WO2024058368A1 - Iron-based catalyst, method for producing same, and hydrocarbon production methods using same - Google Patents

Iron-based catalyst, method for producing same, and hydrocarbon production methods using same Download PDF

Info

Publication number
WO2024058368A1
WO2024058368A1 PCT/KR2023/008723 KR2023008723W WO2024058368A1 WO 2024058368 A1 WO2024058368 A1 WO 2024058368A1 KR 2023008723 W KR2023008723 W KR 2023008723W WO 2024058368 A1 WO2024058368 A1 WO 2024058368A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
precursor
based catalyst
atoms contained
carbide
Prior art date
Application number
PCT/KR2023/008723
Other languages
French (fr)
Korean (ko)
Inventor
천동현
윤민혜
임근배
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Publication of WO2024058368A1 publication Critical patent/WO2024058368A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2/00Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
    • C10G2/30Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
    • C10G2/32Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
    • C10G2/33Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
    • C10G2/331Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
    • C10G2/332Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the iron-group

Definitions

  • Various embodiments of the present invention relate to an iron-based catalyst, a method for producing the same, and a method for producing hydrocarbons using the same. More specifically, it relates to an iron-based catalyst capable of producing hydrocarbons with a carbon number of 5 or more with high selectivity by optimizing the phase fractions of iron oxides, iron oxides, and iron carbides, a method for producing the same, and a method for producing hydrocarbons using the same.
  • Indirect coal liquefaction one of the representative synthetic petroleum production technologies, is a process that converts synthetic gas (H 2 + CO) obtained through coal gasification and purification into liquid synthetic petroleum through the Fischer-Tropsch synthesis reaction. It is a very promising technology in terms of clean use of coal and the ability to obtain high value-added products. In particular, coal has abundant reserves, is evenly distributed throughout the world, and has the advantage of being cheap.
  • the Fischer-Tropsch synthesis reaction first began in 1923 when German chemists Fischer and Tropsch developed a technology to produce synthetic fuel from synthesis gas by gasifying coal.
  • the Fischer-Tropsch synthesis reaction is a reaction that uses a catalyst to convert synthesis gas into hydrocarbons.
  • the catalyst used here has a higher selectivity, which increases the productivity of hydrocarbons with 5 or more carbon atoms, which is a general indicator of productivity, and overall carbon efficiency. can increase.
  • Group VIII metal materials such as iron (Fe), cobalt (Co), nickel (Ni), and ruthenium (Ru) have been reported as substances that are active in the Fischer-Tropsch synthesis reaction.
  • iron (Fe)-based catalysts are especially suitable for the Fischer-Tropsch synthesis reaction linked to indirect coal liquefaction due to their low manufacturing cost, excellent performance, and activity in water-gas shift (WGS). Shows advantages.
  • Iron carbide is known to be the main active species in iron-based catalysts, and studies have been mainly conducted to increase the amount of iron-based carbide in the catalyst to improve catalyst performance.
  • iron-based catalysts have complex structures of various carbides/oxides (hydroxides) under active conditions
  • existing research to simply increase the amount of iron-based carbides in the catalyst had limitations in improving the performance of the catalyst.
  • conventional research has limitations in suppressing the production of CO 2 , CH 4 and C 2 -C 4 hydrocarbons, which are unnecessary by-products in the Fischer-Tropsch synthesis reaction, and increasing the productivity of (C 5+ ) hydrocarbons with a carbon number of 5 or more. There was.
  • the present invention was created in consideration of the above problems, and its purpose is to provide an iron-based catalyst that can significantly increase the productivity of hydrocarbons with a carbon number of 5 or more.
  • the purpose of the present invention is to provide a method for producing an iron-based catalyst with excellent catalytic performance that can be usefully applied to Fischer-Tropsch synthesis reactions.
  • the iron-based catalyst according to various embodiments of the present invention includes iron oxide, iron oxide, and iron carbide, and the number of iron atoms contained in the iron oxide is 13 to 80% with respect to 100% of the iron atom contained in the iron-based catalyst. , 1 to 5% of the iron atoms contained in the iron oxide, and 21 to 85% of the iron atoms contained in the iron carbide.
  • the method for producing an iron-based catalyst includes preparing a mixed solution by mixing an aqueous solution of a salt of a metal selected from the group consisting of copper, cobalt, manganese, and a combination thereof and an aqueous solution of iron nitrate, and adding the mixed solution to the aqueous solution of iron nitrate.
  • a first precursor obtaining step of obtaining a first precursor by adding a basic aqueous solution A second precursor slurry forming step of forming a second precursor slurry by adding at least one oxide of silicon oxide, aluminum oxide, zirconium oxide, or chromium oxide and an aqueous solution of at least one of an alkali metal or an alkaline earth metal to the first precursor; A third precursor production step of drying and calcining the second precursor slurry to produce a third precursor; And an activation step of activating the third precursor by heat treatment, wherein the third precursor is activated at a H 2 /CO volume ratio of 1 to 3, GHSV 1 to 12 NL/g (cat) /h, It is characterized by heat treatment under the conditions of a temperature of 230 to 290 ° C and a pressure of 0.5 to 1.5 MPa.
  • a method for producing hydrocarbons includes preparing an iron-based catalyst; and producing hydrocarbons by performing a Fischer-Tropsch synthesis reaction using the iron-based catalyst, wherein the iron-based catalyst includes iron oxide, iron oxide, and iron carbide, and iron atoms contained in the iron-based catalyst. Based on 100% of the number, the number of iron atoms contained in the iron oxide is 13 to 80%, the number of iron atoms contained in the iron oxide is 1 to 5%, and the number of iron atoms contained in the iron carbide is 21 to 85%. It is characterized by
  • the iron-based catalyst of the present invention optimizes the phase fraction of iron oxide, iron oxide, and iron carbide to produce a high content of hydrocarbons with carbon number of 5 or more (C 5+ hydrocarbons) of 80 wt% or more and wax (C 19+ hydrocarbons) of 48 wt% or more. It can be produced selectively.
  • the wax produced using the iron-based catalyst of the present invention is mostly paraffin, has a low olefin content, and does not require hydrogenation.
  • the iron-based catalyst of the present invention can maintain excellent activity for a long time under low-temperature Fischer-Tropsch synthesis reaction conditions.
  • Figure 1 shows the results of analyzing the phase fraction of the activated iron-based catalyst prepared by the method of Example 1 by Mössbauer spectroscopy.
  • Figure 2 shows the results of analyzing the phase fraction of the activated iron-based catalyst prepared by the method of Example 2 by Mössbauer spectroscopy.
  • Figure 3 shows the results of analyzing the phase fraction of the activated iron-based catalyst prepared by the method of Example 12 by Mössbauer spectroscopy.
  • Figure 4 shows the results of analyzing the phase fraction of the activated iron-based catalyst prepared by the method of Example 15 by Mössbauer spectroscopy.
  • Figure 5 shows the results of analyzing the phase fraction of the activated iron-based catalyst prepared by the method of Comparative Example 2 by Mössbauer spectroscopy.
  • Figure 6 shows the results of long-term performance evaluation of the activated iron-based catalyst prepared by the method of Example 9 under Fischer-Tropsch synthesis reaction conditions.
  • the iron-based catalyst according to various embodiments of the present invention is a catalyst for Fischer-Tropsch synthesis reaction, and is an iron-based catalyst that can significantly increase the productivity of hydrocarbons with a carbon number of 5 or more and hydrocarbons (waxes) with a carbon number of 19 or more.
  • the iron-based catalyst of the present invention includes iron hydroxide, iron oxide, and iron carbide. More specifically, with respect to 100% of the iron atoms contained in the iron-based catalyst, the number of iron atoms contained in iron oxide is 13 to 80%, the number of iron atoms contained in iron oxide is 1 to 5%, and the number of iron atoms contained in iron carbide is 100%. It may contain 21 to 85%. If each phase is outside the above range, the selectivity for hydrocarbon C 5+ and/or C 19+ hydrocarbons having 5 or more carbon atoms may be lowered.
  • the selectivity for C 5+ hydrocarbons may be lowered to less than 80 wt% or the selectivity for C 19 hydrocarbons may be lowered to less than 48 wt%.
  • the iron-based catalyst of the present invention optimizes the phase fraction of iron oxide, iron oxide, and iron carbide to produce more than 80 wt% of C 5+ hydrocarbons with a carbon number of 5 or more and 48 wt% of wax (C 19+ hydrocarbon) with a carbon number of 19 or more. It can be produced with a high selectivity of over %.
  • the iron oxide may be ferrihydrite.
  • Ferryhydrite can be expressed by the chemical formula FeOOH ⁇ n H 2 O (0 ⁇ n ⁇ 1).
  • the iron oxide may be magnetite (Fe 3 O 4 ).
  • the iron carbide may be at least one selected from the group consisting of c-carbide (Fe 5 C 2 ) and ⁇ '-carbide (Fe 2.2 C).
  • the iron carbide may include both c-carbide (Fe 5 C 2 ) and ⁇ '-carbide (Fe 2.2 C).
  • the number of iron atoms contained in c-carbide (Fe 5 C 2 ) is 21 to 75% and the number of iron atoms contained in ⁇ '-carbide (Fe 2.2 C) It may contain 6 to 13%.
  • the iron-based catalyst of the present invention has a H 2 /CO volume ratio of 1 to 5, a space velocity (GHSV) of 1 to 13 NL/g (cat) /h, a temperature of 230 to 290 ° C., and a pressure of 0.5 to 2.0 MPa.
  • GHSV space velocity
  • the selectivity for hydrocarbons (C 5+ ) having 5 or more carbon atoms may be 80 wt% or more and the selectivity for waxes (C 19+ hydrocarbons) having 19 or more carbon atoms may be 48 wt% or more.
  • the wax produced using the iron-based catalyst of the present invention is mostly paraffin, has a low olefin content, and does not require hydrogenation.
  • the iron-based catalyst of the present invention can maintain excellent activity for a long time under low-temperature Fischer-Tropsch synthesis reaction conditions.
  • the method for producing an iron-based catalyst may include a first precursor obtaining step, a second precursor slurry forming step, a third precursor manufacturing step, and an activation step.
  • a mixed solution is prepared by mixing an aqueous salt solution of a metal selected from the group consisting of copper, cobalt, manganese, and combinations thereof and an aqueous iron nitrate solution (Fe(NO 3 ) 3 ⁇ 9H 2 O),
  • a precipitate slurry containing the first precursor can be obtained by adding a basic aqueous solution to the mixed solution.
  • the process may be carried out at a temperature of 70 to 90° C. for 20 to 80 minutes. Through this, a first precursor having a specific phase fraction can be obtained.
  • the number of iron atoms contained in ferrihydrite is 70 to 100% and the number of iron atoms contained in goethite is 0 to 30%.
  • a first precursor containing More specifically, the first precursor has a ferrihydrite:goethite phase fraction of 70 to 90%:10 to 30%, or a ferrihydrite phase fraction of 100%, based on the number of iron atoms contained in each phase. You can have
  • reaction time by adding the basic aqueous solution to the mixed solution is less than 20 minutes, there is a problem that each component is not mixed effectively, and if it exceeds 80 minutes, the first precursor has a phase fraction of 100% goethite. Therefore, there is a problem that an iron-based catalyst of the phase fraction targeted by the present invention cannot be obtained.
  • the basic aqueous solution may specifically be an aqueous solution of sodium carbonate (Na 2 CO 3 ), an aqueous solution of sodium hydroxide (NaOH), or aqueous ammonia (NH 4 OH).
  • the concentration of the basic aqueous solution is preferably 1 to 5 mol/L, and more preferably 1.5 to 2.5 mol/L. If it is less than 1 mol/L, the amount of aqueous solution used is large, so there is a problem that it takes a lot of time for filtration and washing. If it exceeds 5 mol/L, the pore structure of the precipitate does not develop into a porous structure, which reduces the performance of the catalyst. There is a problem of deterioration.
  • the pH of the precipitation slurry containing the first precursor is preferably 7 to 9, and more preferably 7.8 to 8.2. If the pH is less than 7 or more than 9, it is difficult to form a precipitated slurry.
  • the precipitated slurry containing the first precursor After the precipitated slurry containing the first precursor is formed, it can be filtered and washed using distilled water. This is a process to not only improve the performance of the catalyst by removing unnecessary ions such as sodium, carbonate, and nitrate ions, but also to suppress unnecessary reactions during the reaction process.
  • Washing is preferably performed once or twice in succession. If the washing step is not performed, unnecessary ions such as sodium, carbonate, and nitrate ions exist in the catalyst, which reduces the performance of the catalyst. On the other hand, when performed more than three times, most of the remaining sodium is removed to less than 1 part by weight compared to 100 parts by weight of iron, so not only does sodium not perform its function as a co-catalyst, but the washing step is repeated multiple times, so distilled water is used for this purpose. As the amount increases rapidly and the cleaning time also becomes significantly longer, there is a problem that the economics and efficiency of the overall process are reduced.
  • an aqueous solution of at least one oxide of silicon oxide, aluminum oxide, zirconium oxide, or chromium oxide and at least one of an alkali metal or an alkaline earth metal is added to the washed slurry containing the first precursor. It can be added.
  • the oxide can play a major role in controlling the phase fraction contained in the third precursor, which will be described later, and through this, it is possible to implement a third precursor composed of a combination of iron oxide and iron oxide.
  • Silicon oxide and aluminum oxide can be preferably used as the oxide. Specifically, silicon oxide can be used as fumed silica or colloidal silica.
  • the alkaline metal may be lithium, sodium, potassium, and rubidium
  • the alkaline earth metal may be magnesium, calcium, strontium, and barium.
  • it may be an aqueous sodium carbonate solution, an aqueous potassium carbonate solution, an aqueous magnesium carbonate solution, or an aqueous calcium carbonate solution.
  • potassium silicate instead of adding both the oxide and the aqueous solution, only potassium silicate (Potassium Silicate) may be added.
  • the additive when manufacturing the second precursor, may be a mixture of potassium carbonate (K 2 CO 3 ) aqueous solution and colloidal silica, or potassium carbonate (K 2 CO 3 ) aqueous solution and fumed silica (SiO 2 ) . ) can be used in combination, or potassium silicate can be used alone.
  • iron (Fe) contained in the aqueous solution of iron nitrate added in the first precursor obtaining step Metal contained in the salt aqueous solution of the metal added in the first precursor obtaining step: Alkali metal added in the second precursor slurry forming step, or The mass ratio of the metal contained in the aqueous solution of at least one alkaline earth metal to the oxide added in the second precursor slurry forming step may be 100:4-6:4-7:14-38.
  • the content of the metal contained in the aqueous salt solution of the metal added in the first precursor obtaining step is less than 4 mass ratio with respect to 100 parts by weight of iron, a problem of increased methane production occurs when producing hydrocarbons, and if it exceeds 6 mass ratio, reaction Problems with reduced activity may occur.
  • the metal contained in the aqueous solution of at least one of the alkali metals or alkaline earth metals added in the second precursor slurry formation step is less than 4 parts by weight based on 100 parts by weight of iron, it may be difficult to see the effect of suppressing methane production, and if it exceeds 7 parts by weight. In this case, the stability of the catalyst may decrease.
  • the oxide added in the second precursor slurry forming step is outside the above range, the degree of improvement in effect is minimal, resulting in uneconomical problems or poor catalytic activity.
  • the third precursor can be manufactured by drying and calcining the second precursor slurry.
  • the second precursor slurry may be dried through spray-drying or rotary evaporation.
  • the catalyst may calcinate in a temperature atmosphere of 300 to 500°C. If the temperature is below 300°C, impurities may not be sufficiently vaporized and removed, and the effect of improving the physical strength of the catalyst may be minimal, and if it exceeds 500°C, the catalyst may The pore structure may collapse.
  • the firing time may be 1 to 15 hours, preferably 5 to 12 hours. If the calcination time is less than 1 hour, impurities cannot be sufficiently removed, and if it exceeds 15 hours, economic efficiency may decrease and the pore structure may collapse, resulting in reduced catalytic performance.
  • the third precursor may have a specific phase fraction. Specifically, with respect to 100% of the iron atoms contained in the third precursor, 70 to 100% of the iron atoms contained in ferrihydrite and 0 to 30% of the iron atoms contained in hematite. It can be included. More specifically, the third precursor has a ferrihydrite:hematite phase fraction of 70 to 90%:10 to 30% based on the number of iron atoms contained in each phase, or a phase fraction of ferrihydrite of 100%. You can have
  • the third precursor may be activated by heat treatment in a gas atmosphere containing hydrogen (H 2 ) and carbon monoxide (CO).
  • a gas atmosphere containing hydrogen (H 2 ) and carbon monoxide (CO) By using synthesis gas containing hydrogen and carbon monoxide, the third precursor can be activated, and the phase fraction of iron oxide, iron oxide, and iron carbide contained in the iron-based catalyst can be optimized.
  • the third precursor is heat treated under the conditions of a volume ratio of H 2 /CO of 1 to 3, GHSV of 1 to 12 NL/g (cat) /h, temperature of 230 to 290 ° C., and pressure of 0.5 to 1.5 MPa. can do.
  • activation conditions may vary depending on the type of additive. Specifically, when potassium silicate is used alone as an additive when manufacturing the second precursor, it can be activated at a higher pressure compared to when potassium carbonate (K 2 CO 3 ) aqueous solution and colloidal silica are mixed together. For example, when potassium silicate is used alone as an additive when manufacturing the second precursor, activation may proceed under conditions of more than 0.7 MPa and less than 1.5 MPa. Meanwhile, when using a mixture of potassium carbonate (K 2 CO 3 ) aqueous solution and colloidal silica, activation is possible even at a low pressure of 0.5 to 0.7 MPa. In other words, if the silica content of the additive is high, it can be activated even at low pressure.
  • H 2 is higher than when using a mixture of potassium carbonate (K 2 CO 3 ) aqueous solution and colloidal silica. It can be activated at a volume ratio of /CO.
  • the volume ratio of H 2 /CO is greater than 1 and less than 3
  • GHSV is 4.2 NL/g (cat) /h or more and 12. Activation may proceed under conditions of NL/g (cat) /h or less and a pressure of 0.5 to 1.5 MPa.
  • the iron-based catalyst with the specific phase fraction described above can be obtained. That is, for 100% of the iron atoms contained in the iron-based catalyst, the number of iron atoms contained in iron oxide is 13 to 80%, the number of iron atoms contained in iron oxide is 1 to 5%, and the number of iron atoms contained in iron carbide is 21. An iron-based catalyst containing from 85% to 85% can be manufactured.
  • the method for producing hydrocarbons according to various embodiments of the present invention can produce liquid hydrocarbons from synthesis gas using the iron-based catalyst described above.
  • the method for producing hydrocarbons of the present invention includes preparing an iron-based catalyst; And it may include producing hydrocarbons by performing a Fischer-Tropsch synthesis reaction using the iron-based catalyst.
  • the iron-based catalyst described above can be prepared. That is, it includes iron oxide, iron oxide, and iron carbide, and relative to 100% of the iron atoms contained in the iron-based catalyst, the number of iron atoms contained in iron oxide is 13 to 80%, and the number of iron atoms contained in iron oxide is 1 to 80%.
  • An iron-based catalyst containing 5% and 21 to 85% of iron atoms contained in iron carbide can be prepared.
  • the iron-based catalyst is an iron-based catalyst activated under the conditions of a H 2 /CO volume ratio of 1 to 3, GHSV of 1 to 12 NL/g (cat) /h, temperature of 230 to 290 ° C., and pressure of 0.5 to 1.5 MPa.
  • the Fischer-Tropsch synthesis reaction can be performed using the iron-based catalyst.
  • the Fischer-Tropsch synthesis reaction will be carried out under reaction conditions of a volume ratio of H 2 /CO of 1 to 5, GHSV of 1 to 13 NL/g (cat) /h, temperature of 230 to 290 °C, and pressure of 1.5 to 2.0 MPa. You can.
  • hydrocarbons of the present invention more than 80 wt% of C 5+ hydrocarbons and more than 48 wt% of wax can be produced.
  • a mixed solution was prepared by mixing a 2 molar concentration of iron nitrate (Fe(NO 3 ) 3 9H 2 O) aqueous solution and copper nitrate (Cu(NO 3 ) 2 5H 2 O) aqueous solution, and the mixed solution was heated to a temperature of about 80°C.
  • a 2 molar aqueous solution of sodium carbonate (Na 2 CO 3 ) was added so that the pH reached 8 for about 80 minutes, and ferrihydrite (FeOOH ⁇ n H 2 O, 0) was calculated based on the number of iron atoms contained in each phase in the solid precipitate.
  • the first precursor, second precursor slurry, and third precursor were prepared in the same manner as in Example 1.
  • the first precursor was prepared in the same manner as Example 1.
  • the precipitated slurry containing the first precursor was filtered and washed using distilled water to sufficiently remove residual sodium, and colloidal silica (SiO 2 ) and potassium carbonate (K 2 CO 3 ) were added to the washed precipitated slurry.
  • a mixed solution was prepared by mixing a 2 molar concentration of iron nitrate (Fe(NO 3 ) 3 9H 2 O) aqueous solution and copper nitrate (Cu(NO 3 ) 2 5H 2 O) aqueous solution, and the mixed solution was heated to a temperature of about 80°C.
  • a 2 molar aqueous solution of sodium carbonate (Na 2 CO 3 ) was added so that the pH reached 8 for about 20 minutes to obtain a first precursor containing only ferrihydrite as an iron-based compound.
  • a second precursor slurry was prepared in the same manner as in Example 3 using the first precursor.
  • the first precursor was prepared in the same manner as Example 1.
  • the first precursor was prepared in the same manner as in Example 4.
  • the precipitated slurry containing the first precursor was filtered and washed using distilled water to sufficiently remove residual sodium, and colloidal silica and potassium carbonate (K 2 CO 3 ) aqueous solution were added to the washed precipitate slurry to produce the second precipitate slurry.
  • a precursor slurry was prepared.
  • the first precursor, second precursor slurry, and third precursor were prepared in the same manner as in Example 6.
  • the first precursor, second precursor slurry, and third precursor were prepared in the same manner as in Example 6.
  • the first precursor, second precursor slurry, and third precursor were prepared in the same manner as in Example 5.
  • the first precursor, second precursor slurry, and third precursor were prepared in the same manner as in Example 1.
  • the first precursor, second precursor slurry, and third precursor were prepared in the same manner as in Example 5.
  • the first precursor was prepared in the same manner as Example 1.
  • the precipitated slurry containing the first precursor was filtered and washed using distilled water to sufficiently remove residual sodium, and colloidal silica (SiO 2 ) and potassium carbonate (K 2 CO 3 ) were added to the washed precipitated slurry.
  • a third precursor was obtained.
  • the first precursor was prepared in the same manner as Example 1.
  • the precipitated slurry containing the first precursor was filtered and washed using distilled water to sufficiently remove residual sodium, and colloidal silica (SiO 2 ) and potassium carbonate (K 2 CO 3 ) were added to the washed precipitated slurry.
  • the first precursor was prepared in the same manner as Example 1.
  • the precipitated slurry containing the first precursor was filtered and washed using distilled water to sufficiently remove residual sodium, and colloidal silica (SiO 2 ) and potassium carbonate (K 2 CO 3 ) were added to the washed precipitated slurry.
  • the first precursor was prepared in the same manner as Example 1.
  • the precipitated slurry containing the first precursor was filtered and washed using distilled water to sufficiently remove residual sodium, and colloidal silica (SiO 2 ) and potassium carbonate (K 2 CO 3 ) were added to the washed precipitated slurry.
  • the first precursor was prepared in the same manner as Example 1.
  • the precipitated slurry containing the first precursor was filtered and washed using distilled water to sufficiently remove residual sodium, and colloidal silica (SiO 2 ) and potassium carbonate (K 2 CO 3 ) were added to the washed precipitated slurry.
  • the first precursor was prepared in the same manner as Example 1.
  • the precipitated slurry containing the first precursor was filtered and washed using distilled water to sufficiently remove residual sodium, and colloidal silica (SiO 2 ) and potassium carbonate (K 2 CO 3 ) were added to the washed precipitated slurry.
  • the first precursor was prepared in the same manner as Example 1.
  • the precipitated slurry containing the first precursor was filtered and washed using distilled water to sufficiently remove residual sodium, and colloidal silica (SiO 2 ) and potassium carbonate (K 2 CO 3 ) were added to the washed precipitated slurry.
  • the first precursor, second precursor slurry, and third precursor were prepared in the same manner as in Example 15.
  • the first precursor was prepared in the same manner as Example 1.
  • the precipitated slurry containing the first precursor was filtered and washed using distilled water to sufficiently remove residual sodium, and colloidal silica (SiO 2 ) and potassium carbonate (K 2 CO 3 ) were added to the washed precipitated slurry.
  • the first precursor, second precursor slurry, and third precursor were prepared in the same manner as in Example 20.
  • An activated catalyst was prepared in the same manner as Example 12 using the third precursor.
  • the first precursor was prepared in the same manner as Example 1.
  • the precipitated slurry containing the first precursor was filtered and washed using distilled water to sufficiently remove residual sodium, and colloidal silica (SiO 2 ) and potassium carbonate (K 2 CO 3 ) were added to the washed precipitated slurry.
  • the first precursor, second precursor slurry, and third precursor were prepared in the same manner as in Example 15.
  • the first precursor, second precursor slurry, and third precursor were prepared in the same manner as in Example 20.
  • An activated catalyst was prepared in the same manner as Example 23 using the third precursor.
  • the first precursor, second precursor slurry, and third precursor were prepared in the same manner as in Example 1.
  • An activated iron-based catalyst was obtained.
  • the first precursor, second precursor slurry, and third precursor were prepared in the same manner as in Example 1.
  • the first precursor, second precursor slurry, and third precursor were prepared in the same manner as in Example 1.
  • the first precursor, second precursor slurry, and third precursor were prepared in the same manner as in Example 1.
  • the first precursor, second precursor slurry, and third precursor were prepared in the same manner as in Example 3.
  • An activated iron-based catalyst was obtained.
  • the first precursor, second precursor slurry, and third precursor were prepared in the same manner as in Example 6.
  • An activated iron-based catalyst was obtained.
  • a mixed solution was prepared by mixing a 2 molar aqueous solution of iron nitrate and an aqueous copper nitrate solution, and a 2 molar aqueous solution of sodium carbonate was added to the mixed solution to reach pH 8 at a temperature of about 80°C for about 20 hours to produce goethite.
  • a first precursor containing only iron-based compounds was obtained.
  • the precipitated slurry containing the first precursor was filtered and washed using distilled water to sufficiently remove residual sodium, and colloidal silica and potassium carbonate (K 2 CO 3 ) aqueous solution were added to the washed precipitate slurry to produce the second precipitate slurry.
  • a precursor slurry was prepared.
  • the first precursor, second precursor slurry, and third precursor were prepared in the same manner as in Comparative Example 8.
  • the first precursor, second precursor slurry, and third precursor were prepared in the same manner as in Example 5.
  • An activated catalyst was prepared in the same manner as Example 19 using the third precursor.
  • reaction time Time for reaction by adding basic aqueous solution to the mixed solution.
  • the phase fraction of the activated iron-based catalyst prepared by the method of Examples 1, 2, 12, 15 and Comparative Example 2 was analyzed by Mössbauer spectroscopy. They are shown in Figures 1, 2, 3, 4, and 5, respectively, and the phase fractions were calculated from the Mössbauer spectroscopy results of Figures 1 to 5 and listed in Table 2 below.
  • the unit of phase fraction of each phase is Fe-mol%.
  • the activated iron-based catalysts prepared by the methods of Examples 1 to 24 and Comparative Examples 1 to 9 were placed in a laboratory-grade fixed bed reactor (catalyst usage: 0.1 to 1.0 g), and their performance was evaluated under the FTS reaction conditions shown in Table 3 below. The results are shown in Table 3 below.
  • the activated iron-based catalyst prepared by the method of Examples 1 to 24 is selected for C 5+ hydrocarbon and wax (C 19+ hydrocarbon), which are the target products in the low-temperature Fischer-Tropsch synthesis reaction. It can be seen that the degree is significantly higher than that of the activated iron-based catalyst prepared by the method of Comparative Examples 1 to 9.
  • the activated iron-based catalyst prepared by the method of Examples 12 to 18, 23 and 24 has a selectivity for CO 2 , an unnecessary by-product in the Fischer-Tropsch synthesis reaction, by the method of Comparative Examples 1 to 9. It can be confirmed that it is significantly lower than the activated iron-based catalyst prepared.
  • the activated iron-based catalyst prepared by the method of Examples 19 and 20 produces C 5+ hydrocarbons and wax (C 19+ hydrocarbons) even when Fischer-Tropsch synthesis reaction is performed under low pressure conditions of 0.7 MPa. It can be seen that the selectivity for is significantly higher than when the Fischer-Tropsch synthesis reaction was performed under a pressure condition of 1.5 MPa using the activated iron-based catalyst prepared by the method of Comparative Examples 1 to 8.
  • the present invention suppresses the production of CO 2 , CH 4 and C 2 -C 4 hydrocarbons, which are unnecessary by-products in the Fischer-Tropsch synthesis reaction, and significantly increases the productivity of (C 5+ ) hydrocarbons with a carbon number of 5 or more, thereby providing industrial benefits. High availability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)

