WO2023058732A1 - 血液浄化装置 - Google Patents

血液浄化装置 Download PDF

Info

Publication number
WO2023058732A1
WO2023058732A1 PCT/JP2022/037514 JP2022037514W WO2023058732A1 WO 2023058732 A1 WO2023058732 A1 WO 2023058732A1 JP 2022037514 W JP2022037514 W JP 2022037514W WO 2023058732 A1 WO2023058732 A1 WO 2023058732A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood
light
unit
irradiation
calibration curve
Prior art date
Application number
PCT/JP2022/037514
Other languages
English (en)
French (fr)
Inventor
一貴 吉永
新太 中川
智也 村上
君彦 ▲濱▼田
歩 松田
Original Assignee
日機装株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日機装株式会社 filed Critical 日機装株式会社
Priority to CN202280067446.9A priority Critical patent/CN118159311A/zh
Priority to EP22878599.4A priority patent/EP4382146A1/en
Publication of WO2023058732A1 publication Critical patent/WO2023058732A1/ja
Priority to US18/626,896 priority patent/US20240245841A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/1601Control or regulation
    • A61M1/1603Regulation parameters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/1698Blood oxygenators with or without heat-exchangers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3607Regulation parameters
    • A61M1/3609Physical characteristics of the blood, e.g. haematocrit, urea
    • A61M1/361Physical characteristics of the blood, e.g. haematocrit, urea before treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3607Regulation parameters
    • A61M1/3609Physical characteristics of the blood, e.g. haematocrit, urea
    • A61M1/3612Physical characteristics of the blood, e.g. haematocrit, urea after treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3306Optical measuring means
    • A61M2205/3313Optical measuring means used specific wavelengths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/20Blood composition characteristics
    • A61M2230/205Blood composition characteristics partial oxygen pressure (P-O2)

