WO2023058630A1 - 二相ステンレス鋼材 - Google Patents
二相ステンレス鋼材 Download PDFInfo
- Publication number
- WO2023058630A1 WO2023058630A1 PCT/JP2022/037064 JP2022037064W WO2023058630A1 WO 2023058630 A1 WO2023058630 A1 WO 2023058630A1 JP 2022037064 W JP2022037064 W JP 2022037064W WO 2023058630 A1 WO2023058630 A1 WO 2023058630A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- content
- steel material
- duplex stainless
- stainless steel
- less
- Prior art date
Links
- 239000000463 material Substances 0.000 title claims abstract description 253
- 229910001039 duplex stainless steel Inorganic materials 0.000 title claims abstract description 141
- 229910000831 Steel Inorganic materials 0.000 claims description 205
- 239000010959 steel Substances 0.000 claims description 205
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 claims description 41
- 229910052761 rare earth metal Inorganic materials 0.000 claims description 27
- 239000012535 impurity Substances 0.000 claims description 14
- 238000005260 corrosion Methods 0.000 abstract description 266
- 230000007797 corrosion Effects 0.000 abstract description 266
- 150000003568 thioethers Chemical class 0.000 abstract description 70
- 239000000203 mixture Substances 0.000 abstract description 37
- 239000000126 substance Substances 0.000 abstract description 35
- 239000011572 manganese Substances 0.000 description 92
- 238000012360 testing method Methods 0.000 description 91
- 239000011575 calcium Substances 0.000 description 79
- 238000000034 method Methods 0.000 description 57
- 239000011651 chromium Substances 0.000 description 51
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 38
- 238000004519 manufacturing process Methods 0.000 description 30
- 230000008569 process Effects 0.000 description 28
- 230000000694 effects Effects 0.000 description 25
- 239000000243 solution Substances 0.000 description 25
- 239000011777 magnesium Substances 0.000 description 22
- 239000010955 niobium Substances 0.000 description 22
- 238000005261 decarburization Methods 0.000 description 21
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 21
- 239000010949 copper Substances 0.000 description 20
- 239000007789 gas Substances 0.000 description 20
- 229910001566 austenite Inorganic materials 0.000 description 19
- 229910002092 carbon dioxide Inorganic materials 0.000 description 19
- 239000011701 zinc Substances 0.000 description 19
- 229910000859 α-Fe Inorganic materials 0.000 description 19
- 230000009467 reduction Effects 0.000 description 16
- 238000007670 refining Methods 0.000 description 16
- 238000010438 heat treatment Methods 0.000 description 15
- 239000010936 titanium Substances 0.000 description 15
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 14
- 239000002893 slag Substances 0.000 description 12
- 229910052804 chromium Inorganic materials 0.000 description 11
- 229910052721 tungsten Inorganic materials 0.000 description 11
- 239000001569 carbon dioxide Substances 0.000 description 10
- 229910052750 molybdenum Inorganic materials 0.000 description 10
- 229910052757 nitrogen Inorganic materials 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 9
- 238000005096 rolling process Methods 0.000 description 9
- 239000002344 surface layer Substances 0.000 description 9
- 229910052785 arsenic Inorganic materials 0.000 description 8
- 229910052802 copper Inorganic materials 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 8
- 238000002156 mixing Methods 0.000 description 8
- 229910052759 nickel Inorganic materials 0.000 description 8
- 229910052758 niobium Inorganic materials 0.000 description 8
- 229910000851 Alloy steel Inorganic materials 0.000 description 7
- 229910052787 antimony Inorganic materials 0.000 description 7
- 239000002994 raw material Substances 0.000 description 7
- 238000003860 storage Methods 0.000 description 7
- 229910052726 zirconium Inorganic materials 0.000 description 7
- 229910052745 lead Inorganic materials 0.000 description 6
- 229910052749 magnesium Inorganic materials 0.000 description 6
- 229910052748 manganese Inorganic materials 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 229910052718 tin Inorganic materials 0.000 description 6
- 229910052725 zinc Inorganic materials 0.000 description 6
- 229910052791 calcium Inorganic materials 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 229910052698 phosphorus Inorganic materials 0.000 description 5
- 229910052717 sulfur Inorganic materials 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 238000004090 dissolution Methods 0.000 description 4
- 238000009776 industrial production Methods 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 239000003129 oil well Substances 0.000 description 3
- 238000005554 pickling Methods 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000009628 steelmaking Methods 0.000 description 3
- 238000005482 strain hardening Methods 0.000 description 3
- -1 W: 0 to 1.50% Substances 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 238000001192 hot extrusion Methods 0.000 description 2
- 238000005098 hot rolling Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910052747 lanthanoid Inorganic materials 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- VVTSZOCINPYFDP-UHFFFAOYSA-N [O].[Ar] Chemical compound [O].[Ar] VVTSZOCINPYFDP-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 150000003841 chloride salts Chemical class 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000010622 cold drawing Methods 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- OHSVLFRHMCKCQY-UHFFFAOYSA-N lutetium atom Chemical compound [Lu] OHSVLFRHMCKCQY-UHFFFAOYSA-N 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- JBQYATWDVHIOAR-UHFFFAOYSA-N tellanylidenegermanium Chemical compound [Te]=[Ge] JBQYATWDVHIOAR-UHFFFAOYSA-N 0.000 description 1
- 239000012085 test solution Substances 0.000 description 1
- 125000000101 thioether group Chemical group 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- DIMMBYOINZRKMD-UHFFFAOYSA-N vanadium(5+) Chemical group [V+5] DIMMBYOINZRKMD-UHFFFAOYSA-N 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/04—Removing impurities by adding a treating agent
- C21C7/068—Decarburising
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/10—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/08—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
Definitions
- the present disclosure relates to duplex stainless steel materials, and more particularly to duplex stainless steel materials applicable to carbon dioxide capture, utilization and storage technology (CCUS).
- CCUS carbon dioxide capture, utilization and storage technology
- CCUS is an abbreviation for Carbon Dioxide Capture, Utilization and Storage.
- CCUS includes three technologies: carbon dioxide capture, utilization and storage.
- carbon dioxide capture As mentioned above, CCUS includes three technologies: carbon dioxide capture, utilization and storage.
- As a technology for storing carbon dioxide attention is focused on technology that captures carbon dioxide emitted from industrial facilities such as power plants and factories, and uses steel pipes to inject and store carbon dioxide in depleted oil wells. .
- the steel pipes used in such storage technology are used in corrosive environments such as depleted oil wells. Therefore, steel pipes used in such storage technology are required to have excellent corrosion resistance in corrosive environments.
- a duplex stainless steel material having a duplex structure of ferrite and austenite is known as a steel material with excellent corrosion resistance in a corrosive environment.
- Duplex stainless steel is disclosed, for example, in JP-A-5-132741 (Patent Document 1) and JP-A-9-195003 (Patent Document 2).
- the duplex stainless steel material disclosed in Patent Document 2 has, in mass %, C: 0.12% or less, Si: 1% or less, Mn: 2% or less, Ni: 3 to 12%, Cr: 20 to 35. %, Mo: 0.5 to 10%, W: more than 3 to 8%, Co: 0.01 to 2%, Cu: 0.1 to 5%, N: 0.05 to 0.5%, The remainder consists of Fe and unavoidable impurities.
- An object of the present disclosure is to provide a duplex stainless steel material with excellent general corrosion resistance and pitting corrosion resistance in a supercritical corrosion environment.
- a duplex stainless steel material comprises: in % by mass, C: 0.050% or less, Si: 1.00% or less, Mn: 0.40-3.00%, P: 0.050% or less, S: 0.0050% or less, Cr: 24.50-27.00%, Cu: 1.50-3.00%, Ni: 4.00 to 8.50%, Mo: 0.80 to less than 2.00%, N: 0.150 to 0.350%, Co: 0.10 to 1.00%, Sn: 0.001 to 0.050%, sol.
- the duplex stainless steel material according to the present disclosure has excellent general corrosion resistance and pitting corrosion resistance in supercritical corrosion environments.
- FIG. 1 shows the relationship between Fn and the corrosion rate (mm/year), which is an index of general corrosion resistance, in a duplex stainless steel material in which the content of each element in the chemical composition is within the range of the present embodiment. It is a diagram.
- the present inventors have investigated a duplex stainless steel material that has excellent general corrosion resistance and pitting corrosion resistance in a supercritical corrosion environment in which SOX gas and O2 gas are contained in supercritical CO2 gas. gone.
- the inventors first examined steel materials that have excellent general corrosion resistance and excellent pitting corrosion resistance in a supercritical corrosion environment from the viewpoint of chemical composition.
- C 0.050% or less
- Si 1.00% or less
- Mn 0.40 to 3.00%
- P 0.050% or less
- S 0.0050% or less
- Cr 24.50 to 27.00%
- Cu 1.50 to 3.00%
- Ni 4.00 to 8.50%
- Mo 0.80 to less than 2.00%
- N 0.150 ⁇ 0.350%
- Co 0.10-1.00%
- Sn 0.001-0.050%
- sol sol.
- Al 0.050% or less
- V 0.01 to 0.50%
- Ti 0.001 to 0.050%
- B 0.0015 to 0.0050%
- O 0.0100% or less
- W 0.0100% or less
- Mg 0-0.0100%
- rare earth element 0-0.0100%
- Zr 0-0.0100%
- Nb 0-0.500%
- Zn 0-0.0100%
- Pb 0-0.0100%
- Sb 0-0.0100%
- duplex stainless steel materials in which the content of each element in the chemical composition is within the above range may have low general corrosion resistance in a supercritical corrosion environment. Therefore, the present inventors further investigated means for improving general corrosion resistance in a supercritical corrosion environment.
- the inventors focused on the action of each element in the chemical composition.
- Cr, Mo, W and N have been known to enhance general corrosion resistance in normal corrosive environments containing chlorides such as seawater. Therefore, the present inventors considered that these elements enhance general corrosion resistance even in a supercritical corrosion environment.
- the present inventors further investigated the relationship between the content of Cr, Mo, W, N, Ni, Cu, Co and Sn in the duplex stainless steel material and general corrosion resistance in a supercritical corrosion environment.
- Fn defined by formula (1) is 44.0 or more, a supercritical corrosion environment , it was found that excellent general corrosion resistance can be obtained.
- Fn Cr+3.3(Mo+0.5W)+16N+2Ni+Cu+2Co+10Sn (1)
- the content of the corresponding element in mass % is substituted for the symbol of the element in formula (1).
- FIG. 1 shows the relationship between Fn and the corrosion rate (mm/year), which is an index of general corrosion resistance, in a duplex stainless steel material in which the content of each element in the chemical composition is within the range of the present embodiment. It is a diagram. FIG. 1 was created from the data obtained in Examples described later. Referring to FIG. 1, the corrosion rate is faster than 0.100 mm/year when Fn is less than 44.0. On the other hand, the corrosion rate when Fn is 44.0 or more is significantly slower than the corrosion rate when Fn is less than 44.0. Therefore, in a duplex stainless steel material in which the content of each element in the chemical composition is within the range of the present embodiment, by setting Fn to 44.0 or more, the general corrosion resistance in a supercritical corrosion environment is remarkably enhanced. .
- the duplex stainless steel material has excellent general corrosion resistance in a supercritical corrosion environment.
- the pitting corrosion resistance was sometimes lowered. Therefore, the present inventors further studied how to achieve both excellent general corrosion resistance and excellent pitting corrosion resistance in a supercritical corrosion environment.
- high-temperature and high-pressure supercritical CO2 gas contains SOX gas and O2 gas.
- Mn sulfide exists in the surface layer of the duplex stainless steel material
- inclusions on the surface layer of the duplex stainless steel material dissolve due to the dissolution of SOx gas and O2 gas in water in the supercritical corrosion environment. If the inclusions are dissolved, pits are formed on the surface. A dent formed by dissolving coarse inclusions tends to be a starting point of pitting corrosion in a supercritical corrosive environment.
- pitting corrosion may occur in duplex stainless steel materials in a supercritical corrosion environment by a mechanism different from that in low alloy steel materials in a normal corrosion environment. rice field.
- the present inventors found that in the case of a duplex stainless steel material in which the content of each element in the chemical composition is within the range of the present embodiment, by suppressing the formation of coarse Mn sulfides, Mn It was thought that the pitting corrosion resistance in a supercritical corrosive environment could be improved by suppressing surface depressions caused by the dissolution of sulfides.
- the present inventors thought that the formation of coarse Mn sulfides could be suppressed by adding 0.0010 to 0.0100% by mass of Ca to the above chemical composition. That is, in mass%, C: 0.050% or less, Si: 1.00% or less, Mn: 0.40 to 3.00%, P: 0.050% or less, S: 0.0050% or less, Cr : 24.50 to 27.00%, Cu: 1.50 to 3.00%, Ni: 4.00 to 8.50%, Mo: 0.80 to less than 2.00%, N: 0.150 to 0.350%, Co: 0.10-1.00%, Sn: 0.001-0.050%, sol.
- the present inventors produced a duplex stainless steel material with the above chemical composition and investigated pitting corrosion resistance in a supercritical corrosion environment. As a result, it was found that although the formation of coarse Mn sulfides could be suppressed, excellent pitting corrosion resistance could still not be obtained in some cases. Therefore, the present inventors further investigated and examined the factors that prevent sufficient pitting corrosion resistance from being obtained. As a result, the present inventors have found that when the Ca content described above is contained, excellent pitting corrosion resistance may not be obtained in a supercritical corrosion environment due to the following new mechanism.
- the present inventors not only suppress the formation of coarse Mn sulfides in a duplex stainless steel material in which the content of each element in the chemical composition is within the range of the present embodiment, but also It was thought that if the formation of coarse Ca sulfides could be suppressed, it would be possible to achieve both excellent general corrosion resistance and excellent pitting corrosion resistance even in a supercritical corrosion environment.
- the present inventors have found that the total number of coarse Mn sulfides and coarse Ca sulfides per unit area should be suppressed to achieve excellent general corrosion resistance and excellent general corrosion resistance in a supercritical corrosion environment. Further investigation was made to see if pitting corrosion resistance could be obtained. As a result, among the inclusions in the duplex stainless steel material, the total of Mn sulfides with an equivalent circle diameter of 1.0 ⁇ m or more and Ca sulfides with an equivalent circle diameter of 2.0 ⁇ m or more was 0.50/mm If it is 2 or less, even in a supercritical corrosion environment in which SOX gas and O2 gas are contained in supercritical CO2 gas, it is found that both excellent general corrosion resistance and excellent pitting corrosion resistance can be achieved. bottom.
