WO2023059075A1 - 전극 조립체, 원통형 전지 및 이를 포함하는 시스템 - Google Patents

전극 조립체, 원통형 전지 및 이를 포함하는 시스템 Download PDF

Info

Publication number
WO2023059075A1
WO2023059075A1 PCT/KR2022/015012 KR2022015012W WO2023059075A1 WO 2023059075 A1 WO2023059075 A1 WO 2023059075A1 KR 2022015012 W KR2022015012 W KR 2022015012W WO 2023059075 A1 WO2023059075 A1 WO 2023059075A1
Authority
WO
WIPO (PCT)
Prior art keywords
tubular support
electrode assembly
wireless
cavity
cylindrical battery
Prior art date
Application number
PCT/KR2022/015012
Other languages
English (en)
French (fr)
Inventor
권용환
김동욱
김용일
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to US18/268,522 priority Critical patent/US20240039134A1/en
Priority to JP2023541732A priority patent/JP2024503020A/ja
Priority to EP22878896.4A priority patent/EP4287328A1/en
Priority to CN202280010140.XA priority patent/CN116802862A/zh
Publication of WO2023059075A1 publication Critical patent/WO2023059075A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/569Constructional details of current conducting connections for detecting conditions inside cells or batteries, e.g. details of voltage sensing terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0422Cells or battery with cylindrical casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/488Cells or batteries combined with indicating means for external visualization of the condition, e.g. by change of colour or of light density
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/152Lids or covers characterised by their shape for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/471Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof
    • H01M50/477Spacing elements inside cells other than separators, membranes or diaphragms; Manufacturing processes thereof characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00309Overheat or overtemperature protection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrode assembly, a cylindrical battery, and a system, and more particularly, to an electrode assembly having an improved core structure, a cylindrical battery, and a system including the same.
  • cylindrical batteries are widely used in electric vehicles, electric bicycles, and electric two-wheeled vehicles, form factors are increasing to increase output and capacity of cylindrical batteries.
  • the form factors of cylindrical cells are represented by 1865, 2170, 4680, etc.
  • the first two numbers represent the diameter of the cylindrical battery, and the remaining numbers represent the height of the cylindrical battery.
  • the 4680 is the form factor of a cylindrical cell with a diameter of 46 mm and a height of 80 mm.
  • a cylindrical battery includes an electrode assembly wound by interposing a separator between two elongated electrode sheets having different polarities.
  • a winding means such as a center pin or bobbin is used.
  • the winding means may be removed to improve the impregnability of the electrolyte in the center of the electrode assembly and to secure a tab welding path.
  • a cavity is formed along the longitudinal direction of the electrode assembly at the site where the winding means is removed.
  • Heat generated during charging and discharging is one of the causes of swelling of the electrode assembly. Therefore, as the form factor of the cylindrical battery increases, the swelling phenomenon is more easily caused.
  • FIG. 1 is a view showing how the core of the electrode assembly 10 collapses without maintaining its shape when a swelling phenomenon occurs in the prior art.
  • reference numeral 11 denotes a first electrode sheet having a first polarity
  • reference numeral 12 denotes a second electrode sheet having a second polarity opposite to the first polarity
  • reference numeral 13 denotes a first electrode sheet ( 11) and a separator sheet interposed between the second electrode sheet 12.
  • the separation membrane sheet 13 is two sheets. One sheet is interposed between the first electrode sheet 11 and the second electrode sheet 12, and the other sheet is used as a film for winding two stacked electrode sheets facing each other with a separator sheet interposed therebetween.
  • the stress is concentrated in the portion 14 of the electrode sheet with a small number of turns.
  • the portion 14 with a small number of turns of the electrode sheet is because the strength of the portion 14 is relatively weak.
  • the cavity 15 of the dotted line portion 14 fails to maintain its shape and begins to collapse.
  • the swelling of the electrode assembly 10 further progresses, the collapse of the cavity 15 is further accelerated as the collapse of the cavity 15 propagates to the adjacent region.
  • the collapse of the cavity 15 forms a fine gap between the first electrode sheet 11 and the second electrode sheet 12 in the core of the electrode assembly 10 . Since an electrochemical reaction does not occur in the portion where the gap is formed, the performance of the cylindrical battery suddenly deteriorates. This problem becomes more prevalent as the form factor increases. This is because the diameter of the cavity 15 also increases as the diameter of the winding means used when winding the electrode assembly 10 increases. As the diameter of the cavity 15 increases, the area of the electrode assembly 10 near the cavity 15 becomes more susceptible to stress.
  • the separator sheet 13 interposed between the first electrode sheet 11 and the second electrode sheet 12 is torn, and the first electrode sheet 11 and the second electrode sheet 12 ) may cause an internal short circuit between them.
  • a large current flows and the temperature rises rapidly. Therefore, internal short circuit due to swelling of the electrode assembly 10 is a major cause of ignition of the cylindrical battery.
  • An object of the present invention is to provide an electrode assembly having an improved core structure to resist swelling while maintaining the cavity of the core as it is, and a cylindrical battery including the same.
  • Another technical problem of the present invention is to provide an electrode assembly equipped with a wireless sensor means capable of detecting in advance that there is a sign of swelling to the extent that a core cavity collapses, and a cylindrical battery including the same.
  • Another technical problem of the present invention is to provide an electrode assembly equipped with a wireless sensor means capable of detecting in advance that the temperature of the electrode assembly core is likely to rise rapidly due to an internal short circuit and the like, and a cylindrical battery including the same.
  • Another technical problem of the present invention is to provide a system capable of remotely monitoring the pressure and/or temperature of a region near the core of a cylindrical battery.
  • An electrode assembly according to the present invention for achieving the above technical problem is an electrode assembly in which a first electrode sheet, a second electrode sheet, and a separator sheet interposed therebetween are wound in one direction, along the central axis of the winding of the electrode assembly. It is characterized in that a cavity is provided and a mesh tubular support is installed along the longitudinal direction of the cavity.
  • the separator sheet includes a first separator sheet and a second separator sheet, and the first separator sheet; the second electrode sheet; the second separator sheet; And the first electrode sheet may be wound in one direction in a sequentially stacked state.
  • the reticulated tubular support has a structure in which wires and/or straps form a reticulated tube.
  • the reticulated tubular support may be a stent support.
  • the reticulated tubular support is stretchable in radial and/or longitudinal directions.
  • a gap may be formed between the reticulated tubular support and the inner wall of the cavity.
  • a wireless sensor may be attached to the reticulated tubular support.
  • the wireless sensor is a wireless pressure sensor, and the wireless pressure sensor may be installed on at least one or more points on an outer surface or an inner surface of the mesh tubular support.
  • the wireless sensor is a wireless temperature sensor, and the wireless temperature sensor may be installed at one or more points on an outer surface or an inner surface of the mesh tubular support.
  • a cylindrical battery according to another aspect of the present invention for achieving the above technical problem is an electrode assembly in which a first electrode sheet, a second electrode sheet, and a separator sheet interposed therebetween are wound in one direction, and An electrode assembly provided with; a mesh tubular support installed along the longitudinal direction of the cavity; a case in which the electrode assembly is accommodated and provided with an opening at one side; It may include; a cap assembly coupled to be insulated to the open portion of the case.
  • the separator sheet includes a first separator sheet and a second separator sheet, and the first separator sheet; the second electrode sheet; the second separator sheet; And the first electrode sheet may be wound in one direction in a sequentially stacked state.
  • the reticulated tubular support may have a structure in which wires and/or straps form reticulated tubes.
  • the reticulated tubular support may be a stent support.
  • the reticulated tubular support can be stretchable in radial and/or longitudinal directions.
  • a gap may be formed between the reticulated tubular support and the inner wall of the cavity.
  • a wireless sensor may be attached to the reticulated tubular support.
  • the wireless sensor is a wireless pressure sensor, and the wireless pressure sensor may be installed on at least one or more points on an outer surface or an inner surface of the mesh tubular support.
  • the wireless sensor is a wireless temperature sensor, and the wireless temperature sensor may be installed at one or more points on an outer surface or an inner surface of the mesh tubular support.
  • one end of the mesh tubular support may be fixed to the cap assembly or the bottom plate of the case through a fixing tab.
  • one end of the mesh tubular support may be fixed to the inner wall of the cavity through a fixing sleeve.
  • a system for achieving the above technical problem is an electrode assembly in which a first electrode sheet, a second electrode sheet, and a separator sheet interposed therebetween are wound in one direction, and a cavity is provided along the winding central axis.
  • An electrode assembly ; a mesh tubular support installed along the longitudinal direction of the cavity; a case in which the electrode assembly is accommodated and provided with an opening at one side; and a cap assembly insulatedly coupled to the open portion of the case; a cylindrical battery including; a wireless sensor attached to the reticulated tubular support to wirelessly transmit a pressure sensing value or a temperature sensing value; and a detection detection device that receives the pressure sensing value or the temperature sensing value from the wireless sensor and monitors the pressure or temperature at the point where the wireless sensor is installed.
  • the charging or discharging of the cylindrical battery is stopped by controlling a switch installed on a line through which the charging current or the discharging current of the cylindrical battery flows, or , It may be configured to generate a warning message indicating that there is a sign of abnormality inside the cylindrical battery and output it through a display.
  • the rigidity of the core can be reinforced by inserting the mesh tubular support into the cavity of an electrode assembly used in a cylindrical battery. As a result, even if the electrode assembly swells, collapse of the cavity is prevented, and internal resistance increases or internal short-circuiting in the core of the electrode assembly can be prevented.
  • the wireless pressure sensor by attaching the wireless pressure sensor to the mesh tubular support, it is possible to detect in advance that there is a tendency for swelling to the extent that the cavity of the electrode assembly collapses. In addition, when the actual cavity starts to collapse, the degree of stress applied to the corresponding point and the location of the corresponding point can be accurately detected.
  • the wireless temperature sensor by attaching the wireless temperature sensor to the mesh tubular support, it is possible to sense in advance that there is a sign of overheating in the cavity of the electrode assembly. In addition, when overheating occurs, the temperature and location of the corresponding point can be accurately detected.
  • FIG. 1 illustratively shows how a cavity of a core collapses when an electrode assembly according to the prior art is swelled.
  • FIG. 2 is a cross-sectional view of an electrode assembly according to an embodiment of the present invention cut in a radial direction.
  • FIG. 3 is a process chart showing a process of manufacturing an electrode assembly according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of an electrode assembly according to an embodiment of the present invention cut in a longitudinal direction.
  • FIG. 5 is a diagram illustrating various structures of a stent supporter according to an embodiment of the present invention.
  • FIG. 6A is a cross-sectional view of a cylindrical battery including an electrode assembly according to an embodiment of the present invention
  • FIG. 6B is an exploded perspective view of a cap assembly according to an embodiment of the present invention.
  • FIG. 7 is a block diagram showing the configuration of a wireless pressure sensor and a detection device according to an embodiment of the present invention.
  • FIG. 8 is a block diagram showing the configuration of a wireless temperature sensor and a detection device according to an embodiment of the present invention.
  • first and second are used to describe various members, components, regions, layers and/or portions, but these members, components, regions, layers and/or portions are limited by these terms. It is self-evident that These terms are only used to distinguish one element, component, region, layer or section from another region, layer or section. Accordingly, a first member, component, region, layer or section described in detail below may refer to a second member, component, region, layer or section without departing from the teachings of the present invention.
  • Space-related terms such as “beneath,” “below,” “lower,” “above,” and “upper” are associated with an element or feature shown in a drawing. Used for easy understanding of other elements or features. Terminology related to this space is for easy understanding of the present invention according to various process conditions or use conditions of the present invention, and is not intended to limit the present invention. For example, if an element or feature in a drawing is flipped over, an element described as “lower” or “below” becomes “above” or “above.” Therefore, “below” is a concept encompassing “upper” or "below”.
  • FIG. 2 is a cross-sectional view of an electrode assembly 100 according to an embodiment of the present invention cut in a radial direction
  • FIG. 3 is a process diagram illustrating a process of manufacturing the electrode assembly 100 according to an embodiment of the present invention.
  • Figure 3 (a) is a cross-sectional view of the components
  • Figure 3 (b) is a plan view of the components
  • 4 is another cross-sectional view of the electrode assembly 100 according to the embodiment of the present invention in the longitudinal direction.
  • the electrode assembly 100 includes a first electrode sheet 110 having a first polarity, a second electrode sheet 120 having a second polarity, and a separator sheet 130. .
  • the first polarity and the second polarity are opposite to each other.
  • the first polarity is the negative electrode and the second polarity is the positive electrode.
  • the first polarity may be an anode and the second polarity may be a cathode.
  • the electrode assembly 100 sequentially laminates a first separator sheet 130a, a second electrode sheet 120, a second separator sheet 130b, and a first electrode sheet 110, and It can be produced by continuously winding a laminate of them in one direction.
  • the winding state of the sheets may be fixed through a hot press process in which heat and pressure are applied to the electrode assembly 100 .
  • the second separator sheet 130b serves to electrically separate the first electrode sheet 110 and the second electrode sheet 120 .
  • the first electrode sheet 110, the second separator sheet 130b, and the second electrode sheet 120 constitute a cell capable of electrochemically charging or discharging.
  • the first separator sheet 130a is used as a film for winding cells.
  • the first and second separator sheets 130a and 130b are made of an insulating porous film.
  • the porous film may be a polyolefin-based porous film.
  • a coating layer of ceramic particles may be provided on the surface of the porous film.
  • the first and second separator sheets 130a and 130b may be made of the same material or different materials.
  • the coating of ceramic particles may be formed only on the second separator sheet 130b.
  • the first and second separator sheets 130a and 130b may have different melting points even though they are made of the same material.
  • the first electrode sheet 110 has a structure in which the active material 110b of the first polarity is coated on one or both surfaces of the current collector 110a.
  • the second electrode sheet 120 has a structure in which the active material 120b of the second polarity is coated on one side or both sides of the current collector 120a.
  • the current collector for the positive electrode one obtained by surface-treating the surface of stainless steel, nickel, titanium, calcined carbon, aluminum, or stainless steel with carbon, nickel, titanium, silver, or the like may be used.
  • lithium-containing transition metal oxides and lithium chalcogenide compounds may be used.
  • Representative examples are LiCoO 2 , LiNiO 2 , LiMnO 2 , LiMn 2 O 4 , LiFePO 4 or Li 1+z Ni 1-xy Co x M y O 2 (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x +y ⁇ 1, 0 ⁇ z ⁇ 1, M is a metal such as Al, Sr, Mg, La, Mn) may be used.
  • the current collector for the negative electrode may be stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel whose surface is treated with carbon, nickel, titanium, silver, etc., and an aluminum-cadmium alloy or the like may be used. .
  • carbon materials such as crystalline carbon, amorphous carbon, carbon composites, and carbon fibers, lithium metal, lithium alloys, silicon, and silicon alloys may be used.
  • the present invention is characterized by the structure of the electrode assembly 100, it is not limited by the types of materials constituting the cathode/cathode current collector, the cathode/cathode active material, and the separator.
  • the first electrode sheet 110 has an uncoated portion 111 in a predetermined area.
  • the uncoated portion 111 is a portion that is not coated with an active material.
  • the first electrode sheet 110 includes a first tab 112 attached to the uncoated portion 111 .
  • the first tab 112 may be ultrasonically welded to the uncoated portion 111 .
  • the uncoated portion 111 may be formed at one end of the current collector. In another example, the uncoated portion 111 may be formed in the middle of the active material layer 110b.