Definitions

  • the present invention relates to a blood purification device that purifies the blood by extracorporeally circulating the patient's blood through a blood purifier and a blood circuit.
  • a hemodialysis apparatus for performing dialysis treatment is usually connected to a blood circuit having an arterial blood circuit and a venous blood circuit for extracorporeally circulating a patient's blood, and to the arterial blood circuit and the venous blood circuit, respectively.
  • a dialyzer as a blood purifier for purifying blood circulating extracorporeally, and a water removal pump capable of removing excess water in the blood flowing through the dialyzer, and circulating extracorporeally in the blood circuit. It is believed that blood purification treatment can be performed while removing water from the blood.
  • Patent Document 1 there has been proposed a blood purification device capable of measuring the oxygen saturation of a patient's blood during blood purification treatment.
  • a first light having a wavelength that is easily absorbed by oxygenated hemoglobin in blood and a second light having a wavelength that is easily absorbed by deoxyhemoglobin in blood are emitted from a light emitting part, and the light is reflected.
  • the oxygen saturation of blood can be measured by receiving light at a light receiving portion and detecting the intensity of the received light.
  • the light-receiving voltage detected by the light-receiving unit changes with changes in the patient's blood concentration, such as the hematocrit value. There is a risk that an error will occur in the oxygen saturation that is obtained.
  • the present invention has been made in view of such circumstances, and its purpose is to provide a blood purification apparatus capable of accurately obtaining oxygen saturation regardless of differences in blood concentration.
  • a blood purification apparatus is a blood purification apparatus for extracorporeally circulating a patient's blood through a blood purifier and a blood circuit to purify the blood, wherein red light is applied to the blood flowing through the blood circuit.
  • a first irradiation unit that irradiates, a second irradiation unit that irradiates blood flowing through the blood circuit with near-infrared light, and the blood flowing through the blood circuit is irradiated from the first irradiation unit and the second irradiation unit.
  • a third irradiation unit that emits light having a wavelength different from that of the red light and the near-infrared light and that is capable of detecting the blood concentration regardless of the oxygen saturation of the blood;
  • a first light receiving intensity obtained by receiving reflected light reflected by the blood or transmitted light transmitted through the blood by the irradiated red light, and the near-infrared light irradiated from the second irradiation unit is the blood
  • a second light receiving intensity obtained by receiving the reflected light or the transmitted light that has passed through the blood, and the reflected light that the detection light emitted from the third irradiation unit reflects the blood or the blood
  • a light receiving unit that detects a third light receiving intensity obtained by receiving the transmitted light, and acquires the oxygen saturation from the ratio of the first light receiving intensity and the second light receiving intensity, and the light receiving unit and an error absorber that absorbs an error in the oxygen saturation caused by changes in the blood concentration based on the detected third received light intensity.
  • the oxygen saturation can be accurately determined regardless of the difference in the blood concentration. can be obtained well.
  • FIG. 1 Schematic diagram showing a blood purification apparatus according to a first embodiment of the present invention.
  • Graph showing a calibration curve applied in the same blood purification device Flowchart showing a process of obtaining oxygen saturation in the same blood purification apparatus Schematic diagram showing a blood purification apparatus according to a second embodiment of the present invention.
  • Flowchart showing a process of obtaining oxygen saturation in the same blood purification apparatus Schematic diagram showing a blood purification apparatus according to a third embodiment of the present invention.
  • the blood purification apparatus comprises a dialysis apparatus for performing dialysis treatment, and as shown in FIG.
  • a dialyzer 3 blood purifier
  • FIG. 5 A dialyzer main body 6 for supplying a dialysate to the dialyzer 3 and discharging a drainage liquid, and a blood indicator detector 7 .
  • An arterial puncture needle a can be connected to the tip of the arterial blood circuit 1 via a connector, and an ironing type blood pump 4 is arranged in the middle.
  • a venous puncture needle b can be connected to the tip of the venous blood circuit 2 via a connector, and an air trap chamber 5 is connected in the middle.
  • An air layer is formed in the air trap chamber 5 and is configured to trap air bubbles in the liquid.
  • the blood pump 4 is a squeezing type pump arranged in the arterial blood circuit 1, and is capable of causing the liquid in the blood circuit to flow in the driving direction. That is, the arterial blood circuit 1 is connected to a tube to be ironed (part of the arterial blood circuit 1) which is softer and has a larger diameter than the other flexible tubes constituting the arterial blood circuit 1.
  • the pump 4 is provided with rollers for squeezing the tube to be squeezed in the liquid feeding direction. When the blood pump 4 is driven, the roller rotates to move the tube to be squeezed in the liquid feeding direction, and the liquid inside can be made to flow in the driving direction (rotational direction of the roller).
  • the blood pump 4 When the blood pump 4 is driven while the patient is pierced with the arterial puncture needle a and the venous puncture needle b, the patient's blood passes through the arterial blood circuit 1 and reaches the dialyzer 3.
  • the blood is purified by 3 and returned to the patient's body through the venous blood circuit 2 while defoaming in the air trap chamber 5 . That is, the patient's blood is purified by the dialyzer 3 while being extracorporeally circulated from the tip of the arterial blood circuit 1 to the tip of the venous blood circuit 2 of the blood circuit.
  • the dialyzer 3 has a blood inlet port 3a, a blood outlet port 3b, a dialysate inlet port 3c, and a dialysate outlet port 3d formed in its casing.
  • the venous blood circuit 2 is connected to the blood lead-out port 3b.
  • the dialysate introduction port 3c and the dialysate outlet port 3d are connected to a dialysate introduction line L1 and a dialysate discharge line L2 extending from the dialyzer main body 6, respectively.
  • a plurality of hollow fiber membranes are accommodated in the dialyzer 3, and the interior of the hollow fiber membranes serves as a flow path for blood. and the passage of the dialysate.
  • Hollow fiber membranes are formed with a large number of microscopic holes (pores) penetrating the outer and inner peripheral surfaces thereof, and impurities in the blood permeate into the dialysate through such hollow fiber membranes. It is configured to purify the blood by
  • a liquid delivery device such as a double pump is arranged across the dialysate introduction line L1 and the dialysate discharge line L2, and a dialyzer is provided in the bypass line that bypasses the liquid delivery device.
  • a water removal pump is provided for removing water from the patient's blood flowing through 3 .
  • one end of the dialysate introduction line L1 is connected to the dialyzer 3 (dialysate introduction port 3c), and the other end is connected to a dialysate supply device (not shown) that prepares a dialysate of a predetermined concentration.
  • dialysate discharge line L2 One end of the dialysate discharge line L2 is connected to the dialyzer 3 (dialysate outlet port 3d), and the other end is connected to a drainage device (not shown). After reaching the dialyzer 3 through the dialysate introduction line L1, it is sent to the drainage device through the dialysate discharge line L2.
  • a pressure sensor is connected to the air trap chamber 5 via a monitor tube so that the fluid pressure (venous pressure) in the air trap chamber 5 can be measured.
  • An overflow line is extended from the upper portion (air layer side) of the air trap chamber 5, and an electromagnetic valve is arranged in the middle of the overflow line. By opening the solenoid valve, the liquid (priming liquid, etc.) flowing through the blood circuit can overflow through the overflow line.
  • the blood index detector 7 is attached to a predetermined position in the arterial blood circuit 1 and the venous blood circuit 2, irradiates the blood flowing through the arterial blood circuit 1 and the venous blood circuit 2 with light, and reflects the light.
  • Oxygen saturation, hematocrit value, and circulating blood volume change rate ( ⁇ BV) can be calculated or obtained based on the light-receiving voltage obtained by receiving light.
  • a light-receiving portion 11 made up of a light-receiving element (photodiode).
  • the blood index detector 7 includes a body portion 7a formed with fitting grooves 7aa and 7ab into which a part of the blood circuit (flexible tube) can be fitted, and a body portion 7a.
  • a lid portion 7b which can be opened and closed by the lid portion 7b and which can hold a part of the blood circuit fitted in the fitting grooves 7aa and 7ab in the closed state, and a detection switch g for detecting the open/closed state of the lid portion 7b.
  • a flexible tube forming the arterial blood circuit 1 can be fitted into the fitting groove 7aa
  • a flexible tube forming the venous blood circuit 2 can be fitted into the fitting groove 7ab.
  • the flexible tubes constituting the blood circuit are press-fitted into the fitting grooves 7aa and 7ab, and the flexible tubes are firmly fixed to improve the detection accuracy.
  • a flexible tube may be loosely fitted or may not be fitted.
  • the lid portion 7b is attached to the main body portion 7a via a swing shaft M so as to be capable of swinging.
  • a locking portion 7c that can be engaged with the portion 7a is formed, and the state in which the flexible tube is sandwiched is reliably maintained by locking by the locking portion 7c.
  • the flexible tube forming the arterial blood circuit 1 and the flexible tube forming the venous blood circuit 2 are fitted into the fitting grooves 7aa and 7ab, respectively, and the lid portion 7b is closed.
  • the flexible tube can be sandwiched from above and below by the body portion 7a and the lid portion 7b.
  • the detection switch g is composed of a microswitch formed between the fitting groove 7aa and the fitting groove 7ab in the body portion 7a. It is configured to be turned on by being pressed by a convex portion 7ba formed on the lid portion 7b when approached. The open/closed state of the lid portion 7b can be detected by turning on/off the detection switch g.
  • slits ⁇ and ⁇ are formed in the fitting grooves 7aa and 7ab of the body portion 7a, respectively. These slits ⁇ and ⁇ are notches formed in the bottom surfaces of the fitting grooves 7aa and 7ab, and are formed over a predetermined dimension in the extending direction of the fitting grooves 7aa and 7ab.
  • a printed circuit board K is arranged inside the body portion 7a, and the first irradiation portion 8, the second irradiation portion 9, the third irradiation portion 10, and the light receiving portion 11 are arranged inside the slit ⁇ . The third irradiation section 10 and the light receiving section 11 are arranged further inside.
  • slits ⁇ and ⁇ With such slits ⁇ and ⁇ , disturbance light reaching the light receiving unit 11 from the outside of the main body 7a can be suppressed, and the light emitted from the first irradiation unit 8, the second irradiation unit 9 and the third irradiation unit 10 can be suppressed. It is possible to improve the linearity of the light. Note that the slits ⁇ and ⁇ may not be formed.
  • the light emitted from the first irradiation unit 8, the second irradiation unit 9, and the third irradiation unit 10 passes through the slit ⁇ in the arterial blood circuit 1, and the light emitted from the third irradiation unit 10 passes through the slit ⁇ .
  • the light is reflected by the blood flowing in the venous blood circuit 2 via ⁇ , and is configured to be received by the light receiving section 11 (configuration of a reflective sensor).
  • the blood index detector 7 according to the present embodiment is a reflective sensor, but a transmissive sensor capable of transmitting light to and receiving light from blood flowing through the blood circuit may be used.
  • the fitting grooves 7aa and 7ab extend from one edge (the right edge in FIG. 2) of the main body 7a to the other edge (the left edge in FIG. 2). It is arranged at the central position of the fitting grooves 7aa and 7ab. Furthermore, the first irradiation unit 8, the second irradiation unit 9, the third irradiation unit 10, and the light receiving unit 11 are arranged in a straight line on a single printed circuit board K provided in the main body 7a. The light receiving unit 11 is positioned between the first irradiation unit 8, the second irradiation unit 9, and the third irradiation unit 10 (specifically, between the pair of third irradiation units 10).
  • a pair of third irradiation units 10 are arranged on both sides of the light receiving unit 11, and a first irradiation unit 8 and a second irradiation unit 9 are arranged further outside thereof.
  • a light absorbing portion 7bb that absorbs the light emitted from 10 is formed.
  • the light absorbing portion 7bb may be made of a dark color such as black to absorb light, or may be made of a material that absorbs light.