Abstract

An iron-based catalyst according to various embodiments of the present invention comprises iron hydroxide, iron oxide, and iron carbide, wherein based on the number of iron atoms contained in the iron-based catalyst being 100%, the number of iron atoms contained in the iron hydroxide corresponds to 13 to 80%, the number of iron atoms contained in the iron oxide corresponds to 1 to 5%, and the number of iron atoms contained in the iron carbide corresponds to 21 to 85%.

Description

철계 촉매, 이의 제조방법 및 이를 이용한 탄화수소 생산 방법Iron-based catalyst, method for producing the same, and method for producing hydrocarbons using the same
본 발명의 다양한 실시예는 철계 촉매, 이의 제조방법 및 이를 이용한 탄화수소 생산 방법에 관한 것이다. 보다 상세하게는 철수산화물, 철산화물 및 철탄화물의 상분율을 최적화하여 탄소수가 5 이상인 탄화수소를 높은 선택도로 생산할 수 있는 철계 촉매, 이의 제조방법 및 이를 이용한 탄화수소 생산 방법에 관한 것이다.Various embodiments of the present invention relate to an iron-based catalyst, a method for producing the same, and a method for producing hydrocarbons using the same. More specifically, it relates to an iron-based catalyst capable of producing hydrocarbons with a carbon number of 5 or more with high selectivity by optimizing the phase fractions of iron oxides, iron oxides, and iron carbides, a method for producing the same, and a method for producing hydrocarbons using the same.
산업화 이후로 석유에 대한 수요는 꾸준히 증가하고 있는 반면, 석유의 매장량은 제한되어 있기 때문에, 석유의 공급이 수요를 따라가지 못하는 시점(피크오일, peak oil)이 필연적으로 도래하게 되며, 많은 학자들이 이러한 피크오일이 이미 도래했거나 조만간 도래할 것으로 예측하고 있다. 따라서 피크오일이 도래한 이후 발생할 경제/사회적 위기 및 충격을 최소화하기 위해, 원유 의존도를 줄이는 기술의 개발과 더불어 원유의 부족한 부분을 원유 이외의 원료에서 제조하여 보충하기 위한 합성석유 제조기술의 개발에 대한 관심이 커지고 있다.While the demand for oil has been steadily increasing since industrialization, oil reserves are limited, so a point (peak oil) will inevitably arrive when oil supply cannot keep up with demand, and many scholars believe that This peak oil has already arrived or is predicted to arrive soon. Therefore, in order to minimize the economic/social crisis and shock that will occur after the arrival of peak oil, the development of technology to reduce dependence on crude oil and the development of synthetic petroleum manufacturing technology to supplement the shortage of crude oil by manufacturing raw materials other than crude oil are necessary. Interest in this is growing.
대표적인 합성석유 제조기술 중의 하나인 석탄간접액화(indirect coal liquefaction)는 석탄가스화 및 정제를 통해 얻어진 합성가스(H2+CO)를 피셔-트롭쉬 합성반응을 통해 액상합성석유로 전환하는 공정으로, 석탄의 청정활용이라는 측면과 고부가가치산물을 얻을 수 있다는 측면에서 매우 유망한 기술이다. 특히 석탄은 매장량이 풍부하고, 전세계적으로 고루 분포해 있을 뿐만 아니라, 가격이 싸다는 장점을 지니고 있다.Indirect coal liquefaction, one of the representative synthetic petroleum production technologies, is a process that converts synthetic gas (H 2 + CO) obtained through coal gasification and purification into liquid synthetic petroleum through the Fischer-Tropsch synthesis reaction. It is a very promising technology in terms of clean use of coal and the ability to obtain high value-added products. In particular, coal has abundant reserves, is evenly distributed throughout the world, and has the advantage of being cheap.
피셔-트롭쉬 합성반응은 1923년 독일의 화학자 피셔(Fischer)와 트롭쉬(Tropsch)가 석탄의 가스화에 의해 합성가스로부터 합성연료를 제조하는 기술을 개발한데서 처음 시작되었다. 피셔-트롭쉬 합성반응은 촉매를 사용하여 합성가스를 탄화수소로 전환하는 반응인데, 여기서 사용되는 촉매는 선택도가 높은 촉매일수록 일반적인 생산성의 지표인 탄소 수가 5 이상인 탄화수소의 생산성을 높이고, 전체적인 탄소 효율을 높일 수 있다.The Fischer-Tropsch synthesis reaction first began in 1923 when German chemists Fischer and Tropsch developed a technology to produce synthetic fuel from synthesis gas by gasifying coal. The Fischer-Tropsch synthesis reaction is a reaction that uses a catalyst to convert synthesis gas into hydrocarbons. The catalyst used here has a higher selectivity, which increases the productivity of hydrocarbons with 5 or more carbon atoms, which is a general indicator of productivity, and overall carbon efficiency. can increase.
피셔-트롭쉬 합성반응에 활성을 보이는 물질로는 철(Fe), 코발트(Co), 니켈(Ni), 루테늄(Ru) 등의 VIII 그룹 금속물질이 보고되고 있다. 그 중에서 철(Fe)계 촉매는 낮은 제조단가, 우수한 성능, 수성-가스전환반응(WGS, Water-Gas Shift)에도 활성을 보인다는 점 때문에 석탄간접액화와 연계된 피셔-트롭쉬 합성반응에 특히 장점을 보인다.Group VIII metal materials such as iron (Fe), cobalt (Co), nickel (Ni), and ruthenium (Ru) have been reported as substances that are active in the Fischer-Tropsch synthesis reaction. Among them, iron (Fe)-based catalysts are especially suitable for the Fischer-Tropsch synthesis reaction linked to indirect coal liquefaction due to their low manufacturing cost, excellent performance, and activity in water-gas shift (WGS). Shows advantages.
철계 촉매는 철계 탄화물(iron carbide)이 주요 활성종으로 알려져 있으며, 촉매의 성능을 높이기 위해 촉매 내 철계 탄화물의 양을 증가시키려는 연구들이 주로 수행되어 왔다. 그러나 철계 촉매는 활성조건에서 다양한 탄화물/산화물(수산화물) 구조가 복잡하게 형성되어 있기 때문에, 기존의 단순히 촉매 내 철계 탄화물의 양을 증가시키려는 연구로는 촉매의 성능을 향상시키는데 한계가 있었다. 특히 종래의 연구로는 피셔-트롭쉬 합성반응에서 불필요한 부산물인 CO2, CH4 및 C2-C4 탄화수소의 생성을 억제하고, 탄소 수가 5 이상인(C5+)탄화수소의 생산성을 높이는데 한계가 있었다.Iron carbide is known to be the main active species in iron-based catalysts, and studies have been mainly conducted to increase the amount of iron-based carbide in the catalyst to improve catalyst performance. However, because iron-based catalysts have complex structures of various carbides/oxides (hydroxides) under active conditions, existing research to simply increase the amount of iron-based carbides in the catalyst had limitations in improving the performance of the catalyst. In particular, conventional research has limitations in suppressing the production of CO 2 , CH 4 and C 2 -C 4 hydrocarbons, which are unnecessary by-products in the Fischer-Tropsch synthesis reaction, and increasing the productivity of (C 5+ ) hydrocarbons with a carbon number of 5 or more. There was.
본 발명은 상기의 문제점을 감안하여 창출된 것으로서, 탄소수가 5 이상인 탄화수소의 생산성을 현저하게 높일 수 있는 철계 촉매를 제공함에 목적이 있다.The present invention was created in consideration of the above problems, and its purpose is to provide an iron-based catalyst that can significantly increase the productivity of hydrocarbons with a carbon number of 5 or more.
또한, 피셔-트롭쉬 합성 반응에 유용하게 적용할 수 있는 촉매 성능이 우수한 철계 촉매의 제조방법을 제공함을 목적으로 한다.Additionally, the purpose of the present invention is to provide a method for producing an iron-based catalyst with excellent catalytic performance that can be usefully applied to Fischer-Tropsch synthesis reactions.
본 발명의 다양한 실시예에 따른 철계 촉매는 철수산화물, 철산화물 및 철탄화물을 포함하고, 상기 철계 촉매에 함유된 철 원자수 100%에 대하여, 상기 철수산화물에 함유된 철 원자수 13 내지 80%, 상기 철산화물에 함유된 철 원자수 1 내지 5%, 상기 철탄화물에 함유된 철 원자수 21 내지 85%를 포함한다.The iron-based catalyst according to various embodiments of the present invention includes iron oxide, iron oxide, and iron carbide, and the number of iron atoms contained in the iron oxide is 13 to 80% with respect to 100% of the iron atom contained in the iron-based catalyst. , 1 to 5% of the iron atoms contained in the iron oxide, and 21 to 85% of the iron atoms contained in the iron carbide.
본 발명의 다양한 실시예에 따른 철계 촉매의 제조방법은, 구리, 코발트, 망간 및 이들의 조합으로 이루어진 군에서 선택된 금속의 염 수용액 및 질산철 수용액을 혼합하여 혼합용액을 제조하고, 상기 혼합용액에 염기성 수용액을 첨가하여 제1 전구체를 수득하는 제1 전구체 수득단계; 상기 제1 전구체에 산화규소, 산화알루미늄, 산화지르코늄 또는 산화크롬 중 적어도 하나의 산화물과, 알칼리금속 또는 알칼리토금속 중 적어도 하나의 수용액을 첨가하여 제2 전구체 슬러리를 형성하는 제2 전구체 슬러리 형성단계; 상기 제2 전구체 슬러리를 건조 및 소성하여 제3 전구체를 제조하는 제3 전구체 제조단계; 및 상기 제3 전구체를 열처리하여 활성화하는 활성화 단계를 포함하고, 상기 활성화 단계는, 상기 제3 전구체를 H2/CO의 부피비가 1 내지 3, GHSV 1 내지 12 NL/g(cat)/h, 온도 230 내지 290 ℃ 및 압력 0.5 내지 1.5 MPa의 조건에서 열처리하는 것을 특징으로 한다.The method for producing an iron-based catalyst according to various embodiments of the present invention includes preparing a mixed solution by mixing an aqueous solution of a salt of a metal selected from the group consisting of copper, cobalt, manganese, and a combination thereof and an aqueous solution of iron nitrate, and adding the mixed solution to the aqueous solution of iron nitrate. A first precursor obtaining step of obtaining a first precursor by adding a basic aqueous solution; A second precursor slurry forming step of forming a second precursor slurry by adding at least one oxide of silicon oxide, aluminum oxide, zirconium oxide, or chromium oxide and an aqueous solution of at least one of an alkali metal or an alkaline earth metal to the first precursor; A third precursor production step of drying and calcining the second precursor slurry to produce a third precursor; And an activation step of activating the third precursor by heat treatment, wherein the third precursor is activated at a H 2 /CO volume ratio of 1 to 3, GHSV 1 to 12 NL/g (cat) /h, It is characterized by heat treatment under the conditions of a temperature of 230 to 290 ° C and a pressure of 0.5 to 1.5 MPa.
본 발명의 다양한 실시예에 따른 탄화수소의 생산 방법은, 철계 촉매를 준비하는 단계; 및 상기 철계 촉매를 이용하여 피셔-트롭쉬 합성반응을 진행하여 탄화수소를 생산하는 단계를 포함하고, 상기 철계 촉매는, 철수산화물, 철산화물 및 철탄화물을 포함하고, 상기 철계 촉매에 함유된 철 원자수 100%에 대하여, 상기 철수산화물에 함유된 철 원자수 13 내지 80%, 상기 철산화물에 함유된 철 원자수 1 내지 5%, 상기 철탄화물에 함유된 철 원자수 21 내지 85%를 포함하는 것을 특징으로 한다.A method for producing hydrocarbons according to various embodiments of the present invention includes preparing an iron-based catalyst; and producing hydrocarbons by performing a Fischer-Tropsch synthesis reaction using the iron-based catalyst, wherein the iron-based catalyst includes iron oxide, iron oxide, and iron carbide, and iron atoms contained in the iron-based catalyst. Based on 100% of the number, the number of iron atoms contained in the iron oxide is 13 to 80%, the number of iron atoms contained in the iron oxide is 1 to 5%, and the number of iron atoms contained in the iron carbide is 21 to 85%. It is characterized by
본 발명의 철계 촉매는 철수산화물, 철산화물 및 철탄화물의 상분율을 최적화하여 탄소수가 5 이상인 탄화수소 (C5+ 탄화수소)를 80 wt% 이상 및 왁스(C19+ 탄화수소)를 48 wt% 이상의 높은 선택도로 생산할 수 있다.The iron-based catalyst of the present invention optimizes the phase fraction of iron oxide, iron oxide, and iron carbide to produce a high content of hydrocarbons with carbon number of 5 or more (C 5+ hydrocarbons) of 80 wt% or more and wax (C 19+ hydrocarbons) of 48 wt% or more. It can be produced selectively.
일반적으로 피셔-트롭시 합성반응에서 H2/CO의 부피비가 커질 경우 연쇄 종결(chain termination)의 주요 메커니즘인 수소화가 촉진되어 사슬 성장(chain growth)이 잘 이루어지지 않아 왁스에 대한 선택도가 낮아지나, 본 발명의 최적화된 상분율의 철계 촉매를 이용할 경우 수소의 비율이 높은 피셔-트롭쉬 반응조건에서도 사슬 성장(chain growth)이 촉진되어 왁스의 생산성을 높일 수 있다.In general, when the volume ratio of H 2 /CO increases in the Fischer-Tropsch synthesis reaction, hydrogenation, the main mechanism of chain termination, is promoted, chain growth is not performed well, and selectivity for wax is low. Furthermore, when using the iron-based catalyst with the optimized phase fraction of the present invention, chain growth is promoted even under Fischer-Tropsch reaction conditions with a high hydrogen ratio, thereby increasing wax productivity.
또한, 본 발명의 철계 촉매를 이용하여 제조된 왁스는 대부분 파라핀으로써 올레핀 함유량이 적고 수소화처리가 불필요하다. In addition, the wax produced using the iron-based catalyst of the present invention is mostly paraffin, has a low olefin content, and does not require hydrogenation.
본 발명의 철계 촉매는 저온 피셔-트롭시 합성반응 조건에서 장시간 동안 우수한 활성을 유지할 수 있다. The iron-based catalyst of the present invention can maintain excellent activity for a long time under low-temperature Fischer-Tropsch synthesis reaction conditions.
도 1은 실시예 1의 방법으로 제조된 활성화된 철계 촉매의 상분율을 뫼스바우어 분광법에 의해 분석한 결과이다.Figure 1 shows the results of analyzing the phase fraction of the activated iron-based catalyst prepared by the method of Example 1 by Mössbauer spectroscopy.
도 2는 실시예 2의 방법으로 제조된 활성화된 철계 촉매의 상분율을 뫼스바우어 분광법에 의해 분석한 결과이다.Figure 2 shows the results of analyzing the phase fraction of the activated iron-based catalyst prepared by the method of Example 2 by Mössbauer spectroscopy.
도 3은 실시예 12의 방법으로 제조된 활성화된 철계 촉매의 상분율을 뫼스바우어 분광법에 의해 분석한 결과이다.Figure 3 shows the results of analyzing the phase fraction of the activated iron-based catalyst prepared by the method of Example 12 by Mössbauer spectroscopy.
도 4는 실시예 15의 방법으로 제조된 활성화된 철계 촉매의 상분율을 뫼스바우어 분광법에 의해 분석한 결과이다.Figure 4 shows the results of analyzing the phase fraction of the activated iron-based catalyst prepared by the method of Example 15 by Mössbauer spectroscopy.
도 5는 비교예 2의 방법으로 제조된 활성화된 철계 촉매의 상분율을 뫼스바우어 분광법에 의해 분석한 결과이다.Figure 5 shows the results of analyzing the phase fraction of the activated iron-based catalyst prepared by the method of Comparative Example 2 by Mössbauer spectroscopy.
도 6은 실시예 9의 방법으로 제조된 활성화된 철계 촉매에 대하여 피셔-트롭쉬 합성반응 조건에서 장기성능평가를 수행한 결과이다.Figure 6 shows the results of long-term performance evaluation of the activated iron-based catalyst prepared by the method of Example 9 under Fischer-Tropsch synthesis reaction conditions.
이하, 본 문서의 다양한 실시예들이 첨부된 도면을 참조하여 기재된다. 실시예 및 이에 사용된 용어들은 본 문서에 기재된 기술을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 해당 실시예의 다양한 변경, 균등물, 및/또는 대체물을 포함하는 것으로 이해되어야 한다. Hereinafter, various embodiments of this document are described with reference to the attached drawings. The examples and terms used herein are not intended to limit the technology described in this document to specific embodiments, and should be understood to include various modifications, equivalents, and/or substitutes for the examples.
철계 촉매iron-based catalyst
본 발명의 다양한 실시예에 따른 철계 촉매는 피셔-트롭쉬 합성반응용 촉매로써, 탄소수가 5 이상인 탄화수소 및 탄소수가 19 이상인 탄화수소(왁스)의 생산성을 현저하게 높일 수 있는 철계 촉매이다. The iron-based catalyst according to various embodiments of the present invention is a catalyst for Fischer-Tropsch synthesis reaction, and is an iron-based catalyst that can significantly increase the productivity of hydrocarbons with a carbon number of 5 or more and hydrocarbons (waxes) with a carbon number of 19 or more.
본 발명의 철계 촉매는, 철수산화물(iron hydroxide), 철산화물(iron oxide) 및 철탄화물(iron carbide)을 포함한다. 보다 자세하게, 철계 촉매에 함유된 철 원자수 100%에 대하여, 철수산화물에 함유된 철 원자수 13 내지 80%, 철산화물에 함유된 철 원자수 1 내지 5%, 철탄화물에 함유된 철 원자수 21 내지 85%를 포함할 수 있다. 각각의 상이 상기 범위를 벗어나는 경우 탄소수가 5 이상인 탄화수소 C5+ 및/또는 C19+ 탄화수소에 대한 선택도가 낮아질 수 있다. 예를 들면, 각각의 상이 상기 범위를 벗어나는 경우 C5+ 탄화수소에 대한 선택도가 80 wt% 미만 또는 및 C19 탄화수소에 대한 선택도가 48 wt% 미만으로 낮아질 수 있다. 즉, 본 발명의 철계 촉매는 철수산화물, 철산화물 및 철탄화물의 상분율을 최적화하여 탄소수가 5 이상인 탄화수소 C5+를 80 wt% 이상 및 탄소수가 19 이상인 왁스(C19+ 탄화수소)를 48 wt% 이상의 높은 선택도로 생산할 수 있다.The iron-based catalyst of the present invention includes iron hydroxide, iron oxide, and iron carbide. More specifically, with respect to 100% of the iron atoms contained in the iron-based catalyst, the number of iron atoms contained in iron oxide is 13 to 80%, the number of iron atoms contained in iron oxide is 1 to 5%, and the number of iron atoms contained in iron carbide is 100%. It may contain 21 to 85%. If each phase is outside the above range, the selectivity for hydrocarbon C 5+ and/or C 19+ hydrocarbons having 5 or more carbon atoms may be lowered. For example, if each phase is outside the above range, the selectivity for C 5+ hydrocarbons may be lowered to less than 80 wt% or the selectivity for C 19 hydrocarbons may be lowered to less than 48 wt%. In other words, the iron-based catalyst of the present invention optimizes the phase fraction of iron oxide, iron oxide, and iron carbide to produce more than 80 wt% of C 5+ hydrocarbons with a carbon number of 5 or more and 48 wt% of wax (C 19+ hydrocarbon) with a carbon number of 19 or more. It can be produced with a high selectivity of over %.
철수산화물은 페리하이드라이트(ferrihydrite)일 수 있다. 페리하이드라이트는 FeOOH·nH2O (0<n<1)의 화학식으로 표현될 수 있다.The iron oxide may be ferrihydrite. Ferryhydrite can be expressed by the chemical formula FeOOH· n H 2 O (0<n<1).
철산화물은 마그네타이트(magnetite, Fe3O4)일 수 있다.The iron oxide may be magnetite (Fe 3 O 4 ).
철탄화물은 c-카바이드(Fe5C2) 및 ε'-카바이드(Fe2.2C)로 이루어진 군에서 선택되는 적어도 어느 하나일 수 있다. 바람직하게는, 철탄화물은 c-카바이드(Fe5C2) 및 ε'-카바이드(Fe2.2C)를 모두 포함할 수 있다. 이때, 철계 촉매에 함유된 철 원자수 100%에 대하여, c-카바이드(Fe5C2)에 함유된 철 원자수 21 내지 75% 및 ε'-카바이드(Fe2.2C)에 함유된 철 원자수 6 내지 13%를 포함할 수 있다. The iron carbide may be at least one selected from the group consisting of c-carbide (Fe 5 C 2 ) and ε'-carbide (Fe 2.2 C). Preferably, the iron carbide may include both c-carbide (Fe 5 C 2 ) and ε'-carbide (Fe 2.2 C). At this time, with respect to 100% of the iron atoms contained in the iron-based catalyst, the number of iron atoms contained in c-carbide (Fe 5 C 2 ) is 21 to 75% and the number of iron atoms contained in ε'-carbide (Fe 2.2 C) It may contain 6 to 13%.
본 발명의 철계 촉매는, H2/CO의 부피비가 1 내지 5, 공간속도(GHSV) 1 내지 13 NL/g(cat)/h, 온도 230 내지 290 ℃ 및 압력 0.5 내지 2.0 MPa의 피셔-트롭쉬 반응조건에서 탄소수가 5 이상인 탄화수소(C5+)에 대한 선택도가 80 wt% 이상 및 탄소수가 19 이상인 왁스(C19+ 탄화수소)에 대한 선택도가 48 wt% 이상일 수 있다. 일반적으로 피셔-트롭시 합성반응에서 H2/CO의 부피비가 커질 경우 연쇄 종결(chain termination)의 주요 메커니즘인 수소화가 촉진되어 사슬 성장(chain growth)이 잘 이루어지지 않아 왁스에 대한 선택도가 낮아지나, 본 발명의 최적화된 상분율의 철계 촉매를 이용할 경우 수소의 비율이 높은 피셔-트롭쉬 반응조건에서도 사슬 성장(chain growth)이 촉진되어 왁스(C19+ 탄화수소)의 생산성을 높일 수 있다.The iron-based catalyst of the present invention has a H 2 /CO volume ratio of 1 to 5, a space velocity (GHSV) of 1 to 13 NL/g (cat) /h, a temperature of 230 to 290 ° C., and a pressure of 0.5 to 2.0 MPa. Under Ropsch reaction conditions, the selectivity for hydrocarbons (C 5+ ) having 5 or more carbon atoms may be 80 wt% or more and the selectivity for waxes (C 19+ hydrocarbons) having 19 or more carbon atoms may be 48 wt% or more. In general, when the volume ratio of H 2 /CO increases in the Fischer-Tropsch synthesis reaction, hydrogenation, the main mechanism of chain termination, is promoted, chain growth is not performed well, and selectivity for wax is low. Furthermore, when using the iron-based catalyst with the optimized phase fraction of the present invention, chain growth is promoted even under Fischer-Tropsch reaction conditions with a high hydrogen ratio, thereby increasing the productivity of wax (C 19+ hydrocarbon).