  • the second electrode sheet 120 has an uncoated portion 121 in a predetermined area.
  • the second electrode sheet 120 includes a second tab 122 attached to the uncoated portion 121 .
  • the second tab 122 may be ultrasonically welded to the uncoated portion 121 .
  • the uncoated portion 121 may be formed in the middle of the active material layer 120b. In another example, the uncoated portion 121 may be formed at one end of the current collector 120a.
  • a cavity 140 is formed in the core of the electrode assembly 100 according to the embodiment of the present invention.
  • the cavity 140 is formed when the winding means (bobbin) used in the winding process of the electrode assembly 100 is removed.
  • the cavity 140 of the electrode assembly 100 is provided with a mesh tubular support 150 inserted along its longitudinal direction.
  • the reticulated tubular support 150 has a structure in which wires and/or straps form reticulated tubes.
  • the mesh tubular support 150 may be a stent support.
  • a stent is a medical member inserted into a narrowed blood vessel or digestive tract.
  • a stent has a structure in which wires and/or straps form a mesh tube.
  • FIG. 5 is a diagram illustrating various structures of a stent supporter according to an embodiment of the present invention.
  • the shape, thickness, width, pitch, etc. of the wire and/or strap may be determined using a finite element analysis tool in consideration of the stiffness required for the mesh tubular support 150.
  • the mesh tubular support 150 is elastically stretchable in the radial and/or longitudinal directions. Therefore, the mesh tubular support 150 inserted into the cavity 140 of the electrode assembly 100 absorbs the stress generated around the cavity 140 when the electrode assembly 100 is swelled through elastic deformation, thereby causing the cavity 140 to expand. ) to prevent collapse.
  • the mesh tubular support 150 is not only hollow inside, but also has a plurality of openings formed in the wall. Therefore, the mesh tubular support 150 does not hinder the flow of the electrolyte in the process of impregnating the electrode assembly 100 with the electrolyte and does not reduce the energy density of the cylindrical battery.
  • the material of the wire and/or strap may be appropriately selected in consideration of the rigidity of the mesh tubular support 150 .
  • the material of the wire and/or strap may be selected from single metals, alloys or plastics.
  • the material of the wire and/or strap may be stainless steel or a shape memory alloy.
  • the mesh tubular support 150 may be manufactured to have a reduced radius and length, and then installed while expanding in the radial and longitudinal directions within the cavity 140 .
  • This installation method is well known in the field of stent technology. Even when installing the reticulated tubular support 150, a conventional stent installation method may be employed substantially the same.
  • FIG. 6A is a cross-sectional view of a cylindrical battery 200 including an electrode assembly 100 according to an embodiment of the present invention
  • FIG. 6B is an exploded perspective view of a cap assembly 220 according to an embodiment of the present invention.
  • the cylindrical battery 200 includes an electrode assembly 100, a case 210 in which the electrode assembly 100 is accommodated and provided with an opening on one side, and a case 210 that seals the opening of the case 210.
  • a cap assembly 220 is included.
  • the case 210 includes a circular bottom portion 211 and a sidewall portion 212 extending a certain length upward from the bottom portion 211 .
  • the upper part of the case 210 may be open. Therefore, the electrode assembly 100 may be inserted into the case 210 together with the electrolyte solution during the assembly process.
  • the case 210 may be formed of steel, steel alloy, aluminum, aluminum alloy, or an equivalent thereof, but the material is not limited thereto.
  • the case 210 has a beading part 213 recessed into the lower portion of the cap assembly 220 so that the electrode assembly 100 does not escape to the outside.
  • a crimping part 214 bent to may be formed.
  • the electrolyte solution is an organic liquid containing a salt injected so that lithium ions can move between the electrodes constituting the electrode assembly 100, and is a mixture of lithium salts such as LiPF 6 , LiBF 4 , and LiClO 4 and high-purity organic solvents. It may be made including a phosphorus non-aqueous organic electrolyte solution, but is not limited thereto in the present invention.
  • the cap assembly 220 includes a cap cover 222 having one or more through holes 221 formed therein, and a safety plate fixed to the lower portion of the cap cover 222 so as to surround an edge of the cap cover 222 and having a vent notch formed on an upper surface thereof. 223, the connection ring 224 installed under the safety plate 223, the connection plate 225 coupled to the connection ring 224, and the cap cover 222, the safety plate 223, the connection ring 224 ) and an insulating gasket 226 insulating the connection plate 225 from the side wall portion 211 of the case 110 .
  • Portions where the cap cover 222, the safety plate 223, the connection ring 224, and the connection plate 225 come into contact with each other may be selectively electrically connected to each other using means such as welding or bonding.
  • the cap cover 222, the safety plate 223, the connection ring 224 and the connection plate 225 may be formed of steel, steel alloy, aluminum, aluminum alloy or equivalents thereof, but the material is not limited here. .
  • An upper insulating plate 230 and a lower insulating plate 240 are respectively coupled to the upper and lower portions of the electrode assembly 100 .
  • the upper insulating plate 230 and the lower insulating plate 240 are made of an insulating material.
  • the upper insulating plate 230 and the lower insulating plate 240 may be made of a polymer resin such as polyethylene, polypropylene, polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE), or polyimide, but the material is not limited here. no.
  • a polymer resin such as polyethylene, polypropylene, polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE), or polyimide, but the material is not limited here. no.
  • the first tab 112 of the first electrode sheet 110 extends downward through an opening formed in the lower insulating plate 240 and is parallel to the bottom plate 211 of the case 210. it is extended In addition, the end of the first tab 112 is welded to the bottom plate 211 .
  • the second tab 122 of the second electrode sheet 120 extends upward through an opening formed in the upper insulating plate 230 and then connects the connection plate 225 of the cap assembly 220. bent towards In addition, the end of the second tab 122 is fixed to the connection plate 225 through welding.
  • the mesh tubular support 150 is inserted into the cavity 140 formed in the core of the electrode assembly 100 .
  • the outer diameter of the reticulated tubular support 150 is smaller than the diameter of the cavity 140 of the electrode assembly 100. In this case, a gap may be formed between the surface of the mesh tubular support 150 and the inner wall of the cavity 140 . In another example, the outer diameter of the reticulated tubular support 150 corresponds to the diameter of the cavity 140 of the electrode assembly 100 .
  • the upper end of the mesh tubular support 150 may be fixed to the lower surface of the connection plate 225 through the fixing tab 250.
  • One end of the fixing tab 250 is welded to the upper inner wall or the upper outer wall of the mesh tubular support 150 .
  • the other end of the fixing tab 250 protrudes upward through an opening formed in the upper insulating plate 230 and extends to the connecting plate 225 .
  • the other end of the fixing tab 250 may be bent parallel to the connecting plate 225 and then firmly welded to the lower surface of the fixing plate 255 . At this time, the welding position of the fixing tab 250 may be appropriately selected so as not to cause interference with the second tab 122 .
  • the fixing tab 250 may be formed of steel, steel alloy, aluminum, aluminum alloy, or an equivalent thereof, but the material is not limited thereto.
  • a fixing sleeve 260 may be interposed between the lower end of the mesh tubular support 150 and the inner wall of the cavity 140 of the electrode assembly 100 .
  • the fixed sleeve 260 has a tubular shape, and the wall thickness of the fixed sleeve 260 corresponds to the gap between the reticulated tubular support 150 and the cavity 140 .
  • the fixed sleeve 260 is made of an insulating material.
  • the fixing sleeve 260 may be made of a polymer resin such as polyethylene, polypropylene, polyethylene terephthalate (PET), polytetrafluoroethylene (PTFE), or polyimide, but the material is not limited thereto.
  • the lower end of the mesh tubular support 150 may be fixed using a fixing tab (not shown) without using the fixing sleeve 260 .
  • one end of the fixing tab is welded to the outer wall or inner wall of the bottom of the mesh tubular support 150 .
  • the other end of the fixing tab may extend to the bottom plate 211 through the opening of the lower insulating plate 240 .
  • the other end of the fixing tab may be welded and fixed to the bottom plate 211 without causing interference with the first tab 112 .
  • the upper end of the mesh tubular support 150 may be fixed using a fixing sleeve (not shown) without using the fixing tab 250.
  • the method of fixing the top and bottom of the mesh tubular support 150 may be the same or different.
  • the upper and lower ends of the mesh tubular support 150 may be selectively fixed using various known structures other than the fixing tab and the fixing sleeve described above.
  • At least one wireless sensor 270 may be attached to the surface of the mesh tubular support 150 .
  • the wireless sensor 270 may be installed at a plurality of points along the longitudinal direction of the mesh tubular support 150 .
  • the wireless sensor 270 is preferably a subminiature type.
  • the wireless sensor 270 is installed in the upper, middle, and lower portions of the mesh tubular support 150, respectively.
  • the number of locations where the wireless sensors 270 are installed may be increased or decreased.
  • the wireless sensor 270 may be a wireless pressure sensor 300 as shown in FIG. 7 .
  • the wireless pressure sensor 300 is an element that senses the contact pressure when an external object is contacted and transmits the pressure sensing value wirelessly.
  • the wireless pressure sensor 300 measures the driving voltage generated by the wireless charging unit 310 having a magnetoelectric composite (ME composite) that generates a voltage according to a magnetic field applied from the outside and the wireless charging unit 310. It may include a pressure sensor unit 330 that is driven through and senses the pressure and wirelessly transmits the pressure sensing value to the outside through the antenna 320.
  • ME composite magnetoelectric composite
  • the wireless charging unit 310 includes a magnetostrictive material that converts magnetic energy according to a magnetic field acting from the outside into strain energy, and a piezoelectric material that is combined with the magnetostrictive material and generates a voltage through the strain energy. It may contain a piezoelectric material.
  • the wireless pressure sensor 300 can detect that the inner wall of the cavity 140 is deformed by stress when a swelling phenomenon occurs in the electrode assembly 100, and wirelessly transmit the pressure sensing value to the outside. That is, when the inner wall of the cavity 140 is deformed and the inner wall contacts the wireless pressure sensor 300, the wireless pressure sensor 300 may wirelessly transmit a pressure sensing value corresponding to the strength of the contact.
  • a detection device 400 may be provided for receiving the pressure sensing value.
  • the pressure sensing value When the pressure sensing value is detected through the detection device 400, it may be detected in advance that there is a tendency for the cavity 140 of the electrode assembly 100 to collapse due to a swelling phenomenon.
  • each wireless pressure sensor 300 may further transmit a location ID.
  • the detection device 400 can detect the pressure sensing value for each position of the wireless pressure sensor 300, it is possible to accurately identify a position where the cavity 140 is prone to collapse.
  • the detection device 400 may periodically apply a magnetic field to the wireless pressure sensor 300 to operate the wireless pressure sensor 300 . Then, a driving voltage is generated in the wireless charging unit 310 of the wireless pressure sensor 300 and applied to the pressure sensor unit 330 . Then, the pressure sensor unit 330 may generate a pressure sensing value according to the contact of an external object and wirelessly transmit the pressure sensing value to the detection device 400 through the antenna 320 .
  • the wireless pressure sensor 300 may be installed at a plurality of points along the vertical direction of the mesh tubular support 150 . In this case, it is possible to accurately detect where the cavity has signs of collapse.
  • a gap is formed between the mesh tube support 150 and the inner wall of the cavity 140 of the electrode assembly 100. It is preferable. The gap is preferably adjusted to a level where the wireless pressure sensor does not directly contact the inner wall of the cavity 140.
  • the wireless pressure sensor 300 When the wireless pressure sensor 300 is attached to the inner wall of the mesh tubular support 150, there may be no gap between the mesh tube support 150 and the inner wall of the cavity 140 of the electrode assembly 100. In this case, the stress generated when the cavity 140 collapses deforms the wire and/or the strap on which the wireless pressure sensor 300 is installed, and in this process, the pressure can be sensed.
  • the wireless sensor may be a wireless temperature sensor 500 as shown in FIG. 8 .
  • the wireless temperature sensor 500 is an element that senses the temperature of a sensor installation point and wirelessly transmits a temperature sensing value.
  • the wireless temperature sensor 500 is provided with a magnetoelectric composite (ME composite) that generates a voltage according to a magnetic field applied from the outside and the wireless charging unit 510 through a driving voltage generated by the wireless charging unit 510 It may include a temperature sensor unit 530 that is driven to sense the temperature and wirelessly transmits the temperature sensing value through the antenna 520 .
  • the temperature sensor unit 530 may include a subminiature thermocouple.
  • the wireless charging unit 510 includes a magnetostrictive material that converts magnetic energy according to a magnetic field acting from the outside into strain energy, and a piezoelectric material that is combined with the magnetostrictive material and generates a voltage through the strain energy. It may contain a piezoelectric material.
  • the detection device 400 detects a temperature sensing value, it is possible to sense in advance that there is a sign that a rapid temperature rise will occur in the cavity 140 of the electrode assembly 100 .
  • the detection device 400 may periodically apply a magnetic field to the wireless temperature sensor 500 to operate the wireless temperature sensor 500 . Then, voltage is generated in the wireless charging unit 510 of the wireless temperature sensor 500 and applied to the temperature sensor unit 530 . Then, the temperature sensor unit 530 may sense the temperature of the sensor installation point to generate a temperature sensing value and transmit the temperature sensing value wirelessly to the detection device 400 through the antenna 520 .
  • the wireless temperature sensor 500 may be installed at a plurality of points along the vertical direction of the mesh tubular support 150 . When there are a plurality of wireless temperature sensors 500, each wireless temperature sensor 500 may further transmit a location ID. In this case, since the detection device 400 can detect the temperature sensing value for each location of the wireless temperature sensor 500, it is possible to accurately identify a location where there is a sign of overheating inside the cavity 140.
  • the aforementioned cylindrical battery 200, the wireless sensors 300 and 500, and the detection device 400 may constitute one system according to the present invention.
  • the detection device 400 may be included in the battery management apparatus 600 that controls charging and discharging of the cylindrical battery 200 .
  • the battery management device 600 may be included in a load receiving power from the cylindrical battery 200 .
  • the battery management apparatus 600 may monitor a pressure sensing value and/or a temperature sensing value detected by the detection device 400 .
  • the battery management device 600 may stop charging or discharging the cylindrical battery 200 when the pressure sensing value and/or the temperature sensing value exceeds a preset threshold. To this end, the battery management device 600 may turn off a switch installed on a line through which a charging current or a discharging current flows.
  • the battery management device 600 may generate a warning message indicating that there is a sign of abnormality inside the cylindrical battery 200 and output the warning message through a display.
  • the display may be provided in a device receiving energy from the cylindrical battery 200 .
  • the display may be an integrated display installed on a dashboard or dashboard.
  • the present invention can be usefully used to analyze the stress behavior occurring in the core of the electrode assembly and the cause of the internal short circuit in the design stage of the electrode assembly and the cylindrical battery including the same.
  • the present invention can be used to detect in advance signs of overheating due to cavity collapse or internal short circuit occurring in the core portion of the electrode assembly when the cylindrical battery is actually used.
  • the rigidity of the core can be reinforced by inserting the mesh tubular support into the cavity of an electrode assembly used in a cylindrical battery. As a result, even if the electrode assembly swells, collapse of the cavity is prevented, and internal resistance increases or internal short-circuiting in the core of the electrode assembly can be prevented.
  • the wireless pressure sensor by attaching the wireless pressure sensor to the mesh tubular support, it is possible to detect in advance that there is a tendency for swelling to the extent that the cavity of the electrode assembly collapses. In addition, when the actual cavity starts to collapse, the degree of stress applied to the corresponding point and the location of the corresponding point can be accurately detected.
  • the wireless temperature sensor by attaching the wireless temperature sensor to the mesh tubular support, it is possible to sense in advance that there is a sign of overheating in the cavity of the electrode assembly. In addition, when an overheating phenomenon occurs, the corresponding point can accurately detect the temperature and location.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

