acid and the metal oxide, it is preferable to heat and stir the temperature of the mixture for 3 to 5 hours at 170 ~ 190 ℃.
상기 락티드(lactide)는 α-히드록시산의 2분자가 카르복시기와 히드록시기 사이에서 고리화된 에스테르화합물로서, D-, L-, DL-락티드의 3개의 이성질체가 있다.The lactide is an ester compound in which two molecules of α-hydroxy acid are cyclized between a carboxyl group and a hydroxy group, and there are three isomers of D-, L-, and DL-lactide.
도 11은 본 발명에 따른 폴리유산의 제조방법에서 중합장치와 중합촉진장치의 위치관계를 도시하는 단면도이고, 도 12는 본 발명에 따른 폴리유산의 제조방법에서 중합촉진장치의 구조를 도시하는 단면도로서, 도 10 내지 도 12에 도시된 바와 같이 중합공정(S80)은 락티드를 중합반응시켜 폴리유산을 형성하는 것이다.11 is a cross-sectional view showing the positional relationship between a polymerization apparatus and a polymerization accelerator in the method for producing a polylactic acid according to the present invention, and FIG. 12 is a cross-sectional view showing the structure of the polymerization accelerator in a method for producing a polylactic acid according to the present invention. As shown in Figure 10 to 12, the polymerization step (S80) is to polymerize the lactide to form a polylactic acid.
또한, 상기 중합공정은 상기 락티드를 융해온도까지 가열하면서 70~100RPM의 속도로 교반하고, 상기 락티드의 중량에 대하여 유기주석화합물 0.1~1중량%, 도데실알콜 0.1~1중량%를 첨가하여 대기압에서 3~5시간 혼합하는 단계; 내압용기 내에 불활성 가스를 주입하면서 -20~-50mmHg 감압하고, 상기 락티드를 160~170℃에서 가열, 교반하는 단계; 및 중합촉진장치(560)를 이용하여 중합을 촉진하는 단계;를 포함하는 것이 바람직하다.In addition, the polymerization process is stirred at a rate of 70 ~ 100 RPM while heating the lactide to the melting temperature, 0.1 to 1% by weight of the organic tin compound, 0.1 to 1% by weight of dodecyl alcohol with respect to the weight of the lactide By mixing at atmospheric pressure for 3 to 5 hours; Decompressing -20 to -50 mmHg while injecting an inert gas into the pressure resistant container, and heating and stirring the lactide at 160 to 170 ° C; And promoting the polymerization by using the polymerization promoter 560.
상기 전자파 조사를 위하여 교반속도를 20~30RPM으로 감속하고, 전자파(예를 들어 2.45GHz를 조사하면서 20~30분간 더 가열하여 고분자 폴리유산(PLA)을 얻는 것이 바람직하다.It is preferable to reduce the stirring speed to 20 ~ 30RPM for the electromagnetic wave irradiation, and further heating for 20-30 minutes while irradiating electromagnetic waves (for example, 2.45GHz) to obtain a polymer polylactic acid (PLA).
또한, 폴리유산(PLA)의 중합에는 전자파의 주파수는 2~3GHz, 바람직하게는 2.4~2.5GHz, 더욱 바람직하게는 2.45GHz이고, 출력은 내용물 1kg당 10~30W인 것이 바람직하다.In addition, in the polymerization of polylactic acid (PLA), the frequency of the electromagnetic wave is 2 to 3 GHz, preferably 2.4 to 2.5 GHz, more preferably 2.45 GHz, and the output is preferably 10 to 30 W per kg of contents.
도 13a, 13b, 13c는 본 발명에 따른 폴리유산의 제조방법에서 중합촉진장치의 전자파강도분포를 중합장치 내부에서 계측프로브를 삽입하여 실측한 데이터를 도시하는 그래프이고, 도 14는 도 13에서 사용한 계측프로브의 구조를 도시하는 단면도로서, 중합촉진장치(560)가 중합용기의 중심에서 떨어진 정도에 따라 전자파의 강도 분포가 달라지는 것을 확인할 수 있다.13A, 13B, and 13C are graphs showing data obtained by measuring the electromagnetic wave intensity distribution of the polymerization accelerator in the polymerization apparatus by inserting a measurement probe inside the polymerization apparatus, and FIG. 14 is used in FIG. 13. As a sectional view showing the structure of the measurement probe, it can be seen that the intensity distribution of the electromagnetic wave varies depending on the degree to which the polymerization accelerator 560 is separated from the center of the polymerization vessel.
중합촉진장치(560)는 중합용기의 중심에서 3/8D(D=직경)떨어진 위치에 설치하는 것이 바람직하고 이 위치에 설치하면 전자파의 조사량이 내용물 표면 전체에 균일하게 분포된다. The polymerization accelerator 560 is preferably installed at a position 3 / 8D (D = diameter) away from the center of the polymerization vessel, and when installed at this position, the irradiation amount of electromagnetic waves is uniformly distributed over the entire surface of the contents.
이를 테면 뿔 형의 안테나(567)에서 방사되는 전자파는 내용물의 표면에 직접 조사되는 것뿐만 아니라 중합용기 내부에서 반사된 반사파도 조사하게 되며, 내용물은 교반장치(530)에서부터 교반되면서 이동하기 때문에 앞서 기술한 위치에 중합촉진장치(560)를 설치하게 되면 내용물이 균일한 조사를 받을 수 있게 된다.For example, the electromagnetic wave emitted from the horn-shaped antenna 567 not only directly irradiates the surface of the contents but also reflects the reflected waves reflected inside the polymerization vessel, and the contents are moved while being stirred from the stirring device 530. When the polymerization accelerator 560 is installed at the position described above, the contents can be uniformly irradiated.
마그네트론 발진기(565)의 출구 근접한 곳에서 전자파의 투과 손실에 적은 부재(예를 들면 마이카판 등)를 설치하여 해당 발진기와 도파관을 물리적으로 차폐하며, 도파관(561)에 질소가스 입구(563)를 설치하는 것이 바람직하다. Near the outlet of the magnetron oscillator 565, a member (e.g., mica plate, etc.) having a low transmission loss of electromagnetic waves is provided to physically shield the oscillator and the waveguide, and the nitrogen gas inlet 563 is provided to the waveguide 561. It is desirable to install.
도파관(561)에 다른 한 쪽 끝은 중합장치(500) 내부에 접속되어 있으며, 질소가스는 도파관(561) 내부를 흘러 뿔형 안테나(567)의 개구부부터 중합장치 내부에 공급한다. 이에 따라 도파관(561) 내부에 내용물의 증기가 침입하는 것을 막는 것과 더불어 전자파의 손실 없이 중합장치 내부에 공급하는 것이 가능하다. The other end of the waveguide 561 is connected to the inside of the polymerization apparatus 500. Nitrogen gas flows into the waveguide 561 and is supplied from the opening of the horn antenna 567 to the inside of the polymerization apparatus. Accordingly, it is possible to prevent vapor from the inside of the waveguide 561 from entering and to supply the inside of the polymerization apparatus without loss of electromagnetic waves.
중합장치에는 도 7 또는 도 11에 도시된 바와 같이 배기응축장치 및 진공펌프가 접속되어 감압 되어 있으며, 질소가스가 흐르고 있기 때문에 도파관 내부에서 내용물의 증기가 침입, 고화되지 않는다.As illustrated in FIG. 7 or 11, the exhaust condenser and the vacuum pump are connected to the polymerization apparatus to reduce the pressure, and since nitrogen gas flows, steam of the contents does not penetrate and solidify inside the waveguide.
이러한 기구를 갖추지 않고 중합장치 측면 혹은 밑부분 혹은 윗부분으로 유리창 등을 통하여 전자파를 공급하는 것도 가능하지만 유리 표면에 내용물의 증기 혹은 내용물 그 자체가 고화되어 전자파의 투과를 방해, 손실이 커지게 되기 때문에 바람직하지 않다.It is possible to supply electromagnetic waves through the glass window to the side, bottom or top of the polymerization apparatus without such a mechanism, but since the vapor or contents themselves solidify on the glass surface, the transmission of the electromagnetic waves will be obstructed and the loss will increase. Not desirable
도 15는 본 발명에 따른 폴리유산의 제조방법에서 중합장치 내의 내용물의 이동상황을 도시하는 개념도로서, 도시된 바와 같이 중심부부터 하강류에 대해서는 외연부에서는 상승류가 되며, 내용물 전체는 중합장치 내를 오른쪽으로 소용돌이 치며 이동하게 되나, 외연부는 중심과 비교할 때 속도가 빠르기 때문에 도 13c에 되시된 전자파 분포라면 내용물이 균일하게 전자파 조사를 받는 것이 가능하다.FIG. 15 is a conceptual diagram illustrating a moving state of contents in a polymerization apparatus in the method for producing a polylactic acid according to the present invention. As shown in FIG. While swirling to move to the right, the outer edge portion is faster compared to the center, so the electromagnetic wave distribution shown in Figure 13c it is possible that the contents are uniformly irradiated.
<실험예 1>Experimental Example 1
중합용량 120L의 중합장치에 락티드를 80kg투입하여 정격출력 3KW의 마그네트론 발진기로부터 주파수 2.45GHz, 락티드 1kg당 30W가 되도록 전자파를 조사하여 4시간마다 샘플을 추출해 분자량을 계측하였다.80 kg of lactide was injected into a 120 L polymerization apparatus, and electromagnetic waves were irradiated at a frequency of 2.45 GHz and 30 W per kg of lactide from a magnetron oscillator with a rated output of 3 kW, and samples were taken every 4 hours to measure molecular weight.
도 16은 본 발명에 따른 폴리유산의 제조방법에서 중합장치에서 전자파를 조사하여 분자량을 계측한 데이터를 도시하는 그래프로서, 도시된 바와 같이 본 발명의 중합장치를 이용하여 동일조건에서 PLA중합을 행하였을 때, 실용적인 분자량의 하한선인 65,000dt까지 걸리는 반응시간은 18~20시간인 반면, 전자파를 조사하지 않는 경우에는 28~32시간이 걸리는 것을 알 수 있다.FIG. 16 is a graph showing data obtained by measuring molecular weight by irradiating electromagnetic waves in a polymerization apparatus in the method of preparing polylactic acid according to the present invention. As shown, PLA polymerization was performed under the same conditions using the polymerization apparatus of the present invention. In this case, the reaction time to 65,000dt, which is the lower limit of the practical molecular weight, is 18 to 20 hours, whereas it can be seen that 28 to 32 hours are required when the electromagnetic wave is not irradiated.
또한, 반응시간 32시간째에 도달되는 분자량은 전자파를 조사하지 않은 경우에는 70,000~75,000dt이었으나, 전자파를 조사한 경우는 100,000~110,000dt로서 전자파를 조사한 경우에 중합이 잘 되는 것을 알 수 있다.In addition, the molecular weight reached at the reaction time of 32 hours was 70,000 to 75,000dt when the electromagnetic wave was not irradiated. However, when the electromagnetic wave was irradiated, 100,000 to 110,000dt was found to be well polymerized.
<실험예 2>Experimental Example 2
출력 10KW인 마그네트론 발진기로 2.45GHz의 전자파를 만들고, 가변리액턴스형출력조정기에 의해 전자파 조사출력을 조정하여 락티드 1kg당 출력(W/kg)을 10, 30, 50, 100(W/kg)로 변화시키면서 분자량의 변화를 실험하여, 그 결과를 아래와 같이 나타내었다.Magnetron oscillator with 10KW output generates 2.45GHz electromagnetic wave, and the variable reactance type regulator adjusts the electromagnetic radiation output to output 10, 30, 50, 100 (W / kg) per kilot of lactide. The change of molecular weight was tested while changing, and the result was shown as follows.
표 2
Figure PCTKR2011006143-appb-T000002
TABLE 2
Figure PCTKR2011006143-appb-T000002
실용가능한 PLA의 분자량은 65,000dt이상이며, 상기 표 2를 참고하면 전자파의 출력이 30(W/kg)일 때 적은 반응시간으로 65,000dt의 분자량에 도달하는 것으로 효율이 우수한 것을 알 수 있다.Practical molecular weight of PLA is more than 65,000dt, referring to Table 2 it can be seen that the efficiency is excellent by reaching the molecular weight of 65,000dt with a small reaction time when the output of the electromagnetic wave is 30 (W / kg).
불순물 증산공정(S90)은 폴리유산을 가열하여 중합반응하지 않은 미반응물질을 증산시키는 것이다.Impurity evaporation step (S90) is to heat the polylactic acid to evaporate unreacted material that is not polymerized.
한편, 상기 불순물은 저분자 폴리유산 또는 락티드이고, 상기 증산공정은 내압용기 내를 -50~100mmHg 감압하고 상기 폴리유산의 온도를 180~190℃로 가열하면서 70~100RPM으로 1~2시간 교반하는 것이 바람직하다.On the other hand, the impurity is a low molecular polylactic acid or lactide, the transpiration process is to reduce the pressure inside the pressure vessel -50 ~ 100mmHg and stirred for 1 to 2 hours at 70 ~ 100RPM while heating the temperature of the polylactic acid to 180 ~ 190 ℃ It is preferable.
한편, 본 발명에 따른 폴리유산의 제조방법은 식물성 전분을 물과 혼합한 후 가열하여 호화시키는 호화공정; 상기 호화된 전분의 중량에 대하여 유산 0.2~1.0중량%를 첨가하고 110~130℃로 가열하여 액화시키는 액화공정; 상기 액화된 전분을 당화효소를 이용하여 단당액으로 분해하는 당화공정; 상기 단당액의 중량에 대하여 식염을 0.01~0.1중량%, 황산망간 0.01~0.5중량%, 인산암모니움 0.01~0.1중량%, 탈지분유 0.1~1.0중량%, 두유 0.1~1.0중량%, 폐당밀 0.1~1.0중량%, 계면활성제 0.01~0.05중량%, 유산균 배양액 2~5중량%를 상기 단당액에 혼합하여 유산발효시켜 발효액을 생성하는 발효공정; 상기 발효액의 유산을 수산화나트륨으로 중화시켜 유산염을 만든 뒤에 상기 유산염에서 유산과 수산화나트륨으로 분해시키는 전기투석공정; 상기 분리된 유산을 120~130℃로 가열하여 탈수시킨 후, 150~160℃로 가열하여 저분자 폴리유산을 생성하는 유산정제공정; 상기 정제된 유산을 바나듐, 니켈, 철, 알루미늄, 티탄, 셀륨, 실리콘, 지르콘, 루테늄, 망간, 크롬, 코발트, 백금, 토륨, 팔라듐, 주석 중에서 어느 하나 이상의 금속 산화물 0.5~1중량%와 혼합하여 락티드를 생성하는 락티드 생성공정; 상기 락티드의 중량에 대하여 유기주석화합물 0.1~1중량%, 도데실알콜 0.1~1중량%를 첨가하여 교반, 혼합하여 개환축중합반응시켜 폴리유산을 형성하는 중합공정; 및 상기 폴리유산의 온도를 180~190℃로 가열하여 중합반응하지 않은 미반응물질을 증산시키는 불순물 증산공정;을 포함하는 것이 바람직하다.On the other hand, a method for producing a polylactic acid according to the present invention is a gelatinization process of mixing the vegetable starch with water and then heating it to gelatinize; A liquefaction step of adding 0.2-1.0 wt% of lactic acid to the weight of the gelatinized starch and liquefying by heating to 110-130 ° C .; A saccharification step of decomposing the liquefied starch into a monosaccharide liquid using a saccharifying enzyme; 0.01 to 0.1% by weight of salt, 0.01 to 0.5% by weight of manganese sulfate, 0.01 to 0.1% by weight of ammonium phosphate, skim milk powder 0.1 to 1.0% by weight, soy milk 0.1 to 1.0% by weight, waste molasses 0.1 A fermentation step of producing a fermentation broth by lactic fermentation by mixing 1.0 wt%, 0.01 to 0.05 wt% surfactant, and 2 to 5 wt% of lactic acid bacteria culture medium to the monosaccharide solution; Electrodialysis step of neutralizing the lactic acid of the fermentation broth with sodium hydroxide to make lactate and decomposing the lactic acid and the sodium hydroxide from the lactate; Lactic acid refining process of heating the separated lactic acid to 120 ~ 130 ℃, and then heated to 150 ~ 160 ℃ to produce a low molecular polylactic acid; The purified lactic acid is mixed with 0.5-1 wt% of any one or more metal oxides of vanadium, nickel, iron, aluminum, titanium, selium, silicon, zircon, ruthenium, manganese, chromium, cobalt, platinum, thorium, palladium, and tin. A lactide producing step of generating lactide; A polymerization step of forming a polylactic acid by adding ringing-condensation polymerization by adding 0.1-1% by weight of organotin compound and 0.1-1% by weight of dodecyl alcohol to the weight of the lactide; And an impurity evaporation step of evaporating the unreacted material that is not polymerized by heating the temperature of the polylactic acid to 180 to 190 ° C.