  • the reflected light emitted from the first irradiation unit 8, the second irradiation unit 9, and the third irradiation unit 10 and reflected by the blood is received by the light receiving unit 11, and the transmitted light transmitted through the blood is absorbed.
  • the light is absorbed by the portion 7bb and does not reach the light receiving portion 11.
  • the first irradiation unit 8 consists of an LED (red light LED) capable of irradiating blood flowing through the blood circuit with red light (red light with a wavelength of 660 nm ⁇ 20 nm), and the second irradiation unit 9 flows through the blood circuit. It consists of an LED (near-infrared light LED) capable of irradiating blood with near-infrared light (near-infrared light with a wavelength of 880 nm (+15 nm, -5 nm)).
  • the red light emitted by the first irradiation unit 8 has a wavelength (wavelength of 660 nm) having a characteristic that the absorbance for reduced hemoglobin (Hb) is higher than the absorbance for oxygenated hemoglobin (HbO2) contained in blood.
  • the near-infrared light emitted by the second irradiation unit 9 has a wavelength (a wavelength of 880 nm) that exhibits a higher absorbance for oxygenated hemoglobin than for reduced hemoglobin contained in blood.
  • the third irradiation unit 10 irradiates the blood flowing through the blood circuit with light of a wavelength different from the red light and the near-infrared light (810 nm ⁇ 10 wavelengths) emitted from the first irradiation unit 8 and the second irradiation unit 9. It consists of an LED (near-infrared light LED) that can irradiate detection light (isosbestic wavelength) that is near-infrared light and can detect the blood concentration (hematocrit value) regardless of the oxygen saturation of the blood.
  • LED near-infrared light LED
  • the detection light emitted by the third irradiation unit 10 has a wavelength (a wavelength of 810 nm ⁇ 10 nm) having characteristics in which the absorbance for oxygenated hemoglobin (HbO2) contained in blood and the absorbance for reduced hemoglobin (Hb) are approximately equal. It is
  • the light receiving unit 11 is composed of photodiodes formed on the printed circuit board K together with the first irradiation unit 8, the second irradiation unit 9 and the third irradiation unit 10, and the red light emitted from the first irradiation unit 8 reflects the blood.
  • the first received light intensity (R_660) acquired by receiving the reflected light (or the transmitted light transmitted through the blood), the reflected light (or the blood
  • a third light receiving intensity (IR_810) obtained by receiving light is detectable.
  • the first received light intensity (R_660), the second received light intensity (IR_880), and the third received light intensity (IR_810) are each detected as a voltage (received light voltage).
  • the dialysis apparatus main body 6 includes an error absorption unit 12 having a calibration curve storage unit 13, a ratio correction unit 14, and an oxygen saturation acquisition unit 15, a hematocrit value acquisition unit 16, and a BV calculation unit 17.
  • the error absorption unit 12 is composed of, for example, a microcomputer and a storage electrically connected to the blood index detector 7, and the oxygen
  • SO 2 (ABL) % an error in the oxygen saturation caused by changes in the blood concentration (hematocrit value) is calculated based on the third received light intensity (IR_810) detected by the light receiving unit 11. It absorbs.
  • the calibration curve storage unit 13 stores in advance a calibration curve C for determining the oxygen saturation of blood from the ratio (R/IR) of the first received light intensity (R_660) and the second received light intensity (IR_880).
  • the calibration curve C has a curve (cubic curve), and is created based on values obtained from previously conducted experiments and the like, which will be described later.
  • the ratio correction unit 14 calculates the ratio (R /IR), which can be corrected using a correction coefficient obtained by an experiment or the like performed in advance, which will be described later.
  • Experiments and the like that are performed in advance are performed, for example, on blood with different blood concentrations (hematocrit values) (blood with hematocrit values (Ht) of 20% and 40% in this experiment) from the third irradiation unit 10, respectively.
  • a blood concentration (hematocrit value) is obtained by irradiating the detection light, and red light and near-infrared light are irradiated from the first irradiation unit 8 and the second irradiation unit 9 to obtain the first received light intensity (R_660) and the second
  • a plurality of straight lines shown in FIG. 5 are obtained by acquiring the received light intensity (IR_880).
  • the light receiving voltage ratio (R/IR) when the hematocrit value (Ht) is 20% is XHt20
  • the hematocrit value calculated at that time is (Ht20)
  • the light receiving voltage when the hematocrit value (Ht) is 40% Assuming that the ratio (R/IR) is XHt40 and the hematocrit value calculated at that time is (Ht20), the approximate straight lines a and b can be obtained by the following arithmetic expressions.
  • a correction coefficient K4 for correcting the light receiving voltage ratio (R/IR) can be acquired by the unit 14 . That is, based on the third light receiving intensity (IR_810) obtained by irradiating the third irradiation unit 10 with a wavelength (810 nm wavelength) having the same absorbance for oxygenated hemoglobin (HbO2) and reduced hemoglobin (Hb), oxygen The hematocrit value can be obtained while suppressing the influence of saturation, and the correction coefficient K4 and the calibration curve C can be obtained using the obtained hematocrit value.
  • the oxygen saturation acquisition unit 15 calculates the ratio (R/ IR) to obtain the oxygen saturation of the blood. Even if the hematocrit value changes during the blood purification treatment, the oxygen saturation obtained by the oxygen saturation obtaining unit 15 absorbs an error in the oxygen saturation caused by the change in the hematocrit value. Therefore, oxygen saturation can be obtained with high accuracy.
  • the hematocrit value acquisition unit 16 acquires the hematocrit value (Ht) based on the third received light intensity (IR_810) detected by the light receiving unit 11 .
  • each component of blood such as red blood cells and blood plasma, has its own unique light absorption characteristics, and this property is used to electro-optically quantify the red blood cells required to measure the hematocrit value.
  • the hematocrit value (Ht) can be obtained by Specifically, the near-infrared light emitted from the third irradiation unit 10 is affected by absorption and scattering when reflected by blood, and is received by the light receiving unit 11 .
  • the hematocrit value (Ht) is obtained by analyzing the absorption scattering rate of the light from the intensity of the received light.
  • the drive of the water removal pump is controlled, and the water removal speed and water removal amount are adjusted according to the patient's condition. be able to.
  • a calibration curve C is stored in the calibration curve storage unit 13 in advance, and the patient's blood is extracorporeally circulated in the blood circuit. Then, the reflected light of the detection light emitted from the third irradiation unit 10 is received by the light receiving unit 11 to acquire the third light reception intensity (IR_810) (S1), and the acquired third light reception intensity (IR_810) is corrected.
  • IR_810 third light reception intensity
  • IR_810 the acquired third light reception intensity
  • red light and near-infrared light are emitted from the first irradiation unit 8 and the second irradiation unit 9, and the light receiving unit 11 obtains the first light reception intensity (R_660) and the second light reception intensity (IR_880) (S3).
  • the ratio (R/IR) of the first received light intensity (R_660) and the second received light intensity (IR_880) is calculated (S4).
  • the ratio correction unit 14 Based on the correction coefficient K4 acquired in S2, the ratio correction unit 14 corrects the ratio (R/IR) (S5), and the corrected ratio (R/IR) and the calibration curve storage unit 13 are stored.
  • the oxygen saturation is obtained by the oxygen saturation obtaining unit 15 using the calibration curve C (S6).
  • the error absorber 12 preliminarily prepares the calibration curve C for determining the oxygen saturation of blood from the ratio (R/IR) of the first received light intensity (R_660) and the second received light intensity (IR_880). Based on the stored calibration curve storage unit 13 and the third received light intensity (IR_810) detected by the light receiving unit 11, the first received light intensity (R_660) and the second received light intensity (IR_880) detected by the light receiving unit 11 Based on the ratio correction unit 14 that corrects the ratio (R / IR) and the calibration curve C stored in the calibration curve storage unit 13, the first received light intensity (R_660) and the second received light corrected by the ratio correction unit 14 Since it has an oxygen saturation acquisition unit 15 that acquires the oxygen saturation of blood from the ratio (R/IR) of the intensity (IR_880), the oxygen saturation can be obtained without changing the calibration curve C stored in the calibration curve storage unit 13. can be obtained.
  • the blood circuit according to this embodiment comprises a dialysis device for performing dialysis treatment, and as shown in FIG.
  • a dialyzer 3 blood purifier
  • the blood circuit comprises a dialyzer main body 6 for supplying a dialysate to the dialyzer 3 and discharging a drainage liquid, and a blood index detector 7 .
  • the dialysis apparatus main body 6 includes an error absorption unit 12 having a calibration curve storage unit 13, a calibration curve correction unit 18, and an oxygen saturation acquisition unit 15, a hematocrit value acquisition unit 16, and a BV calculation unit 17. equipped.
  • the error absorption unit 12 is composed of, for example, a microcomputer and a storage electrically connected to the blood index detector 7, and the oxygen In addition to acquiring the saturation (SO 2 (ABL) %), an error in the oxygen saturation caused by changes in the blood concentration (hematocrit value) is calculated based on the third received light intensity (IR_810) detected by the light receiving unit 11. It absorbs.
  • the calibration curve correction unit 18 corrects the calibration curve stored in the calibration curve storage unit 13 based on the third received light intensity (IR_810) detected by the light receiving unit 11. That is, the calibration curve C according to the first embodiment does not change according to the change in the hematocrit value, whereas the calibration curve according to the present embodiment is corrected in real time according to the change in the hematocrit value. be.
  • the oxygen saturation acquisition unit 15 calculates the ratio (R/ IR) to obtain the oxygen saturation of the blood. That is, the oxygen saturation acquisition unit 15 according to the first embodiment corrects the ratio (R/IR) of the first light receiving intensity and the second light receiving intensity detected by the light receiving unit 11 with the correction coefficient K4, and the correction While the oxygen saturation is obtained from the later ratio (R / IR) and the calibration curve C, the oxygen saturation acquisition unit 15 according to the present embodiment is the first light reception intensity detected by the light receiving unit 11 and The oxygen saturation is obtained from the ratio (R/IR) of the second received light intensity and the calibration curve corrected in real time.
  • a calibration curve (initial calibration curve) is stored in the calibration curve storage unit 13 in advance, and the patient's blood is extracorporeally circulated in the blood circuit. Then, the reflected light of the detection light emitted from the third irradiation unit 10 is received by the light receiving unit 11 to acquire the third light reception intensity (IR_810) (S1), and the acquired third light reception intensity (IR_810) is corrected. A coefficient is calculated (S2).
  • the calibration curve stored in the calibration curve storage unit 13 is corrected by the correction coefficient calculated in S2 (S3), and red light and near-infrared light are emitted from the first irradiation unit 8 and the second irradiation unit 9. is irradiated to obtain the first received light intensity (R_660) and the second received light intensity (IR_880) in the light receiving unit 11 (S4), and the ratio (R/ IR) is calculated (S5). Then, the oxygen saturation obtaining unit 15 obtains the oxygen saturation based on the calculated ratio (R/IR) and the calibration curve corrected in S3.
  • the error absorber 12 stores in advance a calibration curve for determining the oxygen saturation of blood from the ratio (R/IR) of the first received light intensity (R_660) and the second received light intensity (IR_880).
  • the calibration curve correction unit 18 that corrects the calibration curve stored in the calibration curve storage unit 13, and the calibration curve correction
  • the blood oxygen saturation is obtained from the ratio (R/IR) of the first received light intensity (R_660) and the second received light intensity (IR_880) detected by the light receiving unit 11. Since it has the oxygen saturation acquisition unit 15, the oxygen saturation is acquired without correcting the ratio (R / IR) of the first received light intensity (R_660) and the second received light intensity (IR_880) detected by the light receiving unit 11 can do.
  • the blood circuit according to this embodiment comprises a dialysis device for performing dialysis treatment, and as shown in FIG.
  • a dialyzer 3 blood purifier
  • the blood circuit comprises a dialyzer main body 6 for supplying a dialysate to the dialyzer 3 and discharging a drainage liquid, and a blood index detector 7 .