본 발명은 전극 조립체 및 이를 포함하는 원통형 전지를 개시한다. 전극조립체는, 제1전극 시트, 제2전극 시트 및 이들 사이에 개재된 분리막 시트가 일 방향으로 권취된 구조를 가진다. 상기 전극 조립체의 권취 중심축을 따라 공동이 구비되고, 상기 공동의 길이 방향을 따라 망상 튜브형 지지체가 설치된다. 망상 튜브형 지지체의 외부면 또는 내부면의 적어도 하나의 지점에 무선 압력센서 또는 무선 온도센서가 설치될 수 있다. 원통형 전지는 이러한 전극조립체를 포함한다.

Description

전극 조립체, 원통형 전지 및 이를 포함하는 시스템
본 발명은 전극 조립체, 원통형 전지 및 시스템에 관한 것으로서, 보다 상세하게는 개선된 코어 구조를 가진 전극 조립체, 원통형 전지 및 이를 포함하는 시스템에 관한 것이다.
본 출원은 대한민국에 2021년 10월 05일자에 출원된 특허출원 제10-2021-0131993호에 대해 우선권을 주장하며, 우선권의 기초가 되는 출원서에 기재된 발명의 내용은 본 명세서의 일부로서 합체될 수 있다.
최근 원통형 전지가 전기차, 전기 자전거, 전기 이륜차 등에 널리 사용됨에 따라 원통형 전지의 출력과 용량을 높이기 위해 폼 팩터가 증가하고 있다.
원통형 전지의 폼 팩터는 1865, 2170, 4680 등으로 나타낸다. 폼 팩터에 있어서, 앞의 숫자 2개는 원통형 전지의 직경을, 나머지 숫자들은 원통형 전지의 높이를 나타낸다. 예를 들어, 4680은 직경이 46mm이고, 높이가 80mm인 원통형 전지의 폼 팩터이다.
원통형 전지는 극성이 다른 길쭉한 2장의 전극 시트 사이에 분리막을 개재시켜 권취시킨 전극 조립체를 포함한다. 전극 조립체의 권취시에는 센터핀이나 보빈 등의 권취수단이 사용된다.
권취수단은 전극 조립체 중심에서 전해질의 함침성을 개선하고 탭 용접 경로를 확보하기 위해 제거할 수 있다. 이 경우, 권취 수단이 제거된 자리에는 전극 조립체의 길이 방향을 따라 공동(cavity)이 형성된다.
한편, 원통형 전지의 폼 팩터가 증가하면, 충방전 동안 전지 내부의 발열량 또한 증가한다. 폼 팩터가 크면 충방전 전류가 증가하므로, 전극 조립체의 내부저항으로부터 기인한 주울열도 함께 증가하기 때문이다.
충방전시 발생하는 열은 전극 조립체의 스웰링을 일으키는 원인 중 하나이다. 따라서, 원통형 전지의 폼 팩터가 증가하면 스웰링 현상이 더 쉽게 야기된다.
전극 조립체가 스웰링되면, 반경 방향으로 응력이 생기면서 코어의 공동이 형상을 유지하지 못하고 붕괴하는 현상이 생긴다.
도 1은 종래기술에 있어서 스웰링 현상이 생겼을 때 전극 조립체(10)의 코어가 그 형상을 유지하지 못하고 붕괴되는 모습을 나타낸 도면이다.
도면에서, 참조번호 11은 제1극성을 가진 제1전극 시트를, 참조번호 12는 제1극성과 극성이 반대인 제2극성을 가진 제2전극 시트를, 참조번호 13은 제1전극 시트(11)와 제2전극 시트(12) 사이에 개재된 분리막 시트를 나타낸다.
분리막 시트(13)는 2장이다. 한 장은 제1전극 시트(11) 및 제2전극 시트(12) 사이에 개재되고, 다른 한 장은 분리막 시트를 사이에 두고 서로 대향하도록 적층된 2장의 전극 시트들을 권취하는 필름으로 사용된다.
전극 조립체(10)의 스웰링으로 반경 방향으로 응력이 생기면, 해당 응력은 전극 시트의 권회수가 적은 부분(14)에 집중된다. 전극 시트의 권회수가 작은 부분(14)은 해당 부분의 강도가 상대적으로 약하기 때문이다. 그 결과, 점선표시 부분(14)의 공동(15)이 그 형상을 유지하지 못하고 붕괴하기 시작한다. 또한, 전극 조립체(10)의 스웰링이 더 진행되면, 공동(15)의 붕괴가 인접 영역으로 전파되면서 공동(15)의 붕괴가 더욱 가속화된다.
공동(15)의 붕괴는 전극 조립체(10)의 코어에서 제1전극 시트(11) 및 제2전극 시트(12) 사이에 미세한 갭을 형성한다. 갭이 형성된 부분에서는 전기화학적 반응이 일어나지 않으므로, 원통형 전지의 성능이 갑자기 저하되는 문제가 발생한다. 이러한 문제는 폼 팩터가 증가할수록 더 잘 생긴다. 전극 조립체(10)의 권취 시 사용하는 권취수단의 직경이 증가하면서 공동(15)의 직경 또한 함께 커지기 때문이다. 공동(15)의 직경이 증가하면 공동(15) 근처의 전극 조립체(10) 영역이 응력에 보다 취약해진다.
또한, 공동(15)이 붕괴되면 제1전극 시트(11)와 제2전극 시트(12)사이에 개재된 분리막 시트(13)가 찢어지면서 제1전극 시트(11)와 제2전극 시트(12) 사이에 내부단락이 유발될 수 있다. 내부단락 지점에서는 큰 전류가 흐르면서 온도가 급격하게 상승한다. 따라서, 전극 조립체(10)의 스웰링에 따른 내부단락은 원통형 전지의 발화를 일으키는 주요 원인이 된다.
본 발명은 위와 같은 종래 기술의 배경하에 창안된 것으로서, 코어의 공동을 그대로 유지하면서 스웰링에 저항할 수 있도록 코어의 구조가 개선된 전극 조립체 및 이를 포함하는 원통형 전지를 제공하는데 그 목적이 있다.
본 발명의 다른 기술적 과제는 코어의 공동이 붕괴될 정도의 스웰링이 발생할 조짐이 있음을 미리 감지할 수 있는 무선 센서 수단이 구비된 전극 조립체 및 이를 포함하는 원통형 전지를 제공하는데 있다.
본 발명의 또 다른 기술적 과제는 내부단락 등으로 인해 전극 조립체 코어의 온도가 급격히 상승할 조짐이 있음을 미리 감지할 수 있는 무선 센서 수단이 구비된 전극 조립체 및 이를 포함하는 원통형 전지를 제공하는데 있다.
본 발명의 또 다른 기술적 과제는 원통형 전지의 코어 근처 영역의 압력 및/또는 온도를 원격으로 모니터할 수 있는 시스템을 제공하는데 있다.
상기 기술적 과제를 달성하기 위한 본 발명에 따른 전극 조립체는, 제1전극 시트, 제2전극 시트 및 이들 사이에 개재된 분리막 시트가 일 방향으로 권취된 전극 조립체로서, 상기 전극 조립체의 권취 중심축을 따라 공동이 구비되고, 상기 공동의 길이 방향을 따라 망상 튜브형 지지체가 설치된 것을 특징으로 한다.
바람직하게, 상기 분리막 시트는 제1분리막 시트 및 제2분리막 시트를 포함하고, 상기 제1분리막 시트; 상기 제2전극 시트; 상기 제2분리막 시트; 및 상기 제1전극 시트가 순차적으로 적층된 상태에서 일 방향으로 권취될 수 있다.
바람직하게, 상기 망상 튜브형 지지체는, 와이어 및/또는 스트랩이 망상의 튜브를 형성한 구조를 구비하는 것을 특징으로 하는 전극 조립체.
일 측면에서, 상기 망상 튜브형 지지체는 스탠트(stent) 지지체일 수 있다.
바람직하게, 상기 망상 튜브형 지지체는 반경 방향 및/또는 길이 방향으로 신축이 가능하다.
일 측면에서, 상기 망상 튜브형 지지체와 상기 공동의 내벽 사이에 갭이 형성될 수 있다.
다른 측면에서, 상기 망상 튜브형 지지체에 무선 센서가 부착될 수 있다.
일 예에서, 상기 무선 센서는 무선 압력센서이고, 상기 무선 압력센서는 상기 망상 튜브형 지지체의 외부면 또는 내부면의 적어도 하나 이상의 지점에 설치될 수 있다.
다른 예에서, 상기 무선 센서는 무선 온도센서이고, 상기 무선 온도센서는 상기 망상 튜브형 지지체의 외부면 또는 내부면의 적어도 하나 이상의 지점에 설치될 수 있다.
상기 기술적 과제를 달성하기 위한 본 발명의 다른 측면에 따른 원통형 전지는, 제1전극 시트, 제2전극 시트 및 이들 사이에 개재된 분리막 시트가 일 방향으로 권취된 전극 조립체로서, 권취 중심축을 따라 공동이 구비된 것인 전극 조립체; 상기 공동의 길이 방향을 따라 설치된 망상 튜브형 지지체; 상기 전극 조립체가 수납되며 일측에 개방부가 구비된 케이스; 상기 케이스의 개방부에 절연 가능하게 결합된 캡 조립체;를 포함할 수 있다.
바람직하게, 상기 분리막 시트는 제1분리막 시트 및 제2분리막 시트를 포함하고, 상기 제1분리막 시트; 상기 제2전극 시트; 상기 제2분리막 시트; 및 상기 제1전극 시트가 순차적으로 적층된 상태에서 일 방향으로 권취될 수 있다.
바람직하게, 상기 망상 튜브형 지지체는, 와이어 및/또는 스트랩이 망상의 튜브를 형성한 구조를 구비할 수 있다.
일 측면에서, 상기 망상 튜브형 지지체는 스탠트(stent) 지지체일 수 있다.
바람직하게, 상기 망상 튜브형 지지체는 반경 방향 및/또는 길이 방향으로 신축 가능할 수 있다.
일 측면에서, 상기 망상 튜브형 지지체와 상기 공동의 내벽 사이에 갭이 형성될 수 있다.
다른 측면에서, 상기 망상 튜브형 지지체에 무선 센서가 부착될 수 있다.
일 예에서, 상기 무선 센서는 무선 압력센서이고, 상기 무선 압력센서는 상기 망상 튜브형 지지체의 외부면 또는 내부면의 적어도 하나 이상의 지점에 설치될 수 있다.
다른 예에서, 상기 무선 센서는 무선 온도센서이고, 상기 무선 온도센서는 상기 망상 튜브형 지지체의 외부면 또는 내부면의 적어도 하나 이상의 지점에 설치될 수 있다.
다른 측면에서, 상기 망상 튜브형 지지체의 일측 단부는 고정 탭을 통해 상기 캡 조립체 또는 상기 케이스의 바닥판에 고정될 수 있다.
또 다른 측면에서, 상기 망상 튜브형 지지체의 일측 단부는 고정 슬리브를 통해 상기 공동의 내벽에 고정될 수 있다.
상기 기술적 과제를 달성하기 위한 시스템은, 제1전극 시트, 제2전극 시트 및 이들 사이에 개재된 분리막 시트가 일 방향으로 권취된 전극 조립체로서, 권취 중심축을 따라 공동이 구비된 것인 전극 조립체; 상기 공동의 길이 방향을 따라 설치된 망상 튜브형 지지체; 상기 전극 조립체가 수납되며 일측에 개방부가 구비된 케이스; 및 상기 케이스의 개방부에 절연 가능하게 결합된 캡 조립체;를 포함하는 원통형 전지; 상기 망상 튜브형 지지체에 부착되어 압력 센싱값 또는 온도 센싱값을 무선으로 전송하는 무선 센서; 및 상기 무선 센서로부터 상기 압력 센싱값 또는 상기 온도 센싱값을 수신하여 상기 무선 센서가 설치된 지점의 압력 또는 온도를 모니터하는 검출 검출 디바이스;를 포함할 수 있다.