도 17은 본 발명에 따른 고전도성 폴리유산 중합체의 제조방법의 일실시예를 도시하는 공정도로서, 도시된 바와 같이 본 발명에 따른 고전도성 폴리유산 중합체의 제조방법은 반응용기에 폴리유산 100중량부, 락티드 10~20중량부 및 폴리글리콜산 5~10중량부를 첨가한 후, 교반하는 S1단계; 상기 반응용기에 세린 5~10중량부 및 도데실 알코올 0.1~1중량부를 첨가한 후, 불활성 가스를 투입하고 전자파를 조사하는 S2단계; 및 상기 반응용기에 아세트산 세륨 0.1~1중량부를 첨가한 후, 교반하는 S3단계;를 포함하는 것이다.17 is a process diagram showing an embodiment of a method for producing a highly conductive polylactic acid polymer according to the present invention, as shown in the manufacturing method of the highly conductive polylactic acid polymer according to the present invention is 100 parts by weight of polylactic acid in the reaction vessel S1 step of adding 10 to 20 parts by weight of lactide and 5 to 10 parts by weight of polyglycolic acid, followed by stirring; S2 step of adding 5 to 10 parts by weight of serine and 0.1 to 1 part by weight of dodecyl alcohol in the reaction vessel, inert gas and irradiating electromagnetic waves; And S3 step of adding 0.1-1 part by weight of cerium acetate to the reaction vessel, followed by stirring.
본 발명에 따른 S1단계는 반응용기에 폴리유산 100중량부, 락티드 10~20중량부 및 폴리 글리콜산(glycollic acid) 5~10중량부 등의 원료를 넣은 후, 교반하는 것이다. 그리고 S1단계는 160~190℃의 온도 및 0.1~0.5기압으로 감압한 상태에서 이루어질 수 있다.S1 step according to the present invention is to put a raw material, such as 100 parts by weight of polylactic acid, 10 to 20 parts by weight of lactide and 5 to 10 parts by weight of polyglycolic acid (glycollic acid) in the reaction vessel, and then stirred. And the step S1 can be made in a reduced pressure at a temperature of 160 ~ 190 ℃ and 0.1 ~ 0.5 atm.
또한, 본 발명에 따른 S1단계는 촉매인 바나진산 암모늄(NH4VO3) 0.1~10중량부 및 산화바나듐(vanadium oxide) 0.1~10중량부를 더 첨가하여 이루어질 수 있다. 그리고 본 발명에 따른 산화바나듐은 일산화바나듐(VO), 이산화바나듐(VO2), 삼산화바나듐(V2O3) 및 오산화바나듐(V2O5) 중에서 어느 하나가 선택되는 것이다.In addition, the step S1 according to the present invention may be made by adding 0.1 to 10 parts by weight of ammonium vanadate (NH 4 VO 3) as a catalyst and 0.1 to 10 parts by weight of vanadium oxide. The vanadium oxide according to the present invention is one selected from vanadium monoxide (VO), vanadium dioxide (VO 2 ), vanadium trioxide (V 2 O 3 ) and vanadium pentoxide (V 2 O 5 ).
본 발명에 따른 락티드(lactide)는 α-히드록시산의 2분자가 카르복시기와 히드록시기 사이에서 고리화된 에스테르화합물로서, D-, L-, DL-락티드의 3개의 이성질체 모두 사용될 수 있다.Lactide according to the present invention is an ester compound in which two molecules of α-hydroxy acid are cyclized between a carboxy group and a hydroxyl group, and all three isomers of D-, L-, and DL-lactide can be used.
그리고 화학식 1은 유산에서 폴리유산으로 변환된 모습을 나타내는 것으로서, 본 발명에 따른 폴리유산(PLA, Poly Lactic Acid)은 락티드(Lactid)가 공존하고, 이 락티드가 환(環)상의 펩티드를 형성할 수 있기 때문에 평균 분자량이 2,000~10,000, 바람직하게는 5,000~10,000인 저분자 폴리유산을 사용하는 것이 바람직하다.In addition, Formula 1 shows a state in which a lactic acid is converted into a polylactic acid. The polylactic acid (PLA, Poly Lactic Acid) according to the present invention has lactide (Lactid) coexisting, and the lactide forms a ring-shaped peptide. Since it can form, it is preferable to use the low molecular weight polylactic acid whose average molecular weight is 2,000-10,000, Preferably 5,000-10,000.
<화학식 1><Formula 1>
Figure PCTKR2011006143-appb-I000001
Figure PCTKR2011006143-appb-I000001
본 발명에 따른 S2단계는 반응용기에 세린(serine) 5~10중량부 및 도데실 알코올(dodecyl alcohol) 0.1~1중량부를 넣은 후, 불활성 가스를 투입하고 전자파를 조사하는 것이다. 본 발명에 따른 반응물에 전자파를 조사함으로써 락티드에서 환상의 펩티드로 변환되는 N-H 치환 반응과 축중합 반응이 촉진된다.In the step S2 according to the present invention, 5-10 parts by weight of serine and 0.1-1 part by weight of dodecyl alcohol are added to the reaction vessel, and an inert gas is added thereto to irradiate electromagnetic waves. Irradiating electromagnetic waves to the reactants according to the present invention promotes N-H substitution reactions and condensation polymerization reactions that are converted from lactide to cyclic peptides.
그리고 S2단계는 불활성 가스인 질소를 투입하여 1~5기압으로 가압한 상태에서 이루어질 수 있다.And step S2 may be made in a state pressurized to 1 to 5 atm by adding nitrogen as an inert gas.
본 발명에 따른 세린(serine)은 a-아미노산으로 화학식은 HOCH2CH(NH2)COOH이며, 물에는 녹지만 알코올 또는 에테르에는 녹지 않는 아미노산의 한 종류이다. 그리고 본 발명에서는 세린 이외에도 펩티드 결합을 하는 친수성 아미노산인 아스파라긴, 시스테인, 글루타민, 글리신, 트레오닌, 티로신, 리신, 아스파르트산, 글루탐산, 아르기닌 및 히스티딘 중에서 어느 하나가 선택되는 아미노산을 사용할 수 있다.Serine (serine) according to the present invention is a-amino acid, the chemical formula is HOCH 2 CH (NH 2 ) COOH, one kind of amino acid that is soluble in water but not soluble in alcohol or ether. In addition to serine, in the present invention, any of hydrophilic amino acids asparagine, cysteine, glutamine, glycine, threonine, tyrosine, lysine, aspartic acid, glutamic acid, arginine, and histidine may be used in addition to serine.
화학식 2는 락티드에서 환상의 펩티드로 변환된 모습을 나타내는 것으로서, 환상의 펩티드는 다수의 측쇄를 가져 후술할 금속원자단의 결합이 용이하다. Formula 2 shows a state in which a lactide is converted into a cyclic peptide, and the cyclic peptide has a plurality of side chains, thereby facilitating the bonding of metal atoms to be described later.
<화학식 2><Formula 2>
Figure PCTKR2011006143-appb-I000002
Figure PCTKR2011006143-appb-I000002
상기 화학식 2에서 R은 아미노산이다.In Formula 2, R is an amino acid.
본 발명에 따른 S3단계는 반응용기에 아세트산 세륨(Acetic Acid cerium, Ce) 0.1~1중량부를 첨가한 후, 교반하는 것이다. 본 발명에 따른 세륨은 주기율표 란타넘족에 속하는 희토류 원소의 하나이다. 그리고 본 발명은 아세트산 세륨를 대신하여 질산 세륨, 질산세륨암모늄, 염화세륨 중에서 어느 하나를 선택하여 사용할 수도 있다.S3 step according to the present invention is to add 0.1 to 1 parts by weight of cerium acetate (Acetic Acid cerium, Ce) to the reaction vessel, and then stirred. Cerium according to the present invention is one of the rare earth elements belonging to the lanthanide group of the periodic table. In the present invention, any one of cerium nitrate, cerium ammonium nitrate, and cerium chloride may be selected and used instead of cerium acetate.
또한, 세륨을 포함하는 화합물 이외에도 다른 희토류 원소를 포함하는 화합물을 사용할 수 있다.In addition to the compound containing cerium, a compound containing other rare earth elements can be used.
그리고 S3단계는 불활성 가스인 질소를 투입하여 1~5기압으로 가압한 상태에서 이루어질 수 있다.And step S3 may be made in a state pressurized to 1 to 5 atm by adding nitrogen as an inert gas.
화학식 3은 환상의 폴리펩티드의 측쇄에 금속원자단이 결합된 모습을 나타낸 것으로서, 폴리펩티드의 아미노산(R)에 세륨 등의 금속원자단이 결합되어 고전도성 폴리유산 중합체를 생성할 수 있다. Formula 3 shows a metal atom group bonded to the side chain of the cyclic polypeptide, and a metal atom group such as cerium may be bonded to the amino acid (R) of the polypeptide to generate a highly conductive polylactic acid polymer.
<화학식 3><Formula 3>
Figure PCTKR2011006143-appb-I000003
Figure PCTKR2011006143-appb-I000003
상기 화학식 3에서 M은 금속원자단이고, R은 아미노산이다.In Formula 3, M is a metal atom group, and R is an amino acid.
본 발명에 따른 S4단계는 S3단계의 교반을 중지한 상태에서, 160~190℃의 온도를 유지하고 0.1~0.5기압으로 감압하는 것이다.S4 step according to the present invention is to maintain a temperature of 160 ~ 190 ℃ in a state in which the agitation of the step S3 is stopped and reduced to 0.1 to 0.5 atm.
