WO2024005445A1 - Method for depolymerization of polymer containing ester functional group by using mixture organic solvent - Google Patents

Method for depolymerization of polymer containing ester functional group by using mixture organic solvent Download PDF

Info

Publication number
WO2024005445A1
WO2024005445A1 PCT/KR2023/008649 KR2023008649W WO2024005445A1 WO 2024005445 A1 WO2024005445 A1 WO 2024005445A1 KR 2023008649 W KR2023008649 W KR 2023008649W WO 2024005445 A1 WO2024005445 A1 WO 2024005445A1
Authority
WO
WIPO (PCT)
Prior art keywords
functional group
depolymerization
reaction
polymer
ester functional
Prior art date
Application number
PCT/KR2023/008649
Other languages
French (fr)
Korean (ko)
Inventor
조정모
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of WO2024005445A1 publication Critical patent/WO2024005445A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/39Preparation of carboxylic acid esters by oxidation of groups which are precursors for the acid moiety of the ester
    • C07C67/40Preparation of carboxylic acid esters by oxidation of groups which are precursors for the acid moiety of the ester by oxidation of primary alcohols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/48Separation; Purification; Stabilisation; Use of additives
    • C07C67/56Separation; Purification; Stabilisation; Use of additives by solid-liquid treatment; by chemisorption
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/76Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
    • C07C69/80Phthalic acid esters
    • C07C69/82Terephthalic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/18Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/18Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
    • C08J11/22Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds
    • C08J11/24Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds containing hydroxyl groups
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to a method for depolymerization of a polymer containing an ester functional group. Specifically, an aromatic compound with an alkoxy functional group and a compound with an alcohol functional group are mixed and used as a solvent for reaction and an extractant for removing foreign substances, and an alkali hydroxide is used as a solvent for reaction and an extractant for removing foreign substances. It relates to a method of decomposing a polymer containing an ester functional group by applying as a reactant and obtaining the monomer produced therefrom with high purity.
  • Plastics are inexpensive and durable materials that can be used to produce a variety of products that find use in a wide range of applications. Accordingly, not only the production but also the consumption of plastic in daily life has increased dramatically over the past few decades, causing serious environmental problems ranging from the threat of environmental hormones that can be exposed and accumulated in the body to the destruction of the natural ecosystem. Moreover, more than 50% of these plastics are products with a short cycle of use, such as packaging, agricultural film, disposable beverage containers, etc., which are used as single-use disposable products or are discarded within one year of manufacture.
  • biodegradable or biodegradable plastics can persist for decades, depending on local environmental factors such as levels of UV exposure, temperature, and the presence of degrading microorganisms.
  • polymers containing ester functional groups have the characteristic of being able to be returned to their original state before synthesis through a relatively simple chemical reaction path such as decomposition or exchange of the ester functional group, through chemical recycling based on depolymerization. It is attracting attention as a material that can be repeatedly reused.
  • the most common examples of polymers containing ester functional groups are PET containers or polyester fibers for packaging.
  • Polymers containing ester functional groups can generally be monomerized through chemical decomposition using a reaction solvent and catalyst for transesterification, and various chemical reaction pathways are known for this purpose. Some monomers produced through decomposition can theoretically have properties equivalent to the raw materials used in initial polymer synthesis.
  • Depolymerization routes used industrially to recycle PET include glycolysis, methanolysis, hydrolysis using acid or base catalysts, and alkaline decomposition.
  • Glycolysis is a process of producing bis(2-hydroxyethyl) terephthalate (BHET) by adding an excessive amount of ethylene glycol (EG), one of the monomer raw materials.
  • EG which is part of the PET raw material, is used as a reactant, so there is a thermodynamic mixture with the reaction product. Because it has high chemical properties and the manufactured monomer product (BHET) is an intermediate product of polymer polymerization, it can be applied directly as a raw material for PET production by changing part of the raw material supply part of the existing facility.
  • a metal catalyst and an excessive amount of EG are required to improve the decomposition rate of the polymer, and the final yield of the monomer is limited due to the relatively wide molecular weight distribution due to the reaction equilibrium between the monomer and the oligomer, and the EG as a solvent and the final product
  • the high boiling point makes it difficult to purify the product through high-temperature distillation, and in the recrystallization process using water, the recrystallization rate of the monomer is slow, which may limit productivity and has a low product recovery rate.
  • acetic acid metal salt is used as a catalyst
  • zinc acetate is a representative catalyst.
  • the methanolysis process is a reaction process that is widely applied in actual commercial processes, not only to global chemical companies but also to small and medium-sized plastic industries. It uses a variety of catalysts for transesterification reactions or uses high temperature and high pressure such as supercritical without a catalyst. Depolymerization can be carried out using only methanol. However, when high-temperature reaction conditions are required because methanol is used as a reaction solvent, high-pressure reactor design and leak-proof and explosion-proof equipment are required due to the generation of high methanol vapor pressure, and the energy consumption of unit processes for depolymerization reaction and purification may be excessive. You can. As transesterification catalysts, zinc acetate, magnesium acetate, cobalt acetate, lead dioxide, etc.
  • DMT dimethyl terephthalate
  • PET polymerization using DMT as a raw material requires a separate process to produce BHET and generates a large amount of vapor methanol, so the process cost is high.
  • PET production facilities based on DMT raw material were mainly used until the 1960s, before the development of a high-purity purification method for terephthalic acid (TPA).
  • TPA terephthalic acid
  • the two-step synthesis method of initially synthesizing BHET by applying TPA and EG as raw materials and conducting a direct esterification reaction, and then proceeding with condensation polymerization by continuously removing moisture, is the most common manufacturing process for PET materials. occupies.
  • TPA and EG can be economically produced from the depolymerization reaction of waste PET, there is an advantage in that the recycled monomers can be directly applied to PET production without changing equipment or operating conditions.
  • the reaction pathways for producing TPA, a regenerated monomer, from depolymerization of waste PET include hydrolysis and alkaline decomposition.
  • depolymerization proceeds under high temperature conditions in the presence of a high concentration of acid or base catalyst, and TPA is ultimately obtained as the depolymerization product.
  • a very high concentration of sulfuric acid solution (87 wt%) is required to obtain high reactivity and yield, and it is known that it is difficult to secure economic feasibility due to corrosion of the reactor and generation of waste water, and hydrolysis using a base catalyst is known to be difficult.
  • the decomposition reaction has a relatively slow reaction rate, so the purity of the product is low and catalyst recovery is difficult.
  • the alkaline decomposition reaction in which alkali hydroxide is used at a high concentration or with a non-aqueous solvent, has the advantage of proceeding relatively quickly and producing high yields of TPA, but is uneconomical because excess alkali hydroxide is consumed as a reactant rather than a catalyst. It can be.
  • acid treatment is necessary to obtain terephthalic acid. Since the alkali hydroxide used in excess to promote the reaction may remain, a large amount of acid and wastewater are required to neutralize it. There are disadvantages that arise.
  • U.S. Patent Publication No. 10087130 (registered on October 2, 2018) relates to the production and recovery of TPA and EG, which are monomers obtained by depolymerizing PET using an excessive amount of alkali hydroxide. (i) non-polar solvent; and (ii) adding a mixture of alcohol and hydroxide to allow depolymerization of PET to proceed; It describes a method that can partially or completely depolymerize PET if sufficient time is applied even if no external heat is applied during the reaction. No.
  • 10087130 can induce depolymerization of PET using a small amount of energy, but has the problem of using a non-polar solvent such as dichloromethane, which is harmful to the environment and the human body.
  • a non-polar solvent such as dichloromethane
  • Korean Patent Publication No. 10-2223614 (announced on March 5, 2021) describes a method for depolymerization of a polymer containing an ester functional group, including (1) a straight-chain primary alcohol that does not contain halogen; (2) a polar aprotic solvent that does not contain halogen and contains at least one functional group from among ketone group, nitrile group, and furan group; and (3) a base compound containing a hydroxyl group; depolymerization is performed by contacting a polymer containing an ester functional group with a mixture containing the same, wherein the volume ratio of the primary alcohol and the polar aprotic solvent is as low as 1:1 to 1:20.
  • Waste plastics containing foreign substances often remain in products because the foreign substances are not easily removed even through depolymerization and purification processes. In order to improve the purity of the final product, a separate purification technology that causes energy consumption and product loss is required. It is essential, and it may be difficult to secure sound economic feasibility of an integrated process for producing regenerated monomers. Therefore, waste plastics containing a large amount of foreign substances, especially fibers with dyes or waste plastics with colored pigments applied, are materials that are difficult or impossible to recycle industrially, and cannot be disposed of through methods that discharge secondary pollutants such as incineration or landfill. Therefore, waste plastic is one of the biggest pollutants causing environmental problems.
  • Patent Document 1 U.S. Patent Publication No. 10087130 (registered on October 2, 2018)
  • Patent Document 2 Korean Patent Publication No. 10-2223614 (announced on March 5, 2021)
  • the present invention seeks to provide an effective and economical depolymerization method that can improve the depolymerization performance of polymers containing ester functional groups and remove many organic and inorganic contaminants during the production of monomers.
  • the present invention provides (1) an aromatic compound having at least one alkoxy functional group and not having a proton donor functional group; (2) compounds with one or more alcohol functional groups; and (3) an alkali hydroxide.
  • a method for depolymerizing a polymer containing an ester functional group is provided, characterized in that the mixture containing the above is brought into contact with a polymer containing an ester functional group to depolymerize the polymer.
  • the weight ratio of the aromatic compound having at least one alkoxy functional group without having a proton donor functional group and the compound having at least one alcohol functional group in the mixture may be 20:1 to 1:20.
  • the compound having the alcohol functional group is a straight-chain primary alcohol
  • the aromatic compound having one or more alkoxy functional groups without the proton donor functional group is methoxybenzene, 1,2-dimethoxy Benzene, 1,3-dimethoxybenzene, 1,4-dimethoxybenzene, 1,2,3-trimethoxybenzene, 1,2,4-trimethoxybenzene, 1,3,5-trimethoxybenzene , 1,2,3,4-tetramethoxybenzene, 1,2,3,5-tetramethoxybenzene, 1,2,4,5-tetramethoxybenzene, 1-methoxy-2-methylbenzene, 1-methoxy-3-methylbenzene, 1-methoxy-4-methylbenzene, 1-methoxy-2-ethylbenzene, 1-methoxy-3-ethylbenzene, 1-methoxy-4-ethylbenzene, 1-methoxy-2-propylbenzene, 1-
  • the temperature during depolymerization may be 10°C to 100°C.
  • a primary filtration step of separating solid and liquid from the reaction product after the depolymerization reaction can be additionally performed, and a secondary filtration step of separating and filtering the monomer product by adding water to the filter cake obtained through the primary filtration to dissolve the monomer product in water.
  • a secondary filtration step of separating and filtering the monomer product by adding water to the filter cake obtained through the primary filtration to dissolve the monomer product in water. may be further performed, and the water used in the secondary filtration process may contain alkali hydroxide in the same number of moles as the number of moles of monoalkyl terephthalate present in the monomer product or more.
  • the step of adding an acid to the aqueous solution containing the monomers to precipitate them as a salt may be further included.
  • the present invention may further include the step of separating the precipitate generated from the filtrate after adding the acid and then recovering high-purity terephthalic acid through a drying process.
  • the present invention provides (1) an aromatic compound having at least one alkoxy functional group but not having a proton donor functional group; (2) compounds with one or more alcohol functional groups; and (3) an alkali hydroxide. It provides a composition for polymer depolymerization containing an ester functional group.
  • the weight ratio of the aromatic compound having at least one alkoxy functional group without having a proton donor functional group and the compound having at least one alcohol functional group may be 20:1 to 1:20.
  • the present invention provides a method for depolymerization of a polymer containing an ester functional group by adding an alkali hydroxide as a reactant without using high temperature and high pressure reaction conditions.
  • reaction solvent mixed with an organic solvent that is, a liquid mixture consisting of an alcohol and an aromatic compound with an alkoxy functional group
  • an organic solvent that is, a liquid mixture consisting of an alcohol and an aromatic compound with an alkoxy functional group
  • the aromatic compound with an alkoxy functional group used can easily dissolve and separate materials designed to have a strong interaction with polymers, such as dyes or pigments, during the monomerization process of the polymer, thereby removing colored waste plastics that were previously difficult to recycle.
  • Terephthalate monomer can be produced with high purity.
  • the aromatic compounds with an alkoxy functional group used in the present invention can be synthesized on a large scale naturally or artificially, and most of them are biodegradable in nature in a short cycle, so they can provide environmentally friendly operating conditions.
  • eco-friendly materials with no or low hazard to the human body or the environment are used as solvents, and terephthalic acid, a raw material commonly used to reproduce the same material, can be directly manufactured through depolymerization of waste plastic, making it environmentally friendly. It is possible to provide an economical method of depolymerization of a polymer containing an ester functional group, a method of producing a regenerated monomer, and a method of designing a production process therefor.
  • the method for depolymerization of a polymer containing an ester functional group according to the present invention has a simple process, enables depolymerization at a relatively low temperature, and can obtain a high yield of monomer, providing a very effective and efficient chemical recycling method for waste plastic. .
  • Figure 1 shows the PET decomposition reaction path by the depolymerization reaction of the present invention.
  • Figure 2 shows the solvent and terephthalic acid product discharged after depolymerization of colored polyester polymer using an ethanol-anisole mixed solvent.
  • the method for depolymerizing a polymer containing an ester functional group of the present invention includes (1) an aromatic compound having at least one alkoxy functional group but not having a proton donor functional group; (2) compounds with one or more alcohol functional groups; and (3) depolymerizing the mixture containing the alkali hydroxide by contacting it with a polymer containing an ester functional group.
  • the aromatic compound having an alkoxy functional group of (1) has an alkoxy functional group but does not have a proton donor functional group.
  • the proton donor functional group include functional groups that provide protons (H + ), such as hydroxy functional groups and carboxylic acid functional groups.
  • the compound with the alcohol functional group in (2) also serves as a solvent to dissolve the alkali hydroxide in (3).
  • the solvent used in the reaction and unreacted products can be recovered and reused by a simple physical separation method such as filtration, and depolymerization.
  • the solvent with an alkoxy functional group used in can be effective as an extractant for removing foreign substances because it neutralizes the strong interaction that the terephthalate functional group has with foreign substances during the separation process. From this, high purity and high yield of terephthalic acid can be obtained as the final monomer.
  • the method of the present invention is useful for the depolymerization of polymers containing ester functional groups, wherein the polymers containing ester functional groups are mixed with other polymers, including but not limited to, for example, polyethylene, high-density polyethylene, low-density polyethylene, polypropylene, or combinations thereof. It may be in a form containing various types of organic and inorganic foreign substances.
  • polymers containing ester functional groups may be those produced by continuous condensation polymerization by dehydration using dicarboxylic acid and diol (dialcohol) as starting materials, or may have multiple ester bond structures at repeated or arbitrary positions.
  • the dicarboxylic acids include naphthalene dicarboxylic acid, diphenyl dicarboxylic acid, diphenyl ether dicarboxylic acid, diphenyl sulfone dicarboxylic acid, diphenoxyethane dicarboxylic acid, succinic acid, and adipic acid.
  • dialcohol is trimethylene glycol, 1,2-propane.
  • tripropylene glycol tetrapropylene glycol, polypropylene glycol, di(tetramethylene) glycol, tri(tetramethylene) glycol, polytetramethylene glycol, pentaerythritol, 2,2-bis(4- ⁇ -hydroxyethoxyphenyl) ) It may be selected from the group consisting of propane and combinations thereof.
  • polymers containing the ester functional group include polyethylene terephthalate (PET), polyglycolide or polyglycolic acid (PGA), polylactic acid (PLA), polycaprolactone (PCL), and polyhydroxyalkanoate (PHA). ), polyhydroxybutyrate (PHB), polyethylene adipate (PEA), polybutylene succinate (PBS), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), polybutylene It may be selected from terephthalate (PBT), polytrimethylene terephthalate (PTT), polyethylene naphthalate (PEN), Vectran, and combinations thereof.
  • the polymer containing the ester functional group is polyethylene terephthalate, and in this case, the starting material for producing the polymer may be terephthalic acid or a salt thereof, and ethylene glycol.
  • the polymer containing an ester functional group used in the present invention may not be pure but may contain various impurities. Examples include, but are not limited to, polymers containing ester functional groups, bottle caps, adhesives, paper, residual liquid, dust, organic and inorganic materials for color (e.g. dyes or pigments), or combinations thereof. A mixture of can be used as a raw material for depolymerization.
  • the mass of the polymer raw material initially added is the aromatic compound having at least one alkoxy functional group and at least one alcohol functional group without a proton donor functional group, which are added for depolymerization. It can be adjusted to a ratio of 1 to 100% of the mass of the mixed solvent in which the compound with Due to limitations, a problem may arise where the reaction speed is significantly lowered.
  • the mixed solvent includes (1) an aromatic compound having at least one alkoxy functional group but not having a proton donor functional group, and (2) at least one alcohol functional group. It is a mixture of compounds with an alcohol functional group. Some of the compounds with an alcohol functional group can participate in the alcoholesis reaction, but most serve as a reaction medium for the alkaline decomposition reaction, and compounds with an alkoxy functional group directly participate as a reactant in the depolymerization reaction. However, it is used as a co-solvent to facilitate nucleophilic attack on the ester bond of alkali hydroxide or other types of anions derived therefrom, and can exhibit the property of improving the depolymerization reaction rate.
  • the compound having an alkoxy functional group but not having a proton donor functional group has at least one aromatic ring, and at least one of the hydrogens bonded to the carbon of the hydrocarbon constituting the aromatic ring is bonded to the alkoxy functional group or the carbon connected thereto.
  • It is an organic compound that does not contain functional groups that can provide protons, such as hydroxyl functional groups and carboxylic acid functional groups, in the compound structure, specifically methoxybenzene, 1,2-dimethoxybenzene, and 1,3-dimethoxybenzene.
  • the compound having the alcohol functional group may be a straight-chain primary alcohol, and an alcohol that can have high solubility in alkali hydroxide, such as methanol or ethanol, may be more preferable, but a straight-chain primary alcohol with 3 or more carbon atoms may be used.
  • an alcohol that can have high solubility in alkali hydroxide such as methanol or ethanol
  • a straight-chain primary alcohol with 3 or more carbon atoms may be used.
  • one or more alcohols selected from propanol, butanol, etc. may be used.
  • the reaction solvent for performing depolymerization in the present invention is a mixed solvent containing both at least one selected from aromatic compounds having at least one alkoxy functional group and not having the proton donor functional group and at least one selected from compounds having the alcohol functional group.
  • the use of is one of the characteristics of the invention.
  • the weight ratio of the aromatic compound and the alcohol compound having an alkoxy functional group is 1:20 to 20:1, preferably 2:1 to 1:2.
  • the alkali hydroxide added to perform depolymerization in the present invention may be selected from the group consisting of alkali metal hydroxide, alkaline earth metal hydroxide, ammonium hydroxide, and combinations thereof.
  • it may be selected from the group consisting of sodium hydroxide, potassium hydroxide, calcium hydroxide, lithium hydroxide, magnesium hydroxide, ammonium hydroxide, tetraalkyl ammonium hydroxide, and combinations thereof.
  • the alkaline hydroxide may be sodium hydroxide, potassium hydroxide, or a combination thereof.
  • the alkaline hydroxide can be used in an amount of 0.1 to 100 times, preferably 2 to 50 times, the number of moles of repeating units of the polymer containing an ester functional group.
  • the depolymerization of the polymer containing the ester functional group may be carried out in a temperature range of 10°C to 100°C, preferably 30°C to 65°C, and alkali hydroxide participates as part of the reactant, causing the polymer to rapidly decompose into monomers. Depolymerization may proceed along the decomposition reaction path.
  • the depolymerization of the polymer containing the ester functional group may be carried out in an insulated reactor due to the heat of mixing, heat of dissolution, etc. generated in the process of preparing the mixed solution for the depolymerization reaction without inputting an additional heat source. Additionally, in some embodiments according to the present invention, depolymerization may be performed while supplying an external heat source.
  • the time of the depolymerization reaction may vary depending on the amount and form of the applied polymer, but when the composition and conditions of the reactants are applied to perform rapid depolymerization, Within 2 hours of the initial reaction time, dominant polymer decomposition occurs due to a very fast depolymerization reaction rate, and after 4 hours of reaction, almost all of the initial polymer mass can be decomposed into monomer form.
  • depolymerization may be performed from 0.5 to 12 hours after the start of the reaction to ensure sufficient polymer decomposition, but to ensure economic efficiency and productivity, depolymerization may be performed within the range of 0.5 to 4 hours. It may be desirable to perform.
  • a primary filtration step of separating solid and liquid from the reaction product may be additionally performed after completion of the depolymerization reaction.
  • the reaction products those that exist in the solid phase may be unreacted polymers and alkali salts of terephthalate produced by depolymerization, while those that exist in the liquid phase may include aromatic compounds that do not have a proton donor functional group but have one or more alkoxy functional groups and one or more alcohol functional groups.
  • It may be a reaction solvent in which a compound having a mixture is mixed with each other, an unreacted alkali hydroxide dissolved in the reaction solvent, and a color-distributed foreign substance mainly distributed by an aromatic compound having an alkoxy functional group in the reaction solvent.
  • the first filtration step all or part of the colored hydrophobic organic contaminants contained in the polymer before decomposition are discharged together with the filtrate due to their high affinity with aromatic compounds with alkoxy functional groups in the reaction solvent recovered in the filtrate.
  • the residual amount of the hydrophobic organic contaminants in the cake is greatly reduced.
  • the solution containing colored organic foreign substances separated from the filtrate can be re-introduced into the depolymerization reaction by adding a purification process such as distillation or evaporation to separate the purified reaction solvent, and removing the foreign substances through adsorption, etc. It can be reintroduced as a raw material for a new reaction to perform depolymerization by replenishing the unreacted alkali hydroxide and reaction solvent consumed or lost during the depolymerization reaction without removing foreign substances.
  • a purification process such as distillation or evaporation to separate the purified reaction solvent, and removing the foreign substances through adsorption, etc.
  • the filtration cake separated into the solid phase is composed of a mixture of alkali terephthalate, monoalkyl terephthalate alkali salt, and unreacted polymers prepared from depolymerization, so the terephthalic acid salt must be recovered from the filtration cake. .
  • the intermediates for producing the monomer alkali terephthalate and alkali monoalkyl terephthalate, are soluble in water, they can be filtered in situ by adding water to the primary filtered filter cake, or dissolved using a separately prepared filter outside.
  • the terephthalic acid salt can be recovered through secondary filtration in which the alkali salt of terephthalate and the alkali monoalkyl terephthalate are separated from the solid filter cake by passing through a filter. Since what is separated into the filtration cake in the secondary filtration process is unreacted polymer material, it can be reintroduced as a new reaction raw material in the depolymerization process.
  • monoalkyl terephthalate is included in the product prepared by the depolymerization reaction, it is present in the filtrate during the secondary filtration process.
  • the alkyl of the monoalkyl terephthalate can be substituted with an alkali salt to finally produce an alkali salt of terephthalic acid.
  • the step of converting the monoalkyl terephthalate alkali salt into the terephthalic acid alkali salt by adding a mole number of alkali hydroxide equal to the number of moles of monoalkyl terephthalate to the water used in the secondary filtration process or the filtrate after filtration may be further included. .
  • the amount of alkali hydroxide used can be more than the number of moles of monoalkyl terephthalate alkali salt, but it is preferable to add 1.0 to 1.2 times the equivalent amount, and the decomposition reaction of monoalkyl terephthalate alkali salt proceeds quickly and irreversibly. Therefore, in order to reduce material waste, it is most desirable to add 1.0 times the equivalent amount.
  • the aqueous solution to which alkali hydroxide is added is mixed well for 5 to 30 minutes at a temperature above room temperature to convert all monomer products generated from polymer depolymerization into terephthalic acid alkali salt. Let it be done.
  • the product obtained as a filtrate in the filtration process is an aqueous solution mainly composed of components that are easily soluble in water (alcohol, alkali salt of terephthalate, etc.), and may contain some colored organic foreign substances.
  • an aromatic compound having an alkoxy functional group may be added to the filtrate to induce distribution of the organic impurities into the organic phase having the alkoxy functional group, thereby separating the colored organic impurities once more. .
  • a thermodynamically unstable phase may be created.
  • the present invention may further include the step of adding acid to an aqueous solution containing the alkali salt product of terephthalic acid obtained in the process of separating the depolymerization reaction product to convert it into terephthalic acid and precipitate it, followed by physical separation.
  • the purity of terephthalic acid can be further improved through separation (e.g., filtration) of terephthalic acid from the prepared aqueous solution, followed by washing and drying.
  • the acid added to convert terephthalic acid salt to terephthalic acid can be an organic acid or an inorganic acid.
  • inorganic acids that ionize well in aqueous solution and can easily provide protons (H + ), such as hydrochloric acid (HCl) and nitric acid (HNO 3 ) it may be preferable to use one or more selected from phosphoric acid (H 3 PO 4 ) and sulfuric acid (H 2 SO 4 ).
  • All or part of the final monomer produced according to the method for depolymerizing a polymer containing an ester functional group of the present invention has been purified to a level that can be reintroduced as a raw material for repolymerization.
  • the monomer obtained from the depolymerization of the polymer containing the ester functional group of the present invention can be used as a polymerization raw material for polymer synthesis, and the monomer may contain less than about 1% of impurities (w/w), Impurities may be heterogeneous organic substances such as isophthalic acid, phthalic acid, 4-methylbenzoic acid, and 4-formylbenzoic acid, or may include one or more of metal contaminants that are by-produced from the catalyst or manufacturing process.
  • impurities may be heterogeneous organic substances such as isophthalic acid, phthalic acid, 4-methylbenzoic acid, and 4-formylbenzoic acid, or may include one or more of metal contaminants that are by-produced from the catalyst or manufacturing process.
  • the present invention provides a method for producing a final monomer product with improved purity by further removing foreign substances having the above color.
  • Dyes and pigments which are colored foreign substances contained in polymers containing colored ester functional groups, are often materials designed to have a strong interaction with the terephthalate functional group, and are complexed with the terephthalate functional group during the purification and recovery process. Because it forms a shape and moves material like a single structure, it can be difficult to remove using general purification methods alone. In other words, the interaction ( ⁇ - ⁇ interaction or hydrogen bonding force) of the compound having an alkoxy functional group with foreign substances of the same color as dyes or pigments partially weakens the binding force between foreign substances and terephthalate. It is effective, but in order to more effectively and irreversibly separate foreign substances into products, an adsorbent with a strong binding force to the foreign substances may be useful.
  • the present invention provides a method for producing a monomer product through depolymerization of a colored polymer through depolymerization of a colored polymer compound containing an ester functional group, which further includes the step of treating colored foreign substances using the adsorbent. .
  • the irreversible separation of foreign substances using the adsorbent can be most effectively applied when the terephthalate functional group is dissociated in the aqueous solution in ionic form, it is better to apply the adsorbent to the aqueous filtrate before converting the terephthalate metal salt to terephthalic acid by adding acid. This may be most appropriate.
  • the adsorbent may include carbon-based adsorbents such as activated carbon, fly ash, ion exchange resin, natural clay, bentonite clay, zeolite, kaolinite, chitosan, metal-organic framework (MOF), etc.
  • activated carbon can be used.
  • the present invention also provides (1) aromatic compounds having at least one alkoxy functional group but not having a proton donor functional group; (2) compounds with one or more alcohol functional groups; and (3) a composition for depolymerization of a polymer containing an ester functional group containing an alkali hydroxide.
  • Raw material 1 transparent waste PET flakes containing ester functional groups
  • flake chips manufactured by washing and cutting discarded transparent polyethylene terephthalate (PET) bottles were supplied from Saerom ENG, a recycling product manufacturer, and were processed with excessive amounts of ethanol and water. Washed and dried, only flake chips with an area of 1 square centimeter or less were prepared as raw material 1.
  • PET transparent polyethylene terephthalate
  • Raw material 2 colored waste PET flakes containing ester functional groups
  • Raw material 3 colored composite polymer containing ester functional group
  • Waste polymer material in the form of hair which was discharged as scraps after manufacturing the material, was supplied from Joohyun Chemical and used as a raw material for the colored composite material for depolymerization.
  • Raw Material 4 (Colored composite polymer containing ester functional group)
  • raw material 1 transparent PET flake chip
  • absolute ethanol was used as a reaction solvent.
  • a thermocouple for temperature measurement and a Teflon septum for collecting liquid samples are installed at the side entrance, respectively, of the bushing type.
  • PET conversion rate (M o - M)/M o (Equation 1)
  • TPA alkaline salt yield (N TPA / N o ) ⁇ 100% (Equation 3)
  • M o is the mass of the initially input polymer
  • M is the mass of the unreacted polymer
  • N o is the number of moles of the repeating unit of the initially input raw material polymer (PET)
  • N MAT and N TPA are the produced monoalkyl terephthalate It is the number of moles of phthalate alkali salt (e.g. Na-MET) and terephthalic acid alkali salt (e.g. Na 2 -TPA).
  • the reactant was immediately transferred to a vacuum filter and primary filtration was performed.
  • the flask container containing the filtrate was replaced with an empty container, and then secondary filtration was started.
  • 200 ml of distilled water was added to recover unreacted PET as a solid (filtration cake).
  • Unreacted PET was placed in an evaporation dish, moved to a vacuum dryer maintained at 80°C, dried for 24 hours, and then quantified.
  • the obtained secondary filtrate was stirred for 30 minutes, then an equivalent amount of hydrochloric acid aqueous solution was added to the filtrate to convert all monomers into terephthalic acid.
  • the obtained product was confirmed through 1 H-NMR, EI-MS, etc. and was consistent with the chemical structure of terephthalic acid, and the purity of the product was determined through calibrated HPLC.
  • Some of the obtained products were manufactured as solid samples and their unique colors were observed using a spectrophotometer (manufacturer: Konica Minolta, model name: CM-3600A).
  • a spectrophotometer manufactured by Konica Minolta, model name: CM-3600A.
  • a circular disk with a diameter of 13 mm was manufactured using a pellet manufacturing mold (Pike Evacuable KBr Die Kit) and a hydraulic press (Hydraulic Press, Pike CrushIR) (applied pressure: 10 tons).
  • the color space coordinate values (L* a* b*) of the manufactured disk sample were measured using a spectrophotometer.
  • the values expressed as L* a* b* are coordinate values of the color space standardized by the International Commission on Illumination (CIE), and L* is expressed as 0 (black) to 100 (white) representing lightness. It is a numerical value, and a* and b* are numerical values expressed along the complementary color axes of green (-128)/red (127) and blue (-128)/yellow (127), respectively.
  • Depolymerization reaction quantitative analysis of depolymerization products, and purification and characterization of monomer products were performed using the same methods and procedures as in Comparative Example 1, except that 180 g of ethanol was used as a solvent in the reaction. Through the monomer manufacturing process, approximately 12.39 g of terephthalic acid was finally obtained.
  • PET depolymerization reaction and quantitative analysis of the product were performed using the same method and procedure as in Comparative Example 1, except that instead of using only ethanol as the solvent used in the reaction, a mixture of 90 g of ethanol and 30 g of anisole was used.
  • Depolymerization reaction quantitative analysis of the depolymerization product, and purification and characterization of the monomer product were performed using the same methods and procedures as in Example 1, except that 90 g of ethanol and 90 g of anisole were used as a solvent for the reaction. Through the monomer manufacturing process, approximately 12.39 g of terephthalic acid was finally obtained.
  • Depolymerization reaction quantitative analysis of depolymerization products, and purification and characterization of monomer products were performed using the same methods and procedures as in Example 1, except that 90 g of ethanol and 180 g of anisole were used as solvents added to the reaction. Through the monomer preparation process, approximately 12.56 g of terephthalic acid was finally obtained.
  • the depolymerization reaction, quantitative analysis of the depolymerization product, and purification and characterization of the monomer product were performed using the same methods and procedures as in Example 1, except that 90 g of methanol and 90 g of anisole, rather than ethanol, were used as a solvent in the reaction. It was carried out. Through the monomer preparation process, approximately 12.48 g of terephthalic acid was finally obtained.
  • Depolymerization reaction, quantitative analysis of the depolymerization product, and quantitative analysis of the depolymerization product were performed using the same method and procedure as in Example 1, except that the amount of sodium hydroxide (NaOH) added to the reaction was 1.56 g so that the mole ratio was 0.5 compared to the number of moles of the repeating unit of the polymer. Purification and characterization of the monomer product were performed. Through the monomer manufacturing process, approximately 5.18 g of terephthalic acid was finally obtained.
  • NaOH sodium hydroxide
  • Depolymerization reaction quantitative analysis of the depolymerization product, and quantitative analysis of the depolymerization product were performed using the same method and procedure as in Example 1, except that the amount of sodium hydroxide (NaOH) added to the reaction was 3.12 g so that the molar ratio of 1.0 to the number of moles of the repeating unit of the polymer was added. Purification and characterization of the monomer product were performed. Through the monomer manufacturing process, approximately 9.96 g of terephthalic acid was finally obtained.
  • NaOH sodium hydroxide
  • Depolymerization reaction and depolymerization product were carried out in the same manner and procedure as in Example 1, except that 6.24 g of sodium hydroxide (NaOH) added to the reaction was added to achieve a molar ratio (equivalent) of 2.0 compared to the number of moles of repeating units of the polymer. Quantitative analysis, purification and characterization of monomer products were performed. Through the monomer preparation process, approximately 12.44 g of terephthalic acid was finally obtained.
  • NaOH sodium hydroxide
  • Depolymerization reaction quantitative analysis of depolymerization products, and purification and characterization of monomer products were performed using the same methods and procedures as in Example 2, except that the temperature of the depolymerization reaction was maintained at 30°C. The reaction proceeded for a total of more than 6 hours, and approximately 10.32 g of terephthalic acid was finally obtained through the monomer preparation process.
  • Depolymerization reaction quantitative analysis of depolymerization product, purification and characterization of monomer product using the same methods and procedures as in Example 2, except that the temperature of the depolymerization reaction was maintained at a temperature close to the boiling point of ethanol (78°C) and carried out under reflux. Analysis was conducted. Through the monomer preparation process, approximately 12.22 g of terephthalic acid was finally obtained.
  • Depolymerization reaction quantitative analysis of the depolymerization product, and quantitative analysis of the depolymerization product using the same method and procedure as in Example 2, except that 90 g of ethanol and 90 g of 1,2-dimethoxybenzene (DMB), rather than anisole, were used as a solvent for the reaction. Purification and characterization of the monomer product were performed. Through the monomer preparation process, approximately 12.34 g of terephthalic acid was finally obtained.
  • DMB 1,2-dimethoxybenzene
  • Depolymerization reaction quantitative analysis of depolymerization products, and monomer products were performed using the same methods and procedures as in Example 2, except that 90 g of ethanol and 90 g of phenetole (Phenetole or ethoxy benzene), not anisole, were used as a solvent for the reaction. Purification and characterization were performed. Through the monomer preparation process, approximately 12.07 g of terephthalic acid was finally obtained.
  • Depolymerization reaction quantitative analysis of the depolymerization product, and quantitative analysis of the depolymerization product using the same method and procedure as in Example 2, except that 90 g of ethanol and 90 g of guaiacol (or 2-methoxyphenol), not anisole, were used as a solvent for the reaction. Purification and characterization of the monomer product were performed. Through the monomer manufacturing process, approximately 0.49 g of trace solids including terephthalic acid were finally obtained.
  • Depolymerization reaction and quantitative analysis of the product were performed using the same method and procedure as in Example 2, except that about 15.0 g of raw material 2 (colored waste PET flake chip) was used as the raw material for depolymerization instead of raw material 1 (transparent PET flake chip). did.
  • Depolymerization reaction quantitative analysis of depolymerization product, and monomer were performed using the same method and procedure as Comparative Example 2, except that about 15.0 g of raw material 3 (colored composite polymer) was used as the raw material for depolymerization instead of raw material 1 (transparent PET flake chip). Purification and characterization of the product were performed. Through the monomer manufacturing process, approximately 11.91 g of dark-colored terephthalic acid was finally obtained.
  • Depolymerization reaction and quantitative analysis of the product were performed using the same method and procedure as in Example 2, except that about 15.0 g of raw material 3 (colored composite polymer) was used as the raw material for depolymerization instead of raw material 1 (transparent PET flake chip). .
  • Depolymerization reaction quantitative analysis of depolymerization product, and monomer were performed using the same method and procedure as Comparative Example 2, except that about 15.0 g of raw material 4 (colored composite polymer) was used as the raw material for depolymerization instead of raw material 1 (transparent PET flake chip). Purification and characterization of the product were performed. Through the monomer manufacturing process, approximately 10.86 g of dark-colored terephthalic acid was finally obtained.
  • Depolymerization reaction and quantitative analysis of the product were performed using the same method and procedure as in Example 2, except that about 15.0 g of raw material 4 (colored composite polymer) was used as the raw material for depolymerization instead of raw material 1 (transparent PET flake chip). .
  • reaction heat is generated or heat is applied from the outside in the presence of a cosolvent having a ketone group in the relevant prior literature and an excess amount of alkali hydroxide is added as a reactant, colored organic matter is formed by an aldol condensation reaction of polar aprotic solvent molecules.
  • Foreign substances may be generated, which may have a negative effect on the purity and quality of the terephthalic acid that is ultimately produced, and cause the problem of consumption of the polar aprotic solvent.
  • an aromatic compound with an alkoxy functional group and a compound with an alcohol functional group are mixed to form a solvent for the reaction, through a reaction and purification process that is completely different from the previously known method of producing terephthalic acid through alkaline decomposition of PET.
  • the performance of the depolymerization reaction can be improved while simultaneously improving the quality of the final monomer product.
  • Table 1 shows a comparative observation of the characteristics of the alkaline decomposition reaction of PET (reaction temperature: 60°C) according to the composition of the reaction solvent.
  • reaction temperature 60°C
  • Table 1 shows a comparative observation of the characteristics of the alkaline decomposition reaction of PET (reaction temperature: 60°C) according to the composition of the reaction solvent.
  • incompletely decomposed compounds such as dimers or oligomers were not observed in the product distribution.
  • it is less decomposed and ethylene glycol remains in the terephthalate structure, or the ethylene glycol released from the transesterification reaction is recombined to form an ester bond with the alkylene functional group, such as mono(hydroxyethylene)methyl terephthalate (HEMT) or bis.
  • Monomers such as (hydroxyethylene)terephthalate (BHET) were not observed under any of the conditions of the present invention. Therefore, the depolymerization of PET using alkaline hydroxide and alcohol as reaction solvents can be expected to proceed according to the two
  • reaction path A in Figure 1 As the depolymerization of the polymer containing the ester functional group progressed, the alkaline decomposition reaction (reaction path A in Figure 1) progressed, and the alkali salt form of terephthalic acid, the final monomer, was predominantly produced from the beginning of the reaction.
  • reaction path B in Figure 1 a partial alcoholesis reaction in which an alkali hydroxide acted as a catalyst proceeded, and monoalkyl terephthalate alkali salt was observed as a reaction intermediate.
  • Comparative Example 2 in which the amount of alcohol added was 1.5 times greater than that of Comparative Example 1, relatively rapid decomposition of the polymer was observed even though the concentration was diluted by adding the same mole number of alkali hydroxide to the reaction.
  • alkali decomposition reaction and partial alcoholesis reaction proceeded simultaneously, and after 4 hours of reaction, all products that could be generated from depolymerization of polymer were converted to alkali salt products of terephthalic acid, which are produced when alkaline decomposition continues. It has been done.
  • Anisole is a type of cosolvent added to demonstrate the effect of the present invention, and has the simplest structure among aromatic compounds to which an alkoxy functional group is bonded.
  • Example 1 a depolymerization reaction was performed after replacing part of the weight of the alcohol used in Comparative Example 1 with anisole.
  • the co-solvent according to the present invention most of the polymer at the beginning of the reaction was decomposed, and the conversion rate reached 98.4% after 2 hours of reaction time, and almost all of the PET was decomposed after 4 hours of reaction.
  • Comparative Example 1 which was performed by adding only ethanol, much higher reactivity was observed by replacing only 1/3 of the constituent ethanol with anisole, and the yield of monomers prepared from depolymerization was also observed to be very high.
  • Examples 2 to 3 are the results of increasing the amount of anisole added. When the amount of anisole added exceeded the weight of ethanol, complete decomposition of PET could be induced quickly from the beginning of the reaction, and a terephthalic acid yield close to the ideal value could be obtained.
  • Comparative Example 3 is the result of a depolymerization experiment conducted to determine whether the alkaline decomposition reaction of PET proceeds when anisole is used alone without using alcohol.
  • Alkaline hydroxide here, sodium hydroxide
  • Alkaline hydroxide added as a reactant has a very low solubility in organic solvents such as anisole, and when alcohol is not added, it remains in a solid state in the reaction mixture, which may prevent uniform contact with the applied polymer. You can.
  • Comparative Example 3 almost no reactivity for depolymerization of the polymer containing an ester functional group was observed from the beginning of the reaction. Even though it was exposed to the same reaction conditions as the previous examples and left for a long time (more than 4 hours), only a very small amount of monomer product was detected in the reaction mixture.
  • Example 4 maintained the same reactant composition as Example 2, but used methanol as the type of alcohol added.
  • methanol monomethyl terephthalate sodium salt
  • Na-MMT monomethyl terephthalate sodium salt
  • Table 2 shows the results of PET depolymerization reaction (reaction temperature: 60°C) according to the initial concentration of alkali hydroxide. Changes in product production were observed after exposure to depolymerization reaction conditions for 2 hours in a ratio of 0.0 to 4.0 moles of sodium hydroxide (NaOH) relative to the number of moles of repeating units of the polymer.
  • Na-MET sodium monoethyl terephthalate
  • Na 2 -TPA sodium terephthalate
  • Example 7 in which sodium hydroxide was added in an amount equivalent to the alkaline decomposition reaction for producing terephthalic acid, PET depolymerization by alkali decomposition reaction and partial alcohollysis reaction proceeded simultaneously (reaction paths A and B in FIG. 1), reaction 2 In the distribution of the products produced after time, Na-MET and Na 2 -TPA were observed in similar mole numbers.
  • Example 1 in which an excess amount of sodium hydroxide was added from the beginning of the reaction, alkali decomposition proceeded very quickly from the beginning of the reaction, and a high concentration of Na 2 -TPA was produced directly from the depolymerization reaction.
  • Table 3 shows the results of the depolymerization reaction (reaction temperature: 60°C) when only the type of alkali hydroxide was changed and other reaction conditions were kept the same.
  • reaction temperature 60°C
  • an amount of mixed solvent close to the minimum that allows all PET flakes used as raw materials to be completely submerged in the reaction solution was added to PET, 2.5 times the amount of alcohol compared to the amount of polymer added, and a compound with an alkoxy bond (anisole). ) is twice the weight applied.
  • the amount of added metal hydroxide compared to the number of moles of repeating units of the polymer containing an ester functional group was adjusted to the equivalent amount required for producing terephthalic acid by alkaline decomposition.
  • Example 9 In the case of Example 9 in which potassium was used as the cation of the alkali hydroxide, the reaction rate of alcoholesis and the overall reaction rate of depolymerization in which PET was decomposed were observed to be somewhat higher than in Example 8 in which sodium was used, but in both cases Almost all of the PET was decomposed within 2 hours after the start of the depolymerization reaction, and alkali terephthalic acid was produced in high yield.
  • Table 4 shows the characteristics of PET depolymerization when depolymerization was performed using reactants of the same composition and the reaction temperature was changed.
  • Example 10 Referring to the results of Example 10, in which depolymerization was performed under relatively mild reaction conditions (30°C), the PET conversion rate due to depolymerization was observed to be less than 84% even though the reaction took 6 hours. Meanwhile, in the product distribution observed through quantitative analysis, the yield of sodium terephthalate salt was 67.6%, and the yield of monoethyl terephthalate sodium salt (Na-MET), which can be produced through the reaction path of partial alcoholesis, was also 16.4%. It was found that it was obtained with a relatively small yield.
  • Na-MET monoethyl terephthalate sodium salt
  • Table 5 shows the results of depolymerization (reaction temperature: 60°C) of a polymer containing an ester functional group applied by changing the type of cosolvent.
  • 1,2-DMB in which two methoxy groups were substituted for the hydrogen bonded to the aromatic carbon, was applied as a reaction solvent along with alcohol, it exhibited very high depolymerization performance, and under the same conditions, anisole was used as a cosolvent.
  • PET was rapidly depolymerized by the dominant alkali decomposition reaction from the beginning of the reaction.
  • Example 13 in which phenetol was used as a cosolvent, high reactivity was observed from the beginning of the reaction, and the reaction system constructed from the analysis results of the prepared reactants was observed to provide high selectivity for alkali terephthalic acid. Even when a compound in which another alkoxy functional group having two or more carbon atoms is bonded to an aromatic ring is applied as a co-solvent for the alkaline decomposition reaction, the depolymerization is much higher than those in which depolymerization was performed using only alcohol (Comparative Example 1 or Comparative Example 2). A level of response performance was observed.
  • Table 6 shows the performance of alkaline decomposition reaction (reaction temperature: 60°C) performed on colored waste PET and waste polyester raw materials discharged after consumption according to an example of the prior patent document (KR 10-0983349) and the depolymerization method of the present invention. is compared.
  • Comparative Example 6 is the result of depolymerization of raw materials prepared by crushing colored PET bottles using only alcohol. Compared to Comparative Example 2, where the same depolymerization reaction conditions were applied but depolymerization was performed using colorless PET raw materials, the conversion rate and yield of the reaction at the beginning of the reaction were almost similar, but when exposed to the reaction for a long time, the conversion rate and the alkali salt of terephthalic acid decreased. Much lower yields were observed. This is because foreign substances discharged outside the polymer matrix as depolymerization progresses, especially colored pigments or organic colorants, generally consume the alkali hydroxide through various reaction pathways when they come into direct contact with the alkali hydroxide. At the beginning of the reaction, foreign substances were not exposed and did not have a significant effect. However, as the decomposition of the polymer progresses, the foreign substances released show that they have a direct and substantial effect on the depolymerization reactivity.
  • Example 14 is the result of depolymerization by adding anisole, an organic cosolvent, according to the present invention. Unlike the results of Comparative Example 6, in which only alcohol was applied without adding a cosolvent, polymer decomposition progressed rapidly. From the beginning of the reaction, the conversion rate and yield of alkali terephthalic acid were maintained above 90%, and after 4 hours of reaction, most of the PET was decomposed and a very high yield of alkali terephthalic acid was detected.
  • Example 14 when a compound having an alkoxy functional group but not having a proton donor functional group, which is a co-solvent according to the present invention, is added, since the compound with the alkoxy functional group is hydrophobic, the solvent mixture for the reaction becomes hydrophobic, so that sodium hydroxide The rate of consumption by impurities is greatly reduced. In addition, most of the colored foreign substances did not remain in the solid content of the product during the filtration process, but were discharged along with the mixed solvent consisting of alcohol and anisole. Accordingly, despite applying the same purification and acid treatment process as in Comparative Example 6, high depolymerization performance was maintained when depolymerization was performed according to Example 14, and the manufactured product was a high-quality terephthalic acid that was relatively white. . It was easy to see with the naked eye that the manufactured terephthalic acid product did not have a large amount of residual colored foreign substances.
  • Comparative Example 7 and Example 15 depolymerization was performed using colored waste plastic as a raw material, which is a composite of multiple polymers (composition ratio: PET 63.8%, PBT 35.4%) containing ester functional groups with different chemical structures and shapes. , the reaction performance was compared for two cases with different solvent compositions. Similar to the performance comparison of Comparative Example 6 and Example 14, the speed in Example 15 in which depolymerization was performed after adding a co-solvent (anisole) was faster than in Comparative Example 7 in which depolymerization was performed by simply adding alcohol. An alkaline decomposition reaction was observed, and the yield of the terephthalic acid product obtained after the reaction was also observed to be high.
  • a co-solvent anisole
  • Example 15 In addition, in Example 15, most of the colored foreign substances (organic additives for dyeing, including carbon black) introduced into the initial polymer were discharged/removed by the co-solvent, and a brighter colored terephthalic acid product was obtained than that of Comparative Example 7. .
  • Comparative Example 8 and Example 16 a polymer in the form of a composite was used as in Comparative Example 7 and Example 15, but depolymerization was performed using waste polymer raw materials with different compositions (composition ratio: PET 26.1%, PBT 73.1%). am.
  • the depolymerization reaction in which depolymerization was performed after adding a cosolvent (anisole) compared to the case where depolymerization was performed using only alcohol as a reaction solvent (Comparative Example 8) In Example 16), a faster rate of alkali decomposition reaction was observed, and the yield of terephthalic acid product obtained after the reaction was also observed to be high.
  • Table 7 lists each color space coordinate value (L* a* b*) measured using a spectrophotometer to observe the quality of terephthalic acid products manufactured by various methods.
  • Reagent-grade commercial terephthalic acid Sigma-Aldric, product number: 185361
  • the final product obtained through purification and commercialization after depolymerization of colored polymers were manufactured into circular disks and used as samples in a spectrophotometer to observe color characteristics. .
  • Terephthalic acid products prepared from the alkaline decomposition reaction of colored polymers (Examples 14 to 16) performed by replacing part of the alcohol solvent with the cosolvent (anisole) according to the present invention were similar to those of the previous comparative examples conducted using only alcohol. The color was lighter than before, and the brightness value (L*) measured using a spectrophotometer was over 90.
  • the existing purification method was changed and applied.
  • the filter cake (solid material) obtained through primary filtration to separate the reaction solvent from the product produced after the depolymerization reaction contains most of the terephthalate alkali salt that can be converted into the final product, which is converted into unreacted polymer or raw material.
  • the terephthalate alkaline salt from the high molecular materials (e.g.
  • the alkali salt of terephthalate is dissolved using water or an aqueous solution, then recovered as a filtrate, and acid is added to the filtrate to precipitate the final product, terephthalic acid.
  • Example 17 to 19 the polymer having an ester functional group was depolymerized according to Examples 14 to 16, and the polymer was further passed through an adsorbent layer before conversion to terephthalic acid by adding acid during the purification process. It shows the color characteristics of the manufactured product.
  • activated carbon was used as an example of the adsorbent.
  • the measured brightness value (L*) of terephthalic acid recorded a very high value of over 97.6, and the coordinate values (a* and b*) indicating the relative positions of 'red to green' and 'yellow to blue' were also very close to neutral. The values are shown ( Figure 2(d)). This extreme effect of purifying foreign substances is a result that cannot be achieved by simply applying an adsorbent alone.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