상기 시스템은, 상기 압력 센싱값 또는 상기 온도 센싱값이 미리 설정된 임계치를 초과하는 경우 상기 원통형 전지의 충전전류 또는 방전전류가 흐르는 선로에 설치된 스위치를 제어하여 상기 원통형 전지의 충전 또는 방전을 중단시키거나, 상기 원통형 전지의 내부에 이상 조짐이 있음을 나타내는 경고 메시지를 생성하여 디스플레이를 통해 출력하도록 구성될 수 있다.
본 발명의 일 측면에 따르면, 원통형 전지에 사용되는 전극 조립체의 공동에 망상 튜브형 지지체를 삽입함으로써 코어의 강성을 보강할 수 있다. 이로써, 전극 조립체가 스웰링되더라도 공동의 붕괴를 방지하여 전극 조립체의 코어에서 내부저항이 증가하거나 내부단락이 생기는 것을 차단할 수 있다.
본 발명의 다른 측면에 따르면, 무선 압력센서를 망상 튜브형 지지체에 부착함으로써 전극 조립체의 공동이 붕괴될 정도의 스웰링이 발생할 조짐이 있음을 미리 감지할 수 있다. 또한, 실제 공동이 붕괴되기 시작할 경우, 해당 지점에 가해지는 응력의 정도와 해당 지점의 위치를 정확하게 검출할 수 있다.
본 발명의 또 다른 측면에 따르면, 무선 온도센서를 망상 튜브형 지지체에 부착함으로써 전극 조립체의 공동에서 과열 현상이 발생할 조짐이 있음을 미리 감지할 수 있다. 또한, 과열 현상이 생겼을 때 해당 지점의 온도와 위치를 정확하게 검출할 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 한 실시예를 예시하는 것이며, 후술하는 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 종래기술에 따른 전극 조립체가 스웰링되었을 때 코어의 공동이 붕괴되는 모습을 예시적으로 도시한 것이다.
도 2는 본 발명의 실시예에 따른 전극 조립체를 반경방향으로 자른 단면도이다.
도 3은 본 발명의 실시예에 따른 전극 조립체를 제작하는 과정을 도시한 공정도이다.
도 4는 본 발명의 실시예에 따른 전극 조립체를 길이 방향으로 자른 단면도이다.
도 5는 본 발명의 실시예에 따른 스텐트 지지체의 다양한 구조를 예시한 도면이다.
도 6a는 본 발명의 실시예에 따른 전극 조립체를 포함하는 원통형 전지의 단면도이고, 도 6b는 본 발명의 실시예에 따른 캡 조립체의 분해 사시도이다.
도 7은 본 발명의 실시예에 따른 무선 압력센서와 검출 디바이스의 구성을 나타낸 블록도이다.
도 8은 본 발명의 실시예에 따른 무선 온도센서와 검출 디바이스의 구성을 나타낸 블록도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 본 발명의 실시예들은 당해 기술 분야에서 통상의 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위하여 제공되는 것이며, 하기 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다. 오히려, 이들 실시예는 본 개시를 더욱 충실하고 완전하게 하고, 당업자에게 본 발명의 사상을 완전하게 전달하기 위하여 제공되는 것이다.
이하의 도면에서 각 층의 두께나 크기는 설명의 편의 및 명확성을 위하여 과장된 것이며, 도면상에서 동일 부호는 동일한 요소를 지칭한다. 본 명세서에서 사용된 바와 같이, 용어 "및/또는"은 해당 열거된 항목 중 어느 하나 및 하나 이상의 모든 조합을 포함한다. 또한, 본 명세서에서 "연결된다"라는 의미는 일 부재와 다른 부재가 직접 연결되는 경우뿐만 아니라, 일 부재와 다른 부재의 사이에 또 다른 부재가 개재되어 일 부재와 다른 부재가 간접 연결되는 경우도 의미한다.
본 명세서에서 사용된 용어는 특정 실시예를 설명하기 위하여 사용되며, 본 발명을 제한하기 위한 것이 아니다. 본 명세서에서 사용된 바와 같이, 단수 형태는 문맥상 다른 경우를 분명히 지적하는 것이 아니라면, 복수의 형태를 포함할 수 있다. 또한, 본 명세서에서 사용되는 경우 "포함한다(comprise)" 및/또는 "포함하는(comprising)"은 언급한 형상들, 숫자, 단계, 동작, 부재, 요소 및/또는 이들 그룹의 존재를 특정하는 것이며, 하나 이상의 다른 형상, 숫자, 동작, 부재, 요소 및 /또는 그룹들의 존재 또는 부가를 배제하는 것이 아니다.
본 명세서에서 제1, 제2 등의 용어가 다양한 부재, 부품, 영역, 층들 및/또는 부분들을 설명하기 위하여 사용되지만, 이들 부재, 부품, 영역, 층들 및/또는 부분들은 이들 용어에 의해 한정되어서는 안 됨은 자명하다. 이들 용어는 하나의 부재, 부품, 영역, 층 또는 부분을 다른 영역, 층 또는 부분과 구별하기 위하여만 사용된다. 따라서 이하 상술할 제1부재, 부품, 영역, 층 또는 부분은 본 발명의 가르침으로부터 벗어나지 않고서도 제2부재, 부품, 영역, 층 또는 부분을 지칭할 수 있다.
"하부(beneath)", "아래(below)", "낮은(lower)", "상부(above)", "위(upper)"와 같은 공간에 관련된 용어가 도면에 도시된 한 요소 또는 특징과 다른 요소 또는 특징의 용이한 이해를 위해 이용된다. 이러한 공간에 관련된 용어는 본 발명의 다양한 공정 상태 또는 사용 상태에 따라 본 발명의 용이한 이해를 위한 것이며, 본 발명을 한정하기 위한 것은 아니다. 예를 들어, 도면의 요소 또는 특징이 뒤집어지면, "하부" 또는 "아래"로 설명된 요소는 "상부" 또는 "위에"로 된다. 따라서 "아래"는 "상부" 또는 "아래"를 포괄하는 개념이다.
도 2는 본 발명의 실시예에 따른 전극 조립체(100)를 반경방향으로 자른 단면도이고, 도 3은 본 발명의 실시예에 따른 전극 조립체(100)를 제작하는 과정을 도시한 공정도이다. 도 3의 (a)는 부품들의 단면도이고, 도 3의 (b)는 부품들의 평면도이다. 도 4는 본 발명의 실시예에 따른 전극 조립체(100)를 길이 방향으로 다른 단면도이다.
도 2를 참조하면, 본 발명에 따른 전극 조립체(100)는 제1극성을 가진 제1전극 시트(110), 제2극성을 가진 제2전극 시트(120) 및 분리막 시트(130)를 포함한다.
제1극성과 제2극성은 극성이 서로 반대이다. 일 예에서, 제1극성은 음극이고 제2극성은 양극이다. 다른 예에서, 제1극성은 양극이고, 제2극성은 음극일 수 있다.
도 3을 참조하면, 전극 조립체(100)는 제1분리막 시트(130a), 제2전극 시트(120), 제2분리막 시트(130b) 및 제1전극 시트(110)를 순차적으로 적층시키고, 시트들의 적층체를 한 쪽 방향으로 연속적으로 권취시켜 제작할 수 있다.
4장의 시트들을 권취한 후 전극 조립체(100)에 열과 압력을 가하는 핫 프레스 공정을 통해 시트들의 권취 상태를 고정할 수 있다. 또는 권취 상태의 고정을 위해 제1분리막 시트(130a)의 가장 마지막 권회 부위에 테이프를 부착하는 것도 가능하다,
제2분리막 시트(130b)는 제1전극 시트(110)와 제2전극 시트(120)를 전기적으로 분리하는 역할을 한다. 제1전극 시트(110), 제2분리막 시트(130b) 및 제2전극 시트(120)는 전기화학적으로 충전 또는 방전이 가능한 셀을 구성한다. 제1분리막 시트(130a)는 셀을 권취시키는 필름으로 사용된다.
제1 및 제2분리막 시트(130a, 130b)는 절연성이 있는 다공성 필름으로 이루어진다. 일 예에서, 다공성 필름은 폴리올레핀 계열의 다공성 필름일 수 있다. 다공질 필름의 표면에는 세라믹 입자들의 코팅층이 구비될 수 있다.
제1 및 제2분리막 시트(130a, 130b)는 서로 동일한 재질로 이루어지거나 다른 재질로 이루어질 수 있다. 또한 세라믹 입자들의 코팅은 제2분리막 시트(130b)에만 형성될 수 있다. 제1 및 제2분리막 시트(130a, 130b)는 동일한 재료로 이루어지더라도 융점이 서로 다를 수 있다.
제1전극 시트(110)는 집전체(110a)의 한쪽 면 또는 양쪽면에 제1극성의 활물질(110b)이 코팅된 구조를 가진다. 마찬가지로, 제2전극 시트(120)는 집전체(120a)의 한쪽 면 또는 양쪽면에 제2극성의 활물질(120b)이 코팅된 구조를 가진다.
양극용 집전체는, 스테인리스 스틸, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것이 사용될 수 있다.
양극용 활물질로는 리튬함유 전이금속 산화물 또는 리튬 칼코게나이드 화합물을 모두 사용할 수 있다. 대표적인 예로는 LiCoO2, LiNiO2, LiMnO2, LiMn2O4, LiFePO4 또는 Li1+zNi1-x-yCoxMyO2(0≤x≤1, 0≤y≤1, 0≤x+y≤1, 0≤z≤1, M은 Al, Sr, Mg, La, Mn 등의 금속) 등의 금속 산화물이 사용될 수 있다.
음극용 집전체는 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것이 사용될 수 있고, 알루미늄-카드뮴 합금 등이 사용될 수 있다.
음극용 활물질은 결정질 탄소, 비정질 탄소, 탄소 복합체, 탄소 섬유 등의 탄소 재료, 리튬 금속, 리튬 합금, 실리콘, 실리콘 합금 등이 사용될 수 있다.
한편, 본 발명은 전극 조립체(100)의 구조에 특징이 있으므로, 양극/음극 집전체, 양극/음극 활물질 및 분리막을 구성하는 소재의 종류에 의해 한정되지 않는다.