- duplex stainless steel material of this embodiment completed based on the above technical concept has the following configuration.
- a duplex stainless steel material in % by mass, C: 0.050% or less, Si: 1.00% or less, Mn: 0.40-3.00%, P: 0.050% or less, S: 0.0050% or less, Cr: 24.50-27.00%, Cu: 1.50-3.00%, Ni: 4.00 to 8.50%, Mo: 0.80 to less than 2.00%, N: 0.150 to 0.350%, Co: 0.10 to 1.00%, Sn: 0.001 to 0.050%, sol.
- duplex stainless steel material according to [1], W: 0.01 to 1.50%, Mg: 0.0001-0.0100%, Rare earth element: 0.0001 to 0.0100%, Zr: 0.0001 to 0.0100%, Nb: 0.001 to 0.500%, As: 0.0001 to 0.0500%, Zn: 0.0001 to 0.0100%, Pb: 0.0001 to 0.0100%, and Sb: 0.0001 to 0.0100%, containing one or more selected from the group consisting of Duplex stainless steel material.
- the duplex stainless steel material according to [1] or [2] is a steel pipe, Duplex stainless steel material.
- duplex stainless steel material of this embodiment will be described in detail below. "%" for elements means % by weight unless otherwise specified.
- the duplex stainless steel material of this embodiment has the following characteristics.
- (Feature 1) The content of each element in the chemical composition is within the scope of this embodiment.
- (Feature 2) Assuming that feature 1 is satisfied, Fn defined by formula (1) is 44.0 or more.
- Fn Cr+3.3(Mo+0.5W)+16N+2Ni+Cu+2Co+10Sn (1)
- the content of the corresponding element in mass % is substituted for the symbol of the element in formula (1).
- C 0.050% or less Carbon (C) is inevitably contained. That is, the C content is over 0%. C forms Cr carbides at the grain boundaries and increases corrosion susceptibility at the grain boundaries. Therefore, if the C content is too high, the general corrosion resistance and pitting corrosion resistance of the steel material are lowered even if the other element contents are within the range of the present embodiment. Therefore, the C content is 0.050% or less.
- the C content is preferably as low as possible. However, a drastic reduction of the C content greatly increases manufacturing costs. Therefore, considering industrial production, the lower limit of the C content is preferably 0.001%, more preferably 0.005%.
- the upper limit of the C content is preferably 0.045%, more preferably 0.040%, still more preferably 0.035%, still more preferably 0.030%.
- Si Silicon (Si) is inevitably contained. That is, the Si content is over 0%. Si deoxidizes steel. However, if the Si content is too high, the toughness and hot workability of the steel deteriorate even if the contents of other elements are within the ranges of the present embodiment. Therefore, the Si content is 1.00% or less.
- a preferable lower limit of the Si content is 0.15%, more preferably 0.20%, and still more preferably 0.25%.
- a preferable upper limit of the Si content is 0.80%, more preferably 0.60%, and still more preferably 0.50%.
- Mn 0.40-3.00%
- Manganese (Mn) increases the hardenability of the steel material and increases the strength of the steel material. If the Mn content is less than 0.40%, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Mn content is too high, Mn will form a large number of coarse Mn sulfides. In a supercritical corrosion environment, coarse Mn sulfides existing near the surface of steel are dissolved. As a result, dents are formed on the surface of the steel material. This dent becomes the starting point of pitting corrosion, and pitting corrosion occurs in a supercritical corrosion environment.
- the Mn content is 0.40-3.00%.
- the preferred lower limit of the Mn content is 0.50%, more preferably 0.60%, still more preferably 0.70%, still more preferably 0.80%, still more preferably 0.90 %.
- the preferred upper limit of the Mn content is 2.80%, more preferably 2.60%, still more preferably 2.40%, still more preferably 2.30%, still more preferably 2.20 %, more preferably 2.00%.
- P 0.050% or less Phosphorus (P) is an impurity. That is, the P content is over 0%. P segregates at grain boundaries and lowers the toughness of the steel material. Therefore, the P content is 0.050% or less. The lower the P content is, the better. However, drastic reduction of the P content greatly increases manufacturing costs. Therefore, considering industrial production, the lower limit of the P content is preferably 0.001%, more preferably 0.003%. The upper limit of the P content is preferably 0.045%, more preferably 0.040%, still more preferably 0.035%, still more preferably 0.030%.
- S 0.0050% or less Sulfur (S) is an impurity. That is, the S content is over 0%. S segregates at grain boundaries and lowers the toughness and hot workability of steel. Therefore, the S content is 0.0050% or less. It is preferable that the S content is as low as possible. However, drastic reduction of the S content greatly increases manufacturing costs. Therefore, considering industrial production, the preferred lower limit of the S content is 0.0001%, more preferably 0.0002%.
- the upper limit of the S content is preferably 0.0040%, more preferably 0.0030%, still more preferably 0.0025%, still more preferably 0.0020%.
- Chromium (Cr) enhances general corrosion resistance and pitting corrosion resistance of steel in supercritical corrosion environments. Specifically, Cr forms a passive film on the surface of the steel material as an oxide. As a result, the general corrosion resistance and pitting resistance of the steel are enhanced. If the Cr content is less than 24.50%, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Cr content exceeds 27.00%, the volume fraction of ferrite becomes too high even if the contents of other elements are within the range of the present embodiment. In this case, the toughness of the steel material is lowered. Therefore, the Cr content is 24.50-27.00%.
- a preferable lower limit of the Cr content is 24.70%, more preferably 24.90%, still more preferably 25.10%, still more preferably 25.30%.
- a preferable upper limit of the Cr content is 26.80%, more preferably 26.60%, still more preferably 26.40%, still more preferably 26.20%.
- Cu 1.50-3.00% Copper (Cu) enhances general corrosion resistance and pitting corrosion resistance of steel materials in a supercritical corrosion environment. If the Cu content is less than 1.50%, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Cu content exceeds 3.00%, the hot workability of the steel deteriorates even if the content of other elements is within the range of the present embodiment. Therefore, the Cu content is 1.50-3.00%.
- a preferable lower limit of Cu content is 1.55%, more preferably 1.60%, more preferably 1.65%, more preferably 1.70%, more preferably 1.75%. %.
- a preferred upper limit of the Cu content is 2.90%, more preferably 2.80%, still more preferably 2.70%, still more preferably 2.60%.
- Ni 4.00-8.50%
- Nickel (Ni) stabilizes austenite in steel. Ni further enhances the general and pitting corrosion resistance of steel in supercritical corrosion environments. If the Ni content is less than 4.00%, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Ni content exceeds 8.50%, the volume fraction of austenite becomes too high even if the content of other elements is within the range of the present embodiment. In this case, the strength of the steel material is lowered. Therefore, the Ni content is 4.00-8.50%.
- the preferred lower limit of the Ni content is 4.10%, more preferably 4.20%, still more preferably 4.40%, still more preferably 4.60%, still more preferably 4.80 %, more preferably 5.00%.
- the upper limit of the Ni content is preferably 8.30%, more preferably 8.00%, still more preferably 7.70%, still more preferably 7.60%.
- Mo 0.80 to less than 2.00%
- Molybdenum (Mo) increases general corrosion resistance and pitting corrosion resistance of steel materials in a supercritical corrosion environment. If the Mo content is less than 0.80%, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Mo content is less than 2.00%, excellent hot workability can be obtained in the steel material. Therefore, the Mo content is between 0.80 and less than 2.00%.
- the lower limit of the Mo content is preferably 0.85%, more preferably 0.90%, still more preferably 0.95%.
- a preferable upper limit of the Mo content is 1.95%, more preferably 1.90%, still more preferably 1.85%, still more preferably 1.80%.
- N 0.150-0.350% Nitrogen (N) stabilizes austenite in steel. N further enhances general corrosion resistance and pitting corrosion resistance of steel in supercritical corrosion environments. If the N content is less than 0.150%, the above effect cannot be sufficiently obtained even if the other element content is within the range of the present embodiment. On the other hand, if the N content exceeds 0.350%, the toughness and hot workability of the steel deteriorate even if the content of other elements is within the range of the present embodiment. Therefore, the N content is 0.150-0.350%.
- the lower limit of the N content is preferably 0.160%, more preferably 0.170%, still more preferably 0.180%, still more preferably 0.190%.
- the upper limit of the N content is preferably 0.340%, more preferably 0.330%, still more preferably 0.320%, still more preferably 0.310%, still more preferably 0.300 %.
- Co 0.10-1.00%
- Cobalt (Co) enhances general corrosion resistance and pitting corrosion resistance of steel in a supercritical corrosion environment. Co in particular enhances the pitting corrosion resistance of steel. Co further enhances the hardenability of the steel material and enhances the strength of the steel material. If the Co content is less than 0.10%, the above effect cannot be sufficiently obtained. On the other hand, if the Co content exceeds 1.00%, the manufacturing cost is extremely increased even if the content of other elements is within the range of the present embodiment. Therefore, the Co content is 0.10-1.00%.
- the lower limit of the Co content is preferably 0.15%, more preferably 0.20%, still more preferably 0.25%.
- the upper limit of the Co content is preferably 0.90%, more preferably 0.80%, still more preferably 0.70%, still more preferably 0.60%, still more preferably 0.50 %.
- Tin (Sn) enhances general corrosion resistance and pitting corrosion resistance of steel materials in a supercritical corrosion environment. Sn in particular enhances the pitting corrosion resistance of steel materials. If the Sn content is less than 0.001%, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Sn content exceeds 0.050%, the manufacturing cost is extremely increased even if the other element contents are within the range of the present embodiment. Therefore, the Sn content is 0.001-0.050%.
- a preferable lower limit of the Sn content is 0.002%, more preferably 0.003%, and still more preferably 0.004%.
- the preferred upper limit of the Sn content is 0.040%, more preferably 0.030%, still more preferably 0.020%, still more preferably 0.015%, still more preferably 0.010 %.
- sol. Al 0.050% or less Aluminum (Al) is inevitably contained. That is, sol. The Al content is over 0%. Al deoxidizes steel. However, sol. If the Al content exceeds 0.050%, coarse oxides are formed even if the content of other elements is within the range of the present embodiment. Coarse oxides reduce the toughness of steel. Therefore, sol. Al content is 0.050% or less. sol. A preferable lower limit of the Al content is 0.001%, more preferably 0.005%, and still more preferably 0.010%. sol. A preferable upper limit of the Al content is 0.040%, more preferably 0.035%, and still more preferably 0.030%. In addition, sol. The Al content means the content of acid-soluble Al.
- V 0.01-0.50% Vanadium (V) forms carbonitrides and increases the strength of steel materials. If the V content is less than 0.01%, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the V content exceeds 0.50%, the strength of the steel material becomes too high even if the content of other elements is within the range of the present embodiment. In this case, the toughness of the steel material is lowered. Therefore, the V content is 0.01-0.50%.
- a preferable lower limit of the V content is 0.02%, more preferably 0.03%, and still more preferably 0.04%.
- a preferred upper limit of the V content is 0.40%, more preferably 0.30%, still more preferably 0.20%, still more preferably 0.10%.
- Ti 0.001-0.050% Titanium (Ti) forms carbonitrides and increases the strength of steel materials. If the Ti content is less than 0.001%, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Ti content exceeds 0.050%, the strength of the steel material becomes too high even if the content of other elements is within the range of the present embodiment. In this case, the toughness of the steel material is lowered. Therefore, the Ti content is 0.001-0.050%. A preferable lower limit of the Ti content is 0.002%, more preferably 0.003%, and still more preferably 0.004%. The upper limit of the Ti content is preferably 0.040%, more preferably 0.030%, still more preferably 0.020%, still more preferably 0.015%, still more preferably 0.012 %.
- Ca 0.0010-0.0100% Calcium (Ca) combines with S in the steel material to form Ca sulfide and suppresses the formation of Mn sulfide.
- Mn sulfide having an equivalent circle diameter of 1.0 ⁇ m or more exists in the surface layer of the steel material, the Mn sulfide in the surface layer dissolves in a supercritical corrosion environment. The dissolution of Mn sulfide forms depressions on the surface of the steel material. The dents formed on the surface of the steel tend to become the starting points of pitting corrosion in a supercritical corrosion environment.
- Ca suppresses the formation of Mn sulfides and lowers the number density (pieces/mm 2 ) of Mn sulfides having an equivalent circle diameter of 1.0 ⁇ m or more. As a result, the pitting corrosion resistance of the steel is enhanced in a supercritical corrosion environment. If the Ca content is less than 0.0010%, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the Ca content exceeds 0.0100%, Ca sulfide having an equivalent circle diameter of 2.0 ⁇ m or more is excessively generated even if the content of other elements is within the range of the present embodiment.
- Ca sulfide with an equivalent circle diameter of 2.0 ⁇ m or more exists in the surface layer of the steel material
- Ca sulfide with an equivalent circle diameter of 2.0 ⁇ m or more is, like the coarse Mn sulfide described above, a supercritical corrosion environment. dissolves in Therefore, dents are formed on the surface of the steel material. This dent reduces the pitting corrosion resistance of the steel material. Therefore, the Ca content is 0.0010-0.0100%.
- the lower limit of the Ca content is preferably 0.0012%, more preferably 0.0014%, still more preferably 0.0016%.
- the upper limit of the Ca content is preferably 0.0090%, more preferably 0.0080%, still more preferably 0.0070%, still more preferably 0.0060%, still more preferably 0.0050 %, more preferably 0.0040%, more preferably 0.0035%.
- B 0.0015 to 0.0050% Boron (B) suppresses the segregation of S in the steel material to the grain boundary and enhances the hot workability of the steel material. If the B content is less than 0.0015%, the above effect cannot be sufficiently obtained even if the content of other elements is within the range of the present embodiment. On the other hand, if the B content exceeds 0.0050%, boron nitride (BN) is formed even if the content of other elements is within the range of the present embodiment. Boron nitride reduces the toughness of steel. Therefore, the B content is 0.0015-0.0050%. A preferable lower limit of the B content is 0.0017%, more preferably 0.0020%, and still more preferably 0.0022%. A preferred upper limit of the B content is 0.0045%, more preferably 0.0040%, still more preferably 0.0035%, still more preferably 0.0030%.
- Oxygen (O) is an unavoidable impurity. That is, the O content is over 0%. O forms oxides and lowers the toughness of the steel material. If the O content exceeds 0.0100%, the toughness of the steel material is remarkably lowered even if the content of other elements is within the range of the present embodiment. Therefore, the O content is 0.0100% or less. It is preferable that the O content is as low as possible. However, excessively reducing the O content increases the production cost. Therefore, considering industrial production, the lower limit of the O content is preferably 0.0001%, more preferably 0.0002%, and still more preferably 0.0005%. A preferable upper limit of the O content is 0.0080%, more preferably 0.0060%, still more preferably 0.0040%, still more preferably 0.0030%.
- the remainder of the chemical composition of the duplex stainless steel material according to this embodiment consists of Fe and impurities.
- the impurities in the chemical composition are those that are mixed from ore, scrap, or the manufacturing environment as raw materials when industrially manufacturing the duplex stainless steel material, and are intentionally included. Rather, it means a permissible range that does not adversely affect the duplex stainless steel material according to this embodiment.
- W 0-1.50% Tungsten (W) is an optional element and may not be contained. That is, the W content may be 0%. When contained, that is, when the W content is greater than 0%, W enhances the general corrosion resistance and pitting corrosion resistance of steel materials in supercritical corrosion environments. If even a small amount of W is contained, the above effect can be obtained to some extent. However, if the W content exceeds 1.50%, the strength of the steel material becomes too high even if the content of other elements is within the range of the present embodiment. In this case, the toughness of the steel material is lowered. Therefore, the W content is 0-1.50%, and if included, it is 1.50% or less.
- the preferred lower limit of the W content is 0.01%, more preferably 0.05%, still more preferably 0.10%, still more preferably 0.15%, still more preferably 0.20 %, more preferably 0.25%.
- the upper limit of the W content is preferably less than 1.50%, more preferably 1.45%, still more preferably 1.40%, still more preferably 1.35%, still more preferably 1.35%. 30%.
- the duplex stainless steel material of the present embodiment may further contain one or more selected from the group consisting of Mg and rare earth elements (REM) instead of part of Fe. These elements are optional elements, and all of them improve the hot workability of the steel material. Mg and REM are described below.
- Mg 0-0.0100%
- Magnesium (Mg) is an optional element and may not be contained. That is, the Mg content may be 0%. When contained, that is, when the Mg content is more than 0%, Mg controls the morphology of inclusions and enhances the hot workability of the steel material. If even a small amount of Mg is contained, the above effect can be obtained to some extent. However, if the Mg content exceeds 0.0100%, oxides in the steel material coarsen even if the content of other elements is within the range of the present embodiment. In this case, the toughness of the steel material is lowered. Therefore, the Mg content is 0-0.0100% and, if included, is 0.0100% or less.
- the preferred lower limit of the Mg content is 0.0001%, more preferably 0.0003%, still more preferably 0.0005%, still more preferably 0.0008%, still more preferably 0.0010 %.
- the preferred upper limit of the Mg content is 0.0090%, more preferably 0.0080%, still more preferably 0.0070%, still more preferably 0.0060%, still more preferably 0.0040 %, more preferably 0.0025%, more preferably 0.0015%.
- Rare earth elements 0 to 0.0100%
- a rare earth element (REM) is an optional element and may not be contained. That is, the REM content may be 0%. When included, that is, when the REM content is greater than 0%, REM controls the morphology of inclusions and enhances the hot workability of the steel. The above effect can be obtained to some extent if REM is contained even in a small amount. However, if the REM content exceeds 0.0100%, oxides in the steel material coarsen even if the content of other elements is within the range of the present embodiment. In this case, the toughness of the steel material is lowered. Therefore, the REM content is between 0 and 0.0100% and, if included, is less than or equal to 0.0100%.
- a preferable lower limit of the REM content is 0.0001%, more preferably 0.0003%, and still more preferably 0.0006%.
- the preferred upper limit of the REM content is 0.0090%, more preferably 0.0080%, still more preferably 0.0070%, still more preferably 0.0060%, still more preferably 0.0050 %, more preferably 0.0040%, more preferably 0.0020%, still more preferably 0.0015%.
- REM in this specification refers to scandium (Sc) with atomic number 21, yttrium (Y) with atomic number 39, and lanthanide lanthanide (La) with atomic number 57 to lutetium with atomic number 71 ( Lu) means one or more elements selected from the group consisting of;
- the REM content in this specification is the total content of these elements.
- the duplex stainless steel material of the present embodiment may further contain one or more selected from the group consisting of Zr and Nb instead of part of Fe. These elements are optional elements, and all increase the strength of the steel material. Zr and Nb are described below.
- Zr Zirconium
- Zr Zirconium
- the Zr content may be 0%.
- Zr forms carbonitrides and increases the strength of the steel material. If even a small amount of Zr is contained, the above effect can be obtained to some extent.
- the Zr content exceeds 0.0100%, the strength of the steel material becomes too high even if the content of other elements is within the range of the present embodiment. In this case, the toughness of the steel material is lowered. Therefore, the Zr content is 0-0.0100% and, if included, is 0.0100% or less.
- a preferable lower limit of the Zr content is 0.0001%, more preferably 0.0005%, and still more preferably 0.0010%.
- a preferable upper limit of the Zr content is 0.0080%, more preferably 0.0060%, still more preferably 0.0040%, still more preferably 0.0020%.
- Niobium (Nb) is an optional element and may not be contained. That is, the Nb content may be 0%. When contained, that is, when the Nb content exceeds 0%, Nb forms carbonitrides and increases the strength of the steel material. If even a small amount of Nb is contained, the above effect can be obtained to some extent. However, if the Nb content exceeds 0.500%, the strength of the steel material becomes too high even if the content of other elements is within the range of the present embodiment. In this case, the toughness of the steel material is lowered. Therefore, the Nb content is between 0 and 0.500% and, if included, is 0.500% or less.
- the preferred lower limit of the Nb content is 0.001%, more preferably 0.010%, still more preferably 0.040%, still more preferably 0.080%, still more preferably 0.100 %.
- the preferred upper limit of the Nb content is 0.450%, more preferably 0.400%, still more preferably 0.350%, still more preferably 0.300%, still more preferably 0.250 %, more preferably 0.200%, more preferably 0.180%.
- the duplex stainless steel material of the present embodiment may further contain one or more selected from the group consisting of As, Zn, Pb and Sb instead of part of Fe. These elements are arbitrary elements, and all of them improve the general corrosion resistance of the steel material. As, Zn, Pb and Sb are described below.
- Arsenic (As) is an optional element and may not be contained. That is, the As content may be 0%. When contained, that is, when the As content exceeds 0%, As enhances the general corrosion resistance of steel materials in supercritical corrosion environments. If even a small amount of As is contained, the above effect can be obtained to some extent. However, if the As content exceeds 0.0500%, As will segregate at grain boundaries even if the content of other elements is within the range of the present embodiment. In this case, the general corrosion resistance and pitting corrosion resistance of the steel material in a supercritical corrosion environment are lowered. Therefore, the As content is 0 to 0.0500%, and if included, it is 0.0500% or less.
- a preferable lower limit of the As content is 0.0001%, more preferably 0.0002%.
- the upper limit of the As content is preferably 0.0300%, more preferably 0.0100%, still more preferably 0.0050%, still more preferably 0.0020%, still more preferably 0.0010 %.
- Zinc (Zn) is an optional element and may not be contained. That is, the Zn content may be 0%. When included, that is, when the Zn content is greater than 0%, Zn enhances the general corrosion resistance of steel in supercritical corrosion environments. If Zn is contained even in a small amount, the above effect can be obtained to some extent. However, if the Zn content exceeds 0.0100%, even if the content of other elements is within the range of the present embodiment, the general corrosion resistance and pitting corrosion resistance of the steel material in a supercritical corrosion environment are lowered. . Therefore, the Zn content is between 0 and 0.0100% and, if included, is 0.0100% or less.
- the lower limit of the Zn content is preferably 0.0001%, more preferably 0.0002%, still more preferably 0.0005%, still more preferably 0.0010%.
- the upper limit of the Zn content is preferably 0.0080%, more preferably 0.0060%, still more preferably 0.0040%, still more preferably 0.0020%, still more preferably 0.0018 %.
- Pb 0 to 0.0100%
- Lead (Pb) is an optional element and may not be contained. That is, the Pb content may be 0%. When contained, that is, when the Pb content is greater than 0%, Pb enhances the general corrosion resistance of steel materials in supercritical corrosion environments. If even a small amount of Pb is contained, the above effect can be obtained to some extent. However, if the Pb content exceeds 0.0100%, even if the content of other elements is within the range of the present embodiment, many flaws occur on the surface of the steel material after hot working. Therefore, the Pb content is between 0 and 0.0100% and, if included, is 0.0100% or less. A preferable lower limit of the Pb content is 0.0001%, more preferably 0.0002%. The upper limit of the Pb content is preferably 0.0080%, more preferably 0.0060%, still more preferably 0.0040%, still more preferably 0.0020%.
- Sb 0-0.0100%
- Antimony (Sb) is an optional element and may not be contained. That is, the Sb content may be 0%. When contained, that is, when the Sb content exceeds 0%, Sb enhances the general corrosion resistance of steel materials in supercritical corrosion environments. If even a small amount of Sb is contained, the above effect can be obtained to some extent. However, if the Sb content is too high, the manufacturing cost will be extremely high even if the contents of other elements are within the range of the present embodiment. Therefore, the Sb content is between 0 and 0.0100% and, if included, is 0.0100% or less.
- the lower limit of the Sb content is preferably 0.0001%, more preferably 0.0005%, still more preferably 0.0010%, still more preferably 0.0015%.
- the preferred upper limit of the Sb content is 0.0090%, more preferably 0.0080%, still more preferably 0.0070%, still more preferably 0.0060%, still more preferably 0.0050 %, more preferably 0.0040%, more preferably 0.0030%, still more preferably 0.0020%.
- Fn is an index of general corrosion resistance of a duplex stainless steel material in a supercritical corrosion environment.
- SOX gas and O2 gas are contained in supercritical CO2 gas, only Cr, Mo, W, and N among the elements in the duplex stainless steel that satisfy feature 1 Ni, Cu, Co and Sn also contribute to the improvement of general corrosion resistance.
- Fn is a parameter formula set in consideration of the contribution of each element to general corrosion resistance in a supercritical corrosion environment in a duplex stainless steel material that satisfies feature 1.
- the corrosion rate which is an index of general corrosion resistance in a supercritical corrosion environment, is high. That is, when Fn is less than 44.0, even if the characteristics 1 and 3 are satisfied, the general corrosion resistance in a supercritical corrosion environment is low.
- Fn is 44.0 or more
- the corrosion rate is remarkably slowed down. That is, when Fn is 44.0 or more, the general corrosion resistance in a supercritical corrosion environment is remarkably enhanced. Therefore, Fn is 44.0 or more.
- the preferred lower limit of Fn is 45.0, more preferably 46.0, still more preferably 47.0, still more preferably 48.0, still more preferably 49.0, still more preferably 50.0.
- the duplex stainless steel material of this embodiment further satisfies the features 1 and 2, and further satisfies the following feature 3.
- the total number of Mn sulfides with an equivalent circle diameter of 1.0 ⁇ m or more and Ca sulfides with an equivalent circle diameter of 2.0 ⁇ m or more per 1 mm 2 is 0.50 pieces/mm 2 or less.
- Mn sulfides and Ca sulfides are defined as follows.
- Mn sulfide inclusions having a Mn content of 10% or more and an S content of 10% or more in mass% when the mass% of inclusions is 100%
- Ca sulfide mass% of inclusions is 100%, inclusions having a Ca content of 20% or more, an S content of 10% or more, and an Mn content of less than 10% by mass
- the total number density per unit area of Mn sulfides and Ca sulfides having a size that easily dissolves in a supercritical corrosion environment and forms dents in the surface layer is reduced.
- Mn sulfides in the duplex stainless steel material extend in the longitudinal direction (rolling direction) of the duplex stainless steel material.
- Ca sulfides in duplex stainless steel materials are spherical. Therefore, Mn sulfide and Ca sulfide differ in the size at which a dent that becomes a starting point of pitting corrosion is likely to be formed.
- the equivalent circle diameter is defined as the diameter when the area of the Mn sulfide and the Ca sulfide is converted into a circle.
- the content of each element in the chemical composition is a duplex stainless steel material within the range of the present embodiment, the number of Mn sulfides having an equivalent circle diameter of 1.0 ⁇ m or more per unit area (1 mm 2 ) and the equivalent circle
- the number of Ca sulfides with a diameter of 2.0 ⁇ m or more per unit area (1 mm 2 ) strongly correlates with pitting corrosion resistance in a supercritical corrosion environment.
- the number per unit area (1 mm 2 ) of Mn sulfides having an equivalent circle diameter of 1.0 ⁇ m or more, and the equivalent circle diameter The sum (total number) of Ca sulfides of 2.0 ⁇ m or more per unit area (1 mm 2 ) is defined as “total number density ND” (unit: number/mm 2 ).
- the steel material of the present embodiment has a total number density ND of 0.50 pieces/mm 2 or less.
- the total number of Mn sulfides with an equivalent circle diameter of 1.0 ⁇ m or more and Ca sulfides with an equivalent circle diameter of 2.0 ⁇ m or more per 1 mm 2 is 0.50/mm 2 or less.
- the total number density ND exceeds 0.50 pieces/mm 2 , even if the duplex stainless steel material satisfies the features 1 and 2, Mn sulfides and Ca sulfides on the surface of the steel material will not dissolve in a supercritical corrosion environment. Cheap. As a result, the surface of the duplex stainless steel material is likely to be dented, which is the starting point of pitting corrosion. Therefore, the pitting corrosion resistance of the duplex stainless steel material is lowered in a supercritical corrosion environment.
- the total number density ND is 0.50 pieces/mm 2 or less, on the premise that the duplex stainless steel material satisfies the characteristics 1 and 2, Mn sulfides and Ca sulfides of sizes that are easy to dissolve in a supercritical corrosion environment
- the total number density of objects is sufficiently low. Therefore, in a supercritical corrosion environment, depressions due to dissolution of Mn sulfide and Ca sulfide are less likely to form on the surface layer of the duplex stainless steel material. As a result, the pitting corrosion resistance of the duplex stainless steel material is sufficiently enhanced in a supercritical corrosion environment.
- the upper limit of the total number density ND is preferably 0.49/mm 2 , more preferably 0.48/mm 2 , still more preferably 0.47/mm 2 , still more preferably 0.46 pcs/mm 2 , more preferably 0.45 pcs/mm 2 , still more preferably 0.44 pcs/mm 2 , still more preferably 0.43 pcs/mm 2 , still more preferably 0 .42 pieces/mm 2 .
- the total number density ND is as small as possible. However, excessive reduction of the total number density ND significantly increases manufacturing costs. Therefore, when considering the manufacturing cost, the preferable lower limit of the total number density ND is 0.01 pieces/mm 2 , more preferably 0.05 pieces/mm 2 , and still more preferably 0.10 pieces/mm 2 , more preferably 0.15/mm 2 , still more preferably 0.20/mm 2 .
- the total number density ND of Mn sulfides with an equivalent circle diameter of 1.0 ⁇ m or more and Ca sulfides with an equivalent circle diameter of 2.0 ⁇ m or more can be measured by the following method.
- test pieces are taken from the following test piece extraction positions.
- the steel material is a steel pipe
- a test piece is taken from the thickness center position.
- the steel material is Round Steel Bar
- the specimen is taken from the R/2 position.
- a round steel is a solid steel material having a circular cross section perpendicular to the axial direction.
- the R/2 position means the central position of the radius R in the cross section perpendicular to the axial direction of the round steel.
- a test piece is taken from the thickness center position.
- the steel material is a steel pipe
- the surface including the pipe axial direction and the thickness direction is used as the observation surface.
- the surface of the test piece including the axial direction and the radial direction is used as the observation surface.
- the observation plane is a plane including the rolling direction and the plate thickness direction.
- Polish the observation surface of the resin-filled steel material Any 10 fields of view are observed on the observation surface after polishing.
- the area of each field of view is 36 mm 2 (6 mm ⁇ 6 mm).
- EDS analysis element concentration analysis
- the accelerating voltage is 20 kV
- the elements to be analyzed are N, O, Mg, Al, Si, P, S, Ca, Ti, Cr, Mn, Fe, Cu, Zr, and Nb.
- the inclusion is Mn sulfide or Ca sulfide.
- Mn sulfide When the Mn content is 10% or more and the S content is 10% or more in mass %, the inclusion is specified as "Mn sulfide”.
- Ca content When the Ca content is 20% or more, the S content is 10% or more, and the Mn content is less than 10%, the inclusion is specified as "Ca sulfide”.
- the total number of Mn sulfides having an equivalent circle diameter of 1.0 ⁇ m or more among the Mn sulfides identified in the 10 fields of view is determined. Furthermore, the total number of Ca sulfides having an equivalent circle diameter of 2.0 ⁇ m or more is determined among the Ca sulfides measured in the 10 fields of view. Based on the total number of Mn sulfides with an equivalent circle diameter of 1.0 ⁇ m or more, the total number of Ca sulfides with an equivalent circle diameter of 2.0 ⁇ m or more, and the total area of 10 fields of view, the equivalent circle diameter is 1.0 ⁇ m.
- the total number density ND (pieces/mm 2 ) per unit area of Mn sulfides of 0 ⁇ m or more and Ca sulfides of 2.0 ⁇ m or more equivalent circle diameter is determined.
- the total number density ND can be measured using a scanning electron microscope with a composition analysis function (SEM-EDS device).
- SEM-EDS device for example, an inclusion automatic analysis device manufactured by FEI (ASPEX), trade name: Metals Quality Analyzer, can be used.
- the microstructure of the duplex stainless steel material of this embodiment consists of ferrite and austenite.
- "consisting of ferrite and austenite” means having negligible phases other than ferrite and austenite.
- the area ratios of precipitates and inclusions are negligibly small compared to the area ratios of ferrite and austenite.
- the microstructure of the duplex stainless steel material according to the present embodiment contains a small amount of precipitates, inclusions, etc. in addition to ferrite and austenite.
- the area ratio of ferrite and the area ratio of austenite in the microstructure of the duplex stainless steel material of this embodiment are not particularly limited.
- the area ratio of ferrite and the area ratio of austenite in the microstructure are naturally determined within a certain range.
- the area ratio of ferrite in the microstructure of the duplex stainless steel material of this embodiment is, for example, 30 to 70%.
- the area ratio of austenite is, for example, 30-70%.
- the area ratio of ferrite and the area ratio of austenite of the duplex stainless steel material can be obtained by the following method. Samples of duplex stainless steel shall be taken from the following locations. When the steel material is a steel pipe, a test piece is taken from the thickness center position. If the steel material is a round bar, the specimen is taken from the R/2 position. When the steel material is a steel plate, a test piece is taken from the thickness center position.
- the steel material is a steel pipe
- the surface including the pipe axial direction and the thickness direction is used as the observation surface.
- the surface of the test piece including the axial direction and the radial direction is used as the observation surface.
- the observation plane is a plane including the rolling direction and the plate thickness direction.
- the mirror-polished viewing surface is electrolytically etched in a 7% potassium hydroxide etchant to expose the microstructure.
- 10 fields of view of the observation surface on which the microstructure is revealed are observed using an optical microscope.
- the area of each field of view is not particularly limited, it is, for example, 6.25 ⁇ 10 4 ⁇ m 2 (magnification of 400 times).
- ferrite and austenite are identified based on contrast. Determine the area ratios of the specified ferrite and austenite.
- the duplex stainless steel material of this embodiment satisfies the features 1 to 3.
- the content of each element in the chemical composition is within the scope of this embodiment.
- Fn defined by formula (1) is 44.0 or more.
- Fn Cr+3.3(Mo+0.5W)+16N+2Ni+Cu+2Co+10Sn (1)
- the content of the corresponding element in mass % is substituted for the symbol of the element in formula (1).
- the total number density ND of Mn sulfides with an equivalent circle diameter of 1.0 ⁇ m or more and Ca sulfides with an equivalent circle diameter of 2.0 ⁇ m or more is 0.50 pieces/mm 2 or less.
- a corrosion resistance test in a supercritical corrosion environment is carried out by the following method.
- a test piece shall be taken from the following test piece sampling positions of the duplex stainless steel material.
- the duplex stainless steel material is a steel pipe
- a test piece is taken from the thickness center position. If the duplex stainless steel material is a round bar, the specimen is taken from the R/2 position.
- the duplex stainless steel material is a steel plate, a test piece is taken from the thickness center position.
- the size of the test piece is not particularly limited, for example, length: 30 mm, width: 20 mm, thickness: 2 mm.
- a 5% by mass NaCl (sodium chloride) aqueous solution saturated with 0.02% by volume SO 2 gas and 0.05% by volume O 2 gas is prepared as a test liquid. Place the test solution in the autoclave. A test piece is immersed in the test liquid, and CO 2 gas (supercritical gas) of 130 bar in total pressure and 100° C. is pressurized into the autoclave to start the corrosion test. The test time shall be 96 hours. Also, the temperature inside the autoclave during the test is maintained at 100°C.
- Corrosion rate (mm/year) is obtained based on the mass of the test piece before starting the test, the mass of the test piece after the test time has elapsed, the density of the test piece, the surface area of the test piece, and the test time. If the corrosion rate is 0.100 mm/year or less, it is determined that the general corrosion resistance is excellent in a supercritical corrosion environment.
- the surface of the test piece is observed with a loupe with a magnification of 10 times to confirm the presence or absence of pitting corrosion. If pitting corrosion is suspected by observation with a magnifying glass, the cross section of the suspected pitting corrosion point is observed with a 100x optical microscope to confirm the presence or absence of pitting corrosion. If pitting corrosion is not confirmed on the entire surface of the test piece, it is judged to be excellent in pitting corrosion resistance in a supercritical corrosion environment.
- the duplex stainless steel material according to this embodiment is a steel pipe, a round steel (solid material), or a steel plate.
- the steel pipe may be a seamless steel pipe or a welded steel pipe.
- the duplex stainless steel material of this embodiment is suitable for CCUS storage technology applications, for example.
- An example of the steel manufacturing method of the present embodiment includes the following steps. (Step 1) Steelmaking step (Step 2) Hot working step (Step 3) Solution treatment step Each step will be described below.
- Step 1 Steelmaking process
- the steelmaking process includes the following steps.
- Step 11 Step of producing molten steel (refining step)
- Step 12 A step of manufacturing a material by casting using molten steel (material manufacturing step)
- Step 11 refining step
- molten steel containing Cr is first placed in a ladle, and the molten steel in the ladle is decarburized under atmospheric pressure (rough decarburization refining process).
- Slag is generated by the decarburization treatment in the rough decarburization refining process.
- Slag generated by the decarburization process floats on the liquid surface of the molten steel after the rough decarburization refining process.
- Cr in molten steel is oxidized to produce Cr 2 O 3 .
- Cr 2 O 3 is absorbed in the slag. Therefore, a deoxidizing agent is added to the ladle to reduce Cr 2 O 3 in the slag and recover Cr in the molten steel (Cr reduction treatment step).
- the rough decarburization refining process and the Cr reduction treatment process are performed, for example, by an electric furnace method, a converter method, or an AOD (Argon Oxygen Decarburization) method.
- slag is removed from the molten steel (slag removal treatment step).
- the molten steel after the slag removal process is further subjected to finishing decarburization treatment (finish decarburization refining process).
- finish decarburization refining process decarburization is performed under reduced pressure. If the decarburization treatment is performed under reduced pressure, the CO gas partial pressure (P CO ) in the atmosphere is lowered and the oxidation of Cr in the molten steel is suppressed.
- the decarburization treatment is performed under reduced pressure, the C concentration in the molten steel can be further reduced while suppressing the oxidation of Cr.
- a deoxidizing agent is added to the molten steel, and the Cr reduction treatment for reducing Cr 2 O 3 in the slag is performed again (Cr reduction treatment process).
- the finish decarburization refining process and the Cr reduction treatment process after the finish decarburization refining process may be performed by, for example, the VOD (Vacuum Oxygen Decarburization) method or the RH (Ruhrstahl-Heraeus) method.
- the molten steel in the ladle is subjected to final composition adjustment and temperature adjustment of the molten steel before the raw material manufacturing step (component adjustment step).
- the component adjustment step is performed by, for example, LT (Ladle Treatment).
- Ca is added to the molten steel in the second half of the component adjustment process.
- the time from adding Ca to uniformly dispersing Ca in the molten steel is defined as "uniform mixing time" ⁇ .
- ⁇ is the stirring power density of molten steel at LT and is defined by equation (B).
- Q is the top-blowing gas flow rate (Nm 3 /min).
- W is the molten steel mass (t).
- T is the molten steel temperature (K).
- H is the depth of molten steel in the ladle (steel bath depth) (m).
- the molten steel temperature in the ladle is kept at 1500-1700°C. Further, Ca is introduced into the molten steel, and the holding time after uniform mixing time ⁇ has passed is defined as "holding time t" (seconds). In this case, in this embodiment, the holding time t after the uniform mixing time ⁇ has passed is set to 60 seconds or longer.
- the holding time t is less than 60 seconds, the Ca added to the molten steel cannot sufficiently reform the Mn sulfides in the molten steel. In this case, a large number of coarse Mn sulfides remain in the steel material. Therefore, the number per unit area of Mn sulfides having an equivalent circle diameter of 1.0 ⁇ m or more is excessively increased in the duplex stainless steel material. Therefore, the total number density ND exceeds 0.50/mm 2 .
- Mn sulfide reacts with Ca to progress reformation, and although the number per unit area of Mn sulfide having an equivalent circle diameter of 1.0 ⁇ m or more decreases, coarse Ca sulfide formed by bonding with S Substances remain in the molten steel without being sufficiently absorbed by the slag. As a result, the total number density ND exceeds 0.50/mm 2 .
- the Ca added to the molten steel sufficiently reforms the Mn sulfides in the molten steel.
- the number of coarse Mn sulfides is reduced. Therefore, the number of Mn sulfides having an equivalent circle diameter of 1.0 ⁇ m or more per unit area is sufficiently reduced.
- the total number density ND (pieces/mm 2 ) becomes 0.50 pieces/mm 2 or less.
- the retention time t after the uniform mixing time ⁇ has passed is set to 60 seconds or longer.
- the upper limit of the holding time t after the uniform mixing time ⁇ has passed is not particularly limited, but is, for example, 3600 seconds.
- a raw material (a slab or an ingot) is manufactured using the molten steel manufactured by the refining process described above.
- a slab is produced by a continuous casting method using molten steel.
- the slab may be a slab, a bloom, or a billet.
- molten steel may be used as an ingot by an ingot casting method.
- the slab or ingot may be further subjected to blooming rolling or the like to produce a billet.
- the material is manufactured by the above steps.
- Step 2 Hot working step In the hot working process, the material is hot worked to produce an intermediate steel material.
- the duplex stainless steel material is a steel pipe
- the intermediate steel material corresponds to a blank pipe.
- the material is heated in a heating furnace.
- the heating temperature is not particularly limited, it is, for example, 1100 to 1300.degree.
- the billet which is the raw material extracted from the heating furnace, is subjected to hot working to produce a blank pipe (seamless steel pipe), which is an intermediate steel material.
- the method of hot working is not particularly limited, and a known method may be used.
- the Mannesmann process is carried out as hot working to produce a mother tube.
- the billet is pierced and rolled by a piercing machine.
- the piercing ratio is not particularly limited, but is, for example, 1.0 to 4.0.
- the billet that has been pierced and rolled is further hot-rolled using a mandrel mill, reducer, sizing mill, etc. to make a mother tube.
- the cumulative area reduction rate in the hot working process is, for example, 20 to 70%.
- hot extrusion is performed as hot working, for example, the Eugene Sejournet method or the Erhardt pushbench method may be performed to manufacture the mother pipe.
- the hot working may be performed only once, or may be performed multiple times.
- the above-described hot extrusion may be performed after the above-described piercing-rolling is performed on the raw material.
- the material is first heated in a heating furnace.
- the heating temperature is not particularly limited, it is, for example, 1100 to 1300.degree.
- the raw material extracted from the heating furnace is subjected to hot working to produce a round bar as an intermediate steel material.
- Hot working is, for example, blooming by a blooming mill and/or hot rolling by a continuous rolling mill.
- a horizontal stand having a pair of grooved rolls arranged vertically and a vertical stand having a pair of grooved rolls arranged horizontally are arranged alternately.
- the material is first heated in a heating furnace.
- the heating temperature is not particularly limited, it is, for example, 1100 to 1300.degree.
- the raw material extracted from the heating furnace is subjected to hot rolling using a blooming mill and a continuous rolling mill to produce a steel plate as an intermediate steel material.
- the intermediate steel material manufactured by hot working may be cooled to room temperature.
- the intermediate steel material produced by hot working may be subjected to solution treatment in the next step after being supplemented with heat (reheated) after hot working without being cooled to room temperature.
- the intermediate steel material produced in the hot working step is subjected to solution treatment.
- the solution treatment method is not particularly limited, and a known method may be used.
- the intermediate steel material is charged into a heat treatment furnace, held at a desired temperature, and then quenched.
- the temperature at which solution treatment is performed (solution treatment temperature) is It means the temperature (° C.) of the heat treatment furnace for carrying out.
- the time during which the solution treatment is performed (solution treatment time) means the time during which the intermediate steel material is held at the solution treatment temperature.
- the solution temperature in the solution treatment step of the present embodiment is 900-1200°C.
- precipitates for example, the ⁇ phase, which is an intermetallic compound, etc.
- the solution temperature in the solution treatment step of the present embodiment is 900-1200°C.
- the solution treatment time is not particularly limited, and the solution treatment may be performed under known conditions.
- the solutionizing time is, for example, 5 to 180 minutes.
- a rapid cooling method is, for example, water cooling.
- the method for manufacturing a duplex stainless steel material according to the present embodiment may include manufacturing steps other than those described above.
- cold working may be performed on the intermediate steel material before the solution treatment process.
- Cold working may be, for example, cold drawing or cold rolling.
- cold working may be performed on the intermediate steel material after the solution treatment process.
- a pickling treatment may be performed after the solution treatment process.
- the pickling treatment may be performed by a well-known method, and is not particularly limited.
- a passive film is formed on the surface of the manufactured duplex stainless steel material.
- the duplex stainless steel material according to this embodiment can be manufactured.
- duplex stainless steel material of the present embodiment will be explained more specifically by way of examples.
- the conditions in the following examples are examples of conditions adopted to confirm the feasibility and effect of the duplex stainless steel material of this embodiment. Therefore, the duplex stainless steel material of this embodiment is not limited to this example of one condition.
- a duplex stainless steel material (seamless steel pipe) having the chemical composition shown in Tables 1-1 and 1-2 was produced by the following method.
- Molten steel for each test number was manufactured as follows. Molten steel containing Cr was placed in a ladle, and a known rough decarburization refining step and a Cr reduction treatment step were carried out by the AOD method. After the Cr reduction treatment step, a slag removal treatment step was performed to remove slag from the molten steel. Furthermore, a well-known finishing decarburization refining step and a Cr reduction treatment step were carried out by the VOD method.
- the LT performed the final composition adjustment of the molten steel in the ladle and the temperature adjustment of the molten steel before the material manufacturing process.
- the molten steel temperature was 1500 to 1700°C in all cases.
- Ca was added to the molten steel. After Ca was added, the retention time t (seconds) after the uniform mixing time ⁇ had passed was adjusted as shown in Table 2. Molten steel of each test number was manufactured by the above steps.
- a billet with an outer diameter of 310 mm was manufactured using molten steel. After heating the manufactured billet to 1250° C., it was hot-rolled by the Mannesmann method to manufacture a blank pipe (seamless steel pipe) having an outer diameter of 244.48 mm and a wall thickness of 13.84 mm.
- Solution treatment was performed on the blank tube.
- the solution temperature was 1080° C. and the solution time was 15 minutes. After the elapse of the solution heat treatment time, the mother tube was cooled with water. Through the above steps, steel materials (seamless steel pipes) of each test number were manufactured.
- Test 1 Microstructure Observation Test
- Test 2 Total Number Density ND Measurement Test
- Test 3 Corrosion Resistance Test in Supercritical Corrosion Environment
- test number 30 the Sn content was too low in the chemical composition of the duplex stainless steel material. Therefore, in the corrosion resistance test in the supercritical corrosion environment, pitting corrosion was confirmed on the surface of the test piece after the test, and the pitting corrosion resistance in the supercritical corrosion environment was low.
- test number 31 the Cu content was too low in the chemical composition of the duplex stainless steel material. Therefore, in the corrosion resistance test in the supercritical corrosion environment, the corrosion rate was faster than 0.100 mm/year, and the general corrosion resistance in the supercritical corrosion environment was low.
- test number 32 the Cr content was too low in the chemical composition of the duplex stainless steel material. Therefore, in the corrosion resistance test in the supercritical corrosion environment, the corrosion rate was faster than 0.100 mm/year, and the general corrosion resistance in the supercritical corrosion environment was low.
- Fn defined by formula (1) was less than 44.0 in the chemical composition of the duplex stainless steel material. Therefore, in the corrosion resistance test in the supercritical corrosion environment, the corrosion rate was faster than 0.100 mm/year, and the general corrosion resistance in the supercritical corrosion environment was low.
- the gist of the duplex stainless steel material of this embodiment can also be described as follows.
- a duplex stainless steel material in % by mass, C: 0.050% or less, Si: 1.00% or less, Mn: 0.40-3.00%, P: 0.050% or less, S: 0.0050% or less, Cr: 24.50-27.00%, Cu: 1.50-3.00%, Ni: 4.00 to 8.50%, Mo: 0.80 to less than 2.00%, N: 0.150 to 0.350%, Co: 0.10 to 1.00%, Sn: 0.001 to 0.050%, sol.
- Fn defined by formula (1) is 44.0 or more
- the total number of objects per 1 mm 2 is 0.50 / mm 2 or less, Duplex stainless steel material.
- Fn Cr+3.3(Mo+0.5W)+16N+2Ni+Cu+
- a duplex stainless steel material in % by mass, C: 0.050% or less, Si: 1.00% or less, Mn: 0.40-3.00%, P: 0.050% or less, S: 0.0050% or less, Cr: 24.50-27.00%, Cu: 1.50-3.00%, Ni: 4.00 to 8.50%, Mo: 0.80 to less than 2.00%, N: 0.150 to 0.350%, Co: 0.10 to 1.00%, Sn: 0.001 to 0.050%, sol.
- Fn defined by formula (1) is 44.0 or more
- the total number of objects per 1 mm 2 is 0.50 / mm 2 or less, Duplex stainless steel material.
- Rare earth element: 0.0100% or less, one or more selected from the group consisting of [third group] Zr: 0.0100% or less, and Nb: 0.500% or less, one or more selected from the group consisting of [Group 4] As: 0.0500% or less, Zn: 0.0100% or less, Pb: 0.0100% or less, and Sb: 0.0100% or less, at least one element selected from the group consisting of Fn Cr+3.3(Mo+0.5W)+16N+2Ni+Cu+2Co+10Sn (1)
- the content of the corresponding element in mass % is substituted for the symbol of the element in formula (1).
- duplex stainless steel material according to any one of [2] to [5], containing the fourth group; Duplex stainless steel material.
- the duplex stainless steel material according to any one of [1] to [6],
- the duplex stainless steel material is a steel pipe, Duplex stainless steel material.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Treatment Of Steel In Its Molten State (AREA)
Abstract
Description
質量%で、
C:0.050%以下、
Si:1.00%以下、
Mn:0.40~3.00%、
P:0.050%以下、
S:0.0050%以下、
Cr:24.50~27.00%、
Cu:1.50~3.00%、
Ni:4.00~8.50%、
Mo:0.80~2.00%未満、
N:0.150~0.350%、
Co:0.10~1.00%、
Sn:0.001~0.050%、
sol.Al:0.050%以下、
V:0.01~0.50%、
Ti:0.001~0.050%、
Ca:0.0010~0.0100%、
B:0.0015~0.0050%、
O:0.0100%以下、
W:0~1.50%、
Mg:0~0.0100%、
希土類元素:0~0.0100%、
Zr:0~0.0100%、
Nb:0~0.500%、
As:0~0.0500%、
Zn:0~0.0100%、
Pb:0~0.0100%、
Sb:0~0.0100%、及び、
残部がFe及び不純物からなり、
前記各元素含有量が上述の範囲内であることを前提として、式(1)で定義されるFnが44.0以上であり、
前記二相ステンレス鋼材中において、
Mn含有量が質量%で10%以上であり、S含有量が質量%で10%以上であり、円相当径が1.0μm以上のMn硫化物、及び、
Ca含有量が質量%で20%以上であり、S含有量が質量%で10%以上であり、Mn含有量が質量%で10%未満であり、円相当径が2.0μm以上のCa硫化物、の1mm2当たりの総個数が、0.50個/mm2以下である。
Fn=Cr+3.3(Mo+0.5W)+16N+2Ni+Cu+2Co+10Sn (1)
ここで、式(1)中の元素記号には、対応する元素の質量%での含有量が代入される。
Fn=Cr+3.3(Mo+0.5W)+16N+2Ni+Cu+2Co+10Sn (1)
ここで、式(1)中の元素記号には、対応する元素の質量%での含有量が代入される。
二相ステンレス鋼材であって、
質量%で、
C:0.050%以下、
Si:1.00%以下、
Mn:0.40~3.00%、
P:0.050%以下、
S:0.0050%以下、
Cr:24.50~27.00%、
Cu:1.50~3.00%、
Ni:4.00~8.50%、
Mo:0.80~2.00%未満、
N:0.150~0.350%、
Co:0.10~1.00%、
Sn:0.001~0.050%、
sol.Al:0.050%以下、
V:0.01~0.50%、
Ti:0.001~0.050%、
Ca:0.0010~0.0100%、
B:0.0015~0.0050%、
O:0.0100%以下、
W:0~1.50%、
Mg:0~0.0100%、
希土類元素:0~0.0100%、
Zr:0~0.0100%、
Nb:0~0.500%、
As:0~0.0500%、
Zn:0~0.0100%、
Pb:0~0.0100%、
Sb:0~0.0100%、及び、
残部がFe及び不純物からなり、
前記各元素含有量が上述の範囲内であることを前提として、式(1)で定義されるFnが44.0以上であり、
前記二相ステンレス鋼材中において、
Mn含有量が質量%で10%以上であり、S含有量が質量%で10%以上であり、円相当径が1.0μm以上のMn硫化物、及び、
Ca含有量が質量%で20%以上であり、S含有量が質量%で10%以上であり、Mn含有量が質量%で10%未満であり、円相当径が2.0μm以上のCa硫化物、の1mm2当たりの総個数が、0.50個/mm2以下である、
二相ステンレス鋼材。
Fn=Cr+3.3(Mo+0.5W)+16N+2Ni+Cu+2Co+10Sn (1)
ここで、式(1)中の元素記号には、対応する元素の質量%での含有量が代入される。
[1]に記載の二相ステンレス鋼材であって、
W:0.01~1.50%、
Mg:0.0001~0.0100%、
希土類元素:0.0001~0.0100%、
Zr:0.0001~0.0100%、
Nb:0.001~0.500%、
As:0.0001~0.0500%、
Zn:0.0001~0.0100%、
Pb:0.0001~0.0100%、及び、
Sb:0.0001~0.0100%、からなる群から選択される1種以上を含有する、
二相ステンレス鋼材。
[1]又は[2]に記載の二相ステンレス鋼材であって、
前記二相ステンレス鋼材は、鋼管である、
二相ステンレス鋼材。
本実施形態の二相ステンレス鋼材は、次の特徴を有する。
(特徴1)
化学組成中の各元素含有量が本実施形態の範囲内である。
(特徴2)
特徴1を満たすことを前提として、式(1)で定義されるFnが44.0以上である。
Fn=Cr+3.3(Mo+0.5W)+16N+2Ni+Cu+2Co+10Sn (1)
ここで、式(1)中の元素記号には、対応する元素の質量%での含有量が代入される。
(特徴3)
円相当径が1.0μm以上のMn硫化物、及び、円相当径が2.0μm以上のCa硫化物の1mm2当たりの総個数が、0.50個/mm2以下である。
以下、各特徴1~3について説明する。
本実施形態の二相ステンレス鋼材の化学組成は、次の元素を含有する。
炭素(C)は不可避に含有される。つまり、C含有量は0%超である。Cは結晶粒界にCr炭化物を形成し、粒界での腐食感受性を高める。そのため、C含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の耐全面腐食性及び耐孔食性が低下する。
したがって、C含有量は0.050%以下である。
C含有量はなるべく低い方が好ましい。しかしながら、C含有量の極端な低減は、製造コストを大幅に高める。したがって、工業生産を考慮した場合、C含有量の好ましい下限は0.001%であり、さらに好ましくは0.005%である。
C含有量の好ましい上限は0.045%であり、さらに好ましくは0.040%であり、さらに好ましくは0.035%であり、さらに好ましくは0.030%である。
シリコン(Si)は不可避に含有される。つまり、Si含有量は0%超である。Siは鋼を脱酸する。しかしながら、Si含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の靭性及び熱間加工性が低下する。
したがって、Si含有量は1.00%以下である。
Si含有量の好ましい下限は0.15%であり、さらに好ましくは0.20%であり、さらに好ましくは0.25%である。
Si含有量の好ましい上限は0.80%であり、さらに好ましくは0.60%であり、さらに好ましくは0.50%である。
マンガン(Mn)は鋼材の焼入れ性を高めて鋼材の強度を高める。Mn含有量が0.40%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。
一方、Mn含有量が高すぎれば、Mnは、粗大なMn硫化物を多数形成する。超臨界腐食環境において、鋼材の表面近傍に存在する粗大なMn硫化物は溶解する。その結果、鋼材表面に凹みが形成される。この凹みが孔食の起点となり、超臨界腐食環境において孔食が発生する。Mn含有量が3.00%を超えれば、他の元素含有量が本実施形態の範囲内であっても、上記凹みが生成し、超臨界腐食環境での耐孔食性が低下する。
したがって、Mn含有量は0.40~3.00%である。
Mn含有量の好ましい下限は0.50%であり、さらに好ましくは0.60%であり、さらに好ましくは0.70%であり、さらに好ましくは0.80%であり、さらに好ましくは0.90%である。
Mn含有量の好ましい上限は2.80%であり、さらに好ましくは2.60%であり、さらに好ましくは2.40%であり、さらに好ましくは2.30%であり、さらに好ましくは2.20%であり、さらに好ましくは2.00%である。
燐(P)は不純物である。すなわち、P含有量は0%超である。Pは粒界に偏析して、鋼材の靭性を低下させる。
したがって、P含有量は0.050%以下である。
P含有量はなるべく低い方が好ましい。しかしながら、P含有量の極端な低減は、製造コストを大幅に高める。したがって、工業生産を考慮した場合、P含有量の好ましい下限は0.001%であり、さらに好ましくは0.003%である。
P含有量の好ましい上限は0.045%であり、さらに好ましくは0.040%であり、さらに好ましくは0.035%であり、さらに好ましくは0.030%である。
硫黄(S)は不純物である。すなわち、S含有量は0%超である。Sは粒界に偏析して、鋼材の靭性及び熱間加工性を低下させる。
したがって、S含有量は0.0050%以下である。
S含有量はなるべく低い方が好ましい。しかしながら、S含有量の極端な低減は、製造コストを大幅に高める。したがって、工業生産を考慮した場合、S含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0002%である。
S含有量の好ましい上限は0.0040%であり、さらに好ましくは0.0030%であり、さらに好ましくは0.0025%であり、さらに好ましくは0.0020%である。
クロム(Cr)は超臨界腐食環境における鋼材の耐全面腐食性及び耐孔食性を高める。具体的には、Crは酸化物として鋼材の表面に不動態皮膜形成する。その結果、鋼材の耐全面腐食性及び耐孔食性が高まる。Cr含有量が24.50%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。
一方、Cr含有量が27.00%を超えれば、他の元素含有量が本実施形態の範囲内であっても、フェライトの体積率が高くなりすぎる。この場合、鋼材の靱性が低下する。
したがって、Cr含有量は24.50~27.00%である。
Cr含有量の好ましい下限は24.70%であり、さらに好ましくは24.90%であり、さらに好ましくは25.10%であり、さらに好ましくは25.30%である。
Cr含有量の好ましい上限は26.80%であり、さらに好ましくは26.60%であり、さらに好ましくは26.40%であり、さらに好ましくは26.20%である。
銅(Cu)は超臨界腐食環境での鋼材の耐全面腐食性及び耐孔食性を高める。Cu含有量が1.50%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。
一方、Cu含有量が3.00%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の熱間加工性が低下する。
したがって、Cu含有量は1.50~3.00%である。
Cu含有量の好ましい下限は1.55%であり、さらに好ましくは1.60%であり、さらに好ましくは1.65%であり、さらに好ましくは1.70%であり、さらに好ましくは1.75%である。
Cu含有量の好ましい上限は2.90%であり、さらに好ましくは2.80%であり、さらに好ましくは2.70%であり、さらに好ましくは2.60%である。
ニッケル(Ni)は鋼材中のオーステナイトを安定化させる。Niはさらに、超臨界腐食環境において、鋼材の耐全面腐食性及び耐孔食性を高める。Ni含有量が4.00%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。
一方、Ni含有量が8.50%を超えれば、他の元素含有量が本実施形態の範囲内であっても、オーステナイトの体積率が高くなりすぎる。この場合、鋼材の強度が低下する。
したがって、Ni含有量は4.00~8.50%である。
Ni含有量の好ましい下限は4.10%であり、さらに好ましくは4.20%であり、さらに好ましくは4.40%であり、さらに好ましくは4.60%であり、さらに好ましくは4.80%であり、さらに好ましくは5.00%である。
Ni含有量の好ましい上限は8.30%であり、さらに好ましくは8.00%であり、さらに好ましくは7.70%であり、さらに好ましくは7.60%である。
モリブデン(Mo)は超臨界腐食環境での鋼材の耐全面腐食性及び耐孔食性を高める。Mo含有量が0.80%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。
一方、Mo含有量が2.00%未満であれば、鋼材において、優れた熱間加工性が得られる。
したがって、Mo含有量は0.80~2.00%未満である。
Mo含有量の好ましい下限は0.85%であり、さらに好ましくは0.90%であり、さらに好ましくは0.95%である。
Mo含有量の好ましい上限は1.95%であり、より好ましくは1.90%であり、さらに好ましくは1.85%であり、さらに好ましくは1.80%である。
窒素(N)は鋼材中のオーステナイトを安定化させる。Nはさらに、超臨界腐食環境での鋼材の耐全面腐食性及び耐孔食性を高める。N含有量が0.150%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。
一方、N含有量が0.350%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の靭性及び熱間加工性が低下する。
したがって、N含有量は0.150~0.350%である。
N含有量の好ましい下限は0.160%であり、さらに好ましくは0.170%であり、さらに好ましくは0.180%であり、さらに好ましくは0.190%である。
N含有量の好ましい上限は0.340%であり、さらに好ましくは0.330%であり、さらに好ましくは0.320%であり、さらに好ましくは0.310%であり、さらに好ましくは0.300%である。
コバルト(Co)は超臨界腐食環境での鋼材の耐全面腐食性及び耐孔食性を高める。Coは特に、鋼材の耐孔食性を高める。Coはさらに、鋼材の焼入性を高め、鋼材の強度を高める。Co含有量が0.10%未満であれば、上記効果が十分に得られない。
一方、Co含有量が1.00%を超えれば、他の元素含有量が本実施形態の範囲内であっても、製造コストが極端に高まる。
したがって、Co含有量は0.10~1.00%である。
Co含有量の好ましい下限は0.15%であり、さらに好ましくは0.20%であり、さらに好ましくは0.25%である。
Co含有量の好ましい上限は0.90%であり、さらに好ましくは0.80%であり、さらに好ましくは0.70%であり、さらに好ましくは0.60%であり、さらに好ましくは0.50%である。
スズ(Sn)は、超臨界腐食環境での鋼材の耐全面腐食性及び耐孔食性を高める。Snは特に、鋼材の耐孔食性を高める。Sn含有量が0.001%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。
一方、Sn含有量が0.050%を超えれば、他の元素含有量が本実施形態の範囲内であっても製造コストが極端に高まる。
したがって、Sn含有量は0.001~0.050%である。
Sn含有量の好ましい下限は0.002%であり、さらに好ましくは0.003%であり、さらに好ましくは0.004%である。
Sn含有量の好ましい上限は0.040%であり、さらに好ましくは0.030%であり、さらに好ましくは0.020%であり、さらに好ましくは0.015%であり、さらに好ましくは0.010%である。
アルミニウム(Al)は不可避に含有される。つまり、sol.Al含有量は0%超である。
Alは鋼を脱酸する。しかしながら、sol.Al含有量が0.050%を超えれば、他の元素含有量が本実施形態の範囲内であっても、粗大な酸化物が生成する。粗大な酸化物は鋼材の靭性を低下する。
したがって、sol.Al含有量は0.050%以下である。
sol.Al含有量の好ましい下限は0.001%であり、さらに好ましくは0.005%であり、さらに好ましくは0.010%である。
sol.Al含有量の好ましい上限は0.040%であり、さらに好ましくは0.035%であり、さらに好ましくは0.030%である。なお、sol.Al含有量とは、酸可溶Alの含有量を意味する。
バナジウム(V)は炭窒化物を形成し、鋼材の強度を高める。V含有量が0.01%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。
一方、V含有量が0.50%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の強度が高くなりすぎる。この場合、鋼材の靭性が低下する。
したがって、V含有量は0.01~0.50%である。
V含有量の好ましい下限は0.02%であり、さらに好ましくは0.03%であり、さらに好ましくは0.04%である。
V含有量の好ましい上限は0.40%であり、さらに好ましくは0.30%であり、さらに好ましくは0.20%であり、さらに好ましくは0.10%である。
チタン(Ti)は炭窒化物を形成し、鋼材の強度を高める。Ti含有量が0.001%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。
一方、Ti含有量が0.050%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の強度が高くなりすぎる。この場合、鋼材の靭性が低下する。
したがって、Ti含有量は0.001~0.050%である。
Ti含有量の好ましい下限は0.002%であり、さらに好ましくは0.003%であり、さらに好ましくは0.004%である。
Ti含有量の好ましい上限は0.040%であり、さらに好ましくは0.030%であり、さらに好ましくは0.020%であり、さらに好ましくは0.015%であり、さらに好ましくは0.012%である。
カルシウム(Ca)は、鋼材中のSと結合してCa硫化物を生成し、Mn硫化物の生成を抑制する。
鋼材の表層に、円相当径が1.0μm以上のMn硫化物が存在する場合、超臨界腐食環境において、表層のMn硫化物が溶解する。Mn硫化物の溶解により、鋼材表面に凹みが形成される。鋼材表面に形成されるこの凹みが、超臨界腐食環境において、孔食の起点となりやすい。
CaはMn硫化物の生成を抑制し、円相当径が1.0μm以上のMn硫化物の個数密度(個/mm2)を低下させる。その結果、超臨界腐食環境での鋼材の耐孔食性が高まる。
Ca含有量が0.0010%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。
一方、Ca含有量が0.0100%を超えれば、他の元素含有量が本実施形態の範囲内であっても、円相当径が2.0μm以上のCa硫化物が過剰に生成する。円相当径が2.0μm以上のCa硫化物が鋼材の表層に存在する場合、円相当径が2.0μm以上のCa硫化物は、上述の粗大なMn硫化物と同様に、超臨界腐食環境において溶解する。そのため、鋼材表面に凹みを形成する。この凹みにより、鋼材の耐孔食性が低下する。
したがって、Ca含有量は0.0010~0.0100%である。
Ca含有量の好ましい下限は0.0012%であり、さらに好ましくは0.0014%であり、さらに好ましくは0.0016%である。
Ca含有量の好ましい上限は0.0090%であり、さらに好ましくは0.0080%であり、さらに好ましくは0.0070%であり、さらに好ましくは0.0060%であり、さらに好ましくは0.0050%であり、さらに好ましくは0.0040%であり、さらに好ましくは0.0035%である。
ホウ素(B)は鋼材中のSの粒界への偏析を抑制し、鋼材の熱間加工性を高める。B含有量が0.0015%未満であれば、他の元素含有量が本実施形態の範囲内であっても、上記効果が十分に得られない。
一方、B含有量が0.0050%を超えれば、他の元素含有量が本実施形態の範囲内であっても、ボロン窒化物(BN)が生成する。ボロン窒化物は鋼材の靭性を低下させる。
したがって、B含有量は0.0015~0.0050%である。
B含有量の好ましい下限は0.0017%であり、さらに好ましくは0.0020%であり、さらに好ましくは0.0022%である。
B含有量の好ましい上限は0.0045%であり、さらに好ましくは0.0040%であり、さらに好ましくは0.0035%であり、さらに好ましくは0.0030%である。
酸素(O)は不可避に含有される不純物である。つまり、O含有量は0%超である。
Oは酸化物を形成して、鋼材の靭性を低下させる。O含有量が0.0100%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の靭性が顕著に低下する。
したがって、O含有量は0.0100%以下である。
O含有量はなるべく低い方が好ましい。しかしながら、O含有量を過剰に低減すれば、製造コストが高くなる。したがって、工業生産を考慮すれば、O含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0002%であり、さらに好ましくは0.0005%である。
O含有量の好ましい上限は0.0080%であり、さらに好ましくは0.0060%であり、さらに好ましくは0.0040%であり、さらに好ましくは0.0030%である。
本実施形態の二相ステンレス鋼材の化学組成はさらに、Feの一部に代えて、
W:0~1.50%、
Mg:0~0.0100%、
希土類元素:0~0.0100%、
Zr:0~0.0100%、
Nb:0~0.500%、
As:0~0.0500%、
Zn:0~0.0100%、
Pb:0~0.0100%、及び、
Sb:0~0.0100%、からなる群から選択される1種以上を含有してもよい。
以下、各任意元素について説明する。
W:0~1.50%
タングステン(W)は任意元素であり、含有されなくてもよい。つまり、W含有量は0%であってもよい。
含有される場合、つまり、W含有量が0%超である場合、Wは、超臨界腐食環境での鋼材の耐全面腐食性及び耐孔食性を高める。Wが少しでも含有されれば、上記効果がある程度得られる。
しかしながら、W含有量が1.50%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の強度が高くなりすぎる。この場合、鋼材の靭性が低下する。
したがって、W含有量は0~1.50%であり、含有される場合、1.50%以下である。
W含有量の好ましい下限は0.01%であり、さらに好ましくは0.05%であり、さらに好ましくは0.10%であり、さらに好ましくは0.15%であり、さらに好ましくは0.20%であり、さらに好ましくは0.25%である。
W含有量の好ましい上限は1.50%未満であり、さらに好ましくは1.45%であり、さらに好ましくは1.40%であり、さらに好ましくは1.35%であり、さらに好ましくは1.30%である。
本実施形態の二相ステンレス鋼材はさらに、Feの一部に代えて、Mg及び希土類元素(REM)からなる群から選択される1種以上を含有してもよい。これらの元素は任意元素であり、いずれも、鋼材の熱間加工性を高める。以下、Mg及びREMについて説明する。
マグネシウム(Mg)は任意元素であり、含有されなくてもよい。つまり、Mg含有量は0%であってもよい。
含有される場合、つまり、Mg含有量が0%超である場合、Mgは介在物の形態を制御して、鋼材の熱間加工性を高める。Mgが少しでも含有されれば、上記効果がある程度得られる。
しかしながら、Mg含有量が0.0100%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材中の酸化物が粗大化する。この場合、鋼材の靭性が低下する。
したがって、Mg含有量は0~0.0100%であり、含有される場合、0.0100%以下である。
Mg含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0003%であり、さらに好ましくは0.0005%であり、さらに好ましくは0.0008%であり、さらに好ましくは0.0010%である。
Mg含有量の好ましい上限は0.0090%であり、さらに好ましくは0.0080%であり、さらに好ましくは0.0070%であり、さらに好ましくは0.0060%であり、さらに好ましくは0.0040%であり、さらに好ましくは0.0025%であり、さらに好ましくは0.0015%である。
希土類元素(REM)は任意元素であり、含有されなくてもよい。つまり、REM含有量は0%であってもよい。
含有される場合、つまり、REM含有量が0%超である場合、REMは介在物の形態を制御して、鋼材の熱間加工性を高める。REMが少しでも含有されれば、上記効果がある程度得られる。
しかしながら、REM含有量が0.0100%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材中の酸化物が粗大化する。この場合、鋼材の靭性が低下する。
したがって、REM含有量は0~0.0100%であり、含有される場合、0.0100%以下である。
REM含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0003%であり、さらに好ましくは0.0006%である。
REM含有量の好ましい上限は0.0090%であり、さらに好ましくは0.0080%であり、さらに好ましくは0.0070%であり、さらに好ましくは0.0060%であり、さらに好ましくは0.0050%であり、さらに好ましくは0.0040%であり、さらに好ましくは0.0020%であり、さらに好ましくは0.0015%である。
本実施形態の二相ステンレス鋼材はさらに、Feの一部に代えて、Zr及びNbからなる群から選択される1種以上を含有してもよい。これらの元素は任意元素であり、いずれも、鋼材の強度を高める。以下、Zr及びNbについて説明する。
ジルコニウム(Zr)は任意元素であり、含有されなくてもよい。つまり、Zr含有量は0%であってもよい。
含有される場合、つまり、Zr含有量が0%超である場合、Zrは炭窒化物を形成し、鋼材の強度を高める。Zrが少しでも含有されれば、上記効果がある程度得られる。
しかしながら、Zr含有量が0.0100%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の強度が高くなりすぎる。この場合、鋼材の靭性が低下する。
したがって、Zr含有量は0~0.0100%であり、含有される場合、0.0100%以下である。
Zr含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0005%であり、さらに好ましくは0.0010%である。
Zr含有量の好ましい上限は0.0080%であり、さらに好ましくは0.0060%であり、さらに好ましくは0.0040%であり、さらに好ましくは0.0020%である。
ニオブ(Nb)は任意元素であり、含有されなくてもよい。つまり、Nb含有量は0%であってもよい。
含有される場合、つまり、Nb含有量が0%超である場合、Nbは炭窒化物を形成し、鋼材の強度を高める。Nbが少しでも含有されれば、上記効果がある程度得られる。
しかしながら、Nb含有量が0.500%を超えれば、他の元素含有量が本実施形態の範囲内であっても、鋼材の強度が高くなりすぎる。この場合、鋼材の靭性が低下する。
したがって、Nb含有量は0~0.500%であり、含有される場合、0.500%以下である。
Nb含有量の好ましい下限は0.001%であり、さらに好ましくは0.010%であり、さらに好ましくは0.040%であり、さらに好ましくは0.080%であり、さらに好ましくは0.100%である。
Nb含有量の好ましい上限は0.450%であり、さらに好ましくは0.400%であり、さらに好ましくは0.350%であり、さらに好ましくは0.300%であり、さらに好ましくは0.250%であり、さらに好ましくは0.200%であり、さらに好ましくは0.180%である。
本実施形態の二相ステンレス鋼材はさらに、Feの一部に代えて、As、Zn、Pb及びSbからなる群から選択される1種以上を含有してもよい。これらの元素は任意元素であり、いずれも、鋼材の耐全面腐食性を高める。以下、As、Zn、Pb及びSbについて説明する。
ヒ素(As)は任意元素であり、含有されなくてもよい。つまり、As含有量は0%であってもよい。
含有される場合、つまり、As含有量が0%超である場合、Asは、超臨界腐食環境での鋼材の耐全面腐食性を高める。Asが少しでも含有されれば、上記効果がある程度得られる。
しかしながら、As含有量が0.0500%を超えれば、他の元素含有量が本実施形態の範囲内であっても、Asが粒界に偏析する。この場合、超臨界腐食環境での鋼材の耐全面腐食性及び耐孔食性が低下する。
したがって、As含有量は0~0.0500%であり、含有される場合、0.0500%以下である。
As含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0002%である。
As含有量の好ましい上限は0.0300%であり、さらに好ましくは0.0100%であり、さらに好ましくは0.0050%であり、さらに好ましくは0.0020%であり、さらに好ましくは0.0010%である。
亜鉛(Zn)は任意元素であり、含有されなくてもよい。つまり、Zn含有量は0%であってもよい。
含有される場合、つまり、Zn含有量が0%超である場合、Znは、超臨界腐食環境での鋼材の耐全面腐食性を高める。Znが少しでも含有されれば、上記効果がある程度得られる。
しかしながら、Zn含有量が0.0100%を超えれば、他の元素含有量が本実施形態の範囲内であっても、超臨界腐食環境での鋼材の耐全面腐食性及び耐孔食性が低下する。
したがって、Zn含有量は0~0.0100%であり、含有される場合、0.0100%以下である。
Zn含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0002%であり、さらに好ましくは0.0005%であり、さらに好ましくは0.0010%である。
Zn含有量の好ましい上限は0.0080%であり、さらに好ましくは0.0060%であり、さらに好ましくは0.0040%であり、さらに好ましくは0.0020%であり、さらに好ましくは0.0018%である。
鉛(Pb)は任意元素であり、含有されなくてもよい。つまり、Pb含有量は0%であってもよい。
含有される場合、つまり、Pb含有量が0%超である場合、Pbは、超臨界腐食環境での鋼材の耐全面腐食性を高める。Pbが少しでも含有されれば、上記効果がある程度得られる。
しかしながら、Pb含有量が0.0100%を超えれば、他の元素含有量が本実施形態の範囲内であっても、熱間加工後の鋼材表面に多数の疵が発生する。
したがって、Pb含有量は0~0.0100%であり、含有される場合、0.0100%以下である。
Pb含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0002%である。
Pb含有量の好ましい上限は0.0080%であり、さらに好ましくは0.0060%であり、さらに好ましくは0.0040%であり、さらに好ましくは0.0020%である。
アンチモン(Sb)は任意元素であり、含有されなくてもよい。つまり、Sb含有量は0%であってもよい。
含有される場合、つまり、Sb含有量が0%超である場合、Sbは、超臨界腐食環境での鋼材の耐全面腐食性を高める。Sbが少しでも含有されれば、上記効果がある程度得られる。
しかしながら、Sb含有量が高すぎれば、他の元素含有量が本実施形態の範囲内であっても、製造コストが極端に高まる。
したがって、Sb含有量は0~0.0100%であり、含有される場合、0.0100%以下である。
Sb含有量の好ましい下限は0.0001%であり、さらに好ましくは0.0005%であり、さらに好ましくは0.0010%であり、さらに好ましくは0.0015%である。
Sb含有量の好ましい上限は0.0090%であり、より好ましくは0.0080%であり、さらに好ましくは0.0070%であり、さらに好ましくは0.0060%であり、さらに好ましくは0.0050%であり、さらに好ましくは0.0040%であり、さらに好ましくは0.0030%であり、さらに好ましくは0.0020%である。
本実施形態の二相ステンレス鋼材ではさらに、化学組成中の各元素含有量が本実施形態の範囲内であることを前提として、つまり、特徴1を満たすことを前提として、次の特徴2を満たす。
(特徴2)
式(1)で定義されるFnが44.0以上である。
Fn=Cr+3.3(Mo+0.5W)+16N+2Ni+Cu+2Co+10Sn (1)
ここで、式(1)中の元素記号には、対応する元素の質量%での含有量が代入される。
本実施形態の二相ステンレス鋼材ではさらに、特徴1及び特徴2を満たし、さらに、次の特徴3を満たす。
(特徴3)
円相当径が1.0μm以上のMn硫化物、及び、円相当径が2.0μm以上のCa硫化物の1mm2当たりの総個数が、0.50個/mm2以下である。
Mn硫化物:介在物の質量%を100%とした場合に、質量%でMn含有量が10%以上であり、S含有量が10%以上である介在物
Ca硫化物:介在物の質量%を100%とした場合に、質量%でCa含有量が20%以上であり、S含有量が10%以上であり、Mn含有量が10%未満である介在物
円相当径が1.0μm以上のMn硫化物及び円相当径が2.0μm以上のCa硫化物の総個数密度NDは次の方法により測定できる。
初めに、二相ステンレス鋼材において、次の試験片採取位置から試験片を採取する。
鋼材が鋼管である場合、肉厚中央位置から試験片を採取する。鋼材が丸鋼(Round Steel Bar)である場合、R/2位置から試験片を採取する。丸鋼とは、軸方向に垂直な断面が円形状である中実の鋼材である。R/2位置とは、丸鋼の軸方向に垂直な断面において、半径Rの中央位置を意味する。鋼材が鋼板である場合、板厚中央位置から試験片を採取する。
質量%でMn含有量が10%以上であり、かつ、S含有量が10%以上である場合、その介在物を「Mn硫化物」と特定する。
質量%でCa含有量が20%以上であり、S含有量が10%以上であり、さらに、Mn含有量が10%未満である場合、その介在物を「Ca硫化物」と特定する。
本実施形態の二相ステンレス鋼材のミクロ組織は、フェライト及びオーステナイトからなる。本明細書において、「フェライト及びオーステナイトからなる」とは、フェライト及びオーステナイト以外の相が無視できるほど少ないことを意味する。例えば、本実施形態による二相ステンレス鋼材のミクロ組織において、析出物や介在物の面積率は、フェライト及びオーステナイトの面積率と比較して、無視できるほど小さい。つまり、本実施形態による二相ステンレス鋼材のミクロ組織には、フェライト及びオーステナイト以外に、析出物や介在物等が少量含有されている。
本実施形態において、二相ステンレス鋼材のフェライトの面積率及びオーステナイトの面積率は、次の方法で求めることができる。
二相ステンレス鋼材の以下の試験片採取位置から試験片を採取する。鋼材が鋼管である場合、肉厚中央位置から試験片を採取する。鋼材が丸鋼である場合、R/2位置から試験片を採取する。鋼材が鋼板である場合、板厚中央位置から試験片を採取する。
オーステナイトの面積率(%)=100-フェライトの面積率(%)
以上の説明のとおり、本実施形態の二相ステンレス鋼材は、特徴1~特徴3を満たす。
(特徴1)
化学組成中の各元素含有量が本実施形態の範囲内である。
(特徴2)
式(1)で定義されるFnが44.0以上である。
Fn=Cr+3.3(Mo+0.5W)+16N+2Ni+Cu+2Co+10Sn (1)
ここで、式(1)中の元素記号には、対応する元素の質量%での含有量が代入される。
(特徴3)
円相当径が1.0μm以上のMn硫化物及び円相当径が2.0μm以上のCa硫化物の総個数密度NDが、0.50個/mm2以下である。
これらの特徴を満たすことにより、本実施形態の二相ステンレス鋼材は、超臨界腐食環境において、優れた耐全面腐食性及び優れた耐孔食性を有する。
本明細書において、超臨界腐食環境において優れた耐全面腐食性を示す、とは、後述する超臨界腐食環境での耐食性試験において、腐食速度が0.100mm/年以下になることを意味する。
本明細書において、超臨界腐食環境において優れた耐孔食性を示す、とは、後述する超臨界腐食環境での耐食性試験を実施した後の二相ステンレス鋼材(試験片)の表面に孔食が確認されないことを意味する。
超臨界腐食環境での耐食性試験は次の方法で実施する。
二相ステンレス鋼材の次に示す試験片採取位置から試験片を採取する。二相ステンレス鋼材が鋼管である場合、肉厚中央位置から試験片を採取する。二相ステンレス鋼材が丸鋼である場合、R/2位置から試験片を採取する。二相ステンレス鋼材が鋼板である場合、板厚中央位置から試験片を採取する。試験片のサイズは特に限定されないが、例えば、長さ:30mm、幅:20mm、厚さ:2mmとする。
本実施形態による二相ステンレス鋼材は、鋼管、丸鋼(中実材)、又は鋼板である。鋼管は継目無鋼管であってもよいし、溶接鋼管であってもよい。本実施形態の二相ステンレス鋼材は例えば、CCUSの貯留技術用途に適する。
本実施形態の二相ステンレス鋼材の製造方法の一例を説明する。なお、以下に説明する製造方法は一例であって、本実施形態の二相ステンレス鋼材の製造方法はこれに限定されない。つまり、上述の構成を有する本実施形態の二相ステンレス鋼材が製造できれば、以下に説明する製造方法に限定されない。ただし、以下に説明する製造方法は、本実施形態の二相ステンレス鋼材を製造する好適な製造方法である。
(工程1)製鋼工程
(工程2)熱間加工工程
(工程3)溶体化処理工程
以下、各工程について説明する。
製鋼工程は、次の工程を含む。
(工程11)溶鋼を製造する工程(精錬工程)
(工程12)溶鋼を用いて鋳造法により素材を製造する工程(素材製造工程)
精錬工程では初めに、Crを含有する溶鋼を取鍋に収納して、取鍋内の溶鋼に対して、大気圧下で脱炭処理を実施する(粗脱炭精錬工程)。粗脱炭精錬工程での脱炭処理により、スラグが生成する。粗脱炭精錬工程後の溶鋼の液面には、脱炭処理により生成したスラグが浮上している。粗脱炭精錬工程において、溶鋼中のCrが酸化してCr2O3が生成する。Cr2O3はスラグ中に吸収される。そこで、取鍋に脱酸剤を添加して、スラグ中のCr2O3を還元し、Crを溶鋼中に回収する(Cr還元処理工程)。
τ=800×ε-0.4 (A)
ここで、εはLTにおける溶鋼の撹拌動力密度であり、式(B)により定義される。
ε=28.5(Q/W)×T×log(1+H/1.48) (B)
ここで、Qは上吹きガス流量(Nm3/min)である。Wは溶鋼質量(t)である。Tは溶鋼温度(K)である。Hは取鍋内の溶鋼の深さ(鋼浴深さ)(m)である。
上述の精錬工程により製造された溶鋼を用いて、素材(鋳片又はインゴット)を製造する。具体的には、溶鋼を用いて連続鋳造法により鋳片を製造する。鋳片はスラブでもよいし、ブルームでもよいし、ビレットでもよい。又は、溶鋼を用いて造塊法によりインゴットとしてもよい。鋳片又はインゴットに対してさらに、分塊圧延等を実施して、ビレットを製造してもよい。以上の工程により、素材を製造する。
熱間加工工程では、素材を熱間加工して中間鋼材を製造する。二相ステンレス鋼材が鋼管である場合、中間鋼材は素管に相当する。初めに、素材を加熱炉で加熱する。加熱温度は特に限定されないが、例えば、1100~1300℃である。
溶体化処理工程では、上記熱間加工工程で製造された中間鋼材に対して、溶体化処理を実施する。溶体化処理の方法は、特に限定されず、周知の方法でよい。例えば、中間鋼材を熱処理炉に装入し、所望の温度で保持した後、急冷する。なお、中間鋼材を熱処理炉に装入し、所望の温度で保持した後、急冷して溶体化処理を実施する場合、溶体化処理を実施する温度(溶体化温度)とは、溶体化処理を実施するための熱処理炉の温度(℃)を意味する。この場合さらに、溶体化処理を実施する時間(溶体化時間)とは、中間鋼材が溶体化温度で保持される時間を意味する。
本実施形態による二相ステンレス鋼材の製造方法では、上記以外の製造工程を含んでもよい。例えば、熱間加工工程の後、溶体化処理工程の前の中間鋼材に対して、冷間加工を実施してもよい。冷間加工は、例えば、冷間引抜であってもよく、冷間圧延であってもよい。また、溶体化処理工程の後の中間鋼材に対して、冷間加工を実施してもよい。
各試験番号の鋼材に対して、次の評価試験を実施した。
(試験1)ミクロ組織観察試験
(試験2)総個数密度ND測定試験
(試験3)超臨界腐食環境での耐食性試験
以下、各試験について説明する。
各試験番号の二相ステンレス鋼材のミクロ組織観察を、上述の[ミクロ組織観察方法]に基づいて実施した。10視野の各視野の面積は6.25×104μm2とした。その結果、全ての試験番号の鋼材のミクロ組織はフェライト及びオーステナイトからなるミクロ組織であった。また、ミクロ組織中のフェライト面積率はいずれの試験番号においても、30~70%であった。
各試験番号の二相ステンレス鋼材の総個数密度NDの測定を、上述の[総個数密度NDの測定方法]に基づいて実施した。得られた総個数密度ND(個/mm2)を表2の「総個数密度ND(個/mm2)」欄に示す。
各試験番号の二相ステンレス鋼材に対して、上述の[超臨界腐食環境での耐食性試験]に記載の耐食性試験を実施し、腐食速度(mm/年)を求めた。なお、試験片のサイズは、長さ:30mm、幅:20mm、厚さ:2mmとした。得られた腐食速度(mm/年)を表2中の「腐食速度(mm/年)」欄に示す。さらに、上述の方法により、耐食性試験後の試験片の表面の孔食の有無を確認した。孔食の有無の判定結果を表2中の「孔食有無」欄に示す。「無し」は試験片の表面に孔食が確認されなかったことを意味する。「有り」は試験片の表面のいずれかに孔食が確認されたことを意味する。なお、腐食速度が0.100mm/年を超えた場合、鋼材表面で全面腐食が進行しているため、孔食の有無の確認が困難となる。そのため、腐食速度が0.100mm/年を超えた試験番号の二相ステンレス鋼材については、孔食の有無を確認しなかった。表2中の「孔食有無」欄において、「-」は孔食の有無を確認しなかったことを意味する。
表1-1、表1-2及び表2を参照して、試験番号1~28の二相ステンレス鋼材では、化学組成中の各元素含有量が適切であった。さらに、Fnが44.0以上であった。さらに、円相当径が1.0μm以上のMn硫化物及び円相当径が2.0μm以上のCa硫化物の総個数密度NDが0.50個/mm2以下であった。その結果、超臨界腐食環境での耐食性試験において、腐食速度が0.100mm/年以下であり、超臨界腐食環境において優れた耐全面腐食性を示した。さらに、試験後の試験片の表面に孔食が確認されず、超臨界腐食環境において優れた耐孔食性を示した。
二相ステンレス鋼材であって、
質量%で、
C:0.050%以下、
Si:1.00%以下、
Mn:0.40~3.00%、
P:0.050%以下、
S:0.0050%以下、
Cr:24.50~27.00%、
Cu:1.50~3.00%、
Ni:4.00~8.50%、
Mo:0.80~2.00%未満、
N:0.150~0.350%、
Co:0.10~1.00%、
Sn:0.001~0.050%、
sol.Al:0.050%以下、
V:0.01~0.50%、
Ti:0.001~0.050%、
Ca:0.0010~0.0100%、
B:0.0015~0.0050%、及び、
O:0.0100%以下、を含有し、残部がFe及び不純物、からなり、
前記各元素含有量が上述の範囲内であることを前提として、式(1)で定義されるFnが44.0以上であり、
前記二相ステンレス鋼材中において、
Mn含有量が質量%で10%以上であり、S含有量が質量%で10%以上であり、円相当径が1.0μm以上のMn硫化物、及び、
Ca含有量が質量%で20%以上であり、S含有量が質量%で10%以上であり、Mn含有量が質量%で10%未満であり、円相当径が2.0μm以上のCa硫化物、の1mm2当たりの総個数が、0.50個/mm2以下である、
二相ステンレス鋼材。
Fn=Cr+3.3(Mo+0.5W)+16N+2Ni+Cu+2Co+10Sn (1)
ここで、式(1)中の元素記号には、対応する元素の質量%での含有量が代入される。
二相ステンレス鋼材であって、
質量%で、
C:0.050%以下、
Si:1.00%以下、
Mn:0.40~3.00%、
P:0.050%以下、
S:0.0050%以下、
Cr:24.50~27.00%、
Cu:1.50~3.00%、
Ni:4.00~8.50%、
Mo:0.80~2.00%未満、
N:0.150~0.350%、
Co:0.10~1.00%、
Sn:0.001~0.050%、
sol.Al:0.050%以下、
V:0.01~0.50%、
Ti:0.001~0.050%、
Ca:0.0010~0.0100%、
B:0.0015~0.0050%、及び、
O:0.0100%以下、を含有し、
さらに、第1群~第4群からなる群から選択される1種以上を含有し、残部がFe及び不純物からなり、
前記各元素含有量が上述の範囲内であることを前提として、式(1)で定義されるFnが44.0以上であり、
前記二相ステンレス鋼材中において、
Mn含有量が質量%で10%以上であり、S含有量が質量%で10%以上であり、円相当径が1.0μm以上のMn硫化物、及び、
Ca含有量が質量%で20%以上であり、S含有量が質量%で10%以上であり、Mn含有量が質量%で10%未満であり、円相当径が2.0μm以上のCa硫化物、の1mm2当たりの総個数が、0.50個/mm2以下である、
二相ステンレス鋼材。
[第1群]
W:1.50%以下
[第2群]
Mg:0.0100%以下、及び、
希土類元素:0.0100%以下、からなる群から選択される1種以上
[第3群]
Zr:0.0100%以下、及び、
Nb:0.500%以下、からなる群から選択される1種以上
[第4群]
As:0.0500%以下、
Zn:0.0100%以下、
Pb:0.0100%以下、及び、
Sb:0.0100%以下、からなる群から選択される1元素以上
Fn=Cr+3.3(Mo+0.5W)+16N+2Ni+Cu+2Co+10Sn (1)
ここで、式(1)中の元素記号には、対応する元素の質量%での含有量が代入される。
[2]に記載の二相ステンレス鋼材であって、
前記第1群を含有する、
二相ステンレス鋼材。
[2]又は[3]に記載の二相ステンレス鋼材であって、
前記第2群を含有する、
二相ステンレス鋼材。
[2]~[4]のいずれか1項に記載の二相ステンレス鋼材であって、
前記第3群を含有する、
二相ステンレス鋼材。
[2]~[5]のいずれか1項に記載の二相ステンレス鋼材であって、
前記第4群を含有する、
二相ステンレス鋼材。
[1]~[6]のいずれか1項に記載の二相ステンレス鋼材であって、
前記二相ステンレス鋼材は、鋼管である、
二相ステンレス鋼材。
Claims (3)
- 二相ステンレス鋼材であって、
質量%で、
C:0.050%以下、
Si:1.00%以下、
Mn:0.40~3.00%、
P:0.050%以下、
S:0.0050%以下、
Cr:24.50~27.00%、
Cu:1.50~3.00%、
Ni:4.00~8.50%、
Mo:0.80~2.00%未満、
N:0.150~0.350%、
Co:0.10~1.00%、
Sn:0.001~0.050%、
sol.Al:0.050%以下、
V:0.01~0.50%、
Ti:0.001~0.050%、
Ca:0.0010~0.0100%、
B:0.0015~0.0050%、
O:0.0100%以下、
W:0~1.50%、
Mg:0~0.0100%、
希土類元素:0~0.0100%、
Zr:0~0.0100%、
Nb:0~0.500%、
As:0~0.0500%、
Zn:0~0.0100%、
Pb:0~0.0100%、
Sb:0~0.0100%、及び、
残部がFe及び不純物からなり、
前記各元素含有量が上述の範囲内であることを前提として、式(1)で定義されるFnが44.0以上であり、
前記二相ステンレス鋼材中において、
Mn含有量が質量%で10%以上であり、S含有量が質量%で10%以上であり、円相当径が1.0μm以上のMn硫化物、及び、
Ca含有量が質量%で20%以上であり、S含有量が質量%で10%以上であり、Mn含有量が質量%で10%未満であり、円相当径が2.0μm以上のCa硫化物、の1mm2当たりの総個数が、0.50個/mm2以下である、
二相ステンレス鋼材。
Fn=Cr+3.3(Mo+0.5W)+16N+2Ni+Cu+2Co+10Sn (1)
ここで、式(1)中の元素記号には、対応する元素の質量%での含有量が代入される。 - 請求項1に記載の二相ステンレス鋼材であって、
W:0.01~1.50%、
Mg:0.0001~0.0100%、
希土類元素:0.0001~0.0100%、
Zr:0.0001~0.0100%、
Nb:0.001~0.500%、
As:0.0001~0.0500%、
Zn:0.0001~0.0100%、
Pb:0.0001~0.0100%、及び、
Sb:0.0001~0.0100%、からなる群から選択される1種以上を含有する、
二相ステンレス鋼材。 - 請求項1又は請求項2に記載の二相ステンレス鋼材であって、
前記二相ステンレス鋼材は、鋼管である、
二相ステンレス鋼材。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MX2024004062A MX2024004062A (es) | 2021-10-04 | 2022-10-04 | Material de acero inoxidable duplex. |
JP2022579849A JP7239084B1 (ja) | 2021-10-04 | 2022-10-04 | 二相ステンレス鋼材 |
CA3231464A CA3231464A1 (en) | 2021-10-04 | 2022-10-04 | Duplex stainless steel material |
EP22878499.7A EP4414471A1 (en) | 2021-10-04 | 2022-10-04 | Duplex stainless steel material |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-163451 | 2021-10-04 | ||
JP2021163451 | 2021-10-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023058630A1 true WO2023058630A1 (ja) | 2023-04-13 |
Family
ID=85803471
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/037064 WO2023058630A1 (ja) | 2021-10-04 | 2022-10-04 | 二相ステンレス鋼材 |
Country Status (2)
Country | Link |
---|---|
AR (1) | AR127221A1 (ja) |
WO (1) | WO2023058630A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05132741A (ja) | 1991-11-11 | 1993-05-28 | Sumitomo Metal Ind Ltd | 耐食性に優れた高強度二相ステンレス鋼 |
JPH09195003A (ja) | 1996-01-08 | 1997-07-29 | Sumitomo Metal Mining Co Ltd | 二相ステンレス鋼 |
JP2016216816A (ja) * | 2015-05-22 | 2016-12-22 | 株式会社神戸製鋼所 | 二相ステンレス鋼材、二相ステンレス鋼管及び二相ステンレス鋼材の表面処理方法 |
WO2021033672A1 (ja) * | 2019-08-19 | 2021-02-25 | 日本製鉄株式会社 | 二相ステンレス鋼材 |
-
2022
- 2022-09-30 AR ARP220102666A patent/AR127221A1/es unknown
- 2022-10-04 WO PCT/JP2022/037064 patent/WO2023058630A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05132741A (ja) | 1991-11-11 | 1993-05-28 | Sumitomo Metal Ind Ltd | 耐食性に優れた高強度二相ステンレス鋼 |
JPH09195003A (ja) | 1996-01-08 | 1997-07-29 | Sumitomo Metal Mining Co Ltd | 二相ステンレス鋼 |
JP2016216816A (ja) * | 2015-05-22 | 2016-12-22 | 株式会社神戸製鋼所 | 二相ステンレス鋼材、二相ステンレス鋼管及び二相ステンレス鋼材の表面処理方法 |
WO2021033672A1 (ja) * | 2019-08-19 | 2021-02-25 | 日本製鉄株式会社 | 二相ステンレス鋼材 |
Also Published As
Publication number | Publication date |
---|---|
AR127221A1 (es) | 2023-12-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7239085B1 (ja) | 二相ステンレス鋼材 | |
JP4577457B2 (ja) | 油井管に用いられるステンレス鋼 | |
JP7364962B2 (ja) | 鋼材 | |
JP2021167445A (ja) | 二相ステンレス鋼材 | |
EP4023778A1 (en) | Steel material suitable for use in sour environment | |
JP7239084B1 (ja) | 二相ステンレス鋼材 | |
EP4134462A1 (en) | Martensitic stainless seamless steel pipe | |
WO2023157897A1 (ja) | サワー環境での使用に適した鋼材 | |
JP7239086B1 (ja) | マルテンサイト系ステンレス鋼管 | |
WO2023058630A1 (ja) | 二相ステンレス鋼材 | |
WO2023058631A1 (ja) | 二相ステンレス鋼材 | |
JP7428953B1 (ja) | マルテンサイト系ステンレス鋼材 | |
WO2020071219A1 (ja) | サワー環境での使用に適した継目無鋼管 | |
JP7428954B1 (ja) | マルテンサイト系ステンレス鋼材 | |
JP7534676B2 (ja) | 鋼材 | |
WO2024214477A1 (ja) | 二相ステンレス鋼材 | |
JP7243950B1 (ja) | 二相ステンレス鋼管 | |
WO2023054599A1 (ja) | 二相ステンレス鋼管 | |
JP7486012B1 (ja) | サワー環境での使用に適した鋼材 | |
JP7564499B1 (ja) | 鋼材 | |
JP7364955B1 (ja) | 二相ステンレス鋼材 | |
US20240271262A1 (en) | Steel material | |
WO2023170935A1 (ja) | オーステナイト系ステンレス鋼材 | |
JP2024137052A (ja) | 鋼材 | |
JP2024148631A (ja) | 鋼材 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2022579849 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22878499 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 3231464 Country of ref document: CA |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112024005249 Country of ref document: BR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022878499 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022878499 Country of ref document: EP Effective date: 20240506 |
|
ENP | Entry into the national phase |
Ref document number: 112024005249 Country of ref document: BR Kind code of ref document: A2 Effective date: 20240315 |