The present invention relates to a method for depolymerization of a polymer containing an ester functional group, wherein an aromatic compound having an alkoxy functional group and a compound having an alcohol functional group are mixed to be used as a solvent for reaction and an extractant for foreign material removal and an alkali hydroxide is applied as a reactant, thereby depolymerizing the polymer containing an ester functional group and obtaining high-purity monomers produced from the polymer.

Description

혼합 유기용매를 사용한 에스테르 작용기를 포함하는 고분자의 해중합 방법Depolymerization method for polymers containing ester functional groups using mixed organic solvents
본 발명은 에스테르 작용기를 포함하는 고분자의 해중합 방법에 관한 것으로, 상세하게는 알콕시 작용기를 가진 방향족 화합물과 알코올 작용기를 가진 화합물을 혼합하여 반응을 위한 용매 및 이물질 제거를 위한 추출제로 사용하되, 알칼리 수산화물을 반응물로 적용하여 에스테르 작용기를 포함하는 고분자를 분해하고, 이로부터 생성되는 단량체를 고순도로 수득하는 방법에 관한 것이다.The present invention relates to a method for depolymerization of a polymer containing an ester functional group. Specifically, an aromatic compound with an alkoxy functional group and a compound with an alcohol functional group are mixed and used as a solvent for reaction and an extractant for removing foreign substances, and an alkali hydroxide is used as a solvent for reaction and an extractant for removing foreign substances. It relates to a method of decomposing a polymer containing an ester functional group by applying as a reactant and obtaining the monomer produced therefrom with high purity.
플라스틱은 저렴하고 내구성이 있는 물질이며, 이는 광범위한 응용예에서 용도를 찾을 수 있는 다양한 제품의 생산에 사용될 수 있다. 따라서, 플라스틱은 생산량뿐만 아니라 일상생활 속 소비량 또한 지난 수십 년 동안 극적으로 증가하여, 신체에 노출ㆍ축적될 수 있는 환경호르몬 위협뿐만 아니라, 자연 생태계 파괴에 이르기까지 심각한 환경 문제를 일으키고 있다. 더욱이, 이러한 플라스틱의 50% 이상이 포장, 농업용 필름, 일회용 음료용기 등과 같이 단일 용도의 일회 용품으로 사용되거나 제조 후 1년 이내에 폐기되는 활용 주기가 짧은 제품들이다. Plastics are inexpensive and durable materials that can be used to produce a variety of products that find use in a wide range of applications. Accordingly, not only the production but also the consumption of plastic in daily life has increased dramatically over the past few decades, causing serious environmental problems ranging from the threat of environmental hormones that can be exposed and accumulated in the body to the destruction of the natural ecosystem. Moreover, more than 50% of these plastics are products with a short cycle of use, such as packaging, agricultural film, disposable beverage containers, etc., which are used as single-use disposable products or are discarded within one year of manufacture.
폐기되는 플라스틱 대부분은 전세계 자연적 정화가 어려운 지정 매립지에 그리고 자연 서식지에 무작위로 배출되어 환경 문제의 심각성이 날로 증가하고 있다. 심지어 자연분해 또는 생분해 가능한 플라스틱도 자외선 노출의 수준, 온도, 분해 미생물의 존재 등과 같은 국소 환경 인자에 따라 수십 년 동안 존속될 수 있다.Most of the discarded plastic is randomly discharged into designated landfills and natural habitats around the world, where natural purification is difficult, and the severity of environmental problems is increasing day by day. Even biodegradable or biodegradable plastics can persist for decades, depending on local environmental factors such as levels of UV exposure, temperature, and the presence of degrading microorganisms.
이러한 문제를 해결하기 위해, 자연 상태에서 분해 주기가 짧은 신규 플라스틱 물질 개발을 포함하여 기존 석유계 플라스틱의 화학적 분해로부터 플라스틱의 물리적 재생 및 재가공에 이르기까지 플라스틱의 축적을 최소화하거나 환경적인 영향을 감소시키기 위한 여러 가지 다양한 연구와 노력이 시도되고 있다.To solve these problems, we aim to minimize the accumulation of plastics or reduce their environmental impact, from chemical decomposition of existing petroleum-based plastics to physical recycling and reprocessing of plastics, including the development of new plastic materials with short decomposition cycles in nature. Various research and efforts are being attempted for this purpose.
소비 후 버려지는 플라스틱 중 에스테르 작용기를 포함하는 고분자는 에스테르 작용기의 분해나 교환과 같이 비교적 간단한 화학적 반응경로를 통해 합성 이전의 원료로 되돌릴 수 있는 특징을 갖고 있어서, 해중합(depolymerization) 기반 화학적 재활용을 통해 반복적인 재사용이 가능한 소재로 주목을 받고 있다. 에스테르 작용기를 포함하는 고분자의 가장 일반적인 예로써, 패키징용 PET 용기나 폴리에스테르 섬유가 있다. 에스테르 작용기를 포함하는 고분자는 일반적으로 에스테르 교환을 위한 반응 용매와 촉매를 사용하여 화학적 분해를 통해 단량체화가 가능하며, 이를 위해 다양한 화학적 반응경로가 알려져 있다. 분해를 통해 생성된 일부 단량체는 이론적으로 초기 고분자 합성에 투입되는 원료와 동등한 성질을 가질 수 있다. 산업적으로 PET를 재활용하기 위해 응용되고 있는 해중합 경로는 글라이콜리시스(glycolysis), 메탄올리시스(methanolysis), 산 또는 염기 촉매를 가하는 가수분해(hydrolysis), 알칼리 분해(alkaline decomposition) 등이 있다.Among plastics discarded after consumption, polymers containing ester functional groups have the characteristic of being able to be returned to their original state before synthesis through a relatively simple chemical reaction path such as decomposition or exchange of the ester functional group, through chemical recycling based on depolymerization. It is attracting attention as a material that can be repeatedly reused. The most common examples of polymers containing ester functional groups are PET containers or polyester fibers for packaging. Polymers containing ester functional groups can generally be monomerized through chemical decomposition using a reaction solvent and catalyst for transesterification, and various chemical reaction pathways are known for this purpose. Some monomers produced through decomposition can theoretically have properties equivalent to the raw materials used in initial polymer synthesis. Depolymerization routes used industrially to recycle PET include glycolysis, methanolysis, hydrolysis using acid or base catalysts, and alkaline decomposition.
글라이콜리시스는 단량체 원료의 하나인 에틸렌글리콜(EG)을 과량으로 첨가하여 bis(2-hydroxyethyl) terephthalate (BHET)를 제조하는 공정으로 PET 원료의 일부인 EG를 반응물로 사용하므로 반응생성물과 열역학적 혼화성이 높고, 제조된 단량체 제품(BHET)이 고분자 중합의 중간생성물이기 때문에 기존 설비의 원료 공급부 일부분을 변경하면 PET 생산을 위한 직접적 원료로 적용 가능하다. 그러나, 고분자의 분해 속도를 향상하기 위해 금속 촉매와 과량의 EG가 필요하고, 단량체와 올리고머 간 반응평형으로 인해 비교적 넓은 분자량 분포를 가져서 단량체의 최종 수율에 한계가 있으며, 용매인 EG 및 최종 제품의 비점이 높아 고온 증류를 통한 제품의 정제가 어려우며, 물을 사용하는 재결정화 과정에서는 단량체의 재결정화 속도가 느려 생산성의 한계가 존재할 수 있으며 제품 회수율이 낮은 문제점이 있다. 해중합 반응의 속도를 증진하기 위해 아세트산 금속염을 촉매로 사용하며, 아연 아세테이트가 대표적인 촉매에 해당한다.Glycolysis is a process of producing bis(2-hydroxyethyl) terephthalate (BHET) by adding an excessive amount of ethylene glycol (EG), one of the monomer raw materials. EG, which is part of the PET raw material, is used as a reactant, so there is a thermodynamic mixture with the reaction product. Because it has high chemical properties and the manufactured monomer product (BHET) is an intermediate product of polymer polymerization, it can be applied directly as a raw material for PET production by changing part of the raw material supply part of the existing facility. However, a metal catalyst and an excessive amount of EG are required to improve the decomposition rate of the polymer, and the final yield of the monomer is limited due to the relatively wide molecular weight distribution due to the reaction equilibrium between the monomer and the oligomer, and the EG as a solvent and the final product The high boiling point makes it difficult to purify the product through high-temperature distillation, and in the recrystallization process using water, the recrystallization rate of the monomer is slow, which may limit productivity and has a low product recovery rate. To increase the speed of the depolymerization reaction, acetic acid metal salt is used as a catalyst, and zinc acetate is a representative catalyst.
메탄올리시스 공정은 글로벌 화학회사 뿐만 아니라, 중소 플라스틱 산업에 이르기까지 실제 상용공정에 널리 응용되고 있는 반응공정에 해당하며, 다양한 반응 에스테르 교환 반응용 촉매를 사용하거나, 촉매 없이 초임계와 같은 고온고압의 메탄올만으로 해중합 진행이 가능하다. 그러나, 메탄올을 반응 용매로 사용하기 때문에 고온 반응조건이 필요한 경우, 높은 메탄올 증기압 발생으로 고압 반응기 설계와 함께 누출 방지 및 방폭 설비가 요구되며, 해중합 반응 및 정제를 위한 단위공정들의 에너지 사용량이 과다할 수 있다. 에스테르 교환 반응 촉매로는, 아연 아세테이트, 마그네슘 아세테이트, 코발트 아세테이트, 이산화납 등이 일반적으로 사용되며, 디메틸테레프탈레이트(dimethyl terephthalate, DMT)가 최종 단량체 제품으로 얻어진다. 메탄올리시스로부터 제조될 수 있는 DMT는 150℃의 용융상태에서 PET 합성을 위한 반응기에 투입이 가능하며, 에틸렌글리콜을 부가하여 에스테르 교환 반응 및 축중합이 진행되는 160~220℃의 고온 반응공정을 통해 PET를 제조할 수 있다.The methanolysis process is a reaction process that is widely applied in actual commercial processes, not only to global chemical companies but also to small and medium-sized plastic industries. It uses a variety of catalysts for transesterification reactions or uses high temperature and high pressure such as supercritical without a catalyst. Depolymerization can be carried out using only methanol. However, when high-temperature reaction conditions are required because methanol is used as a reaction solvent, high-pressure reactor design and leak-proof and explosion-proof equipment are required due to the generation of high methanol vapor pressure, and the energy consumption of unit processes for depolymerization reaction and purification may be excessive. You can. As transesterification catalysts, zinc acetate, magnesium acetate, cobalt acetate, lead dioxide, etc. are generally used, and dimethyl terephthalate (DMT) is obtained as the final monomer product. DMT, which can be manufactured from methanolysis, can be put into a reactor for PET synthesis in a molten state at 150℃, and a high temperature reaction process of 160~220℃ is performed by adding ethylene glycol to carry out transesterification reaction and condensation polymerization. PET can be manufactured through
DMT를 원료로 사용하는 PET 중합법은 BHET를 제조하는 별도의 공정이 필요하고 증기 메탄올이 다량 발생하기 때문에 공정비용이 높은 편이다. DMT 원료 기반의 PET 생산설비는 테레프탈산(terephthalic acid, TPA)의 고순도 정제법이 개발되기 이전인 1960년대까지 주로 사용되었다. 현대에 와서는 TPA와 EG를 원료로 적용하여 직접 에스테르화 반응을 진행하여 BHET를 초기에 합성하고, 이후 수분을 연속적으로 제거하여 축중합을 진행하는 두 단계의 합성법이 PET 소재의 제조 공정의 대부분을 차지하고 있다. 따라서, 폐PET의 해중합 반응으로부터 고순도의 TPA와 EG를 경제적으로 제조할 수 있다면, 설비 변경이나 운전조건을 달리하지 않고도 재생 단량체를 PET 제조에 직접 적용할 수 있는 장점이 있다. 폐PET의 해중합으로부터 재생 단량체인 TPA를 제조하기 위한 반응경로로 가수분해와 알칼리 분해가 있다.PET polymerization using DMT as a raw material requires a separate process to produce BHET and generates a large amount of vapor methanol, so the process cost is high. PET production facilities based on DMT raw material were mainly used until the 1960s, before the development of a high-purity purification method for terephthalic acid (TPA). In modern times, the two-step synthesis method of initially synthesizing BHET by applying TPA and EG as raw materials and conducting a direct esterification reaction, and then proceeding with condensation polymerization by continuously removing moisture, is the most common manufacturing process for PET materials. occupies. Therefore, if high-purity TPA and EG can be economically produced from the depolymerization reaction of waste PET, there is an advantage in that the recycled monomers can be directly applied to PET production without changing equipment or operating conditions. The reaction pathways for producing TPA, a regenerated monomer, from depolymerization of waste PET include hydrolysis and alkaline decomposition.
가수분해의 경우, 높은 농도의 산 또는 염기 촉매의 존재 하 고온 조건에서 해중합이 진행되며, 해중합 제품으로 TPA가 최종적으로 얻어진다. 산촉매를 적용하는 가수분해 반응에서는 높은 반응성과 수율을 얻기 위해 매우 높은 농도의 황산용액(87wt%)이 필요하며, 반응기의 부식과 폐수 발생으로 경제성 확보가 어려운 것으로 알려져 있으며, 염기 촉매를 적용하는 가수분해 반응은 반응속도가 상대적으로 느려서 제품의 순도가 낮고 촉매 회수가 어려운 문제가 있다.In the case of hydrolysis, depolymerization proceeds under high temperature conditions in the presence of a high concentration of acid or base catalyst, and TPA is ultimately obtained as the depolymerization product. In the hydrolysis reaction using an acid catalyst, a very high concentration of sulfuric acid solution (87 wt%) is required to obtain high reactivity and yield, and it is known that it is difficult to secure economic feasibility due to corrosion of the reactor and generation of waste water, and hydrolysis using a base catalyst is known to be difficult. The decomposition reaction has a relatively slow reaction rate, so the purity of the product is low and catalyst recovery is difficult.
알칼리 수산화물이 고농도로 사용되거나 비수용성 용매와 함께 사용되는 알칼리 분해 반응은 비교적 빠르게 반응이 진행되어 고수율의 TPA 제조가 가능한 장점이 있으나, 과량의 알칼리 수산화물이 촉매가 아닌 반응물로 소모되기 때문에 비경제적일 수 있다. 특히, 해중합 후 제품은 테레프탈레이트 알칼리염 형태로 얻어지기 때문에 테레프탈산을 얻기 위해 산처리가 필요하며, 반응 촉진을 위해 과량으로 사용된 알칼리 수산화물이 잔류할 수 있으므로 이를 중화하기 위해 많은 양의 산과 폐수가 발생하는 단점이 있다.The alkaline decomposition reaction, in which alkali hydroxide is used at a high concentration or with a non-aqueous solvent, has the advantage of proceeding relatively quickly and producing high yields of TPA, but is uneconomical because excess alkali hydroxide is consumed as a reactant rather than a catalyst. It can be. In particular, since the product after depolymerization is obtained in the form of an alkali salt of terephthalate, acid treatment is necessary to obtain terephthalic acid. Since the alkali hydroxide used in excess to promote the reaction may remain, a large amount of acid and wastewater are required to neutralize it. There are disadvantages that arise.
PET의 알칼리 분해 반응의 종래기술로써, 미국등록특허공보 10087130호 (2018.10.02.등록)에서는 과량의 알칼리 수산화물을 사용하여 PET를 해중합하여 얻어지는 단량체인 TPA와 EG를 제조 및 회수하는 것에 관한 것으로, (i) 비극성 용매; 및 (ii) 알코올과 수산화물로 구성된 혼합물을 가하여 PET의 해중합이 진행되도록 하는 것을 포함하며; 반응이 진행되는 동안 외부에서 열을 가하지 않더라도 충분한 시간을 인가하면 PET의 부분 또는 전체를 해중합할 수 있는 방법에 관하여 기술하고 있다. 상기 10087130호는 적은 양의 에너지를 사용하여 PET의 해중합을 유도할 수 있으나, 비극성 용매로써 디클로로메탄과 같이 환경 및 인체에 유해한 용매가 사용되는 문제점이 있다. 또한 알칼리 분해 반응을 통해 PET를 분해함에 있어서 해중합의 생성물인 TPA와 EG로 완전하게 분해하기 위해서는 당량 이상의 알칼리 수산화물이 가해지거나, 10일에 이르는 장시간 해중합 반응이 필요할 수 있음을 기재하고 있다.As a prior art for the alkali decomposition reaction of PET, U.S. Patent Publication No. 10087130 (registered on October 2, 2018) relates to the production and recovery of TPA and EG, which are monomers obtained by depolymerizing PET using an excessive amount of alkali hydroxide. (i) non-polar solvent; and (ii) adding a mixture of alcohol and hydroxide to allow depolymerization of PET to proceed; It describes a method that can partially or completely depolymerize PET if sufficient time is applied even if no external heat is applied during the reaction. No. 10087130 can induce depolymerization of PET using a small amount of energy, but has the problem of using a non-polar solvent such as dichloromethane, which is harmful to the environment and the human body. In addition, when decomposing PET through an alkaline decomposition reaction, it is stated that in order to completely decompose into TPA and EG, which are depolymerization products, more than an equivalent amount of alkali hydroxide may be added or a long-time depolymerization reaction of up to 10 days may be required.
한국등록특허공보 10-2223614호 (2021.03.05.공고)에서는 에스테르 작용기를 포함하는 고분자의 해중합 방법으로, (1) 할로겐을 포함하지 않는 직쇄형 1차 알코올; (2) 할로겐을 포함하지 않으며, 케톤기, 나이트릴기, 퓨란기 중에서 하나 이상의 작용기를 포함하는 극성 비양자성 용매; 및 (3) 수산기를 포함하는 염기화합물;이 포함된 혼합물과 에스테르 작용기를 포함하는 고분자를 접촉하여 해중합을 진행하되, 1차 알코올과 극성 비양자성 용매의 부피비가 1:1 내지 1:20으로 낮은 양의 알코올을 공용매로 사용하는 알칼리 분해 반응의 방법을 기술하고 있다. 해당 기술에서는 에스테르 작용기를 포함하는 고분자의 반복단위체의 단위 몰 수 대비 약 4몰 내지 14 몰의 비를 갖도록 과량의 알칼리 수산화물이 사용되어 PET의 완전한 분해가 진행될 수도 있으나, 극성 비양자성 용매 중 카보닐기를 포함하는 공용매의 알돌반응(aldol reaction)과 알돌축합(aldol condensation)이 진행됨에 따라 공용매 일부분이 손실될 수 있다. 또한 해중합에 의해 생성되는 단량체 내 알돌 반응으로부터 생성된 이물질이 잔류하여 제품의 색상 변화를 초래하며, 단순 정제과정만으로는 완벽한 불순물 정제가 어려운 문제점을 갖고 있다. 또한, 과량의 알칼리 수산화물과 적은 양의 알코올 사용으로 인해 미반응 알칼리 수산화물이 반응 혼합물에 제한적인 용해도를 가질 수 있어서 고형물의 형태로 남아있을 수 있으며, 여과 과정에서 단량체 제품과 함께 여과 케이크로 회수되기 때문에 반응물이 불필요하게 소모될 수 있으며 및 일부 폐수가 추가로 발생할 수 있다.Korean Patent Publication No. 10-2223614 (announced on March 5, 2021) describes a method for depolymerization of a polymer containing an ester functional group, including (1) a straight-chain primary alcohol that does not contain halogen; (2) a polar aprotic solvent that does not contain halogen and contains at least one functional group from among ketone group, nitrile group, and furan group; and (3) a base compound containing a hydroxyl group; depolymerization is performed by contacting a polymer containing an ester functional group with a mixture containing the same, wherein the volume ratio of the primary alcohol and the polar aprotic solvent is as low as 1:1 to 1:20. It describes a method of alkaline decomposition reaction using positive alcohol as a cosolvent. In this technology, complete decomposition of PET may occur by using an excessive amount of alkali hydroxide in a ratio of about 4 to 14 moles relative to the number of unit moles of the repeating unit of the polymer containing an ester functional group, but carbonyl hydroxide in a polar aprotic solvent is used. As the aldol reaction and aldol condensation of the co-solvent containing the group progress, a portion of the co-solvent may be lost. In addition, foreign substances generated from the aldol reaction within the monomer generated by depolymerization remain, causing color changes in the product, and it is difficult to completely purify impurities through a simple purification process. In addition, due to the use of an excess amount of alkali hydroxide and a small amount of alcohol, unreacted alkali hydroxide may have limited solubility in the reaction mixture and may remain in the form of solids and be recovered as a filtration cake along with the monomer product during the filtration process. Therefore, reactants may be consumed unnecessarily and some waste water may be additionally generated.
그 외 대부분의 알칼리 분해에 기초한 PET의 해중합에서는 PET의 전환율을 향상하고 단량체인 TPA의 수율을 향상하기 위해 과량의 알칼리 수산화물을 사용하는 방법이 일반적으로 활용되고 있다. 폐플라스틱 대부분은 균일한 소재만으로 이루어지지 않거나 이물질이 다량 포함한 상태로 배출되며, 분류 및 세척의 과정을 통해서 완벽하게 제거되지 않는 경우가 일반적이다. 특히, 색상을 띠는 염료나 안료와 같은 이물질은 일광, 세탁, 마찰 등 외부의 반복되는 조건에서 유실되지 않도록 설계된 화합물이 일반적으로 사용되며, 단순한 물리적인 분리 및 정제기술로 제품으로부터 제거가 어려운 것이 일반적이다. In most other alkaline decomposition-based PET depolymerizations, a method of using an excess amount of alkali hydroxide is generally used to improve the conversion rate of PET and the yield of the monomer TPA. Most waste plastics are not made up of uniform materials or are discharged with a large amount of foreign substances, and are generally not completely removed through the classification and washing process. In particular, for foreign substances such as colored dyes or pigments, compounds designed to prevent loss under repeated external conditions such as sunlight, washing, and friction are generally used, and they are difficult to remove from products using simple physical separation and purification techniques. It's common.
이렇게 이물질이 포함된 폐플라스틱은 해중합 반응 및 정제과정을 통해서도 이물질이 쉽게 제거되지 않아 제품에 잔류하는 경우가 많고, 최종제품의 순도를 개선하기 위해서는 에너지 소모와 제품 손실을 유발하는 별도의 정제기술이 필수적이며, 재생 단량체 제조를 위한 통합공정의 건전한 경제성 확보가 어려울 수 있다. 따라서, 이물질이 다량 포함된 폐플라스틱, 특히 염료가 도입된 섬유나 유색 안료가 적용된 폐플라스틱은 산업적으로 재활용이 어렵거나 불가능한 소재들이며, 소각이나 매립과 같은 2차 오염원을 배출하는 방법을 통해 처리되기 때문에 폐플라스틱에 의해 환경문제를 일으키는 가장 큰 오염원 중 하나이다.Waste plastics containing foreign substances often remain in products because the foreign substances are not easily removed even through depolymerization and purification processes. In order to improve the purity of the final product, a separate purification technology that causes energy consumption and product loss is required. It is essential, and it may be difficult to secure sound economic feasibility of an integrated process for producing regenerated monomers. Therefore, waste plastics containing a large amount of foreign substances, especially fibers with dyes or waste plastics with colored pigments applied, are materials that are difficult or impossible to recycle industrially, and cannot be disposed of through methods that discharge secondary pollutants such as incineration or landfill. Therefore, waste plastic is one of the biggest pollutants causing environmental problems.
[선행기술문헌][Prior art literature]
[특허문헌][Patent Document]
(특허문헌 1) 미국등록특허공보 10087130호 (2018.10.02.등록)(Patent Document 1) U.S. Patent Publication No. 10087130 (registered on October 2, 2018)
(특허문헌 2) 한국등록특허공보 10-2223614호 (2021.03.05.공고)(Patent Document 2) Korean Patent Publication No. 10-2223614 (announced on March 5, 2021)
본 발명에서는 에스테르 작용기를 포함하는 고분자의 해중합 성능을 향상하고, 단량체의 제조과정에서 유무기 이물질을 다수 제거할 수 있는 효과적이며 경제적인 해중합 방법을 제공하고자 한다.The present invention seeks to provide an effective and economical depolymerization method that can improve the depolymerization performance of polymers containing ester functional groups and remove many organic and inorganic contaminants during the production of monomers.
상기 과제를 해결하기 위하여 본 발명은 (1) 양성자 공여체 작용기를 갖지 않으면서 하나 이상의 알콕시 작용기를 가진 방향족 화합물; (2) 하나 이상의 알코올 작용기를 가진 화합물; 및 (3) 알칼리 수산화물;이 포함된 혼합물을 에스테르 작용기를 포함하는 고분자와 접촉시켜 상기 고분자를 해중합 하는 것을 특징으로 하는, 에스테르 작용기를 포함하는 고분자의 해중합 방법을 제공한다.In order to solve the above problems, the present invention provides (1) an aromatic compound having at least one alkoxy functional group and not having a proton donor functional group; (2) compounds with one or more alcohol functional groups; and (3) an alkali hydroxide. A method for depolymerizing a polymer containing an ester functional group is provided, characterized in that the mixture containing the above is brought into contact with a polymer containing an ester functional group to depolymerize the polymer.
본 발명의 일 실시예에 있어서, 상기 혼합물 중 양성자 공여체 작용기를 갖지 않으면서 하나 이상의 알콕시 작용기를 가진 방향족 화합물과 하나 이상의 알코올 작용기를 가진 화합물의 중량비는 20:1 내지 1:20일 수 있다.In one embodiment of the present invention, the weight ratio of the aromatic compound having at least one alkoxy functional group without having a proton donor functional group and the compound having at least one alcohol functional group in the mixture may be 20:1 to 1:20.
본 발명의 일 실시예에 있어서, 상기 알코올 작용기를 가진 화합물은 직쇄형 1차 알코올이고, 상기 양성자 공여체 작용기를 갖지 않으면서 하나 이상의 알콕시 작용기를 가진 방향족 화합물은 메톡시벤젠, 1,2-디메톡시벤젠, 1,3-디메톡시벤젠, 1,4-디메톡시벤젠, 1,2,3-트리메톡시벤젠, 1,2,4-트리메톡시벤젠, 1,3,5-트리메톡시벤젠, 1,2,3,4-테트라메톡시벤젠, 1,2,3,5-테트라메톡시벤젠, 1,2,4,5-테트라메톡시벤젠, 1-메톡시-2-메틸벤젠, 1-메톡시-3-메틸벤젠, 1-메톡시-4-메틸벤젠, 1-메톡시-2-에틸벤젠, 1-메톡시-3-에틸벤젠, 1-메톡시-4-에틸벤젠, 1-메톡시-2-프로필벤젠, 1-메톡시-3-프로필벤젠, 1-메톡시-4-프로필벤젠, 에톡시벤젠, 1-에톡시-2-메톡시벤젠, 1-에톡시-3-메톡시벤젠, 1,2-디에톡시벤젠, 1,3-디에톡시벤젠, 1,4-디에톡시벤젠, 1,2,4-트리에톡시벤젠, 1,3,5-트리에톡시벤젠, 1-에톡시-2-메틸벤젠, 1-에톡시-3-메틸벤젠, 1-에톡시-4-메틸벤젠, (1-메톡시에틸)벤젠, (2-메톡시에틸)벤젠, (2-메톡시)에톡시벤젠, 1-메톡시-2-(메톡시메톡시)벤젠, 1-(디에톡시메틸)-4-메톡시벤젠, 프로폭시벤젠, 1,3-디메틸-2-프로폭시벤젠, 1-메톡시-4-프로폭시벤젠, 1,3-디프로폭시벤젠, 페녹시에탄올 등으로 이루어진 군에서 선택된 하나 이상의 화합물이며, 상기 알칼리 수산화물은 수산화나트륨, 수산화칼륨, 수산화칼슘, 수산화리튬, 수산화마그네슘, 수산화암모늄, 테트라알킬 수산화암모늄 및 이의 조합으로 이루어진 군에서 선택된 것일 수 있다.In one embodiment of the present invention, the compound having the alcohol functional group is a straight-chain primary alcohol, and the aromatic compound having one or more alkoxy functional groups without the proton donor functional group is methoxybenzene, 1,2-dimethoxy Benzene, 1,3-dimethoxybenzene, 1,4-dimethoxybenzene, 1,2,3-trimethoxybenzene, 1,2,4-trimethoxybenzene, 1,3,5-trimethoxybenzene , 1,2,3,4-tetramethoxybenzene, 1,2,3,5-tetramethoxybenzene, 1,2,4,5-tetramethoxybenzene, 1-methoxy-2-methylbenzene, 1-methoxy-3-methylbenzene, 1-methoxy-4-methylbenzene, 1-methoxy-2-ethylbenzene, 1-methoxy-3-ethylbenzene, 1-methoxy-4-ethylbenzene, 1-methoxy-2-propylbenzene, 1-methoxy-3-propylbenzene, 1-methoxy-4-propylbenzene, ethoxybenzene, 1-ethoxy-2-methoxybenzene, 1-ethoxy- 3-methoxybenzene, 1,2-diethoxybenzene, 1,3-diethoxybenzene, 1,4-diethoxybenzene, 1,2,4-triethoxybenzene, 1,3,5-triethoxy Benzene, 1-ethoxy-2-methylbenzene, 1-ethoxy-3-methylbenzene, 1-ethoxy-4-methylbenzene, (1-methoxyethyl)benzene, (2-methoxyethyl)benzene, (2-methoxy)ethoxybenzene, 1-methoxy-2-(methoxymethoxy)benzene, 1-(diethoxymethyl)-4-methoxybenzene, propoxybenzene, 1,3-dimethyl-2 -One or more compounds selected from the group consisting of propoxybenzene, 1-methoxy-4-propoxybenzene, 1,3-dipropoxybenzene, phenoxyethanol, etc., and the alkali hydroxide is sodium hydroxide, potassium hydroxide, and calcium hydroxide. , lithium hydroxide, magnesium hydroxide, ammonium hydroxide, tetraalkyl ammonium hydroxide, and combinations thereof.
본 발명의 일 실시예에 있어서, 상기 해중합 시 온도는 10℃ 내지 100℃ 일 수 있다.In one embodiment of the present invention, the temperature during depolymerization may be 10°C to 100°C.
또한, 해중합 반응 후의 반응 생성물로부터 고액 분리를 실시하는 1차 여과 단계를 추가적으로 수행할 수 있으며, 상기 1차 여과를 통하여 얻어진 여과 케이크에 물을 가하여 단량체 제품을 물로 용해시켜 분리 여과하는 2차 여과 단계가 더 수행될 수 있고, 상기 2차 여과 과정에 사용하는 물에는 단량체 제품 내 존재하는 모노알킬테레프탈레이트의 몰수와 동일한 몰수 또는 그 이상의 알칼리 수산화물이 포함될 수 있다.In addition, a primary filtration step of separating solid and liquid from the reaction product after the depolymerization reaction can be additionally performed, and a secondary filtration step of separating and filtering the monomer product by adding water to the filter cake obtained through the primary filtration to dissolve the monomer product in water. may be further performed, and the water used in the secondary filtration process may contain alkali hydroxide in the same number of moles as the number of moles of monoalkyl terephthalate present in the monomer product or more.
또한 본 발명의 일 실시예에 있어서, 해중합된 고분자의 단량체를 회수하기 위해 단량체를 포함하는 수용액에 산을 가하여 염으로 침전시키는 단계를 더 포함하는 것을 특징으로 할 수 있다.In addition, in one embodiment of the present invention, in order to recover the monomers of the depolymerized polymer, the step of adding an acid to the aqueous solution containing the monomers to precipitate them as a salt may be further included.
또한 본 발명은 상기 산을 가한 후 여액으로부터 발생하는 침전물을 분리한 후 건조과정을 통해 고순도의 테레프탈산을 회수하는 단계를 더 포함하는 것을 특징으로 할 수 있다.In addition, the present invention may further include the step of separating the precipitate generated from the filtrate after adding the acid and then recovering high-purity terephthalic acid through a drying process.
또한 본 발명은 (1) 양성자 공여체 작용기를 갖지 않으면서 하나 이상의 알콕시 작용기를 가진 방향족 화합물; (2) 하나 이상의 알코올 작용기를 가진 화합물; 및 (3) 알칼리 수산화물;이 포함된 것을 특징으로 하는, 에스테르 작용기를 포함하는 고분자 해중합용 조성물을 제공한다.Additionally, the present invention provides (1) an aromatic compound having at least one alkoxy functional group but not having a proton donor functional group; (2) compounds with one or more alcohol functional groups; and (3) an alkali hydroxide. It provides a composition for polymer depolymerization containing an ester functional group.
상기 본 발명 조성물에서 양성자 공여체 작용기를 갖지 않으면서 하나 이상의 알콕시 작용기를 가진 방향족 화합물과 하나 이상의 알코올 작용기를 가진 화합물의 중량비는 20:1 내지 1:20 인 것을 특징으로 할 수 있다.In the composition of the present invention, the weight ratio of the aromatic compound having at least one alkoxy functional group without having a proton donor functional group and the compound having at least one alcohol functional group may be 20:1 to 1:20.
본 발명에서는 고온, 고압의 반응조건을 사용하지 않고도 알칼리 수산화물을 반응물로 첨가하는 에스테르 작용기를 포함하는 고분자의 해중합 방법을 제공한다.The present invention provides a method for depolymerization of a polymer containing an ester functional group by adding an alkali hydroxide as a reactant without using high temperature and high pressure reaction conditions.
본 발명에 따르면, 유기용매가 혼합된 반응 용매, 즉 알코올과 알콕시 작용기를 가진 방향족 화합물로 구성된 액상 혼합물을 에스테르 작용기를 포함하는 고분자의 해중합에 적용함에 따라 반응의 활성화에너지 장벽을 낮추어 반응속도를 크게 증진할 수 있으며, 구성 용매의 비점 이하의 저온에서 2시간 이내에 에스테르 작용기를 포함하는 고분자의 완전한 분해와 테레프탈레이트 단량체를 고수율로 전환할 수 있다.According to the present invention, by applying a reaction solvent mixed with an organic solvent, that is, a liquid mixture consisting of an alcohol and an aromatic compound with an alkoxy functional group, to the depolymerization of a polymer containing an ester functional group, the activation energy barrier of the reaction is lowered and the reaction rate is greatly increased. It is possible to completely decompose polymers containing ester functional groups and convert terephthalate monomers in high yield within 2 hours at low temperatures below the boiling point of the constituent solvent.