  • the dialysis apparatus main body 6 includes an error absorption unit 12 having a calibration curve storage unit 13, a calibration curve selection unit 19, and an oxygen saturation acquisition unit 15, a hematocrit value acquisition unit 16, and a BV calculation unit 17. equipped.
  • the error absorption unit 12 is composed of, for example, a microcomputer and a storage electrically connected to the blood index detector 7, and the oxygen In addition to acquiring the saturation (SO 2 (ABL) %), an error in the oxygen saturation caused by changes in the blood concentration (hematocrit value) is calculated based on the third received light intensity (IR_810) detected by the light receiving unit 11. It absorbs.
  • the calibration curve storage unit 13 stores a calibration curve for determining the oxygen saturation of blood from the ratio (R/IR) of the first received light intensity (R_660) and the second received light intensity (IR_880), as shown in FIG.
  • a plurality of calibration curves (C1 to C4) corresponding to blood concentrations (hematocrit values) are stored in advance.
  • An appropriate number of calibration curves corresponding to blood concentrations can be stored in advance.
  • the calibration curve selection unit 19 selects a specific calibration curve from among the plurality of calibration curves (C1 to C4) stored in the calibration curve storage unit 13 based on the third received light intensity (IR_810) detected by the light receiving unit 11. It is a matter of choice. That is, while there is one calibration curve C according to the first and second embodiments, a plurality of calibration curves according to the present embodiment are prepared in advance according to hematocrit values.
  • the oxygen saturation acquisition unit 15 calculates the ratio (R/ IR) to obtain the oxygen saturation of the blood. That is, the oxygen saturation acquisition unit 15 according to the first and second embodiments obtains the oxygen saturation based on a calibration curve corrected in advance or in real time with a correction coefficient, whereas this embodiment The oxygen saturation acquisition unit 15 according to the oxygen saturation is obtained by a specific calibration curve selected according to the ratio (R / IR) of the first light receiving intensity and the second light receiving intensity detected by the light receiving unit 11 and the blood concentration It seeks degree.
  • a plurality of calibration curves (C1 to C4) corresponding to blood concentrations (hematocrit values) are stored in the calibration curve storage unit 13 in advance, and the patient's blood is extracorporeally circulated in the blood circuit. Then, the reflected light of the detection light emitted from the third irradiation unit 10 is received by the light receiving unit 11, and the third light reception intensity (IR_810) is obtained (S1). A specific calibration curve is selected according to the values (S2).
  • red light and near-infrared light are emitted from the first irradiation unit 8 and the second irradiation unit 9, and the light receiving unit 11 acquires the first light reception intensity (R_660) and the second light reception intensity (IR_880) (S3 ) and the ratio (R/IR) of the first received light intensity (R_660) and the second received light intensity (IR_880) is calculated (S4).
  • the oxygen saturation is obtained by the oxygen saturation obtaining unit 15 based on the specific calibration curve corrected in S2.
  • the error absorption unit 12 is a calibration curve for determining the oxygen saturation of blood from the ratio (R/IR) of the first received light intensity (R_660) and the second received light intensity (IR_880).
  • a plurality of calibration curves (C1 to C4) corresponding to blood concentration are stored in the calibration curve storage unit 13 based on the third light receiving intensity (IR_810) detected by the light receiving unit 11, and stored in the calibration curve storage unit 13
  • the calibration curve selection unit 19 that selects a specific calibration curve from among the plurality of calibration curves (C1 to C4) that have been generated, and the calibration curve selected by the calibration curve selection unit 19, the first detected by the light receiving unit 11 and an oxygen saturation acquiring unit 15 that acquires the oxygen saturation of blood from the ratio (R/IR) of the first received light intensity (R_660) and the second received light intensity (IR_880).
  • the oxygen saturation can be obtained without correcting the ratio (R/IR) of the first received light intensity (R_660) and the second received light intensity (IR_880),
  • the blood circuit according to this embodiment comprises a dialysis device for performing dialysis treatment, and as shown in FIG.
  • a dialyzer 3 blood purifier
  • the blood circuit comprises a dialyzer main body 6 for supplying a dialysate to the dialyzer 3 and discharging a drainage liquid, and a blood index detector 7 .
  • the dialysis apparatus main body 6 includes a calibration curve storage unit 13, a control unit 20, an error absorption unit 12 having an oxygen saturation acquisition unit 15, a hematocrit value acquisition unit 16, and a BV calculation unit 17. ing.
  • the error absorption unit 12 is composed of, for example, a microcomputer and a storage electrically connected to the blood index detector 7, and the oxygen In addition to acquiring the saturation (SO 2 (ABL) %), an error in the oxygen saturation caused by changes in the blood concentration (hematocrit value) is calculated based on the third received light intensity (IR_810) detected by the light receiving unit 11. It absorbs.
  • the control unit 20 adjusts the emission intensity (irradiation strength). That is, when the blood concentration (hematocrit value) changes and the blood absorbance changes, the first received light intensity (R_660) and the second received light intensity (IR_880) change in correlation with the amount of change, resulting in an error. In order to absorb (offset) the error, red light and near-field light emitted by the first irradiation unit 8 and the second irradiation unit 9 are emitted according to the third light receiving intensity (IR_810), which is correlated with the blood concentration (hematocrit value). The emission intensity of the infrared light is controlled by the controller 20 .
  • the oxygen saturation acquisition unit 15 calculates the ratio (R/ IR) to obtain the oxygen saturation of the blood. That is, the oxygen saturation acquisition unit 15 according to the first to third embodiments obtains the oxygen saturation while maintaining the emission intensity of the first irradiation unit 8 and the second irradiation unit 9 constant. , the oxygen saturation acquisition unit 15 according to the present embodiment adjusts the light emission intensity of the first irradiation unit 8 and the second irradiation unit 9 according to the third light reception intensity (IR_810) that is correlated with the blood concentration (hematocrit value). The oxygen saturation is obtained by controlling with the control unit 20 .
  • a calibration curve is stored in the calibration curve storage unit 13 in advance, and the patient's blood is extracorporeally circulated in the blood circuit. Then, the reflected light of the detection light irradiated from the third irradiation unit 10 is received by the light receiving unit 11, and the third light reception intensity (IR_810) is acquired (S1), and based on the acquired third light reception intensity (IR_810) to control the emission intensity of the red light and the near-infrared light emitted from the first irradiation unit 8 and the second irradiation unit 9 (S2).
  • red light and near-infrared light are emitted from the first irradiation unit 8 and the second irradiation unit 9 at the emission intensity controlled in S2, and the light receiving unit 11 receives the first light reception intensity (R_660) and the second light reception.
  • the intensity (IR_880) is obtained (S3), and the ratio (R/IR) of the first received light intensity (R_660) and the second received light intensity (IR_880) is calculated (S4).
  • the oxygen saturation acquisition unit 15 acquires the oxygen saturation.
  • the error absorber 12 stores in advance a calibration curve for determining the oxygen saturation of blood from the ratio (R/IR) of the first received light intensity (R_660) and the second received light intensity (IR_880). Based on the calibration curve storage unit 13 and the third light receiving intensity (IR_810) detected by the light receiving unit 11, the red light and the near-infrared light emitted by the first irradiation unit 8 and the second irradiation unit 9 are emitted.
  • the blood purification apparatuses According to the blood purification apparatuses according to the first to fourth embodiments, errors in oxygen saturation caused by changes in blood concentration are absorbed based on the third received light intensity (IR_810) detected by the light receiving unit 11. Therefore, the oxygen saturation can be accurately obtained regardless of the difference in blood concentration. In particular, since the blood concentration (hematocrit value) changes successively during the course of blood purification treatment, the oxygen saturation can be accurately obtained in real time according to the changing blood concentration and reflected in the treatment.
  • the red light emitted by the first irradiation unit 8 has a wavelength having a characteristic that the absorbance of reduced hemoglobin is higher than the absorbance of oxygenated hemoglobin contained in blood.
  • the external light has a wavelength having a characteristic that the absorbance of oxygenated hemoglobin is higher than that of reduced hemoglobin contained in blood. Since the wavelength has characteristics in which the absorbance and the absorbance for reduced hemoglobin are substantially equal, the oxygen saturation can be obtained with even higher accuracy.
  • the red light emitted by the first irradiation unit 8 has a wavelength of 660 nm
  • the near-infrared light emitted by the second irradiation unit 9 has a wavelength of 880 nm
  • the wavelength of the near-infrared light emitted by the third irradiation unit 10 is 660 nm. Since the detected light has a wavelength of 810 nm, a wavelength normally used for obtaining oxygen saturation can be used, and a general-purpose detector for oxygen saturation can be applied.
  • the third received light intensity (IR_810) detected by the light receiving unit 11 it has a hematocrit value acquisition unit 16 that acquires a hematocrit value, and based on the hematocrit value acquired by the hematocrit value acquisition unit 16, Since it has a BV calculator 17 that calculates the rate of change in circulating blood volume ( ⁇ BV), oxygen saturation can be obtained by using a hematocrit sensor or BV meter provided in a general blood purification apparatus.
  • the blood index detector 7 has a first irradiation section 8, a second irradiation section 9, a third irradiation section 10, and a light receiving section 11, and is fitted with a part of the blood circuit.
  • a body portion 7a having fitting grooves (7aa, 7ab) formed thereon, and a portion of a blood circuit that can be opened and closed with respect to the body portion 7a and is fitted in the fitting grooves (7aa, 7ab) in a closed state.
  • the light absorbing portion 7bb can be a dark colored portion of the lid portion 7b or a portion made of a material that absorbs light. reflection (disturbance) can be suppressed.
  • the fitting groove extends from one end edge of the main body to the other end edge, and the light receiving part 11 is disposed at the center position of the fitting grooves 7aa and 7ab. Alternatively, disturbance light from the other edge portion can be prevented from reaching the light receiving portion 11 and causing an error.
  • first irradiation section 8, the second irradiation section 9, the third irradiation section 10, and the light receiving section 11 are arranged side by side in the main body section 7a, and the light receiving section 11 is arranged in parallel with the first irradiation section 8 and the second irradiation section 9. , and the third irradiation unit 10 , it is possible to suppress disturbance light that causes an error from reaching the light receiving unit 11 .
  • the first irradiation unit 8, the second irradiation unit 9, the third irradiation unit 10, and the light receiving unit 11 are not limited to being arranged in a straight line, and may be arranged in another layout. It may not be located between the first irradiation section 8, the second irradiation section 9 and the third irradiation section 10.
  • the present invention is not limited to this.
  • light of other wavelengths may be used as the detection light
  • the blood concentration detected at the third received light intensity (IR_810) is not limited to the hematocrit value and may be other blood concentrations.
  • the first irradiation section 8, the second irradiation section 9, the third irradiation section 10, and the light receiving section 11 arranged in the blood index detector 7 may be arranged in any layout, and a part thereof may be separated. detector.
  • a dialysis device used during dialysis treatment, but other devices that can purify the patient's blood while performing extracorporeal circulation (for example, hemodiafiltration, hemofiltration, AFBF) blood purification device, plasma adsorption device, etc.).
  • extracorporeal circulation for example, hemodiafiltration, hemofiltration, AFBF
  • plasma adsorption device etc.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Urology & Nephrology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Emergency Medicine (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Vascular Medicine (AREA)
  • Hematology (AREA)
  • Anesthesiology (AREA)
  • Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Biophysics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • External Artificial Organs (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