또한, 본 발명의 철계 촉매를 이용하여 제조된 왁스는 대부분 파라핀으로써 올레핀 함유량이 적고 수소화처리가 불필요하다. In addition, the wax produced using the iron-based catalyst of the present invention is mostly paraffin, has a low olefin content, and does not require hydrogenation.
본 발명의 철계 촉매는 저온 피셔-트롭시 합성반응 조건에서 장시간 동안 우수한 활성을 유지할 수 있다. The iron-based catalyst of the present invention can maintain excellent activity for a long time under low-temperature Fischer-Tropsch synthesis reaction conditions.
철계 촉매의 제조방법Method for producing iron-based catalyst
본 발명의 다양한 실시예에 따른 철계 촉매의 제조방법은, 제1 전구체 수득단계, 제2 전구체 슬러리 형성단계, 제3 전구체 제조단계 및 활성화 단계를 포함할 수 있다.The method for producing an iron-based catalyst according to various embodiments of the present invention may include a first precursor obtaining step, a second precursor slurry forming step, a third precursor manufacturing step, and an activation step.
제1 전구체 수득단계에서는, 구리, 코발트, 망간 및 이들의 조합으로 이루어진 군에서 선택된 금속의 염 수용액 및 질산철 수용액(Fe(NO3)3·9H2O)을 혼합하여 혼합용액을 제조하고, 혼합용액에 염기성 수용액을 첨가하여 제1 전구체를 포함하는 침전 슬러리를 수득할 수 있다. 혼합용액에 염기성 수용액을 첨가 시, 70 내지 90 ℃의 온도에서 20 분 내지 80 분 동안 진행될 수 있다. 이를 통해, 특정 상분율을 가지는 제1 전구체를 수득할 수 있다. 구체적으로, 제1 전구체에 함유된 철 원자수 100%에 대하여, 페리하이드라이트(ferrihydrite)에 함유된 철 원자수 70 내지 100 % 및 괴타이트(goethite)에 함유된 철 원자수 0 내지 30 %를 포함하는 제1 전구체를 수득할 수 있다. 보다 더 구체적으로, 제1 전구체는 각 상이 포함하는 철 원자수를 기준으로 페리하이드라이트:괴타이트가 70 내지 90 % : 10 내지 30 %의 상분율을 가지거나, 페리하이드라이트 100 %의 상분율을 가질 수 있다. In the first precursor obtaining step, a mixed solution is prepared by mixing an aqueous salt solution of a metal selected from the group consisting of copper, cobalt, manganese, and combinations thereof and an aqueous iron nitrate solution (Fe(NO 3 ) 3 ·9H 2 O), A precipitate slurry containing the first precursor can be obtained by adding a basic aqueous solution to the mixed solution. When adding a basic aqueous solution to the mixed solution, the process may be carried out at a temperature of 70 to 90° C. for 20 to 80 minutes. Through this, a first precursor having a specific phase fraction can be obtained. Specifically, with respect to 100% of the iron atoms contained in the first precursor, the number of iron atoms contained in ferrihydrite is 70 to 100% and the number of iron atoms contained in goethite is 0 to 30%. A first precursor containing More specifically, the first precursor has a ferrihydrite:goethite phase fraction of 70 to 90%:10 to 30%, or a ferrihydrite phase fraction of 100%, based on the number of iron atoms contained in each phase. You can have
한편, 혼합용액에 염기성 수용액을 첨가 시, 온도가 70 ℃ 미만인 경우에는 각 성분이 효과적으로 혼합되지 않는 문제가 있으며, 90 ℃를 초과하는 경우에는 수용액의 증발 효과로 적절한 농도로 혼합되지 못하는 문제가 있다. On the other hand, when adding a basic aqueous solution to the mixed solution, if the temperature is less than 70 ℃, there is a problem that each component is not mixed effectively, and if it exceeds 90 ℃, there is a problem that it cannot be mixed at an appropriate concentration due to the evaporation effect of the aqueous solution. .
또한, 혼합용액에 염기성 수용액을 첨가하여 반응하는 시간이 20 분 미만인 경우에는 각 성분이 효과적으로 혼합되지 않는 문제가 있으며, 80 분을 초과하는 경우에는 제1 전구체가 괴타이트 100 %의 상분율을 가지게 되어 본 발명이 목적하는 상분율의 철계 촉매를 얻을 수 없다는 문제가 있다.In addition, if the reaction time by adding the basic aqueous solution to the mixed solution is less than 20 minutes, there is a problem that each component is not mixed effectively, and if it exceeds 80 minutes, the first precursor has a phase fraction of 100% goethite. Therefore, there is a problem that an iron-based catalyst of the phase fraction targeted by the present invention cannot be obtained.
한편, 염기성 수용액은 구체적으로 탄산나트륨(Na2CO3) 수용액, 수산화나트륨(NaOH) 수용액 또는 암모니아수(NH4OH)일 수 있다.Meanwhile, the basic aqueous solution may specifically be an aqueous solution of sodium carbonate (Na 2 CO 3 ), an aqueous solution of sodium hydroxide (NaOH), or aqueous ammonia (NH 4 OH).
염기성 수용액의 농도는 1 내지 5 mol/L인 것이 바람직하며, 더욱 바람직하게는 1.5 내지 2.5mol/L인 것이 효과적이다. 1 mol/L미만인 경우에는 사용되는 수용액의 양이 많아 여과 및 세척에 많은 시간이 소요되는 문제가 있으며, 5 mol/L를 초과하는 경우에는 침전물의 세공구조가 다공성으로 발달하지 못해 촉매의 성능을 저하시키는 문제가 있다.The concentration of the basic aqueous solution is preferably 1 to 5 mol/L, and more preferably 1.5 to 2.5 mol/L. If it is less than 1 mol/L, the amount of aqueous solution used is large, so there is a problem that it takes a lot of time for filtration and washing. If it exceeds 5 mol/L, the pore structure of the precipitate does not develop into a porous structure, which reduces the performance of the catalyst. There is a problem of deterioration.
제1 전구체를 포함하는 침전 슬러리의 pH는 7 내지 9인 것이 바람직하며, 더욱 바람직하게는 7.8 내지 8.2인 것이 효과적이다. pH가 7 미만이거나 9를 초과하는 경우에는 침전 슬러리가 형성되기 어려운 문제가 있다.The pH of the precipitation slurry containing the first precursor is preferably 7 to 9, and more preferably 7.8 to 8.2. If the pH is less than 7 or more than 9, it is difficult to form a precipitated slurry.
제1 전구체를 포함하는 침전 슬러리가 형성된 후, 이를 증류수를 이용하여 여과 및 세척할 수 있다. 이는 나트륨, 탄산, 질산 이온 등의 불필요한 이온들을 제거함으로써, 촉매의 성능을 향상시킬 뿐만 아니라, 반응과정에서의 불필요한 반응을 억제하기 위한 과정이다.After the precipitated slurry containing the first precursor is formed, it can be filtered and washed using distilled water. This is a process to not only improve the performance of the catalyst by removing unnecessary ions such as sodium, carbonate, and nitrate ions, but also to suppress unnecessary reactions during the reaction process.
세척은 1회 실시하거나 2회 연속하여 실시하는 것이 바람직하다. 세척단계를 실시하지 않는 경우에는 나트륨, 탄산, 질산 이온 등의 불필요한 이온들이 촉매 내에 존재함으로써, 촉매의 성능을 저하시키는 문제가 있다. 한편, 3회 이상 실시하는 경우에는 잔류 나트륨이 철 100중량부 대비 1중량부 미만으로 대부분 제거됨으로써, 나트륨이 조촉매로서의 기능을 수행할 수 없을 뿐만 아니라, 세척단계를 다수 반복함으로써, 이를 위한 증류수의 양이 급격히 증가하고, 세척시간 또한 현저히 길어지므로, 전반적인 공정의 경제성 및 효율성이 저하되는 문제가 있다.Washing is preferably performed once or twice in succession. If the washing step is not performed, unnecessary ions such as sodium, carbonate, and nitrate ions exist in the catalyst, which reduces the performance of the catalyst. On the other hand, when performed more than three times, most of the remaining sodium is removed to less than 1 part by weight compared to 100 parts by weight of iron, so not only does sodium not perform its function as a co-catalyst, but the washing step is repeated multiple times, so distilled water is used for this purpose. As the amount increases rapidly and the cleaning time also becomes significantly longer, there is a problem that the economics and efficiency of the overall process are reduced.
다음으로, 제2 전구체 슬러리 형성단계에서는, 제1 전구체를 포함하는 세척된 슬러리에 산화규소, 산화알루미늄, 산화지르코늄 또는 산화크롬 중 적어도 하나의 산화물과, 알칼리금속 또는 알칼리토금속 중 적어도 하나의 수용액을 첨가할 수 있다.Next, in the second precursor slurry forming step, an aqueous solution of at least one oxide of silicon oxide, aluminum oxide, zirconium oxide, or chromium oxide and at least one of an alkali metal or an alkaline earth metal is added to the washed slurry containing the first precursor. It can be added.
산화물은 후술할 제3 전구체에 포함된 상분율을 제어하는데 주요한 역할을 할 수 있으며, 이를 통하여 철수산화물과 철산화물의 조합으로 이루어진 제3 전구체의 구현이 가능하다. 산화물로 바람직하게는 산화규소 및 산화알루미늄을 사용할 수 있다. 구체적으로, 산화규소는 흄드 실리카(Fumed Silica) 또는 콜로이달 실리카(Colloidal Silica)를 사용할 수 있다. The oxide can play a major role in controlling the phase fraction contained in the third precursor, which will be described later, and through this, it is possible to implement a third precursor composed of a combination of iron oxide and iron oxide. Silicon oxide and aluminum oxide can be preferably used as the oxide. Specifically, silicon oxide can be used as fumed silica or colloidal silica.
알칼리금속은 리튬, 나트륨, 칼륨, 루비듐일 수 있으며, 상기 알칼리토금속은 마그네슘, 칼슘, 스트론튬, 바륨일 수 있다. 바람직하게는 탄산나트륨 수용액, 탄산칼륨 수용액, 탄산마그네슘 수용액 또는 탄산칼슘 수용액일 수 있다.한편, 산화물 및 수용액을 모두 첨가하는 대신, 규산칼륨(Potassium Silicate)만을 첨가할 수도 있다. The alkaline metal may be lithium, sodium, potassium, and rubidium, and the alkaline earth metal may be magnesium, calcium, strontium, and barium. Preferably, it may be an aqueous sodium carbonate solution, an aqueous potassium carbonate solution, an aqueous magnesium carbonate solution, or an aqueous calcium carbonate solution. Meanwhile, instead of adding both the oxide and the aqueous solution, only potassium silicate (Potassium Silicate) may be added.
예를 들면, 제2 전구체 제조 시 첨가물은, 탄산칼륨(K2CO3) 수용액 및 콜로이달 실리카를 혼합하여 사용하거나, 탄산칼륨(K2CO3) 수용액 및 흄드실리카(Fumed Silica, SiO2)를 혼합하여 사용하거나, 규산칼륨을 단독으로 사용할 수 있다.For example, when manufacturing the second precursor, the additive may be a mixture of potassium carbonate (K 2 CO 3 ) aqueous solution and colloidal silica, or potassium carbonate (K 2 CO 3 ) aqueous solution and fumed silica (SiO 2 ) . ) can be used in combination, or potassium silicate can be used alone.
이때, 제1 전구체 수득단계에서 첨가된 질산철 수용액에 함유된 철(Fe) : 제1 전구체 수득단계에서 첨가된 금속의 염 수용액에 함유된 금속 : 제2 전구체 슬러리 형성단계에서 첨가된 알칼리금속 또는 알칼리토금속 중 적어도 하나의 수용액에 함유된 금속 : 제2 전구체 슬러리 형성단계에서 첨가된 산화물의 질량비는 100 : 4-6 : 4-7 : 14-38 일 수 있다.  제1 전구체 수득단계에서 첨가된 금속의 염 수용액에 함유된 금속의 함량이 철 100중량부에 대하여 4 질량비 미만이면 탄화수소 생성시 메탄 생성량이 많아지는 문제가 발생하고, 6 질량비를 초과하는 경우에는 반응 활성이 떨어지는 문제가 발생할 수 있다. 제2 전구체 슬러리 형성단계에서 첨가된 알칼리금속 또는 알칼리토금속 중 적어도 하나의 수용액에 함유된 금속이 철 100중량부에 대하여 4 질량비 미만인 경우에는 메탄 생성의 억제 효과를 보기 어려울 수 있으며, 7 질량비를 초과하는 경우에는 촉매의 안정성이 떨어질 수 있다. 또한, 제2 전구체 슬러리 형성단계에서 첨가된 산화물이 상기 범위를 벗어나는 경우 효과가 향상되는 정도가 미미하여 비경제적이거나 촉매 활성이 떨어지는 문제가 있다.At this time, iron (Fe) contained in the aqueous solution of iron nitrate added in the first precursor obtaining step: Metal contained in the salt aqueous solution of the metal added in the first precursor obtaining step: Alkali metal added in the second precursor slurry forming step, or The mass ratio of the metal contained in the aqueous solution of at least one alkaline earth metal to the oxide added in the second precursor slurry forming step may be 100:4-6:4-7:14-38. If the content of the metal contained in the aqueous salt solution of the metal added in the first precursor obtaining step is less than 4 mass ratio with respect to 100 parts by weight of iron, a problem of increased methane production occurs when producing hydrocarbons, and if it exceeds 6 mass ratio, reaction Problems with reduced activity may occur. If the metal contained in the aqueous solution of at least one of the alkali metals or alkaline earth metals added in the second precursor slurry formation step is less than 4 parts by weight based on 100 parts by weight of iron, it may be difficult to see the effect of suppressing methane production, and if it exceeds 7 parts by weight. In this case, the stability of the catalyst may decrease. In addition, if the oxide added in the second precursor slurry forming step is outside the above range, the degree of improvement in effect is minimal, resulting in uneconomical problems or poor catalytic activity.
다음으로, 제3 전구체 제조단계에서는 제2 전구체 슬러리를 건조 및 소성하여 제3 전구체를 제조할 수 있다. 이때, 제2 전구체 슬러리는 분무건조법(Spray-Drying) 또는 회전 증발법 등을 통해 건조될 수 있다. Next, in the third precursor manufacturing step, the third precursor can be manufactured by drying and calcining the second precursor slurry. At this time, the second precursor slurry may be dried through spray-drying or rotary evaporation.
또한, 300 내지 500℃의 온도 분위기에서 소성하는 것이 바람직하며, 300℃ 미만인 경우에는 불순물들이 충분히 기화되어 제거되지 못할 뿐만 아니라 촉매의 물리적 강도 증진 효과가 미미할 수 있으며, 500℃를 초과하는 경우에는 촉매의 세공 구조가 함몰될 수 있다. 소성 시간은 1 내지 15시간일 수 있으며, 바람직하게는 5 내지 12시간일 수 있다. 소성 시간이 1시간 미만인 경우에는 충분히 불순물들이 제거되지 못하고, 15시간을 초과하는 경우에는 경제성이 저하되며 세공 구조가 함몰되어 촉매 성능이 떨어질 수 있다. In addition, it is preferable to calcinate in a temperature atmosphere of 300 to 500°C. If the temperature is below 300°C, impurities may not be sufficiently vaporized and removed, and the effect of improving the physical strength of the catalyst may be minimal, and if it exceeds 500°C, the catalyst may The pore structure may collapse. The firing time may be 1 to 15 hours, preferably 5 to 12 hours. If the calcination time is less than 1 hour, impurities cannot be sufficiently removed, and if it exceeds 15 hours, economic efficiency may decrease and the pore structure may collapse, resulting in reduced catalytic performance.
한편, 제3 전구체는 특정 상분율을 가질 수 있다. 구체적으로, 제3 전구체에 함유된 철 원자수 100%에 대하여, 페리하이드라이트(ferrihydrite)에 함유된 철 원자수 70 내지 100 % 및 헤마타이트(hematite)에 함유된 철 원자수 0 내지 30 %를 포함할 수 있다. 보다 더 구체적으로, 제3 전구체는 각 상이 포함하는 철 원자수를 기준으로 페리하이드라이트:헤마타이트가 70 내지 90 % : 10 내지 30 %의 상분율을 가지거나, 페리하이드라이트 100 %의 상분율을 가질 수 있다. Meanwhile, the third precursor may have a specific phase fraction. Specifically, with respect to 100% of the iron atoms contained in the third precursor, 70 to 100% of the iron atoms contained in ferrihydrite and 0 to 30% of the iron atoms contained in hematite. It can be included. More specifically, the third precursor has a ferrihydrite:hematite phase fraction of 70 to 90%:10 to 30% based on the number of iron atoms contained in each phase, or a phase fraction of ferrihydrite of 100%. You can have
다음으로 활성화 단계에서는, 제3 전구체를 수소(H2) 및 일산화탄소(CO)를 포함하는 가스 분위기 하에서 열처리하여 활성화할 수 있다. 수소 및 일산화탄소를 포함하는 합성 가스를 사용함으로써 제3 전구체를 활성화시킬 수 있으며, 철계 촉매에 포함된 철수산화물, 철산화물 및 철탄화물의 상분율을 최적화할 수 있다. 구체적으로, 활성화 단계는, 제3 전구체를 H2/CO의 부피비가 1 내지 3, GHSV 1 내지 12 NL/g(cat)/h, 온도 230 내지 290 ℃ 및 압력 0.5 내지 1.5 MPa의 조건에서 열처리할 수 있다. Next, in the activation step, the third precursor may be activated by heat treatment in a gas atmosphere containing hydrogen (H 2 ) and carbon monoxide (CO). By using synthesis gas containing hydrogen and carbon monoxide, the third precursor can be activated, and the phase fraction of iron oxide, iron oxide, and iron carbide contained in the iron-based catalyst can be optimized. Specifically, in the activation step, the third precursor is heat treated under the conditions of a volume ratio of H 2 /CO of 1 to 3, GHSV of 1 to 12 NL/g (cat) /h, temperature of 230 to 290 ° C., and pressure of 0.5 to 1.5 MPa. can do.
한편, 제2 전구체 제조 시 첨가물의 종류에 따라 활성화 조건이 달라질 수 있다. 구체적으로, 제2 전구체 제조 시 첨가물로서 규산칼륨을 단독으로 사용할 경우, 탄산칼륨(K2CO3) 수용액 및 콜로이달 실리카를 혼합하여 사용한 경우에 비해 높은 압력에서 활성화할 수 있다. 예를 들면, 제2 전구체 제조 시 첨가물로서 규산칼륨을 단독으로 사용할 경우, 0.7 MPa 초과 내지 1.5 MPa 이하의 조건에서 활성화가 진행될 수 있다. 한편, 탄산칼륨(K2CO3) 수용액 및 콜로이달 실리카를 혼합하여 사용할 경우, 0.5 내지 0.7 MPa의 낮은 압력에서도 활성화가 가능하다. 즉, 첨가물의 실리카 함량이 높을 경우 낮은 압력에서도 활성화할 수 있다.Meanwhile, when manufacturing the second precursor, activation conditions may vary depending on the type of additive. Specifically, when potassium silicate is used alone as an additive when manufacturing the second precursor, it can be activated at a higher pressure compared to when potassium carbonate (K 2 CO 3 ) aqueous solution and colloidal silica are mixed together. For example, when potassium silicate is used alone as an additive when manufacturing the second precursor, activation may proceed under conditions of more than 0.7 MPa and less than 1.5 MPa. Meanwhile, when using a mixture of potassium carbonate (K 2 CO 3 ) aqueous solution and colloidal silica, activation is possible even at a low pressure of 0.5 to 0.7 MPa. In other words, if the silica content of the additive is high, it can be activated even at low pressure.
한편, 제2 전구체 제조 시 첨가물로서 탄산칼륨(K2CO3) 수용액 및 흄드 실리카를 혼합하여 사용할 경우, 탄산칼륨(K2CO3) 수용액 및 콜로이달 실리카를 혼합하여 사용한 경우에 비해 높은 H2/CO의 부피비에서 활성화할 수 있다. 예를 들면, 탄산칼륨(K2CO3) 수용액 및 흄드 실리카를 혼합하여 사용할 경우, H2/CO의 부피비는 1 초과 내지 3이하이고, GHSV는 4.2 NL/g(cat)/h 이상 내지 12 NL/g(cat)/h 이하, 압력 0.5 내지 1.5 MPa의 조건에서 활성화가 진행될 수 있다. On the other hand, when using a mixture of potassium carbonate (K 2 CO 3 ) aqueous solution and fumed silica as an additive when manufacturing the second precursor, H 2 is higher than when using a mixture of potassium carbonate (K 2 CO 3 ) aqueous solution and colloidal silica. It can be activated at a volume ratio of /CO. For example, when using a mixture of potassium carbonate (K 2 CO 3 ) aqueous solution and fumed silica, the volume ratio of H 2 /CO is greater than 1 and less than 3, and GHSV is 4.2 NL/g (cat) /h or more and 12. Activation may proceed under conditions of NL/g (cat) /h or less and a pressure of 0.5 to 1.5 MPa.
이러한 활성화 단계를 통해 상술한 특정 상분율의 철계 촉매를 수득할 수 있다. 즉, 철계 촉매에 함유된 철 원자수 100%에 대하여, 철수산화물에 함유된 철 원자수 13 내지 80%, 철산화물에 함유된 철 원자수 1 내지 5%, 철탄화물에 함유된 철 원자수 21 내지 85%를 포함하는 철계 촉매를 제조할 수 있다. Through this activation step, the iron-based catalyst with the specific phase fraction described above can be obtained. That is, for 100% of the iron atoms contained in the iron-based catalyst, the number of iron atoms contained in iron oxide is 13 to 80%, the number of iron atoms contained in iron oxide is 1 to 5%, and the number of iron atoms contained in iron carbide is 21. An iron-based catalyst containing from 85% to 85% can be manufactured.
탄화수소의 생산 방법Methods of producing hydrocarbons
본 발명의 다양한 실시예에 따른 탄화수소의 생산 방법은 상술한 철계 촉매를 이용하여 합성가스로부터 액체 탄화수소를 제조할 수 있다. 본 발명의 탄화수소의 생산 방법은 철계 촉매를 준비하는 단계; 및 상기 철계 촉매를 이용하여 피셔-트롭쉬 합성반응을 진행하여 탄화수소를 생산하는 단계를 포함할 수 있다.The method for producing hydrocarbons according to various embodiments of the present invention can produce liquid hydrocarbons from synthesis gas using the iron-based catalyst described above. The method for producing hydrocarbons of the present invention includes preparing an iron-based catalyst; And it may include producing hydrocarbons by performing a Fischer-Tropsch synthesis reaction using the iron-based catalyst.
구체적으로, 철계 촉매를 준비하는 단계에서는 상술한 철계 촉매를 준비할 수 있다. 즉, 철수산화물, 철산화물 및 철탄화물을 포함하고, 철계 촉매에 함유된 철 원자수 100%에 대하여, 철수산화물에 함유된 철 원자수 13 내지 80%, 철산화물에 함유된 철 원자수 1 내지 5%, 철탄화물에 함유된 철 원자수 21 내지 85%를 포함하는 철계 촉매를 준비할 수 있다. 이때, 철계 촉매는, H2/CO의 부피비가 1 내지 3, GHSV 1 내지 12 NL/g(cat)/h, 온도 230 내지 290 ℃ 및 압력 0.5 내지 1.5 MPa의 조건에서 활성화된 철계 촉매이다.Specifically, in the step of preparing the iron-based catalyst, the iron-based catalyst described above can be prepared. That is, it includes iron oxide, iron oxide, and iron carbide, and relative to 100% of the iron atoms contained in the iron-based catalyst, the number of iron atoms contained in iron oxide is 13 to 80%, and the number of iron atoms contained in iron oxide is 1 to 80%. An iron-based catalyst containing 5% and 21 to 85% of iron atoms contained in iron carbide can be prepared. At this time, the iron-based catalyst is an iron-based catalyst activated under the conditions of a H 2 /CO volume ratio of 1 to 3, GHSV of 1 to 12 NL/g (cat) /h, temperature of 230 to 290 ° C., and pressure of 0.5 to 1.5 MPa.