본 발명에 따르면 사용하는 알콕시 작용기를 가진 방향족 화합물은 염료나 안료와 같이 고분자와 강한 상호작용을 갖도록 설계된 물질을 고분자의 단량체화 과정에서 쉽게 용해와 분리가 가능하여, 기존 재활용이 어려웠던 유색 폐플라스틱으로부터 테레프탈레이트 단량체를 고순도로 제조할 수 있다.According to the present invention, the aromatic compound with an alkoxy functional group used can easily dissolve and separate materials designed to have a strong interaction with polymers, such as dyes or pigments, during the monomerization process of the polymer, thereby removing colored waste plastics that were previously difficult to recycle. Terephthalate monomer can be produced with high purity.
본 발명에서 사용하는 알콕시 작용기를 가진 방향족 화합물은 자연이나 인공적으로 대규모 합성이 가능한 것들이며, 대부분 자연에서 짧은 주기로 생분해되는 것들이므로 친환경적인 조업 조건을 제공할 수 있다. 또한, 고분자의 해중합에 있어 인체나 환경에 유해성이 없거나 낮은 친환경 물질들이 용매로 사용되고, 폐플라스틱의 해중합을 통해 동일한 소재를 재생산하기 위해 보편적으로 활용되는 원료인 테레프탈산을 직접 제조할 수 있으므로, 환경친화적이고 경제적인 에스테르 작용기를 포함하는 고분자의 해중합 방법, 재생 단량체의 제조 방법 및 이를 위한 생산공정의 설계 방법을 제공할 수 있다.The aromatic compounds with an alkoxy functional group used in the present invention can be synthesized on a large scale naturally or artificially, and most of them are biodegradable in nature in a short cycle, so they can provide environmentally friendly operating conditions. In addition, in the depolymerization of polymers, eco-friendly materials with no or low hazard to the human body or the environment are used as solvents, and terephthalic acid, a raw material commonly used to reproduce the same material, can be directly manufactured through depolymerization of waste plastic, making it environmentally friendly. It is possible to provide an economical method of depolymerization of a polymer containing an ester functional group, a method of producing a regenerated monomer, and a method of designing a production process therefor.
본 발명에 따른 에스테르 작용기를 포함하는 고분자의 해중합 방법은 공정이 단순하며, 상대적으로 저온에서 해중합이 가능하고 고수율의 단량체를 얻을 수 있어서 매우 효과적이고 효율적인 폐플라스틱의 화학적 재활용 방법을 제공할 수 있다. 또한, 이론적으로 소재의 무한 반복 사용이 가능한 재생 단량체의 상업적 생산이 가능하여 플라스틱 순환경제 구현에 기여할 수 있으며, 해중합 반응, 제품 정제, 재중합이 함께 연속적으로 구성될 수 있으므로, 기존 고분자 중합설비에 대해 별도의 재투자나 설비 변경 없이 재생 고분자를 대규모로 생산할 수 있는 통합 화학공정의 구축이 가능하다.The method for depolymerization of a polymer containing an ester functional group according to the present invention has a simple process, enables depolymerization at a relatively low temperature, and can obtain a high yield of monomer, providing a very effective and efficient chemical recycling method for waste plastic. . In addition, theoretically, it is possible to commercially produce recycled monomers that can be used indefinitely, contributing to the realization of a circular economy for plastics. Since depolymerization reaction, product purification, and repolymerization can be performed continuously together, it can be used in existing polymer polymerization facilities. It is possible to build an integrated chemical process that can produce recycled polymers on a large scale without separate reinvestment or facility changes.
도 1은 본 발명의 해중합 반응에 의한 PET 분해 반응경로를 나타낸 것이다.Figure 1 shows the PET decomposition reaction path by the depolymerization reaction of the present invention.
도 2는 에탄올-아니솔 혼합용매를 적용한 유색 폴리에스테르 고분자의 해중합 후 배출되는 용매와 테레프탈산 제품을 나타낸 것이다.Figure 2 shows the solvent and terephthalic acid product discharged after depolymerization of colored polyester polymer using an ethanol-anisole mixed solvent.
다른 식으로 정의하지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless otherwise defined, all technical and scientific terms used in this specification have the same meaning as commonly understood by a person skilled in the art to which the present invention pertains. In general, the nomenclature used herein is well known and commonly used in the art.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.Throughout the specification of the present application, when a part "includes" a certain component, this means that it may further include other components rather than excluding other components unless specifically stated to the contrary.
본 발명의 에스테르 작용기를 포함하는 고분자의 해중합 방법은 (1) 양성자 공여체 작용기를 갖지 않으면서 하나 이상의 알콕시 작용기를 가진 방향족 화합물; (2) 하나 이상의 알코올 작용기를 가진 화합물; 및 (3) 알칼리 수산화물이 포함된 혼합물을 에스테르 작용기를 포함하는 고분자와 접촉시켜 해중합 하는 것을 특징으로 한다. 상기 혼합물에서 (1)의 알콕시 작용기를 가진 방향족 화합물은 알콕시 작용기를 가지면서 양성자 공여체 작용기를 갖지 않는 것이다. 상기 양성자 공여체 작용기의 예로서는, 하이드록시 작용기나 카르복실산 작용기와 같은 양성자(H+)를 제공하는 작용기를 들 수 있다. (2)의 알코올 작용기를 가진 화합물은 (3)의 알칼리 수산화물을 용해하는 용매의 역할도 가진다.The method for depolymerizing a polymer containing an ester functional group of the present invention includes (1) an aromatic compound having at least one alkoxy functional group but not having a proton donor functional group; (2) compounds with one or more alcohol functional groups; and (3) depolymerizing the mixture containing the alkali hydroxide by contacting it with a polymer containing an ester functional group. In the above mixture, the aromatic compound having an alkoxy functional group of (1) has an alkoxy functional group but does not have a proton donor functional group. Examples of the proton donor functional group include functional groups that provide protons (H + ), such as hydroxy functional groups and carboxylic acid functional groups. The compound with the alcohol functional group in (2) also serves as a solvent to dissolve the alkali hydroxide in (3).
또한, 본 발명은 전환된 단량체를 수득하는 과정에서 반응에 사용된 용매와 미반응물(에스테르 작용기를 포함하는 고분자 및 알칼리 수산화물)은 여과와 같이 간단한 물리적 분리방법에 의해 회수 및 재사용이 가능하고, 해중합에 사용된 알콕시 작용기를 가진 용매는 분리과정에서 테레프탈레이트 작용기가 이물질들과 갖는 강한 상호작용을 무력화하기 때문에 이물질 제거를 위한 추출제로써의 효과를 발휘할 수 있다. 이로부터 고순도, 고수율의 테레프탈산을 최종 단량체로 수득할 수 있다.In addition, in the present invention, in the process of obtaining the converted monomer, the solvent used in the reaction and unreacted products (polymer and alkali hydroxide containing an ester functional group) can be recovered and reused by a simple physical separation method such as filtration, and depolymerization. The solvent with an alkoxy functional group used in can be effective as an extractant for removing foreign substances because it neutralizes the strong interaction that the terephthalate functional group has with foreign substances during the separation process. From this, high purity and high yield of terephthalic acid can be obtained as the final monomer.
본 발명의 방법은 에스테르 작용기를 포함하는 고분자의 해중합에 유용하며, 여기서 에스테르 작용기를 포함하는 고분자는 예컨대 폴리에틸렌, 고밀도 폴리에틸렌, 저밀도 폴리에틸렌, 폴리프로필렌 또는 이의 조합을 포함하나 이에 한정되지 않는 다른 고분자와 혼합된 형태일 수 있으며, 여러 형태의 유ㆍ무기 이물질이 포함된 형태일 수 있다. The method of the present invention is useful for the depolymerization of polymers containing ester functional groups, wherein the polymers containing ester functional groups are mixed with other polymers, including but not limited to, for example, polyethylene, high-density polyethylene, low-density polyethylene, polypropylene, or combinations thereof. It may be in a form containing various types of organic and inorganic foreign substances.
또한, 에스테르 작용기를 포함하는 고분자는 디카르복실산과 디올(디알코올)이 출발 물질로 사용되어 탈수에 의한 연속적 축중합에 의해 생성된 것이나 반복 또는 임의의 위치에 다수의 에스테르 결합 구조를 갖는 것일 수 있으며, 여기서 디카르복실산은 나프탈렌 디카르복실산, 디페닐디카르복실산, 디페닐 에테르 디카르복실산, 디페닐설폰디카르복실산, 디페녹시에탄디카르복실산, 숙신산, 아디프산, 세바크산, 아젤라산, 데칸디카르복실산, 시클로헥산디카르복실산, 트리멜리트산, 피로멜리트산 및 이의 조합으로 이루어진 군에서 선택되고, 디알콜은 트리메틸렌글리콜, 1,2-프로판디올, 테트라메틸렌글리콜, 네오펜틸글리콜, 헥사메틸렌글리콜, 데칸메틸렌글리콜, 도데카메틸렌글리콜, 1,4-시클로헥산디메탄올, 디에틸렌글리콜, 트리에틸렌글리콜, 테트라에틸렌글리콜, 폴리에틸렌글리콜, 디프로필렌글리콜, 트리프로필렌글리콜, 테트라프로필렌글리콜, 폴리프로필렌글리콜, 디(테트라메틸렌)글리콜, 트리(테트라메틸렌)글리콜, 폴리테트라메틸렌글리콜, 펜타에리스리톨, 2,2-비스(4-β-히드록시에톡시페닐)프로판 및 이의 조합으로 이루어진 군에서 선택될 수 있다.In addition, polymers containing ester functional groups may be those produced by continuous condensation polymerization by dehydration using dicarboxylic acid and diol (dialcohol) as starting materials, or may have multiple ester bond structures at repeated or arbitrary positions. Here, the dicarboxylic acids include naphthalene dicarboxylic acid, diphenyl dicarboxylic acid, diphenyl ether dicarboxylic acid, diphenyl sulfone dicarboxylic acid, diphenoxyethane dicarboxylic acid, succinic acid, and adipic acid. , sebacic acid, azelaic acid, decanedicarboxylic acid, cyclohexanedicarboxylic acid, trimellitic acid, pyromellitic acid, and combinations thereof, and the dialcohol is trimethylene glycol, 1,2-propane. Diol, tetramethylene glycol, neopentyl glycol, hexamethylene glycol, decane methylene glycol, dodecamethylene glycol, 1,4-cyclohexanedimethanol, diethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, dipropylene glycol. , tripropylene glycol, tetrapropylene glycol, polypropylene glycol, di(tetramethylene) glycol, tri(tetramethylene) glycol, polytetramethylene glycol, pentaerythritol, 2,2-bis(4-β-hydroxyethoxyphenyl) ) It may be selected from the group consisting of propane and combinations thereof.
상기 에스테르 작용기를 포함하는 고분자의 예로써, 폴리에틸렌 테레프탈레이트(PET), 폴리글리콜라이드 또는 폴리글리콜산(PGA), 폴리락트산(PLA), 폴리카프로락톤(PCL), 폴리히드록시알카노에이트(PHA), 폴리히드록시부티레이트(PHB), 폴리에틸렌 아디페이트(PEA), 폴리부틸렌 숙시네이트(PBS), 폴리(3-히드록시부티레이트-코-3-히드록시발러레이트)(PHBV), 폴리부틸렌 테레프탈레이트(PBT), 폴리트리메틸렌 테레프탈레이트(PTT), 폴리에틸렌 나프탈레이트(PEN), 벡트란 및 이의 조합에서 선택될 수 있다.Examples of polymers containing the ester functional group include polyethylene terephthalate (PET), polyglycolide or polyglycolic acid (PGA), polylactic acid (PLA), polycaprolactone (PCL), and polyhydroxyalkanoate (PHA). ), polyhydroxybutyrate (PHB), polyethylene adipate (PEA), polybutylene succinate (PBS), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), polybutylene It may be selected from terephthalate (PBT), polytrimethylene terephthalate (PTT), polyethylene naphthalate (PEN), Vectran, and combinations thereof.
바람직하게는 상기 에스테르 작용기를 포함하는 고분자는 폴리에틸렌 테레프탈레이트이며, 이때 상기 고분자 제조를 위한 출발 물질은 테레프탈산 또는 이의 염, 및 에틸렌글리콜일 수 있다.Preferably, the polymer containing the ester functional group is polyethylene terephthalate, and in this case, the starting material for producing the polymer may be terephthalic acid or a salt thereof, and ethylene glycol.
본 발명에 사용되는 에스테르 작용기를 포함하는 고분자는 순수한 상태가 아닌, 여러 불순물이 포함된 상태일 수 있다. 예로써, 에스테르 작용기를 포함하는 고분자 외에, 병뚜껑, 접착제, 종이, 잔여 액체, 먼지, 색상을 표현하기 위한 유ㆍ무기 소재 (예. 염료나 안료) 또는 이의 조합을 포함하나 이에 한정되지 않는 잔해의 혼합물이 해중합의 원료로 사용될 수 있다.The polymer containing an ester functional group used in the present invention may not be pure but may contain various impurities. Examples include, but are not limited to, polymers containing ester functional groups, bottle caps, adhesives, paper, residual liquid, dust, organic and inorganic materials for color (e.g. dyes or pigments), or combinations thereof. A mixture of can be used as a raw material for depolymerization.
본 발명에 따른 에스테르 작용기를 포함하는 고분자를 해중합 하는 방법에 있어서, 초기 투입하는 고분자 원료의 질량은 해중합을 위해 가하는, 양성자 공여체 작용기를 갖지 않으면서 하나 이상의 알콕시 작용기를 가진 방향족 화합물과 하나 이상의 알코올 작용기를 가진 화합물이 혼합된 혼합용매 질량의 1 내지 100%의 비율로 조정할 수 있으나, 너무 적은 양의 고분자 원료를 투입할 경우 생산성과 경제성 확보가 어려울 수 있고, 너무 많은 양을 투입할 경우 물질전달이 제한되어 반응의 속도가 현저히 낮아지는 문제점이 발생할 수 있다.In the method of depolymerizing a polymer containing an ester functional group according to the present invention, the mass of the polymer raw material initially added is the aromatic compound having at least one alkoxy functional group and at least one alcohol functional group without a proton donor functional group, which are added for depolymerization. It can be adjusted to a ratio of 1 to 100% of the mass of the mixed solvent in which the compound with Due to limitations, a problem may arise where the reaction speed is significantly lowered.
본 발명을 따른 에스테르 작용기를 포함하는 고분자를 해중합하는 방법에 있어서, 상기 혼합용매는 상기 (1) 양성자 공여체 작용기를 갖지 않으면서 하나 이상의 알콕시 작용기를 가진 방향족 화합물과, 상기 (2) 하나 이상의 알코올 작용기를 가진 화합물이 혼합된 것으로, 알코올 작용기를 가진 화합물은 일부가 알코올리시스의 반응에 참여할 수 있으나 대부분 알칼리 분해 반응을 위한 반응 매개체 역할을 하며, 알콕시 작용기를 가진 화합물은 해중합 반응에 직접 반응물로 참여하지 않으나 알칼리 수산화물 또는 이로부터 유도되는 다른 형태의 음이온의 에스테르 결합에 대한 친핵성 공격을 원활하게 하는 공용매로 사용되며, 해중합 반응속도가 향상되는 특성이 발현될 수 있다.In the method for depolymerizing a polymer containing an ester functional group according to the present invention, the mixed solvent includes (1) an aromatic compound having at least one alkoxy functional group but not having a proton donor functional group, and (2) at least one alcohol functional group. It is a mixture of compounds with an alcohol functional group. Some of the compounds with an alcohol functional group can participate in the alcoholesis reaction, but most serve as a reaction medium for the alkaline decomposition reaction, and compounds with an alkoxy functional group directly participate as a reactant in the depolymerization reaction. However, it is used as a co-solvent to facilitate nucleophilic attack on the ester bond of alkali hydroxide or other types of anions derived therefrom, and can exhibit the property of improving the depolymerization reaction rate.
상기 양성자 공여체 작용기를 갖지 않으면서 알콕시 작용기를 갖는 화합물은 최소 한 개의 방향족 고리를 가지며, 방향족 고리를 구성하는 탄화수소의 탄소에 결합된 수소 중 최소한 한 개 이상이 알콕시 작용기 또는 이와 연결된 탄소와 결합된 형태의 유기화합물로써 하이드록시 작용기 및 카복실산 작용기와 같이 양성자를 제공할 수 있는 작용기가 화합물 구조에 포함되지 않는 것으로, 구체적으로는 메톡시벤젠, 1,2-디메톡시벤젠, 1,3-디메톡시벤젠, 1,4-디메톡시벤젠, 1,2,3-트리메톡시벤젠, 1,2,4-트리메톡시벤젠, 1,3,5-트리메톡시벤젠, 1,2,3,4-테트라메톡시벤젠, 1,2,3,5-테트라메톡시벤젠, 1,2,4,5-테트라메톡시벤젠, 1-메톡시-2-메틸벤젠, 1-메톡시-3-메틸벤젠, 1-메톡시-4-메틸벤젠, 1-메톡시-2-에틸벤젠, 1-메톡시-3-에틸벤젠, 1-메톡시-4-에틸벤젠, 1-메톡시-2-프로필벤젠, 1-메톡시-3-프로필벤젠, 1-메톡시-4-프로필벤젠, 에톡시벤젠, 1-에톡시-2-메톡시벤젠, 1-에톡시-3-메톡시벤젠, 1,2-디에톡시벤젠, 1,3-디에톡시벤젠, 1,4-디에톡시벤젠, 1,2,4-트리에톡시벤젠, 1,3,5-트리에톡시벤젠, 1-에톡시-2-메틸벤젠, 1-에톡시-3-메틸벤젠, 1-에톡시-4-메틸벤젠, (1-메톡시에틸)벤젠, (2-메톡시에틸)벤젠, (2-메톡시)에톡시벤젠, 1-메톡시-2-(메톡시메톡시)벤젠, 1-(디에톡시메틸)-4-메톡시벤젠, 프로폭시벤젠, 1,3-디메틸-2-프로폭시벤젠, 1-메톡시-4-프로폭시벤젠, 1,3-디프로폭시벤젠, 페녹시에탄올 등으로 이루어진 군에서 선택된 하나 이상의 화합물이 사용될 수 있다.The compound having an alkoxy functional group but not having a proton donor functional group has at least one aromatic ring, and at least one of the hydrogens bonded to the carbon of the hydrocarbon constituting the aromatic ring is bonded to the alkoxy functional group or the carbon connected thereto. It is an organic compound that does not contain functional groups that can provide protons, such as hydroxyl functional groups and carboxylic acid functional groups, in the compound structure, specifically methoxybenzene, 1,2-dimethoxybenzene, and 1,3-dimethoxybenzene. , 1,4-dimethoxybenzene, 1,2,3-trimethoxybenzene, 1,2,4-trimethoxybenzene, 1,3,5-trimethoxybenzene, 1,2,3,4- Tetramethoxybenzene, 1,2,3,5-tetramethoxybenzene, 1,2,4,5-tetramethoxybenzene, 1-methoxy-2-methylbenzene, 1-methoxy-3-methylbenzene , 1-methoxy-4-methylbenzene, 1-methoxy-2-ethylbenzene, 1-methoxy-3-ethylbenzene, 1-methoxy-4-ethylbenzene, 1-methoxy-2-propylbenzene , 1-methoxy-3-propylbenzene, 1-methoxy-4-propylbenzene, ethoxybenzene, 1-ethoxy-2-methoxybenzene, 1-ethoxy-3-methoxybenzene, 1,2 -diethoxybenzene, 1,3-diethoxybenzene, 1,4-diethoxybenzene, 1,2,4-triethoxybenzene, 1,3,5-triethoxybenzene, 1-ethoxy-2- Methylbenzene, 1-ethoxy-3-methylbenzene, 1-ethoxy-4-methylbenzene, (1-methoxyethyl)benzene, (2-methoxyethyl)benzene, (2-methoxy)ethoxybenzene , 1-methoxy-2-(methoxymethoxy)benzene, 1-(diethoxymethyl)-4-methoxybenzene, propoxybenzene, 1,3-dimethyl-2-propoxybenzene, 1-methoxy One or more compounds selected from the group consisting of -4-propoxybenzene, 1,3-dipropoxybenzene, phenoxyethanol, etc. may be used.
상기 알코올 작용기를 가진 화합물은 직쇄형 1차 알코올일 수 있으며, 알칼리 수산화물이 높은 용해도를 가질 수 있는 알코올, 예로써, 메탄올이나 에탄올이 더 바람직할 수 있으나, 탄소수가 3 이상인 직쇄형 1차 알코올, 예로써 프로판올과 부탄올 등에서 선택된 하나 이상의 알코올이 사용될 수 있다.The compound having the alcohol functional group may be a straight-chain primary alcohol, and an alcohol that can have high solubility in alkali hydroxide, such as methanol or ethanol, may be more preferable, but a straight-chain primary alcohol with 3 or more carbon atoms may be used. For example, one or more alcohols selected from propanol, butanol, etc. may be used.
본 발명에서 해중합을 수행하기 위한 반응 용매로 상기 양성자 공여체 작용기를 갖지 않으면서 하나 이상의 알콕시 작용기를 갖는 방향족 화합물 중에서 선택된 1종 이상과 상기 알코올 작용기를 갖는 화합물 중에서 선택된 1종 이상을 모두 포함하는 혼합 용매를 사용하는 것이 발명의 특징 중의 하나이다.The reaction solvent for performing depolymerization in the present invention is a mixed solvent containing both at least one selected from aromatic compounds having at least one alkoxy functional group and not having the proton donor functional group and at least one selected from compounds having the alcohol functional group. The use of is one of the characteristics of the invention.
상기 혼합 용매에서 알콕시 작용기를 갖는 방향족 화합물과 알코올 화합물은 중량비로 1:20 내지 20:1이며, 바람직하게는 2:1 내지 1:2이다.In the mixed solvent, the weight ratio of the aromatic compound and the alcohol compound having an alkoxy functional group is 1:20 to 20:1, preferably 2:1 to 1:2.
본 발명에서 해중합을 수행하기 위해 첨가하는 알칼리 수산화물은 알칼리 금속 수산화물, 알칼리 토금속 수산화물, 및 수산화암모늄 및 이의 조합으로 이루어진 군에서 선택될 수 있다. 예로써, 수산화나트륨, 수산화칼륨, 수산화칼슘, 수산화리튬, 수산화마그네슘, 수산화암모늄, 테트라알킬 수산화암모늄 및 이의 조합으로 이루어진 군에서 선택될 수 있다. 바람직하게는 상기 알칼리 수산화물은 수산화나트륨, 수산화칼륨 또는 이의 조합일 수 있다. The alkali hydroxide added to perform depolymerization in the present invention may be selected from the group consisting of alkali metal hydroxide, alkaline earth metal hydroxide, ammonium hydroxide, and combinations thereof. For example, it may be selected from the group consisting of sodium hydroxide, potassium hydroxide, calcium hydroxide, lithium hydroxide, magnesium hydroxide, ammonium hydroxide, tetraalkyl ammonium hydroxide, and combinations thereof. Preferably, the alkaline hydroxide may be sodium hydroxide, potassium hydroxide, or a combination thereof.
상기 알칼리 수산화물은 에스테르 작용기를 포함하는 고분자의 반복단위체 몰 수 대비 0.1배 내지 100배의 범위, 바람직하게는 2배 내지 50배의 범위로 사용될 수 있다.The alkaline hydroxide can be used in an amount of 0.1 to 100 times, preferably 2 to 50 times, the number of moles of repeating units of the polymer containing an ester functional group.
상기 에스테르 작용기를 포함하는 고분자의 해중합은, 10℃ 내지 100℃의 온도 범위, 바람직하게는 30℃ 내지 65℃에서 진행될 수 있으며, 알칼리 수산화물이 반응물의 일부로 참여하여, 고분자가 빠르게 단량체로 분해되는 알칼리 분해 반응경로를 따라 해중합이 진행될 수 있다.The depolymerization of the polymer containing the ester functional group may be carried out in a temperature range of 10°C to 100°C, preferably 30°C to 65°C, and alkali hydroxide participates as part of the reactant, causing the polymer to rapidly decompose into monomers. Depolymerization may proceed along the decomposition reaction path.
상기 에스테르 작용기를 포함하는 고분자의 해중합은, 추가적인 열원의 투입 없이 해중합 반응을 위한 혼합 용액이 제조되는 과정에서 발생하는 혼합열, 용해열 등에 의해 단열된 반응기 내에서 실시될 수도 있다. 또한, 본 발명에 따른 일부 구체 예에서 외부 열원을 공급하면서 해중합을 실시할 수도 있다.The depolymerization of the polymer containing the ester functional group may be carried out in an insulated reactor due to the heat of mixing, heat of dissolution, etc. generated in the process of preparing the mixed solution for the depolymerization reaction without inputting an additional heat source. Additionally, in some embodiments according to the present invention, depolymerization may be performed while supplying an external heat source.
또한, 본 발명의 고분자의 해중합 방법은 적용된 알코올의 비점 이하에서 해중합이 진행되기 때문에, 양의 압력이 발생하지 않을 수 있으나, 일부 저비점 알코올 용매가 사용될 경우 1.0기압 내지 1.5기압의 낮은 절대압력 하에서 반응을 수행할 수 있다.In addition, in the polymer depolymerization method of the present invention, since depolymerization proceeds below the boiling point of the applied alcohol, positive pressure may not be generated, but when some low-boiling alcohol solvents are used, the reaction occurs under a low absolute pressure of 1.0 to 1.5 atm. can be performed.
본 발명을 따른 에스테르 작용기를 포함하는 고분자를 해중합하는 방법에 있어서, 해중합 반응의 시간은 적용된 고분자의 양과 형태에 따라 달라질 수 있으나, 빠른 해중합을 수행하기 위해 상기 반응물의 구성 및 조건을 적용하였을 때, 초기 반응시간 2시간 이내에 매우 빠른 해중합 반응속도에 의해 지배적인 고분자 분해가 발생하며, 반응 4시간 경과 후에는 초기 고분자 질량의 거의 대부분이 단량체 형태로 분해될 수 있다. 본 발명에 따르는 해중합 반응의 시간을 조절함에 있어서, 충분히 고분자 분해가 일어나도록 반응 개시 후 0.5시간 내지 12시간까지 해중합을 진행할 수 있으나, 경제성 및 생산성을 확보하기 위해서는 0.5시간 내지 4시간의 범위에서 해중합을 수행하는 것이 바람직할 수 있다.In the method of depolymerizing a polymer containing an ester functional group according to the present invention, the time of the depolymerization reaction may vary depending on the amount and form of the applied polymer, but when the composition and conditions of the reactants are applied to perform rapid depolymerization, Within 2 hours of the initial reaction time, dominant polymer decomposition occurs due to a very fast depolymerization reaction rate, and after 4 hours of reaction, almost all of the initial polymer mass can be decomposed into monomer form. In controlling the time of the depolymerization reaction according to the present invention, depolymerization may be performed from 0.5 to 12 hours after the start of the reaction to ensure sufficient polymer decomposition, but to ensure economic efficiency and productivity, depolymerization may be performed within the range of 0.5 to 4 hours. It may be desirable to perform.
본 발명을 따른 에스테르 작용기를 포함하는 고분자를 해중합하는 방법에 있어서, 해중합 반응 종료 후 반응 생성물로부터 고액 분리를 실시하는 1차 여과 단계가 추가적으로 수행될 수 있다. 반응 생성물 중 고상으로 존재하는 것은 미반응 고분자와 해중합에 의해 생성된 테레프탈레이트 알칼리염 등일 수 있으며, 액상으로 존재하는 것은 양성자 공여체 작용기를 갖지 않으면서 하나 이상의 알콕시 작용기를 가진 방향족 화합물과 하나 이상의 알코올 작용기를 가진 화합물이 서로 혼합된 반응 용매, 그리고 상기 반응 용매에 용해된 상태인 미반응 알칼리 수산화물 및 상기 반응 용매 중 주로 알콕시 작용기를 가진 방향족 화합물에 의해 분배된 색상을 띠는 이물질일 수 있다.In the method of depolymerizing a polymer containing an ester functional group according to the present invention, a primary filtration step of separating solid and liquid from the reaction product may be additionally performed after completion of the depolymerization reaction. Among the reaction products, those that exist in the solid phase may be unreacted polymers and alkali salts of terephthalate produced by depolymerization, while those that exist in the liquid phase may include aromatic compounds that do not have a proton donor functional group but have one or more alkoxy functional groups and one or more alcohol functional groups. It may be a reaction solvent in which a compound having a mixture is mixed with each other, an unreacted alkali hydroxide dissolved in the reaction solvent, and a color-distributed foreign substance mainly distributed by an aromatic compound having an alkoxy functional group in the reaction solvent.
1차 여과 단계에서, 분해 이전 고분자에 포함되어 있던 색을 띠는 소수성 유기 이물질의 전부 또는 일부는 여액으로 회수되는 반응 용매 내 알콕시 작용기를 가진 방향족 화합물과 친화성이 높아 여액에 함께 배출되므로, 여과 케이크에는 상기 소수성 유기 이물질의 잔류량이 크게 감소하게 된다.In the first filtration step, all or part of the colored hydrophobic organic contaminants contained in the polymer before decomposition are discharged together with the filtrate due to their high affinity with aromatic compounds with alkoxy functional groups in the reaction solvent recovered in the filtrate. The residual amount of the hydrophobic organic contaminants in the cake is greatly reduced.
상기 여액으로 분리된 색을 띠는 유기 이물질을 포함하는 용액은 증류나 증발과 같은 정제 과정을 추가하여 정제된 반응 용매를 분리하여 상기 해중합 반응에 재투입할 수 있으며, 흡착 등을 통하여 이물질을 제거한 뒤 혹은 이물질을 제거하지 않고 해중합 반응 중 소모되었거나 손실된 미반응 알칼리 수산화물과 반응 용매를 보충하여 해중합을 실시하기 위해 새로운 반응의 원료로 재투입될 수 있다. The solution containing colored organic foreign substances separated from the filtrate can be re-introduced into the depolymerization reaction by adding a purification process such as distillation or evaporation to separate the purified reaction solvent, and removing the foreign substances through adsorption, etc. It can be reintroduced as a raw material for a new reaction to perform depolymerization by replenishing the unreacted alkali hydroxide and reaction solvent consumed or lost during the depolymerization reaction without removing foreign substances.
상기 1차 여과 과정에서, 고상으로 분리된 여과 케이크에는 해중합 반응으로부터 제조되는 테레프탈산 알칼리염, 모노알킬테레프탈레이트 알칼리염, 그리고 미반응된 고분자의 혼합물로 구성되므로 상기 여과 케이크로부터 테레프탈산 염을 회수하여야 한다. In the primary filtration process, the filtration cake separated into the solid phase is composed of a mixture of alkali terephthalate, monoalkyl terephthalate alkali salt, and unreacted polymers prepared from depolymerization, so the terephthalic acid salt must be recovered from the filtration cake. .
상기 단량체 제조를 위한 중간체인 테레프탈산 알칼리염과 모노알킬테레프탈레이트 알칼리염은 물에 용해되는 것들이므로, 1차 여과된 여과 케이크에 물을 가하여 원위치에서 여과하거나, 외부에 별도로 준비된 여과기를 사용하여 용해 후 여과기를 통과시켜 테레프탈산 알칼리염과 모노알킬테레프탈레이트 알칼리염을 고체 상태의 여과 케이크로부터 분리하는 2차 여과를 통하여 테레프탈산 염을 회수할 수 있다. 상기 2차 여과 과정에서 여과 케이크로 분리되는 것은 미반응 고분자 물질이므로, 해중합 공정의 새로운 반응 원료로 재투입할 수도 있다.Since the intermediates for producing the monomer, alkali terephthalate and alkali monoalkyl terephthalate, are soluble in water, they can be filtered in situ by adding water to the primary filtered filter cake, or dissolved using a separately prepared filter outside. The terephthalic acid salt can be recovered through secondary filtration in which the alkali salt of terephthalate and the alkali monoalkyl terephthalate are separated from the solid filter cake by passing through a filter. Since what is separated into the filtration cake in the secondary filtration process is unreacted polymer material, it can be reintroduced as a new reaction raw material in the depolymerization process.
해중합 반응에 의해 제조된 생성물 내에 모노알킬테레프탈레이트가 포함되어 있는 경우, 이는 상기 2차 여과 과정에서 여액에 존재한다. 상기 모노알킬테레프탈레이트의 알킬은 다시 알칼리염으로 치환하여 최종적으로 테레프탈산 알칼리염으로 제조할 수 있다. 이를 위하여 상기 2차 여과 과정에서 사용되는 물 또는 여과 후 여액에 모노알킬테레프탈레이트의 몰수와 동일한 몰수의 알칼리 수산화물을 추가하여 모노알킬테레프탈레이트 알칼리염을 테레프탈산 알칼리염으로 전환하는 단계가 더 포함될 수 있다. If monoalkyl terephthalate is included in the product prepared by the depolymerization reaction, it is present in the filtrate during the secondary filtration process. The alkyl of the monoalkyl terephthalate can be substituted with an alkali salt to finally produce an alkali salt of terephthalic acid. To this end, the step of converting the monoalkyl terephthalate alkali salt into the terephthalic acid alkali salt by adding a mole number of alkali hydroxide equal to the number of moles of monoalkyl terephthalate to the water used in the secondary filtration process or the filtrate after filtration may be further included. .
이때 사용하는 알칼리 수산화물의 양은 모노알킬테레프탈레이트 알칼리염의 몰 수 이상으로 가할 수 있으나, 당량의 1.0 배 내지 1.2 배를 투입하는 것이 바람직하며, 모노알킬테레프탈레이트 알칼리염의 분해 반응은 빠르고 비가역적인 형태로 진행되므로 물질의 낭비를 줄이기 위해서는 당량의 1.0 배를 투입하는 것이 가장 바람직하다. At this time, the amount of alkali hydroxide used can be more than the number of moles of monoalkyl terephthalate alkali salt, but it is preferable to add 1.0 to 1.2 times the equivalent amount, and the decomposition reaction of monoalkyl terephthalate alkali salt proceeds quickly and irreversibly. Therefore, in order to reduce material waste, it is most desirable to add 1.0 times the equivalent amount.
상기 모노알킬테레프탈레이트 알칼리염을 테레프탈산 알칼리염으로 전환하는 과정에서, 알칼리 수산화물이 추가된 수용액을 상온 이상의 온도에서 5분 내지 30분 동안 잘 혼합하여 고분자 해중합으로부터 발생한 단량체 제품을 모두 테레프탈산 알칼리염으로 전환하게 한다.In the process of converting the monoalkyl terephthalate alkali salt to terephthalic acid alkali salt, the aqueous solution to which alkali hydroxide is added is mixed well for 5 to 30 minutes at a temperature above room temperature to convert all monomer products generated from polymer depolymerization into terephthalic acid alkali salt. Let it be done.
상기 여과 과정에서 여액으로 얻어진 생성물은 물에 쉽게 용해되는 성분(알코올, 테레프탈산 알칼리염 등)들이 주로 구성된 수용액성 용액이며, 색을 띠는 유기 이물질의 일부가 포함되어 있을 수 있다. 상기 유기 이물질을 여액으로부터 추가로 분리하기 위해서는 알콕시 작용기를 가진 방향족 화합물을 상기 여액에 추가하여 유기 이물질을 상기 알콕시 작용기를 가지는 유기상으로 분배되도록 유도하여 색을 띠는 유기 이물질을 한번 더 분리할 수도 있다. 이때, 상기 여액으로 알콕시 작용기를 가진 방향족 화합물을 더 추가하면 열역학적으로 불안정한 상이 생성될 수 있다. 이물질의 원할한 재분배를 위해 30분 이내 짧은 시간 동안 교반 후 방치하면 유기상과 수용액상으로 분리를 유도할 수 있으며, 분리된 유기상에는 유기 이물질이 농축되므로 상기 유기 이물질을 추가로 분리할 수 있게 된다.The product obtained as a filtrate in the filtration process is an aqueous solution mainly composed of components that are easily soluble in water (alcohol, alkali salt of terephthalate, etc.), and may contain some colored organic foreign substances. In order to further separate the organic impurities from the filtrate, an aromatic compound having an alkoxy functional group may be added to the filtrate to induce distribution of the organic impurities into the organic phase having the alkoxy functional group, thereby separating the colored organic impurities once more. . At this time, if an aromatic compound having an alkoxy functional group is added to the filtrate, a thermodynamically unstable phase may be created. In order to smoothly redistribute the foreign substances, stirring for a short period of time within 30 minutes and then leaving it to stand can induce separation into an organic phase and an aqueous solution phase. Since the organic foreign substances are concentrated in the separated organic phase, the organic foreign substances can be further separated.