血液濃度の相違に関わらず酸素飽和度を精度よく取得することができる血液浄化装置を提供する。血液浄化装置は、第1照射部(8)と、第2照射部(9)と、第3照射部(10)と、受光部(11)と、第1受光強度(R_660)及び第2受光強度(IR_880)の比率(R/IR)から酸素飽和度を取得するとともに、受光部(11)で検出された第3受光強度(IR_810)に基づいて血液濃度(ヘマトクリット値)の変化に伴って生じる酸素飽和度の誤差を吸収する誤差吸収部(12)とを具備したものである。

Description

血液浄化装置
 本発明は、血液浄化器及び血液回路を通じて患者の血液を体外循環させ、血液を浄化する血液浄化装置に関するものである。
 透析治療を行うための血液透析装置は、通常、患者の血液を体外循環させるための動脈側血液回路及び静脈側血液回路を有する血液回路と、動脈側血液回路及び静脈側血液回路にそれぞれ接続され、体外循環する血液を浄化するための血液浄化器としてのダイアライザと、ダイアライザを流れる血液中の余剰水分を除去して除水し得る除水ポンプとを具備しており、血液回路で体外循環する血液を除水しつつ血液浄化治療が可能とされている。
 従来、例えば特許文献1にて開示されているように、血液浄化治療中において患者の血液の酸素飽和度を測定し得る血液浄化装置について提案されている。かかる従来の血液浄化装置は、血液中の酸化ヘモグロビンに吸収され易い波長の第1の光と、血液中の還元ヘモグロビンに吸収され易い波長の第2の光を発光部からそれぞれ照射し、その反射光を受光部にて受光して受光強度を検出することにより、血液の酸素飽和度を測定可能とされていた。
特開2012-40058号公報
 しかしながら、上記従来の血液浄化装置においては、血液の酸素飽和度を測定する際、例えばヘマトクリット値等の患者の血液濃度の変化に伴って受光部で検出される受光電圧が変化してしまい、取得される酸素飽和度に誤差が生じてしまう虞があった。
 本発明は、このような事情に鑑みてなされたもので、その目的は、血液濃度の相違に関わらず酸素飽和度を精度よく取得することができる血液浄化装置を提供することにある。
 本発明に係る一実施形態の血液浄化装置は、血液浄化器及び血液回路を通じて患者の血液を体外循環させ、前記血液を浄化する血液浄化装置であって、前記血液回路を流れる血液に赤色光を照射する第1照射部と、前記血液回路を流れる血液に近赤外光を照射する第2照射部と、前記血液回路を流れる血液に対し、前記第1照射部及び第2照射部から照射される前記赤色光及び近赤外光とは異なる波長の光であって前記血液の酸素飽和度に関わらず血液濃度を検出可能な検出光を照射する第3照射部と、前記第1照射部から照射した前記赤色光が前記血液を反射した反射光又は前記血液を透過した透過光を受光することにより取得される第1受光強度、前記第2照射部から照射した前記近赤外光が前記血液を反射した反射光又は前記血液を透過した透過光を受光することにより取得される第2受光強度、及び前記第3照射部から照射した前記検出光が前記血液を反射した反射光又は前記血液を透過した透過光を受光することにより取得される第3受光強度をそれぞれ検出する受光部と、前記第1受光強度及び第2受光強度の比率から前記酸素飽和度を取得するとともに、前記受光部で検出された前記第3受光強度に基づいて前記血液濃度の変化に伴って生じる前記酸素飽和度の誤差を吸収する誤差吸収部とを具備したものである。
 本発明によれば、受光部で検出された第3受光強度に基づいて血液濃度の変化に伴って生じる前記酸素飽和度の誤差を吸収するので、血液濃度の相違に関わらず酸素飽和度を精度よく取得することができる。
本発明の第1の実施形態に係る血液浄化装置を示す模式図 同血液浄化装置におけるヘマトクリットセンサを示す正面図 図2におけるIII-III線断面図 図2におけるIV-IV線断面図 同血液浄化装置において検量線を補正する補正係数を得るための試験結果を示すグラフ 同血液浄化装置において適用される検量線を示すグラフ 同血液浄化装置において酸素飽和度を取得する工程を示すフローチャート 本発明の第2の実施形態に係る血液浄化装置を示す模式図 同血液浄化装置において酸素飽和度を取得する工程を示すフローチャート 本発明の第3の実施形態に係る血液浄化装置を示す模式図 同血液浄化装置において適用される検量線を示すグラフ 同血液浄化装置において酸素飽和度を取得する工程を示すフローチャート 本発明の第4の実施形態に係る血液浄化装置を示す模式図 同血液浄化装置において酸素飽和度を取得する工程を示すフローチャート
 以下、本発明の実施形態について図面を参照しながら具体的に説明する。
 第1の実施形態に係る血液浄化装置は、透析治療を行うための透析装置から成り、図1に示すように、動脈側血液回路1及び静脈側血液回路2から成る血液回路と、動脈側血液回路1及び静脈側血液回路2の間に介装されて血液回路を流れる血液を浄化するダイアライザ3(血液浄化器)と、血液ポンプ4と、静脈側血液回路2に配設されたエアトラップチャンバ5と、ダイアライザ3に対して透析液の供給及び排液の排出を行う透析装置本体6と、血液指標検出器7とを具備して構成されている。
 動脈側血液回路1には、その先端に動脈側穿刺針aがコネクタを介して接続可能とされるとともに、途中にしごき型の血液ポンプ4が配設されている。静脈側血液回路2には、その先端に静脈側穿刺針bがコネクタを介して接続可能とされるとともに、途中にエアトラップチャンバ5が接続されている。エアトラップチャンバ5には、空気層が形成されており、液体内の気泡を捕捉し得るよう構成されている。
 血液ポンプ4は、動脈側血液回路1に配設されたしごき型ポンプから成り、血液回路内の液体を駆動方向に流動させ得るものである。すなわち、動脈側血液回路1には、動脈側血液回路1を構成する他の可撓性チューブより軟質かつ大径の被しごきチューブ(動脈側血液回路1の一部)が接続されており、血液ポンプ4には、この被しごきチューブを送液方向にしごくためのローラが配設されている。そして、血液ポンプ4を駆動させると、そのローラが回動して被しごきチューブを送液方向に扱き、内部の液体を駆動方向(ローラの回転方向)に流動させることができる。
 そして、動脈側穿刺針a及び静脈側穿刺針bを患者に穿刺した状態で、血液ポンプ4を駆動させると、患者の血液は、動脈側血液回路1を通ってダイアライザ3に至った後、ダイアライザ3によって血液浄化が施され、エアトラップチャンバ5で除泡がなされつつ静脈側血液回路2を通って患者の体内に戻る。すなわち、患者の血液を血液回路の動脈側血液回路1の先端から静脈側血液回路2の先端まで体外循環させつつダイアライザ3にて浄化するのである。
 ダイアライザ3は、その筐体部に、血液導入ポート3a、血液導出ポート3b、透析液導入ポート3c及び透析液導出ポート3dが形成されており、このうち血液導入ポート3aには動脈側血液回路1が、血液導出ポート3bには静脈側血液回路2がそれぞれ接続されている。また、透析液導入ポート3c及び透析液導出ポート3dは、透析装置本体6から延設された透析液導入ラインL1及び透析液排出ラインL2とそれぞれ接続されている。
 ダイアライザ3内には、複数の中空糸膜が収容されており、かかる中空糸膜の内部が血液の流路とされるとともに、中空糸膜の外周面とダイアライザ3の筐体部の内周面との間が透析液の流路とされている。中空糸膜には、その外周面と内周面とを貫通した微少な孔(ポア)が多数形成されており、このような中空糸膜を介して血液中の不純物等が透析液内に透過することで血液を浄化し得るよう構成されている。
 一方、透析装置本体6には、透析液導入ラインL1及び透析液排出ラインL2に跨って複式ポンプ等の送液装置が配設されているとともに、当該送液装置をバイパスするバイパスラインにはダイアライザ3中を流れる患者の血液から水分を除去するための除水ポンプが配設されている。さらに、透析液導入ラインL1の一端がダイアライザ3(透析液導入ポート3c)に接続されるとともに、他端が所定濃度の透析液を調製する透析液供給装置(不図示)に接続されている。また、透析液排出ラインL2の一端は、ダイアライザ3(透析液導出ポート3d)に接続されるとともに、他端が図示しない排液装置と接続されており、透析液供給装置から供給された透析液が透析液導入ラインL1を通ってダイアライザ3に至った後、透析液排出ラインL2を通って排液装置に送られるようになっている。
 なお、エアトラップチャンバ5には、モニタチューブを介して圧力センサが接続されており、当該エアトラップチャンバ5内の液圧(静脈圧)を計測し得るようになっている。また、エアトラップチャンバ5の上部(空気層側)からは、オーバーフローラインが延設されており、その途中に電磁弁が配設されている。そして、電磁弁を開状態とすることにより、オーバーフローラインを介して、血液回路中を流れる液体(プライミング液等)をオーバーフローし得るようになっている。
 血液指標検出器7は、動脈側血液回路1及び静脈側血液回路2の所定位置に取り付けられ、これら動脈側血液回路1及び静脈側血液回路2を流れる血液に対して光を照射し、その反射光を受光して得られる受光電圧に基づき酸素飽和度、ヘマトクリット値及び循環血液量の変化率(ΔBV)を算出若しくは取得し得るものであり、図2~4に示すように、発光素子(LED)から成る第1照射部8、第2照射部9及び第3照射部10と、受光素子(フォトダイオード)から成る受光部11とを有して構成されている。
 また、本実施形態に係る血液指標検出器7は、血液回路の一部(可撓性チューブ)を嵌合し得る嵌合溝7aa、7abが形成された本体部7aと、本体部7aに対して開閉可能とされ、閉状態にて嵌合溝7aa、7abに嵌合した血液回路の一部を挟持可能とされた蓋部7bと、蓋部7bの開閉状態を検知する検知スイッチgとが形成されており、例えば嵌合溝7aaに動脈側血液回路1を構成する可撓性チューブ及び嵌合溝7abに静脈側血液回路2を構成する可撓性チューブをそれぞれ嵌合させ得るようになっている。しかるに、本実施形態においては、嵌合溝7aa、7abに血液回路を構成する可撓性チューブが圧入されており、当該可撓性チューブを強固に固定して検出精度を向上させているが、可撓性チューブを遊嵌させたもの、或いは嵌合させないもの等としてもよい。
 蓋部7bは、揺動軸Mを介して本体部7aに対して揺動自在に取り付けられており、当該揺動軸Mを中心とした揺動によって開閉可能とされるとともに、閉状態で本体部7aと係止し得るロック部7cが形成されており、当該ロック部7cによるロックによって可撓性チューブを挟持した状態が確実に保持されるようになっている。そして、嵌合溝7aa、7abに動脈側血液回路1を構成する可撓性チューブ及び静脈側血液回路2を構成する可撓性チューブをそれぞれ嵌合させた状態で蓋部7bを閉状態とすることにより、本体部7a及び蓋部7bにより可撓性チューブを上下から挟持し得るようになっている。
 検知スイッチgは、本体部7aにおける嵌合溝7aaと嵌合溝7abとの間に形成されたマイクロスイッチから成り、蓋部7bが揺動軸Mを中心として揺動し、本体部7aに対して近接すると、当該蓋部7bに形成された凸部7baで押圧されてオンするよう構成されている。かかる検知スイッチgのオン、オフにより、蓋部7bの開閉状態を検知することができる。
 さらに、本体部7aにおける嵌合溝7aa、7abにはスリットα、βがそれぞれ形成されている。これらスリットα、βは、嵌合溝7aa、7abの底面に形成された切り欠きから成り、当該嵌合溝7aa、7abの延設方向に所定寸法に亘って形成されている。また、本体部7aの内部には、プリント基板Kが配設されており、スリットαより内側に第1照射部8、第2照射部9、第3照射部10及び受光部11が、スリットβより内側に第3照射部10及び受光部11がそれぞれ配置されるようになっている。このようなスリットα、βにより、本体部7aの外側から受光部11に至る外乱光を抑制することができるとともに、第1照射部8、第2照射部9及び第3照射部10から照射される光の直線性を向上させることができる。なお、スリットα、βが形成されないものであってもよい。
 そして、第1照射部8、第2照射部9及び第3照射部10からそれぞれ照射された光がスリットαを介して動脈側血液回路1内、第3照射部10から照射された光がスリットβを介して静脈側血液回路2内を流れる血液にて反射され、受光部11にてそれぞれ受光し得る構成(反射型センサの構成)とされている。なお、本実施形態に係る血液指標検出器7は、反射型センサとされているが、血液回路を流れる血液に対して光を透過して受光し得る透過型センサを用いるようにしてもよい。
 しかるに、嵌合溝7aa、7abは、本体部7aの一端縁部(図2中右縁部)から他端縁部(図2中左縁部)まで延設されるとともに、受光部11は、嵌合溝7aa、7abの中央位置に配設されている。さらに、第1照射部8、第2照射部9、第3照射部10及び受光部11は、本体部7a内に配設された1つのプリント基板K上に直線状に並設されるとともに、受光部11は、第1照射部8、第2照射部9及び第3照射部10の間(具体的には、一対の第3照射部10の間)に位置している。すなわち、スリットαには、受光部11の両側に一対の第3照射部10が配置されるとともに、さらにその外側に第1照射部8及び第2照射部9がそれぞれ配置されている。このように、受光部11を発光部(第1照射部8、第2照射部9、第3照射部10)間に配置することで外乱光による影響を最小限にすることができる。
 また、蓋部7bにおける第1照射部8、第2照射部9、第3照射部10及び受光部11と対向する位置には、第1照射部8、第2照射部9及び第3照射部10から照射された光を吸収する光吸収部7bbが形成されている。この光吸収部7bbは、例えば黒色などの暗色とされて光を吸収するもの、或いは光を吸収する材質のもの等、何れであってもよい。これにより、第1照射部8、第2照射部9及び第3照射部10から照射され、血液を反射した反射光が受光部11にて受光されるとともに、血液を透過した透過光が光吸収部7bbにて吸収されて受光部11に至らないようになっている。