탄화수소를 생산하는 단계에서는, 상기 철계 촉매를 이용하여 피셔-트롭쉬 합성반응을 진행할 수 있다. 이때, 피셔-트롭쉬 합성반응은, H2/CO의 부피비가 1 내지 5, GHSV 1 내지 13 NL/g(cat)/h, 온도 230 내지 290 ℃ 및 압력 1.5 내지 2.0 MPa의 반응조건에서 진행될 수 있다.In the step of producing hydrocarbons, the Fischer-Tropsch synthesis reaction can be performed using the iron-based catalyst. At this time, the Fischer-Tropsch synthesis reaction will be carried out under reaction conditions of a volume ratio of H 2 /CO of 1 to 5, GHSV of 1 to 13 NL/g (cat) /h, temperature of 230 to 290 ℃, and pressure of 1.5 to 2.0 MPa. You can.
본 발명의 탄화수소의 생산 방법을 통해 80 wt% 이상의 C5+ 탄화수소 및 48 wt% 이상의 왁스가 생산될 수 있다. Through the method for producing hydrocarbons of the present invention, more than 80 wt% of C 5+ hydrocarbons and more than 48 wt% of wax can be produced.
이하, 본 발명의 구체적인 실시예를 통해 상세히 설명한다.Hereinafter, the present invention will be described in detail through specific examples.
단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐 본 발명이 하기 실시예 에 의해서 한정되는 것은 아니다.However, the following examples are only for illustrating the present invention and the present invention is not limited by the following examples.
실시예Example
실시예 1Example 1
2몰농도의 질산철(Fe(NO3)39H2O) 수용액 및 질산구리(Cu(NO3)25H2O) 수용액을 혼합하여 혼합용액을 제조하고, 혼합용액에 약 80℃의 온도에서 약 80분 동안 pH가 8에 도달하도록 2몰농도의 탄산나트륨(Na2CO3) 수용액을 첨가하여, 고형 침전물 내 각 상이 포함하는 철 원자수를 기준으로 ferrihydrite(FeOOH·nH2O, 0<n<1) : goethite(FeOOH) = 80% : 20%의 상분율로 구성된 제 1 전구체를 얻었다. 상기 제 1 전구체를 포함하고 있는 침전 슬러리는 증류수를 이용하여 여과 및 세척을 하여 잔류 나트륨을 충분히 제거하였고, 세척된 침전 슬러리에 흄드실리카(Fumed Silica, SiO2) 및 탄산칼륨(K2CO3) 수용액을 첨가하여 제 2 전구체 슬러리를 제조하였다. 질산구리, 탄산칼륨 및 흄드실리카의 사용량은 질량비로 Fe : Cu : K : SiO2 = 100 : 5 : 5 : 20 수준이 되도록 조절하였다. 분무건조법(Spray-Drying)을 통해 상기 제 2 전구체 슬러리를 건조한 후, 400 °C의 대기분위기에서 8시간 동안 소성하여, 각 상이 포함하는 철 원자수를 기준으로 ferrihydrite : hematite(a-Fe2O3) = 80% : 20%의 상분율로 구성된 제 3 전구체를 얻었다. 상기 제 3 전구체를 H2 및 CO를 포함하고, 부피비로 H2 : CO = 2 : 1 인 가스를 1.5 MPa의 압력에서 4.2 NL/g(cat)/h로 흘리면서 275 °C의 온도에서 20시간 열처리를 수행하여 활성화된 철계 촉매를 얻었다. A mixed solution was prepared by mixing a 2 molar concentration of iron nitrate (Fe(NO 3 ) 3 9H 2 O) aqueous solution and copper nitrate (Cu(NO 3 ) 2 5H 2 O) aqueous solution, and the mixed solution was heated to a temperature of about 80°C. A 2 molar aqueous solution of sodium carbonate (Na 2 CO 3 ) was added so that the pH reached 8 for about 80 minutes, and ferrihydrite (FeOOH· n H 2 O, 0) was calculated based on the number of iron atoms contained in each phase in the solid precipitate. < n <1): goethite (FeOOH) = 80%: A first precursor consisting of a phase fraction of 20% was obtained. The precipitated slurry containing the first precursor was filtered and washed using distilled water to sufficiently remove residual sodium, and fumed silica (SiO 2 ) and potassium carbonate (K 2 CO 3 ) were added to the washed precipitated slurry. ) A second precursor slurry was prepared by adding an aqueous solution. The amounts of copper nitrate, potassium carbonate, and fumed silica used were adjusted to a mass ratio of Fe:Cu:K:SiO 2 = 100:5:5:20. After drying the second precursor slurry through spray-drying, it was calcined in an air atmosphere at 400 °C for 8 hours to produce ferrihydrite: hematite (a-Fe 2 O) based on the number of iron atoms contained in each phase. 3 ) = 80%: A third precursor consisting of a phase fraction of 20% was obtained. The third precursor was heated at a temperature of 275 °C for 20 hours while flowing a gas containing H 2 and CO and having a volume ratio of H 2 : CO = 2: 1 at 4.2 NL/g (cat) /h at a pressure of 1.5 MPa. Heat treatment was performed to obtain an activated iron-based catalyst.
실시예 2Example 2
실시예 1과 동일한 방법으로 제 1 전구체, 제 2 전구체 슬러리 및 제 3 전구체를 제조하였다. 상기 제 3 전구체를 H2 및 CO를 포함하고, 부피비로 H2 : CO = 3 : 1 인 가스를 1.5 MPa의 압력에서 5.6 NL/g(cat)/h로 흘리면서 275 °C의 온도에서 20시간 열처리를 수행하여 활성화된 철계 촉매를 얻었다.The first precursor, second precursor slurry, and third precursor were prepared in the same manner as in Example 1. The third precursor was heated at a temperature of 275 °C for 20 hours while flowing a gas containing H 2 and CO and having a volume ratio of H 2 : CO = 3: 1 at 5.6 NL/g (cat) /h at a pressure of 1.5 MPa. Heat treatment was performed to obtain an activated iron-based catalyst.
실시예 3Example 3
실시예 1과 동일한 방법으로 제 1 전구체를 제조하였다. 상기 제 1 전구체를 포함하고 있는 침전 슬러리는 증류수를 이용하여 여과 및 세척을 하여 잔류 나트륨을 충분히 제거하였고, 세척된 침전 슬러리에 콜로이달 실리카(Colloidal Silica, SiO2) 및 탄산칼륨(K2CO3) 수용액을 첨가하여 제 2 전구체 슬러리를 제조하였다. 질산구리, 탄산칼륨 및 콜로이달 실리카의 사용량은 질량비로 Fe : Cu : K : SiO2 = 100 : 5 : 5 : 20 수준이 되도록 조절하였다. 분무건조법을 통해 상기 제 2 전구체 슬러리를 건조한 후, 400 °C의 대기분위기에서 8시간 동안 소성하여, 각 상이 포함하는 철 원자수를 기준으로 ferrihydrite : hematite = 80% : 20%의 상분율로 구성된 제 3 전구체를 얻었다. 상기 제 3 전구체를 이용하여 실시예 1과 동일한 방법으로 활성화된 촉매를 제조하였다. The first precursor was prepared in the same manner as Example 1. The precipitated slurry containing the first precursor was filtered and washed using distilled water to sufficiently remove residual sodium, and colloidal silica (SiO 2 ) and potassium carbonate (K 2 CO 3 ) were added to the washed precipitated slurry. ) A second precursor slurry was prepared by adding an aqueous solution. The amounts of copper nitrate, potassium carbonate, and colloidal silica used were adjusted to a mass ratio of Fe:Cu:K:SiO 2 = 100:5:5:20. After drying the second precursor slurry through a spray drying method, it was calcined in an air atmosphere at 400 °C for 8 hours to produce a phase fraction of ferrihydrite:hematite = 80%: 20% based on the number of iron atoms contained in each phase. A third precursor was obtained. An activated catalyst was prepared in the same manner as Example 1 using the third precursor.
실시예 4Example 4
2몰농도의 질산철(Fe(NO3)39H2O) 수용액 및 질산구리(Cu(NO3)25H2O) 수용액을 혼합하여 혼합용액을 제조하고, 혼합용액에 약 80℃의 온도에서 약 20분 동안 pH가 8에 도달하도록 2몰농도의 탄산나트륨(Na2CO3) 수용액을 첨가하여, ferrihydrite만을 철계 화합물로 포함하고 있는 제 1 전구체를 얻었다. 상기 제 1 전구체를 이용하여 실시예 3과 동일한 방법으로 제 2 전구체 슬러리를 제조하였다. 질산구리, 탄산칼륨 및 콜로이달 실리카의 사용량은 질량비로 Fe : Cu : K : SiO2 = 100 : 5 : 5 : 20 수준이 되도록 조절하였다. 분무건조법을 통해 상기 제 2 전구체 슬러리를 건조한 후, 400 °C의 대기분위기에서 8시간 동안 소성하여, ferrihydrite만을 철계 화합물로 포함하고 있는 제 3 전구체를 얻었다. 상기 제 3 전구체를 이용하여 실시예 1과 동일한 방법으로 활성화된 촉매를 제조하였다. A mixed solution was prepared by mixing a 2 molar concentration of iron nitrate (Fe(NO 3 ) 3 9H 2 O) aqueous solution and copper nitrate (Cu(NO 3 ) 2 5H 2 O) aqueous solution, and the mixed solution was heated to a temperature of about 80°C. A 2 molar aqueous solution of sodium carbonate (Na 2 CO 3 ) was added so that the pH reached 8 for about 20 minutes to obtain a first precursor containing only ferrihydrite as an iron-based compound. A second precursor slurry was prepared in the same manner as in Example 3 using the first precursor. The amounts of copper nitrate, potassium carbonate, and colloidal silica used were adjusted to a mass ratio of Fe:Cu:K:SiO 2 = 100:5:5:20. After drying the second precursor slurry through a spray drying method, it was calcined in an air atmosphere at 400 °C for 8 hours to obtain a third precursor containing only ferrihydrite as an iron-based compound. An activated catalyst was prepared in the same manner as Example 1 using the third precursor.
실시예 5Example 5
실시예 1과 동일한 방법으로 제 1 전구체를 제조하였다. 상기 제 1 전구체를 포함하고 있는 침전 슬러리는 증류수를 이용하여 여과 및 세척을 하여 잔류 나트륨을 충분히 제거하였고, 세척된 침전 슬러리에 질량비로 K : SiO2 = 5 : 20 수준인 규산칼륨(Potassium Silicate) 수용액을 첨가하여 제 2 전구체 슬러리를 제조하였다. 질산구리, 규산칼륨 수용액의 사용량은 질량비로 Fe : Cu : K : SiO2 = 100 : 5 : 5 : 20 수준이 되도록 조절하였다. 분무건조법을 통해 상기 제 2 전구체 슬러리를 건조한 후, 400 °C의 대기분위기에서 8시간 동안 소성하여, 각 상이 포함하는 철 원자수를 기준으로 ferrihydrite : hematite = 80% : 20%의 상분율로 구성된 제 3 전구체를 얻었다. 상기 제 3 전구체를 이용하여 실시예 1과 동일한 방법으로 활성화된 촉매를 제조하였다. The first precursor was prepared in the same manner as Example 1. The precipitated slurry containing the first precursor was filtered and washed using distilled water to sufficiently remove residual sodium, and potassium silicate with a mass ratio of K:SiO 2 = 5:20 was added to the washed precipitated slurry. A second precursor slurry was prepared by adding an aqueous solution. The amount of copper nitrate and potassium silicate aqueous solution used was adjusted to a mass ratio of Fe:Cu:K:SiO 2 = 100:5:5:20. After drying the second precursor slurry through a spray drying method, it was calcined in an air atmosphere at 400 °C for 8 hours to produce a phase fraction of ferrihydrite:hematite = 80%: 20% based on the number of iron atoms contained in each phase. A third precursor was obtained. An activated catalyst was prepared in the same manner as Example 1 using the third precursor.
실시예 6Example 6
실시예 4와 동일한 방법으로 제 1 전구체를 제조하였다. 상기 제 1 전구체를 포함하고 있는 침전 슬러리는 증류수를 이용하여 여과 및 세척을 하여 잔류 나트륨을 충분히 제거하였고, 세척된 침전 슬러리에 콜로이달 실리카 및 탄산칼륨(K2CO3) 수용액을 첨가하여 제 2 전구체 슬러리를 제조하였다. 질산구리, 탄산칼륨 및 콜로이달 실리카의 사용량은 질량비로 Fe : Cu : K : SiO2 = 100 : 5 : 5 : 16 수준이 되도록 조절하였다. 분무건조법을 통해 상기 제 2 전구체 슬러리를 건조한 후, 400 °C의 대기분위기에서 8시간 동안 소성하여, ferrihydrite만을 철계 화합물로 포함하고 있는 제 3 전구체를 얻었다. 상기 제 3 전구체를 이용하여 실시예 1과 동일한 방법으로 활성화된 촉매를 제조하였다. The first precursor was prepared in the same manner as in Example 4. The precipitated slurry containing the first precursor was filtered and washed using distilled water to sufficiently remove residual sodium, and colloidal silica and potassium carbonate (K 2 CO 3 ) aqueous solution were added to the washed precipitate slurry to produce the second precipitate slurry. A precursor slurry was prepared. The amounts of copper nitrate, potassium carbonate, and colloidal silica used were adjusted to a mass ratio of Fe:Cu:K:SiO 2 = 100:5:5:16. After drying the second precursor slurry through a spray drying method, it was calcined in an air atmosphere at 400 °C for 8 hours to obtain a third precursor containing only ferrihydrite as an iron-based compound. An activated catalyst was prepared in the same manner as Example 1 using the third precursor.
실시예 7Example 7
실시예 6과 동일한 방법으로 제 1 전구체, 제 2 전구체 슬러리 및 제 3 전구체를 제조하였다. 상기 제 3 전구체를 H2 및 CO를 포함하고, 부피비로 H2 : CO = 2 : 1 인 가스를 0.5 MPa의 압력에서 4.2 NL/g(cat)/h로 흘리면서 275 °C의 온도에서 20시간 열처리를 수행하여 활성화된 철계 촉매를 얻었다.The first precursor, second precursor slurry, and third precursor were prepared in the same manner as in Example 6. The third precursor was heated at a temperature of 275 °C for 20 hours while flowing a gas containing H 2 and CO and having a volume ratio of H 2 : CO = 2: 1 at 4.2 NL/g (cat) /h at a pressure of 0.5 MPa. Heat treatment was performed to obtain an activated iron-based catalyst.
실시예 8Example 8
실시예 6과 동일한 방법으로 제 1 전구체, 제 2 전구체 슬러리 및 제 3 전구체를 제조하였다. 상기 제 3 전구체를 H2 및 CO를 포함하고, 부피비로 H2 : CO = 2 : 1 인 가스를 1.0 MPa의 압력에서 4.2 NL/g(cat)/h로 흘리면서 275 °C의 온도에서 20시간 열처리를 수행하여 활성화된 철계 촉매를 얻었다.The first precursor, second precursor slurry, and third precursor were prepared in the same manner as in Example 6. The third precursor contains H 2 and CO, and a gas with a volume ratio of H 2 : CO = 2: 1 was flowed at 4.2 NL/g (cat) / h at a pressure of 1.0 MPa and a temperature of 275 ° C for 20 hours. Heat treatment was performed to obtain an activated iron-based catalyst.
실시예 9Example 9
실시예 5와 동일한 방법으로 제 1 전구체, 제 2 전구체 슬러리 및 제 3 전구체를 제조하였다. 상기 제 3 전구체를 H2 및 CO를 포함하고, 부피비로 H2 : CO = 2 : 1 인 가스를 1.5 MPa의 압력에서 2.8 NL/g(cat)/h로 흘리면서 255 °C의 온도에서 20시간 열처리를 수행하여 활성화된 철계 촉매를 얻었다. The first precursor, second precursor slurry, and third precursor were prepared in the same manner as in Example 5. The third precursor was heated at a temperature of 255 °C for 20 hours while flowing a gas containing H 2 and CO and having a volume ratio of H 2 : CO = 2: 1 at 2.8 NL/g (cat) /h at a pressure of 1.5 MPa. Heat treatment was performed to obtain an activated iron-based catalyst.
실시예 10Example 10
실시예 1과 동일한 방법으로 제 1 전구체, 제 2 전구체 슬러리 및 제 3 전구체를 제조하였다. 상기 제 3 전구체를 H2 및 CO를 포함하고, 부피비로 H2 : CO = 3 : 1 인 가스를 1.5 MPa의 압력에서 11.2 NL/g(cat)/h로 흘리면서 290 °C의 온도에서 20시간 열처리를 수행하여 활성화된 철계 촉매를 얻었다. The first precursor, second precursor slurry, and third precursor were prepared in the same manner as in Example 1. The third precursor was heated at a temperature of 290 °C for 20 hours while flowing a gas containing H 2 and CO and having a volume ratio of H 2 : CO = 3: 1 at 11.2 NL/g (cat) /h at a pressure of 1.5 MPa. Heat treatment was performed to obtain an activated iron-based catalyst.
실시예 11Example 11
실시예 5와 동일한 방법으로 제 1 전구체, 제 2 전구체 슬러리 및 제 3 전구체를 제조하였다. 상기 제 3 전구체를 H2 및 CO를 포함하고, 부피비로 H2 : CO = 2 : 1 인 가스를 1.5 MPa의 압력에서 1.0 NL/g(cat)/h로 흘리면서 230 °C의 온도에서 20시간 열처리를 수행하여 활성화된 철계 촉매를 얻었다.The first precursor, second precursor slurry, and third precursor were prepared in the same manner as in Example 5. The third precursor was heated at a temperature of 230 °C for 20 hours while flowing a gas containing H 2 and CO and having a volume ratio of H 2 : CO = 2: 1 at 1.0 NL/g (cat) /h at a pressure of 1.5 MPa. Heat treatment was performed to obtain an activated iron-based catalyst.
실시예 12Example 12
실시예 1과 동일한 방법으로 제 1 전구체를 제조하였다. 상기 제 1 전구체를 포함하고 있는 침전 슬러리는 증류수를 이용하여 여과 및 세척을 하여 잔류 나트륨을 충분히 제거하였고, 세척된 침전 슬러리에 콜로이달 실리카(Colloidal Silica, SiO2) 및 탄산칼륨(K2CO3) 수용액을 첨가하여 제 2 전구체 슬러리를 제조하였다. 질산구리, 탄산칼륨 및 콜로이달 실리카의 사용량은 질량비로 Fe : Cu : K : SiO2 = 100 : 5 : 5 : 26 수준이 되도록 조절하였다. 분무건조법을 통해 상기 제 2 전구체 슬러리를 건조한 후, 400 °C의 대기분위기에서 8시간 동안 소성하여, 각 상이 포함하는 철 원자수를 기준으로 ferrihydrite : hematite = 80% : 20%의 상분율로 구성된 제 3 전구체를 얻었다. 상기 제 3 전구체를 H2 및 CO를 포함하고, 부피비로 H2 : CO = 1 : 1 인 가스를 1.5 MPa의 압력에서 2.8 NL/g(cat)/h로 흘리면서 275 °C의 온도에서 20시간 열처리를 수행하여 활성화된 철계 촉매를 얻었다.The first precursor was prepared in the same manner as Example 1. The precipitated slurry containing the first precursor was filtered and washed using distilled water to sufficiently remove residual sodium, and colloidal silica (SiO 2 ) and potassium carbonate (K 2 CO 3 ) were added to the washed precipitated slurry. ) A second precursor slurry was prepared by adding an aqueous solution. The amounts of copper nitrate, potassium carbonate, and colloidal silica used were adjusted to a mass ratio of Fe:Cu:K:SiO 2 = 100:5:5:26. After drying the second precursor slurry through a spray drying method, it was calcined in an air atmosphere at 400 °C for 8 hours to produce a phase fraction of ferrihydrite:hematite = 80%: 20% based on the number of iron atoms contained in each phase. A third precursor was obtained. The third precursor was heated at a temperature of 275 °C for 20 hours while flowing a gas containing H 2 and CO and having a volume ratio of H 2 : CO = 1: 1 at 2.8 NL/g (cat) /h at a pressure of 1.5 MPa. Heat treatment was performed to obtain an activated iron-based catalyst.
실시예 13Example 13
실시예 1과 동일한 방법으로 제 1 전구체를 제조하였다. 상기 제 1 전구체를 포함하고 있는 침전 슬러리는 증류수를 이용하여 여과 및 세척을 하여 잔류 나트륨을 충분히 제거하였고, 세척된 침전 슬러리에 콜로이달 실리카(Colloidal Silica, SiO2) 및 탄산칼륨(K2CO3) 수용액을 첨가하여 제 2 전구체 슬러리를 제조하였다. 질산구리, 탄산칼륨 및 콜로이달 실리카의 사용량은 질량비로 Fe : Cu : K : SiO2 = 100 : 5 : 5 : 28 수준이 되도록 조절하였다. 분무건조법을 통해 상기 제 2 전구체 슬러리를 건조한 후, 400 °C의 대기분위기에서 8시간 동안 소성하여, 각 상이 포함하는 철 원자수를 기준으로 ferrihydrite : hematite = 80% : 20%의 상분율로 구성된 제 3 전구체를 얻었다. 상기 제 3 전구체를 이용하여 실시예 12과 동일한 방법으로 활성화된 촉매를 제조하였다.The first precursor was prepared in the same manner as Example 1. The precipitated slurry containing the first precursor was filtered and washed using distilled water to sufficiently remove residual sodium, and colloidal silica (SiO 2 ) and potassium carbonate (K 2 CO 3 ) were added to the washed precipitated slurry. ) A second precursor slurry was prepared by adding an aqueous solution. The amounts of copper nitrate, potassium carbonate, and colloidal silica used were adjusted to a mass ratio of Fe:Cu:K:SiO 2 = 100:5:5:28. After drying the second precursor slurry through a spray drying method, it was calcined in an air atmosphere at 400 °C for 8 hours to produce a phase fraction of ferrihydrite:hematite = 80%: 20% based on the number of iron atoms contained in each phase. A third precursor was obtained. An activated catalyst was prepared in the same manner as Example 12 using the third precursor.
실시예 14Example 14
실시예 1과 동일한 방법으로 제 1 전구체를 제조하였다. 상기 제 1 전구체를 포함하고 있는 침전 슬러리는 증류수를 이용하여 여과 및 세척을 하여 잔류 나트륨을 충분히 제거하였고, 세척된 침전 슬러리에 콜로이달 실리카(Colloidal Silica, SiO2) 및 탄산칼륨(K2CO3) 수용액을 첨가하여 제 2 전구체 슬러리를 제조하였다. 질산구리, 탄산칼륨 및 콜로이달 실리카의 사용량은 질량비로 Fe : Cu : K : SiO2 = 100 : 5 : 5 : 30 수준이 되도록 조절하였다. 분무건조법을 통해 상기 제 2 전구체 슬러리를 건조한 후, 400 °C의 대기분위기에서 8시간 동안 소성하여, 각 상이 포함하는 철 원자수를 기준으로 ferrihydrite : hematite = 80% : 20%의 상분율로 구성된 제 3 전구체를 얻었다. 상기 제 3 전구체를 이용하여 실시예 12과 동일한 방법으로 활성화된 촉매를 제조하였다.The first precursor was prepared in the same manner as Example 1. The precipitated slurry containing the first precursor was filtered and washed using distilled water to sufficiently remove residual sodium, and colloidal silica (SiO 2 ) and potassium carbonate (K 2 CO 3 ) were added to the washed precipitated slurry. ) A second precursor slurry was prepared by adding an aqueous solution. The amounts of copper nitrate, potassium carbonate, and colloidal silica used were adjusted to a mass ratio of Fe:Cu:K:SiO 2 = 100:5:5:30. After drying the second precursor slurry through a spray drying method, it was calcined in an air atmosphere at 400 °C for 8 hours to produce a phase fraction of ferrihydrite:hematite = 80%: 20% based on the number of iron atoms contained in each phase. A third precursor was obtained. An activated catalyst was prepared in the same manner as Example 12 using the third precursor.
실시예 15Example 15
실시예 1과 동일한 방법으로 제 1 전구체를 제조하였다. 상기 제 1 전구체를 포함하고 있는 침전 슬러리는 증류수를 이용하여 여과 및 세척을 하여 잔류 나트륨을 충분히 제거하였고, 세척된 침전 슬러리에 콜로이달 실리카(Colloidal Silica, SiO2) 및 탄산칼륨(K2CO3) 수용액을 첨가하여 제 2 전구체 슬러리를 제조하였다. 질산구리, 탄산칼륨 및 콜로이달 실리카의 사용량은 질량비로 Fe : Cu : K : SiO2 = 100 : 5 : 5 : 32 수준이 되도록 조절하였다. 분무건조법을 통해 상기 제 2 전구체 슬러리를 건조한 후, 400 °C의 대기분위기에서 8시간 동안 소성하여, 각 상이 포함하는 철 원자수를 기준으로 ferrihydrite : hematite = 80% : 20%의 상분율로 구성된 제 3 전구체를 얻었다. 상기 제 3 전구체를 이용하여 실시예 12과 동일한 방법으로 활성화된 촉매를 제조하였다.The first precursor was prepared in the same manner as Example 1. The precipitated slurry containing the first precursor was filtered and washed using distilled water to sufficiently remove residual sodium, and colloidal silica (SiO 2 ) and potassium carbonate (K 2 CO 3 ) were added to the washed precipitated slurry. ) A second precursor slurry was prepared by adding an aqueous solution. The amounts of copper nitrate, potassium carbonate, and colloidal silica used were adjusted to a mass ratio of Fe:Cu:K:SiO 2 = 100:5:5:32. After drying the second precursor slurry through a spray drying method, it was calcined in an air atmosphere at 400 °C for 8 hours to produce a phase fraction of ferrihydrite:hematite = 80%: 20% based on the number of iron atoms contained in each phase. A third precursor was obtained. An activated catalyst was prepared in the same manner as Example 12 using the third precursor.
실시예 16Example 16
실시예 1과 동일한 방법으로 제 1 전구체를 제조하였다. 상기 제 1 전구체를 포함하고 있는 침전 슬러리는 증류수를 이용하여 여과 및 세척을 하여 잔류 나트륨을 충분히 제거하였고, 세척된 침전 슬러리에 콜로이달 실리카(Colloidal Silica, SiO2) 및 탄산칼륨(K2CO3) 수용액을 첨가하여 제 2 전구체 슬러리를 제조하였다. 질산구리, 탄산칼륨 및 콜로이달 실리카의 사용량은 질량비로 Fe : Cu : K : SiO2 = 100 : 5 : 5 : 34 수준이 되도록 조절하였다. 분무건조법을 통해 상기 제 2 전구체 슬러리를 건조한 후, 400 °C의 대기분위기에서 8시간 동안 소성하여, 각 상이 포함하는 철 원자수를 기준으로 ferrihydrite : hematite = 80% : 20%의 상분율로 구성된 제 3 전구체를 얻었다. 상기 제 3 전구체를 이용하여 실시예 12과 동일한 방법으로 활성화된 촉매를 제조하였다.The first precursor was prepared in the same manner as Example 1. The precipitated slurry containing the first precursor was filtered and washed using distilled water to sufficiently remove residual sodium, and colloidal silica (SiO 2 ) and potassium carbonate (K 2 CO 3 ) were added to the washed precipitated slurry. ) A second precursor slurry was prepared by adding an aqueous solution. The amounts of copper nitrate, potassium carbonate, and colloidal silica used were adjusted to a mass ratio of Fe:Cu:K:SiO 2 = 100:5:5:34. After drying the second precursor slurry through a spray drying method, it was calcined in an air atmosphere at 400 °C for 8 hours to produce a phase fraction of ferrihydrite:hematite = 80%: 20% based on the number of iron atoms contained in each phase. A third precursor was obtained. An activated catalyst was prepared in the same manner as Example 12 using the third precursor.
실시예 17Example 17
실시예 1과 동일한 방법으로 제 1 전구체를 제조하였다. 상기 제 1 전구체를 포함하고 있는 침전 슬러리는 증류수를 이용하여 여과 및 세척을 하여 잔류 나트륨을 충분히 제거하였고, 세척된 침전 슬러리에 콜로이달 실리카(Colloidal Silica, SiO2) 및 탄산칼륨(K2CO3) 수용액을 첨가하여 제 2 전구체 슬러리를 제조하였다. 질산구리, 탄산칼륨 및 콜로이달 실리카의 사용량은 질량비로 Fe : Cu : K : SiO2 = 100 : 5 : 5 : 36 수준이 되도록 조절하였다. 분무건조법을 통해 상기 제 2 전구체 슬러리를 건조한 후, 400 °C의 대기분위기에서 8시간 동안 소성하여, 각 상이 포함하는 철 원자수를 기준으로 ferrihydrite : hematite = 80% : 20%의 상분율로 구성된 제 3 전구체를 얻었다. 상기 제 3 전구체를 이용하여 실시예 12과 동일한 방법으로 활성화된 촉매를 제조하였다.The first precursor was prepared in the same manner as Example 1. The precipitated slurry containing the first precursor was filtered and washed using distilled water to sufficiently remove residual sodium, and colloidal silica (SiO 2 ) and potassium carbonate (K 2 CO 3 ) were added to the washed precipitated slurry. ) A second precursor slurry was prepared by adding an aqueous solution. The amounts of copper nitrate, potassium carbonate, and colloidal silica used were adjusted to a mass ratio of Fe:Cu:K:SiO 2 = 100:5:5:36. After drying the second precursor slurry through a spray drying method, it was calcined in an air atmosphere at 400 °C for 8 hours to produce a phase fraction of ferrihydrite:hematite = 80%: 20% based on the number of iron atoms contained in each phase. A third precursor was obtained. An activated catalyst was prepared in the same manner as Example 12 using the third precursor.
실시예 18Example 18
실시예 1과 동일한 방법으로 제 1 전구체를 제조하였다. 상기 제 1 전구체를 포함하고 있는 침전 슬러리는 증류수를 이용하여 여과 및 세척을 하여 잔류 나트륨을 충분히 제거하였고, 세척된 침전 슬러리에 콜로이달 실리카(Colloidal Silica, SiO2) 및 탄산칼륨(K2CO3) 수용액을 첨가하여 제 2 전구체 슬러리를 제조하였다. 질산구리, 탄산칼륨 및 콜로이달 실리카의 사용량은 질량비로 Fe : Cu : K : SiO2 = 100 : 5 : 5 : 38 수준이 되도록 조절하였다. 분무건조법을 통해 상기 제 2 전구체 슬러리를 건조한 후, 400 °C의 대기분위기에서 8시간 동안 소성하여, 각 상이 포함하는 철 원자수를 기준으로 ferrihydrite : hematite = 80% : 20%의 상분율로 구성된 제 3 전구체를 얻었다. 상기 제 3 전구체를 이용하여 실시예 12과 동일한 방법으로 활성화된 촉매를 제조하였다.The first precursor was prepared in the same manner as Example 1. The precipitated slurry containing the first precursor was filtered and washed using distilled water to sufficiently remove residual sodium, and colloidal silica (SiO 2 ) and potassium carbonate (K 2 CO 3 ) were added to the washed precipitated slurry. ) A second precursor slurry was prepared by adding an aqueous solution. The amounts of copper nitrate, potassium carbonate, and colloidal silica used were adjusted to a mass ratio of Fe:Cu:K:SiO 2 = 100:5:5:38. After drying the second precursor slurry through a spray drying method, it was calcined in an air atmosphere at 400 °C for 8 hours to produce a phase fraction of ferrihydrite:hematite = 80%: 20% based on the number of iron atoms contained in each phase. A third precursor was obtained. An activated catalyst was prepared in the same manner as Example 12 using the third precursor.
실시예 19Example 19
실시예 15와 동일한 방법으로 제 1 전구체, 제 2 전구체 슬러리 및 제 3 전구체를 제조하였다. 상기 제 3 전구체를 H2 및 CO를 포함하고, 부피비로 H2 : CO = 2 : 1 인 가스를 0.7 MPa의 압력에서 2.25 NL/g(cat)/h로 흘리면서 275 °C의 온도에서 20시간 열처리를 수행하여 활성화된 철계 촉매를 얻었다.The first precursor, second precursor slurry, and third precursor were prepared in the same manner as in Example 15. The third precursor was heated at a temperature of 275 °C for 20 hours while flowing a gas containing H 2 and CO and having a volume ratio of H 2 : CO = 2: 1 at 2.25 NL/g (cat) / h at a pressure of 0.7 MPa. Heat treatment was performed to obtain an activated iron-based catalyst.
실시예 20Example 20
실시예 1과 동일한 방법으로 제 1 전구체를 제조하였다. 상기 제 1 전구체를 포함하고 있는 침전 슬러리는 증류수를 이용하여 여과 및 세척을 하여 잔류 나트륨을 충분히 제거하였고, 세척된 침전 슬러리에 콜로이달 실리카(Colloidal Silica, SiO2) 및 탄산칼륨(K2CO3) 수용액을 첨가하여 제 2 전구체 슬러리를 제조하였다. 질산구리, 탄산칼륨 및 콜로이달 실리카의 사용량은 질량비로 Fe : Cu : K : SiO2 = 100 : 5 : 6 : 32 수준이 되도록 조절하였다. 분무건조법을 통해 상기 제 2 전구체 슬러리를 건조한 후, 400 °C의 대기분위기에서 8시간 동안 소성하여, 각 상이 포함하는 철 원자수를 기준으로 ferrihydrite : hematite = 80% : 20%의 상분율로 구성된 제 3 전구체를 얻었다. 상기 제 3 전구체를 이용하여 실시예 19와 동일한 방법으로 활성화된 촉매를 제조하였다.The first precursor was prepared in the same manner as Example 1. The precipitated slurry containing the first precursor was filtered and washed using distilled water to sufficiently remove residual sodium, and colloidal silica (SiO 2 ) and potassium carbonate (K 2 CO 3 ) were added to the washed precipitated slurry. ) A second precursor slurry was prepared by adding an aqueous solution. The amounts of copper nitrate, potassium carbonate, and colloidal silica used were adjusted to a mass ratio of Fe:Cu:K:SiO 2 = 100:5:6:32. After drying the second precursor slurry through a spray drying method, it was calcined in an air atmosphere at 400 °C for 8 hours to produce a phase fraction of ferrihydrite:hematite = 80%: 20% based on the number of iron atoms contained in each phase. A third precursor was obtained. An activated catalyst was prepared in the same manner as Example 19 using the third precursor.
실시예 21Example 21
실시예 20과 동일한 방법으로 제 1 전구체, 제 2 전구체 슬러리 및 제 3 전구체를 제조하였다. 상기 제 3 전구체를 이용하여 실시예 12와 동일한 방법으로 활성화된 촉매를 제조하였다. The first precursor, second precursor slurry, and third precursor were prepared in the same manner as in Example 20. An activated catalyst was prepared in the same manner as Example 12 using the third precursor.
실시예 22Example 22
실시예 1과 동일한 방법으로 제 1 전구체를 제조하였다. 상기 제 1 전구체를 포함하고 있는 침전 슬러리는 증류수를 이용하여 여과 및 세척을 하여 잔류 나트륨을 충분히 제거하였고, 세척된 침전 슬러리에 콜로이달 실리카(Colloidal Silica, SiO2) 및 탄산칼륨(K2CO3) 수용액을 첨가하여 제 2 전구체 슬러리를 제조하였다. 질산구리, 탄산칼륨 및 콜로이달 실리카의 사용량은 질량비로 Fe : Cu : K : SiO2 = 100 : 5 : 7 : 32 수준이 되도록 조절하였다. 분무건조법을 통해 상기 제 2 전구체 슬러리를 건조한 후, 400 °C의 대기분위기에서 8시간 동안 소성하여, 각 상이 포함하는 철 원자수를 기준으로 ferrihydrite : hematite = 80% : 20%의 상분율로 구성된 제 3 전구체를 얻었다. 상기 제 3 전구체를 이용하여 실시예 12과 동일한 방법으로 활성화된 촉매를 제조하였다. The first precursor was prepared in the same manner as Example 1. The precipitated slurry containing the first precursor was filtered and washed using distilled water to sufficiently remove residual sodium, and colloidal silica (SiO 2 ) and potassium carbonate (K 2 CO 3 ) were added to the washed precipitated slurry. ) A second precursor slurry was prepared by adding an aqueous solution. The amounts of copper nitrate, potassium carbonate, and colloidal silica used were adjusted to a mass ratio of Fe:Cu:K:SiO 2 = 100:5:7:32. After drying the second precursor slurry through a spray drying method, it was calcined in an air atmosphere at 400 °C for 8 hours to produce a phase fraction of ferrihydrite:hematite = 80%: 20% based on the number of iron atoms contained in each phase. A third precursor was obtained. An activated catalyst was prepared in the same manner as Example 12 using the third precursor.
실시예 23Example 23
실시예 15와 동일한 방법으로 제 1 전구체, 제 2 전구체 슬러리 및 제 3 전구체를 제조하였다. 상기 제 3 전구체를 H2 및 CO를 포함하고, 부피비로 H2 : CO = 1 : 1 인 가스를 1.5 MPa의 압력에서 1.4 NL/g(cat)/h로 흘리면서 260 °C의 온도에서 20시간 열처리를 수행하여 활성화된 철계 촉매를 얻었다.The first precursor, second precursor slurry, and third precursor were prepared in the same manner as in Example 15. The third precursor was heated at a temperature of 260 °C for 20 hours while flowing a gas containing H 2 and CO and having a volume ratio of H 2 : CO = 1: 1 at 1.4 NL/g (cat) /h at a pressure of 1.5 MPa. Heat treatment was performed to obtain an activated iron-based catalyst.
실시예 24Example 24
실시예 20과 동일한 방법으로 제 1 전구체, 제 2 전구체 슬러리 및 제 3 전구체를 제조하였다. 상기 제 3 전구체를 이용하여 실시예 23과 동일한 방법으로 활성화된 촉매를 제조하였다. The first precursor, second precursor slurry, and third precursor were prepared in the same manner as in Example 20. An activated catalyst was prepared in the same manner as Example 23 using the third precursor.
비교예 1Comparative Example 1
실시예 1과 동일한 방법으로 제 1 전구체, 제 2 전구체 슬러리 및 제 3 전구체를 제조하였다. 상기 제 3 전구체를 H2 및 CO를 포함하고, 부피비로 H2 : CO = 1 : 1 인 가스를 상압에서 2.8 NL/g(cat)/h로 흘리면서 280 °C의 온도에서 20시간 열처리를 수행하여 활성화된 철계 촉매를 얻었다. The first precursor, second precursor slurry, and third precursor were prepared in the same manner as in Example 1. The third precursor was heat treated at a temperature of 280 °C for 20 hours while flowing a gas containing H 2 and CO and having a volume ratio of H 2 : CO = 1: 1 at 2.8 NL/g (cat) / h at normal pressure. An activated iron-based catalyst was obtained.
비교예 2Comparative Example 2
실시예 1과 동일한 방법으로 제 1 전구체, 제 2 전구체 슬러리 및 제 3 전구체를 제조하였다. 상기 제 3 전구체를 H2 및 CO를 포함하고, 부피비로 H2 : CO = 1 : 1 인 가스를 1.5 MPa의 압력에서 2.8 NL/g(cat)/h로 흘리면서 280 °C의 온도에서 20시간 열처리를 수행하여 활성화된 철계 촉매를 얻었다. The first precursor, second precursor slurry, and third precursor were prepared in the same manner as in Example 1. The third precursor was heated at a temperature of 280 °C for 20 hours while flowing a gas containing H 2 and CO and having a volume ratio of H 2 : CO = 1: 1 at 2.8 NL/g (cat) /h at a pressure of 1.5 MPa. Heat treatment was performed to obtain an activated iron-based catalyst.
비교예 3Comparative Example 3
실시예 1과 동일한 방법으로 제 1 전구체, 제 2 전구체 슬러리 및 제 3 전구체를 제조하였다. 상기 제 3 전구체를 H2 및 CO를 포함하고, 부피비로 H2 : CO = 3 : 1 인 가스를 1.5 MPa의 압력에서 15.4 NL/g(cat)/h로 흘리면서 305 °C의 온도에서 20시간 열처리를 수행하여 활성화된 철계 촉매를 얻었다. The first precursor, second precursor slurry, and third precursor were prepared in the same manner as in Example 1. The third precursor was heated at a temperature of 305 °C for 20 hours while flowing a gas containing H 2 and CO and having a volume ratio of H 2 : CO = 3: 1 at 15.4 NL/g (cat) / h at a pressure of 1.5 MPa. Heat treatment was performed to obtain an activated iron-based catalyst.
비교예 4Comparative Example 4
실시예 1과 동일한 방법으로 제 1 전구체, 제 2 전구체 슬러리 및 제 3 전구체를 제조하였다. 상기 제 3 전구체를 H2 및 CO를 포함하고, 부피비로 H2 : CO = 3 : 1 인 가스를 1.5 MPa의 압력에서 19.6 NL/g(cat)/h로 흘리면서 320 °C의 온도에서 20시간 열처리를 수행하여 활성화된 철계 촉매를 얻었다. The first precursor, second precursor slurry, and third precursor were prepared in the same manner as in Example 1. The third precursor was heated at a temperature of 320 °C for 20 hours while flowing a gas containing H 2 and CO and having a volume ratio of H 2 : CO = 3: 1 at 19.6 NL/g (cat) / h at a pressure of 1.5 MPa. Heat treatment was performed to obtain an activated iron-based catalyst.
비교예 5Comparative Example 5
실시예 3과 동일한 방법으로 제 1 전구체, 제 2 전구체 슬러리 및 제 3 전구체를 제조하였다. 상기 제 3 전구체를 H2 및 CO를 포함하고, 부피비로 H2 : CO = 2 : 1 인 가스를 상압에서 4.2 NL/g(cat)/h로 흘리면서 280 °C의 온도에서 20시간 열처리를 수행하여 활성화된 철계 촉매를 얻었다. The first precursor, second precursor slurry, and third precursor were prepared in the same manner as in Example 3. The third precursor was heat treated at a temperature of 280 °C for 20 hours while flowing a gas containing H 2 and CO and having a volume ratio of H 2 : CO = 2: 1 at 4.2 NL/g (cat) / h at normal pressure. An activated iron-based catalyst was obtained.
비교예 6Comparative Example 6
실시예 6과 동일한 방법으로 제 1 전구체, 제 2 전구체 슬러리 및 제 3 전구체를 제조하였다. 상기 제 3 전구체를 H2 및 CO를 포함하고, 부피비로 H2 : CO = 2 : 1 인 가스를 상압에서 4.2 NL/g(cat)/h로 흘리면서 275 °C의 온도에서 20시간 열처리를 수행하여 활성화된 철계 촉매를 얻었다. The first precursor, second precursor slurry, and third precursor were prepared in the same manner as in Example 6. The third precursor was heat treated at a temperature of 275 °C for 20 hours while flowing a gas containing H 2 and CO and having a volume ratio of H 2 : CO = 2: 1 at 4.2 NL/g (cat) / h at normal pressure. An activated iron-based catalyst was obtained.
비교예 7Comparative Example 7
2몰농도의 질산철 수용액 및 질산구리 수용액을 혼합하여 혼합용액을 제조하고, 혼합용액에 약 80℃의 온도에서 약 20시간 동안 pH가 8에 도달하도록 2몰농도의 탄산나트륨 수용액을 첨가하여, goethite만을 철계 화합물로 포함하고 있는 제 1 전구체를 얻었다. 상기 제 1 전구체를 포함하고 있는 침전 슬러리는 증류수를 이용하여 여과 및 세척을 하여 잔류 나트륨을 충분히 제거하였고, 세척된 침전 슬러리에 콜로이달 실리카 및 탄산칼륨(K2CO3) 수용액을 첨가하여 제 2 전구체 슬러리를 제조하였다. 질산구리, 탄산칼륨 및 콜로이달 실리카의 사용량은 질량비로 Fe : Cu : K : SiO2 = 100 : 5 : 5 : 16 수준이 되도록 조절하였다. 분무건조법을 통해 상기 제 2 전구체 슬러리를 건조한 후, 400 °C의 대기분위기에서 8시간 동안 소성하여, hematite만을 철계 화합물로 포함하고 있는 제 3 전구체를 얻었다. 상기 제 3 전구체를 H2 및 CO를 포함하고, 부피비로 H2 : CO = 2 : 1 인 가스를 0.5 MPa의 압력에서 4.2 NL/g(cat)/h로 흘리면서 275 °C의 온도에서 20시간 열처리를 수행하여 활성화된 철계 촉매를 얻었다. A mixed solution was prepared by mixing a 2 molar aqueous solution of iron nitrate and an aqueous copper nitrate solution, and a 2 molar aqueous solution of sodium carbonate was added to the mixed solution to reach pH 8 at a temperature of about 80°C for about 20 hours to produce goethite. A first precursor containing only iron-based compounds was obtained. The precipitated slurry containing the first precursor was filtered and washed using distilled water to sufficiently remove residual sodium, and colloidal silica and potassium carbonate (K 2 CO 3 ) aqueous solution were added to the washed precipitate slurry to produce the second precipitate slurry. A precursor slurry was prepared. The amounts of copper nitrate, potassium carbonate, and colloidal silica used were adjusted to a mass ratio of Fe:Cu:K:SiO 2 = 100:5:5:16. After drying the second precursor slurry through a spray drying method, it was calcined in an air atmosphere at 400 °C for 8 hours to obtain a third precursor containing only hematite as an iron-based compound. The third precursor was heated at a temperature of 275 °C for 20 hours while flowing a gas containing H 2 and CO and having a volume ratio of H 2 : CO = 2: 1 at 4.2 NL/g (cat) /h at a pressure of 0.5 MPa. Heat treatment was performed to obtain an activated iron-based catalyst.
비교예 8Comparative Example 8
비교예 8과 동일한 방법으로 제 1 전구체, 제 2 전구체 슬러리 및 제 3 전구체를 제조하였다. 상기 제 3 전구체를 H2 및 CO를 포함하고, 부피비로 H2 : CO = 2 : 1 인 가스를 1.0 MPa의 압력에서 4.2 NL/g(cat)/h로 흘리면서 275 °C의 온도에서 20시간 열처리를 수행하여 활성화된 철계 촉매를 얻었다.The first precursor, second precursor slurry, and third precursor were prepared in the same manner as in Comparative Example 8. The third precursor contains H 2 and CO, and a gas with a volume ratio of H 2 : CO = 2: 1 was flowed at 4.2 NL/g (cat) / h at a pressure of 1.0 MPa and a temperature of 275 ° C for 20 hours. Heat treatment was performed to obtain an activated iron-based catalyst.
비교예 9Comparative Example 9
실시예 5와 동일한 방법으로 제 1 전구체, 제 2 전구체 슬러리 및 제 3 전구체를 제조하였다. 상기 제 3 전구체를 이용하여 실시예 19와 동일한 방법으로 활성화된 촉매를 제조하였다.The first precursor, second precursor slurry, and third precursor were prepared in the same manner as in Example 5. An activated catalyst was prepared in the same manner as Example 19 using the third precursor.
한편, 실시예 1 내지 9 및 비교예 1 내지 9에 따른 공정 조건은 하기 표 1과 같이 비교할 수 있다.Meanwhile, the process conditions according to Examples 1 to 9 and Comparative Examples 1 to 9 can be compared as shown in Table 1 below.
반응
시간*
reaction
hour*
제1 전구체 상분율First precursor phase fraction 제2 전구체
제조 시 첨가물
second precursor
Additives in manufacturing
제3 전구체 상분율Third precursor phase fraction 활성화 조건Activation conditions
H2/CO H2 /CO 공간속도
(NL/g(cat)/h)
space speed
(NL/g (cat) /h)
T
(°C)
T
(°C)
P
(MPa)
P
(MPa)
실시예 1Example 1 80 분80 minutes ferrihydrite : goethite = 80% : 20%ferrihydrite : goethite = 80% : 20% K2CO3 K 2 CO 3 Fumed silicafumed silica ferrihydrite : hematite = 80% : 20%ferrihydrite : hematite = 80% : 20% 22 4.2 4.2 275 275 1.5 1.5
실시예 2Example 2 80 분80 minutes ferrihydrite : goethite = 80% : 20%ferrihydrite : goethite = 80% : 20% K2CO3 K 2 CO 3 Fumed silicafumed silica Fumed silicafumed silica 33 5.65.6 275 275 1.5 1.5
실시예 3Example 3 80 분80 minutes ferrihydrite : goethite = 80% : 20%ferrihydrite : goethite = 80% : 20% K2CO3 K 2 CO 3 Colloidal silicaColloidal silica ferrihydrite : hematite = 80% : 20%ferrihydrite : hematite = 80% : 20% 22 4.2 4.2 275 275 1.5 1.5
실시예 4Example 4 20 분20 minutes Ferrihydrite 100%Ferrihydrite 100% K2CO3 K 2 CO 3 Colloidal silica Colloidal silica Ferrihydrite 100%Ferrihydrite 100% 22 4.2 4.2 275 275 1.5 1.5
실시예 5Example 5 80 분80 minutes ferrihydrite : goethite = 80% : 20%ferrihydrite : goethite = 80% : 20% 규산칼륨potassium silicate ferrihydrite : hematite = 80% : 20%ferrihydrite : hematite = 80% : 20% 22 4.2 4.2 275 275 1.5 1.5
실시예 6Example 6 20 분20 minutes Ferrihydrite 100%Ferrihydrite 100% K2CO3
K 2 CO 3
Colloidal silica Colloidal silica Ferrihydrite 100%Ferrihydrite 100% 22 4.2 4.2 275 275 1.5 1.5
실시예 7Example 7 20 분20 minutes Ferrihydrite 100%Ferrihydrite 100% K2CO3 K 2 CO 3 Colloidal silica Colloidal silica Ferrihydrite 100%Ferrihydrite 100% 22 4.2 4.2 275 275 0.50.5
실시예 8Example 8 20 분20 minutes Ferrihydrite 100%Ferrihydrite 100% K2CO3 K 2 CO 3 Colloidal silica Colloidal silica Ferrihydrite 100%Ferrihydrite 100% 22 4.2 4.2 275 275 1.01.0
실시예 9Example 9 80 분80 minutes ferrihydrite : goethite = 80% : 20%ferrihydrite : goethite = 80% : 20% 규산칼륨potassium silicate ferrihydrite : hematite = 80% : 20%ferrihydrite : hematite = 80% : 20% 22 2.82.8 255255 1.51.5
실시예 10Example 10 80 분80 minutes ferrihydrite : goethite = 80% : 20%ferrihydrite : goethite = 80% : 20% K2CO3 K 2 CO 3 Fumed silicafumed silica ferrihydrite : hematite = 80% : 20%ferrihydrite : hematite = 80% : 20% 33 11.211.2 290290 1.51.5
실시예 11Example 11 80 분80 minutes ferrihydrite : goethite = 80% : 20%ferrihydrite : goethite = 80% : 20% 규산칼륨potassium silicate ferrihydrite : hematite = 80% : 20%ferrihydrite : hematite = 80% : 20% 22 1.01.0 230230 1.51.5
실시예 12Example 12 80 분80 minutes ferrihydrite : goethite = 80% : 20%ferrihydrite : goethite = 80% : 20% K2CO3 K 2 CO 3 Colloidal silicaColloidal silica ferrihydrite : hematite = 80% : 20%ferrihydrite : hematite = 80% : 20% 1One 2.82.8 275275 1.51.5
실시예 13Example 13 80 분80 minutes ferrihydrite : goethite = 80% : 20%ferrihydrite : goethite = 80% : 20% K2CO3 K 2 CO 3 Colloidal silicaColloidal silica ferrihydrite : hematite = 80% : 20%ferrihydrite : hematite = 80% : 20% 1One 2.82.8 275275 1.51.5
실시예 14Example 14 80 분80 minutes ferrihydrite : goethite = 80% : 20%ferrihydrite : goethite = 80% : 20% K2CO3 K 2 CO 3 Colloidal silicaColloidal silica ferrihydrite : hematite = 80% : 20%ferrihydrite : hematite = 80% : 20% 1One 2.82.8 275275 1.51.5
실시예 15Example 15 80 분80 minutes ferrihydrite : goethite = 80% : 20%ferrihydrite : goethite = 80% : 20% K2CO3 K 2 CO 3 Colloidal silicaColloidal silica ferrihydrite : hematite = 80% : 20%ferrihydrite : hematite = 80% : 20% 1One 2.82.8 275275 1.51.5
실시예 16Example 16 80 분80 minutes ferrihydrite : goethite = 80% : 20%ferrihydrite : goethite = 80% : 20% K2CO3 K 2 CO 3 Colloidal silicaColloidal silica ferrihydrite : hematite = 80% : 20%ferrihydrite : hematite = 80% : 20% 1One 2.82.8 275275 1.51.5
실시예 17Example 17 80 분80 minutes ferrihydrite : goethite = 80% : 20%ferrihydrite : goethite = 80% : 20% K2CO3 K 2 CO 3 Colloidal silicaColloidal silica ferrihydrite : hematite = 80% : 20%ferrihydrite : hematite = 80% : 20% 1One 2.82.8 275275 1.51.5
실시예 18Example 18 80 분80 minutes ferrihydrite : goethite = 80% : 20%ferrihydrite : goethite = 80% : 20% K2CO3 K 2 CO 3 Colloidal silicaColloidal silica ferrihydrite : hematite = 80% : 20%ferrihydrite : hematite = 80% : 20% 1One 2.82.8 275275 1.51.5
실시예 19Example 19 80 분80 minutes ferrihydrite : goethite = 80% : 20%ferrihydrite : goethite = 80% : 20% K2CO3 K 2 CO 3 Colloidal silicaColloidal silica ferrihydrite : hematite = 80% : 20%ferrihydrite : hematite = 80% : 20% 22 2.252.25 275275 0.70.7
실시예 20Example 20 80 분80 minutes ferrihydrite : goethite = 80% : 20%ferrihydrite : goethite = 80% : 20% K2CO3 K 2 CO 3 Colloidal silicaColloidal silica ferrihydrite : hematite = 80% : 20%ferrihydrite : hematite = 80% : 20% 22 2.252.25 275275 0.70.7
실시예 21Example 21 80 분80 minutes ferrihydrite : goethite = 80% : 20%ferrihydrite : goethite = 80% : 20% K2CO3 K 2 CO 3 Colloidal silicaColloidal silica ferrihydrite : hematite = 80% : 20%ferrihydrite : hematite = 80% : 20% 1One 2.82.8 275275 1.51.5
실시예 22Example 22 80 분80 minutes ferrihydrite : goethite = 80% : 20%ferrihydrite : goethite = 80% : 20% K2CO3 K 2 CO 3 Colloidal silicaColloidal silica ferrihydrite : hematite = 80% : 20%ferrihydrite : hematite = 80% : 20% 1One 2.82.8 275275 1.51.5
실시예 23Example 23 80 분80 minutes ferrihydrite : goethite = 80% : 20%ferrihydrite : goethite = 80% : 20% K2CO3 K 2 CO 3 Colloidal silicaColloidal silica ferrihydrite : hematite = 80% : 20%ferrihydrite : hematite = 80% : 20% 1One 1.41.4 260260 1.51.5
실시예 24Example 24 80 분80 minutes ferrihydrite : goethite = 80% : 20%ferrihydrite : goethite = 80% : 20% K2CO3 K 2 CO 3 Colloidal silicaColloidal silica ferrihydrite : hematite = 80% : 20%ferrihydrite : hematite = 80% : 20% 1One 1.41.4 260260 1.51.5
비교예 1Comparative Example 1 80 분80 minutes ferrihydrite : goethite = 80% : 20%ferrihydrite : goethite = 80% : 20% K2CO3 K 2 CO 3 Fumed silicafumed silica ferrihydrite : hematite = 80% : 20%ferrihydrite : hematite = 80% : 20% 1One 2.82.8 280280 상압normal pressure
비교예 2Comparative Example 2 80 분80 minutes ferrihydrite : goethite = 80% : 20%ferrihydrite : goethite = 80% : 20% K2CO3 K 2 CO 3 Fumed silicafumed silica ferrihydrite : hematite = 80% : 20%ferrihydrite : hematite = 80% : 20% 1One 2.82.8 280280 1.51.5
비교예 3Comparative Example 3 80 분80 minutes ferrihydrite : goethite = 80% : 20%ferrihydrite : goethite = 80% : 20% K2CO3 K 2 CO 3 Fumed silicafumed silica ferrihydrite : hematite = 80% : 20%ferrihydrite : hematite = 80% : 20% 33 15.415.4 305305 1.51.5
비교예 4Comparative Example 4 80 분80 minutes ferrihydrite : goethite = 80% : 20%ferrihydrite : goethite = 80% : 20% K2CO3 K 2 CO 3 Fumed silicafumed silica ferrihydrite : hematite = 80% : 20%ferrihydrite : hematite = 80% : 20% 33 19.619.6 320320 1.51.5
비교예 5Comparative Example 5 80 분80 minutes ferrihydrite : goethite = 80% : 20%ferrihydrite : goethite = 80% : 20% K2CO3 K 2 CO 3 Colloidal silicaColloidal silica ferrihydrite : hematite = 80% : 20%ferrihydrite : hematite = 80% : 20% 22 4.24.2 280280 상압normal pressure
비교예 6Comparative Example 6 20 분20 minutes Ferrihydrite 100%Ferrihydrite 100% K2CO3 K 2 CO 3 Colloidal silica Colloidal silica Ferrihydrite 100%Ferrihydrite 100% 22 4.24.2 275275 상압normal pressure
비교예 7Comparative Example 7 20 시간20 hours Goethite 100 %Goethite 100% K2CO3 K 2 CO 3 Colloidal silicaColloidal silica Hematite 100 %Hematite 100% 22 4.24.2 275275 0.50.5
비교예 8Comparative Example 8 20 시간20 hours Goethite 100 %Goethite 100% K2CO3 K 2 CO 3 Colloidal silica Colloidal silica Hematite 100 %Hematite 100% 22 4.24.2 275275 1.01.0
비교예9Comparative Example 9 80 분80 minutes ferrihydrite : goethite = 80% : 20%ferrihydrite : goethite = 80% : 20% 규산칼륨potassium silicate ferrihydrite : hematite = 80% : 20%ferrihydrite : hematite = 80% : 20% 22 2.252.25 275275 0.70.7
*반응시간: 혼합용액에 염기성 수용액을 첨가하여 반응하는 시간실시예 1, 2, 12, 15 및 비교예 2의 방법으로 제조된 활성화된 철계 촉매의 상분율을 뫼스바우어 분광법에 의해 분석한 결과를 각각 도 1, 2, 3, 4 및 5에 도시하였고, 도 1 내지 도 5의 뫼스바우어 분광법 결과로 상분율을 계산하여 하기 표 2에 기재하였다. 각 상의 상분율 단위는 Fe-mol%이다. *Reaction time: Time for reaction by adding basic aqueous solution to the mixed solution. The phase fraction of the activated iron-based catalyst prepared by the method of Examples 1, 2, 12, 15 and Comparative Example 2 was analyzed by Mössbauer spectroscopy. They are shown in Figures 1, 2, 3, 4, and 5, respectively, and the phase fractions were calculated from the Mössbauer spectroscopy results of Figures 1 to 5 and listed in Table 2 below. The unit of phase fraction of each phase is Fe-mol%.
FeOOH·nH2OFeOOH· nH 2 O Fe3O4 Fe 3 O 4 c-Fe5C2 c-Fe 5 C 2 e`-Fe2.2Ce`-Fe 2.2 C
실시예 1Example 1 24.724.7 2.852.85 63.063.0 9.439.43
실시예 2Example 2 16.116.1 2.362.36 71.471.4 10.110.1
실시예 12Example 12 54.754.7 -- 45.345.3 --
실시예 15Example 15 77.277.2 -- 22.922.9 --
비교예 2Comparative Example 2 12.812.8 22.422.4 59.959.9 4.874.87
실시예 1 내지 24 및 비교예 1 내지 9의 방법으로 제조된 활성화된 철계 촉매를 실험실급 고정층 반응기(촉매 사용량: 0.1 내지 1.0 g)에 넣고 하기 표 3의 FTS 반응 조건에서 성능을 평가하였다. 그 결과는 하기 표 3과 같다. The activated iron-based catalysts prepared by the methods of Examples 1 to 24 and Comparative Examples 1 to 9 were placed in a laboratory-grade fixed bed reactor (catalyst usage: 0.1 to 1.0 g), and their performance was evaluated under the FTS reaction conditions shown in Table 3 below. The results are shown in Table 3 below.
FTS 반응조건FTS reaction conditions 촉매성능Catalytic performance
  H2/CO H2 /CO 공간속도
(NL/g(cat)/h)
space speed
(NL/g (cat) /h)
온도
(℃)
temperature
(℃)
압력
(MPa)
enter
(MPa)
CO
전환율
(%)
C.O.
conversion rate
(%)
CO2
선택도
(%)
CO2
selectivity
(%)
탄화수소 분포 (wt%)Hydrocarbon distribution (wt%)
CH4 CH 4 C2-C4 C 2 -C 4 C5+ C 5+ C19+ C 19+
실시예 1Example 1 22 4.24.2 275275 1.51.5 63.563.5 36.836.8 2.162.16 5.505.50 92.392.3 72.272.2
실시예 2Example 2 33 5.65.6 275275 1.51.5 72.472.4 33.633.6 2.552.55 4.354.35 93.193.1 69.169.1
실시예 3Example 3 22 4.24.2 275275 1.51.5 67.967.9 38.938.9 2.562.56 6.236.23 91.291.2 68.168.1
실시예 4Example 4 22 4.24.2 275275 1.51.5 65.265.2 37.637.6 3.333.33 8.698.69 88.088.0 62.262.2
실시예 5Example 5 22 4.24.2 275275 1.51.5 74.574.5 40.740.7 2.612.61 5.785.78 91.691.6 68.768.7
실시예 6Example 6 22 4.24.2 275275 1.51.5 71.271.2 40.340.3 3.873.87 9.019.01 87.187.1 62.762.7
실시예 7Example 7 22 4.24.2 275275 1.51.5 74.474.4 40.540.5 4.784.78 10.310.3 84.984.9 60.260.2
실시예 8Example 8 22 4.24.2 275275 1.51.5 70.670.6 40.540.5 4.504.50 9.839.83 85.785.7 62.662.6
실시예 9Example 9 22 2.82.8 255255 1.51.5 70.470.4 39.639.6 2.652.65 5.645.64 91.791.7 71.071.0
실시예 10Example 10 33 11.211.2 290290 1.51.5 50.550.5 33.733.7 7.137.13 11.111.1 81.781.7 51.551.5
실시예 11Example 11 22 1.01.0 230230 1.51.5 67.067.0 36.436.4 2.442.44 8.948.94 88.6 88.6 77.7 77.7
실시예 12Example 12 1One 2.82.8 275275 1.51.5 49.249.2 32.232.2 4.03 4.03 11.6 11.6 84.4 84.4 48.2 48.2
실시예 13Example 13 1One 2.82.8 275275 1.51.5 46.546.5 30.930.9 3.89 3.89 10.3 10.3 85.8 85.8 49.8 49.8
실시예 14Example 14 1One 2.82.8 275275 1.51.5 44.044.0 30.530.5 3.49 3.49 9.35 9.35 87.2 87.2 51.4 51.4
실시예 15Example 15 1One 2.82.8 275275 1.51.5 33.433.4 27.227.2 2.97 2.97 7.65 7.65 88.2 88.2 56.7 56.7
실시예 16Example 16 1One 2.82.8 275275 1.51.5 38.938.9 28.928.9 3.14 3.14 7.76 7.76 89.1 89.1 55.0 55.0
실시예 17Example 17 1One 2.82.8 275275 1.51.5 25.825.8 26.526.5 3.21 3.21 7.93 7.93 88.8 88.8 60.4 60.4
실시예 18Example 18 1One 2.82.8 275275 1.51.5 24.824.8 20.420.4 3.69 3.69 7.31 7.31 89.0 89.0 59.9 59.9
실시예 19Example 19 22 2.252.25 275275 0.70.7 52.452.4 33.333.3 4.16 4.16 7.72 7.72 88.1 88.1 58.0 58.0
실시예 20Example 20 22 2.252.25 275275 0.70.7 55.155.1 34.034.0 3.09 3.09 6.14 6.14 90.8 90.8 59.7 59.7
실시예 21Example 21 1One 2.82.8 275275 1.51.5 40.640.6 31.031.0 3.31 3.31 8.52 8.52 88.2 88.2 55.8 55.8
실시예 22Example 22 1One 2.82.8 275275 1.51.5 49.149.1 36.136.1 3.72 3.72 11.1 11.1 85.2 85.2 51.7 51.7
실시예 23Example 23 1One 1.41.4 260260 1.51.5 25.225.2 23.023.0 2.78 2.78 7.22 7.22 90.0 90.0 65.0 65.0
실시예 24Example 24 1One 1.41.4 260260 1.51.5 31.531.5 27.027.0 2.61 2.61 7.71 7.71 89.7 89.7 69.3 69.3
비교예 1Comparative Example 1 1One 2.82.8 275275 1.51.5 86.786.7 43.743.7 10.6 10.6 26.9 26.9 62.5 62.5 19.4 19.4
비교예 1Comparative Example 1 1One 2.82.8 230230 1.51.5 33.833.8 36.236.2 6.54 6.54 17.8 17.8 75.7 75.7 41.2 41.2
비교예 1Comparative Example 1 1One 2.82.8 245245 1.51.5 56.656.6 39.639.6 5.41 5.41 18.5 18.5 76.1 76.1 39.9 39.9
비교예 1Comparative Example 1 1One 2.82.8 260260 1.51.5 69.869.8 42.342.3 6.87 6.87 21.9 21.9 71.2 71.2 30.7 30.7
비교예 1Comparative Example 1 1One 2.82.8 290290 1.51.5 88.988.9 44.344.3 15.5 15.5 33.1 33.1 51.4 51.4 9.65 9.65
비교예 2Comparative Example 2 1One 2.82.8 275275 1.51.5 64.164.1 41.241.2 6.03 6.03 14.4 14.4 79.6 79.6 43.1 43.1
비교예 3Comparative Example 3 33 15.415.4 305305 1.51.5 52.652.6 36.236.2 22.1 22.1 33.8 33.8 44.0 44.0 11.5 11.5
비교예 4Comparative Example 4 33 19.619.6 320320 1.51.5 65.665.6 37.337.3 22.4 22.4 28.7 28.7 48.9 48.9 7.46 7.46
비교예 5Comparative Example 5 22 4.24.2 275275 1.51.5 78.978.9 37.737.7 10.9 10.9 21.6 21.6 67.5 67.5 34.7 34.7
비교예 6Comparative Example 6 22 4.24.2 275275 1.51.5 68.868.8 37.337.3 12.7 12.7 28.3 28.3 59.0 59.0 25.4 25.4
비교예 7Comparative Example 7 22 4.24.2 275275 1.51.5 56.956.9 38.038.0 11.2 11.2 24.4 24.4 64.4 64.4 29.3 29.3
비교예 8Comparative Example 8 22 4.24.2 275275 1.51.5 40.540.5 36.536.5 8.94 8.94 21.0 21.0 70.1 70.1 38.1 38.1
비교예 9Comparative Example 9 22 2.252.25 275275 0.70.7 63.163.1 44.144.1 7.16 7.16 17.8 17.8 72.4 72.4 49.4 49.4
상기 표 3을 참고하면, 실시예 1 내지 24의 방법으로 제조된 활성화된 철계 촉매는 저온 피셔-트롭쉬 합성반응에서 목표로 하는 생성물인 C5+ 탄화수소 및 왁스(C19+ 탄화수소)에 대한 선택도가 비교예 1 내지 9의 방법으로 제조된 활성화된 철계 촉매에 비해 현저히 높음을 확인할 수 있다. 상기 표 3을 참고하면 실시예 12 내지 18, 23 및 24의 방법으로 제조된 활성화된 철계 촉매는 피셔-트롭쉬 합성반응에서 불필요한 부산물인 CO2에 대한 선택도가 비교예 1 내지 9의 방법으로 제조된 활성화된 철계 촉매에 비해 현저히 낮음을 확인할 수 있다. Referring to Table 3, the activated iron-based catalyst prepared by the method of Examples 1 to 24 is selected for C 5+ hydrocarbon and wax (C 19+ hydrocarbon), which are the target products in the low-temperature Fischer-Tropsch synthesis reaction. It can be seen that the degree is significantly higher than that of the activated iron-based catalyst prepared by the method of Comparative Examples 1 to 9. Referring to Table 3, the activated iron-based catalyst prepared by the method of Examples 12 to 18, 23 and 24 has a selectivity for CO 2 , an unnecessary by-product in the Fischer-Tropsch synthesis reaction, by the method of Comparative Examples 1 to 9. It can be confirmed that it is significantly lower than the activated iron-based catalyst prepared.
상기 표 3을 참고하면 실시예 19 및 20의 방법으로 제조된 활성화된 철계 촉매는 0.7 MPa의 낮은 압력 조건에서 피셔-트롭쉬 합성반응을 수행하여도 C5+ 탄화수소 및 왁스(C19+ 탄화수소)에 대한 선택도가 비교예 1 내지 8의 방법으로 제조된 활성화된 철계 촉매를 이용하여 1.5 MPa의 압력 조건에서 피셔-트롭쉬 합성반응을 수행한 경우에 비해 현저히 높음을 확인할 수 있다.Referring to Table 3, the activated iron-based catalyst prepared by the method of Examples 19 and 20 produces C 5+ hydrocarbons and wax (C 19+ hydrocarbons) even when Fischer-Tropsch synthesis reaction is performed under low pressure conditions of 0.7 MPa. It can be seen that the selectivity for is significantly higher than when the Fischer-Tropsch synthesis reaction was performed under a pressure condition of 1.5 MPa using the activated iron-based catalyst prepared by the method of Comparative Examples 1 to 8.
한편, 실시예 9의 방법으로 제조된 활성화된 철계 촉매에 대하여 H2 : CO = 2 : 1, 공간속도 = 2.8 NL/g(cat)/h, 온도 = 255 °C, 압력 = 1.5 MPa의 피셔-트롭쉬 합성반응 조건에서 장기성능평가를 수행한 결과를 도 6에 나타내었다. 도 6를 참고하면, 실시예 9의 방법으로 제조한 활성화된 철계 촉매가 약 1천시간 동안 우수한 활성을 유지함을 확인할 수 있다. Meanwhile, for the activated iron-based catalyst prepared by the method of Example 9, H 2 : CO = 2: 1, space velocity = 2.8 NL/g (cat) /h, temperature = 255 °C, pressure = 1.5 MPa, Fisher -The results of long-term performance evaluation under Tropsch synthesis reaction conditions are shown in Figure 6. Referring to Figure 6, it can be seen that the activated iron-based catalyst prepared by the method of Example 9 maintains excellent activity for about 1,000 hours.
상술한 실시예에 설명된 특징, 구조, 효과 등은 본 발명의 적어도 하나의 실시예에 포함되며, 반드시 하나의 실시예에만 한정되는 것은 아니다. 나아가, 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의하여 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다. The features, structures, effects, etc. described in the above-described embodiments are included in at least one embodiment of the present invention and are not necessarily limited to only one embodiment. Furthermore, the features, structures, effects, etc. illustrated in each embodiment can be combined or modified and implemented in other embodiments by a person with ordinary knowledge in the field to which the embodiments belong. Therefore, contents related to such combinations and modifications should be construed as being included in the scope of the present invention.
또한, 이상에서 실시예들을 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예들에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부한 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다. In addition, although the description has been made focusing on the embodiments above, this is only an example and does not limit the present invention, and those skilled in the art will understand the above examples without departing from the essential characteristics of the present embodiments. You will be able to see that various modifications and applications are possible. For example, each component specifically shown in the embodiments can be modified and implemented. And these variations and differences in application should be construed as being included in the scope of the present invention as defined in the attached claims.
본 발명은 피셔-트롭쉬 합성반응에서 불필요한 부산물인 CO2, CH4 및 C2-C4 탄화수소의 생성을 억제하고, 탄소 수가 5 이상인(C5+)탄화수소의 생산성을 현저하게 높임으로서 산업상 이용가능성이 높다.The present invention suppresses the production of CO 2 , CH 4 and C 2 -C 4 hydrocarbons, which are unnecessary by-products in the Fischer-Tropsch synthesis reaction, and significantly increases the productivity of (C 5+ ) hydrocarbons with a carbon number of 5 or more, thereby providing industrial benefits. High availability.