도 3을 참조하면, 제1전극 시트(110)는 소정 영역에 무지부(111)를 구비한다. 무지부(111)는 활물질이 코팅되지 않은 부분이다. 또한, 제1전극 시트(110)는 무지부(111)에 부착된 제1탭(112)을 포함한다. 제1탭(112)은 무지부(111)에 초음파 용접될 수 있다. 무지부(111)는 도면에 도시된 것처럼 집전체의 일측 단부에 형성될 수 있다. 다른 예에서, 무지부(111)는 활물질층(110b)의 중간에 형성될 수 있다.
제2전극 시트(120)는 소정 영역에 무지부(121)를 구비한다. 또한, 제2전극 시트(120)는 무지부(121)에 부착된 제2탭(122)을 포함한다. 제2탭(122)은 무지부(121)에 초음파 용접될 수 있다. 무지부(121)는 도면에 도시된 것처럼 활물질층(120b)의 중간에 형성될 수 있다. 다른 예에서, 무지부(121)는 집전체(120a)의 일측 단부에 형성될 수 있다.
도 4를 참조하면, 본 발명의 실시예에 따른 전극 조립체(100)의 코어에는 공동(140)이 형성되어 있다. 공동(140)은 전극 조립체(100)의 권취 공정에서 사용된 권취수단(보빈)이 제거되면서 생긴 것이다.
바람직하게, 전극 조립체(100)의 공동(140)에는 그것의 길이 방향을 따라 삽입된 망상 튜브형 지지체(150)가 구비된다.
망상 튜브형 지지체(150)는 와이어 및/또는 스트랩(strap)이 망상의 튜브를 형성한 구조를 가진다.
바람직하게, 망상 튜브형 지지체(150)는 스텐트(Stent) 지지체일 수 있다. 스텐트는 좁아진 혈관이나 소화관에 삽입되는 의료용 부재이다. 스텐트(stent)는 와이어 및/또는 스트랩이 망상 튜브를 형성한 구조를 가진다.
도 5는 본 발명의 실시예에 따른 스텐트 지지체의 다양한 구조를 예시한 도면이다. 각 스텐트 구조에 있어서 와이어 및/또는 스트랩의 형상, 두께, 폭, 피치 등은 망상 튜브형 지지체(150)에 요구되는 강성을 고려하여 유한요소해석도구를 이용하여 결정할 수 있다.
도 5에 도시된 것 이외에도 당업계에 공지된 다양한 스텐트 구조들이 망상 튜브형 지지체(150)의 구조에 적용될 수 있음은 본 발명이 속한 기술분야에서 통상의 지식을 가진 자에게 자명하다.
망상 튜브형 지지체(150)는 반경 방향 및/또는 길이 방향으로 탄성적 신축이 가능하다. 따라서, 전극 조립체(100)의 공동(140)에 삽입된 망상 튜브형 지지체(150)는 전극 조립체(100)가 스웰링되었을 때 공동(140) 주변에 생기는 응력을 탄성 변형을 통해 흡수함으로써 공동(140)이 붕괴되는 것을 저지하는 기능을 한다. 또한, 망상 튜브형 지지체(150)는 내부가 비어 있을 뿐만 아니라 벽에도 다수의 개구들이 형성되어 있다. 따라서 망상 튜브형 지지체(150)는 전극 조립체(100)에 전해질을 함침하는 과정에서 전해질의 유동을 방해하지 않으며, 원통형 전지의 에너지 밀도를 저하시키지 않는다.
와이어 및/또는 스트랩의 재질은 망상 튜브형 지지체(150)의 강성을 고려하여 적절하게 선택할 수 있다. 와이어 및/스트랩의 재질은 단일 금속, 합금 또는 플라스틱 중에서 선택될 수 있다. 바람직한 예에서, 와이어 및/또는 스트랩의 재질은 스테인레스스틸 또는 형상기억합금일 수 있다.
바람직하게, 망상 튜브형 지지체(150)는 축소된 반경 및 길이를 가지도록 제작된 후, 공동(140) 내에서 반경 방향과 길이 방향으로 팽창되면서 설치될 수 있다. 이러한 설치 방식은 스텐트 기술 분야에 널리 알려져 있다. 망상 튜브형 지지체(150)의 설치 시에도 기존의 스텐트 설치 방식이 실질적으로 동일하게 채용될 수 있다.
도 6a는 본 발명의 실시예에 따른 전극 조립체(100)를 포함하는 원통형 전지(200)의 단면도이고, 도 6b는 본 발명의 실시예에 따른 캡 조립체(220)의 분해 사시도이다.
도 6a 및 도 6b를 참조하면, 원통형 전지(200)는 전극 조립체(100), 전극 조립체(100)가 수납되며 일측에 개방부가 구비된 케이스(210), 및 케이스(210)의 개방부를 밀봉하는 캡 조립체(220)를 포함한다.
케이스(210)는 원형의 바닥부(211)와, 바닥부(211)로부터 상부 방향으로 일정 길이 연장된 측벽부(212)를 포함한다. 원통형 전지(200)의 제조 공정 중 케이스(210)의 상부는 개방되어 있을 수 있다. 따라서 조립 공정 중 전극 조립체(100)가 전해액과 함께 케이스(210)에 삽입될 수 있다.
케이스(210)는 스틸, 스틸 합금, 알루미늄, 알루미늄 합금 또는 이의 등가물로 형성될 수 있으나, 여기서 그 재질이 한정되는 것은 아니다. 더불어, 케이스(210)에는 전극 조립체(100)가 외부로 이탈되지 않도록 캡 조립체(220)를 기준으로 그 하부에 내부로 함몰된 비딩부(beading part)(213)가 형성되고, 그 상부에 내부로 절곡된 크림핑부(crimping part)(214)가 형성될 수 있다.
전해액은 전극 조립체(100)를 구성하는 전극들 사이에서 리튬 이온이 이동될 수 있도록 주입되는 염을 함유한 유기 액체로서, LiPF6, LiBF4, LiClO4 등의 리튬염과 고순도 유기 용매류의 혼합물인 비수질계 유기 전해액을 포함하여 이루어질 수 있으나, 본 발명에서 이를 한정하는 것은 아니다.
캡 조립체(220)는 하나 이상의 관통홀(221)이 형성된 캡 커버(222), 캡 커버(222)의 가장자리를 감싸도록 캡 커버(222)의 하부에 고정되고 상부 표면에 벤트 노치가 형성된 안전 플레이트(223), 안전 플레이트(223)의 하부에 설치된 연결링(224), 연결링(224)에 결합된 접속 플레이트(225), 그리고 캡 커버(222), 안전 플레이트(223), 연결링(224) 및 접속 플레이트(225)를 케이스(110)의 측벽부(211)로부터 절연시키는 절연 가스켓(226)을 포함할 수 있다.
캡 커버(222), 안전 플레이트(223), 연결링(224) 및 접속 플레이트(225)가 상호 접촉하는 부분은, 선택적으로 용접, 접착 등의 수단을 이용해 서로 전기적으로 연결될 수 있다.
캡 커버(222), 안전 플레이트(223), 연결링(224) 및 접속 플레이트(225)는 스틸, 스틸 합금, 알루미늄, 알루미늄 합금 또는 이의 등가물로 형성될 수 있으나, 여기서 그 재질이 한정되는 것은 아니다.
전극 조립체(100)의 상부와 하부에는 각각 상부 절연판(230) 및 하부 절연판(240)이 결합된다. 상부 절연판(230) 및 하부 절연판(240)은 절연물질로 이루어진다.
상부 절연판(230) 및 하부 절연판(240)은 폴리에틸렌, 폴리프로필렌, 폴리에틸렌테레프탈레이트(PET), 폴리테트라플루오르에틸렌(PTFE), 폴리이미드 등의 고분자 수지로 이루어질 수 있으나, 여기서 그 재질이 한정되는 것은 아니다.
전극 조립체(100)에 있어서, 제1전극 시트(110)의 제1탭(112)은 하부 절연판(240)에 형성된 개구를 통해 하부로 연장된 후 케이스(210)의 바닥판(211)과 평행하게 연장된다. 또한, 제1탭(112)의 단부는 바닥판(211)과 용접된다.
전극 조립체(100)에 있어서, 제2전극 시트(120)의 제2탭(122)은 상부 절연판(230)에 형성된 개구를 통해 상부로 연장된 후 캡 조립체(220)의 연결 플레이트(225)를 향해 절곡된다. 또한, 제2탭(122)의 단부는 연결 플레이트(225)에 용접을 통해 고정된다.
망상 튜브형 지지체(150)은 전극 조립체(100)의 코어에 형성된 공동(140)에 삽입된다. 일 예에서, 망상 튜브형 지지체(150)의 외부 직경은 전극 조립체(100)의 공동(140) 직경보다 작다. 이 경우, 망상 튜브형 지지체(150)의 표면과 공동(140)의 내벽 사이에 갭이 형성될 수 있다. 다른 예에서, 망상 튜브형 지지체(150)의 외부 직경은 전극 조립체(100)의 공동(140) 직경에 대응한다.
망상 튜브형 지지체(150)의 고정을 위해 망상 튜브형 지지체(150)의 상단은 고정 탭(250)을 통해 연결 플레이트(225)의 하부면에 고정될 수 있다. 고정 탭(250)의 일단은 망상 튜브형 지지체(150)의 상단 내벽 또는 상단 외벽에 용접된다. 고정 탭(250)의 타단은 상부 절연판(230)에 형성된 개구부를 통해 상부로 돌출되어 연결 플레이트(225)까지 연장된다. 또한 고정 탭(250)의 타단은 연결 플레이트(225)와 평행하게 절곡된 후 고정 플레이트(255)의 하부면에 견고하게 용접될 수 있다. 이 때, 고정 탭(250)의 용접 위치는 제2탭(122)과 간섭을 일으키지 않도록 적절하게 선택될 수 있다.
고정 탭(250)은 스틸, 스틸 합금, 알루미늄, 알루미늄 합금 또는 이의 등가물로 형성될 수 있으나, 여기서 그 재질이 한정되는 것은 아니다.
망상 튜브형 지지체(150)의 하단과 전극 조립체(100)의 공동(140) 내벽 사이에는 고정 슬리브(260)가 개재될 수 있다. 바람직하게, 고정 슬리브(260)는 튜브 형상을 가지며, 고정 슬리브(260)의 벽 두께는 망상 튜브형 지지체(150)와 공동(140) 사이의 갭에 대응한다.
고정 슬리브(260)는 절연소재로 이루어진다. 일 예에서, 고정 슬리브(260)는 폴리에틸렌, 폴리프로필렌, 폴리에틸렌테레프탈레이트(PET), 폴리테트라플루오르에틸렌(PTFE), 폴리이미드 등의 고분자 수지로 이루어질 수 있으나, 여기서 그 재질이 한정되는 것은 아니다.
도면에 도시된 것과 달리, 망상 튜브형 지지체(150)의 하단은 고정 슬리브(260)를 사용하지 않고 고정 탭(미도시)을 이용하여 고정할 수 있다. 이 경우, 고정 탭의 일단은 망상 튜브형 지지체(150) 하단의 외벽 또는 내벽에 용접된다. 또한, 고정 탭의 타단은 하부 절연판(240)의 개구부를 통해 바닥판(211)까지 연장될 수 있다. 또한, 고정 탭의 타단은 제1탭(112)과 간섭을 일으키지 않으면서 바닥판(211)에 용접되어 고정될 수 있다. 망상 튜브형 지지체(150)의 하단을 고정하는데 고정 탭이 사용된 경우, 망상 튜브형 지지체(150)의 상단은 고정 탭(250)을 사용하지 않고 고정 슬리브(미도시)를 이용하여 고정할 수 있다.
망상 튜브형 지지체(150)의 상단과 하단을 고정하는 방식은 동일하거나 다를 수 있다. 또한, 망상 튜브형 지지체(150)의 상단과 하단은, 앞서 설명된 고정 탭 및 고정 슬리브 이외에도 여러 가지 공지의 구조물을 선택적으로 사용하여 고정할 수 있다.
다른 측면에 따르면, 망상 튜브형 지지체(150)의 표면에는 적어도 하나의 무선 센서(270)가 부착될 수 있다. 무선 센서(270)는 망상 튜브형 지지체(150)의 길이 방향을 따라 복수의 지점에 설치될 수 있다. 무선 센서(270)는 초소형 타입인 것이 바람직하다.
도면에는, 무선 센서(270)가 망상 튜브형 지지체(150)의 상부, 중부 및 하부에 각각 설치된 것으로 도시되어 있다. 하지만 무선 센서(270)가 설치되는 개소의 수는 증가 또는 감소시킬 수 있다.
일 예에서, 무선 센서(270)는 도 7에 도시된 바와 같이 무선 압력센서(300)일 수 있다. 무선 압력센서(300)는 외부 물체가 접촉되면 접촉 압력을 센싱하여 압력 센싱값을 무선으로 송신하는 소자이다.
바람직하게, 무선 압력센서(300)는, 외부로부터 인가되는 자기장에 따라 전압을 발생시키는 자전기 합성체(ME composite)를 구비하는 무선충전부(310)와 무선충전부(310)에서 생성된 구동 전압을 통해 구동되어 압력을 센싱하고 안테나(320)를 통해 압력 센싱값을 외부로 무선 전송하는 압력센서부(330)를 포함할 수 있다.
무선충전부(310)는 외부로부터 작용하는 자기장에 따른 자기에너지를 변형에너지로 변환하는 자기변형물질부(magnetostrictive material), 그리고 상기 자기변형물질부와 결합되어 상기 변형에너지를 통해 전압을 발생시키는 압전물질부(piezoelectric material)를 포함할 수 있다.
무선 압력센서(300)는 전극 조립체(100)에서 스웰링 현상이 생겼을 때 공동(140)의 내벽이 응력에 의해 변형된 것을 감지하고, 압력 센싱값을 외부로 무선 송출할 수 있다. 즉, 공동(140)의 내벽이 변형되어 내벽이 무선 압력센서(300)와 접촉할 경우, 무선 압력센서(300)는 접촉의 강도에 상응하는 압력 센싱값을 무선으로 송출할 수 있다.
압력 센싱값의 수신을 위해 검출 디바이스(400)가 제공될 수 있다. 검출 디바이스(400)를 통해 압력 센싱값을 검출하면, 전극 조립체(100)의 공동(140)이 스웰링 현상에 의해 붕괴될 조짐이 있음을 미리 감지할 수 있다.
무선 압력센서(300)가 복수개인 경우, 각 무선 압력센서(300)는 위치 ID를 더 전송할 수 있다. 이 경우, 검출 디바이스(400)는 무선 압력센서(300)의 위치 별로 압력 센싱값을 검출할 수 있으므로 공동(140)의 붕괴 조짐이 있는 위치를 정확하게 식별할 수 있다.
검출 디바이스(400)는 무선 압력센서(300)를 동작시키기 위해 주기적으로 자기장을 무선 압력센서(300)에 인가할 수 있다. 그러면, 무선 압력센서(300)의 무선충전부(310)에서 구동 전압이 발생되어 압력센서부(330)로 인가된다. 그러면, 압력센서부(330)는 외부 물체의 접촉에 따른 압력 센싱값을 생성하고 압력 센싱값을 안테나(320)를 통해 무선으로 검출 디바이스(400) 측에 전송할 수 있다.
무선 압력센서(300)는 망상 튜브형 지지체(150)의 상하 방향을 따라 복수의 지점에 설치될 수 있다. 이 경우, 공동이 어느 위치에서 붕괴 현상의 조짐이 있는지를 정확하게 검출할 수 있다.
무선 압력센서(300)가 망상 튜브형 지지체(150)의 외벽에 부착되는 경우, 망상 튜브형 지지체(150)와 전극 조립체(100)의 공동(140) 내벽 사이에는 갭이 형성되는 것이 바람직하다. 갭은 무선 압력센서가 공동(140)의 내벽에 직접 접촉하지 않는 수준으로 조절되는 것이 바람직하다.
무선 압력센서(300)가 망상 튜브형 지지체(150)의 내벽에 부착되는 경우, 망상 튜브형 지지체(150)와 전극 조립체(100)의 공동(140) 내벽 사이에는 갭이 없더라도 무방하다. 이 경우, 공동(140)이 붕괴되면서 생기는 응력은 무선 압력센서(300)가 설치된 와이어 및/또는 스트랩을 변형시키게 되며, 이 과정에서 압력의 센싱이 가능하다.
다른 예에서, 무선센서는 도 8에 도시된 바와 같이 무선 온도센서(500)일 수 있다. 무선 온도센서(500)는 센서 설치 지점의 온도를 센싱하여 온도 센싱값을 무선으로 송신하는 소자이다.
바람직하게, 무선 온도센서(500)는 외부로부터 인가되는 자기장에 따라 전압을 발생시키는 자전기 합성체(ME composite)를 구비하는 무선충전부(510)와 무선충전부(510)에서 생성된 구동 전압을 통해 구동되어 온도를 센싱하고 온도 센싱값을 안테나(520)를 통해 무선으로 전송하는 온도센서부(530)를 포함할 수 있다. 온도센서부(530)는 초소형 열전대(thermostat)를 포함할 수 있다.
무선충전부(510)는 외부로부터 작용하는 자기장에 따른 자기에너지를 변형에너지로 변환하는 자기변형물질부(magnetostrictive material), 그리고 상기 자기변형물질부와 결합되어 상기 변형에너지를 통해 전압을 발생시키는 압전물질부(piezoelectric material)를 포함할 수 있다.
검출 디바이스(400)에서 온도 센싱값을 검출하면, 전극 조립체(100)의 공동(140)에서 급격한 온도 상승이 발생할 조짐이 있음을 미리 감지할 수 있다.
검출 디바이스(400)는 무선 온도센서(500)를 동작시키기 위해 주기적으로 자기장을 무선 온도센서(500)에 인가할 수 있다. 그러면, 무선 온도센서(500)의 무선충전부(510)에서 전압이 발생되어 온도센서부(530)로 인가된다. 그러면, 온도센서부(530)는 센서 설치 지점의 온도를 센싱하여 온도 센싱값을 생성하고 온도 센싱값을 안테나(520)를 통해 무선으로 검출 디바이스(400) 측에 전송할 수 있다.
무선 온도센서(500)는 망상 튜브형 지지체(150)의 상하 방향을 따라 복수의 지점에 설치될 수 있다. 무선 온도센서(500)가 복수개인 경우, 각 무선 온도센서(500)는 위치 ID를 더 전송할 수 있다. 이 경우, 검출 디바이스(400)는 무선 온도센서(500)의 위치 별로 온도 센싱값을 검출할 수 있으므로 공동(140)의 내부에서 과열 조짐이 있는 위치를 정확하게 식별할 수 있다.
공동(140)의 과열은 전극 조립체(100)의 스웰링에 의해 공동 근처에서 내부단락이 발생될 경우 생긴다. 따라서, 무선 온도센서(500)를 통해 공동(140)의 온도를 모니터하면, 공동(140)의 어느 지점에서 내부단락이 발생했는지를 정확하게 검출해 낼 수 있다.
상술한 원통형 전지(200), 무선 센서(300, 500) 및 검출 디바이스(400)는 본 발명에 따른 하나의 시스템을 구성할 수 있다. 검출 디바이스(400)는 원통형 전지(200)의 충방전을 제어하는 전지 관리 장치(600)에 포함될 수 있다. 전지 관리 장치(600)는 원통형 전지(200)로부터 전력을 공급 받는 부하에 포함될 수 있다. 이 경우, 전지 관리 장치(600)은 검출 디바이스(400)에서 검출되는 압력 센싱값 및/또는 온도 센싱값을 모니터할 수 있다. 또한 전지 관리 장치(600)은 압력 센싱값 및/또는 온도 센싱값이 미리 설정된 임계치를 초과할 경우, 원통형 전지(200)의 충전 또는 방전을 중단시킬 수 있다. 이를 위해, 전지 관리 장치(600)은 충전전류 또는 방전전류가 흐르는 선로에 설치된 스위치를 턴오프시킬 수 있다. 또한, 전지 관리 장치(600)은 원통형 전지(200)의 내부에서 이상 조짐이 있음을 나타내는 경고 메시지를 생성하여 디스플레이를 통해 출력할 수 있다. 디스플레이는 원통형 전지(200)로부터 에너지를 공급 받는 장치에 구비될 수 있다. 일 예에서, 장치가 전기 자동차인 경우, 디스플레이는 계기판 또는 대쉬보드에 설치된 통합디스플레이일 수 있다.
본 발명은 전극 조립체 및 이를 포함하는 원통형 전지의 설계 단계에서 전극 조립체의 코어에 생기는 응력 거동을 분석하고 내부단락의 원인 등을 분석하는데 유용하게 활용될 수 있다.
또한, 본 발명은 원통형 전지가 실제 사용될 때 전극 조립체의 코어 부분에 생기는 공동 붕괴나 내부단락에 따른 과열 조짐을 미리 검출하는데 활용이 가능하다.
본 발명의 일 측면에 따르면, 원통형 전지에 사용되는 전극 조립체의 공동에 망상 튜브형 지지체를 삽입함으로써 코어의 강성을 보강할 수 있다. 이로써, 전극 조립체가 스웰링되더라도 공동의 붕괴를 방지하여 전극 조립체의 코어에서 내부저항이 증가하거나 내부단락이 생기는 것을 차단할 수 있다.
본 발명의 다른 측면에 따르면, 무선 압력센서를 망상 튜브형 지지체에 부착함으로써 전극 조립체의 공동이 붕괴될 정도의 스웰링이 발생할 조짐이 있음을 미리 감지할 수 있다. 또한, 실제 공동이 붕괴되기 시작할 경우, 해당 지점에 가해지는 응력의 정도와 해당 지점의 위치를 정확하게 검출할 수 있다.
본 발명의 또 다른 측면에 따르면, 무선 온도센서를 망상 튜브형 지지체에 부착함으로써 전극 조립체의 공동에서 과열 현상이 발생할 조짐이 있음을 미리 감지할 수 있다. 또한, 과열 현상이 생겼을 때 해당 지점이 온도와 위치를 정확하게 검출할 수 있다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.

Claims (20)

  1. 제1전극 시트, 제2전극 시트 및 이들 사이에 개재된 분리막 시트가 일 방향으로 권취된 전극 조립체에 있어서,
    상기 전극 조립체의 권취 중심축을 따라 공동이 구비되고,
    상기 공동의 길이 방향을 따라 망상 튜브형 지지체가 설치된 것을 특징으로 하는 전극 조립체.
  2. 제1항에 있어서,
    상기 망상 튜브형 지지체는, 와이어 및/또는 스트랩이 망상의 튜브를 형성한 구조를 구비하는 것을 특징으로 하는 전극 조립체.
  3. 제2항에 있어서,
    상기 망상 튜브형 지지체는 스탠트(stent) 지지체임을 특징으로 하는 전극 조립체.
  4. 제1항에 있어서,
    상기 망상 튜브형 지지체는 반경 방향 및/또는 길이 방향으로 신축 가능한 것을 특징으로 하는 전극 조립체.
  5. 제1항에 있어서,
    상기 망상 튜브형 지지체와 상기 공동의 내벽 사이에 갭이 형성되어 있는 것을 특징으로 하는 전극 조립체.
  6. 제1항에 있어서,
    상기 망상 튜브형 지지체에 부착된 무선 센서를 더 포함하는 것을 특징으로 하는 전극 조립체.
  7. 제6항에 있어서,
    상기 무선 센서는 무선 압력센서이고,
    상기 무선 압력센서는 상기 망상 튜브형 지지체의 외부면 또는 내부면의 적어도 하나 이상의 지점에 설치되는 것을 특징으로 하는 전극 조립체.
  8. 제6항에 있어서,
    상기 무선 센서는 무선 온도센서이고,
    상기 무선 온도센서는 상기 망상 튜브형 지지체의 외부면 또는 내부면의 적어도 하나 이상의 지점에 설치되는 것을 특징으로 하는 전극 조립체.
  9. 제1전극 시트, 제2전극 시트 및 이들 사이에 개재된 분리막 시트가 일 방향으로 권취된 전극 조립체로서, 권취 중심축을 따라 공동이 구비된 것인 전극 조립체;
    상기 공동의 길이 방향을 따라 설치된 망상 튜브형 지지체;
    상기 전극 조립체가 수납되며 일측에 개방부가 구비된 케이스; 및
    상기 케이스의 개방부에 절연 가능하게 결합된 캡 조립체;를 포함하는 것을 특징으로 하는 원통형 전지.
  10. 제9항에 있어서,
    상기 망상 튜브형 지지체는, 와이어 및/또는 스트랩이 망상의 튜브를 형성한 구조를 구비하는 것을 특징으로 하는 원통형 전지.
  11. 제10항에 있어서,
    상기 망상 튜브형 지지체는 스탠트(stent) 지지체임을 특징으로 하는 원통형 전지.
  12. 제9항에 있어서,
    상기 망상 튜브형 지지체는 반경 방향 및/또는 길이 방향으로 신축 가능한 것을 특징으로 하는 원통형 전지.
  13. 제9항에 있어서,
    상기 망상 튜브형 지지체와 상기 공동의 내벽 사이에 갭이 형성되어 있는 것을 특징으로 하는 원통형 전지.
  14. 제9항에 있어서,
    상기 망상 튜브형 지지체에 부착된 무선 센서를 더 포함하는 것을 특징으로 하는 원통형 전지.
  15. 제14항에 있어서,
    상기 무선 센서는 무선 압력센서이고,
    상기 무선 압력센서는 상기 망상 튜브형 지지체의 외부면 또는 내부면의 적어도 하나 이상의 지점에 설치되는 것을 특징으로 하는 원통형 전지.
  16. 제14항에 있어서,
    상기 무선 센서는 무선 온도센서이고,
    상기 무선 온도센서는 상기 망상 튜브형 지지체의 외부면 또는 내부면의 적어도 하나 이상의 지점에 설치되는 것을 특징으로 하는 원통형 전지.
  17. 제9항에 있어서,
    상기 망상 튜브형 지지체의 일측 단부를 상기 캡 조립체 또는 상기 케이스의 바닥판에 고정하는 고정 탭을 포함하는 것을 특징으로 하는 원통형 전지.
  18. 제9항에 있어서,
    상기 망상 튜브형 지지체의 일측 단부를 상기 공동의 내벽에 고정하는 고정 슬리브를 포함하는 것을 특징으로 하는 원통형 전지.
  19. 제1전극 시트, 제2전극 시트 및 이들 사이에 개재된 분리막 시트가 일 방향으로 권취된 전극 조립체로서, 권취 중심축을 따라 공동이 구비된 것인 전극 조립체; 상기 공동의 길이 방향을 따라 설치된 망상 튜브형 지지체; 상기 전극 조립체가 수납되며 일측에 개방부가 구비된 케이스; 및 상기 케이스의 개방부에 절연 가능하게 결합된 캡 조립체;를 포함하는 원통형 전지;
    상기 망상 튜브형 지지체에 부착되어 압력 센싱값 또는 온도 센싱값을 무선으로 전송하는 무선 센서; 및
    상기 무선 센서로부터 상기 압력 센싱값 또는 상기 온도 센싱값을 수신하여 상기 무선 센서가 설치된 지점의 압력 또는 온도를 모니터하는 검출 검출 디바이스;를 포함하는 시스템.
  20. 제19항에 있어서,
    상기 시스템은 상기 압력 센싱값 또는 상기 온도 센싱값이 미리 설정된 임계치를 초과하는 경우 상기 원통형 전지의 충전전류 또는 방전전류가 흐르는 선로에 설치된 스위치를 제어하여 상기 원통형 전지의 충전 또는 방전을 중단시키거나,
    상기 원통형 전지의 내부에 이상 조짐이 있음을 나타내는 경고 메시지를 생성하여 디스플레이를 통해 출력하도록 구성된, 시스템.
PCT/KR2022/015012 2021-10-05 2022-10-05 전극 조립체, 원통형 전지 및 이를 포함하는 시스템 WO2023059075A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US18/268,522 US20240039134A1 (en) 2021-10-05 2022-10-05 Electrode assembly, cylindrical battery and system comprising the same
JP2023541732A JP2024503020A (ja) 2021-10-05 2022-10-05 電極組立体、円筒型電池及びこれを含むシステム
EP22878896.4A EP4287328A1 (en) 2021-10-05 2022-10-05 Electrode assembly, cylindrical battery, and system comprising same
CN202280010140.XA CN116802862A (zh) 2021-10-05 2022-10-05 电极组件、包括该电极组件的圆柱形电池以及系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0131993 2021-10-05
KR20210131993 2021-10-05

Publications (1)

Publication Number Publication Date
WO2023059075A1 true WO2023059075A1 (ko) 2023-04-13

Family

ID=85803589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/015012 WO2023059075A1 (ko) 2021-10-05 2022-10-05 전극 조립체, 원통형 전지 및 이를 포함하는 시스템

Country Status (6)

Country Link
US (1) US20240039134A1 (ko)
EP (1) EP4287328A1 (ko)
JP (1) JP2024503020A (ko)
KR (1) KR20230049050A (ko)
CN (1) CN116802862A (ko)
WO (1) WO2023059075A1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08273697A (ja) * 1995-03-28 1996-10-18 Asahi Chem Ind Co Ltd 捲回型電池
JPH0945361A (ja) * 1995-08-02 1997-02-14 Alps Electric Co Ltd 2次電池
KR20060118959A (ko) * 2005-05-18 2006-11-24 삼성에스디아이 주식회사 원통형 리튬 이차 전지
KR20090081966A (ko) * 2008-01-25 2009-07-29 삼성에스디아이 주식회사 이차 전지
KR20160053535A (ko) * 2014-11-05 2016-05-13 주식회사 비츠로셀 내구성을 높인 권취형 전지
KR20210131993A (ko) 2018-12-04 2021-11-03 엘디아이 파이낸시스 작업편의 프로파일을 측정하기 위한 시스템 및 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08273697A (ja) * 1995-03-28 1996-10-18 Asahi Chem Ind Co Ltd 捲回型電池
JPH0945361A (ja) * 1995-08-02 1997-02-14 Alps Electric Co Ltd 2次電池
KR20060118959A (ko) * 2005-05-18 2006-11-24 삼성에스디아이 주식회사 원통형 리튬 이차 전지
KR20090081966A (ko) * 2008-01-25 2009-07-29 삼성에스디아이 주식회사 이차 전지
KR20160053535A (ko) * 2014-11-05 2016-05-13 주식회사 비츠로셀 내구성을 높인 권취형 전지
KR20210131993A (ko) 2018-12-04 2021-11-03 엘디아이 파이낸시스 작업편의 프로파일을 측정하기 위한 시스템 및 방법

Also Published As

Publication number Publication date
KR20230049050A (ko) 2023-04-12
CN116802862A (zh) 2023-09-22
JP2024503020A (ja) 2024-01-24
EP4287328A1 (en) 2023-12-06
US20240039134A1 (en) 2024-02-01

Similar Documents

Publication Publication Date Title
WO2014133275A1 (ko) 이차 전지 및 그 제조 방법
CA2562960C (en) Electrochemical cell comprising electrode lead with protector element
WO2013009148A2 (ko) 원통형 이차 전지
WO2014181950A1 (ko) 이차전지, 이를 포함하는 이차전지 모듈 및 이차전지 팩
JP2006080072A (ja) 巻取型電極組立体とこれを備えるリチウム二次電池およびその製造方法
WO2010044554A1 (ko) 안전성이 향상된 캡 어셈블리 및 이를 포함하고 있는 원통형 이차전지
WO2012026705A2 (ko) 개선된 구조의 젤리-롤 및 이를 포함하는 이차전지
WO2006112639A1 (en) Secondary battery module having piezo sensor
JP4515405B2 (ja) 円筒状のリチウム二次電池及びその製造方法
WO2013100446A1 (ko) 제조공정성이 향상된 캡 어셈블리 및 이를 포함하는 원통형 전지
KR101692414B1 (ko) 이차전지의 내부압력 측정장치, 및 이를 사용하는 이차전지의 내부압력 측정방법
WO2019050177A1 (ko) 파우치 형 이차 전지
WO2019045310A1 (ko) 파우치 형 이차 전지
WO2020175773A1 (ko) 벤팅 장치
WO2021033939A1 (ko) 이차 전지
WO2020204385A1 (ko) 이차 전지
KR100635707B1 (ko) 이차 전지용 전극판 권취장치
WO2020116851A1 (ko) 원통형 전지셀의 내압측정 지그
KR20190041294A (ko) 안전 벤트
WO2015190848A1 (ko) 전기화학 소자 및 이의 제조방법
WO2023059075A1 (ko) 전극 조립체, 원통형 전지 및 이를 포함하는 시스템
WO2019088524A1 (ko) 이차 전지 및 이차 전지용 절연판
WO2022196942A1 (ko) 이차 전지
WO2022092662A1 (ko) 캡 조립체 및 이를 포함하는 이차 전지
WO2021153922A1 (ko) 이차전지 및 이차전지의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22878896

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18268522

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2023541732

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280010140.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022878896

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022878896

Country of ref document: EP

Effective date: 20230901