본 발명은 상기 해중합 반응 생성물의 분리 과정에서 얻어진 테레프탈산 알칼리염 형태의 제품을 포함하는 수용액에 산을 추가하여 테레프탈산으로 전환하여 침전시킨 후 물리적으로 분리하는 단계를 더 포함할 수 있다. 상기 제조된 수용액으로부터 테레프탈산을 분리(예로써, 여과) 후 세정과 건조과정을 통해 테레프탈산의 순도를 더욱 향상시킬 수 있다.The present invention may further include the step of adding acid to an aqueous solution containing the alkali salt product of terephthalic acid obtained in the process of separating the depolymerization reaction product to convert it into terephthalic acid and precipitate it, followed by physical separation. The purity of terephthalic acid can be further improved through separation (e.g., filtration) of terephthalic acid from the prepared aqueous solution, followed by washing and drying.
테레프탈산 염을 테레프탈산으로 전환시키기 위해 첨가되는 산은 유기산 또는 무기산을 사용할 수 있으나, 수용액 상에서 이온화가 잘 일어나 양성자(H+)를 쉽게 제공할 수 있는 무기산, 예컨대, 염산(HCl), 질산(HNO3), 인산(H3PO4) 및 황산(H2SO4) 중에서 선택되는 하나 또는 그 이상으로 이루어진 것을 사용하는 것이 바람직할 수 있다.The acid added to convert terephthalic acid salt to terephthalic acid can be an organic acid or an inorganic acid. However, inorganic acids that ionize well in aqueous solution and can easily provide protons (H + ), such as hydrochloric acid (HCl) and nitric acid (HNO 3 ) , it may be preferable to use one or more selected from phosphoric acid (H 3 PO 4 ) and sulfuric acid (H 2 SO 4 ).
또한, 상기 단량체 제품은 여과와 같은 방법을 사용하지 않더라도, 원심분리와 같이 다른 형태의 물리적 분리 방법을 적용하여, 상대적으로 밀도가 높은 고형 제품을 반응 혼합물로부터 분리할 수도 있다.In addition, even if the monomer product does not use a method such as filtration, other types of physical separation methods such as centrifugation may be applied to separate the relatively high-density solid product from the reaction mixture.
본 발명의 에스테르 작용기를 포함하는 고분자를 해중합하는 방법에 따라 제조되는 최종 단량체의 전부 또는 일부는 재중합을 위한 원료로 재투입 가능한 수준으로 정제가 이루어진 것이다.All or part of the final monomer produced according to the method for depolymerizing a polymer containing an ester functional group of the present invention has been purified to a level that can be reintroduced as a raw material for repolymerization.
이때, 본원 발명의 에스테르 작용기를 포함하는 고분자의 해중합으로부터 얻어진 단량체는 고분자 합성을 위한 중합 원료로 사용이 가능한 것이며, 상기 단량체는 약 1% 미만의 불순물(w/w)을 함유할 수 있으며, 상기 불순물은 이소프탈산, 프탈산, 4-메틸벤조산, 4-포르밀벤조산과 같은 이종의 유기물이거나 촉매 또는 제조 공정으로부터 부생하는 금속 이물질 중 하나 이상을 포함할 수 있다.At this time, the monomer obtained from the depolymerization of the polymer containing the ester functional group of the present invention can be used as a polymerization raw material for polymer synthesis, and the monomer may contain less than about 1% of impurities (w/w), Impurities may be heterogeneous organic substances such as isophthalic acid, phthalic acid, 4-methylbenzoic acid, and 4-formylbenzoic acid, or may include one or more of metal contaminants that are by-produced from the catalyst or manufacturing process.
또한 본 발명은 상기와 같은 색을 띠는 이물질들을 더욱 제거하여 순도가 향상된 최종 단량체 제품을 제조하는 방법을 제공한다.In addition, the present invention provides a method for producing a final monomer product with improved purity by further removing foreign substances having the above color.
유색의 에스테르 작용기를 포함하는 고분자 등에 포함된 색을 띠는 이물질로서의 염료나 안료 등은 테레프탈레이트 작용기와 강한 상호작용을 갖도록 설계된 소재인 경우가 다수이며, 정제, 회수하는 과정에서 테레프탈레이트 작용기와 착물 형태를 형성하며 하나의 구조체처럼 물질이동이 일어나기 때문에 일반적인 정제방법만으로는 제거가 어려울 수 있다. 즉, 상기에 따른 알콕시 작용기를 가진 화합물 화합물의 염료나 안료와 같은 색을 띠는 이물질들과의 상호작용(π-π 상호작용이나 수소결합력)은 이물질과 테레프탈레이트의 결합력을 약화하는 데 부분적인 효과가 있으나, 더 효과적이고 비가역적으로 이물질을 제품으로 분리하기 위해서는 상기 이물질에 대해 강한 결합력을 갖는 흡착제가 유용할 수 있다. Dyes and pigments, which are colored foreign substances contained in polymers containing colored ester functional groups, are often materials designed to have a strong interaction with the terephthalate functional group, and are complexed with the terephthalate functional group during the purification and recovery process. Because it forms a shape and moves material like a single structure, it can be difficult to remove using general purification methods alone. In other words, the interaction (π-π interaction or hydrogen bonding force) of the compound having an alkoxy functional group with foreign substances of the same color as dyes or pigments partially weakens the binding force between foreign substances and terephthalate. It is effective, but in order to more effectively and irreversibly separate foreign substances into products, an adsorbent with a strong binding force to the foreign substances may be useful.
따라서, 본 발명에서는 상기 흡착제를 이용하여 색을 띠는 이물질을 처리하는 단계가 더 포함된 에스테르 작용기를 포함하는 유색 고분자 화합물의 해중합을 통하여 유색 고분자의 해중합을 통한 단량체 제품을 제조하는 방법을 제공한다.Therefore, the present invention provides a method for producing a monomer product through depolymerization of a colored polymer through depolymerization of a colored polymer compound containing an ester functional group, which further includes the step of treating colored foreign substances using the adsorbent. .
상기 흡착제를 사용한 이물질의 비가역적인 분리는 테레프탈레이트 작용기가 이온 형태로 수용액상에 해리되어 있을 때 가장 효과적으로 적용될 수 있으므로, 산을 가하여 테레프탈레이트 금속염을 테레프탈산으로 전환하기 이전 수용성 여액에 흡착제를 적용하는 것이 가장 적절할 수 있다.Since the irreversible separation of foreign substances using the adsorbent can be most effectively applied when the terephthalate functional group is dissociated in the aqueous solution in ionic form, it is better to apply the adsorbent to the aqueous filtrate before converting the terephthalate metal salt to terephthalic acid by adding acid. This may be most appropriate.
상기 흡착제로는 활성탄 등의 탄소계 흡착제, 플라이 애쉬, 이온교환수지, 및 천연 점토, 벤토나이트 점토, 제올라이트, 카오리나이트, 키토산, 금속 유기 골격체(metal-organic framework, MOF) 등이 있을 수 있으며, 바람직하게는 활성탄을 사용할 수 있다.The adsorbent may include carbon-based adsorbents such as activated carbon, fly ash, ion exchange resin, natural clay, bentonite clay, zeolite, kaolinite, chitosan, metal-organic framework (MOF), etc. Preferably, activated carbon can be used.
본 발명은 또한 (1) 양성자 공여체 작용기를 갖지 않으면서 하나 이상의 알콕시 작용기를 가진 방향족 화합물; (2) 하나 이상의 알코올 작용기를 가진 화합물; 및 (3) 알칼리 수산화물이 포함된 에스테르 작용기를 포함하는 고분자의 해중합을 위한 해중합용 조성물을 제공한다.The present invention also provides (1) aromatic compounds having at least one alkoxy functional group but not having a proton donor functional group; (2) compounds with one or more alcohol functional groups; and (3) a composition for depolymerization of a polymer containing an ester functional group containing an alkali hydroxide.
상기 해중합용 조성물의 각 성분들은 전술한 바와 같으므로 반복 기재는 생략한다.Since each component of the depolymerization composition is the same as described above, repeated description will be omitted.
이하, 실시예, 비교예 및 실험예를 통하여 본 발명 과정의 세부사항을 설명하고자 한다. 이는 본 발명에 관련된 대표적 예시로써, 이것만으로 본 발명의 적용 범위를 제한할 수 없음을 밝히는 바이다.Hereinafter, details of the present invention process will be described through examples, comparative examples, and experimental examples. This is a representative example related to the present invention, and this alone does not limit the scope of application of the present invention.
원료 1 (에스테르 작용기를 포함하고 있는 투명 폐PET 플레이크)Raw material 1 (transparent waste PET flakes containing ester functional groups)
에스테르 작용기를 포함하고 있는 폐고분자 물질로써, 사용 후 배출된 투명 폴리에틸렌 테레프탈레이트(PET) 소재의 병을 세척하고 절단하여 제조된 플레이크 칩을 재생용품 제조업체인 새롬이엔지로부터 공급 받았으며, 과량의 에탄올과 물로 세척, 건조하고, 1제곱센티미터 이하의 면적을 갖는 플레이크 칩만을 원료 1로 준비하였다.As a waste polymer material containing an ester functional group, flake chips manufactured by washing and cutting discarded transparent polyethylene terephthalate (PET) bottles were supplied from Saerom ENG, a recycling product manufacturer, and were processed with excessive amounts of ethanol and water. Washed and dried, only flake chips with an area of 1 square centimeter or less were prepared as raw material 1.
원료 2 (에스테르 작용기를 포함하고 있는 유색 폐PET 플레이크)Raw material 2 (colored waste PET flakes containing ester functional groups)
에스테르 작용기를 포함하고 있는 폐고분자 물질로써, 사용 후 배출된 폴리에틸렌 테레프탈레이트(PET) 소재의 병(유색 포함)을 세척하고 절단하여 제조된 플레이크 칩을 (사)한국플라스틱단일재질협회로부터 공급 받았으며, 과량의 에탄올과 물로 세척, 건조하고, 1제곱센티미터 이하의 면적을 갖는 플레이크 칩만을 원료 2로 준비하였다. 전체 플라스틱 칩 원료에서 색상을 띠는 것의 질량비는 약 56.8%, 투명한 것의 질량비는 약 43.2%이었다.As a waste polymer material containing an ester functional group, flake chips manufactured by washing and cutting discarded polyethylene terephthalate (PET) bottles (including colored ones) were supplied by the Korea Plastics Single Materials Association. After washing and drying with excess ethanol and water, only flake chips with an area of 1 square centimeter or less were prepared as raw material 2. Among all plastic chip raw materials, the mass ratio of colored ones was about 56.8%, and the mass ratio of transparent ones was about 43.2%.
원료 3 (에스테르 작용기를 포함하고 있는 유색 복합소재 고분자)Raw material 3 (colored composite polymer containing ester functional group)
소재 제조 후 자투리로 배출된 모발 형태의 폐고분자 물질을 주현화학으로부터 공급받아 해중합의 유색 복합소재 원료로 사용하였다. 중량비로 폴리에틸렌 테레프탈레이트(PET) 약 63.8%, 폴리부틸렌 테레프탈레이트(PBT) 약 35.4%, 그리고 카본블랙(0.8%)가 착색 소재로 혼합된 검정색 필라멘트 형태의 에스테르 작용기를 포함하고 있는 고분자 소재를 절단하여 한 가닥의 길이가 2센티미터를 넘지 않도록 절단하여 원료 3으로 준비하였다.Waste polymer material in the form of hair, which was discharged as scraps after manufacturing the material, was supplied from Joohyun Chemical and used as a raw material for the colored composite material for depolymerization. A polymer material containing an ester functional group in the form of a black filament mixed by weight of approximately 63.8% polyethylene terephthalate (PET), approximately 35.4% polybutylene terephthalate (PBT), and carbon black (0.8%) as a coloring material. It was cut so that each strand did not exceed 2 centimeters in length, and was prepared as raw material 3.
원료 4 (에스테르 작용기를 포함하고 있는 유색 복합소재 고분자)Raw Material 4 (Colored composite polymer containing ester functional group)
자투리로 배출된 모발 형태의 폐고분자 물질로써, 중량비로 폴리에틸렌 테레프탈레이트(PET) 약 26.1%, 폴리부틸렌 테레프탈레이트(PBT) 약 73.1%, 그리고 카본블랙(0.8%)가 착색 소재로 혼합된 검정색 필라멘트 형태의 에스테르 작용기를 포함하고 있는 고분자 소재를 절단하여 한 가닥의 길이가 2센티미터를 넘지 않도록 절단하여 원료 4로 준비하였다.It is a waste polymer material in the form of hair discharged as scraps, and is black in color with about 26.1% polyethylene terephthalate (PET), 73.1% polybutylene terephthalate (PBT), and carbon black (0.8%) mixed by weight ratio. A polymer material containing a filament-shaped ester functional group was cut so that each strand did not exceed 2 centimeters in length to prepare raw material 4.
비교예 1Comparative Example 1 ::
(a) 에스테르 작용기를 포함하고 있는 고분자의 해중합(a) Depolymerization of polymers containing ester functional groups
원료 1 (투명 PET 플레이크 칩) 약 15.0g을 해중합의 원료로 사용하였으며, 반응 용매로써 무수 에탄올을 사용하였다. 에탄올 120g에 수산화나트륨(NaOH) 12.49g(PET 원료가 갖는 반복단위체 몰수 대비 4배의 몰수)을 가하여 용해한 후, 이를 온도측정을 위한 열전쌍과 액상 시료채취를 위한 테프론 셉텀이 각각 측면 입구에 부싱 타입의 어댑터를 통해 연결되어 있고 외부 오버헤드 교반기에 의해 회전 가능한 임펠러가 장착된 교반봉이 중앙을 통과하도록 테프론 씰이 가운데 입구에 연결된 500mL 3구 플라스크에 투입한 후, PID 온도 제어기에 의해 일정한 온도로 유지될 수 있는 항온조에 위치시켜 반응기 내부의 온도가 60℃에 도달할 때까지 혼합물을 300rpm의 속도로 교반하였다. 반응기 내부의 온도가 안정되었을 때, 준비된 고분자 원료 약 15.0g을 투입하여, 반응을 시작하였다.Approximately 15.0 g of raw material 1 (transparent PET flake chip) was used as a raw material for depolymerization, and absolute ethanol was used as a reaction solvent. After adding and dissolving 12.49 g of sodium hydroxide (NaOH) (4 times the number of moles of repeating units in the PET raw material) to 120 g of ethanol, a thermocouple for temperature measurement and a Teflon septum for collecting liquid samples are installed at the side entrance, respectively, of the bushing type. It is placed in a 500 mL three-necked flask with a Teflon seal connected to the center inlet so that a stirring bar connected through an adapter and equipped with an impeller that can be rotated by an external overhead stirrer passes through the center, and then maintained at a constant temperature by a PID temperature controller. The mixture was stirred at a speed of 300 rpm until the temperature inside the reactor reached 60°C. When the temperature inside the reactor was stabilized, about 15.0 g of the prepared polymer raw material was added and the reaction was started.
(b) 해중합 반응 생성물의 정량분석(b) Quantitative analysis of depolymerization reaction products
30분 또는 1시간 간격으로 액상시료 10mg을 취하여, THF와 이동상 용액(메탄올과 물이 70:30의 부피비로 혼합된 용액)을 사용하여 희석하였으며, 표준시료로 미리 검량된 고성능 액체크로마토그래피(High Performance Liquid Chromatography; HPLC, Younglin YL 3000 with C18 column (250×4.5mm) and UV detector (λ=254nm))를 사용하여 제품별 농도를 정량하였다. HPLC 분석시 이동상으로는 메탄올:물의 부피비가 70:30인 혼합용액을 사용하였으며 총 유량은 0.7 ml/min로 유지하였다. 10 mg of liquid sample was taken at intervals of 30 minutes or 1 hour, diluted using THF and a mobile phase solution (methanol and water mixed at a volume ratio of 70:30), and chromatographed using high-performance liquid chromatography (High The concentration of each product was quantified using Performance Liquid Chromatography; HPLC, Younglin YL 3000 with C18 column (250×4.5mm) and UV detector (λ=254nm). During HPLC analysis, a mixed solution of methanol:water with a volume ratio of 70:30 was used as the mobile phase, and the total flow rate was maintained at 0.7 ml/min.
해중합 반응으로부터 얻어지는 PET의 전환율과 중간 단량체인 모노에틸테레프탈레이트 나트륨염(Sodium mono-ethyl terephthalate; Na-MET)과 테레프탈산 나트륨염(Na2-TPA)의 수율은 다음의 일반화된 수식으로 계산하였다.The conversion rate of PET obtained from the depolymerization reaction and the yield of intermediate monomers, sodium mono-ethyl terephthalate (Na-MET) and sodium terephthalate (Na 2 -TPA), were calculated using the following generalized formula.
PET 전환율 = (Mo- M)/Mo (수식 1) PET conversion rate = (M o - M)/M o (Equation 1)
MAT 알칼리염 수율 = (NMAT / No) × 100% (수식 2)MAT alkaline salt yield = (N MAT / N o ) × 100% (Equation 2)
TPA 알칼리염 수율 = (NTPA / No) × 100% (수식 3)TPA alkaline salt yield = (N TPA / N o ) × 100% (Equation 3)
상기 수식에서 Mo는 초기 투입 고분자의 질량, M은 미반응 고분자의 질량이고, No는 초기 투입 원료 고분자(PET)의 반복단위의 몰 수이고, NMAT와 NTPA는 생성된 모노알킬테레프탈레이트 알칼리염(예. Na-MET)과 테레프탈산 알칼리염(예. Na2-TPA)의 몰 수이다.In the above formula, M o is the mass of the initially input polymer, M is the mass of the unreacted polymer, N o is the number of moles of the repeating unit of the initially input raw material polymer (PET), and N MAT and N TPA are the produced monoalkyl terephthalate It is the number of moles of phthalate alkali salt (e.g. Na-MET) and terephthalic acid alkali salt (e.g. Na 2 -TPA).
(c) 단량체 제품의 분리 및 정제(c) Separation and purification of monomer products
목적하는 반응시간에 도달하면, 반응물을 진공여과기에 바로 옮긴 후 1차 여과를 진행하였다. 여과가 완료되면, 여과액이 담긴 플라스크 용기를 빈 용기로 대체한 후, 2차 여과를 시작하였다. 2차 여과에서는 200ml의 증류수를 가하여 미반응된 PET를 고형물(여과 케이크)로 회수하였다. 미반응 PET를 증발접시에 담아 80℃로 유지되는 진공 건조기로 이동하여 24시간 건조하여 정량하였다. 얻어진 2차 여과액은 30분간 교반한 후, 당량 이상의 염산 수용액을 여액에 가하여 모든 단량체를 테레프탈산으로 전환한 뒤, 4℃ 이하에서 12시간 보관하여 석출된 결정을 세척 및 여과하고, 증발접시에 옮겨 담아 80℃로 유지되는 진공건조기로 이동하여 24시간 건조하여 백색의 제품 약 12.30g을 수득하였다.When the desired reaction time was reached, the reactant was immediately transferred to a vacuum filter and primary filtration was performed. When filtration was completed, the flask container containing the filtrate was replaced with an empty container, and then secondary filtration was started. In the second filtration, 200 ml of distilled water was added to recover unreacted PET as a solid (filtration cake). Unreacted PET was placed in an evaporation dish, moved to a vacuum dryer maintained at 80°C, dried for 24 hours, and then quantified. The obtained secondary filtrate was stirred for 30 minutes, then an equivalent amount of hydrochloric acid aqueous solution was added to the filtrate to convert all monomers into terephthalic acid. Stored at 4°C or lower for 12 hours, the precipitated crystals were washed and filtered, and transferred to an evaporation dish. It was placed in a vacuum dryer maintained at 80°C and dried for 24 hours to obtain about 12.30 g of a white product.
(d) 단량체 제품의 특성분석(d) Characterization of monomer products
얻어진 제품은 1H-NMR, EI-MS 등을 통해 확인한 결과 테레프탈산의 화학구조와 일치하였으며, 검량된 HPLC를 통해 제품의 순도를 결정하였다. 얻어진 제품 일부는 고형 시료로 제조한 후 분광측색계(spectrophotometer; 제조사: Konica Minolta, 모델명: CM-3600A)를 사용하여 고유 색상을 관찰하였다. 최종적으로 얻어진 테레프탈산 약 200mg을 취한 후, 펠렛 제조용 틀(Pike Evacuable KBr Die Kit)과 유압 프레스(Hydraulic Press, Pike CrushIR)를 사용(적용압력: 10톤)하여 13mm의 직경을 갖는 원형 디스크를 제조하였다. 제조된 디스크 시료에 대하여 분광측색계를 사용하여 색공간 좌표값(L* a* b*)을 측정하였다. L* a* b*로 표현되는 값은 국제조명위원회(CIE)에 의해 표준화된 색공간의 좌표값이며, L*는 명도(lightness)를 나타내는 0 (검은색) 내지 100 (흰색)으로 표현되는 수치이고 a*와 b*는 각각 녹색(-128)/빨간색(127) 및 파란색(-128)/노란색(127)의 보색축에 따라 표현되는 수치이다.The obtained product was confirmed through 1 H-NMR, EI-MS, etc. and was consistent with the chemical structure of terephthalic acid, and the purity of the product was determined through calibrated HPLC. Some of the obtained products were manufactured as solid samples and their unique colors were observed using a spectrophotometer (manufacturer: Konica Minolta, model name: CM-3600A). After taking approximately 200 mg of the finally obtained terephthalic acid, a circular disk with a diameter of 13 mm was manufactured using a pellet manufacturing mold (Pike Evacuable KBr Die Kit) and a hydraulic press (Hydraulic Press, Pike CrushIR) (applied pressure: 10 tons). . The color space coordinate values (L* a* b*) of the manufactured disk sample were measured using a spectrophotometer. The values expressed as L* a* b* are coordinate values of the color space standardized by the International Commission on Illumination (CIE), and L* is expressed as 0 (black) to 100 (white) representing lightness. It is a numerical value, and a* and b* are numerical values expressed along the complementary color axes of green (-128)/red (127) and blue (-128)/yellow (127), respectively.
비교예 2Comparative Example 2 ::
반응에 투입한 용매로 에탄올 180g 사용한 것을 제외하고는 비교예 1과 동일한 방법과 절차에 의해 해중합 반응, 해중합 제품의 정량분석, 단량체 제품의 정제 및 특성분석을 실시하였다. 단량체 제조과정을 통해 테레프탈산 약 12.39g을 최종적으로 수득하였다.Depolymerization reaction, quantitative analysis of depolymerization products, and purification and characterization of monomer products were performed using the same methods and procedures as in Comparative Example 1, except that 180 g of ethanol was used as a solvent in the reaction. Through the monomer manufacturing process, approximately 12.39 g of terephthalic acid was finally obtained.
실시예 1:Example 1:
반응에 투입한 용매로써 에탄올만을 사용하지 않고 에탄올 90g과 아니솔 30g이 혼합하여 사용한 것을 제외하고는 비교예 1과 동일한 방법과 절차에 의해 PET의 해중합 반응 및 제품의 정량분석을 실시하였다.PET depolymerization reaction and quantitative analysis of the product were performed using the same method and procedure as in Comparative Example 1, except that instead of using only ethanol as the solvent used in the reaction, a mixture of 90 g of ethanol and 30 g of anisole was used.
해중합 반응을 종료한 후 생성물에 반응 중간체인 Na-MET가 미량 검출되었으며, '(c) 단량체 제품의 분리 및 정제'과정에서 검출된 Na-MET의 동 몰수(본 실시예에서, 초기 고분자의 반복단위체 몰 수 대비 0.013몰의 Na-MET 생성)에 해당하는 수산화나트륨(본 실시예에서는 41mg)을 증류수 100ml에 녹인 용액을 여과 케이크에 가하고 이어 증류수 100ml를 추가로 가하여, 2차 여과를 실시하였으며, 제조된 여액을 30분간 교반한 후, 당량 이상의 염산 수용액을 여액에 가하여 모든 단량체를 테레프탈산으로 전환하였다. 제조된 여액을 비교예 1과 동일한 방법에 의해 재결정화, 세척, 건조하여 백색의 제품 약 12.37g을 수득하였다. 이후 비교예 1과 동일한 방법 및 절차에 따라 제품을 분석하였다.After completing the depolymerization reaction, a trace amount of Na-MET, a reaction intermediate, was detected in the product, and the same mole number of Na-MET detected in the process of '(c) separation and purification of monomer product' (in this example, repetition of the initial polymer A solution of sodium hydroxide (41 mg in this example) corresponding to the production of 0.013 moles of Na-MET relative to the number of moles of monomers dissolved in 100 ml of distilled water was added to the filtration cake, and then an additional 100 ml of distilled water was added to perform secondary filtration. After stirring the prepared filtrate for 30 minutes, an equivalent amount of aqueous hydrochloric acid was added to the filtrate to convert all monomers into terephthalic acid. The prepared filtrate was recrystallized, washed, and dried using the same method as in Comparative Example 1 to obtain about 12.37 g of a white product. Afterwards, the product was analyzed according to the same method and procedure as in Comparative Example 1.
실시예 2:Example 2:
반응에 투입한 용매로 에탄올 90g과 아니솔 90g을 혼합하여 사용한 것을 제외하고는 실시예 1과 동일한 방법과 절차에 의해 해중합 반응, 해중합 제품의 정량분석, 단량체 제품의 정제 및 특성분석을 실시하였다. 단량체 제조과정을 통해 테레프탈산 약 12.39g을 최종적으로 수득하였다.Depolymerization reaction, quantitative analysis of the depolymerization product, and purification and characterization of the monomer product were performed using the same methods and procedures as in Example 1, except that 90 g of ethanol and 90 g of anisole were used as a solvent for the reaction. Through the monomer manufacturing process, approximately 12.39 g of terephthalic acid was finally obtained.
실시예 3:Example 3:
반응에 투입한 용매로 에탄올 90g과 아니솔 180g을 혼합하여 사용한 것을 제외하고는 실시예 1과 동일한 방법과 절차에 의해 해중합 반응, 해중합 제품의 정량분석, 단량체 제품의 정제 및 특성분석을 실시하였다. 단량체 제조과정을 통해 테레프탈산 약 12.56g을 최종적으로 수득하였다.Depolymerization reaction, quantitative analysis of depolymerization products, and purification and characterization of monomer products were performed using the same methods and procedures as in Example 1, except that 90 g of ethanol and 180 g of anisole were used as solvents added to the reaction. Through the monomer preparation process, approximately 12.56 g of terephthalic acid was finally obtained.
비교예 3Comparative Example 3 ::
반응에 투입한 용매로 아니솔 120g만을 사용한 것을 제외하고는 비교예 1과 동일한 방법과 절차에 의해 해중합 반응 및 해중합 제품의 정량분석을 실시하였다. PET가 거의 분해되지 않았으며, 반응물을 정제하였을 때 테레프탈산을 거의 수득할 수 없었다.Quantitative analysis of the depolymerization reaction and depolymerization product was performed using the same method and procedure as in Comparative Example 1, except that only 120 g of anisole was used as the solvent added to the reaction. PET was hardly decomposed, and when the reaction product was purified, little terephthalic acid could be obtained.
실시예 4:Example 4:
반응에 투입한 용매로 에탄올이 아닌 메탄올 90g과 아니솔 90g을 혼합하여 사용한 것을 제외하고는 실시예 1과 동일한 방법과 절차에 의해 해중합 반응, 해중합 제품의 정량분석, 단량체 제품의 정제 및 특성분석을 실시하였다. 단량체 제조과정을 통해 테레프탈산 약 12.48g을 최종적으로 수득하였다.The depolymerization reaction, quantitative analysis of the depolymerization product, and purification and characterization of the monomer product were performed using the same methods and procedures as in Example 1, except that 90 g of methanol and 90 g of anisole, rather than ethanol, were used as a solvent in the reaction. It was carried out. Through the monomer preparation process, approximately 12.48 g of terephthalic acid was finally obtained.
비교예 4:Comparative Example 4:
수산화 나트륨을 반응에 투입하지 않은 것을 제외하고는 실시예 1과 동일한 방법과 절차에 의해 해중합 반응 및 해중합 제품의 정량분석을 실시하였다. PET가 거의 분해되지 않았으며, 반응물을 정제하였을 때 테레프탈산을 거의 수득할 수 없었다.Quantitative analysis of the depolymerization reaction and depolymerization products was performed using the same method and procedure as in Example 1, except that sodium hydroxide was not added to the reaction. PET was hardly decomposed, and when the reaction product was purified, little terephthalic acid could be obtained.
실시예 5:Example 5:
반응에 투입한 수산화나트륨(NaOH)의 양을 고분자의 반복단위체 몰수 대비 0.5의 몰 비율이 되도록 1.56g 가한 것을 제외하고는 실시예 1과 동일한 방법과 절차에 의해 해중합 반응, 해중합 제품의 정량분석, 단량체 제품의 정제 및 특성분석을 실시하였다. 단량체 제조과정을 통해 테레프탈산 약 5.18g을 최종적으로 수득하였다.Depolymerization reaction, quantitative analysis of the depolymerization product, and quantitative analysis of the depolymerization product were performed using the same method and procedure as in Example 1, except that the amount of sodium hydroxide (NaOH) added to the reaction was 1.56 g so that the mole ratio was 0.5 compared to the number of moles of the repeating unit of the polymer. Purification and characterization of the monomer product were performed. Through the monomer manufacturing process, approximately 5.18 g of terephthalic acid was finally obtained.
실시예 6:Example 6:
반응에 투입한 수산화나트륨(NaOH)의 양을 고분자의 반복단위체 몰수 대비 1.0의 몰 비율이 되도록 3.12g 가한 것을 제외하고는 실시예 1과 동일한 방법과 절차에 의해 해중합 반응, 해중합 제품의 정량분석, 단량체 제품의 정제 및 특성분석을 실시하였다. 단량체 제조과정을 통해 테레프탈산 약 9.96g을 최종적으로 수득하였다.Depolymerization reaction, quantitative analysis of the depolymerization product, and quantitative analysis of the depolymerization product were performed using the same method and procedure as in Example 1, except that the amount of sodium hydroxide (NaOH) added to the reaction was 3.12 g so that the molar ratio of 1.0 to the number of moles of the repeating unit of the polymer was added. Purification and characterization of the monomer product were performed. Through the monomer manufacturing process, approximately 9.96 g of terephthalic acid was finally obtained.
실시예 7:Example 7:
반응에 투입한 수산화나트륨(NaOH)의 양을 고분자의 반복단위체 몰수 대비 2.0의 몰 비율(당량)이 되도록 6.24g 가한 것을 제외하고는 실시예 1과 동일한 방법과 절차에 의해 해중합 반응, 해중합 제품의 정량분석, 단량체 제품의 정제 및 특성분석을 실시하였다. 단량체 제조과정을 통해 테레프탈산 약 12.44g을 최종적으로 수득하였다.Depolymerization reaction and depolymerization product were carried out in the same manner and procedure as in Example 1, except that 6.24 g of sodium hydroxide (NaOH) added to the reaction was added to achieve a molar ratio (equivalent) of 2.0 compared to the number of moles of repeating units of the polymer. Quantitative analysis, purification and characterization of monomer products were performed. Through the monomer preparation process, approximately 12.44 g of terephthalic acid was finally obtained.
실시예 8:Example 8:
반응에 투입한 용매로 에탄올 37.5g과 아니솔 30g을 혼합하여 사용한 것과 반응에 투입한 수산화나트륨(NaOH)의 양을 고분자의 반복단위체 몰수 대비 2.0의 몰 비율(당량)이 되도록 6.24g 가한 것을 제외하고는 실시예 1과 동일한 방법과 절차에 의해 해중합 반응, 해중합 제품의 정량분석, 단량체 제품의 정제 및 특성분석을 실시하였다. 단량체 제조과정을 통해 테레프탈산 약 12.64g을 최종적으로 수득하였다.Excluding that 37.5 g of ethanol and 30 g of anisole were mixed as solvents added to the reaction, and that the amount of sodium hydroxide (NaOH) added to the reaction was 6.24 g so that the molar ratio (equivalent) was 2.0 compared to the number of moles of repeating units of the polymer. Then, the depolymerization reaction, quantitative analysis of the depolymerization product, and purification and characterization of the monomer product were performed using the same method and procedure as in Example 1. Through the monomer preparation process, approximately 12.64 g of terephthalic acid was finally obtained.
실시예 9:Example 9:
반응에 투입한 용매로 에탄올 37.5g과 아니솔 30g을 혼합하여 사용한 것과 반응에 투입한 알칼리 수산화물로써 수산화나트륨(NaOH) 대신 수산화칼륨(KOH)을 사용하여 고분자의 반복단위체 몰수 대비 2.0의 몰 비율(당량)이 되도록 8.74g 가한 것을 제외하고는 실시예 1과 동일한 방법과 절차에 의해 해중합 반응, 해중합 제품의 정량분석, 단량체 제품의 정제 및 특성분석을 실시하였다. 단량체 제조과정을 통해 테레프탈산 약 12.70g을 최종적으로 수득하였다.A mixture of 37.5 g of ethanol and 30 g of anisole was used as the solvent used in the reaction, and potassium hydroxide (KOH) was used instead of sodium hydroxide (NaOH) as the alkali hydroxide added to the reaction, with a molar ratio of 2.0 compared to the number of moles of repeating units of the polymer ( Depolymerization reaction, quantitative analysis of the depolymerization product, and purification and characterization of the monomer product were performed using the same method and procedure as in Example 1, except that 8.74 g was added to obtain the equivalent weight. Through the monomer manufacturing process, approximately 12.70 g of terephthalic acid was finally obtained.
실시예 10:Example 10:
해중합 반응의 온도를 30℃로 유지한 것을 제외하고는 실시예 2와 동일한 방법과 절차에 의해 해중합 반응, 해중합 제품의 정량분석, 단량체 제품의 정제 및 특성분석을 실시하였다. 반응은 총 6시간 이상 진행되었으며, 단량체 제조과정을 통해 테레프탈산 약 10.32g을 최종적으로 수득하였다.Depolymerization reaction, quantitative analysis of depolymerization products, and purification and characterization of monomer products were performed using the same methods and procedures as in Example 2, except that the temperature of the depolymerization reaction was maintained at 30°C. The reaction proceeded for a total of more than 6 hours, and approximately 10.32 g of terephthalic acid was finally obtained through the monomer preparation process.
실시예 11:Example 11:
해중합 반응의 온도를 에탄올의 비점에 근접한 온도(78℃)로 유지하고 환류하에서 실시한 것을 제외하고는 실시예 2와 동일한 방법과 절차에 의해 해중합 반응, 해중합 제품의 정량분석, 단량체 제품의 정제 및 특성분석을 실시하였다. 단량체 제조과정을 통해 테레프탈산 약 12.22g을 최종적으로 수득하였다.Depolymerization reaction, quantitative analysis of depolymerization product, purification and characterization of monomer product using the same methods and procedures as in Example 2, except that the temperature of the depolymerization reaction was maintained at a temperature close to the boiling point of ethanol (78°C) and carried out under reflux. Analysis was conducted. Through the monomer preparation process, approximately 12.22 g of terephthalic acid was finally obtained.
실시예 12:Example 12:
반응에 투입한 용매로 에탄올 90g과 아니솔이 아닌 1,2-디메톡시벤젠(DMB) 90g을 혼합하여 사용한 것을 제외하고는 실시예 2과 동일한 방법과 절차에 의해 해중합 반응, 해중합 제품의 정량분석, 단량체 제품의 정제 및 특성분석을 실시하였다. 단량체 제조과정을 통해 테레프탈산 약 12.34g을 최종적으로 수득하였다.Depolymerization reaction, quantitative analysis of the depolymerization product, and quantitative analysis of the depolymerization product using the same method and procedure as in Example 2, except that 90 g of ethanol and 90 g of 1,2-dimethoxybenzene (DMB), rather than anisole, were used as a solvent for the reaction. Purification and characterization of the monomer product were performed. Through the monomer preparation process, approximately 12.34 g of terephthalic acid was finally obtained.
실시예 13:Example 13:
반응에 투입한 용매로 에탄올 90g과 아니솔이 아닌 페네톨(Phenetole or ethoxy benzene) 90g을 혼합하여 사용한 것을 제외하고는 실시예 2과 동일한 방법과 절차에 의해 해중합 반응, 해중합 제품의 정량분석, 단량체 제품의 정제 및 특성분석을 실시하였다. 단량체 제조과정을 통해 테레프탈산 약 12.07g을 최종적으로 수득하였다.Depolymerization reaction, quantitative analysis of depolymerization products, and monomer products were performed using the same methods and procedures as in Example 2, except that 90 g of ethanol and 90 g of phenetole (Phenetole or ethoxy benzene), not anisole, were used as a solvent for the reaction. Purification and characterization were performed. Through the monomer preparation process, approximately 12.07 g of terephthalic acid was finally obtained.
비교예 5:Comparative Example 5:
반응에 투입한 용매로 에탄올 90g과 아니솔이 아닌 구아이아콜(Guaiacol or 2-methoxyphenol) 90g을 혼합하여 사용한 것을 제외하고는 실시예 2과 동일한 방법과 절차에 의해 해중합 반응, 해중합 제품의 정량분석, 단량체 제품의 정제 및 특성분석을 실시하였다. 단량체 제조과정을 통해 테레프탈산을 포함한 미량 고형분 약 0.49g을 최종적으로 수득하였다.Depolymerization reaction, quantitative analysis of the depolymerization product, and quantitative analysis of the depolymerization product using the same method and procedure as in Example 2, except that 90 g of ethanol and 90 g of guaiacol (or 2-methoxyphenol), not anisole, were used as a solvent for the reaction. Purification and characterization of the monomer product were performed. Through the monomer manufacturing process, approximately 0.49 g of trace solids including terephthalic acid were finally obtained.
비교예 6:Comparative Example 6:
원료 1(투명 PET 플레이크 칩) 대신 원료 2(유색 폐PET 플레이크 칩) 약 15.0g을 해중합의 원료로 사용한 것을 제외하고는 비교예 2와 동일한 방법과 절차에 의해 해중합 반응, 해중합 제품의 정량분석, 단량체 제품의 정제 및 특성분석을 실시하였다. 단량체 제조과정을 통해 어두운 색을 띠는 테레프탈산 약 10.96g을 최종적으로 수득하였다.Depolymerization reaction, quantitative analysis of depolymerization product, and quantitative analysis of depolymerization product using the same method and procedure as Comparative Example 2, except that about 15.0 g of raw material 2 (colored waste PET flake chip) was used as the raw material for depolymerization instead of raw material 1 (transparent PET flake chip). Purification and characterization of the monomer product were performed. Through the monomer manufacturing process, approximately 10.96 g of dark-colored terephthalic acid was finally obtained.
실시예 14:Example 14:
원료 1(투명 PET 플레이크 칩) 대신 원료 2(유색 폐PET 플레이크 칩) 약 15.0g을 해중합의 원료로 사용한 것을 제외하고는 실시예 2와 동일한 방법과 절차에 의해 해중합 반응 및 제품의 정량분석을 실시하였다.Depolymerization reaction and quantitative analysis of the product were performed using the same method and procedure as in Example 2, except that about 15.0 g of raw material 2 (colored waste PET flake chip) was used as the raw material for depolymerization instead of raw material 1 (transparent PET flake chip). did.
해중합 반응을 종료한 후 '(c) 단량체 제품의 분리 및 정제'과정에서 2차 여과를 실시하여 제조한 여액에 아니솔 10g을 추가로 가하여 30분간 교반한 후, 아니솔과 유색 이물질이 농축된 유기층을 제거하고, 수용액 상에 당량 이상의 염산 수용액을 더 가하여 모든 단량체를 테레프탈산으로 전환하였다. 제조된 여액을 비교예 1과 동일한 방법으로 재결정화, 세척, 건조를 진행하여 백색에 가까운 제품 약 12.14g을 수득하였다. 이후 비교예 1과 동일한 방법 및 절차에 따라 제품을 분석하였다.After completing the depolymerization reaction, an additional 10 g of anisole was added to the filtrate prepared by performing secondary filtration in the '(c) Separation and purification of monomer product' process and stirred for 30 minutes, and then anisole and colored foreign substances were concentrated. The organic layer was removed, and an equivalent amount of aqueous hydrochloric acid was added to the aqueous solution to convert all monomers into terephthalic acid. The prepared filtrate was recrystallized, washed, and dried in the same manner as in Comparative Example 1 to obtain about 12.14 g of a nearly white product. Afterwards, the product was analyzed according to the same method and procedure as in Comparative Example 1.
비교예 7:Comparative Example 7:
원료 1(투명 PET 플레이크 칩) 대신 원료 3(유색 복합소재 고분자) 약 15.0g을 해중합의 원료로 사용한 것을 제외하고는 비교예 2와 동일한 방법과 절차에 의해 해중합 반응, 해중합 제품의 정량분석, 단량체 제품의 정제 및 특성분석을 실시하였다. 단량체 제조과정을 통해 어두운 색을 띠는 테레프탈산 약 11.91g을 최종적으로 수득하였다.Depolymerization reaction, quantitative analysis of depolymerization product, and monomer were performed using the same method and procedure as Comparative Example 2, except that about 15.0 g of raw material 3 (colored composite polymer) was used as the raw material for depolymerization instead of raw material 1 (transparent PET flake chip). Purification and characterization of the product were performed. Through the monomer manufacturing process, approximately 11.91 g of dark-colored terephthalic acid was finally obtained.
실시예 15:Example 15:
원료 1(투명 PET 플레이크 칩) 대신 원료 3(유색 복합소재 고분자) 약 15.0g을 해중합의 원료로 사용한 것을 제외하고는 실시예 2와 동일한 방법과 절차에 의해 해중합 반응 및 제품의 정량분석을 실시하였다.Depolymerization reaction and quantitative analysis of the product were performed using the same method and procedure as in Example 2, except that about 15.0 g of raw material 3 (colored composite polymer) was used as the raw material for depolymerization instead of raw material 1 (transparent PET flake chip). .
해중합 반응을 종료한 후 '(c) 단량체 제품의 분리 및 정제'과정에서 2차 여과를 실시하여 제조한 여액에 아니솔 10g을 추가로 가하여 30분간 교반한 후, 아니솔과 유색 이물질이 농축된 유기층을 제거하고, 수용액 상에 당량 이상의 염산 수용액을 더 가하여 모든 단량체를 테레프탈산으로 전환하였다. 제조된 여액을 비교예 1과 동일한 방법으로 재결정화, 세척, 건조를 진행하여 백색에 가까운 제품 약 12.04g을 수득하였다. 이후 비교예 1과 동일한 방법 및 절차에 따라 제품을 분석하였다.After completing the depolymerization reaction, an additional 10 g of anisole was added to the filtrate prepared by performing secondary filtration in the '(c) Separation and purification of monomer product' process and stirred for 30 minutes, and then anisole and colored foreign substances were concentrated. The organic layer was removed, and an equivalent amount of aqueous hydrochloric acid was added to the aqueous solution to convert all monomers into terephthalic acid. The prepared filtrate was recrystallized, washed, and dried in the same manner as in Comparative Example 1 to obtain about 12.04 g of a nearly white product. Afterwards, the product was analyzed according to the same method and procedure as in Comparative Example 1.
비교예 8:Comparative Example 8:
원료 1(투명 PET 플레이크 칩) 대신 원료 4(유색 복합소재 고분자) 약 15.0g을 해중합의 원료로 사용한 것을 제외하고는 비교예 2와 동일한 방법과 절차에 의해 해중합 반응, 해중합 제품의 정량분석, 단량체 제품의 정제 및 특성분석을 실시하였다. 단량체 제조과정을 통해 어두운 색을 띠는 테레프탈산 약 10.86g을 최종적으로 수득하였다.Depolymerization reaction, quantitative analysis of depolymerization product, and monomer were performed using the same method and procedure as Comparative Example 2, except that about 15.0 g of raw material 4 (colored composite polymer) was used as the raw material for depolymerization instead of raw material 1 (transparent PET flake chip). Purification and characterization of the product were performed. Through the monomer manufacturing process, approximately 10.86 g of dark-colored terephthalic acid was finally obtained.
실시예 16:Example 16:
원료 1(투명 PET 플레이크 칩) 대신 원료 4(유색 복합소재 고분자) 약 15.0g을 해중합의 원료로 사용한 것을 제외하고는 실시예 2와 동일한 방법과 절차에 의해 해중합 반응 및 제품의 정량분석을 실시하였다.Depolymerization reaction and quantitative analysis of the product were performed using the same method and procedure as in Example 2, except that about 15.0 g of raw material 4 (colored composite polymer) was used as the raw material for depolymerization instead of raw material 1 (transparent PET flake chip). .
해중합 반응을 종료한 후 '(c) 단량체 제품의 분리 및 정제'과정에서 2차 여과를 실시하여 제조한 여액에 아니솔 10g을 추가로 가하여 30분간 교반한 후, 아니솔과 유색 이물질이 농축된 유기층을 제거하고, 수용액 상에 당량 이상의 염산 수용액을 더 가하여 모든 단량체를 테레프탈산으로 전환하였다. 제조된 여액을 비교예 1과 동일한 방법으로 재결정화, 세척, 건조를 진행하여 백색에 가까운 제품 약 11.04g을 수득하였다. 이후 비교예 1과 동일한 방법 및 절차에 따라 제품을 분석하였다.After completing the depolymerization reaction, an additional 10 g of anisole was added to the filtrate prepared by performing secondary filtration in the '(c) Separation and purification of monomer product' process and stirred for 30 minutes, and then anisole and colored foreign substances were concentrated. The organic layer was removed, and an equivalent amount of aqueous hydrochloric acid was added to the aqueous solution to convert all monomers into terephthalic acid. The prepared filtrate was recrystallized, washed, and dried in the same manner as Comparative Example 1 to obtain about 11.04 g of a nearly white product. Afterwards, the product was analyzed according to the same method and procedure as in Comparative Example 1.
실시예 17:Example 17:
실시예 14와 동일한 방법과 절차에 의해 해중합 반응 및 제품의 정량분석을 실시하였으며, '(c) 단량체 제품의 분리 및 정제'과정에서 2차 여과를 실시하여 제조한 여액에 아니솔 10g을 추가로 가하여 30분간 교반한 후, 아니솔과 유색 이물질이 농축된 유기층을 제거하여 얻은 수용액을 활성탄(activated carbon)층에 통과시켰다. 활성탄 층을 통과한 수용액 상에 당량 이상의 염산 수용액을 더 가하여 모든 단량체를 테레프탈산으로 전환하였다. 제조된 여액을 비교예 1과 동일한 방법으로 재결정화, 세척, 건조를 진행하여 순백색에 가까운 제품 약 12.06g을 수득하였다. 이후 비교예 1과 동일한 방법 및 절차에 따라 제품을 분석하였다.Quantitative analysis of the depolymerization reaction and product was performed using the same method and procedure as in Example 14, and 10 g of anisole was added to the filtrate prepared through secondary filtration in the process of '(c) Separation and purification of monomer product'. After adding and stirring for 30 minutes, the organic layer containing concentrated anisole and colored foreign substances was removed, and the resulting aqueous solution was passed through an activated carbon layer. An equivalent amount of aqueous hydrochloric acid was added to the aqueous solution that passed through the activated carbon layer to convert all monomers into terephthalic acid. The prepared filtrate was recrystallized, washed, and dried in the same manner as in Comparative Example 1 to obtain about 12.06 g of a nearly pure white product. Afterwards, the product was analyzed according to the same method and procedure as in Comparative Example 1.
실시예 18:Example 18:
실시예 15와 동일한 방법과 절차에 의해 해중합 반응 및 제품의 정량분석을 실시하였으며, '(c) 단량체 제품의 분리 및 정제'과정에서 2차 여과를 실시하여 제조한 여액에 아니솔 10g을 추가로 가하여 30분간 교반한 후, 아니솔과 유색 이물질이 농축된 유기층을 제거하여 얻은 수용액을 활성탄(activated carbon)층에 통과시켰다. 활성탄 층을 통과한 수용액 상에 당량 이상의 염산 수용액을 더 가하여 모든 단량체를 테레프탈산으로 전환하였다. 제조된 여액을 비교예 1과 동일한 방법으로 재결정화, 세척, 건조를 진행하여 순백색에 가까운 제품 약 12.00g을 수득하였다. 이후 비교예 1과 동일한 방법 및 절차에 따라 제품을 분석하였다.Quantitative analysis of the depolymerization reaction and product was performed using the same method and procedure as in Example 15, and 10 g of anisole was added to the filtrate prepared through secondary filtration in the process of '(c) Separation and purification of monomer product'. After adding and stirring for 30 minutes, the organic layer containing concentrated anisole and colored foreign substances was removed, and the resulting aqueous solution was passed through an activated carbon layer. An equivalent amount of aqueous hydrochloric acid was added to the aqueous solution that passed through the activated carbon layer to convert all monomers into terephthalic acid. The prepared filtrate was recrystallized, washed, and dried in the same manner as in Comparative Example 1 to obtain about 12.00 g of a nearly pure white product. Afterwards, the product was analyzed according to the same method and procedure as in Comparative Example 1.
실시예 19:Example 19:
실시예 16과 동일한 방법과 절차에 의해 해중합 반응 및 제품의 정량분석을 실시하였으며, '(c) 단량체 제품의 분리 및 정제'과정에서 2차 여과를 실시하여 제조한 여액에 아니솔 10g을 추가로 가하여 30분간 교반한 후, 아니솔과 유색 이물질이 농축된 유기층을 제거하여 얻은 수용액을 활성탄(activated carbon)층에 통과시켰다. 활성탄 층을 통과한 수용액 상에 당량 이상의 염산 수용액을 더 가하여 모든 단량체를 테레프탈산으로 전환하였다. 제조된 여액을 비교예 1과 동일한 방법으로 재결정화, 세척, 건조를 진행하여 순백색에 가까운 제품 약 10.98g을 수득하였다. 이후 비교예 1과 동일한 방법 및 절차에 따라 제품을 분석하였다.Quantitative analysis of the depolymerization reaction and product was performed using the same method and procedure as in Example 16, and 10 g of anisole was added to the filtrate prepared through secondary filtration in the process of '(c) Separation and purification of monomer product'. After adding and stirring for 30 minutes, the organic layer containing concentrated anisole and colored foreign substances was removed, and the resulting aqueous solution was passed through an activated carbon layer. An equivalent amount of aqueous hydrochloric acid was added to the aqueous solution that passed through the activated carbon layer to convert all monomers into terephthalic acid. The prepared filtrate was recrystallized, washed, and dried in the same manner as in Comparative Example 1 to obtain about 10.98 g of a nearly pure white product. Afterwards, the product was analyzed according to the same method and procedure as in Comparative Example 1.
선행 특허문헌(대한민국등록특허 10-0983349호)에서는 단일 반응 용매로 탄소수를 달리하는 여러 종류의 알코올을 적용한 알칼리 분해 반응에 대한 예들을 제시하고 있다. 알칼리 수산화물은 유기 용매에 낮은 용해도를 갖는 것이 일반적이나, 선행문헌에서와 같이 많은 양의 알코올을 반응 용매로 사용하게 되면 고분자 분해를 위해 사용하는 과량의 알칼리 수산화물이 균일하게 용해될 수 있는 장점이 있다. 그러나, 알코올만을 반응 용매로 적용하면, 에스테르 작용기를 포함하는 고분자의 해중합은 제한된 반응성을 가지며, 고분자의 분해속도를 빠르게 하거나 전환율을 향상하기 위해서는 적용된 알코올의 비점 이상으로 반응온도를 유지해야 하는 문제점이 있을 수 있다. 이에 따라, 해중합이 수행되는 동안 반응기의 내부 압력이 대기압보다 높게 유지될 수 있으며, 내압성과 기밀성이 요구되는 반응설비의 설계가 필요할 수 있다.Previous patent literature (Korean Patent No. 10-0983349) provides examples of alkaline decomposition reactions using various alcohols with different carbon numbers as a single reaction solvent. Alkaline hydroxides generally have low solubility in organic solvents, but when a large amount of alcohol is used as a reaction solvent as in prior literature, there is an advantage in that excess alkali hydroxides used for polymer decomposition can be uniformly dissolved. . However, when only alcohol is applied as a reaction solvent, the depolymerization of a polymer containing an ester functional group has limited reactivity, and in order to speed up the decomposition rate of the polymer or improve the conversion rate, there is a problem in that the reaction temperature must be maintained above the boiling point of the applied alcohol. There may be. Accordingly, the internal pressure of the reactor may be maintained higher than atmospheric pressure while depolymerization is performed, and it may be necessary to design a reaction facility that requires pressure resistance and airtightness.
다른 선행 특허문헌(대한민국등록특허 10-2223614호)에서는 반응의 속도를 향상하거나 저온에서 해중합을 수행하기 위한 방법으로 직쇄형 1차 알코올에 케톤기, 나이트릴기, 또는 퓨란기가 포함된 극성 비양자성 용매를 더 추가한 혼합 반응 용매 구성을 통한 알칼리 해중합 방법을 게시하고 있다. 해당 선행문헌에서 기재하고 있는, 극성 비양자성 용매는 고분자 기질과의 상호작용에 따른 에스테르 작용기의 이완 및 에스테르 교환반응의 촉진을 통해 분해 속도가 향상될 수 있도록 공용매의 역할을 제공한다. 그러나, 해당 선행문헌의 케톤기를 갖는 공용매의 존재하 과량의 알칼리 수산화물이 반응물로 가해진 상태에서 반응열이 발생하거나 외부에서 열을 가하게 되면, 극성 비양자성 용매 분자의 알돌 축합반응에 의해 색을 갖는 유기 이물질이 생성되어 최종적으로 제조되는 테레프탈산의 순도 및 품질에 악영향을 나타낼 수 있으며, 극성 비양자성 용매가 소모되는 문제점을 초래한다. 또한, 해중합에 의해 생성되는 단량체 제품, 즉 테레프탈산을 고순도로 수득하기 위해서는 높은 에너지를 요구하는 추가적인 정제공정이 필요할 수 있으며, 고순도화 과정에서 제품의 유실이 발생하므로 제품의 최종 수득율에 악영향을 줄 수 있다.In another prior patent document (Korean Patent No. 10-2223614), a polar aprotic solvent containing a ketone group, a nitrile group, or a furan group in a linear primary alcohol was used as a method to improve the reaction rate or perform depolymerization at low temperature. An alkaline depolymerization method through a mixed reaction solvent composition with additional addition is published. The polar aprotic solvent described in the relevant prior literature serves as a cosolvent to improve the decomposition rate through relaxation of the ester functional group and promotion of transesterification reaction due to interaction with the polymer substrate. However, when reaction heat is generated or heat is applied from the outside in the presence of a cosolvent having a ketone group in the relevant prior literature and an excess amount of alkali hydroxide is added as a reactant, colored organic matter is formed by an aldol condensation reaction of polar aprotic solvent molecules. Foreign substances may be generated, which may have a negative effect on the purity and quality of the terephthalic acid that is ultimately produced, and cause the problem of consumption of the polar aprotic solvent. In addition, in order to obtain the monomer product produced by depolymerization, that is, terephthalic acid, with high purity, an additional purification process requiring high energy may be required, and product loss may occur during the high purification process, which may adversely affect the final yield of the product. there is.
한편, 기존 선행문헌들에서는 에스테르 작용기를 포함하고 있는 고분자의 해중합 반응의 성능이나 단량체 제품의 수율을 개선하기 위한 예들을 제시하고 있으나, 제품의 품질을 개선하려는 방법이나 예들을 기재하고 있지 않은 것이 대다수이다. 반면, 관련 기술이 응용되고 있는 폐고분자의 재활용 분야에서는 유ㆍ무기 이물질을 포함하는 원료로 공급되는 것이 더 일반적이며, 제조된 단량체(테레프탈산) 내 잔류하게 되는 불순물들은 재합성되는 소재의 품질에 많은 영향을 미치기 때문에 높은 에너지를 요구하는 여러 단계의 정제과정이 필요할 수 있다.Meanwhile, existing prior literature provides examples for improving the performance of depolymerization reaction of polymers containing ester functional groups or the yield of monomer products, but most of them do not describe methods or examples for improving product quality. am. On the other hand, in the field of waste polymer recycling where related technologies are applied, it is more common to supply raw materials containing organic and inorganic contaminants, and impurities remaining in the manufactured monomer (terephthalic acid) have a significant impact on the quality of the resynthesized material. Because of this, several stages of purification processes requiring high energy may be required.
본 발명에서는 알콕시 작용기를 가진 방향족 화합물과 알코올 작용기를 가진 화합물을 혼합하여 반응을 위한 용매를 구성함으로써, 기존에 알려진 PET의 알칼리 분해를 통한 테레프탈산의 제조 방법과는 전혀 다른 반응 및 정제과정을 통해, 해중합 반응의 성능 향상과 동시에 최종 단량체 제품의 품질을 개선할 수 있다. In the present invention, an aromatic compound with an alkoxy functional group and a compound with an alcohol functional group are mixed to form a solvent for the reaction, through a reaction and purification process that is completely different from the previously known method of producing terephthalic acid through alkaline decomposition of PET. The performance of the depolymerization reaction can be improved while simultaneously improving the quality of the final monomer product.
Figure PCTKR2023008649-appb-img-000001
Figure PCTKR2023008649-appb-img-000001
표 1은 반응 용매의 구성에 따른 PET의 알칼리 분해 반응(반응온도: 60℃)의 특성을 비교하여 관찰한 것이다. 본 발명에서 실시한 모든 해중합의 생성물의 분석에 있어서, 이량체나 올리고머와 같이 불완전하게 분해된 형태의 화합물은 제품분포에서 관찰되지 않았다. 또한, 덜 분해되어 테레프팔레이트 구조체에 에틸렌글리콜이 남아있거나 에스테르 교환반응으로부터 유리된 에틸렌글리콜이 재결합하여 알킬렌 작용기가 에스테르 결합을 이루고 있는 모노(하이드록시에틸렌)메틸테레프탈레이트(HEMT)나 비스(하이드록시에틸렌)테레프탈레이트(BHET)와 같은 단량체는 본 발명의 어떠한 조건에서도 관찰되지 않았다. 따라서, 알칼리 수산화물과 알코올이 반응 용매로 사용되는 PET의 해중합은 도 1의 두 반응경로에 따라 분해가 진행되는 것으로 예상할 수 있다.Table 1 shows a comparative observation of the characteristics of the alkaline decomposition reaction of PET (reaction temperature: 60°C) according to the composition of the reaction solvent. In the analysis of all depolymerization products performed in the present invention, incompletely decomposed compounds such as dimers or oligomers were not observed in the product distribution. In addition, it is less decomposed and ethylene glycol remains in the terephthalate structure, or the ethylene glycol released from the transesterification reaction is recombined to form an ester bond with the alkylene functional group, such as mono(hydroxyethylene)methyl terephthalate (HEMT) or bis. Monomers such as (hydroxyethylene)terephthalate (BHET) were not observed under any of the conditions of the present invention. Therefore, the depolymerization of PET using alkaline hydroxide and alcohol as reaction solvents can be expected to proceed according to the two reaction paths shown in FIG. 1.
에스테르 작용기를 포함하는 고분자의 해중합이 진행됨에 따라, 알칼리 분해 반응(도 1의 반응경로 A)이 진행되어 최종 단량체인 테레프탈산의 알칼리염 형태가 반응 초기부터 지배적으로 생성되었다. 일부 반응의 예에 있어서는 알코올이 반응용매로 사용되면서 알칼리 수산화물이 촉매로써 작용하는 부분적인 알코올리시스 반응(도 1의 반응경로 B)이 진행되어 모노알킬 테레프탈레이트 알칼리염이 반응 중간체로 관찰되었다.As the depolymerization of the polymer containing the ester functional group progressed, the alkaline decomposition reaction (reaction path A in Figure 1) progressed, and the alkali salt form of terephthalic acid, the final monomer, was predominantly produced from the beginning of the reaction. In some examples of reactions, when alcohol was used as a reaction solvent, a partial alcoholesis reaction (reaction path B in Figure 1) in which an alkali hydroxide acted as a catalyst proceeded, and monoalkyl terephthalate alkali salt was observed as a reaction intermediate.
선행문헌(대한민국등록특허 10-0983349호)에서는 과량의 알칼리 수산화물과 1차 알코올을 반응물에 첨가하여 알칼리 분해 반응경로를 통해 에스테르 작용기를 포함하고 있는 고분자를 분해하고, 이로부터 테레프탈산을 제품으로 얻는 해중합 방법을 게시하고 있다. 상기 선행문헌과 유사하게 비교예 1에서는, 반응물로 첨가된 수산화나트륨이 에스테르 결합기를 포함하는 고분자의 반복단위체 몰 수 대비 4배의 과량을 가하고, 고분자의 중량 대비 8배에 해당하는 많은 양의 알코올이 반응 용매로 가해졌다. 반응 초기에는 PET의 알칼리 분해 반응이 빠르게 진행되어 반응 2시간 이내에 전환율이 약 84%를 초과하였으나, 알칼리 수산화물의 일부가 반응에 관여하여 농도가 낮아짐에 따라 반응의 속도는 점차 느려져 반응이 6시간을 경과하여도 완전한 분해가 진행되지 않았다. In the prior literature (Korean Patent No. 10-0983349), an excess of alkali hydroxide and primary alcohol are added to the reactant to decompose the polymer containing an ester functional group through an alkaline decomposition reaction path, and depolymerization is performed to obtain terephthalic acid as a product. Posting the method. Similar to the preceding literature, in Comparative Example 1, the sodium hydroxide added as a reactant was added in an excess amount of 4 times compared to the number of moles of repeating units of the polymer containing an ester bond group, and a large amount of alcohol equivalent to 8 times the weight of the polymer was added. This was added as a reaction solvent. At the beginning of the reaction, the alkaline decomposition reaction of PET proceeded rapidly, and the conversion rate exceeded about 84% within 2 hours of the reaction. However, as some of the alkali hydroxides were involved in the reaction and the concentration decreased, the speed of the reaction gradually slowed down, and the reaction took 6 hours. Even after passage of time, complete decomposition did not proceed.
비교예 1보다 알코올의 첨가량을 1.5배 더 가한 비교예 2에서는 동 몰수의 알칼리 수산화물이 반응에 투입되어 농도가 희석되었음에도 불구하고, 상대적으로 빠른 고분자의 분해가 관찰되었다. 반응 2시간 이내에 알칼리 분해 반응과 부분적인 알코올리시스 반응이 동시에 진행되었으며, 반응 4시간 경과 후에는 고분자의 해중합으로부터 생성될 수 있는 모든 생성물이 알칼리 분해가 연속되었을 때 생성되는 테레프탈산 알칼리염 제품으로 전환되었다. In Comparative Example 2, in which the amount of alcohol added was 1.5 times greater than that of Comparative Example 1, relatively rapid decomposition of the polymer was observed even though the concentration was diluted by adding the same mole number of alkali hydroxide to the reaction. Within 2 hours of reaction, alkali decomposition reaction and partial alcoholesis reaction proceeded simultaneously, and after 4 hours of reaction, all products that could be generated from depolymerization of polymer were converted to alkali salt products of terephthalic acid, which are produced when alkaline decomposition continues. It has been done.
비교예 1과 비교예 2의 결과로부터, 첨가하는 알코올 용매 양을 증가시킴으로써, 에스테르 작용기를 포함하는 고분자의 해중합 반응속도의 향상이 가능함을 알 수 있다. 그러나, 해중합 반응의 속도를 높이기 위해서는 투입된 고분자 원료 대비 과도하게 많은 양의 알코올의 첨가가 필요하며, 이는 처리량 대비 반응기의 부피가 커지고 반응온도 유지를 위해 더 많은 열량이 소모되기 때문에 공정 설비 시 높은 투자비와 높은 운전 비용이 요구될 수 있다.From the results of Comparative Example 1 and Comparative Example 2, it can be seen that the depolymerization reaction rate of a polymer containing an ester functional group can be improved by increasing the amount of alcohol solvent added. However, in order to increase the speed of the depolymerization reaction, an excessively large amount of alcohol must be added compared to the input polymer raw materials. This increases the volume of the reactor compared to the throughput and requires more heat to maintain the reaction temperature, resulting in high investment costs in process equipment. and may require high operating costs.
아니솔은 본 발명의 효과를 설명하기 위해 첨가하게 되는 공용매의 한 종류로써, 알콕시 작용기가 결합된 방향족 화합물 중 가장 간단한 구조를 갖는 것이다. 실시예 1은 비교예 1에서 적용된 알코올의 중량 일부를 아니솔로 대체한 후 해중합 반응을 수행한 것이다. 본 발명에 따른 공용매를 적용한 결과, 반응 초기 고분자의 대부분이 분해되어 반응시간 2시간 경과 후 전환율이 98.4%에 달하였으며, 반응 4시간 후에는 거의 모든 PET가 분해 되었다. 에탄올만을 가하여 수행한 비교예 1에서 구성 에탄올의 1/3만을 아니솔로 대체함에 따라 훨씬 높은 반응성을 보였으며, 해중합으로부터 제조되는 단량체의 수율 또한 매우 높게 관찰되었다. Anisole is a type of cosolvent added to demonstrate the effect of the present invention, and has the simplest structure among aromatic compounds to which an alkoxy functional group is bonded. In Example 1, a depolymerization reaction was performed after replacing part of the weight of the alcohol used in Comparative Example 1 with anisole. As a result of applying the co-solvent according to the present invention, most of the polymer at the beginning of the reaction was decomposed, and the conversion rate reached 98.4% after 2 hours of reaction time, and almost all of the PET was decomposed after 4 hours of reaction. In Comparative Example 1, which was performed by adding only ethanol, much higher reactivity was observed by replacing only 1/3 of the constituent ethanol with anisole, and the yield of monomers prepared from depolymerization was also observed to be very high.
실시예 2 내지 실시예 3은 아니솔의 첨가량을 증가시킨 결과이다. 아니솔의 첨가량을 에탄올의 중량 이상으로 가하면, 반응 초기부터 빠르게 PET의 완전한 분해를 유도할 수 있었으며, 이상적인 값에 가까운 테레프탈산 수율을 얻을 수 있었다. Examples 2 to 3 are the results of increasing the amount of anisole added. When the amount of anisole added exceeded the weight of ethanol, complete decomposition of PET could be induced quickly from the beginning of the reaction, and a terephthalic acid yield close to the ideal value could be obtained.
비교예 3은 알코올을 사용하지 않고 아니솔만을 단독으로 사용하였을 때 PET의 알칼리 분해 반응의 진행 여부를 파악하기 위해 수행한 해중합 실험 결과이다. 반응물로 첨가하게 되는 알칼리 수산화물(여기서는 수산화나트륨)은 아니솔과 같은 유기용매에 매우 낮은 용해도를 가지며, 알코올을 첨가하지 않았을 때에는 반응 혼합물에 고체상으로 남게 되어, 적용된 고분자와 균일한 접촉이 이루어지지 않을 수 있다. 비교예 3의 결과를 참조하면, 에스테르 작용기를 포함하는 고분자의 해중합에 대한 반응성은 반응 초기부터 거의 관찰되지 않았다. 이전의 예들과 동일한 반응조건에 노출하여 장시간(4시간 이상 경과) 방치하였음에도 불구하고 반응혼합물 내 단량체 제품은 극히 미량만 검출되었다. Comparative Example 3 is the result of a depolymerization experiment conducted to determine whether the alkaline decomposition reaction of PET proceeds when anisole is used alone without using alcohol. Alkaline hydroxide (here, sodium hydroxide) added as a reactant has a very low solubility in organic solvents such as anisole, and when alcohol is not added, it remains in a solid state in the reaction mixture, which may prevent uniform contact with the applied polymer. You can. Referring to the results of Comparative Example 3, almost no reactivity for depolymerization of the polymer containing an ester functional group was observed from the beginning of the reaction. Even though it was exposed to the same reaction conditions as the previous examples and left for a long time (more than 4 hours), only a very small amount of monomer product was detected in the reaction mixture.
실시예 4는 실시예 2와 반응물 구성을 동일하게 유지하되 첨가하는 알코올의 종류로 메탄올을 사용한 것이다. 반응 초기에는 메탄올리시스의 빠른 반응속도에 의해 반응 중간생성물인 모노메틸테레프탈레이트 나트륨염(Na-MMT)의 농도가 높게 관찰되었으나, 해중합 반응조건에 2시간을 초과하여 노출하였을 경우, 거의 모든 PET가 분해되어 알칼리 분해 반응의 최종제품인 테레프탈산 알칼리염으로 전환되었다.Example 4 maintained the same reactant composition as Example 2, but used methanol as the type of alcohol added. At the beginning of the reaction, a high concentration of monomethyl terephthalate sodium salt (Na-MMT), a reaction intermediate product, was observed due to the fast reaction rate of methanolysis, but when exposed to depolymerization reaction conditions for more than 2 hours, almost all of PET was removed. was decomposed and converted into alkali terephthalic acid salt, the final product of the alkaline decomposition reaction.
Figure PCTKR2023008649-appb-img-000002
Figure PCTKR2023008649-appb-img-000002
표 2는 알칼리 수산화물의 초기 농도에 따른 PET 해중합 반응(반응온도: 60℃)의 결과를 나타낸 것이다. 고분자의 반복단위체의 몰수 대비 수산화나트륨(NaOH)을 0.0몰 내지 4.0몰의 비율 범위에서 2시간 해중합 반응조건에 노출한 이후 제품의 생성량 변화를 관찰하였다. Table 2 shows the results of PET depolymerization reaction (reaction temperature: 60°C) according to the initial concentration of alkali hydroxide. Changes in product production were observed after exposure to depolymerization reaction conditions for 2 hours in a ratio of 0.0 to 4.0 moles of sodium hydroxide (NaOH) relative to the number of moles of repeating units of the polymer.
알칼리 수산화물을 전혀 가하지 않은 비교예 4의 경우, 알칼리 분해를 위한 염기 반응물 뿐만 아니라 알코올리시스의 촉매적 기능을 발휘하는 소재가 없으므로, 예상한 바와 같이 PET의 분해가 거의 일어나지 않았다. 고분자의 해중합을 통해 완전한 알칼리 분해가 일어나기 위해 가해야 하는 몰수(당량비)는 반복단위체의 몰수 대비 2.0몰에 해당하며, 그 이하의 양을 가한 실시예 5(NaOH 0.5몰)와 실시예 6(NaOH 1.0몰)의 경우에서는, 해중합 반응 2시간 경과 후, 제품 내 반응중간체에 해당하는 모노에틸테레프탈레이트 나트륨(Na-MET)이 테레프탈산 나트륨(Na2-TPA)보다 훨씬 높은 농도로 관찰되었다. 이는 해중합 초기에 부분적인 알코올리시스(도 1의 반응경로 A)에 의한 고분자 분해 반응이 더 지배적으로 진행되었음을 설명하고 있다. In the case of Comparative Example 4, in which no alkali hydroxide was added, there was no base reactant for alkali decomposition as well as a material that exerts a catalytic function for alcoholesis, so almost no decomposition of PET occurred, as expected. The number of moles (equivalence ratio) that must be added to cause complete alkaline decomposition through depolymerization of the polymer corresponds to 2.0 moles compared to the number of moles of the repeating unit, and Example 5 (0.5 mole of NaOH) and Example 6 (NaOH) were added in amounts less than that. In the case of 1.0 mol), after 2 hours of depolymerization reaction, sodium monoethyl terephthalate (Na-MET), which is a reaction intermediate in the product, was observed at a much higher concentration than sodium terephthalate (Na 2 -TPA). This explains that the polymer decomposition reaction due to partial alcohollysis (reaction path A in Figure 1) progressed more dominantly in the early stages of depolymerization.
테레프탈산 제조를 위한 알칼리 분해 반응의 당량만큼 수산화나트륨을 가한 실시예 7의 경우, 알칼리 분해 반응과 부분적 알코올리시스 반응에 의한 PET 해중합이 동시에 진행되었으며(도 1의 반응경로 A와 B), 반응 2시간 후 생성된 제품의 분포에 있어서 Na-MET와 Na2-TPA가 서로 유사한 몰 수로 관찰되었다. In Example 7, in which sodium hydroxide was added in an amount equivalent to the alkaline decomposition reaction for producing terephthalic acid, PET depolymerization by alkali decomposition reaction and partial alcohollysis reaction proceeded simultaneously (reaction paths A and B in FIG. 1), reaction 2 In the distribution of the products produced after time, Na-MET and Na 2 -TPA were observed in similar mole numbers.
한편, 과량의 수산화나트륨을 반응초기부터 가한 실시예 1의 경우, 반응 초기부터 알칼리 분해가 매우 빠르게 진행되었으며, 높은 농도의 Na2-TPA가 해중합 반응으로부터 직접 제조되었다.Meanwhile, in Example 1, in which an excess amount of sodium hydroxide was added from the beginning of the reaction, alkali decomposition proceeded very quickly from the beginning of the reaction, and a high concentration of Na 2 -TPA was produced directly from the depolymerization reaction.
Figure PCTKR2023008649-appb-img-000003
Figure PCTKR2023008649-appb-img-000003
표 3은 알칼리 수산화물의 종류만을 달리하고 그 외의 반응조건은 동일하게 유지하였을 때의 해중합 반응(반응온도: 60℃) 결과를 나타낸 것이다. 해당 실시예들에서는 원료로 사용된 모든 PET 플레이크가 반응용액에 완전히 잠길 수 있는 최소에 가까운 혼합용매의 양을 PET에 가하였으며, 고분자 투입량 대비 알코올은 2.5배, 그리고 알콕시 결합기를 가진 화합물(아니솔)은 2배의 중량이 가해진 것이다. 더불어, 에스테르 작용기를 포함하는 고분자의 반복단위체의 몰수 대비 첨가한 수산화 금속의 양은 알칼리 분해에 의한 테레프탈산 제조에 필요한 당량만큼으로 조절한 것이다. Table 3 shows the results of the depolymerization reaction (reaction temperature: 60°C) when only the type of alkali hydroxide was changed and other reaction conditions were kept the same. In these examples, an amount of mixed solvent close to the minimum that allows all PET flakes used as raw materials to be completely submerged in the reaction solution was added to PET, 2.5 times the amount of alcohol compared to the amount of polymer added, and a compound with an alkoxy bond (anisole). ) is twice the weight applied. In addition, the amount of added metal hydroxide compared to the number of moles of repeating units of the polymer containing an ester functional group was adjusted to the equivalent amount required for producing terephthalic acid by alkaline decomposition.
알칼리 수산화물의 양이온으로 칼륨이 사용된 실시예 9의 경우가 나트륨이 사용된 실시예 8의 경우보다 알코올리시스의 반응속도 및 PET가 분해되는 해중합의 전체 반응속도가 다소 높게 관찰되었으나, 두 경우 모두 해중합 반응 개시 후 2시간 이내에 거의 대부분의 PET가 분해되었으며, 테레프탈산 알칼리염이 높은 수율로 제조되었다.In the case of Example 9 in which potassium was used as the cation of the alkali hydroxide, the reaction rate of alcoholesis and the overall reaction rate of depolymerization in which PET was decomposed were observed to be somewhat higher than in Example 8 in which sodium was used, but in both cases Almost all of the PET was decomposed within 2 hours after the start of the depolymerization reaction, and alkali terephthalic acid was produced in high yield.
Figure PCTKR2023008649-appb-img-000004
Figure PCTKR2023008649-appb-img-000004
표 4는 동일한 조성으로 구성된 반응물을 사용하여 해중합을 수행하되, 반응온도를 달리하였을 때의 PET 해중합 반응의 특성을 관찰한 것이다. Table 4 shows the characteristics of PET depolymerization when depolymerization was performed using reactants of the same composition and the reaction temperature was changed.
비교적 온화한 반응조건(30℃)에서 해중합을 수행한 실시예 10의 결과를 참조하면, 반응이 6시간을 경과했음에도 불구하고 해중합에 따른 PET의 전환율은 84% 이하로 관찰되었다. 한편, 정량분석을 통해 관찰된 제품분포에서는, 테레프탈산 나트륨염의 수율은 67.6%로 얻어졌으며, 부분적 알코올리시스의 반응경로에 의해 생성될 수 있는 모노에틸테레프탈레이트 나트륨염(Na-MET) 또한 16.4% 정도로 적지 않은 수율로 얻어짐을 알 수 있었다. Referring to the results of Example 10, in which depolymerization was performed under relatively mild reaction conditions (30°C), the PET conversion rate due to depolymerization was observed to be less than 84% even though the reaction took 6 hours. Meanwhile, in the product distribution observed through quantitative analysis, the yield of sodium terephthalate salt was 67.6%, and the yield of monoethyl terephthalate sodium salt (Na-MET), which can be produced through the reaction path of partial alcoholesis, was also 16.4%. It was found that it was obtained with a relatively small yield.
반응의 온도를 60℃의 온도 및 알코올의 비점에 가깝게 유지한 실시예 2와 실시예 11의 경우에서는, 2시간 이내의 짧은 반응시간에 노출하였음에도 불구하고 PET가 완전히 분해되거나 대부분 분해되어 매우 높은 반응성을 가지고 해중합이 진행되었음을 알 수 있다. 두 경우 모두 알칼리 분해 반응경로에 따라 지배적인 해중합이 진행되었으며, 결과적으로 높은 농도의 테레프탈산 알칼리염이 생성물로 얻어졌다.In Examples 2 and 11, where the reaction temperature was maintained at 60°C and close to the boiling point of alcohol, PET was completely or mostly decomposed despite exposure to a short reaction time of less than 2 hours, resulting in very high reactivity. It can be seen that depolymerization has progressed. In both cases, dominant depolymerization proceeded according to the alkaline decomposition reaction path, and as a result, a high concentration of alkali salt of terephthalic acid was obtained as a product.
Figure PCTKR2023008649-appb-img-000005
Figure PCTKR2023008649-appb-img-000005
표 5는 공용매의 종류를 변형하여 적용한 에스테르 작용기를 포함하고 있는 고분자의 해중합(반응온도: 60℃) 결과를 나타낸 것이다. 실시예 12에서와 같이 두 개의 메톡시가 방향족 탄소에 결합된 수소에 치환된 1,2-DMB가 알코올과 함께 반응 용매로 적용된 경우, 매우 높은 해중합 성능을 발휘하였으며 동일한 조건에서 공용매로 아니솔을 적용한 실시예 2의 경우와 유사하게 반응초기부터 지배적인 알칼리 분해 반응에 의해 PET가 빠르게 해중합되는 반응 거동을 나타내었다.. Table 5 shows the results of depolymerization (reaction temperature: 60°C) of a polymer containing an ester functional group applied by changing the type of cosolvent. As in Example 12, when 1,2-DMB, in which two methoxy groups were substituted for the hydrogen bonded to the aromatic carbon, was applied as a reaction solvent along with alcohol, it exhibited very high depolymerization performance, and under the same conditions, anisole was used as a cosolvent. Similar to the case of Example 2 where , PET was rapidly depolymerized by the dominant alkali decomposition reaction from the beginning of the reaction.
페네톨이 공용매로 사용된 실시예 13의 경우에서도, 반응 초기부터 높은 반응성을 나타내었으며, 제조된 반응물의 분석결과로부터 구성된 반응계는 테레프탈산 알칼리염에 대한 높은 선택성을 제공하는 것으로 관찰되었다. 탄소수가 둘 이상인 다른 알콕시 작용기가 방향족 고리에 결합된 형태의 화합물을 알칼리 분해 반응의 공용매로 적용한 경우에 있어서도, 알코올만을 사용하여 해중합을 수행한 것들(비교예 1 또는 비교예 2) 대비 훨씬 높은 수준의 반응 성능이 관찰되었다.In Example 13, in which phenetol was used as a cosolvent, high reactivity was observed from the beginning of the reaction, and the reaction system constructed from the analysis results of the prepared reactants was observed to provide high selectivity for alkali terephthalic acid. Even when a compound in which another alkoxy functional group having two or more carbon atoms is bonded to an aromatic ring is applied as a co-solvent for the alkaline decomposition reaction, the depolymerization is much higher than those in which depolymerization was performed using only alcohol (Comparative Example 1 or Comparative Example 2). A level of response performance was observed.
한편, 비교예 5에서처럼 공용매로 알콕시 작용기 이외 양성자 공여체 작용기를 부가적으로 가지고 있는 구아이아콜을 적용하였을 경우는 전혀 다른 결과를 나타내었다. 구아이아콜과 같이 알콕시 작용기뿐만 아니라 하이드록시 작용기를 동시에 가지는 방향족 화합물은 알칼리 수산화물과 접촉하게 되면 산-염기 반응이 진행될 수 있다. 실제로 비교예 5의 혼합용매를 준비하는 과정에서 수산화나트륨을 가했을 때, 매우 빠르게 백색 침전이 발생하였다. 이때 생성된 침전은 구아이아콜 나트륨염(Guaiacol sodium)으로 알칼리 분해를 위해 투입한 수산화나트륨이 해중합 반응 이전부터 소모되는 결과를 초래하였다. 얻어진 혼합용액에 PET를 투입하고 반응의 진행 여부를 관찰하였으나, 알칼리 분해에 의한 해중합 반응은 거의 진행되지 않았다. 이러한 결과는, 알콕시 작용기가 포함되어 있더라도 알칼리 수산화물과 반응을 일으킬 수 있는 양성자 공여체 작용기가 포함된 방향족 화합물은 에스테르 작용기를 가진 고분자의 알칼리 분해 반응을 위한 공용매로써 활용이 어려운 것을 잘 설명하고 있다.On the other hand, as in Comparative Example 5, when guaiacol, which additionally has a proton donor functional group in addition to the alkoxy functional group, was used as a cosolvent, completely different results were obtained. Aromatic compounds such as guaiacol, which have both an alkoxy functional group and a hydroxy functional group, may undergo an acid-base reaction when they come into contact with an alkali hydroxide. In fact, when sodium hydroxide was added in the process of preparing the mixed solvent of Comparative Example 5, white precipitate occurred very quickly. The precipitate formed at this time was Guaiacol sodium, which resulted in the sodium hydroxide added for alkaline decomposition being consumed even before the depolymerization reaction. PET was added to the obtained mixed solution and the progress of the reaction was observed, but the depolymerization reaction due to alkaline decomposition hardly proceeded. These results clearly explain that aromatic compounds containing a proton donor functional group that can react with alkali hydroxide, even if they contain an alkoxy functional group, are difficult to utilize as a co-solvent for the alkaline decomposition reaction of a polymer with an ester functional group.
Figure PCTKR2023008649-appb-img-000006
Figure PCTKR2023008649-appb-img-000006
표 6은 소비 후 배출되는 유색 폐PET 및 폐폴리에스테르 원료에 대해 선행 특허문헌(KR 10-0983349)의 일례 및 본 발명의 해중합 방법에 따라 수행한 알칼리 분해 반응(반응온도: 60℃)의 성능을 비교한 것이다. Table 6 shows the performance of alkaline decomposition reaction (reaction temperature: 60°C) performed on colored waste PET and waste polyester raw materials discharged after consumption according to an example of the prior patent document (KR 10-0983349) and the depolymerization method of the present invention. is compared.
비교예 6은 유색 PET병을 파쇄하여 제조한 원료를 알코올만을 사용하여 해중합을 실시한 결과이다. 동일한 해중합 반응조건을 적용하였으나 무색 PET 원료를 적용하여 해중합을 실시한 비교예 2의 경우와 비교하면, 반응초기의 전환율과 반응의 수율은 거의 흡사하였으나, 반응에 장시간 노출되었을 때, 전환율 및 테레프탈산 알칼리염의 수율이 훨씬 낮게 관찰되었다. 이는 해중합이 진행됨에 따라 고분자 기질 외부로 배출되는 이물질, 특히 색을 띠는 안료나 유기 착색제 등은 알칼리 수산화물과 직접 접촉하였을 때 여러 반응경로들을 통해 알칼리 수산화물을 소모하는 것들이 일반적이다. 반응 초기에는 이물질이 노출되지 않아 큰 영향이 없었으나, 고분자의 분해가 진행됨에 따라 유리되는 이물질들이 해중합 반응성에 직접적이고 실질적인 영향을 미치고 있음을 나타내고 있다. Comparative Example 6 is the result of depolymerization of raw materials prepared by crushing colored PET bottles using only alcohol. Compared to Comparative Example 2, where the same depolymerization reaction conditions were applied but depolymerization was performed using colorless PET raw materials, the conversion rate and yield of the reaction at the beginning of the reaction were almost similar, but when exposed to the reaction for a long time, the conversion rate and the alkali salt of terephthalic acid decreased. Much lower yields were observed. This is because foreign substances discharged outside the polymer matrix as depolymerization progresses, especially colored pigments or organic colorants, generally consume the alkali hydroxide through various reaction pathways when they come into direct contact with the alkali hydroxide. At the beginning of the reaction, foreign substances were not exposed and did not have a significant effect. However, as the decomposition of the polymer progresses, the foreign substances released show that they have a direct and substantial effect on the depolymerization reactivity.
실시예 14는 본 발명에 따라 유기 공용매인 아니솔을 첨가하여 해중합을 진행한 결과이다. 공용매를 첨가하지 않고 알코올만 적용한 비교예 6의 결과와 달리, 고분자 분해가 빠르게 진행되었다. 반응 초기부터 전환율과 테레프탈산 알칼리염의 수율이 90% 이상으로 유지되었으며, 반응 4시간 경과 후 대부분의 PET가 분해되어 매우 높은 수율의 테레프탈산 알칼리염이 검출되었다. 실시예 14와 같이 본 발명에 따른 공용매인 양성자 공여체 작용기를 갖지 않으면서 알콕시 작용기를 가진 화합물을 첨가하면, 상기 알콕시 작용기를 가진 화합물은 소수성이므로, 반응을 위한 용매 혼합물이 소수성을 갖게 되어 수산화나트륨이 불순물에 의해 소모되는 속도가 크게 낮아지게 된다. 또한, 색을 띠는 대부분의 이물질들은 여과 과정에서 제품이 포함된 고형분에 잔류하지 않고, 알코올과 아니솔로 구성된 혼합용매와 함께 배출되었다. 이에 따라, 앞서 비교예 6과 동일한 정제 및 산처리 과정을 적용하였음에도 불구하고, 실시예 14에 따라 해중합을 수행하면 높은 해중합 성능을 유지할 수 있었으며, 제조된 제품은 상대적으로 백색에 가까운 고품질의 테레프탈산이었다. 제조된 테레프탈산 제품은 색을 띠는 이물질의 잔류량이 많지 않은 것을 육안으로도 쉽게 확인할 수 있었다.Example 14 is the result of depolymerization by adding anisole, an organic cosolvent, according to the present invention. Unlike the results of Comparative Example 6, in which only alcohol was applied without adding a cosolvent, polymer decomposition progressed rapidly. From the beginning of the reaction, the conversion rate and yield of alkali terephthalic acid were maintained above 90%, and after 4 hours of reaction, most of the PET was decomposed and a very high yield of alkali terephthalic acid was detected. As in Example 14, when a compound having an alkoxy functional group but not having a proton donor functional group, which is a co-solvent according to the present invention, is added, since the compound with the alkoxy functional group is hydrophobic, the solvent mixture for the reaction becomes hydrophobic, so that sodium hydroxide The rate of consumption by impurities is greatly reduced. In addition, most of the colored foreign substances did not remain in the solid content of the product during the filtration process, but were discharged along with the mixed solvent consisting of alcohol and anisole. Accordingly, despite applying the same purification and acid treatment process as in Comparative Example 6, high depolymerization performance was maintained when depolymerization was performed according to Example 14, and the manufactured product was a high-quality terephthalic acid that was relatively white. . It was easy to see with the naked eye that the manufactured terephthalic acid product did not have a large amount of residual colored foreign substances.
비교예 7과 실시예 15는 화학적 구조와 형태가 다른 에스테르 작용기를 포함하고 있는 복수의 고분자(구성비: PET 63.8%, PBT 35.4%)가 복합체로 구성된 유색 폐플라스틱을 원료로 활용하여 해중합을 실시하되, 용매의 구성을 달리하는 두 경우에 대해 반응 성능을 비교한 것이다. 앞서 비교예 6과 실시예 14의 성능 비교와 유사하게, 단순히 알코올만을 가하여 해중합을 실시한 비교예 7에 비해, 공용매(아니솔)을 가한 후 해중합을 수행한 실시예 15의 경우에서 보다 빠른 속도의 알칼리 분해 반응이 관찰되었으며, 반응 후 얻어지는 테레프탈산 제품의 수율 또한 높게 관찰되었다. 또한, 실시예 15에서는 초기 고분자 내 도입된 유색 이물질(카본블랙을 포함한 염색을 위한 유기첨가물)이 공용매에 의해 대부분 배출/제거되어, 비교예 7의 경우보다 밝은 색의 테레프탈산 제품을 얻을 수 있었다.In Comparative Example 7 and Example 15, depolymerization was performed using colored waste plastic as a raw material, which is a composite of multiple polymers (composition ratio: PET 63.8%, PBT 35.4%) containing ester functional groups with different chemical structures and shapes. , the reaction performance was compared for two cases with different solvent compositions. Similar to the performance comparison of Comparative Example 6 and Example 14, the speed in Example 15 in which depolymerization was performed after adding a co-solvent (anisole) was faster than in Comparative Example 7 in which depolymerization was performed by simply adding alcohol. An alkaline decomposition reaction was observed, and the yield of the terephthalic acid product obtained after the reaction was also observed to be high. In addition, in Example 15, most of the colored foreign substances (organic additives for dyeing, including carbon black) introduced into the initial polymer were discharged/removed by the co-solvent, and a brighter colored terephthalic acid product was obtained than that of Comparative Example 7. .
비교예 8과 실시예 16은, 앞서 비교예 7과 실시예 15에서처럼 복합체 형태의 고분자가 사용되었으나 다른 조성(구성비: PET 26.1%, PBT 73.1%)을 갖는 폐고분자 원료를 사용하여 해중합을 실시한 것들이다. 앞서 다른 원료를 적용하여 성능을 비교한 두 사례와 같이, 알코올만을 반응 용매로 사용하여 해중합을 수행한 경우(비교예 8) 대비 공용매(아니솔)를 가한 후 해중합을 수행한 해중합 반응(실시예 16)에서 보다 빠른 속도의 알칼리 분해 반응이 관찰되었으며, 반응 후 얻어지는 테레프탈산 제품의 수율 또한 높게 관찰되었다.In Comparative Example 8 and Example 16, a polymer in the form of a composite was used as in Comparative Example 7 and Example 15, but depolymerization was performed using waste polymer raw materials with different compositions (composition ratio: PET 26.1%, PBT 73.1%). am. As in the two cases where performance was compared by applying different raw materials, the depolymerization reaction in which depolymerization was performed after adding a cosolvent (anisole) compared to the case where depolymerization was performed using only alcohol as a reaction solvent (Comparative Example 8) In Example 16), a faster rate of alkali decomposition reaction was observed, and the yield of terephthalic acid product obtained after the reaction was also observed to be high.
Figure PCTKR2023008649-appb-img-000007
Figure PCTKR2023008649-appb-img-000007
표 7은 다양한 방법에 의해 제조된 테레프탈산 제품들의 품질을 관찰하기 위해 분광측색계를 사용하여 측정한 각각의 색공간 좌표값(L* a* b*)들을 열거한 것이다. 시약급의 상용 테레프탈산(Sigma-Aldric, 제품번호: 185361)과 앞서 유색 고분자의 해중합 후 정제 및 제품화를 통해 얻어진 최종 제품을 원형 디스크로 제조하여 색상 특성을 관찰하기 위한 분광측색계의 시료로 활용하였다. Table 7 lists each color space coordinate value (L* a* b*) measured using a spectrophotometer to observe the quality of terephthalic acid products manufactured by various methods. Reagent-grade commercial terephthalic acid (Sigma-Aldric, product number: 185361) and the final product obtained through purification and commercialization after depolymerization of colored polymers were manufactured into circular disks and used as samples in a spectrophotometer to observe color characteristics. .
반응의 용매로 알코올만을 사용하여 원료 2 내지 원료 4의 유색 고분자의 해중합을 수행한 비교예 6 내지 비교예 8의 과정으로부터 얻어진 테레프탈산 제품들의 명도값(L*)은 87 내지 89의 범위에서 관찰되었으며, 이는 96.16의 명도값(L*)을 갖는 상용 테레프탈산 대비 훨씬 어두운 색을 띠고 있는 것을 잘 설명하는 결과이다. 알코올 용매의 일부를 본 발명에 따르는 공용매(아니솔)로 대체하여 수행한 유색 고분자의 알칼리 분해 반응(실시예 14 내지 실시예 16)으로부터 제조되는 테레프탈산 제품은 알코올만을 사용하여 실시한 앞서 비교예들의 경우보다 옅은 색을 나타내었으며, 분광측색계를 사용하여 측정한 명도값(L*)은 90 이상의 값을 갖고 있었다. The brightness value (L*) of the terephthalic acid products obtained from the process of Comparative Examples 6 to 8, in which the colored polymers of Raw Materials 2 to 4 were depolymerized using only alcohol as a reaction solvent, was observed in the range of 87 to 89. , This is a result that well explains the fact that it has a much darker color compared to commercial terephthalic acid, which has a brightness value (L*) of 96.16. Terephthalic acid products prepared from the alkaline decomposition reaction of colored polymers (Examples 14 to 16) performed by replacing part of the alcohol solvent with the cosolvent (anisole) according to the present invention were similar to those of the previous comparative examples conducted using only alcohol. The color was lighter than before, and the brightness value (L*) measured using a spectrophotometer was over 90.
본 발명의 실시예들을 따라 수행한 에스테르 작용기를 포함하고 있는 유색 고분자의 해중합 반응 및 제품의 정제 과정에서 배출되는 반응 용매 및 최종 단량체 제품(디스크 시료로 제조)의 제조 흐름 및 형태를 도 2에 나타내었다.The production flow and form of the reaction solvent and final monomer product (prepared as a disk sample) discharged during the depolymerization reaction of the colored polymer containing an ester functional group and the purification process of the product performed according to the embodiments of the present invention are shown in Figure 2. It was.
해중합 이후 반응 생성물로부터 테레프탈산 제품을 분리하기 위한 1차 여과 과정 중 색을 띠는 많은 양의 이물질이 반응에 적용된 용매와 함께 배출되는 것으로 관찰되었다(도 2의 (b)). 따라서, 알코올 대신 공용매를 적용하는 것만으로도 최종제품 내 잔류 이물질 제거에 효과가 있음을 알 수 있다(도 2의 (c)). 이러한 과정 중 배출된 용매에 포함된 이물질들은 사용된 용매보다 높은 비점을 갖는 것들이 일반적이기 때문에 증류나 증발과 같은 단순한 방법에 의해 정제할 수 있으며, 이렇게 정제된 용매는 새로운 해중합 공정에 재투입될 수 있다.During the primary filtration process to separate the terephthalic acid product from the reaction product after depolymerization, a large amount of colored foreign substances were observed to be discharged together with the solvent applied to the reaction (Figure 2(b)). Therefore, it can be seen that simply applying a co-solvent instead of alcohol is effective in removing residual foreign substances in the final product (Figure 2(c)). Foreign substances contained in the solvent discharged during this process generally have a higher boiling point than the solvent used, so they can be purified by simple methods such as distillation or evaporation, and the solvent purified in this way can be reintroduced into a new depolymerization process. there is.
표 7에 나타낸 바와 같이, 실시예 14 내지 실시예 16으로부터 제조된 테레프탈산에 대해 광학적 방법으로 측정한 색특성은 상용 테레프탈산에 대한 것과 비교했을 때, 여전히 명도는 낮게 관찰되었으며 채도의 절대값은 크게 관찰되었다. 본 발명에 따라 공용매를 알코올과 혼합하여 반응용매를 구성하는 방법은 제품 내 불순물을 제거하는 데 효과적이지만 완벽하게 불순물을 제거할 수 있는 수단이 아님을 설명하고 있다. As shown in Table 7, the color characteristics measured by optical methods for the terephthalic acid prepared in Examples 14 to 16 were still observed to have low brightness and a large absolute value of saturation compared to those for commercial terephthalic acid. It has been done. The method of forming a reaction solvent by mixing a co-solvent with alcohol according to the present invention is effective in removing impurities in a product, but is not a means of completely removing impurities.
이를 개선하기 위해 흡착제를 사용하여 반응물 내 잔여 불순물을 제거하되, 기존 정제과정의 방법을 변경하여 적용하였다. 기존의 정제과정에서는 해중합 반응 이후 생성된 제품으로부터 반응용매를 분리하기 위한 1차 여과로 얻어진 여과케이크(고형물)는 최종 제품으로 전환 가능한 테레프탈레이트 알칼리염의 대부분을 포함하고 있으며, 이를 미반응 고분자 또는 원료에 유입된 타고분자 소재(예. PE나 PP등)로부터 분리하기 위해, 물이나 수용액을 사용하여 테레프탈레이트 알칼리염을 용해한 후 여액으로 회수하고, 여액에 산을 가하여 최종제품인 테레프탈산을 침전시키는 방법이 사용될 수 있다.To improve this, residual impurities in the reactant were removed using an adsorbent, but the existing purification method was changed and applied. In the existing purification process, the filter cake (solid material) obtained through primary filtration to separate the reaction solvent from the product produced after the depolymerization reaction contains most of the terephthalate alkali salt that can be converted into the final product, which is converted into unreacted polymer or raw material. In order to separate the terephthalate alkaline salt from the high molecular materials (e.g. PE or PP) that have flowed into the product, the alkali salt of terephthalate is dissolved using water or an aqueous solution, then recovered as a filtrate, and acid is added to the filtrate to precipitate the final product, terephthalic acid. can be used
실시예 17 내지 실시예 19는 실시예 14 내지 실시예 16에 의해 에스테르 작용기를 가진 고분자의 해중합을 실시하고, 정제과정 중 산을 가하여 테레프탈산으로 전환하기 이전 단계에서 흡착제 층을 통과시키는 단계를 더 거쳐서 제조된 제품의 색 특성을 나타낸 것이다. 여기서 흡착제의 한 예로는 활성탄이 사용되었다. 측정된 테레프탈산의 명도값(L*)은 97.6 이상의 매우 높은 값을 기록하였으며, '적색에서 녹색' 그리고 '황색에서 청색'의 상대적 위치를 나타내는 좌표값(a*와 b*) 또한 중립에 매우 가까운 값을 나타내었다(도 2의 (d)). 이러한 이물질 정제의 극단적인 효과는 단순히 흡착제만을 적용하여 얻을 수 없는 결과이다. 본 발명에 따른 해중합 반응의 여과과정에서 공용매가 대부분 물리적으로 분리/제거되더라도, 수용성 여액에 용해되어 존재하는 미량의 알콕시 작용기를 갖는 공용매가 유기 이물질과 테레프탈레이트 알칼리염 간의 상호작용을 약화시킬 수 있으며, 이는 보다 효과적이고 비가역적인 이물질의 흡착을 유도하는 것에 따른 결과로 해석할 수 있다.In Examples 17 to 19, the polymer having an ester functional group was depolymerized according to Examples 14 to 16, and the polymer was further passed through an adsorbent layer before conversion to terephthalic acid by adding acid during the purification process. It shows the color characteristics of the manufactured product. Here, activated carbon was used as an example of the adsorbent. The measured brightness value (L*) of terephthalic acid recorded a very high value of over 97.6, and the coordinate values (a* and b*) indicating the relative positions of 'red to green' and 'yellow to blue' were also very close to neutral. The values are shown (Figure 2(d)). This extreme effect of purifying foreign substances is a result that cannot be achieved by simply applying an adsorbent alone. Even though most of the co-solvent is physically separated/removed during the filtration process of the depolymerization reaction according to the present invention, a trace amount of the co-solvent with an alkoxy functional group present dissolved in the aqueous filtrate may weaken the interaction between organic foreign substances and terephthalate alkali salt. , this can be interpreted as a result of inducing more effective and irreversible adsorption of foreign substances.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당 업계의 통상의 지식을 갖춘 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항 들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As the specific parts of the present invention have been described in detail above, it will be clear to those skilled in the art that these specific techniques are merely preferred embodiments and do not limit the scope of the present invention. will be. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.

Claims (15)

  1. (1) 양성자 공여체 작용기를 갖지 않으면서 하나 이상의 알콕시 작용기를 가진 방향족 화합물; (1) Aromatic compounds having at least one alkoxy functional group but not having a proton donor functional group;
    (2) 하나 이상의 알코올 작용기를 가진 화합물; 및 (2) compounds with one or more alcohol functional groups; and
    (3) 알칼리 수산화물;이 포함된 혼합물을 에스테르 작용기를 포함하는 고분자와 접촉시켜 상기 고분자를 해중합 하는 것을 특징으로 하는, 에스테르 작용기를 포함하는 고분자의 해중합 방법. (3) A method for depolymerizing a polymer containing an ester functional group, characterized in that a mixture containing an alkali hydroxide is brought into contact with a polymer containing an ester functional group to depolymerize the polymer.
  2. 제1항에 있어서,According to paragraph 1,
    상기 혼합물 중 양성자 공여체 작용기를 갖지 않으면서 하나 이상의 알콕시 작용기를 가진 방향족 화합물과 하나 이상의 알코올 작용기를 가진 화합물의 중량비는 20:1 내지 1:20인 것을 특징으로 하는, 에스테르 작용기를 포함하는 고분자의 해중합 방법.Depolymerization of a polymer containing an ester functional group, characterized in that the weight ratio of the aromatic compound having at least one alkoxy functional group and the compound having at least one alcohol functional group without a proton donor functional group in the mixture is 20:1 to 1:20. method.
  3. 제1항에 있어서,According to paragraph 1,
    상기 알코올 작용기를 가진 화합물은 직쇄형 1차 알코올인 것을 특징으로 하는, 에스테르 작용기를 포함하는 고분자의 해중합 방법. A method for depolymerization of a polymer containing an ester functional group, wherein the compound having the alcohol functional group is a straight-chain primary alcohol.
  4. 제1항에 있어서,According to paragraph 1,
    양성자 공여체 작용기를 갖지 않으면서 하나 이상의 알콕시 작용기를 가진 방향족 화합물은 메톡시벤젠, 1,2-디메톡시벤젠, 1,3-디메톡시벤젠, 1,4-디메톡시벤젠, 1,2,3-트리메톡시벤젠, 1,2,4-트리메톡시벤젠, 1,3,5-트리메톡시벤젠, 1,2,3,4-테트라메톡시벤젠, 1,2,3,5-테트라메톡시벤젠, 1,2,4,5-테트라메톡시벤젠, 1-메톡시-2-메틸벤젠, 1-메톡시-3-메틸벤젠, 1-메톡시-4-메틸벤젠, 1-메톡시-2-에틸벤젠, 1-메톡시-3-에틸벤젠, 1-메톡시-4-에틸벤젠, 1-메톡시-2-프로필벤젠, 1-메톡시-3-프로필벤젠, 1-메톡시-4-프로필벤젠, 에톡시벤젠, 1-에톡시-2-메톡시벤젠, 1-에톡시-3-메톡시벤젠, 1,2-디에톡시벤젠, 1,3-디에톡시벤젠, 1,4-디에톡시벤젠, 1,2,4-트리에톡시벤젠, 1,3,5-트리에톡시벤젠, 1-에톡시-2-메틸벤젠, 1-에톡시-3-메틸벤젠, 1-에톡시-4-메틸벤젠, (1-메톡시에틸)벤젠, (2-메톡시에틸)벤젠, (2-메톡시)에톡시벤젠, 1-메톡시-2-(메톡시메톡시)벤젠, 1-(디에톡시메틸)-4-메톡시벤젠, 프로폭시벤젠, 1,3-디메틸-2-프로폭시벤젠, 1-메톡시-4-프로폭시벤젠, 1,3-디프로폭시벤젠, 페녹시에탄올 등으로 이루어진 군에서 선택된 하나 이상의 화합물인 것을 특징으로 하는, 에스테르 작용기를 포함하는 고분자의 해중합 방법.Aromatic compounds having one or more alkoxy functional groups without having a proton donor functional group include methoxybenzene, 1,2-dimethoxybenzene, 1,3-dimethoxybenzene, 1,4-dimethoxybenzene, 1,2,3- Trimethoxybenzene, 1,2,4-trimethoxybenzene, 1,3,5-trimethoxybenzene, 1,2,3,4-tetramethoxybenzene, 1,2,3,5-tetrame Toxybenzene, 1,2,4,5-tetramethoxybenzene, 1-methoxy-2-methylbenzene, 1-methoxy-3-methylbenzene, 1-methoxy-4-methylbenzene, 1-methoxy -2-ethylbenzene, 1-methoxy-3-ethylbenzene, 1-methoxy-4-ethylbenzene, 1-methoxy-2-propylbenzene, 1-methoxy-3-propylbenzene, 1-methoxy -4-propylbenzene, ethoxybenzene, 1-ethoxy-2-methoxybenzene, 1-ethoxy-3-methoxybenzene, 1,2-diethoxybenzene, 1,3-diethoxybenzene, 1, 4-diethoxybenzene, 1,2,4-triethoxybenzene, 1,3,5-triethoxybenzene, 1-ethoxy-2-methylbenzene, 1-ethoxy-3-methylbenzene, 1- Ethoxy-4-methylbenzene, (1-methoxyethyl)benzene, (2-methoxyethyl)benzene, (2-methoxy)ethoxybenzene, 1-methoxy-2-(methoxymethoxy)benzene , 1-(diethoxymethyl)-4-methoxybenzene, propoxybenzene, 1,3-dimethyl-2-propoxybenzene, 1-methoxy-4-propoxybenzene, 1,3-dipropoxybenzene A method for depolymerization of a polymer containing an ester functional group, characterized in that it is one or more compounds selected from the group consisting of phenoxyethanol, etc.
  5. 제1항에 있어서, According to paragraph 1,
    상기 알칼리 수산화물은 수산화나트륨, 수산화칼륨, 수산화칼슘, 수산화리튬, 수산화마그네슘, 수산화암모늄, 테트라알킬 수산화암모늄 및 이의 조합으로 이루어진 군에서 선택된 것을 특징으로 하는, 에스테르 작용기를 포함하는 고분자의 해중합 방법.The alkali hydroxide is selected from the group consisting of sodium hydroxide, potassium hydroxide, calcium hydroxide, lithium hydroxide, magnesium hydroxide, ammonium hydroxide, tetraalkyl ammonium hydroxide, and combinations thereof. A method for depolymerization of a polymer containing an ester functional group.
  6. 제1항에 있어서,According to paragraph 1,
    상기 해중합 시 온도는 10℃ 내지 100℃ 인 것을 특징으로 하는, 에스테르 작용기를 포함하는 고분자의 해중합 방법.A method for depolymerizing a polymer containing an ester functional group, characterized in that the temperature during depolymerization is 10°C to 100°C.
  7. 제1항에 있어서,According to paragraph 1,
    해중합 반응 후의 반응 생성물로부터 고액 분리를 실시하는 1차 여과 단계를 추가적으로 수행하는 것을 특징으로 하는, 에스테르 작용기를 포함하는 고분자의 해중합 방법.A method for depolymerization of a polymer containing an ester functional group, characterized in that a primary filtration step of performing solid-liquid separation from the reaction product after the depolymerization reaction is additionally performed.
  8. 제7항에 있어서,In clause 7,
    상기 1차 여과를 통하여 얻어진 여과 케이크에 물을 가하여 단량체 제품을 물로 용해시켜 분리 여과하는 2차 여과 단계가 더 수행되는 것을 특징으로 하는, 에스테르 작용기를 포함하는 고분자의 해중합 방법.A method for depolymerization of a polymer containing an ester functional group, characterized in that a secondary filtration step is further performed in which water is added to the filtration cake obtained through the primary filtration to dissolve the monomer product in water and then separate and filtered.
  9. 제8항에 있어서, According to clause 8,
    상기 여과 과정에 사용하는 물에 단량체 제품 내 존재하는 모노알킬테레프탈레이트의 몰수와 동일한 몰수 또는 그 이상의 알칼리 수산화물이 더 포함된 것을 특징으로 하는, 에스테르 작용기를 포함하는 고분자의 해중합 방법.A method for depolymerization of a polymer containing an ester functional group, characterized in that the water used in the filtration process further contains alkali hydroxide in a mole number equal to or greater than the mole number of monoalkyl terephthalate present in the monomer product.
  10. 제8항에 있어서,According to clause 8,
    2차 여과 단계에서 얻어진 여액에 알콕시 작용기를 가진 방향족 화합물을 추가하여 색을 띠는 유기 이물질을 한번 더 분리하는 것을 특징으로 하는, 에스테르 작용기를 포함하는 고분자의 해중합 방법.A method for depolymerization of a polymer containing an ester functional group, characterized in that an aromatic compound having an alkoxy functional group is added to the filtrate obtained in the secondary filtration step to further separate colored organic impurities.
  11. 제8항에 있어서,According to clause 8,
    색을 띠는 유기 이물질이 포함된 수용액상을 흡착제에 접촉시켜 색을 띠는 이물질을 흡착하여 제거하는 단계가 더 포함된 것을 특징으로 하는, 에스테르 작용기를 포함하는 고분자의 해중합 방법.A method for depolymerization of a polymer containing an ester functional group, characterized in that it further includes the step of contacting an aqueous solution containing colored organic foreign substances with an adsorbent to adsorb and remove the colored foreign substances.
  12. 제8항에 있어서,According to clause 8,
    해중합된 고분자의 단량체를 회수하기 위해 단량체를 포함하는 수용액에 산을 가하여 염으로 침전시키는 단계를 더 포함하는 것을 특징으로 하는, 에스테르 작용기를 포함하는 고분자의 해중합 방법.A method for depolymerizing a polymer containing an ester functional group, further comprising adding an acid to an aqueous solution containing the monomer to precipitate it as a salt in order to recover the monomer of the depolymerized polymer.
  13. 제12항에 있어서,According to clause 12,
    산을 가한 후 여액으로부터 발생하는 침전물을 분리한 후 건조과정을 통해 고순도의 테레프탈산을 회수하는 단계를 더 포함하는 것을 특징으로 하는, 에스테르 작용기를 포함하는 고분자의 해중합 방법.A method for depolymerization of a polymer containing an ester functional group, characterized in that it further comprises the step of separating the precipitate generated from the filtrate after adding acid and then recovering high purity terephthalic acid through a drying process.
  14. 에스테르 작용기를 포함하는 고분자를 해중합하기 위한 조성물로서, A composition for depolymerizing a polymer containing an ester functional group,
    (1) 양성자 공여체 작용기를 갖지 않으면서 하나 이상의 알콕시 작용기를 가진 방향족 화합물; (1) Aromatic compounds having at least one alkoxy functional group but not having a proton donor functional group;
    (2) 하나 이상의 알코올 작용기를 가진 화합물; 및 (2) compounds with one or more alcohol functional groups; and
    (3) 알칼리 수산화물;이 포함된 것을 특징으로 하는, 에스테르 작용기를 포함하는 고분자 해중합용 조성물.(3) A composition for polymer depolymerization containing an ester functional group, characterized in that it contains an alkali hydroxide.
  15. 제14항에 있어서,According to clause 14,
    양성자 공여체 작용기를 갖지 않으면서 하나 이상의 알콕시 작용기를 가진 방향족 화합물과 하나 이상의 알코올 작용기를 가진 화합물의 중량비는 20:1 내지 1:20인 것을 특징으로 하는, 에스테르 작용기를 포함하는 고분자 해중합용 조성물.A composition for polymer depolymerization containing an ester functional group, characterized in that the weight ratio of the aromatic compound having at least one alkoxy functional group and the compound having at least one alcohol functional group without having a proton donor functional group is 20:1 to 1:20.
PCT/KR2023/008649 2022-07-01 2023-06-22 Method for depolymerization of polymer containing ester functional group by using mixture organic solvent WO2024005445A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0081153 2022-07-01
KR1020220081153A KR20240003512A (en) 2022-07-01 2022-07-01 Chemical Depolymerization of Polymer Containing Ester Bonds by a Mixed Organic Solvent

Publications (1)

Publication Number Publication Date
WO2024005445A1 true WO2024005445A1 (en) 2024-01-04

Family

ID=89380775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/008649 WO2024005445A1 (en) 2022-07-01 2023-06-22 Method for depolymerization of polymer containing ester functional group by using mixture organic solvent

Country Status (2)

Country Link
KR (1) KR20240003512A (en)
WO (1) WO2024005445A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006143622A (en) * 2004-11-17 2006-06-08 Is:Kk Method for purifying glycol solution
KR20200142381A (en) * 2019-06-12 2020-12-22 한국화학연구원 Depolymerization of Polymer Including Ester Group by Polar Chemical Compounds
CN113527096A (en) * 2021-07-17 2021-10-22 复旦大学 Method for selectively degrading polycarbonate and polyester plastics by microwave-assisted alkali catalysis
KR20220000805A (en) * 2020-06-26 2022-01-04 한국화학연구원 Eco-friendly depolymerization method of polymers containing ester functional groups

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8111663B2 (en) 2004-07-20 2012-02-07 Qualcomm Incorporated Methods and systems for variable rate broadcast with soft handoff

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006143622A (en) * 2004-11-17 2006-06-08 Is:Kk Method for purifying glycol solution
KR20200142381A (en) * 2019-06-12 2020-12-22 한국화학연구원 Depolymerization of Polymer Including Ester Group by Polar Chemical Compounds
KR20220000805A (en) * 2020-06-26 2022-01-04 한국화학연구원 Eco-friendly depolymerization method of polymers containing ester functional groups
CN113527096A (en) * 2021-07-17 2021-10-22 复旦大学 Method for selectively degrading polycarbonate and polyester plastics by microwave-assisted alkali catalysis

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HU L.C. ET AL: "Alkali-Decomposition of Poly(ethylene terephthalate) in Mixed Media of Nonaqueous Alcohol and Ether. Study on Recycling of Poly(ethylene terephthalate).", POLYMER JOURNAL, NATURE PUBLISHING GROUP UK, LONDON, vol. 29, no. 9, 1 January 1997 (1997-01-01), London , pages 708 - 712, XP002999790, ISSN: 0032-3896, DOI: 10.1295/polymj.29.708 *

Also Published As

Publication number Publication date
KR20240003512A (en) 2024-01-09

Similar Documents

Publication Publication Date Title
JP4647625B2 (en) Chemical recycling method for waste polyethylene terephthalate (PET)
JP6659919B1 (en) Method for producing bleached polyester, bleached polyester and bleaching agent
KR100746678B1 (en) Dimethyl terephthalate composition and process for producing the same
AU683897B2 (en) Production of dicarboxylic acids or esters thereof
EP0712832A1 (en) Process for recovery of aromatic acid or ester and polyol from waste polyester resins
JP2020176258A (en) Colored polyester and production method of recycled polyethylene terephthalate
WO2024005445A1 (en) Method for depolymerization of polymer containing ester functional group by using mixture organic solvent
WO2022060153A1 (en) Depolymerization catalyst of polymer comprising ester functional group, and depolymerization method using same
WO2024071915A1 (en) Polymerization raw material comprising recycled bis(2-hydroxyethyl) terephthalate, and production method for same
WO2024005446A1 (en) Hybrid depolymerization of polymer comprising ester functional group, using solvent in which carbonyl-based and alcohol-based compounds are mixed
WO2024014723A1 (en) Method for producing bis-2-hydroxyethyl terephthalate through continuous depolymerization
ITMI940017A1 (en) CONTINUOUS PROCESS FOR THE RECOVERY OF TEREPHTHALIC ACID FROM WASTE OR POST-CONSUMPTION PRODUCTS OF POLYALKYLEN TEREPHTHALATE POLYMERS
WO2021261939A1 (en) Efficient depolymerization method of polymer comprising ester functional group, and purification method thereof
WO2023121411A1 (en) Eco-friendly method for decolorization and depolymerization of colored polymer containing ester functional group
CN101831662B (en) Method for preparing monomethyl succinate
WO2022154224A1 (en) Method for depolymerising polyester
JP2011207823A (en) Method for producing dimethyl terephthalate from polyester
JP2011207822A (en) Method for producing bis(2-hydroxyethyl)terephthalate from polyester
WO2022220543A1 (en) Method for producing terephthalate derivative by transesterification of dimethyl terephthalate
WO2023163481A1 (en) Method for preparing recycled bis(2-hydroxyethyl) terephthalate through multi-step depolymerization
US4803295A (en) Purification of diphenyl phthalates
KR20240097869A (en) Low-temperature method for recycling poly(ethylene terephthalate)
WO2023214727A1 (en) Method for producing polyester resin by using regenerated bis(2-hydroxyethyl) terephthalate aqueous solution
WO2024053928A1 (en) Method for preparing terephthalic acid, and terephthalic acid prepared therefrom
WO2024034609A1 (en) Polyester decomposition method, polyester production method, and polyester decomposition product recovery method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23831805

Country of ref document: EP

Kind code of ref document: A1