 第1照射部8は、血液回路を流れる血液に赤色光(660nm±20nm)の波長の赤色光)を照射し得るLED(赤色光LED)から成り、第2照射部9は、血液回路を流れる血液に近赤外光(880nm(+15nm,-5nm)の波長の近赤外光)を照射し得るLED(近赤外光LED)から成る。すなわち、第1照射部8で照射される赤色光は、血液に含まれる酸化ヘモグロビン(HbO2)に対する吸光度より還元ヘモグロビン(Hb)に対する吸光度の方が高い特性を有する波長(660nmの波長)とされ、第2照射部9で照射される近赤外光は、血液に含まれる還元ヘモグロビンに対する吸光度より酸化ヘモグロビンに対する吸光度の方が高い特性を有する波長(880nmの波長)とされている。
 第3照射部10は、血液回路を流れる血液に対し、第1照射部8及び第2照射部9から照射される赤色光及び近赤外光とは異なる波長の光(810nm±10の波長の近赤外光)であって血液の酸素飽和度に関わらず血液濃度(ヘマトクリット値)を検出可能な検出光(等吸収点波長)を照射し得るLED(近赤外光LED)から成る。すなわち、第3照射部10で照射される検出光は、血液に含まれる酸化ヘモグロビン(HbO2)に対する吸光度と還元ヘモグロビン(Hb)に対する吸光度とが略等しい特性を有する波長(810nm±10nmの波長)とされている。
 受光部11は、第1照射部8、第2照射部9及び第3照射部10と共にプリント基板K上に形成されたフォトダイオードから成り、第1照射部8から照射した赤色光が血液を反射した反射光(又は血液を透過した透過光)を受光することにより取得される第1受光強度(R_660)、第2照射部9から照射した近赤外光が血液を反射した反射光(又は血液を透過した透過光)を受光することにより取得される第2受光強度(IR_880)、及び第3照射部10から照射した検出光が血液を反射した反射光(又は血液を透過した透過光)を受光することにより取得される第3受光強度(IR_810)をそれぞれ検出可能とされている。因みに、血液を透過した透過光を受光する場合、蓋部7bの光吸収部7bbに透過光を受光するセンサを配設する必要がある。なお、第1受光強度(R_660)、第2受光強度(IR_880)及び第3受光強度(IR_810)は、それぞれ電圧(受光電圧)として検出される。
 ここで、本実施形態に係る透析装置本体6は、検量線記憶部13、比率補正部14及び酸素飽和度取得部15を有する誤差吸収部12と、ヘマトクリット値取得部16と、BV算出部17とを具備している。誤差吸収部12は、血液指標検出器7と電気的に接続された例えばマイコン及びストレージ等から成り、第1受光強度(R_660)及び第2受光強度(IR_880)の比率(R/IR)から酸素飽和度(SO(ABL)%)を取得するとともに、受光部11で検出された第3受光強度(IR_810)に基づいて血液濃度(ヘマトクリット値)の変化に伴って生じる酸素飽和度の誤差を吸収するものである。
 検量線記憶部13は、第1受光強度(R_660)及び第2受光強度(IR_880)の比率(R/IR)から血液の酸素飽和度を求めるための検量線Cを予め記憶するものである。検量線Cは、図6に示すように、横軸が第1受光強度(R_660)及び第2受光強度(IR_880)の比率(R/IR)、縦軸が酸素飽和度を示す曲線(3次曲線)から成り、後述する予め行われた実験等により取得された値に基づいて作成される。
 比率補正部14は、受光部11で検出された第3受光強度(IR_810)に基づいて、受光部11で検出された第1受光強度(R_660)及び第2受光強度(IR_880)の比率(R/IR)を補正するもので、後述する予め行われた実験等により取得された補正係数を用いて補正可能とされている。
 予め行われる実験等は、例えば、血液濃度(ヘマトクリット値)が互いに異なる血液(本実験においては、ヘマトクリット値(Ht)が20%及び40%の血液)に対して、それぞれ第3照射部10から検出光を照射して血液濃度(ヘマトクリット値)を取得するとともに、第1照射部8及び第2照射部9から赤色光及び近赤外光を照射して第1受光強度(R_660)及び第2受光強度(IR_880)を取得することにより、図5に示す複数の直線を得る。
 そして、これら複数の直線の平均値の直線(近似直線y=ax+b)を求める。このとき、ヘマトクリット値(Ht)が20%のときの受光電圧比(R/IR)をXHt20及びそのとき算出されるヘマトクリット値を(Ht20)、ヘマトクリット値(Ht)が40%のときの受光電圧比(R/IR)をXHt40及びそのとき算出されるヘマトクリット値を(Ht20)とすると、近似直線のa、bは、以下の演算式にて求めることができる。
 a=((XHt40/XHt20)-1)/(Ht40-Ht20)=0.0060
 b=XHt40/XHt20-a×Ht40=0.8967
 したがって、第3受光強度(IR_810)から算出したヘマトクリット値(Ht)による補正係数K4及び補正後の受光電圧比Xaは、補正前の受光電圧比X、第3受光強度(IR_810)から算出したヘマトクリット値を*Htとすると、以下のようになる。但し、*Htは、調整器によるゼロ・スパン調整が必要である。
 K4=0.0060×*Ht+0.8967
 Xa=X/K4
 これにより、補正後の受光電圧比Xaと酸素飽和度との関係に基づいて、図6に示すように、検量線記憶部13にて記憶される検量線Cを求めることができるとともに、比率補正部14にて受光電圧比率(R/IR)を補正するための補正係数K4を取得することができる。すなわち、酸化ヘモグロビン(HbO2)と還元ヘモグロビン(Hb)に対して吸光度が等しい波長(810nmの波長)を第3照射部10から照射して取得される第3受光強度(IR_810)に基づいて、酸素飽和度の影響を抑制しつつヘマトクリット値を得るとともに、その取得されたヘマトクリット値を利用して補正係数K4及び検量線Cを求めることができるのである。
 酸素飽和度取得部15は、検量線記憶部13で記憶された検量線Cに基づいて、比率補正部14で補正係数K4により補正された第1受光強度及び第2受光強度の比率(R/IR)から血液の酸素飽和度を取得するものである。かかる酸素飽和度取得部15にて取得された酸素飽和度は、血液浄化治療中においてヘマトクリット値が変化した場合であっても、ヘマトクリット値の変化に伴って生じる酸素飽和度の誤差が吸収されるので、精度よく酸素飽和度を取得することができる。
 ヘマトクリット値取得部16は、受光部11で検出された第3受光強度(IR_810)に基づいて、ヘマトクリット値(Ht)を取得するものである。すなわち、血液を構成する赤血球や血漿などの各成分は、それぞれ固有の吸光特性を持っており、この性質を利用してヘマトクリット値を測定するのに必要な赤血球を電子光学的に定量化することによりヘマトクリット値(Ht)を求めることができるのである。具体的には、第3照射部10から照射された近赤外光は、血液に反射する際に、吸収と散乱の影響を受け、受光部11にて受光される。その受光した光の強弱から光の吸収散乱率を解析し、ヘマトクリット値(Ht)を取得するのである。
 BV算出部17は、ヘマトクリット値取得部16で取得されたヘマトクリット値(Ht)に基づいて、循環血液量変化率(ΔBV)を求めるものである。すなわち、BV算出部17は、ヘマトクリット値取得部16で取得されたヘマトクリット値(Ht)を用いて、ΔBV(%)=(Ht/Ht-1)×100なる演算式(但し、Htは治療初期のヘマトクリット値、Htは測定時点におけるヘマトクリット値)によって循環血液量の変化率(ΔBV)を求めるものとされ、当該循環血液量の変化率(ΔBV)が除水速度や除水量の目安とされる。このように、取得されたヘマトクリット値、又はそのヘマトクリット値から算出された循環血液量変化率ΔBVに基づき、除水ポンプの駆動が制御され、患者の容態に合わせた除水速度や除水量とすることができる。
 次に、本実施形態に係る酸素飽和度の算出工程について、図7のフローチャートに基づいて説明する。
 予め検量線Cを検量線記憶部13に記憶させておき、血液回路にて患者の血液を体外循環させる。そして、第3照射部10から照射された検出光の反射光を受光部11で受光し、第3受光強度(IR_810)を取得する(S1)とともに、取得した第3受光強度(IR_810)から補正係数K4を算出する(S2)。
 その後、第1照射部8及び第2照射部9から赤色光及び近赤外光を照射して受光部11で第1受光強度(R_660)及び第2受光強度(IR_880)を取得し(S3)、第1受光強度(R_660)及び第2受光強度(IR_880)の比率(R/IR)を算出する(S4)。S2で取得した補正係数K4に基づいて比率補正部14にて比率(R/IR)を補正する(S5)とともに、その補正された比率(R/IR)と検量線記憶部13に記憶された検量線Cとにより酸素飽和度取得部15にて酸素飽和度を取得する(S6)。
 本実施形態によれば、誤差吸収部12は、第1受光強度(R_660)及び第2受光強度(IR_880)の比率(R/IR)から血液の酸素飽和度を求めるための検量線Cを予め記憶する検量線記憶部13と、受光部11で検出された第3受光強度(IR_810)に基づいて、受光部11で検出された第1受光強度(R_660)及び第2受光強度(IR_880)の比率(R/IR)を補正する比率補正部14と、検量線記憶部13で記憶された検量線Cに基づいて、比率補正部14で補正された第1受光強度(R_660)及び第2受光強度(IR_880)の比率(R/IR)から血液の酸素飽和度を取得する酸素飽和度取得部15とを有するので、検量線記憶部13で記憶した検量線Cを変更することなく酸素飽和度を取得することができる。
 次に、本発明に係る第2の実施形態に係る血液浄化装置について説明する。なお、先の実施形態と同様の構成要素には同一の符号を付し、それらの詳細な説明を省略することとする。
 本実施形態に係る血液回路は、透析治療を行うための透析装置から成り、図8に示すように、動脈側血液回路1及び静脈側血液回路2から成る血液回路と、動脈側血液回路1及び静脈側血液回路2の間に介装されて血液回路を流れる血液を浄化するダイアライザ3(血液浄化器)と、血液ポンプ4と、静脈側血液回路2に配設されたエアトラップチャンバ5と、ダイアライザ3に対して透析液の供給及び排液の排出を行う透析装置本体6と、血液指標検出器7とを具備して構成されている。
 本実施形態に係る透析装置本体6は、検量線記憶部13、検量線補正部18及び酸素飽和度取得部15を有する誤差吸収部12と、ヘマトクリット値取得部16と、BV算出部17とを具備している。誤差吸収部12は、血液指標検出器7と電気的に接続された例えばマイコン及びストレージ等から成り、第1受光強度(R_660)及び第2受光強度(IR_880)の比率(R/IR)から酸素飽和度(SO(ABL)%)を取得するとともに、受光部11で検出された第3受光強度(IR_810)に基づいて血液濃度(ヘマトクリット値)の変化に伴って生じる酸素飽和度の誤差を吸収するものである。
 検量線補正部18は、受光部11で検出された第3受光強度(IR_810)に基づいて、検量線記憶部13で記憶された検量線を補正するものである。すなわち、第1の実施形態に係る検量線Cは、ヘマトクリット値の変化に応じて変化しないのに対し、本実施形態に係る検量線は、ヘマトクリット値の変化に応じてリアルタイムに補正されるものである。
 酸素飽和度取得部15は、検量線補正部18で補正された検量線に基づいて、受光部11で検出された第1受光強度(R_660)及び第2受光強度(IR_880)の比率(R/IR)から血液の酸素飽和度を取得するものである。すなわち、第1の実施形態に係る酸素飽和度取得部15は、受光部11で検出された第1受光強度及び第2受光強度の比率(R/IR)を補正係数K4で補正し、その補正後の比率(R/IR)及び検量線Cから酸素飽和度を求めるものであるのに対し、本実施形態に係る酸素飽和度取得部15は、受光部11で検出された第1受光強度及び第2受光強度の比率(R/IR)とリアルタイムで補正された検量線とにより酸素飽和度を求めるものである。
 次に、本実施形態に係る酸素飽和度の算出工程について、図9のフローチャートに基づいて説明する。
 予め検量線(初期検量線)を検量線記憶部13に記憶させておき、血液回路にて患者の血液を体外循環させる。そして、第3照射部10から照射された検出光の反射光を受光部11で受光し、第3受光強度(IR_810)を取得する(S1)とともに、取得した第3受光強度(IR_810)から補正係数を算出する(S2)。
 次に、S2にて算出された補正係数により検量線記憶部13に記憶された検量線を補正する(S3)とともに、第1照射部8及び第2照射部9から赤色光及び近赤外光を照射して受光部11で第1受光強度(R_660)及び第2受光強度(IR_880)を取得し(S4)、第1受光強度(R_660)及び第2受光強度(IR_880)の比率(R/IR)を算出する(S5)。そして、算出された比率(R/IR)とS3で補正された検量線とにより酸素飽和度取得部15にて酸素飽和度を取得する。
 本実施形態によれば、誤差吸収部12は、第1受光強度(R_660)及び第2受光強度(IR_880)の比率(R/IR)から血液の酸素飽和度を求めるための検量線を予め記憶する検量線記憶部13と、受光部11で検出された第3受光強度(IR_810)に基づいて、検量線記憶部13で記憶された検量線を補正する検量線補正部18と、検量線補正部18で補正された検量線に基づいて、受光部11で検出された第1受光強度(R_660)及び第2受光強度(IR_880)の比率(R/IR)から血液の酸素飽和度を取得する酸素飽和度取得部15とを有するので、受光部11で検出された第1受光強度(R_660)及び第2受光強度(IR_880)の比率(R/IR)を補正することなく酸素飽和度を取得することができる。
 次に、本発明に係る第3の実施形態に係る血液浄化装置について説明する。なお、先の実施形態と同様の構成要素には同一の符号を付し、それらの詳細な説明を省略することとする。