본 발명에 따른 S5단계는 S4단계가 종료된 후, 불활성 가스를 투입하여 2~3기압으로 가압하여 반응기 내의 반응물을 배출시키는 것이다.In step S5 according to the present invention, after the step S4 is completed, an inert gas is added to pressurize to 2 to 3 atmospheres to discharge the reactants in the reactor.
본 발명의 따른 S1단계 내지 S3단계는 160~190℃의 반응온도에서 이루어지고, 160℃ 미만인 경우에는 원활한 반응이 이루어지지 않거나 반응이 느리게 진행될 수 있다. 그리고 S1단계 내지 S3단계가 190℃를 초과하여 이루어지는 경우에는 반응물의 증발이 많이 이루어져 반응이 원활히 진행되지 않는다.Step S1 to S3 of the present invention is made at a reaction temperature of 160 ~ 190 ℃, if less than 160 ℃ may not be a smooth reaction or the reaction proceeds slowly. And when the steps S1 to S3 is more than 190 ° C evaporation of the reactants a lot, the reaction does not proceed smoothly.
이하 본 발명에 따른 고전도성 폴리유산 중합체 제조장치를 도 2 내지 도 5를 통해 상세히 설명한다.Hereinafter, a highly conductive polylactic acid polymer manufacturing apparatus according to the present invention will be described in detail with reference to FIGS. 2 to 5.
도 18은 본 발명에 따른 고전도성 폴리유산 중합체 제조장치를 도시하는 개념도이다. 도시된 바와 같이 본 발명에 따른 고전도성 폴리유산 중합체 제조장치는 상부에는 원료 유입구(112a, 112b), 질소/전자파 유입구(114) 및 질소 배출구(116)가 구비되고, 하부에는 반응물 배출구(118)가 구비되는 반응용기(110); 상기 반응용기(110) 내의 반응물을 교반시키는 교반기(130); 상기 반응용기(110)를 가열시키는 열공급부(150); 상기 질소/전자파 유입구(114)와 연결되어 반응용기(110) 내의 반응물에 전자파 및 질소가스를 공급하는 질소/전자파 공급부(170); 및 상기 질소 배출구(116)와 연결되어 상기 반응용기(110) 내를 감압시키는 감압펌프(190);를 포함한다.18 is a conceptual diagram showing a high conductivity polylactic acid polymer manufacturing apparatus according to the present invention. As shown, the apparatus for producing a highly conductive polylactic acid polymer according to the present invention includes a raw material inlet 112a and 112b, a nitrogen / electromagnetic inlet 114 and a nitrogen outlet 116 in the upper portion, and a reactant outlet 118 in the lower portion. Reaction vessel 110 is provided; An agitator (130) for stirring the reactants in the reaction vessel (110); A heat supply unit 150 for heating the reaction vessel 110; A nitrogen / electromagnetic wave supply unit 170 connected to the nitrogen / electromagnetic wave inlet 114 to supply electromagnetic waves and nitrogen gas to a reactant in the reaction vessel 110; And a decompression pump 190 connected to the nitrogen outlet 116 to depressurize the inside of the reaction vessel 110.
본 발명에 따른 열공급부(150)는 상기 반응용기(110)의 측면과 하면을 감싸고 내부에는 열매체가 내장된 열전달 자켓(152), 상기 열전달 자켓(152)에 열을 공급하는 히터(154)를 포함한다. The heat supply unit 150 according to the present invention surrounds the side and bottom surfaces of the reaction vessel 110 and has a heat transfer jacket 152 having a heat medium therein, and a heater 154 for supplying heat to the heat transfer jacket 152. Include.
그리고 열매체는 반응물보다 비열이 작은 실리콘계 오일을 사용하며, 반응물에 전달되는 열은 열매체를 통해 간접적으로 이루어지게 된다.In addition, the heat medium uses a silicone-based oil having a smaller specific heat than the reactant, and the heat transferred to the reactant is indirectly made through the heat medium.
도 19는 본 발명에 따른 고전도성 폴리유산 중합체 제조장치의 질소/전자파 공급부를 도시하는 개념도로서, 도시된 바와 같이 질소/전자파 공급부(170)는 질소/전자파 유입구(114)를 통해 반응용기(110) 내에 위치하여 반응물에 질소 및 전자파를 공급하는 혼 안테나(172), 상기 혼 안테나(172)와 연결되고 질소 유입구(174)가 구비되는 도파관(176) 및 상기 도판관(176)과 연결되고 전자파를 발생시키는 마그네트론발진기(178)를 포함할 수 있다.19 is a conceptual diagram illustrating a nitrogen / electromagnetic wave supply unit of the highly conductive polylactic acid polymer manufacturing apparatus according to the present invention. As illustrated, the nitrogen / electromagnetic wave supply unit 170 is a reaction vessel 110 through a nitrogen / electromagnetic wave inlet 114. ) And a horn antenna 172 for supplying nitrogen and electromagnetic waves to a reactant, a waveguide 176 connected to the horn antenna 172 and provided with a nitrogen inlet 174, and a waveguide 176 and an electromagnetic wave It may include a magnetron oscillator 178 to generate.
본 발명에 따른 고전도성 폴리유산 중합체의 제조에 있어서, 반응용기(110) 내의 가압은 불활성 가스인 질소 가스를 주입하여 행하고, 감압은 반응용기(110)와 연결된 감압펌프(190)에 의해 이루어진다. 그리고 반응용기(110)와 감압펌프(190) 사이에는 열교환기(180)가 구비되어 감압펌프(190)로 유입되는 가스의 온도를 조절하게 된다.In the production of the highly conductive polylactic acid polymer according to the present invention, pressurization in the reaction vessel 110 is performed by injecting nitrogen gas which is an inert gas, and decompression is performed by a pressure reduction pump 190 connected with the reaction vessel 110. And a heat exchanger 180 is provided between the reaction vessel 110 and the decompression pump 190 to adjust the temperature of the gas flowing into the decompression pump 190.
*도 20은 본 발명에 따른 고전도성 폴리유산 중합체 제조장치의 질소/전자파 유입구의 위치를 설명하는 개념도로서, 도시된 바와 같이 질소/전자파 유입구(114)는 반응용기(110)의 중심을 기준으로 반응용기의 직경(D)의 3/8 만큼 떨어진 위치에 설치될 수 있고, 이 위치에 설치하면 전자파의 조사량이 반응물 표면 전체에 균일하게 분포된다.* Figure 20 is a conceptual diagram illustrating the position of the nitrogen / electromagnetic inlet of the high conductivity polylactic acid polymer manufacturing apparatus according to the present invention, as shown, the nitrogen / electromagnetic inlet 114 is based on the center of the reaction vessel 110 It can be installed at a position 3/8 of the diameter (D) of the reaction vessel, when installed in this position, the amount of electromagnetic radiation is uniformly distributed over the entire surface of the reactant.
이를 테면 뿔 형의 혼 안테나(172)에서 방사되는 전자파는 반응물의 표면에 직접 조사되는 것뿐만 아니라 반응용기 내부에서 반사된 반사파도 조사하게 되며, 반응물은 교반기(130)로 교반되면서 이동하기 때문에 균일한 조사를 받을 수 있게 된다.For example, electromagnetic waves radiated from the horn-shaped horn antenna 172 not only directly irradiate the surface of the reactant but also reflect the reflected wave reflected from the inside of the reaction vessel, and the reactant is uniformly moved by being stirred by the stirrer 130. A survey will be available.
마그네트론 발진기(178)의 출구와 근접한 곳에서 전자파의 투과 손실에 적은 부재(예를 들면 마이카판 등)를 설치하여 해당 마그네트론 발진기와 도파관(176)을 물리적으로 차폐하며, 도파관(176)에 질소 유입구(174)를 설치하는 것이 바람직하다. Near the outlet of the magnetron oscillator 178, a member (e.g., mica plate, etc.) having a low transmission loss of electromagnetic waves is installed to physically shield the magnetron oscillator and the waveguide 176, and the nitrogen inlet port of the waveguide 176. It is desirable to install 174.
본 발명에 따른 질소 가스는 도파관(176) 내부를 흘러 뿔형 혼 안테나(567)를 통해 반응용기에 공급된다. 질소 가스가 공급됨에 따라 도파관(176) 내부에 반응물의 증기가 침입하는 것을 막을 수 있고, 반응에 필요한 압력 조절을 하며, 환상의 폴리 펩티드를 생성할 수 있다.Nitrogen gas according to the present invention flows into the waveguide 176 and is supplied to the reaction vessel through the horn horn antenna 567. As the nitrogen gas is supplied, the vapor of the reactant may be prevented from infiltrating into the waveguide 176, the pressure control required for the reaction may be performed, and the cyclic polypeptide may be generated.