Claims (15)

  1. 철계 촉매로서,As an iron-based catalyst,
    철수산화물, 철산화물 및 철탄화물을 포함하고,Contains iron oxide, iron oxide and iron carbide,
    상기 철계 촉매에 함유된 철 원자수 100%에 대하여, 상기 철수산화물에 함유된 철 원자수 13 내지 80%, 상기 철산화물에 함유된 철 원자수 1 내지 5%, 상기 철탄화물에 함유된 철 원자수 21 내지 85%를 포함하는 철계 촉매.With respect to 100% of the number of iron atoms contained in the iron-based catalyst, the number of iron atoms contained in the iron oxide is 13 to 80%, the number of iron atoms contained in the iron oxide is 1 to 5%, and the number of iron atoms contained in the iron carbide is 100%. An iron-based catalyst containing 21 to 85% of water.
  2. 제1항에 있어서,According to paragraph 1,
    상기 철수산화물은 페리하이드라이트(ferrihydrite)인 철계 촉매.The iron-based catalyst in which the iron oxide is ferrihydrite.
  3. 제1항에 있어서,According to paragraph 1,
    상기 철산화물은 마그네타이트(magnetite)인 철계 촉매.The iron oxide is an iron-based catalyst called magnetite.
  4. 제1항에 있어서,According to paragraph 1,
    상기 철탄화물은 c-카바이드(Fe5C2) 및 ε'-카바이드(Fe2.2C)로 이루어진 군에서 선택되는 적어도 어느 하나인 철계 촉매.The iron carbide is at least one iron-based catalyst selected from the group consisting of c-carbide (Fe 5 C 2 ) and ε'-carbide (Fe 2.2 C).
  5. 제1항에 있어서,According to paragraph 1,
    상기 철탄화물은 c-카바이드(Fe5C2) 및 ε'-카바이드(Fe2.2C)를 포함하고,The iron carbide includes c-carbide (Fe 5 C 2 ) and ε'-carbide (Fe 2.2 C),
    상기 철계 촉매에 함유된 철 원자수 100%에 대하여, c-카바이드(Fe5C2)에 함유된 철 원자수 21 내지 75% 및 상기 ε'-카바이드(Fe2.2C)에 함유된 철 원자수 6 내지 13%를 포함하는 철계 촉매.With respect to 100% of the iron atoms contained in the iron-based catalyst, the number of iron atoms contained in c-carbide (Fe 5 C 2 ) is 21 to 75% and the number of iron atoms contained in the ε'-carbide (Fe 2.2 C) iron-based catalyst containing 6 to 13%.
  6. 제1항에 있어서,According to paragraph 1,
    상기 철계 촉매는 H2/CO의 부피비가 1 내지 5, GHSV 1 내지 13 NL/g(cat)/h, 온도 230 내지 290 ℃ 및 압력 0.5 내지 2.0 MPa의 피셔-트롭쉬 반응조건에서 탄소수가 5 이상인 탄화수소(C5+ )에 대한 선택도가 80 wt% 이상인 것을 특징으로 하는 철계 촉매. The iron-based catalyst has a carbon number of 5 under the Fischer-Tropsch reaction conditions of a H 2 /CO volume ratio of 1 to 5, a GHSV of 1 to 13 NL/g (cat) /h, a temperature of 230 to 290 ° C., and a pressure of 0.5 to 2.0 MPa. An iron-based catalyst characterized in that the selectivity for hydrocarbons (C 5+ ) is 80 wt% or more.
  7. 구리, 코발트, 망간 및 이들의 조합으로 이루어진 군에서 선택된 금속의 염 수용액 및 질산철 수용액을 혼합하여 혼합용액을 제조하고, 상기 혼합용액에 염기성 수용액을 첨가하여 제1 전구체를 수득하는 제1 전구체 수득단계;A mixed solution is prepared by mixing an aqueous salt solution of a metal selected from the group consisting of copper, cobalt, manganese, and combinations thereof with an aqueous iron nitrate solution, and adding a basic aqueous solution to the mixed solution to obtain a first precursor. step;
    상기 제1 전구체에 산화규소, 산화알루미늄, 산화지르코늄 또는 산화크롬 중 적어도 하나의 산화물과, 알칼리금속 또는 알칼리토금속 중 적어도 하나의 수용액을 첨가하여 제2 전구체 슬러리를 형성하는 제2 전구체 슬러리 형성단계;A second precursor slurry forming step of forming a second precursor slurry by adding at least one oxide of silicon oxide, aluminum oxide, zirconium oxide, or chromium oxide and an aqueous solution of at least one of an alkali metal or an alkaline earth metal to the first precursor;
    상기 제2 전구체 슬러리를 건조 및 소성하여 제3 전구체를 제조하는 제3 전구체 제조단계; 및A third precursor production step of drying and calcining the second precursor slurry to produce a third precursor; and
    상기 제3 전구체를 열처리하여 활성화하는 활성화 단계를 포함하고,An activation step of activating the third precursor by heat treatment,
    상기 활성화 단계는, The activation step is,
    상기 제3 전구체를 H2/CO의 부피비가 1 내지 3, GHSV 1 내지 12 NL/g(cat)/h, 온도 230 내지 290 ℃ 및 압력 0.5 내지 1.5 MPa의 조건에서 열처리하는 것을 특징으로 하는 철계 촉매의 제조방법.An iron-based method, characterized in that the third precursor is heat-treated under the conditions of a volume ratio of H 2 /CO of 1 to 3, GHSV of 1 to 12 NL/g (cat) /h, temperature of 230 to 290 ℃, and pressure of 0.5 to 1.5 MPa. Method for producing catalyst.
  8. 제7항에 있어서,In clause 7,
    상기 제1 전구체 수득단계에서, 상기 혼합용액에 염기성 수용액을 첨가하여 반응하는 시간은 20 분 내지 80 분 동안 진행되는 것을 특징으로 하는 철계 촉매의 제조방법.In the step of obtaining the first precursor, the reaction time for adding a basic aqueous solution to the mixed solution is 20 to 80 minutes.
  9. 제7항에 있어서,In clause 7,
    상기 제1 전구체에 함유된 철 원자수 100%에 대하여, 페리하이드라이트(ferrihydrite)에 함유된 철 원자수 70 내지 100 % 및 괴타이트(goethite)에 함유된 철 원자수 0 내지 30 %를 포함하는 철계 촉매의 제조방법.Comprising 70 to 100% of iron atoms contained in ferrihydrite and 0 to 30% of iron atoms contained in goethite, relative to 100% of the number of iron atoms contained in the first precursor. Method for producing iron-based catalyst.
  10. 제7항에 있어서,In clause 7,
    상기 제3 전구체에 함유된 철 원자수 100%에 대하여, 페리하이드라이트(ferrihydrite)에 함유된 철 원자수 70 내지 100 % 및 헤마타이트(hematite)에 함유된 철 원자수 0 내지 30 %를 포함하는 철계 촉매의 제조방법.Comprising 70 to 100% of the iron atoms contained in ferrihydrite and 0 to 30% of the iron atoms contained in hematite, relative to 100% of the iron atoms contained in the third precursor. Method for producing iron-based catalyst.
  11. 철계 촉매를 준비하는 단계; 및Preparing an iron-based catalyst; and
    상기 철계 촉매를 이용하여 피셔-트롭쉬 합성반응을 진행하여 탄화수소를 생산하는 단계를 포함하고,Producing hydrocarbons by performing a Fischer-Tropsch synthesis reaction using the iron-based catalyst,
    상기 철계 촉매는,The iron-based catalyst is,
    철수산화물, 철산화물 및 철탄화물을 포함하고,Contains iron oxide, iron oxide and iron carbide,
    상기 철계 촉매에 함유된 철 원자수 100%에 대하여, 상기 철수산화물에 함유된 철 원자수 13 내지 80%, 상기 철산화물에 함유된 철 원자수 1 내지 5%, 상기 철탄화물에 함유된 철 원자수 21 내지 85%를 포함하는 것을 특징으로 하는 탄화수소의 생산 방법.With respect to 100% of the number of iron atoms contained in the iron-based catalyst, the number of iron atoms contained in the iron oxide is 13 to 80%, the number of iron atoms contained in the iron oxide is 1 to 5%, and the number of iron atoms contained in the iron carbide is 100%. A method for producing hydrocarbons, characterized in that it contains 21 to 85% of water.
  12. 제11항에 있어서,According to clause 11,
    상기 철수산화물은 페리하이드라이트(ferrihydrite)이고,The iron oxide is ferrihydrite,
    상기 철산화물은 마그네타이트(magnetite)이고,The iron oxide is magnetite,
    상기 철탄화물은 c-카바이드(Fe5C2) 및 ε'-카바이드(Fe2.2C)를 포함하고,The iron carbide includes c-carbide (Fe 5 C 2 ) and ε'-carbide (Fe 2.2 C),
    상기 철계 촉매에 함유된 철 원자수 100%에 대하여, c-카바이드(Fe5C2)에 함유된 철 원자수 21 내지 75% 및 상기 ε'-카바이드(Fe2.2C)에 함유된 철 원자 6 내지 13%를 포함하는 탄화수소의 생산 방법.With respect to 100% of the iron atoms contained in the iron-based catalyst, the number of iron atoms contained in c-carbide (Fe 5 C 2 ) is 21 to 75% and the number of iron atoms contained in the ε'-carbide (Fe 2.2 C) is 6. to 13%.
  13. 제11항에 있어서,According to clause 11,
    상기 철계 촉매는,The iron-based catalyst is,
    H2/CO의 부피비가 1 내지 3, GHSV 1 내지 12 NL/g(cat)/h, 온도 230 내지 290 ℃ 및 압력 0.5 내지 1.5 MPa의 조건에서 활성화된 것을 특징으로 하는 탄화수소의 생산 방법.A method for producing hydrocarbons, characterized in that it is activated under the conditions of a volume ratio of H 2 /CO of 1 to 3, GHSV of 1 to 12 NL/g (cat) /h, temperature of 230 to 290 ℃, and pressure of 0.5 to 1.5 MPa.
  14. 제11항에 있어서,According to clause 11,
    상기 피셔-트롭쉬 합성반응은,The Fischer-Tropsch synthesis reaction is,
    H2/CO의 부피비가 1 내지 5, GHSV 1 내지 13 NL/g(cat)/h, 온도 230 내지 290 ℃ 및 압력 0.5 내지 2.0 MPa의 반응조건에서 진행되는 것을 특징으로 하는 탄화수소의 생산 방법.A method for producing hydrocarbons, characterized in that the reaction is carried out under reaction conditions of a volume ratio of H 2 /CO of 1 to 5, GHSV of 1 to 13 NL/g (cat) /h, temperature of 230 to 290 ℃, and pressure of 0.5 to 2.0 MPa.
  15. 제11항에 있어서,According to clause 11,
    상기 탄화수소는, The hydrocarbons are,
    탄소수가 5 이상인 탄화수소(C5+)가 80 wt% 이상인 것을 특징으로 하는 탄화수소의 생산 방법.A method for producing hydrocarbons, characterized in that hydrocarbons with a carbon number of 5 or more (C 5+ ) are 80 wt% or more.
PCT/KR2023/008723 2021-10-21 2023-06-23 Iron-based catalyst, method for producing same, and hydrocarbon production methods using same WO2024058368A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR20210140994 2021-10-21
KR10-2022-0117074 2022-09-16
KR1020220117074A KR20230057947A (en) 2021-10-21 2022-09-16 Iron-based catalyst, method for preparing the same and method for producing hydrocarbons using the same

Publications (1)

Publication Number Publication Date
WO2024058368A1 true WO2024058368A1 (en) 2024-03-21

Family

ID=86387582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/008723 WO2024058368A1 (en) 2021-10-21 2023-06-23 Iron-based catalyst, method for producing same, and hydrocarbon production methods using same

Country Status (2)

Country Link
KR (1) KR20230057947A (en)
WO (1) WO2024058368A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101393413B1 (en) * 2013-10-04 2014-05-12 한국에너지기술연구원 Manufacturing method of fe5c2/c nano composite catalysts for high temperature fischer-tropsch synthesis reaction and fe5c2/c nano composite catalysts thereof, manufacturing method of liquid hydrocarbon using the same and liquid hydrocarbon thereof
KR101483430B1 (en) * 2014-08-01 2015-01-19 한국에너지기술연구원 Iron-based catalyst and method for preparing the same
KR101498374B1 (en) * 2013-07-29 2015-03-03 한국에너지기술연구원 Method for manufacturing iron based catalyst and iron based catalyst manufactured by the same
KR20160127321A (en) * 2015-04-23 2016-11-03 한국에너지기술연구원 Preparation method of liquid or solid hydrocarbon from syngas using Fischer-Tropsch reaction without separate reduction pretreatment for catalyst activation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101498374B1 (en) * 2013-07-29 2015-03-03 한국에너지기술연구원 Method for manufacturing iron based catalyst and iron based catalyst manufactured by the same
KR101393413B1 (en) * 2013-10-04 2014-05-12 한국에너지기술연구원 Manufacturing method of fe5c2/c nano composite catalysts for high temperature fischer-tropsch synthesis reaction and fe5c2/c nano composite catalysts thereof, manufacturing method of liquid hydrocarbon using the same and liquid hydrocarbon thereof
KR101483430B1 (en) * 2014-08-01 2015-01-19 한국에너지기술연구원 Iron-based catalyst and method for preparing the same
KR20160127321A (en) * 2015-04-23 2016-11-03 한국에너지기술연구원 Preparation method of liquid or solid hydrocarbon from syngas using Fischer-Tropsch reaction without separate reduction pretreatment for catalyst activation
KR101847549B1 (en) * 2015-04-23 2018-04-11 한국에너지기술연구원 Methods of manufacturing iron-base catalysts and methods of manufacturing hydrocarbons using iron-base catalysts made by the method

Also Published As

Publication number Publication date
KR20230057947A (en) 2023-05-02

Similar Documents

Publication Publication Date Title
WO2020204618A2 (en) Method for storing and releasing hydrogen by using palladium-supported catalyst
WO2015060472A1 (en) Cobalt-based catalyst based on metal structure for fischer-tropsch reaction for selective synthetic oil production, preparation method therefor, and selective synthetic oil preparation method using cobalt-based catalyst based on metal structure
WO2019054557A1 (en) Perovskite metal oxide catalyst, in which metal ion is substituted, for reducing carbon deposition, preparation method therefor, and methane reforming reaction method using same
WO2014092278A1 (en) Process for preparing fisher-tropsch catalyst
WO2010013958A2 (en) Catalyst for preparing synthesis gas from natural gas and carbon dioxide, and preparation method thereof
WO2010143783A2 (en) Iron-based catalyst for fischer-tropsch synthesis and preparation method thereof
WO2011132957A2 (en) Nanometer-sized copper-based catalyst, production method thereof, and alcohol production method using the same through direct hydrogenation of carboxylic acid
WO2011027921A2 (en) Catalyst for direct production of light olefins and preparation method thereof
WO2016171516A1 (en) Method for producing liquid or solid hydrocarbons from synthesis gas via fischer-tropsch synthesis which does not carry out separate reduction pre-treatment for catalyst activation
WO2018124782A1 (en) Catalyst for preparing olefins, and method for preparing olefins through continuous reaction-regeneration by using same
US20040122115A1 (en) Iron-based fischer-tropsch catalysts and methods of making and using
EP0030751B2 (en) A process for the preparation of iron crystalline silicates
WO2021091182A1 (en) Formic acid manufacturing process and manufacturing apparatus using synthetic gas
WO2020091418A1 (en) Cobalt-based monoatomic dehydrogenation catalyst and method for preparing olefin corresponding to paraffin from paraffin by using same
WO2020085875A1 (en) Perovskite metal oxide catalyst for reforming high-ni-containing hydrocarbon and preparation method therefor
WO2018088736A1 (en) Catalyst for preparing dimethyl ether from synthetic gas and method for producing same
WO2024058368A1 (en) Iron-based catalyst, method for producing same, and hydrocarbon production methods using same
Blanchard et al. Cobalt catalysts for the production of alcohols in the FT synthesis
WO2014119870A1 (en) Fischer-tropsch synthesis catalyst comprising coo phase particles and method for preparing liquid hydrocarbon from natural gas using same
WO2019039749A1 (en) Method for producing metal oxide catalyst supported on mesoporous hzsm-11 for direct dehydrogenation and aromatization reaction of methane and propane co-reactant, and method for producing btx using catalyst
CN1867652B (en) Method for producing liquefied petroleum gas containing propane and butane as main component
WO2019245157A1 (en) Catalyst for preparing light olefin, preparation method therefor, and method for preparing light olefin by using same
JPH0662455B2 (en) Process for producing aromatic hydrocarbon mixture
WO2014088363A1 (en) Gasification method using waste catalyst discharged from oil refinery process
WO2018038505A1 (en) Propylene direct oxidation reaction catalyst, method for preparing same, and method for preparing propylene oxide through propylene direct oxidation reaction using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23865672

Country of ref document: EP

Kind code of ref document: A1