 本実施形態に係る血液回路は、透析治療を行うための透析装置から成り、図10に示すように、動脈側血液回路1及び静脈側血液回路2から成る血液回路と、動脈側血液回路1及び静脈側血液回路2の間に介装されて血液回路を流れる血液を浄化するダイアライザ3(血液浄化器)と、血液ポンプ4と、静脈側血液回路2に配設されたエアトラップチャンバ5と、ダイアライザ3に対して透析液の供給及び排液の排出を行う透析装置本体6と、血液指標検出器7とを具備して構成されている。
 本実施形態に係る透析装置本体6は、検量線記憶部13、検量線選択部19及び酸素飽和度取得部15を有する誤差吸収部12と、ヘマトクリット値取得部16と、BV算出部17とを具備している。誤差吸収部12は、血液指標検出器7と電気的に接続された例えばマイコン及びストレージ等から成り、第1受光強度(R_660)及び第2受光強度(IR_880)の比率(R/IR)から酸素飽和度(SO(ABL)%)を取得するとともに、受光部11で検出された第3受光強度(IR_810)に基づいて血液濃度(ヘマトクリット値)の変化に伴って生じる酸素飽和度の誤差を吸収するものである。
 検量線記憶部13は、第1受光強度(R_660)及び第2受光強度(IR_880)の比率(R/IR)から血液の酸素飽和度を求めるための検量線であって、図11に示すように、血液濃度(ヘマトクリット値)に応じた複数の検量線(C1~C4)を予め記憶するものである。なお、血液濃度に応じた検量線は、適宜の本数を予め記憶することができる。
 検量線選択部19は、受光部11で検出された第3受光強度(IR_810)に基づいて、検量線記憶部13で記憶された複数の検量線(C1~C4)のうち特定の検量線を選択するものである。すなわち、第1、2の実施形態に係る検量線Cは、1本であるのに対し、本実施形態に係る検量線は、ヘマトクリット値に応じて複数本予め用意されているのである。
 酸素飽和度取得部15は、検量線選択部19で選択された検量線に基づいて、受光部11で検出された第1受光強度(R_660)及び第2受光強度(IR_880)の比率(R/IR)から血液の酸素飽和度を取得するものである。すなわち、第1、2の実施形態に係る酸素飽和度取得部15は、補正係数で予め補正又はリアルタイムに補正された検量線に基づいて酸素飽和度を求めるものであるのに対し、本実施形態に係る酸素飽和度取得部15は、受光部11で検出された第1受光強度及び第2受光強度の比率(R/IR)と血液濃度に応じて選択された特定の検量線とにより酸素飽和度を求めるものである。
 次に、本実施形態に係る酸素飽和度の算出工程について、図12のフローチャートに基づいて説明する。
 予め血液濃度(ヘマトクリット値)に応じた複数の検量線(C1~C4)を検量線記憶部13に記憶させておき、血液回路にて患者の血液を体外循環させる。そして、第3照射部10から照射された検出光の反射光を受光部11で受光し、第3受光強度(IR_810)を取得する(S1)とともに、取得した第3受光強度(IR_810)からヘマトクリット値に応じた特定の検量線を選択する(S2)。
 次に、第1照射部8及び第2照射部9から赤色光及び近赤外光を照射して受光部11で第1受光強度(R_660)及び第2受光強度(IR_880)を取得し(S3)、第1受光強度(R_660)及び第2受光強度(IR_880)の比率(R/IR)を算出する(S4)。そして、S2で補正された特定の検量線により酸素飽和度取得部15にて酸素飽和度を取得する。
 本実施形態によれば、誤差吸収部12は、第1受光強度(R_660)及び第2受光強度(IR_880)の比率(R/IR)から血液の酸素飽和度を求めるための検量線であって血液濃度に応じた複数の検量線(C1~C4)を予め記憶する検量線記憶部13と、受光部11で検出された第3受光強度(IR_810)に基づいて、検量線記憶部13で記憶された複数の検量線(C1~C4)のうち特定の検量線を選択する検量線選択部19と、検量線選択部19で選択された検量線に基づいて、受光部11で検出された第1受光強度(R_660)及び第2受光強度(IR_880)の比率(R/IR)から血液の酸素飽和度を取得する酸素飽和度取得部15とを具備するので、受光部11で検出された第1受光強度(R_660)及び第2受光強度(IR_880)の比率(R/IR)、又は検量線を補正することなく酸素飽和度を取得することができる。
 次に、本発明に係る第4の実施形態に係る血液浄化装置について説明する。なお、先の実施形態と同様の構成要素には同一の符号を付し、それらの詳細な説明を省略することとする。
 本実施形態に係る血液回路は、透析治療を行うための透析装置から成り、図13に示すように、動脈側血液回路1及び静脈側血液回路2から成る血液回路と、動脈側血液回路1及び静脈側血液回路2の間に介装されて血液回路を流れる血液を浄化するダイアライザ3(血液浄化器)と、血液ポンプ4と、静脈側血液回路2に配設されたエアトラップチャンバ5と、ダイアライザ3に対して透析液の供給及び排液の排出を行う透析装置本体6と、血液指標検出器7とを具備して構成されている。
 本実施形態に係る透析装置本体6は、検量線記憶部13、制御部20及び酸素飽和度取得部15を有する誤差吸収部12と、ヘマトクリット値取得部16と、BV算出部17とを具備している。誤差吸収部12は、血液指標検出器7と電気的に接続された例えばマイコン及びストレージ等から成り、第1受光強度(R_660)及び第2受光強度(IR_880)の比率(R/IR)から酸素飽和度(SO(ABL)%)を取得するとともに、受光部11で検出された第3受光強度(IR_810)に基づいて血液濃度(ヘマトクリット値)の変化に伴って生じる酸素飽和度の誤差を吸収するものである。
 制御部20は、受光部11で検出された第3受光強度(IR_810)に基づいて、第1照射部8及び第2照射部9で照射される赤色光及び近赤外光の発光強度(照射強度)を制御するものである。すなわち、血液濃度(ヘマトクリット値)が変化して血液の吸光度が変化すると、その変化量に相関して第1受光強度(R_660)及び第2受光強度(IR_880)が変化して誤差が生じるので、当該誤差を吸収(相殺)するため、血液濃度(ヘマトクリット値)と相関関係にある第3受光強度(IR_810)に応じて第1照射部8及び第2照射部9で照射される赤色光及び近赤外光の発光強度を制御部20にて制御するのである。
 酸素飽和度取得部15は、検量線記憶部13で記憶された検量線に基づいて、受光部11で検出された第1受光強度(R_660)及び第2受光強度(IR_880)の比率(R/IR)から血液の酸素飽和度を取得するものである。すなわち、第1~3の実施形態に係る酸素飽和度取得部15は、第1照射部8及び第2照射部9の発光強度を一定に維持しつつ酸素飽和度を求めるものであるのに対し、本実施形態に係る酸素飽和度取得部15は、血液濃度(ヘマトクリット値)と相関関係にある第3受光強度(IR_810)に応じて第1照射部8及び第2照射部9の発光強度を制御部20にて制御することにより酸素飽和度を求めるものである。
 次に、本実施形態に係る酸素飽和度の算出工程について、図14のフローチャートに基づいて説明する。
 予め検量線を検量線記憶部13に記憶させておき、血液回路にて患者の血液を体外循環させる。そして、第3照射部10から照射された検出光の反射光を受光部11で受光し、第3受光強度(IR_810)を取得する(S1)とともに、取得した第3受光強度(IR_810)に基づいて第1照射部8及び第2照射部9で照射される赤色光及び近赤外光の発光強度を制御する(S2)。
 次に、S2で制御された発光強度にて第1照射部8及び第2照射部9から赤色光及び近赤外光を照射して受光部11で第1受光強度(R_660)及び第2受光強度(IR_880)を取得し(S3)、第1受光強度(R_660)及び第2受光強度(IR_880)の比率(R/IR)を算出する(S4)。そして、算出された比率(R/IR)と検量線記憶部13にて記憶された検量線により酸素飽和度取得部15にて酸素飽和度を取得する。
 本実施形態によれば、誤差吸収部12は、第1受光強度(R_660)及び第2受光強度(IR_880)の比率(R/IR)から血液の酸素飽和度を求めるための検量線を予め記憶する検量線記憶部13と、受光部11で検出された第3受光強度(IR_810)に基づいて、第1照射部8及び第2照射部9で照射される赤色光及び近赤外光の発光強度を制御する制御部20と、検量線記憶部13で記憶された検量線に基づいて、第1受光強度(R_660)及び第2受光強度(IR_880)の比率(R/IR)から血液の酸素飽和度を取得する酸素飽和度取得部15とを具備しているので、受光部11で検出された第1受光強度(R_660)及び第2受光強度(IR_880)の比率(R/IR)、又は検量線を補正することなく酸素飽和度を取得することができる。
 上記第1~4の実施形態に係る血液浄化装置によれば、受光部11で検出された第3受光強度(IR_810)に基づいて血液濃度の変化に伴って生じる酸素飽和度の誤差を吸収するので、血液濃度の相違に関わらず酸素飽和度を精度よく取得することができる。特に、血液濃度(ヘマトクリット値)は、血液浄化治療の過程において逐次変化するので、変化する血液濃度に応じてリアルタイムに酸素飽和度を精度よく取得して治療に反映させることができる。
 また、第1照射部8で照射される赤色光は、血液に含まれる酸化ヘモグロビンに対する吸光度より還元ヘモグロビンに対する吸光度の方が高い特性を有する波長とされ、第2照射部9で照射される近赤外光は、血液に含まれる還元ヘモグロビンに対する吸光度より酸化ヘモグロビンに対する吸光度の方が高い特性を有する波長とされるとともに、第3照射部10で照射される検出光は、血液に含まれる酸化ヘモグロビンに対する吸光度と還元ヘモグロビンに対する吸光度とが略等しい特性を有する波長とされたので、より一層精度よく酸素飽和度を取得することができる。
 さらに、第1照射部8で照射される赤色光は、660nmの波長、第2照射部9で照射される近赤外光は、880nmの波長とされるとともに、第3照射部10で照射される検出光は、810nmの波長とされたので、酸素飽和度を求めるために通常用いられる波長を用いることとなり、酸素飽和度の汎用的な検出器を応用することができる。
 またさらに、受光部11で検出された第3受光強度(IR_810)に基づいて、ヘマトクリット値を取得するヘマトクリット値取得部16を有するとともに、ヘマトクリット値取得部16で取得されたヘマトクリット値に基づいて、循環血液量変化率(ΔBV)を求めるBV算出部17を有するので、一般的な血液浄化装置に備えられたヘマトクリットセンサやBV計を流用して酸素飽和度を取得することができる。
 加えて、本実施形態に係る血液指標検出器7は、第1照射部8、第2照射部9、第3照射部10及び受光部11が取り付けられるとともに、血液回路の一部を嵌合する嵌合溝(7aa、7ab)が形成された本体部7aと、本体部7aに対して開閉可能とされ、閉状態にて嵌合溝(7aa、7ab)に嵌合した血液回路の一部を挟持可能とされた蓋部7bと、蓋部7bに形成され、第1照射部8、第2照射部9及び第3照射部10から照射された光を吸収する光吸収部7bbとを有するので、血液を透過した透過光が光吸収部7bbにて吸収されて受光部11に至り、誤差要因となるのを抑制することができる。
 光吸収部7bbは、既述のように、蓋部7bを暗色とされた部位、又は光を吸収する材質から成る部位とすることができ、このような構成とすることにより、蓋部7bからの反射(外乱)を抑制することができる。また、嵌合溝は、本体部の一端縁部から他端縁部まで延設されるとともに、受光部11は、嵌合溝7aa、7abの中央位置に配設されているので、一端縁部又は他端縁部からの外乱光が受光部11に至り、誤差が生じてしまうのを抑制することができる。さらに、第1照射部8、第2照射部9、第3照射部10及び受光部11が本体部7aにおいて並設されるとともに、受光部11は、第1照射部8、第2照射部9及び第3照射部10の間に位置するので、誤差要因となる外乱光が受光部11に至ってしまうのを抑制することができる。なお、第1照射部8、第2照射部9、第3照射部10及び受光部11は、直線状に配設されたものに限らず、他のレイアウトであってもよく、受光部11が第1照射部8、第2照射部9及び第3照射部10の間に位置しないものであってもよい。
 以上、本実施形態について説明したが、本発明はこれに限定されるものではなく、例えば第1照射部8、第2照射部9及び第3照射部10から照射する赤色光、近赤外光及び検出光として他の波長の光を利用してもよく、第3受光強度(IR_810)で検出される血液濃度は、ヘマトクリット値に限らず他の血液の濃度であってもよい。また、血液指標検出器7に配設された第1照射部8、第2照射部9、第3照射部10及び受光部11は、如何なるレイアウトで配設されていてもよく、一部を別の検出器に配設するようにしてもよい。なお、本実施形態においては、透析治療時に用いられる透析装置に適用しているが、患者の血液を体外循環させつつ浄化し得る他の装置(例えば血液濾過透析法、血液濾過法、AFBFで使用される血液浄化装置、血漿吸着装置等)に適用してもよい。
 本発明と同様の趣旨であれば、外観形状が異なるもの或いは他の機能が付加されたもの等にも適用することができる。
1 動脈側血液回路
2 静脈側血液回路
3 ダイアライザ(血液浄化器)
4 血液ポンプ
5 エアトラップチャンバ
6 透析装置本体
7 血液指標検出器
7a 本体部
7aa、7ab 嵌合溝
7b 蓋部
7ba 凸部
7bb 光吸収部
7c ロック部
8 第1照射部
9 第2照射部
10 第3照射部
11 受光部
12 誤差吸収部
13 検量線記憶部
14 比率補正部
15 酸素飽和度取得部
16 ヘマトクリット値取得部
17 BV算出部
18 検量線補正部
19 検量線選択部
20 制御部
g 検知スイッチ
K プリント基板
R_660 第1受光強度
IR_880 第2受光強度
IR_810 第3受光強度
R/IR 比率
C、C1~C4 検量線