이러한 기구를 갖추지 않고 장치 측면 혹은 밑부분 혹은 윗부분으로 유리창 등을 통하여 전자파를 공급하는 것도 가능하지만 유리 표면에 반응물의 증기 혹은 반응물 그 자체가 고화되어 전자파의 투과를 방해, 손실이 커지게 되기 때문에 바람직하지 않다.It is also possible to supply electromagnetic waves to the side, bottom, or top of the device without the use of such a mechanism, but it is desirable because the vapor or reactants themselves are solidified on the glass surface, which impedes the transmission of the electromagnetic waves and increases the loss. Not.
도 21은 본 발명에 따른 고전도성 폴리유산 중합체 제조장치의 반응용기 내에서 반응물이 이동하는 모습을 도시하는 개념도로서, 도시된 바와 같이 반응용기의 중심부부터 하강류에 대해서는 외연부에서는 상승류가 되며, 반응물 전체는 중합장치 내를 오른쪽으로 소용돌이 치며 이동하게 되나, 외연부는 중심과 비교할 때 속도가 빠르기 때문에 균일하게 전자파 조사를 받는 것이 가능하다.FIG. 21 is a conceptual diagram illustrating a state in which a reactant moves in a reaction container of the apparatus for preparing a highly conductive polylactic acid polymer according to the present invention. As shown in FIG. However, the entire reactant is swirled to the right in the polymerization apparatus, but the outer edge portion is faster than the center, so it is possible to receive the electromagnetic wave uniformly.
이하, 본 발명의 바람직한 실시예를 통하여 본 발명을 보다 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to preferred embodiments of the present invention.
<실시예 1><Example 1>
S1단계에 따라 반응용기에 평균 분자량 5,000~10,000인 폴리유산 100중량부, 폴리글리콜산 5~10중량부 및 락티드 10~20중량부를 넣는다. 그리고, 반응용기에 촉매인 바나진산암모늄 0.1~10중량부 및 산화바나듐 0.1~10중량부를 첨가하고 교반한다. 이 때 히터를 작동시켜 반응용기 내의 온도를 160~190℃로 가열시키고, 반응용기 내의 압력은 감압펌프를 이용하여 0.1~0.5기압으로 조정한다.According to step S1, 100 parts by weight of polylactic acid having an average molecular weight of 5,000 to 10,000, 5 to 10 parts by weight of polyglycolic acid, and 10 to 20 parts by weight of lactide are added. And 0.1-10 weight part of ammonium vanadate which is a catalyst, and 0.1-10 weight part of vanadium oxides which are a catalyst are added and stirred to a reaction container. At this time, by operating a heater to heat the temperature in the reaction vessel to 160 ~ 190 ℃, the pressure in the reaction vessel is adjusted to 0.1 ~ 0.5 atm using a pressure reducing pump.
S2단계에 따라 반응용기에 세린 5~10중량부 및 도데실 알코올 0.1~1중량부를 넣고, 질소/전자파 공급부를 통해 반응물에 질소 및 전자파를 공급한다. 그리고 전자파는 정격출력 3KW의 마그네트론 발진기로부터 주파수 2.45GHz, 반응물 1kg당 30~100W가 되도록 전자파를 조사하고, 전자파 조사시 반응용기 내의 온도는 160~190℃, 압력은 1~5기압으로 유지시킨다.According to step S2, 5-10 parts by weight of serine and 0.1-1 part by weight of dodecyl alcohol are added to the reaction vessel, and nitrogen and electromagnetic waves are supplied to the reactants through a nitrogen / electromagnetic wave supply part. The electromagnetic wave is irradiated with a frequency of 2.45 GHz from a magnetron oscillator with a rated output of 3 kW and 30 to 100 W per kg of reactant, and during irradiation, the temperature in the reaction vessel is maintained at 160 to 190 ° C. and the pressure is 1 to 5 atm.
S3단계에 따라 도데실 알코올 0.1~1중량부 및 아세트산 세륨 0.1~1중량부를 첨가하고 교반한다.According to step S3, 0.1-1 part by weight of dodecyl alcohol and 0.1-1 part by weight of cerium acetate are added and stirred.
S4단계에 따라 전자파, 질소의 공급 및 교반을 중지한 상태에서 160~190℃의 온도는 유지시키고, 압력은 0.1~0.5기압으로 감압한다.In step S4, the temperature of 160-190 ° C. is maintained while the supply and stirring of electromagnetic waves and nitrogen are stopped, and the pressure is reduced to 0.1 to 0.5 atm.
S5단계에 따라 전자파 조사가 종료된 후, 질소를 공급하여 2~3기압으로 가압하여 반응기 내의 반응물을 배출시키고, 실시예 1에 따라 배출된 반응물은 세륨(금속원자단)이 결합된 고전도성 폴리유산을 제조한다.After the completion of the electromagnetic irradiation in accordance with step S5, by supplying nitrogen and pressurized to 2-3 atm to discharge the reactants in the reactor, the reactant discharged according to Example 1 is a highly conductive polylactic acid combined with cerium (metal atom group) To prepare.
이상에서 설명된 본 발명은 예시적인 것에 불과하며, 본 발명이 속한 기술분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 잘 알 수 있을 것이다. 그러므로 본 발명은 상기의 상세한 설명에서 언급되는 형태로만 한정되는 것은 아님을 잘 이해할 수 있을 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다. 또한, 본 발명은 첨부된 청구범위에 의해 정의되는 본 발명의 정신과 그 범위 내에 있는 모든 변형물과 균등물 및 대체물을 포함하는 것으로 이해되어야 한다.The present invention described above is merely illustrative, and those skilled in the art will appreciate that various modifications and equivalent other embodiments are possible therefrom. Therefore, it will be understood that the present invention is not limited to the forms mentioned in the above detailed description. Therefore, the true technical protection scope of the present invention will be defined by the technical spirit of the appended claims. It is also to be understood that the present invention includes all modifications, equivalents, and substitutes within the spirit and scope of the invention as defined by the appended claims.
<부호의 설명> <Description of the code>
110 : 반응용기 112a, 112b : 원료 유입구110: reaction vessel 112a, 112b: raw material inlet
114 : 질소/전자파 유입구 116 : 질소 배출구114: nitrogen / electromagnetic inlet 116: nitrogen outlet
118 : 반응물 배출구 130 : 교반기118: reactant outlet 130: agitator
132 : 교반날개 150 : 열공급부132: stirring blade 150: heat supply
152 : 열전달 자켓 154 : 히터152: heat transfer jacket 154: heater
170 : 질소/전자파 공급부 172 : 혼 안테나170: nitrogen / electromagnetic wave supply unit 172: horn antenna
174 : 질소 유입구 176 : 도파관174: nitrogen inlet 176: waveguide
178 : 마그네트론 발진기 180 : 열교환기178: magnetron oscillator 180: heat exchanger
190 : 감압펌프190: decompression pump
200 : 당화장치 112 : 원료입구200: saccharification device 112: raw material inlet
214 : 내용물 출구 230 : 교반장치214: contents outlet 230: agitator
232 : 교반날개 250 : 전기히터232: stirring blade 250: electric heater
270 : 수냉자켓 272 : 유입자켓270: water cooling jacket 272: inflow jacket
290 : 응축기 292 : 응축액저장소290: condenser 292: condensate storage
310 : 본체 312 : 유산농축액출구310: body 312: lactic acid concentrate outlet
314 : 배출관 316 : 절연성받침대314: discharge pipe 316: insulating base
322 : 발효실 324 : 격막322 fermentation chamber 324 diaphragm
326 : 농축실 328 : 음극326: concentration chamber 328: cathode
330 : 교반장치 332 : 교반날개330: stirring device 332: stirring blade
350 : 보온자켓 400 : 전기투석장치350: thermal insulation jacket 400: electrodialysis apparatus
410 : 전해조 412 : 양극액실410: electrolytic cell 412: anolyte chamber
414 : 발효액실 416 : 유산염/유산용액실414: fermentation broth 416: lactate / lactic acid solution chamber
418 : 수산화나트륨용액실 419 : 음극액실418: sodium hydroxide solution chamber 419: catholyte chamber
431 : 양극 433 : 음극431 anode 433 cathode
435 : 보조양극 437 : 보조음극435: secondary anode 437: secondary cathode

Claims (24)

  1. 식물성 전분을 물과 혼합한 후 가열하여 호화시키는 호화공정;Gelatinization process of mixing vegetable starch with water and then heating and gelatinizing;
    상기 호화된 전분에 유산을 첨가하고 가열하여 액화시키는 액화공정;A liquefaction step of adding lactic acid to the gelatinized starch and liquefying it by heating;
    상기 액화된 전분을 당화효소를 이용하여 단당액으로 분해하는 당화공정;A saccharification step of decomposing the liquefied starch into a monosaccharide liquid using a saccharifying enzyme;
    상기 단당액을 유산발효시켜 발효액을 생성하는 발효공정;A fermentation step of lactically fermenting the monosaccharide solution to produce a fermentation broth;
    상기 발효액에서 유산염을 분리 및 농축하고, 상기 유산염에서 유산을 분리시키는 전기투석공정;Electrodialysis step of separating and concentrating the lactate from the fermentation broth and separating the lactic acid from the lactate;
    상기 분리된 유산을 가열하여 수분 및 불순물을 제거하는 유산정제공정;Lactic acid purification process of heating the separated lactic acid to remove moisture and impurities;
    상기 정제된 유산을 금속산화물과 혼합시켜 락티드를 생성하는 락티드 생성공정;A lactide producing step of mixing the purified lactic acid with a metal oxide to produce lactide;
    상기 락티드를 중합반응시켜 폴리유산을 생성하는 중합공정; 및A polymerization step of polymerizing the lactide to generate polylactic acid; And
    상기 폴리유산을 가열하여 중합반응하지 않은 미반응물질을 증산시키는 불순물 증산공정;An impurity evaporation step of heating the polylactic acid to evaporate unreacted material not polymerized;
    을 포함하는 것을 특징으로 하는 폴리유산의 제조방법.Method for producing a polylactic acid, characterized in that it comprises a.
  2. 제1항에 있어서,The method of claim 1,
    상기 호화공정은 상기 전분 20~30 중량부에 대하여 물 70~80 중량부를 혼합하여 70~100 RPM으로 교반하면서 90~105℃로 가열한 후, 15~120분간 교반하는 것을 특징으로 하는 폴리유산의 제조방법.The gelatinization process is a polylactic acid, characterized in that the mixture is heated to 90 ~ 105 ℃ while stirring at 70 ~ 100 RPM by mixing 70 ~ 80 parts by weight of water with respect to 20 to 30 parts by weight of starch, Manufacturing method.
  3. 제1항에 있어서,The method of claim 1,
    상기 액화공정은 상기 호화된 전분의 중량에 대하여 상기 유산 0.1~1.0%를 첨가하여 4~10 시간 동안 교반하면서 110~130℃로 가열하는 것을 특징으로 하는 폴리유산의 제조방법.The liquefaction process is a method for producing a polylactic acid, characterized in that the addition of 0.1 ~ 1.0% of the lactic acid to the weight of the gelatinized starch and heated to 110 ~ 130 ℃ while stirring for 4 to 10 hours.
  4. 제1항에 있어서,The method of claim 1,
    상기 당화효소는 상기 전분의 중량에 대하여 0.1~1.0%의 아밀라아제이고, 상기 액화된 전분의 온도는 50~65℃, pH는 6.0~6.5로 조정하는 것이며, 상기 pH는 암모니아 수용액을 이용하여 조정하는 것을 특징으로 하는 폴리유산의 제조방법.The glycosylase is 0.1 to 1.0% amylase with respect to the weight of the starch, the temperature of the liquefied starch is 50 to 65 ℃, pH is adjusted to 6.0 ~ 6.5, the pH is adjusted using an aqueous ammonia solution Method for producing a polylactic acid, characterized in that.
  5. 제1항에 있어서,The method of claim 1,
    상기 발효공정은 당도가 20~30인 상기 단당액의 중량에 대하여 식염 0.01~0.1%, 황산망간 0.01~0.5%, 인산암모니움 0.01~0.1%, 탈지분유 0.1~1.0%, 두유 0.1~1.0%, 폐당밀 0.1~1.0%, 계면활성제 0.01~0.05%, 유산균 배양액 2~5중량%를 상기 단당액에 혼합하고, 70~100RPM으로 20~35 시간 동안 교반하는 것을 특징으로 하는 폴리유산의 제조방법.The fermentation process is based on the weight of the monosaccharide solution with a sugar content of 20 to 30, 0.01 to 0.1% of salt, 0.01 to 0.5% of manganese sulfate, 0.01 to 0.1% of ammonium phosphate, 0.1 to 1.0% of skim milk powder, and 0.1 to 1.0% of soy milk. , 0.1 to 1.0% of waste molasses, 0.01 to 0.05% of surfactant, 2 to 5% by weight of the lactic acid bacteria culture medium is mixed with the monosaccharide solution, and a method for producing a polylactic acid, characterized in that stirred for 20 to 35 hours at 70 to 100 RPM .
  6. 제5항에 있어서,The method of claim 5,
    상기 발효공정은 상기 발효에 의하여 생성된 유산을 농축시키는 기구가 장착되는 발효장치를 이용하는 것을 특징으로 하는 폴리유산의 제조방법.The fermentation process is a method for producing a polylactic acid, characterized in that using the fermentation apparatus is equipped with a mechanism for concentrating the lactic acid produced by the fermentation.
  7. 제1항에 있어서,The method of claim 1,
    상기 전기투석공정은 전해실, 격막에 의한 칸막이, 용액순환수단, 전극을 포함하는 전기투석장치를 이용하여 이루어지는 것이고,The electrodialysis process is performed using an electrodialysis apparatus including an electrolytic chamber, a partition by a diaphragm, a solution circulation means, and an electrode,
    상기 전해실은 양극액실, 발효액실, 유산염/유산 생성실, 수산화 나트륨 생성실, 음극액실을 포함하며, 각각의 전해실은 음이온 투과막 및/또는 양이온 투과막으로 구획되고, 상기 전극은 양극, 음극, 보조양극, 보조음극을 포함하는 것을 특징으로 하는 폴리유산의 제조방법.The electrolytic chamber includes an anolyte chamber, a fermentation broth, a lactate / lactic acid generating chamber, a sodium hydroxide generating chamber, and a catholyte chamber, each electrolytic chamber being divided into an anionic permeable membrane and / or a cationic permeable membrane, and the electrode is an anode, a cathode, A method for producing a polylactic acid, characterized in that it comprises an auxiliary anode, an auxiliary cathode.
  8. 제1항에 있어서,The method of claim 1,
    상기 유산정제공정은 상기 유산을 내압용기에서 70~100RPM으로 교반을 하면서 120~130℃로 가열하여 탈수시킨 후 150~160℃에서 1~2시간 교반을 계속하여 저분자 폴리유산을 생성하는 단계; 및The lactic acid refining process is a step of producing a low molecular weight polylactic acid by stirring the lactic acid in a pressure-resistant vessel at 70 ~ 100RPM while heating to 120 ~ 130 ℃ dehydration by continuing for 1 to 2 hours at 150 ~ 160 ℃; And
    상기 저분자 폴리유산이 생성되면, 교반을 정지시킨 후 상온까지 냉각시켜 결정화 한 뒤, 150~160℃로 가열하고, 상기 내압용기 내의 압력을 감압하여 1~2시간 70~100RPM으로 교반하여 불순물을 증산시켜 정제된 유산을 얻는 단계;When the low molecular weight polylactic acid is produced, the stirring is stopped, the mixture is cooled to room temperature, crystallized, heated to 150 to 160 ° C, and the pressure in the pressure vessel is reduced to 70 to 100 RPM for 1 to 2 hours to increase impurities. To obtain a purified lactic acid;
    를 포함하는 것을 특징으로 하는 폴리유산의 제조방법.Method for producing a polylactic acid, characterized in that it comprises a.
  9. 제1항에 있어서,The method of claim 1,
    상기 락티드 생성공정은 내압용기 내에 바나듐, 니켈, 철, 알루미늄, 티탄, 셀륨, 실리콘, 지르콘, 루테늄, 망간, 크롬, 코발트, 백금, 토륨, 팔라듐, 주석 중에서 어느 하나 이상의 금속 산화물을 0.5~1중량% 혼합하는 단계;The lactide production process is a 0.5 to 1 metal oxide of any one or more of vanadium, nickel, iron, aluminum, titanium, selium, silicon, zircon, ruthenium, manganese, chromium, cobalt, platinum, thorium, palladium, tin in the pressure-resistant container Mixing by weight;
    상기 유산을 170~190℃에서 3~5시간 가열, 교반하는 단계; 및Heating and stirring the lactic acid at 170 to 190 ° C. for 3 to 5 hours; And
    상기 유산을 서서히 냉각 및 결정화시켜 락티드를 생성하는 단계;Slowly cooling and crystallizing the lactic acid to produce lactide;
    를 포함하는 것을 특징으로 하는 폴리유산의 제조방법. Method for producing a polylactic acid, characterized in that it comprises a.
  10. 제1항에 있어서,The method of claim 1,
    상기 중합공정은 상기 락티드를 융해온도까지 가열하면서 70~100RPM의 속도로 교반하고, 상기 락티드의 중량에 대하여 유기주석화합물 0.1~1%, 도데실알콜 0.1~1%를 첨가하여 대기압에서 3~5시간 혼합하는 단계;The polymerization process is stirred at a rate of 70 ~ 100 RPM while heating the lactide to the melting temperature, and 0.1 to 1% of organotin compound and 0.1 to 1% of dodecyl alcohol with respect to the weight of the lactide to add 3 at atmospheric pressure Mixing for 5 hours;
    내압용기 내에 불활성 가스를 주입하면서 감압하고, 상기 락티드를 160~170℃에서 가열, 교반하는 단계; 및Reducing the pressure while injecting an inert gas into the pressure resistant vessel, and heating and stirring the lactide at 160 to 170 ° C; And
    중합촉진장치를 이용하여 중합을 촉진하는 단계;Promoting polymerization using a polymerization promoter;
    를 포함하는 것을 특징으로 하는 폴리유산의 제조방법.Method for producing a polylactic acid, characterized in that it comprises a.
  11. 제1항에 있어서,The method of claim 1,
    상기 불순물은 저분자 폴리유산 또는 락티드이고,The impurities are low molecular weight polylactic acid or lactide,
    상기 증산공정은 내압용기 내를 감압하고, 상기 폴리유산의 온도를 180~190℃로 가열하면서 70~100RPM으로 1~2시간 교반하는 것을 특징으로 하는 폴리유산의 제조방법.Wherein the evaporation step is a method for producing a polylactic acid, characterized in that the pressure inside the pressure vessel, and stirred for 1 to 2 hours at 70 ~ 100RPM while heating the temperature of the polylactic acid to 180 ~ 190 ℃.
  12. 식물성 전분을 물과 혼합한 후 가열하여 호화시키는 호화공정;Gelatinization process of mixing vegetable starch with water and then heating and gelatinizing;
    상기 호화된 전분의 중량에 대하여 유산 0.2~1.0%를 첨가하고 110~130℃로 가열하여 액화시키는 액화공정;A liquefaction step of adding 0.2-1.0% of lactic acid to the weight of the gelatinized starch and liquefying by heating to 110-130 ° C .;
    상기 액화된 전분을 당화효소를 이용하여 단당액으로 분해하는 당화공정;A saccharification step of decomposing the liquefied starch into a monosaccharide liquid using a saccharifying enzyme;
    상기 단당액의 중량에 대하여 식염을 0.01~0.1%, 황산망간 0.01~0.5%, 인산암모니움 0.01~0.1%, 탈지분유 0.1~1.0%, 두유 0.1~1.0%, 폐당밀 0.1~1.0%, 계면활성제 0.01~0.05%, 유산균 배양액 2~5%를 상기 단당액에 혼합하여 유산발효시켜 발효액을 생성하는 발효공정;0.01 to 0.1% of sodium salt, 0.01 to 0.5% of manganese sulfate, 0.01 to 0.1% of ammonium phosphate, 0.1 to 1.0% of skimmed milk powder, 0.1 to 1.0% of soy milk, and 0.1 to 1.0% of waste molasses. Fermentation step of producing a fermentation broth by lactic acid fermentation by mixing 0.01 ~ 0.05% active agent, 2-5% lactic acid bacteria culture medium to the above monosaccharide solution;
    상기 발효액의 유산을 수산화나트륨으로 중화시켜 유산염을 만든 뒤에 상기 유산염에서 유산과 수산화나트륨으로 분해시키는 전기투석공정;Electrodialysis step of neutralizing the lactic acid of the fermentation broth with sodium hydroxide to make lactate and decomposing the lactic acid and the sodium hydroxide from the lactate;
    상기 분리된 유산을 120~130℃로 가열하여 탈수시킨 후, 150~160℃로 가열하여 저분자 폴리유산을 생성하는 유산정제공정;Lactic acid refining process of heating the separated lactic acid to 120 ~ 130 ℃, and then heated to 150 ~ 160 ℃ to produce a low molecular polylactic acid;
    상기 정제된 유산을 바나듐, 니켈, 철, 알루미늄, 티탄, 셀륨, 실리콘, 지르콘, 루테늄, 망간, 크롬, 코발트, 백금, 토륨, 팔라듐, 주석 중에서 어느 하나 이상의 금속 산화물 0.5~1%와 혼합하여 락티드를 생성하는 락티드 생성공정;The purified lactic acid is mixed with 0.5-1% of any one or more metal oxides of vanadium, nickel, iron, aluminum, titanium, selium, silicon, zircon, ruthenium, manganese, chromium, cobalt, platinum, thorium, palladium, and tin. A lactide generation step of generating a tide;
    상기 락티드의 중량에 대하여 유기주석화합물 0.1~1%, 도데실알콜 0.1~1%를 첨가하여 교반, 혼합하여 개환축중합반응시켜 폴리유산을 형성하는 중합공정; 및A polymerization process of adding polylactic acid by ring-opening condensation polymerization by adding 0.1-1% of organotin compound and 0.1-1% of dodecyl alcohol to the weight of the lactide; And
    상기 폴리유산의 온도를 180~190℃로 가열하여 중합반응하지 않은 미반응물질을 증산시키는 불순물 증산공정;Impurity evaporation step of heating the temperature of the polylactic acid to 180 ~ 190 ℃ to evaporate unreacted material not polymerized reaction;
    을 포함하는 것을 특징으로 하는 폴리유산의 제조방법.Method for producing a polylactic acid, characterized in that it comprises a.
  13. 반응용기에 폴리유산 100중량부, 락티드 10~20중량부 및 폴리글리콜산 5~10중량부를 넣은 후, 교반하는 S1단계;S1 step of putting 100 parts by weight of polylactic acid, 10 to 20 parts by weight of lactide and 5 to 10 parts by weight of polyglycolic acid into a reaction vessel, followed by stirring;
    상기 반응용기에 세린 5~10중량부 및 도데실 알코올 0.1~1중량부를 첨가한 후, 불활성 가스를 투입하고 전자파를 조사하는 S2단계; 및S2 step of adding 5 to 10 parts by weight of serine and 0.1 to 1 part by weight of dodecyl alcohol in the reaction vessel, inert gas and irradiating electromagnetic waves; And
    상기 반응용기에 아세트산 세륨 0.1~1중량부를 첨가한 후, 교반하는 S3단계;S3 step of stirring after adding 0.1 ~ 1 parts by weight of cerium acetate to the reaction vessel;
    를 포함하는 것을 특징으로 하는 고전도성 폴리유산 중합체의 제조방법.Method for producing a highly conductive polylactic acid polymer comprising a.
  14. 제13항에 있어서,The method of claim 13,
    상기 S1단계 내지 S3단계는 160~190℃의 온도에서 이루어지는 것을 특징으로 하는 고전도성 폴리유산 중합체의 제조방법.Step S1 to step S3 is a method for producing a highly conductive polylactic acid polymer, characterized in that at a temperature of 160 ~ 190 ℃.
  15. 제13항에 있어서,The method of claim 13,
    상기 S1단계는 0.1~0.5기압으로 감압한 상태에서 이루어지며, 상기 S2단계 및 S3단계는 불활성 가스인 질소를 투입하여 1~5기압으로 가압한 상태에서 이루어지는 것을 특징으로 하는 고전도성 폴리유산 중합체의 제조방법.The step S1 is performed at a reduced pressure of 0.1 to 0.5 atm, and the steps S2 and S3 are made of a highly conductive polylactic acid polymer, characterized in that it is pressurized to 1 to 5 atm by adding nitrogen as an inert gas. Manufacturing method.
  16. 제13항에 있어서,The method of claim 13,
    상기 폴리유산은 분자량이 5,000~10,000인 것을 특징으로 하는 고전도성 폴리유산 중합체의 제조방법.The polylactic acid is a method for producing a highly conductive polylactic acid polymer, characterized in that the molecular weight of 5,000 ~ 10,000.
  17. 제13항에 있어서,The method of claim 13,
    상기 S1단계는 반응용기에 촉매인 바나진산 암모늄 0.1~10중량부 및 산화바나듐 0.1~10중량부를 더 첨가하여 이루어지는 것을 특징으로 하는 고전도성 폴리유산 중합체의 제조방법.The step S1 is a method for producing a highly conductive polylactic acid polymer, characterized in that the reaction vessel is made by adding 0.1-10 parts by weight of ammonium vanadate and 0.1-10 parts by weight of vanadium oxide.
  18. 제13항에 있어서,The method of claim 13,
    상기 S3단계의 교반을 중지한 상태에서, 160~190℃의 온도를 유지하고 0.1~0.5기압으로 감압하는 S4단계를 더 포함하는 것을 특징으로 하는 고전도성 폴리유산 중합체의 제조방법.The method of producing a highly conductive polylactic acid polymer, characterized in that it further comprises a step S4 to maintain a temperature of 160 ~ 190 ℃ and depressurized to 0.1 to 0.5 atm in the state of stopping the stirring of the step S3.
  19. 제18항에 있어서,The method of claim 18,
    상기 S4단계가 종료된 후, 불활성 가스를 투입하여 2~3기압으로 가압하여 반응기 내의 반응물을 배출시키는 S5단계를 더 포함하는 것을 특징으로 하는 고전도성 폴리유산 중합체의 제조방법.After the step S4 is completed, the method for producing a highly conductive polylactic acid polymer, characterized in that it further comprises a step S5 to discharge the reactants in the reactor by pressing the inert gas to 2 to 3 atm.
  20. 제13항에 있어서,The method of claim 13,
    상기 S1단계 내지 S3단계의 온도를 유지하는 방식은 전기히터에 의해 열매체가 가열되고, 가열된 열매체를 통해 반응용기에 열이 전달되어 이루어지는 것을 특징으로 하는 고전도성 폴리유산 중합체의 제조방법.The method of maintaining the temperature of steps S1 to S3 is a method of producing a highly conductive polylactic acid polymer, characterized in that the heat medium is heated by an electric heater, heat is transferred to the reaction vessel through the heated heat medium.
  21. 상부에는 원료 유입구, 질소/전자파 유입구 및 질소 배출구가 구비되고, 하부에는 반응물 배출구가 구비되는 반응용기;A reaction container having a raw material inlet, a nitrogen / electromagnetic inlet, and a nitrogen outlet at the top thereof, and a reactant outlet at the bottom thereof;
    상기 반응용기 내의 반응물을 교반시키는 교반기;An agitator for stirring the reactants in the reaction vessel;
    상기 반응용기를 가열시키는 열공급부;A heat supply unit for heating the reaction vessel;
    상기 질소/전자파 유입구와 연결되어 상기 반응용기 내의 반응물에 전자파 및 질소가스를 공급하는 질소/전자파 공급부; 및A nitrogen / electromagnetic wave supply unit connected to the nitrogen / electromagnetic inlet for supplying electromagnetic waves and nitrogen gas to a reactant in the reaction vessel; And
    상기 질소 배출구와 연결되어 상기 반응용기 내를 감압시키는 감압펌프;A pressure reducing pump connected to the nitrogen outlet to reduce the pressure in the reaction vessel;
    를 포함하는 것을 특징으로 하는 고전도성 폴리유산 중합체 제조장치.Highly conductive polylactic acid polymer production apparatus comprising a.
  22. 제21항에 있어서,The method of claim 21,
    상기 열공급부는 상기 반응용기의 측면과 하면을 감싸고 내부에는 열매체가 내장된 열전달 자켓, 상기 열전달 자켓에 열을 공급하는 히터를 포함하고,The heat supply part surrounds the side and bottom of the reaction vessel and includes a heat transfer jacket having a heat medium therein, and a heater for supplying heat to the heat transfer jacket.
    상기 열매체는 실리콘 오일인 것을 특징으로 하는 고전도성 폴리유산 중합체 제조장치.The heat medium is a high conductivity polylactic acid polymer manufacturing apparatus, characterized in that the silicone oil.
  23. 제21항에 있어서,The method of claim 21,
    상기 질소/전자파 공급부는 상기 질소/전자파 유입구를 통해 반응용기 내에 위치하여 반응물에 질소 및 전자파를 공급하는 혼 안테나, 상기 혼 안테나와 연결되고 질소 유입구가 구비되는 도파관 및 상기 도판관과 연결되고 전자파를 발생시키는 마그네트론발진기를 포함하는 것을 특징으로 하는 고전도성 폴리유산 중합체 제조장치.The nitrogen / electromagnetic wave supply unit is located in the reaction vessel through the nitrogen / electromagnetic inlet to supply nitrogen and electromagnetic waves to a reactant, a horn antenna connected to the horn antenna and a nitrogen inlet, and connected to the waveguide and the electromagnetic wave. Highly conductive polylactic acid polymer production apparatus comprising a magnetron oscillator to generate.
  24. 제21항에 있어서,The method of claim 21,
    상기 질소/전자파 유입구는 반응용기의 중심축에서 반응용기 직경(D)의 2/8~4/8 만큼 떨어진 위치에 설치되는 것을 특징으로 하는 고전도성 폴리유산 중합체 제조장치.The nitrogen / electromagnetic inlet is a high conductivity polylactic acid polymer manufacturing apparatus, characterized in that installed in a position separated by 2/8 ~ 4/8 of the diameter (D) of the reaction vessel from the central axis of the reaction vessel.
PCT/KR2011/006143 2010-11-26 2011-08-19 Method for producing polylactic acid and a highly conductive polymer, and apparatus for producing highly conductive polylactic acid polymer WO2012070747A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011800030694A CN102712745A (en) 2010-11-26 2011-08-19 Method for producing polylactic acid and a highly conductive polymer, and apparatus for producing highly conductive polylactic acid polymer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2010-0118544 2010-11-26
KR1020100118544A KR20120057014A (en) 2010-11-26 2010-11-26 Manufacturing Method of Poly Lactic Acid
KR10-2011-0030276 2011-04-01
KR1020110030276A KR101290309B1 (en) 2011-04-01 2011-04-01 Manufacturing method of poly lactic acid copolymer and the production apparatus thereof

Publications (2)

Publication Number Publication Date
WO2012070747A2 true WO2012070747A2 (en) 2012-05-31
WO2012070747A3 WO2012070747A3 (en) 2012-07-19

Family

ID=46146229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/006143 WO2012070747A2 (en) 2010-11-26 2011-08-19 Method for producing polylactic acid and a highly conductive polymer, and apparatus for producing highly conductive polylactic acid polymer

Country Status (2)

Country Link
CN (1) CN102712745A (en)
WO (1) WO2012070747A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106433057A (en) * 2016-10-21 2017-02-22 天津大学 Preparation method of 3D (three-dimensional) printed conductive wire
EP3650453A4 (en) * 2017-07-04 2021-03-31 Optimizer Inc. Modified polylactic acid, polymerized modified polylactic acid, and method and apparatus for producing same
CN115491003A (en) * 2022-09-14 2022-12-20 包头稀土研究院 Application of rare earth amino acid complex, polylactic acid composition and preparation method thereof
CN117887229A (en) * 2024-03-13 2024-04-16 上海宝柏新材料股份有限公司 Biodegradable plastic

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106117526A (en) * 2016-07-13 2016-11-16 张静 A kind of preparation method of hydrophilic lactic acid composite material
CN109456581A (en) * 2018-09-30 2019-03-12 嘉兴凡高电子商务有限公司 A kind of PLA Biocomposite material and preparation method thereof of toy for children degradation
CN111346579B (en) * 2020-04-29 2020-11-24 吉林中粮生化有限公司 Polylactic acid polymerization reaction device and system
CN111484604B (en) * 2020-06-28 2020-09-15 中粮营养健康研究院有限公司 Method for producing polylactic acid

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04339393A (en) * 1991-05-16 1992-11-26 Fujitsu Ltd Magnetic disk device
JPH0718063A (en) * 1993-06-30 1995-01-20 Mitsui Toatsu Chem Inc Degradable polymer
JPH09132638A (en) * 1995-09-07 1997-05-20 Mitsui Toatsu Chem Inc Polymer capable of being absorbed by living tissue and its production
US20030158360A1 (en) * 2000-04-20 2003-08-21 Gerking L?Uuml;Der Method for producing polylactic acid and corresponding device
JP2006094813A (en) * 2004-09-30 2006-04-13 Green Kankyo Technology:Kk Method for producing polylactic acid, and apparatus for producing polylactic acid
KR100603649B1 (en) * 2006-03-31 2006-07-24 가부시키가이샤 그린칸쿄테크놀로지 Poly latic acid manufacturing apparatus and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04339393A (en) * 1991-05-16 1992-11-26 Fujitsu Ltd Magnetic disk device
JPH0718063A (en) * 1993-06-30 1995-01-20 Mitsui Toatsu Chem Inc Degradable polymer
JPH09132638A (en) * 1995-09-07 1997-05-20 Mitsui Toatsu Chem Inc Polymer capable of being absorbed by living tissue and its production
US20030158360A1 (en) * 2000-04-20 2003-08-21 Gerking L?Uuml;Der Method for producing polylactic acid and corresponding device
JP2006094813A (en) * 2004-09-30 2006-04-13 Green Kankyo Technology:Kk Method for producing polylactic acid, and apparatus for producing polylactic acid
KR100603649B1 (en) * 2006-03-31 2006-07-24 가부시키가이샤 그린칸쿄테크놀로지 Poly latic acid manufacturing apparatus and method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106433057A (en) * 2016-10-21 2017-02-22 天津大学 Preparation method of 3D (three-dimensional) printed conductive wire
EP3650453A4 (en) * 2017-07-04 2021-03-31 Optimizer Inc. Modified polylactic acid, polymerized modified polylactic acid, and method and apparatus for producing same
CN115491003A (en) * 2022-09-14 2022-12-20 包头稀土研究院 Application of rare earth amino acid complex, polylactic acid composition and preparation method thereof
CN115491003B (en) * 2022-09-14 2023-08-15 包头稀土研究院 Application of rare earth amino acid complex, polylactic acid composition and preparation method thereof
CN117887229A (en) * 2024-03-13 2024-04-16 上海宝柏新材料股份有限公司 Biodegradable plastic
CN117887229B (en) * 2024-03-13 2024-05-31 上海宝柏新材料股份有限公司 Biodegradable plastic

Also Published As

Publication number Publication date
WO2012070747A3 (en) 2012-07-19
CN102712745A (en) 2012-10-03

Similar Documents

Publication Publication Date Title
WO2012070747A2 (en) Method for producing polylactic acid and a highly conductive polymer, and apparatus for producing highly conductive polylactic acid polymer
CA2875771C (en) Method for producing polybutylene terephthalate
US11118006B1 (en) Method for producing polylactic acid
CN101906218A (en) Method for recycling polyester waste by normal-pressure alcoholysis
KR101386683B1 (en) Crystallizing process and its apparatus for chemical recycling waste polyester
WO2017104961A1 (en) Method for producing ferulic acid from cornhusk at high purity and high yield
WO2019004777A1 (en) Method for preparing 2,5-furandimethylcarboxylate from hydroxymethylfurfural
WO2011149341A1 (en) Process for the treatment of lignocellulosic biomass
CN110831947A (en) Modified polylactic acid, high-molecular modified polylactic acid, and method and apparatus for producing these
JPS60139701A (en) Production of cellulose acetate
KR101614125B1 (en) Method for preparing polyester/polyolefin composite hot melt glue used for solar cell bus board
EP0021242B1 (en) Use of microwave energy in the production of plasticizer esters
CN1059195C (en) Specific grade zinc stearate and its producing process
WO2024005445A1 (en) Method for depolymerization of polymer containing ester functional group by using mixture organic solvent
US20020052463A1 (en) Process for production of polyimide powder, polyimide powder, polyimide powder molded bodies and process for their production
WO2023195668A1 (en) Method for preparing bis(glycol)terephthalate and polyester resin using same
US7417108B2 (en) Process for production of 2,3,3′,4′-biphenyltetracarboxylic dianhydride
CN106632533A (en) Low-temperature and efficient preparation method of sucrose-6-acetate
WO2018038505A1 (en) Propylene direct oxidation reaction catalyst, method for preparing same, and method for preparing propylene oxide through propylene direct oxidation reaction using same
Zhao et al. Strategies for the synthesis of fluorinated polyesters
Böhme et al. Synthesis and characterization of a novel unsaturated polyester based on poly (trimethylene terephthalate)
WO2023234688A1 (en) Method for preparing acrylic acid
WO2022220543A1 (en) Method for producing terephthalate derivative by transesterification of dimethyl terephthalate
KR20120057014A (en) Manufacturing Method of Poly Lactic Acid
KR101290309B1 (en) Manufacturing method of poly lactic acid copolymer and the production apparatus thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180003069.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11843306

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC / EPO FORM 1205A DATED 13.09.2013

122 Ep: pct application non-entry in european phase

Ref document number: 11843306

Country of ref document: EP

Kind code of ref document: A2