Claims (13)

  1.  血液浄化器及び血液回路を通じて患者の血液を体外循環させ、前記血液を浄化する血液浄化装置であって、
     前記血液回路を流れる血液に赤色光を照射する第1照射部と、
     前記血液回路を流れる血液に近赤外光を照射する第2照射部と、
     前記血液回路を流れる血液に対し、前記第1照射部及び第2照射部から照射される前記赤色光及び近赤外光とは異なる波長の光であって前記血液の酸素飽和度に関わらず血液濃度を検出可能な検出光を照射する第3照射部と、
     前記第1照射部から照射した前記赤色光が前記血液を反射した反射光又は前記血液を透過した透過光を受光することにより取得される第1受光強度、前記第2照射部から照射した前記近赤外光が前記血液を反射した反射光又は前記血液を透過した透過光を受光することにより取得される第2受光強度、及び前記第3照射部から照射した前記検出光が前記血液を反射した反射光又は前記血液を透過した透過光を受光することにより取得される第3受光強度をそれぞれ検出する受光部と、
     前記第1受光強度及び第2受光強度の比率から前記酸素飽和度を取得するとともに、前記受光部で検出された前記第3受光強度に基づいて前記血液濃度の変化に伴って生じる前記酸素飽和度の誤差を吸収する誤差吸収部と、
    を具備した血液浄化装置。
  2.  前記誤差吸収部は、
     前記第1受光強度及び第2受光強度の比率から前記血液の酸素飽和度を求めるための検量線を予め記憶する検量線記憶部と、
     前記受光部で検出された前記第3受光強度に基づいて、前記受光部で検出された前記第1受光強度及び第2受光強度の比率を補正する比率補正部と、
     前記検量線記憶部で記憶された前記検量線に基づいて、前記比率補正部で補正された前記第1受光強度及び第2受光強度の比率から前記血液の酸素飽和度を取得する酸素飽和度取得部と、
    を有する請求項1記載の血液浄化装置。
  3.  前記誤差吸収部は、
     前記第1受光強度及び第2受光強度の比率から前記血液の酸素飽和度を求めるための検量線を予め記憶する検量線記憶部と、
     前記受光部で検出された前記第3受光強度に基づいて、前記検量線記憶部で記憶された検量線を補正する検量線補正部と、
     前記検量線補正部で補正された前記検量線に基づいて、前記受光部で検出された前記第1受光強度及び第2受光強度の比率から前記血液の酸素飽和度を取得する酸素飽和度取得部と、
    を有する請求項1記載の血液浄化装置。
  4.  前記誤差吸収部は、
     前記第1受光強度及び第2受光強度の比率から前記血液の酸素飽和度を求めるための検量線であって前記血液濃度に応じた複数の検量線を予め記憶する検量線記憶部と、
     前記受光部で検出された前記第3受光強度に基づいて、前記検量線記憶部で記憶された複数の検量線のうち特定の検量線を選択する検量線選択部と、
     前記検量線選択部で選択された前記検量線に基づいて、前記受光部で検出された前記第1受光強度及び第2受光強度の比率から前記血液の酸素飽和度を取得する酸素飽和度取得部と、
    を具備した請求項1記載の血液浄化装置。
  5.  前記誤差吸収部は、
     前記第1受光強度及び第2受光強度の比率から前記血液の酸素飽和度を求めるための検量線を予め記憶する検量線記憶部と、
     前記受光部で検出された前記第3受光強度に基づいて、前記第1照射部及び第2照射部で照射される前記赤色光及び近赤外光の発光強度を制御する制御部と、
     前記検量線記憶部で記憶された前記検量線に基づいて、前記第1受光強度及び第2受光強度の比率から前記血液の酸素飽和度を取得する酸素飽和度取得部と、
    を具備した請求項1記載の血液浄化装置。
  6.  前記第1照射部で照射される赤色光は、前記血液に含まれる酸化ヘモグロビンに対する吸光度より還元ヘモグロビンに対する吸光度の方が高い特性を有する波長とされ、前記第2照射部で照射される近赤外光は、前記血液に含まれる還元ヘモグロビンに対する吸光度より酸化ヘモグロビンに対する吸光度の方が高い特性を有する波長とされるとともに、前記第3照射部で照射される検出光は、前記血液に含まれる酸化ヘモグロビンに対する吸光度と還元ヘモグロビンに対する吸光度とが略等しい特性を有する波長とされた請求項1~5の何れか1つに記載の血液浄化装置。
  7.  前記第1照射部で照射される赤色光は、660nmの波長、前記第2照射部で照射される近赤外光は、880nmの波長とされるとともに、前記第3照射部で照射される検出光は、810nmの波長とされた請求項6記載の血液浄化装置。
  8.  前記受光部で検出された前記第3受光強度に基づいて、ヘマトクリット値を取得するヘマトクリット値取得部を有する請求項1~7の何れか1つに記載の血液浄化装置。
  9.  前記ヘマトクリット値取得部で取得されたヘマトクリット値に基づいて、循環血液量変化率(ΔBV)を求めるBV算出部を有する請求項8記載の血液浄化装置。
  10.  前記第1照射部、第2照射部、第3照射部及び受光部が取り付けられるとともに、前記血液回路の一部を嵌合する嵌合溝が形成された本体部と、
     前記本体部に対して開閉可能とされ、閉状態にて前記嵌合溝に嵌合した血液回路の一部を挟持可能とされた蓋部と、
     前記蓋部に形成され、前記第1照射部、第2照射部及び第3照射部から照射された光を吸収する光吸収部と、
    を有する請求項1~9の何れか1つに記載の血液浄化装置。
  11.  前記光吸収部は、前記蓋部を暗色とされた部位、又は光を吸収する材質から成る部位である請求項10記載の血液浄化装置。
  12.  前記嵌合溝は、前記本体部の一端縁部から他端縁部まで延設されるとともに、前記受光部は、前記嵌合溝の中央位置に配設された請求項10又は請求項11記載の血液浄化装置。
  13.  前記第1照射部、第2照射部、第3照射部及び受光部が前記本体部において並設されるとともに、前記受光部は、前記第1照射部、第2照射部及び第3照射部の間に位置する請求項12記載の血液浄化装置。
PCT/JP2022/037514 2021-10-08 2022-10-06 血液浄化装置 WO2023058732A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280067446.9A CN118159311A (zh) 2021-10-08 2022-10-06 血液净化装置
EP22878599.4A EP4382146A1 (en) 2021-10-08 2022-10-06 Blood purification device
US18/626,896 US20240245841A1 (en) 2021-10-08 2024-04-04 Blood purification apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021166517A JP2023056972A (ja) 2021-10-08 2021-10-08 血液浄化装置
JP2021-166517 2021-10-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/626,896 Continuation US20240245841A1 (en) 2021-10-08 2024-04-04 Blood purification apparatus

Publications (1)

Publication Number Publication Date
WO2023058732A1 true WO2023058732A1 (ja) 2023-04-13

Family

ID=85804333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037514 WO2023058732A1 (ja) 2021-10-08 2022-10-06 血液浄化装置

Country Status (5)

Country Link
US (1) US20240245841A1 (ja)
EP (1) EP4382146A1 (ja)
JP (1) JP2023056972A (ja)
CN (1) CN118159311A (ja)
WO (1) WO2023058732A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6429738A (en) * 1987-07-24 1989-01-31 Terumo Corp Instrument for measuring degree of saturation of oxygen
US6360113B1 (en) * 1999-12-17 2002-03-19 Datex-Ohmeda, Inc. Photoplethysmographic instrument
JP2003508144A (ja) * 1999-09-08 2003-03-04 オプトク・アクチボラゲット ヘモグロビン及び酸素飽和度を複合測定するための方法及び装置
WO2007105805A1 (ja) * 2006-03-10 2007-09-20 Kawasumi Laboratories, Inc. 血液特性計測プローブ、循環器系人工臓器及び人工肺
JP2012040058A (ja) 2010-08-13 2012-03-01 Asahi Kasei Kuraray Medical Co Ltd 血液成分濃度測定装置及び血液成分濃度測定方法
JP2016000125A (ja) * 2014-06-12 2016-01-07 日機装株式会社 血液浄化装置
WO2019180068A1 (en) * 2018-03-20 2019-09-26 Gambro Lundia Ab Sensor and apparatus for determining at least one parameter of blood circulating in an extracorporeal blood circuit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6429738A (en) * 1987-07-24 1989-01-31 Terumo Corp Instrument for measuring degree of saturation of oxygen
JP2003508144A (ja) * 1999-09-08 2003-03-04 オプトク・アクチボラゲット ヘモグロビン及び酸素飽和度を複合測定するための方法及び装置
US6360113B1 (en) * 1999-12-17 2002-03-19 Datex-Ohmeda, Inc. Photoplethysmographic instrument
WO2007105805A1 (ja) * 2006-03-10 2007-09-20 Kawasumi Laboratories, Inc. 血液特性計測プローブ、循環器系人工臓器及び人工肺
JP2012040058A (ja) 2010-08-13 2012-03-01 Asahi Kasei Kuraray Medical Co Ltd 血液成分濃度測定装置及び血液成分濃度測定方法
JP2016000125A (ja) * 2014-06-12 2016-01-07 日機装株式会社 血液浄化装置
WO2019180068A1 (en) * 2018-03-20 2019-09-26 Gambro Lundia Ab Sensor and apparatus for determining at least one parameter of blood circulating in an extracorporeal blood circuit

Also Published As

Publication number Publication date
CN118159311A (zh) 2024-06-07
EP4382146A1 (en) 2024-06-12
US20240245841A1 (en) 2024-07-25
JP2023056972A (ja) 2023-04-20

Similar Documents

Publication Publication Date Title
WO2011074576A1 (ja) 血液浄化装置
WO2011074577A1 (ja) 血液浄化装置
US7671974B2 (en) Cuvette apparatus and system for measuring optical properties of a liquid such as blood
JP4868772B2 (ja) 血液浄化装置
US9233199B2 (en) Method of detecting recirculation in an arteriovenous shunt during ongoing hemodialysis and dialysis system
JP4129867B2 (ja) ヘマトクリットセンサ
JP5536192B2 (ja) 体外血液処理装置用の血液中の血液成分を測定するための装置及び方法
JP2007105149A (ja) 血液浄化装置及びその再循環率算出方法
CN110494749B (zh) 盐或血液或两者混合物中的气泡的光学检测
JP5491844B2 (ja) 血液浄化装置
JP5736268B2 (ja) 血液浄化装置
JP3949756B2 (ja) 透析器の膜の機能安全性をモニタする装置
JP4573231B2 (ja) 血液浄化装置
JP6728043B2 (ja) 溶血を検出するための、又はヘマトクリット値の測定において溶血の影響を補正するための補正因子を決定する方法及び装置
JP6067620B2 (ja) 血液浄化装置
WO2017006947A1 (ja) 血液浄化装置及びその血液浄化装置によるアクセス血管の流量算出方法
WO2023058732A1 (ja) 血液浄化装置
JP5222706B2 (ja) 血液浄化装置及びその血液流量演算方法
JP7408868B1 (ja) 血液浄化装置
JP7408869B1 (ja) 血液浄化装置
JP2023007641A (ja) 液体濃度測定装置及び体外循環装置
JP2023007642A (ja) 体外循環装置
JP5237007B2 (ja) 血液浄化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22878599

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022878599

Country of ref document: EP

Effective date: 20240307

WWE Wipo information: entry into national phase

Ref document number: 202280067446.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE