WO2023058626A1 - 波長変換シート用フィルム、波長変換シート、バックライト、及び、表示装置 - Google Patents

波長変換シート用フィルム、波長変換シート、バックライト、及び、表示装置 Download PDF

Info

Publication number
WO2023058626A1
WO2023058626A1 PCT/JP2022/037050 JP2022037050W WO2023058626A1 WO 2023058626 A1 WO2023058626 A1 WO 2023058626A1 JP 2022037050 W JP2022037050 W JP 2022037050W WO 2023058626 A1 WO2023058626 A1 WO 2023058626A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
wavelength conversion
conversion sheet
film
resin
Prior art date
Application number
PCT/JP2022/037050
Other languages
English (en)
French (fr)
Inventor
武士 坂本
修一 田村
暁人 春木
祥多 山西
優子 藤岡
太郎 森本
修之 小野
龍太郎 原田
Original Assignee
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大日本印刷株式会社 filed Critical 大日本印刷株式会社
Priority to KR1020247014760A priority Critical patent/KR20240072259A/ko
Priority to EP22878495.5A priority patent/EP4414755A1/en
Priority to CN202280079894.0A priority patent/CN118355298A/zh
Publication of WO2023058626A1 publication Critical patent/WO2023058626A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/32Elements containing photoluminescent material distinct from or spaced from the light source characterised by the arrangement of the photoluminescent material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133638Waveplates, i.e. plates with a retardation value of lambda/n
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/50Protective arrangements

Definitions

  • the present disclosure relates to films used for wavelength conversion sheets.
  • the present disclosure also relates to a wavelength conversion sheet having the film, and a backlight and a display device having the wavelength conversion sheet.
  • liquid crystal display devices In recent years, the demand for liquid crystal display devices has increased with the development of personal computers, especially portable personal computers. In addition, recently, the penetration rate of liquid crystal televisions for home use is increasing, and smartphones and tablet terminals are also becoming widespread, so the market for liquid crystal display devices is expanding.
  • Such a liquid crystal display device generally has a liquid crystal cell portion having a color filter, a counter substrate, and a liquid crystal layer sandwiched between them, and further has a light source called a backlight portion.
  • Quantum dots refer to nanometer-sized fine particles of semiconductors. Quantum dots can also be tuned over the entire visible range of emission wavelengths due to the quantum confinement effect (quantum size effect) in which electrons and excitons are confined within nanometer-sized small crystals. Quantum dots can emit strong fluorescence in a narrow wavelength band, so that a display device can be illuminated with light of three primary colors with excellent color purity. Therefore, a display device having excellent color reproducibility can be obtained with a backlight using quantum dots.
  • the wavelength conversion sheet used for the backlight source of this display device consists of a phosphor layer in which semiconductor nanometer-sized phosphor fine particles are dispersed in a resin layer, and a surface of the phosphor layer to protect the phosphor layer. It has a configuration in which a film formed on the substrate is combined with an LED light source. The film has water vapor barrier properties in order to suppress deterioration of the phosphor layer.
  • a wavelength conversion sheet in which a barrier film is laminated on a phosphor layer containing a phosphor the barrier film being a wavelength conversion sheet in which a barrier layer is laminated on one side of a predetermined polyethylene terephthalate film, and a backlight using the same A unit has been developed (Patent Document 1).
  • Patent Literature 2 and Patent Literature 3 disclose a barrier film having excellent adhesion to a phosphor layer even in a high-temperature and high-humidity environment by using a primer layer containing a polyurethane-based resin composition.
  • the wavelength conversion sheets of Patent Literatures 2 and 3 exhibited excellent adhesion to the phosphor layer even after a test in which they were left in an environment of 60° C. and 90% RH for 500 hours.
  • peeling occurred between the wavelength conversion sheet and the phosphor layer. Occurrence of this peeling causes a problem that oxygen and water vapor enter the inside of the wavelength conversion sheet and the phosphor layer deteriorates.
  • the present disclosure has been made in view of the above problems, and has a film for a wavelength conversion sheet that has excellent adhesion to a phosphor layer when used as a wavelength conversion sheet, a wavelength conversion sheet having the film, and the wavelength conversion sheet. It is an object of the present invention to provide a backlight and display device.
  • the present inventors evaluated the relationship between the physical properties of films having primer layers of various formulations and the adhesion to the phosphor layer after a long-term environmental test. As a result, when a polyurethane-based resin composition having a softening point of a predetermined value or more when cured is used, even if it is left for a long period of time exceeding 500 hours in an environment of 60 ° C. and 90% RH, it does not emit fluorescence.
  • the inventors have found that excellent adhesion to the body layer can be ensured, and have completed the present disclosure. That is, in order to solve the above problems, the present disclosure provides the following [1] to [10].
  • the polyurethane resin contains a polyurethane resin obtained by reacting a polyfunctional isocyanate having a (meth)acrylic group with a hydroxyl group-containing compound.
  • [4] The film for wavelength conversion sheet according to any one of [1] to [3], wherein the resin composition contains a silane coupling agent.
  • [5] The film for wavelength conversion sheet according to any one of [1] to [4], further comprising a barrier layer between the substrate and the primer layer.
  • [6] The film for wavelength conversion sheet according to [5], wherein the barrier layer includes an inorganic oxide layer and an organic coating layer, and the organic coating layer is in contact with the primer layer.
  • the barrier layer is a layer containing a reaction product of a composition containing a metal oxide and a phosphorus compound.
  • the film according to any one of [1] to [7] is provided on at least one surface side of the phosphor layer containing the phosphor so that the primer layer and the phosphor layer are in contact.
  • Wavelength conversion sheet At least one light source that emits primary light, an optical plate that is arranged adjacent to the light source for guiding or diffusing the light, and a wavelength conversion sheet that is arranged on the light emitting side of the optical plate. wherein the wavelength conversion sheet is the wavelength conversion sheet according to [8].
  • a display device comprising a backlight and a liquid crystal panel, wherein the backlight is the backlight according to [9].
  • the present disclosure it is possible to obtain a wavelength conversion sheet that has excellent adhesion to a phosphor layer even when left in a high-temperature, high-humidity environment for a long period of time and that can suppress deterioration of the phosphor layer. can.
  • the wavelength conversion sheet it is possible to obtain a backlight and a display device in which deterioration of the phosphor layer is less likely to occur.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is the cross-sectional schematic which illustrates typically one Embodiment of the film for wavelength conversion sheets of this indication.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is a cross-sectional schematic diagram which illustrates typically one Embodiment of the wavelength conversion sheet of this indication.
  • 1 is a cross-sectional view of one embodiment of a backlight of the present disclosure
  • FIG. FIG. 4 is a cross-sectional view showing another embodiment of the backlight of the present disclosure
  • the wavelength conversion sheet film protects the phosphor layer of the wavelength conversion sheet and prevents oxygen and water vapor from entering the wavelength conversion sheet from the external environment and reaching the phosphor layer, thereby deteriorating the phosphor layer. play a role in prevention.
  • the film for wavelength conversion sheet of the present disclosure has a primer layer on a substrate, the primer layer contains a cured product of a resin composition containing a polyurethane resin, and the cured product has a softening point of 250° C. or higher. is.
  • FIG. 1 is a schematic cross-sectional view schematically explaining one embodiment of the film for wavelength conversion sheet of the present disclosure.
  • the wavelength conversion sheet film 10 has a primer layer 30 on the base layer 20 .
  • the film for wavelength conversion sheet 10 may have a barrier layer 40 between the base material layer 20 and the primer layer 30 .
  • a diffusion layer 50 may be provided on the surface of the base material layer 20 opposite to the surface on which the primer layer 30 is formed.
  • the wavelength conversion sheet film of the present disclosure efficiently converts light from a light source when used as a wavelength conversion sheet.
  • the wavelength conversion sheet film of the present disclosure preferably has a total light transmittance of 85% or more, more preferably 90% or more, measured based on JIS K 7361-1:1997. .
  • the gas barrier property of the film for wavelength conversion sheet of the present disclosure can be set according to requirements in consideration of the deterioration of phosphors, which will be described later. Specifically, when the phosphor used in the wavelength conversion sheet has a property of being easily deteriorated by oxygen, water vapor, etc., the film for the wavelength conversion sheet preferably has high gas barrier properties. On the other hand, if the phosphor does not easily deteriorate, the film for wavelength conversion sheets does not need to have high gas barrier properties.
  • the oxygen permeability value of the film for wavelength conversion sheet according to JIS K 7129-2:2006 is preferably 20 cc/m 2 ⁇ day ⁇ atm or less, more preferably 10 cc/m 2 ⁇ day ⁇ atm or less.
  • the water vapor transmission rate of the film for wavelength conversion sheet according to JIS K 7129:2008 B method is preferably 20 g/m 2 ⁇ day or less, more preferably 10 g/m 2 ⁇ day or less, It is more preferably 5 g/m 2 ⁇ day or less, and particularly preferably 2 g/m 2 ⁇ day or less.
  • the oxygen permeability can be measured, for example, with an oxygen permeability measuring device "OX-TRAN" manufactured by MOCON (Mocon method).
  • the water vapor transmission rate can be measured, for example, with a water vapor transmission rate measuring device "PERMATRAN" manufactured by MOCON.
  • the conditions for measuring the oxygen permeability are a temperature of 23° C. and a relative humidity of 90%.
  • the conditions for measuring the water vapor permeability are a temperature of 40° C. and a relative humidity of 90%.
  • the base material layer mainly serves as a support for the primer layer.
  • the substrate layer preferably has high light transmittance.
  • the base layer preferably has a total light transmittance of 85% or more, more preferably 90% or more, according to JIS K 7361-1:1997.
  • the material of the base layer is not particularly limited as long as it is a resin film that does not impair the function of the wavelength conversion sheet.
  • base material layers include polyimide (PI), polyethylene naphthalate (PEN), polyethylene terephthalate (PET), polyethylene butyrate (PBT), polypropylene (PP), nylon resin, amorphous polyarylate, polysulfone, and polyethersulfate.
  • resins such as phone, polyetherimide, fluororesin, and liquid crystal polymer.
  • PEN polyethylene naphthalate
  • PET polyethylene terephthalate
  • PET polyethylene terephthalate
  • nylon resin such as phone, polyetherimide, fluororesin, and liquid crystal polymer.
  • PET polyethylene naphthalate
  • PET polyethylene terephthalate
  • PP polypropylene
  • the base layer may be a single-layer resin film, or may be a plurality of resin films adhered via an adhesive layer.
  • the base material layer 20 is formed by bonding a first base material 20-1 and a second base material 20-2 with an adhesive layer 22 interposed therebetween.
  • the first base material 20-1 becomes a support when the primer layer 30 is formed.
  • the second base material 20-2 serves to increase the thickness of the entire base material layer 20 and to give rigidity to the film 10 for wavelength conversion sheets.
  • the thickness of the entire base material layer is not particularly limited, it is preferably 8 ⁇ m or more and 200 ⁇ m or less, more preferably 8 ⁇ m or more and 150 ⁇ m or less.
  • the thickness of the entire substrate layer is preferably 125 ⁇ m or less.
  • the base layer can provide gas barrier properties against oxygen and water vapor. In this case, the barrier layer can also be omitted.
  • the thickness of the entire base layer is preferably 50 ⁇ m or more, more preferably 75 ⁇ m or more.
  • the thickness of the first substrate that serves as a support for the primer layer is preferably 8 ⁇ m or more and 50 ⁇ m or less, more preferably 8 ⁇ m or more and 25 ⁇ m or less. More preferably, it is 8 ⁇ m or more and 20 ⁇ m or less.
  • the thickness of the second base material is preferably 8 ⁇ m or more and 150 ⁇ m or less, more preferably 8 ⁇ m or more and 100 ⁇ m or less. Moderate rigidity can be given to the film for wavelength conversion sheets as a 2nd base material is the said thickness.
  • the handling property is improved.
  • the thickness of the second base material is preferably 40 ⁇ m or more, more preferably 50 ⁇ m or more.
  • the adhesive that constitutes the adhesive layer 22 is not particularly limited as long as it satisfies good adhesiveness between the substrate layers and optical performance required for the wavelength conversion sheet.
  • adhesives include polyvinyl acetate-based adhesives; homopolymers such as ethyl acrylate, butyl, and 2-ethylhexyl ester; Acrylic ester-based adhesives; cyanoacrylate-based adhesives; ethylene copolymer-based adhesives composed of copolymers of ethylene and monomers such as vinyl acetate, ethyl acrylate, acrylic acid, and methacrylic acid; cellulose-based adhesives Adhesives; polyester adhesives; polyamide adhesives; polyimide adhesives; amino resin adhesives made of urea resin or melamine resin; phenol resin adhesives; epoxy adhesives; Reactive (meth)acrylic adhesives; rubber adhesives made of chloroprene rubber, nitrile rubber, styrene-butadiene rubber, etc.; silicone adhesives
  • the composition system of the adhesive constituting the adhesive layer may be any composition form such as aqueous type, solution type, emulsion type, dispersion type, etc., and its properties may be film-like, sheet-like, powdery or solid. Any form such as shape may be used, and the adhesion mechanism may be any form such as a chemical reaction type, a solvent volatilization type, a heat melting type, a heat pressure type, or the like.
  • the adhesive layer may be formed of, for example, a thermosetting resin or a thermoplastic resin containing a cross-linking agent instead of the above adhesive. Alternatively, a thermoplastic resin such as EVA, ionomer, polyvinyl butyral (PVB), or polyethylene resin may be extruded between substrates by extrusion lamination to form an adhesive layer.
  • the surface of the substrate layer on which the primer layer is provided may be previously subjected to a desired surface treatment in order to improve adhesion with the primer layer or the barrier layer.
  • a desired surface treatment examples include corona discharge treatment, ozone treatment, low-temperature plasma treatment using oxygen gas or nitrogen gas, glow discharge treatment, and oxidation treatment using chemicals.
  • a base layer such as an anchor coat agent layer or an adhesive layer may be formed in advance.
  • the base layer for example, polyester-based resin, polyamide-based resin, polyurethane-based resin, epoxy-based resin, phenol-based resin, (meth)acrylic-based resin, polyvinyl acetate-based resin, polyolefin-based resin such as polyethylene or polypropylene, or its A resin composition containing a copolymer or a modified resin, a cellulose resin, or the like as a main component of the vehicle can be used.
  • a barrier layer is a layer which provides gas barrier property to the film for wavelength conversion sheets.
  • the barrier layer is a layer optionally provided according to the gas barrier property required for the film for wavelength conversion sheet.
  • the barrier layer may be provided on the side of the substrate layer opposite to the primer layer, or between the substrate layer and the primer layer.
  • the barrier layer is preferably provided between the substrate layer and the primer layer.
  • the barrier layer 40 is configured by laminating an inorganic oxide layer 42 and an organic coating layer 44 in order from the substrate layer 20 side.
  • Organic coating layer 44 contacts primer layer 30 .
  • the barrier layer of the present disclosure is not limited to the lamination structure of FIG.
  • Layers constituting the barrier layer include "inorganic oxide layer formed by vapor deposition of inorganic oxide”, “inorganic oxide layer formed by sol-gel method", and “water-soluble highly water-soluble layer such as polyvinyl alcohol.”
  • An organic coating layer formed by applying a coating agent containing molecules, etc.”, and a layer containing a reactant of a composition containing a metal oxide and a phosphorus compound hereinafter referred to as a "metal phosphoric acid reactant layer” called)”.
  • the structure of the barrier layer in the present disclosure includes a single layer of a single type selected from the group consisting of these layers, a layer in which multiple layers of a single type selected from the group are laminated, and two or more types selected from the group are alternately laminated. and the like.
  • a structure in which an inorganic oxide layer and an organic coating layer are laminated as shown in FIG. 1, or a single layer structure of a metal phosphoric acid reactant layer is preferable.
  • the inorganic oxide layer can be exemplified by a layer made of aluminum oxide, silicon oxide, magnesium oxide, or a mixture thereof. From the viewpoint of gas barrier properties, transparency, productivity, etc., the inorganic oxide layer is preferably a thin film layer containing aluminum oxide or silicon oxide as a main component.
  • Examples of the method of forming the inorganic oxide layer include a method of forming by vapor deposition of an inorganic oxide and a method of forming by a sol-gel method.
  • Examples of methods for forming a deposited film include physical vapor deposition methods (physical vapor deposition method, PVD method) such as vacuum deposition method, sputtering method, and ion plating method, plasma chemical vapor deposition method, thermochemical vapor deposition method, etc.
  • Chemical vapor deposition methods Chemical Vapor Deposition method, CVD method
  • chemical vapor deposition method and photochemical vapor deposition method can be mentioned.
  • the thickness of the inorganic oxide layer is not particularly limited, it is preferably 5 nm or more and 500 nm or less.
  • the inorganic oxide layer becomes uniform and sufficient gas barrier properties can be imparted to the film for wavelength conversion sheet.
  • the inorganic oxide layer is more preferably 8 nm or more, and still more preferably 10 nm or more.
  • the thickness of the inorganic oxide layer is 500 nm or less, it becomes possible to impart sufficient flexibility to the inorganic oxide layer, and the occurrence of scratches and cracks in each inorganic oxide layer can be prevented. can be mitigated.
  • the thickness of the inorganic oxide layer is more preferably 100 nm or less, still more preferably 50 nm or less, and particularly preferably 20 nm or less, in consideration of transparency, productivity, and the like.
  • each inorganic oxide layer preferably has a thickness within the above range.
  • the organic coating layer is a layer that prevents various secondary damages in the post-process and imparts high gas barrier properties to the film for wavelength conversion sheet.
  • the organic coating layer by positioning the inorganic oxide layer between the substrate layer and the organic coating layer, it is possible to reduce the occurrence of scratches and cracks in the inorganic oxide layer.
  • the adhesion between the primer layer and the barrier layer of the present disclosure can be improved by providing the organic coating layer in contact with the primer layer.
  • the organic coating layer is formed by coating a gas barrier composition containing, for example, a water-soluble polymer and an aqueous solution or water/alcohol mixed solution containing at least one of one or more metal alkoxides and hydrolysates, or tin chloride as a coating liquid. , is formed by applying the coating liquid.
  • the organic coating layer preferably contains at least one component selected from the group consisting of hydroxyl-containing polymer compounds, metal alkoxides, metal alkoxide hydrolysates and metal alkoxide polymers.
  • the water-soluble polymer used for the organic coating layer include polyvinyl alcohol, polyvinylpyrrolidone, ethylene-vinyl alcohol copolymer and the like.
  • polyvinyl alcohol and/or ethylene-vinyl alcohol copolymer are used.
  • the content of polyvinyl alcohol-based resin and/or ethylene-vinyl alcohol copolymer is preferably in the range of 5 parts by mass or more and 500 parts by mass or less with respect to 100 parts by mass of the total amount of the above alkoxides, More preferably, it is in the range of 20 parts by mass or more and 200 parts by mass or less.
  • a silane coupling agent or the like can also be added to the gas barrier composition.
  • a known organic reactive group-containing organoalkoxysilane can be used as the silane coupling agent.
  • organoalkoxysilanes having an epoxy group are particularly preferred, such as ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, or ⁇ -( 3,4-Epoxycyclohexyl)ethyltrimethoxysilane and the like can be used.
  • the above silane coupling agents may be used singly or in combination of two or more.
  • the amount of the silane coupling agent used as described above is preferably 1 part by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the alkoxysilane.
  • the thickness of the organic coating layer is not particularly limited, it is preferably 100 nm or more and 500 nm or less. When the thickness of the organic coating layer is 100 nm or more, sufficient gas barrier properties can be imparted to the film for wavelength conversion sheet.
  • the thickness of the organic coating layer is more preferably 120 nm or more, more preferably 150 nm or more, in consideration of gas barrier properties. Moreover, sufficient transparency can be ensured by setting the thickness of the organic coating layer to 500 nm or less. Considering transparency, productivity, etc., the thickness of the organic coating layer is more preferably 300 nm or less, more preferably 200 nm or less. When a plurality of organic coating layers are provided, each organic coating layer preferably has a thickness within the above range.
  • Metal phosphate reactant layer examples include the layer described in International Publication WO2011/122036. Aluminum is preferable as the metal.
  • the thickness of the metal phosphoric acid reactant layer is not particularly limited, it is preferably 100 nm or more and 2000 nm or less. When the thickness of the metal phosphoric acid reactant layer is 100 nm or more, sufficient gas barrier properties can be imparted to the film for wavelength conversion sheet. Considering gas barrier properties, the metal phosphoric acid reactant layer is more preferably 200 nm or more, and still more preferably 300 nm or more.
  • the thickness of the metal phosphoric acid reactant layer is 2,000 nm or less, film cracking during film formation can be suppressed.
  • the thickness of the metal phosphoric acid reactant layer is more preferably 1,000 nm or less, and further preferably 900 nm or less.
  • the primer layer ensures good adhesion to the phosphor layer when used as a wavelength conversion sheet, prevents separation of the film for the wavelength conversion sheet and the phosphor layer even in a high-temperature and high-humidity environment. Plays a role in preventing deterioration of the layer.
  • the primer layer contains a cured product of a resin composition containing a polyurethane resin.
  • the fact that the primer layer contains a polyurethane resin can be confirmed by X-ray photoelectron spectroscopy (XPS), infrared spectroscopy (IR), nuclear magnetic resonance spectroscopy (NMR), gas chromatography mass spectrometry (GCMS), or the like. It can be confirmed by detecting binding.
  • XPS X-ray photoelectron spectroscopy
  • IR infrared spectroscopy
  • NMR nuclear magnetic resonance spectroscopy
  • GCMS gas chromatography mass spectrometry
  • the softening point of the cured product of the resin composition that constitutes the primer layer is 250° C. or higher.
  • the softening point of the cured product is a value measured by local thermal analysis using a thermal probe.
  • the thermal expansion curve is obtained by measuring the displacement of the thermal probe from before heating while increasing the temperature while the thermal probe is in contact with the surface of the primer layer. Specifically, the thermal probe is pushed up by the expansion of the resin of the primer layer due to heating. When the resin of the primer layer softens, the tip of the thermal probe penetrates into the resin and the thermal probe descends. The point at which the displacement of the thermal probe changes from rising to falling corresponds to the peak of the thermal expansion curve.
  • the peak temperature of the thermal expansion curve is defined as the softening point of the cured product of the resin composition forming the primer layer.
  • the softening point is the average value of the values measured at arbitrary 10 points on the surface of the primer layer.
  • the primer layer contains a cured product of a resin composition containing a polyurethane resin
  • the peel strength between the primer layer and the phosphor layer is high when used as a wavelength conversion sheet, and exposure to high temperature and high humidity environments is possible.
  • Adhesion (sometimes referred to as “initial adhesion”) before application is improved.
  • the softening point of the cured product of the resin composition that constitutes the primer layer is less than 250°C, it is left in a high-temperature and high-humidity environment (for example, 60°C and 90% RH) even though the initial adhesion is good. Then, peeling occurs between the primer layer and the phosphor layer.
  • the adhesion (sometimes referred to as "adhesion over time”, “adhesion over time”, etc.) is degraded by being left in a high-temperature and high-humidity environment.
  • the softening point of the cured product of the resin composition constituting the primer layer is 250° C. or higher, even if it is left for a long period of time exceeding 500 hours in a high-temperature and high-humidity environment, the peel strength decreases, that is, adhesion over time. It is possible to suppress the decrease in sexuality.
  • the softening point is preferably 270° C. or higher, more preferably 280° C. or higher.
  • the effect of the softening point of the cured product of the resin composition constituting the primer layer on the peeling state (adhesion) between the primer layer and the phosphor layer when exposed to a high-temperature and high-humidity environment is as follows. guessed.
  • the initial adhesion is estimated as follows.
  • the phosphor layer of the wavelength conversion sheet is formed by applying a resin composition, which is a precursor of the phosphor layer, to the surface of the primer layer of the film for wavelength conversion sheet, and curing the resin composition. be done. Shrinkage stress is generated on the phosphor layer side of the primer layer as the phosphor layer shrinks.
  • the opposite side of the primer layer to the phosphor layer is in contact with the substrate layer or the barrier layer, no shrinkage stress is generated when the phosphor layer is cured. That is, due to the formation of the phosphor layer, there is a stress distribution in the thickness direction of the primer layer, and strain is generated inside the primer layer. If the initial adhesion between the phosphor layer and the primer layer is weak, the stress inside the primer layer causes the separation between the phosphor layer and the primer layer. If the wavelength conversion sheet is left in a high-temperature, high-humidity environment for a long period of time, the resin composition constituting the primer layer is affected by heat and water vapor even if the softening point is higher than the ambient temperature.
  • the softening point of the cured product is less than 250°C, the properties of the resin are likely to change due to heat and steam. Hydrolysis and softening of the polyurethane-based resin can be considered as changes in the properties of the resin. Therefore, even if the initial adhesion is good, the stress balance inside the primer layer changes, the primer layer deteriorates at the interface with the phosphor layer, and the adhesion deteriorates. It is considered that peeling occurs. On the other hand, if the softening point of the cured product is 250° C. or higher, changes in the properties of the resin are less likely to occur, thereby suppressing changes in stress balance and deterioration of the primer layer. As a result, it is considered that high adhesion can be maintained between the phosphor layer and the primer layer even when left in a high-temperature and high-humidity environment.
  • the polyurethane-based resin composition includes a one-component or two-component polyurethane-based resin obtained by reacting a polyfunctional isocyanate with a hydroxyl group-containing compound. combination of polyfunctional isocyanate and hydroxyl group-containing compound, blending ratio of polyfunctional isocyanate and hydroxyl group-containing compound, combination and blending ratio of multiple hydroxyl group-containing compounds with different softening points, NCO/OH ratio in polyurethane resin, By changing the molecular weight of the polyurethane-based resin, the softening point of the cured product of the resin composition that constitutes the primer layer can be changed. The softening point of the cured product of the resin composition constituting the primer layer can also be changed by adding a tacky-fire having a softening point different from that of the polyurethane resin.
  • Polyfunctional isocyanates include aromatic polyisocyanates such as tolylene diisocyanate, diphenylmethane diisocyanate, xylylene diisocyanate and polymethylene polyphenylene polyisocyanate; and aliphatic polyisocyanates such as hexamethylene diisocyanate and isophorone diisocyanate.
  • the polyfunctional isocyanate may be used as a modified product with a high molecular weight such as an adduct, burette, or isocyanurate, or as a block.
  • the modified form and blocked form may have functional groups such as hydroxyl group, carboxyl group, epoxy group, amino group, mercapto group, vinyl group, acryloyl group and methacryloyl group.
  • a (meth)acrylic group-containing polyisocyanate it is preferable to use a (meth)acrylic group-containing polyisocyanate.
  • the polyurethane-based resin of the present disclosure includes a polyurethane-based resin obtained by reacting a polyfunctional isocyanate having (meth)acrylic groups with a hydroxyl group-containing compound.
  • hydroxyl group-containing compounds include polyether polyols, polyester polyols, polyester polyurethane polyols, and polyacrylate polyols.
  • the NCO/OH ratio is preferably 1.1 or higher, more preferably 1.2 or higher, and even more preferably 1.3 or higher.
  • the NCO/OH ratio is preferably 4.0 or less, more preferably 3.0 or less.
  • the softening point of the polyurethane resin increases as the molecular weight of the polyurethane resin increases, and as a result, the softening point of the cured product of the resin composition is 250° C. or higher. becomes easier.
  • the molecular weight (weight average molecular weight) of the polyurethane resin is preferably 100 or more and 100,000 or less.
  • the content of the cured product of the polyurethane-based resin composition is preferably 40% by mass or more, more preferably 70% by mass or more, in the total amount of the primer layer.
  • the primer layer preferably further contains a silane coupling agent.
  • a silane coupling agent hydrolyzes the urethane bonds in the polyurethane-based resin when left in a high-temperature, high-humidity environment for a long period of time, resulting in a decrease in adhesion over time. has the effect of suppressing
  • adhesion between the primer layer and the barrier layer can be improved.
  • a silane coupling agent forms a silanol group (Si--OH) by hydrolysis of a functional group at one end of its molecule, usually a chloro, alkoxy, or acetoxy group.
  • a functional group at one end of its molecule usually a chloro, alkoxy, or acetoxy group.
  • the resin composition of the primer layer is modified with a covalent bond or the like to form a strong bond. For this reason, hydrolysis of the urethane bond is suppressed in a high-temperature, high-humidity environment, and deterioration of adhesion over time can be suppressed.
  • the adhesion between the primer layer and the phosphor layer and the adhesion between the barrier layer and the primer layer are controlled by the vinyl, methacryloxy, amino, epoxy, or mercapto organic functional groups at the other end of the silane coupling agent. can increase the adhesion of.
  • organofunctional silane monomers having binary reactivity can be used, such as ⁇ -chloropropyltrimethoxysilane, vinyltrichlorosilane, vinyltriethoxysilane, vinyl-tris( ⁇ -methoxyethoxy)silane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -(3,4-epoxycyclohexyl)ethyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, vinyltriacetoxysilane, ⁇ -mercaptopropyltri Methoxysilane, N- ⁇ (aminoethyl)- ⁇ -aminopropyltrimethoxysilane, N- ⁇ (aminoethyl)- ⁇ -aminopropylmethyldimethoxysilane, ⁇ -ureidopropyltriethoxysilane, bis( ⁇ -hydroxyethyltrimethoxys
  • the above silane coupling agent is preferably contained in an amount of 1% by mass or more, more preferably 2% by mass or more in the total amount of the primer layer.
  • the silane coupling agent is preferably contained in an amount of 30% by mass or less in the total amount of the primer layer, and 20% by mass or less. Containing is more preferable.
  • the surface of the primer layer (surface in contact with the phosphor layer) is subjected to corona discharge treatment, ozone treatment, low temperature plasma treatment using oxygen gas or nitrogen gas, etc., glow Surface treatment such as discharge treatment and oxidation treatment using chemicals or the like may be performed.
  • the primer layer may further contain a filler.
  • the filler has a role of adjusting the viscosity and the like of the coating liquid for forming the primer layer and improving the coating suitability and the like.
  • fillers include powders such as calcium carbonate, barium sulfate, alumina white, silica, talc, and glass frit, and resin powders.
  • the primer layer may further contain additives such as stabilizers, cross-linking agents, lubricants, UV absorbers, and others as necessary.
  • the thickness of the primer layer is not particularly limited, it is preferably 0.05 ⁇ m or more, more preferably 0.1 ⁇ m or more. In order to reduce distortion inside the primer layer, it is preferable that the primer layer is relatively thick. However, if the primer layer is too thick, the handleability and productivity decrease, so the thickness of the primer layer is preferably 10 ⁇ m or less, more preferably 3 ⁇ m or less.
  • the primer layer according to this embodiment preferably has a high total light transmittance measured based on JIS K 7361-1:1997 in order to efficiently convert light from the light source.
  • the primer layer according to the present embodiment has a total light transmittance of 85% or more measured according to JIS K 7361-1:1997 when the primer layer is formed on a PET film (thickness: 12 ⁇ m). and more preferably 90% or more.
  • the diffusion layer is a layer provided for the purpose of reducing the anisotropy of the output angle distribution of light and preventing sticking, and is a layer provided arbitrarily in the present disclosure.
  • the diffusion layer contains binder resin and filler. By embedding the filler itself in the binder resin and by exposing at least a portion of the filler from the binder resin to the surface of the layer to impart unevenness to the surface of the diffusion layer, the anisotropy of the light output angle distribution can be obtained. The effect of reducing the resistance is obtained.
  • the surface of the diffusion layer has an uneven shape, it has a role of preventing sticking even if the film for the wavelength conversion sheet or the wavelength conversion sheet comes into contact with each other during the manufacturing process of the film for the wavelength conversion sheet or the wavelength conversion sheet. .
  • the film for wavelength conversion sheets or the wavelength conversion sheet when produced by the winding method, the film for wavelength conversion sheets or the wavelength conversion sheet can be easily handled, and damage to the surface can be suppressed.
  • it when used as a display device, it also has a role of preventing sticking between the light guide plate or the diffusion plate and the wavelength conversion sheet, suppresses the occurrence of scratches due to rubbing between the light guide plate or the diffusion plate and the wavelength conversion sheet, and prevents the display from being damaged. It also has the effect of reducing the occurrence of poor appearance of the device.
  • the binder resin of the diffusion layer is not particularly limited as long as it satisfies the specifications required for the wavelength conversion sheet film and wavelength conversion sheet.
  • acrylic resins, epoxy resins, urethane resins, polyester resins, polyester acrylate resins, polyurethane acrylate resins, acrylic urethane resins, epoxy acrylate resins, and the like can be used.
  • the binder resin is preferably an acrylic resin.
  • the filler is preferably a resin filler from the viewpoint of the optical performance required for the film for wavelength conversion sheet and the wavelength conversion sheet.
  • the resin used for the filler include acrylic resins and polystyrene resins. From the viewpoint of improving the scratch resistance of the diffusion layer, the acrylic resin filler is particularly preferred.
  • the acrylic resin here means an ethylenically unsaturated monomer having at least one carboxyl group or carboxylic acid ester group selected from the group consisting of methacrylic acid, acrylic acid, methacrylic acid ester, and acrylic acid ester. It is a polymer contained as a monomer component.
  • the refractive index difference between the filler and the resin binder is preferably 0.5 or less, more preferably 0.3 or less, and even more preferably 0.1 or less.
  • the average particle diameter of the filler is preferably 1 ⁇ m or more and 50 ⁇ m or less, more preferably 1.5 ⁇ m or more and 10 ⁇ m or less.
  • the average particle diameter of the filler is 1 ⁇ m or more, at least a portion of the filler is exposed from the surface of the diffusion layer, thereby providing appropriate light diffusion and more effectively suppressing sticking. be able to.
  • the average particle diameter of the filler is 50 ⁇ m or less, the filler is less likely to detach from the diffusion layer, and deterioration of the function of the diffusion layer and damage caused by the detached filler can be suppressed.
  • the average particle size means the mass average value d50 in particle size distribution measurement by laser light diffraction method.
  • the content of the filler is preferably 5% by mass or more and 50% by mass or less, more preferably 10% by mass or more and 40% by mass or less, relative to the total amount of the diffusion layer.
  • the amount is 5% by mass or more, it is possible to provide appropriate light diffusibility and effectively prevent sticking.
  • the amount is 50% by mass or less, the optical properties required for the film for wavelength conversion sheet and the wavelength conversion sheet can be easily satisfied, and the film formability of the diffusion layer can be improved.
  • the diffusion layer may optionally contain additives such as stabilizers, curing agents, cross-linking agents, lubricants, UV absorbers, and others, as necessary.
  • the thickness of the diffusion layer is not particularly limited, and can be appropriately set according to the average particle size of the filler, the specifications required for the wavelength conversion sheet film and the wavelength conversion sheet, and the like.
  • the thickness of the diffusion layer is preferably 1.0 ⁇ m or more and 50.0 ⁇ m or less, more preferably 1.5 ⁇ m or more and 10.0 ⁇ m or less.
  • the thickness of the diffusion layer means the thickness of the resin portion other than the filler in the diffusion layer, and does not include the portion of the filler protruding above the resin.
  • the thickness of the anti-diffusion layer can be measured, for example, by observing the cross section with a scanning electron microscope or the like.
  • the film for wavelength conversion sheet of the present disclosure is produced by the following steps.
  • a barrier layer is formed on one surface of the substrate layer (or the first substrate). Note that the barrier layer forming step can be omitted.
  • the organic coating layer and the inorganic oxide layer are used as the barrier layer as illustrated in FIG.
  • An organic coating layer is formed on the material layer.
  • the surface of the base material layer (or the first base material) on which the barrier layer is to be formed may be previously subjected to the above-described surface treatment, or may be provided with an underlying layer.
  • the inorganic oxide layer can be formed by vapor deposition or a sol-gel method.
  • Methods for depositing inorganic oxides include physical vapor deposition methods (physical vapor deposition method, PVD method) such as vacuum deposition method, sputtering method, and ion plating method, plasma chemical vapor deposition method, thermal chemical vapor deposition method, etc.
  • a chemical vapor deposition method (Chemical Vapor Deposition method, CVD method) such as a phase growth method and a photochemical vapor deposition method can be used.
  • the organic coating layer can be formed by applying a coating agent containing the gas barrier composition and curing it by heating.
  • the coating agent is prepared by adding a solvent or the like to the gas barrier composition so as to obtain desired gas barrier properties, thickness, viscosity and the like.
  • Methods for applying the coating agent include roll coating, gravure coating, knife coating, dip coating, spray coating, and other coating methods.
  • the metal phosphate reactant layer can be formed by the method described in International Publication WO2011/122036.
  • a primer layer is formed on the substrate layer or the barrier layer.
  • the primer layer can be formed by applying a coating agent of a resin composition containing the polyurethane-based resin and curing the coating by heating.
  • the coating agent is prepared by adding a solvent or the like to the above coating agent so as to obtain desired thickness, viscosity, and the like.
  • Methods for applying the coating agent include roll coating, gravure coating, knife coating, dip coating, spray coating, and other coating methods.
  • the heating temperature is preferably in the range of 50°C or higher and 180°C or lower.
  • the method for producing a film for a wavelength conversion sheet of the present disclosure includes (2) a primer layer forming step, (3) adhesion It further has a step.
  • (3) Adhesion Step In the adhesion step, the surface of the first substrate opposite to the barrier layer and the second substrate are laminated via an adhesive layer. Specifically, the adhesive described above is applied to the surface of the first base material, the second base material is superimposed, and the adhesive layer is cured. Alternatively, after applying a coating agent containing a cross-linking agent and a resin to the surface of the first base material, the second base material is overlaid and the coating agent is cross-linked by heat or the like.
  • Adhesives or coating agents can be applied by roll coating, gravure coating, knife coating, dip coating, spray coating, other coating methods, or printing methods.
  • extrusion lamination may be performed by flowing a molten thermoplastic resin between the first and second substrates and then cooling to form the adhesive layer.
  • the diffusion layer is provided as shown in FIG. 1, it is preferable that the diffusion layer is formed in advance on the base material layer or the second base material.
  • a coating agent containing a resin, a filler, a solvent, etc. may be applied to the surface of the base material layer or the second base material opposite to the surface on which the barrier layer is provided, and cured to form the coating.
  • Methods for applying the coating agent include roll coating, gravure coating, knife coating, dip coating, spray coating, and other coating methods.
  • the film for a wavelength conversion sheet of the present disclosure can be used, for example, as a film for a wavelength conversion sheet for a surface light source.
  • surface light sources include backlight light sources for display devices such as liquid crystal display devices, backlight light sources for inspection equipment, and the like. That is, the film for wavelength conversion sheet of the present disclosure is "film for wavelength conversion sheet for wavelength conversion sheet of backlight light source of display device", "film for wavelength conversion sheet for wavelength conversion sheet of backlight light source of inspection equipment” ” etc. can be used. Furthermore, the film for wavelength conversion sheet of the present disclosure can also be used for "film for wavelength conversion sheet for gardening wavelength conversion sheet”.
  • wavelength conversion sheet for gardening for example, there is a sheet having a function of converting ultraviolet rays into a wavelength suitable for plant growth. Wavelengths suitable for plant growth include wavelengths suitable for photosynthesis.
  • a gardening wavelength conversion sheet can be installed, for example, on the ceiling of a greenhouse or glass room gardening facility.
  • FIG. 2 is a schematic cross-sectional view schematically explaining one embodiment of the wavelength conversion sheet of the present disclosure.
  • the wavelength conversion sheet 100 of FIG. 2 includes the wavelength conversion sheet films 10 (10a, 10b) shown in FIG.
  • the configuration of the wavelength conversion sheet of the present disclosure is not limited to FIG.
  • the wavelength conversion sheet of the present disclosure includes, for example, the film for wavelength conversion sheet shown in FIG. may Examples of the wavelength conversion sheet film of the present disclosure having a different laminated structure include a wavelength conversion sheet film having no barrier layer formed thereon, a wavelength conversion sheet film having a different barrier layer structure, and the like.
  • the film 10 for a wavelength conversion sheet of the present disclosure may be provided on at least one surface side of the phosphor layer 60 .
  • the wavelength conversion sheet film 10 (10a) of the present disclosure is provided on one surface side of the phosphor layer 60, and the wavelength conversion sheet film of the present disclosure is not provided on the other surface side of the phosphor layer 60. of the wavelength conversion sheet film may be provided.
  • the phosphor layer is a layer for adjusting the emission wavelength of light emitted from the backlight source.
  • the phosphor layer can be formed by laminating a sealing resin containing a phosphor. For example, it can be formed by applying a mixture containing a phosphor and a sealing resin to the surface of the base material layer and curing the mixture.
  • the phosphor layer contains one or more phosphors composed of quantum dots.
  • Quantum dots forming phosphors are semiconductor particles of a given size that have a quantum confinement effect. Quantum dots emit energy corresponding to the energy bandgap of the quantum dots when they absorb light from an excitation source and reach an energetically excited state. By adjusting the size of the quantum dots or the composition of the material, the energy bandgap can be adjusted to obtain different levels of wavelength bands of energy. Among other things, quantum dots can emit strong fluorescence in a narrow wavelength band. Therefore, the display device can be illuminated with light of the three primary colors with excellent color purity, so that the display device can have excellent color reproducibility.
  • the quantum dots preferably include quantum dots emitting secondary light of wavelengths corresponding to red, quantum dots emitting secondary light of wavelengths corresponding to green, and combinations thereof.
  • the quantum dots may contain quantum dots other than the quantum dots emitting secondary light with a wavelength corresponding to red and the quantum dots emitting secondary light with a wavelength corresponding to green.
  • the core of the quantum dot is a semiconductor nanometer-sized fine particle, and is not particularly limited as long as it is a material that produces a quantum confinement effect (quantum size effect).
  • Quantum dots include semiconductor fine particles whose emission color is regulated by their own particle size and semiconductor fine particles having a dopant.
  • core materials include MgS, MgSe, MgTe, CaS, CaSe, CaTe, SrS, SrSe, SrTe, BaS, BaSe, BaTe, ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, HgS, HgSe and II-VI semiconductor compounds such as HgTe; III-V semiconductors such as AlN, AlP, AlAs, AlSb, GaAs, GaP, GaN, GaSb, InN, InAs, InP, InSb, TiN, TiP, TiAs and TiSb Compounds; semiconductor compounds such as Group IV semiconductors such as Si, Ge and Pb, or semiconductor crystals containing semiconductors can be exemplified.
  • III-V semiconductors such as AlN, AlP, AlAs, AlSb, GaAs, GaP, GaN, GaSb, InN, InAs, InP, InSb, TiN
  • a semiconductor crystal containing a semiconductor compound containing three or more elements such as InGaP can also be used.
  • quantum dots made of semiconductor fine particles having dopants semiconductor crystals obtained by doping the above semiconductor compound with cations of rare earth metals such as Eu 3+ , Tb 3+ , Ag + , and Cu + or cations of transition metals are used. can also be used.
  • Semiconductor crystals such as CdS, CdSe, CdTe, InP, and InGaP are selected as the material for the core of quantum dots from the viewpoints of ease of preparation, controllability of particle size for obtaining light emission in the visible region, and fluorescence quantum yield. is preferred.
  • a quantum dot may consist of one type of semiconductor compound, or may consist of two or more types of semiconductor compounds.
  • a quantum dot may have a structure (core-shell structure) in which a core as a light-emitting portion is covered with a protective layer (shell).
  • a core-shell quantum dot When a core-shell quantum dot is used, a material with a higher bandgap than the semiconductor compound forming the core is used as the semiconductor constituting the shell so that excitons are confined in the core.
  • core-shell structures having such a bandgap magnitude relationship
  • core-shell structures having such a bandgap magnitude relationship
  • CdSe/ZnS, CdSe/ZnSe, CdSe/CdS, CdTe/CdS InP/ZnS, Gap/ZnS, Si/ZnS, InN/GaN, InP/CdSSe, InP/ZnSeTe, InGaP/ZnSe, InGaP/ZnS, Si/AlP, InP/ZnSTe, InGaP/ZnSTe, InGaP/ZnSSe and the like.
  • the size of the quantum dots may be appropriately controlled by the material forming the quantum dots so as to obtain light of a desired wavelength.
  • Quantum dots have a larger energy bandgap as the particle size decreases. That is, as the crystal size decreases, the quantum dot emission shifts to the blue side, that is, to the higher energy side.
  • the particle size (diameter) of the quantum dots is preferably in the range of 0.5 nm or more and 20 nm or less, and particularly preferably in the range of 1 nm or more and 10 nm or less. It should be noted that the narrower the size distribution of the quantum dots, the clearer the emission color can be obtained.
  • the shape of the quantum dots is not particularly limited, and may be, for example, spherical, rod-like, disk-like, or other shapes. If the quantum dots are not spherical, the particle size of the quantum dots can be the value of a true sphere having the same volume.
  • the quantum dots may be coated with resin.
  • Quantum dot content is adjusted appropriately according to the thickness of the phosphor layer, the light recycling rate in the backlight, the desired color tone, etc. If the thickness of the phosphor layer is within the range described later, the content of the quantum dots is 0.01 parts by mass or more and 1.0 parts by mass or less with respect to 100 parts by mass of the sealing resin of the phosphor layer. preferable.
  • Examples of the sealing resin for the phosphor layer include a cured product of a thermosetting resin composition and a cured product of an ionizing radiation-curable resin composition.
  • a cured product of a thermosetting resin composition and a cured product of an ionizing radiation-curable resin composition are preferred, and a cured product of an ionizing radiation-curable resin composition is more preferred.
  • thermosetting resin composition is a composition containing at least a thermosetting resin, and is a resin composition that is cured by heating.
  • Thermosetting resins include acrylic resins, urethane resins, phenol resins, urea melamine resins, epoxy resins, unsaturated polyester resins, silicone resins, and the like. These may be used alone, or one or more of them may be mixed and used. If necessary, a curing agent is added to these curable resins in the thermosetting resin composition.
  • the ionizing radiation-curable resin composition is a composition containing a compound having an ionizing radiation-curable functional group (hereinafter also referred to as "ionizing radiation-curable compound").
  • the ionizing radiation-curable functional group examples include ethylenically unsaturated bond groups such as (meth)acryloyl groups, vinyl groups, and allyl groups, epoxy groups, oxetanyl groups, etc. Among them, ethylenically unsaturated bond groups are preferred. . Also, among the ethylenically unsaturated bond groups, a (meth)acryloyl group is preferred.
  • An ionizing radiation-curable compound having a (meth)acryloyl group is hereinafter referred to as a (meth)acrylate compound. That is, the sealing resin preferably contains a cured product of a composition containing a (meth)acrylate compound.
  • (meth)acrylate refers to methacrylate and acrylate.
  • ionizing radiation refers to electromagnetic waves or charged particle beams that have energy quanta capable of polymerizing or cross-linking molecules, usually ultraviolet (UV) or electron beam (EB).
  • electromagnetic waves such as X-rays and ⁇ -rays
  • charged particle beams such as ⁇ -rays and ion beams can also be used.
  • the ionizing radiation-curable compound may be a monofunctional ionizing radiation-curable compound having only one of the above functional groups, or may be a polyfunctional ionizing radiation-curable compound having two or more of the above functional groups. , or a mixture thereof.
  • polyfunctional ionizing radiation-curable compounds are preferred, and polyfunctional (meth)acrylate compounds having two or more (meth)acryloyl groups are more preferred.
  • the sealing resin preferably contains a cured product of a polyfunctional ionizing radiation-curable compound, and more preferably contains a cured product of a polyfunctional (meth)acrylate compound.
  • the polyfunctional (meth)acrylate compound may have an alkyleneoxy group.
  • the alkyleneoxy group for example, an alkyleneoxy group having 2 to 4 carbon atoms is preferable, an alkyleneoxy group having 2 or 3 carbon atoms is more preferable, and an alkyleneoxy group having 2 carbon atoms is even more preferable.
  • the polyfunctional (meth)acrylate compound having an alkyleneoxy group may be a polyfunctional (meth)acrylate compound having a polyalkyleneoxy group containing a plurality of alkyleneoxy groups.
  • the number of alkyleneoxy groups in one molecule is preferably 2 to 30, more preferably 2 to 20, More preferably 3 to 10, even more preferably 3 to 5.
  • the polyfunctional (meth)acrylate compound When the polyfunctional (meth)acrylate compound has an alkyleneoxy group, it preferably has a bisphenol structure. This tends to improve the heat resistance of the cured product.
  • the bisphenol structure includes, for example, a bisphenol A structure and a bisphenol F structure, with the bisphenol A structure being preferred.
  • Polyfunctional (meth)acrylate compounds having an alkyleneoxy group include, among others, ethoxylated bisphenol A type di(meth)acrylate, propoxylated bisphenol A type di(meth)acrylate and propoxylated ethoxylated bisphenol A type di(meth) Acrylates are preferred, and ethoxylated bisphenol A type di(meth)acrylates are more preferred.
  • the ionizing radiation-curable compound may be a monomer, an oligomer, a low-molecular-weight polymer, or a mixture thereof.
  • the ionizing radiation-curable compound is an ultraviolet-curable compound
  • the ionizing radiation-curable composition preferably contains additives such as photopolymerization initiators and photopolymerization accelerators.
  • the phosphor layer may contain internal diffusion particles. Both organic particles and inorganic particles can be used as the internal diffusion particles. Examples of organic particles include particles made of polymethyl methacrylate, acrylic-styrene copolymer, melamine resin, polycarbonate, polystyrene, polyvinyl chloride, benzoguanamine-melamine-formaldehyde condensate, silicone resin, fluororesin, polyester, and the like. . Examples of inorganic fine particles include fine particles made of silica, alumina, zirconia, titania, and the like. Examples of the shape of the internal diffusion particles include spherical, disk-like, rugby ball-like, and amorphous shapes. Also, the internal diffusion particles may be hollow particles, porous particles, or solid particles.
  • the content of the internal diffusion particles is preferably 1 part by mass or more and 40 parts by mass or less, more preferably 3 parts by mass or more and 30 parts by mass or less, with respect to 100 parts by mass of the sealing resin.
  • the average particle size of the internal diffusion particles is preferably 1 ⁇ m or more and 7 ⁇ m or less, more preferably 1 ⁇ m or more and 3 ⁇ m or less.
  • the thickness of the phosphor layer is preferably 10 ⁇ m or more and 200 ⁇ m or less, more preferably 20 ⁇ m or more and 150 ⁇ m or less, and even more preferably 30 ⁇ m or more and 130 ⁇ m or less.
  • the wavelength conversion sheet of the present disclosure can be produced using at least one film for wavelength conversion sheet produced by the production method described above.
  • a method of manufacturing a wavelength conversion sheet having a structure in which a phosphor layer is sandwiched between films for a wavelength conversion sheet of the present disclosure will be exemplified.
  • a mixture (ink) containing a phosphor and a sealing resin is applied to the surface of the primer layer of the film for wavelength conversion sheet of the present disclosure.
  • Examples of the method of applying the mixed liquid (ink) include roll coating, gravure coating, knife coating, dip coating, spray coating, and other coating methods.
  • the phosphor layer is brought into contact with the primer layer of another film for a wavelength conversion sheet of the present disclosure.
  • the mixed liquid (ink) is cured by heat or the like to obtain a wavelength conversion sheet.
  • the backlight of the present disclosure includes at least one light source emitting primary light, an optical plate positioned adjacent to the light source for guiding or diffusing the light, and a wavelength In the backlight provided with a conversion sheet (quantum dot sheet), the wavelength conversion sheet is the above-described wavelength conversion sheet of the present disclosure.
  • the backlight 200 of the present disclosure either the edge light type backlight shown in FIG. 3 or the direct type backlight shown in FIG. 4 can be adopted.
  • the light guide plate 121 has, for example, a substantially flat plate-like shape formed so that at least one surface is a light incident surface and one surface substantially perpendicular thereto is a light emitting surface.
  • the light guide plate is mainly made of a matrix resin selected from highly transparent resins such as polymethyl methacrylate. Resin particles having a refractive index different from that of the matrix resin may be added to the light guide plate, if necessary.
  • Each surface of the light guide plate may have a complicated surface shape instead of a uniform plane, and may be provided with a dot pattern or the like.
  • the optical plate 120 used in the direct type backlight 202 in FIG. 4 is an optical member (light diffusing material 122) having light diffusing properties for making the pattern of the light source 110 difficult to see.
  • the light diffusing material 122 for example, a milky white resin plate having a thickness of about 1 to 3 mm can be used.
  • the edge light type and direct type backlights may include a reflector, a light diffusion film, a prism sheet, a brightness enhancement film (BEF) and a reflective type backlight, depending on the purpose.
  • BEF brightness enhancement film
  • One or more members selected from polarizing films (DBEF) and the like may be provided.
  • the reflector is arranged on the side opposite to the light exit surface of the optical plate.
  • a light diffusion film, a prism sheet, a brightness enhancement film and a reflective polarizing film are arranged on the light exit side of the optical plate.
  • a configuration including one or more members selected from a reflector, a light diffusion film, a prism sheet, a brightness enhancement film, a reflective polarizing film, and the like. can be done.
  • the light source 110 is a light emitter that emits primary light, and preferably uses a light emitter that emits primary light with a wavelength corresponding to blue.
  • the primary light having a wavelength corresponding to blue preferably has a peak wavelength in the range of 380 nm to 480 nm.
  • the peak wavelength is more preferably 450 nm ⁇ 7 nm, more preferably 450 nm ⁇ 5 nm, more preferably 450 nm ⁇ 3 nm, and more preferably 450 nm ⁇ 1 nm.
  • the light source 110 is preferably an LED light source, and more preferably a monochromatic blue LED light source, from the viewpoint of simplification and downsizing of the device in which the backlight is installed.
  • a red phosphor may be applied onto a blue monochromatic LED light source to provide a light source exhibiting blue and red colors.
  • Display device Examples of the display device include a liquid crystal display device.
  • a liquid crystal display device includes a backlight and a liquid crystal panel.
  • the backlight is the backlight of the present disclosure described above.
  • the liquid crystal panel is not particularly limited, and a general-purpose liquid crystal panel for a liquid crystal display device can be used.
  • a liquid crystal panel having a general structure in which a liquid crystal layer is sandwiched between glass plates specifically, a display type such as TN, STN, VA, IPS, or OCB can be used.
  • a liquid crystal display device further includes a polarizing plate, a color filter, and the like.
  • polarizing plate General-purpose polarizing plates and color filters can be used.
  • the wavelength conversion sheet of the present disclosure has particularly excellent adhesion between the wavelength conversion sheet film and the phosphor layer. Therefore, when the wavelength conversion sheet of the present disclosure is applied to a display device (liquid crystal display device), deterioration of the phosphor layer due to invasion of water vapor or oxygen from the external environment can be effectively suppressed. As a result, a display device having a backlight source with excellent environmental stability can be obtained.
  • Softening Point Measurement The softening points of the primer layers of the wavelength conversion sheet films of Examples and Comparative Examples were measured by the following steps. NanoTA manufactured by ANASYS INSTRUMENT was used as a measuring device, and PR-EX-AN2-300-5 manufactured by ANASYS INSTRUMENTS was used as a thermal probe. Before measurement, calibration was performed by the following steps. NanoTA Calibration Samples manufactured by BRUKER were prepared as standard samples. The standard sample includes polycaprolactone (softening point: 55° C.), polyethylene (softening point: 116° C.), and polyethylene terephthalate (softening point: 235° C.), all of which have known softening points.
  • a thermal probe was brought into contact with the primer layer surface of the films for wavelength conversion sheets of Examples and Comparative Examples. After that, while the thermal probe was in contact with the substrate, the substrate was heated under the following conditions, and a graph (thermal expansion curve) representing the displacement of the thermal probe with respect to the temperature was obtained. If the surface of the primer layer is not exposed, the primer layer may be measured from a cross section formed with a diamond knife manufactured by DiATOME after embedding the sample in resin. Measurement start temperature: 40°C Measurement end temperature: 350°C Heating rate: 5°C/sec In the obtained thermal expansion curve, the temperature at the peak of the curve was obtained. The above measurements were performed on arbitrary 10 points on the surface of the primer layer of the films for wavelength conversion sheets of Examples and Comparative Examples. The average value of the obtained temperatures was taken as the softening point. Table 1 shows the results.
  • sample 2-1 Production of film for wavelength conversion sheet ⁇ Example 1>
  • an inorganic oxide layer was formed by vapor-depositing an aluminum oxide thin film (AlOx, target thickness: 8 nm) on a PET film (thickness: 12 ⁇ m) by a vacuum vapor deposition method.
  • a solution A was prepared by mixing tetraethoxysilane with a solution (pH 2.2) of water, isopropyl alcohol and 0.5N hydrochloric acid while cooling to 10°C.
  • a solution B was prepared by mixing polyvinyl alcohol with a saponification value of 99% or more and isopropyl alcohol.
  • Solution A and solution B were mixed to prepare a coating liquid for forming an organic coating layer (solid content: 5%).
  • the coating solution for forming an organic coating layer was applied onto the inorganic oxide layer by gravure printing and heat-treated at 180° C. for 60 seconds to form an organic coating layer having a thickness of 180 nm.
  • a primer layer-forming coating liquid having the following formulation was prepared.
  • the NCO/OH ratio of the coating liquid was 1.3.
  • Acrylic polyol resin 1 50 parts by mass ⁇ Modified polyisocyanate having an acrylic group 80 parts by mass ⁇ Silane coupling agent (3-glycidoxypropyltrimethoxysilane) 2.0 parts by mass ⁇ Silica powder (average particle size 3 ⁇ m) 2.0 parts by mass
  • a coating solution for forming a primer layer was applied onto the organic coating layer.
  • the coating amount of the coating liquid was 0.5 g/m 2 .
  • it was dried at 80° C. for 60 seconds to form a primer layer with a thickness of 0.4 ⁇ m.
  • a urethane-based adhesive (manufactured by Rock Paint Co., Ltd., trade name "RU-004, H-1") is applied to the surface opposite to the surface on which the inorganic oxide layer to the primer layer of the first base material are formed. It was applied by printing and dried to form an adhesive layer with a thickness of 4 ⁇ m.
  • a PET film (thickness: 100 ⁇ m) was placed as a second substrate on the adhesive layer side of the first substrate, and the first substrate was applied under the conditions of a nip pressure of 0.2 MPa and a line speed of 50 m / min.
  • a film for a wavelength conversion sheet of Example 1 was produced by bonding the material and the second base material together.
  • Example 2 A barrier film of Example 2 was produced in the same steps as in Example 1, except that a primer layer-forming coating liquid having the following formulation was used.
  • the NCO/OH ratio of the coating liquid was 1.3.
  • the coating amount of the coating liquid was 0.5 g/m 2 .
  • ⁇ Acrylic polyol resin 1 40 parts by mass ⁇ Polyester urethane resin 20 parts by mass ⁇ Modified polyisocyanate having an acrylic group 70 parts by mass ⁇ Silane coupling agent (3-glycidoxypropyltrimethoxysilane) 2.0 parts by mass ⁇ Silica powder (average particle size 3 ⁇ m) 2.0 parts by mass
  • Example 3 A barrier film of Example 3 was produced in the same steps as in Example 1, except that a primer layer-forming coating liquid having the following formulation was used.
  • the NCO/OH ratio of the coating liquid was 4.0.
  • the coating amount of the coating liquid was 0.5 g/m 2 .
  • ⁇ Acrylic polyol resin 1 15 parts by mass ⁇ Polyester urethane resin 20 parts by mass ⁇ Modified polyisocyanate having an acrylic group 60 parts by mass ⁇ Silane coupling agent (3-glycidoxypropyltrimethoxysilane) 2.0 parts by mass ⁇ Silica powder (average particle size 3 ⁇ m) 2.0 parts by mass
  • Example 4 A barrier film of Example 4 was produced in the same steps as in Example 1, except that a primer layer-forming coating liquid having the following formulation was used.
  • the NCO/OH ratio of the coating liquid was 1.3.
  • the coating amount of the coating liquid was 0.5 g/m 2 .
  • Acrylic polyol resin 2 is a resin having a larger molecular weight than acrylic polyol resin 1 .
  • Example 5 A barrier film of Example 5 was produced in the same steps as in Example 1, except that a primer layer-forming coating liquid having the following formulation was used.
  • the NCO/OH ratio of the coating liquid was 4.0.
  • the coating amount of the coating liquid was 0.5 g/m 2 .
  • ⁇ Acrylic polyol resin 2 10 parts by mass ⁇ Polyester urethane resin 20 parts by mass ⁇ Modified polyisocyanate having an acrylic group 30 parts by mass ⁇ Silane coupling agent (3-glycidoxypropyltrimethoxysilane) 2.0 parts by mass ⁇ Silica powder (average particle size 3 ⁇ m) 2.0 parts by mass
  • Comparative Example 1 A barrier film of Comparative Example 1 was produced in the same steps as in Example 1, except that a primer layer-forming coating liquid having the following formulation was used.
  • the NCO/OH ratio of the coating liquid was 1.3.
  • the coating amount of the coating liquid was 0.5 g/m 2 .
  • ⁇ Polyester urethane resin 20 parts by mass ⁇ Modified polyisocyanate having an acrylic group 5 parts by mass ⁇ Silane coupling agent (3-glycidoxypropyltrimethoxysilane) 2.0 parts by mass ⁇ Silica powder (average particle size 3 ⁇ m) 2 .0 part by mass
  • ⁇ Comparative Example 2> A barrier film of Comparative Example 2 was produced in the same steps as in Example 1, except that a primer layer-forming coating liquid having the following formulation was used.
  • the NCO/OH ratio of the coating liquid was 8.0.
  • the coating amount of the coating liquid was 0.5 g/m 2 .
  • ⁇ Polyester urethane resin 20 parts by mass ⁇ Modified polyisocyanate having an acrylic group 30 parts by mass ⁇ Silane coupling agent (3-glycidoxypropyltrimethoxysilane) 2.0 parts by mass ⁇ Silica powder (average particle size 3 ⁇ m) 2 .0 part by mass
  • a barrier film of Comparative Example 3 was produced in the same steps as in Example 1, except that a primer layer-forming coating liquid having the following formulation was used.
  • the NCO/OH ratio of the coating liquid was 1.3.
  • the coating amount of the coating liquid was 0.5 g/m 2 .
  • ⁇ Acrylic polyol resin 1 15 parts by mass ⁇ Polyester urethane resin 20 parts by mass ⁇ Modified polyisocyanate having an acrylic group 20 parts by mass ⁇ Silane coupling agent (3-glycidoxypropyltrimethoxysilane) 2.0 parts by mass ⁇ Silica powder (average particle size 3 ⁇ m) 2.0 parts by mass
  • ⁇ Comparative Example 4> A barrier film of Comparative Example 4 was produced in the same steps as in Example 1, except that a primer layer-forming coating liquid having the following formulation was used.
  • the NCO/OH ratio of the coating liquid was 1.3.
  • the coating amount of the coating liquid was 0.5 g/m 2 .
  • a barrier film of Comparative Example 5 was produced in the same steps as in Example 1, except that a primer layer-forming coating liquid having the following formulation was used.
  • the NCO/OH ratio of the coating liquid was 4.0.
  • the coating amount of the coating liquid was 0.5 g/m 2 .
  • ⁇ Acrylic polyol resin 1 15 parts by mass ⁇ Polyester urethane resin 20 parts by mass ⁇ Modified polyisocyanate having no acrylic group 40 parts by mass ⁇ Silane coupling agent (3-glycidoxypropyltrimethoxysilane) 2.0 parts by mass ⁇ Silica powder (average particle size 3 ⁇ m) 2.0 parts by mass
  • wavelength conversion sheet A phosphor (quantum dots with an average particle diameter of 3 to 5 nm) whose core is cadmium selenide (CdSe) and whose shell is zinc sulfide (ZnS) is coated with a sealing resin (ionizing radiation-curable urethane acrylate resin ) was mixed with 100 parts by mass of the sealing resin so that the amount of the phosphor was 1 part by mass to prepare a mixed liquid (ink) for forming a phosphor layer.
  • a sealing resin ionizing radiation-curable urethane acrylate resin
  • the above ink was applied to the primer layer of the films for wavelength conversion sheets of Examples and Comparative Examples so as to have a thickness of 100 ⁇ m (after drying) to form a phosphor layer.
  • the wavelength conversion sheet films of other examples and comparative examples (each of which is the same as the ink-coated barrier film) were laminated on the phosphor layer so that the primer layer was in contact with the phosphor layer.
  • the wavelength conversion sheets of Examples 1 to 5 and Comparative Examples 1 to 5 were produced by UV curing the sealing resin of the phosphor layer.
  • Example 1 and 4 the peak of the curve was not seen in the measurement temperature range. That is, it was determined that the primer layers of Examples 1 and 4 had a softening point of the cured product of the resin composition exceeding 350°C. In Examples 1 to 5, the softening point of the cured product of the resin composition of the primer layer was 250° C. or higher. In the wavelength conversion sheet of Example 1-5, the adhesion after 250 hours was improved from the initial adhesion. In addition, even after 500 hours had elapsed, high adhesion was maintained. On the other hand, in Comparative Examples 1-5, the softening point of the cured product of the resin composition of the primer layer was low. The wavelength conversion sheet of Comparative Example 1-5 had an initial adhesiveness comparable to that of Example 1-5, but the adhesiveness significantly decreased after 250 hours.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Laminated Bodies (AREA)
  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Optical Filters (AREA)

Abstract

波長変換シートとしたときに蛍光体層との密着性により優れた波長変換シート用フィルム、該フィルムを有する波長変換シート、該波長変換シートを有するバックライト及び表示装置を提供する。基材(20)上に、プライマー層(30)を有し、前記プライマー層(30)がポリウレタン系樹脂を含む樹脂組成物の硬化物を含有し、前記硬化物の軟化点が250℃以上である、波長変換シート用フィルム(10)。

Description

波長変換シート用フィルム、波長変換シート、バックライト、及び、表示装置
 本開示は、波長変換シートに用いられるフィルムに関する。また本開示は、該フィルムを有する波長変換シート、並びに、該波長変換シートを備えるバックライト及び表示装置に関する。
 近年、パーソナルコンピューターの発達、特に携帯用パーソナルコンピューターの発達に伴って、液晶表示装置の需要が増加している。また、最近においては家庭用の液晶テレビの普及率も高まっており、スマートフォン、タブレット端末も広く普及しつつあることから、液晶表示装置の市場は拡大する状況にある。
 このような液晶表示装置は、一般的に、カラーフィルタ、対向基板、これらに挟持された液晶層を有する液晶セル部を有し、さらに、バックライト部とよばれる光源を有するものである。
 また、最近では、量子ドットの技術を用いたバックライト部材の開発も進められている。量子ドットとは、半導体のナノメートルサイズの微粒子を言う。また、量子ドットは、電子や励起子がナノメートルサイズの小さな結晶内に閉じ込められる量子閉じ込め効果(量子サイズ効果)により、発光波長の可視領域全体に渡って調整することができる。量子ドットは、狭い波長帯で強い蛍光を発生することができるため、表示装置が色純度の優れた三原色の光で照明することができるようになる。そのため、量子ドットを用いたバックライトによって、優れた色再現性を有する表示装置とすることができる。
 この表示装置のバックライト光源に用いられる波長変換シートは、半導体のナノメートルサイズの蛍光体微粒子を樹脂の層に分散させた蛍光体層と、蛍光体層を保護するために蛍光体層の表面に形成されるフィルムと、LED光源と組み合わせた構成を有する。当該フィルムは、蛍光体層の劣化を抑制するため、水蒸気バリア性を有する。例えば、蛍光体が含有される蛍光体層にバリアフィルムを積層した波長変換シートであって、バリアフィルムが所定のポリエチレンテレフタレートフィルムの片面にバリア層を積層した波長変換シート及びそれを用いたバックライトユニットが開発されている(特許文献1)。
 蛍光体層への水蒸気の侵入を更に抑制するために、蛍光体層とバリアフィルムとの密着性を向上させることが試みられている。例えば特許文献2及び特許文献3には、ポリウレタン系樹脂組成物を含むプライマー層を用いることにより、高温高湿環境下でも蛍光体層との密着性に優れるバリアフィルムを開示している。
国際公開第2015/037733号 特開2018-13724号公報 特開2019-126924号公報
 特許文献2,3の波長変換シートは、60℃90%RHの環境に500時間放置する試験を行った後でも、蛍光体層との密着性が優れていた。しかしながら、上記環境で更に放置し続けると、波長変換シートと蛍光体層との間で剥離が発生した。この剥離の発生により、酸素及び水蒸気が波長変換シートの内部に侵入し、蛍光体層が劣化することが問題となっていた。
 本開示は上記課題に鑑みなされたものであり、波長変換シートとしたときに蛍光体層との密着性により優れた波長変換シート用フィルム、該フィルムを有する波長変換シート、該波長変換シートを有するバックライト及び表示装置を提供することを目的とする。
 本発明者らは、種々の配合のプライマー層を形成したフィルムについて、その物性と蛍光体層との長期環境試験後の密着性との関連を評価した。その結果、硬化物としたときの軟化点が所定値以上であるポリウレタン系樹脂組成物を用いた場合に、60℃90%RHの環境下で500時間を超えて長期間放置しても、蛍光体層との優れた密着性を担保できることを見出し、本開示を完成するに至った。
 すなわち、上記課題を解決するために、本開示は、以下の[1]~[10]を提供する。
[1] 基材上に、プライマー層を有し、前記プライマー層がポリウレタン系樹脂を含む樹脂組成物の硬化物を含有し、前記硬化物の軟化点が250℃以上である、波長変換シート用フィルム。
[2] 前記樹脂組成物は、水酸基に対するイソシアネート基のモル比(NCO/OH比)が1.1以上である、[1]に記載の波長変換シート用フィルム。
[3] 前記ポリウレタン系樹脂が、(メタ)アクリル基を有する多官能イソシアネートと、ヒドロキシル基含有化合物との反応によって得られるポリウレタン系樹脂を含む、[1]または[2]に記載の波長変換シート用フィルム。
[4] 前記樹脂組成物が、シランカップリング剤を含む、[1]~[3]のいずれかに記載の波長変換シート用フィルム。
[5] 前記基材と前記プライマー層との間にバリア層を更に含む、[1]~[4]のいずれかに記載の波長変換シート用フィルム。
[6] 前記バリア層が、無機酸化物層と、有機被覆層とを含み、前記有機被覆層が前記プライマー層と接触する、[5]に記載の波長変換シート用フィルム。
[7] 前記バリア層が、金属酸化物とリン化合物とを含む組成物の反応物を含む層である、[5]に記載の波長変換シート用フィルム。
[8] 蛍光体を含む蛍光体層の少なくとも一方の表面側に、前記プライマー層と前記蛍光体層とが接触するように[1]~[7]のいずれかに記載のフィルムが設けられる、波長変換シート。
[9] 一次光を放出する少なくとも1つの光源と、前記光源に隣接して配置され、導光又は拡散のための光学板と、前記光学板の光出射側に配置された波長変換シートとを備えたバックライトであって、前記波長変換シートが[8]に記載の波長変換シートであるバックライト。
[10] バックライト及び液晶パネルを備えた表示装置であって、前記バックライトが[9]に記載のバックライトである表示装置。
 本開示に依れば、高温高湿環境下で長期間放置しても蛍光体層との優れた密着性を有し、蛍光体層の劣化を抑制することができる波長変換シートを得ることができる。当該波長変換シートを用いることにより、蛍光体層の劣化が発生しにくいバックライト及び表示装置を得ることができる。
本開示の波長変換シート用フィルムの一実施形態を模式的に説明する断面概略図である。 本開示の波長変換シートの一実施形態を模式的に説明する断面概略図である。 本開示のバックライトの一実施形態を示す断面図である。 本開示のバックライトの他の実施形態を示す断面図である。
 以下、本開示の波長変換シート用フィルムについて、詳細に説明する。なお、本明細書中の「AA~BB」との数値範囲の表記は、「AA以上BB以下」であることを意味する。
[波長変換シート用フィルム]
 波長変換シート用フィルムは、波長変換シートの蛍光体層を保護するとともに、外部環境から酸素及び水蒸気が波長変換シート内部に侵入して蛍光体層に到達し、該蛍光体層が劣化することを防止する役割を果たす。
 本開示の波長変換シート用フィルムは、基材上に、プライマー層を有し、前記プライマー層がポリウレタン系樹脂を含む樹脂組成物の硬化物を含有し、前記硬化物の軟化点が250℃以上である。
 図1は、本開示の波長変換シート用フィルムの一実施形態を模式的に説明する断面概略図である。波長変換シート用フィルム10は、基材層20上にプライマー層30を有する。図1に示すように、波長変換シート用フィルム10は、基材層20とプライマー層30との間にバリア層40を有していてもよい。図1に示すように、基材層20におけるプライマー層30が形成される面と反対側の面に、拡散層50が設けられていてもよい。
 本開示の波長変換シート用フィルムは、波長変換シートとして用いたときに光源からの光を効率よく変換するために、JIS K 7361-1:1997に基づき測定される全光線透過率が高いことが好ましい。具体的には、本開示の波長変換シート用フィルムは、JIS K 7361-1:1997に基づき測定される全光線透過率が85%以上であることが好ましく、90%以上であることがより好ましい。
 本開示の波長変換シート用フィルムのガスバリア性は、後述する蛍光体の劣化を考慮した要求により設定することができる。具体的に、波長変換シートに用いられる蛍光体が酸素や水蒸気等で劣化しやすい性質を有している場合には、波長変換シート用フィルムは高いガスバリア性を有していることが好ましい。一方、蛍光体が劣化しにくいのであれば、波長変換シート用フィルムに高いガスバリア性は要求されない。
 波長変換シート用フィルムのJIS K 7129-2:2006による酸素透過度の値は、20cc/m・day・atm以下であることが好ましく、10cc/m・day・atm以下であることがより好ましく、5cc/m・day・atm以下であることが更に好ましく、2cc/m・day・atm以下であることが特に好ましい。また、波長変換シート用フィルムのJIS K 7129:2008 B法による水蒸気透過度の値は、20g/m・day以下であることが好ましく、10g/m・day以下であることがより好ましく、5g/m・day以下であることが更に好ましく、2g/m・day以下であることが特に好ましい。
 酸素透過度は、例えば、MOCON社製の酸素透過率測定装置「OX-TRAN」にて測定できる(モコン法)。また、水蒸気透過度は、例えば、MOCON社製の水蒸気透過率測定装置「PERMATRAN」にて測定できる。酸素透過度の測定時の条件は、温度23℃、相対湿度90%とする。水蒸気透過度の測定時の条件は、温度40℃、相対湿度90%とする。
 以下、波長変換シート用フィルムの各層について説明する。
[基材層]
 基材層は、主としてプライマー層の支持体としての役割を担う。基材層は、高い光透過性を有するものが好適である。具体的には、基材層は、JIS K 7361-1:1997に準拠する全光線透過率が85%以上であることが好ましく、90%以上であることがより好ましい。
 基材層は、波長変換シートの機能を害することのない樹脂フィルムであれば、材質は特に制限されない。基材層として、例えば、ポリイミド(PI)、ポリエチレンナフタレート(PEN)、ポリエチレンテレフタレート(PET)、ポリエチレンブチレート(PBT)、ポリプロピレン(PP)、ナイロン樹脂、非晶ポリアリレート、ポリサルフォン、ポリエーテルサルフォン、ポリエーテルイミド、フッ素樹脂、液晶ポリマー等の樹脂を挙げることができる。透明性、耐熱性等を得るためには、基材層としてポリエチレンナフタレート(PEN)、ポリエチレンテレフタレート(PET)を用いることが好ましい。また、上述した酸素透過度及び水蒸気透過度を得るために、基材層としてポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリプロピレン(PP)、ナイロン樹脂を用いることが好ましい。
 基材層は、単層からなる樹脂フィルムであってもよく、複数の樹脂フィルムが接着層を介して接着されたものであってもよい。図1に示す例では、基材層20は、第1の基材20-1と、第2の基材20-2とが、接着層22を介して接着されている。この場合、第1の基材20-1は、プライマー層30を形成する際の支持体となる。第2の基材20-2は、基材層20全体の厚みを増し、波長変換シート用フィルム10に剛性を与える役割を果たす。
 基材層全体の厚みは特に制限されるものではないが、8μm以上200μm以下であることが好ましく、8μm以上150μm以下であることがより好ましい。波長変換シート用フィルムを巻き取り方式で製造する場合には、基材層全体の厚みは125μm以下であることが好ましい。一方、基材層全体の厚みを増すことにより、基材層によって酸素及び水蒸気に対するガスバリア性を得ることができる。この場合、バリア層を省略することもできる。バリア層を設けずに基材層により要求されるガスバリア性を担保するために、基材層全体の厚みは、50μm以上であることが好ましく、75μm以上であることがより好ましい。
 複数の樹脂フィルムで基材層を構成する場合、プライマー層の支持体となる第1の基材の厚みは、8μm以上50μm以下であることが好ましく、8μm以上25μm以下であることがより好ましく、8μm以上20μm以下であることが更に好ましい。第1の基材が上記厚みであると、プライマー層を巻き取り方式で製造するにあたり、ハンドリング性が良好となる。また、第2の基材の厚みは、8μm以上150μm以下であることが好ましく、8μm以上100μm以下であることがより好ましい。第2の基材が上記厚みであると、波長変換シート用フィルムに適度な剛性を与えることができる。更に、波長変換シート用フィルムを巻き取り方式で製造するにあたり、ハンドリング性が良好となる。なお、上記のように基材層によりガスバリア性を担保する場合には、第2の基材の厚みは、40μm以上であることが好ましく、50μm以上であることがより好ましい。
 接着層22を構成する接着剤は、基材層同士の良好な接着性と、波長変換シートに要求される光学性能を満たすものであれば、特に制限されない。例えば、接着剤としては、ポリ酢酸ビニル系接着剤;アクリル酸エチル、ブチル、2-エチルヘキシルエステル等のホモポリマー、あるいは、これらとメタクリル酸メチル、アクリロニトリル、スチレン等との共重合体等からなるポリアクリル酸エステル系接着剤;シアノアクリレ-ト系接着剤;酢酸ビニル、アクリル酸エチル、アクリル酸、メタクリル酸等のモノマーとエチレンとの共重合体等からなるエチレン共重合体系接着剤;セルロ-ス系接着剤;ポリエステル系接着剤;ポリアミド系接着剤;ポリイミド系接着剤;尿素樹脂又はメラミン樹脂等からなるアミノ樹脂系接着剤;フェノ-ル樹脂系接着剤;エポキシ系接着剤;ポリウレタン系接着剤;反応型(メタ)アクリル系接着剤;クロロプレンゴム、ニトリルゴム、スチレン-ブタジエンゴム等からなるゴム系接着剤;シリコーン系接着剤;アルカリ金属シリケ-ト、低融点ガラス等からなる無機系接着剤等を使用することができる。接着剤層を構成する接着剤の組成系は、水性型、溶液型、エマルジョン型、分散型等のいずれの組成物形態でもよく、また、その性状は、フィルム状、シート状、粉末状、固形状等のいずれの形態でもよく、さらに、接着機構については、化学反応型、溶剤揮発型、熱溶融型、熱圧型等のいずれの形態でもよいものである。
 尚、上記の接着剤に代えて、例えば、熱硬化性樹脂や、熱可塑性樹脂に架橋剤等を含有させた樹脂により接着層を形成してもよい。あるいは、EVA、アイオノマー、ポリビニルブチラール(PVB)、ポリエチレン系樹脂等の熱可塑性樹脂を、押出しラミネートにより基材の間に押し出し、接着層を形成してもよい。
 基材層のプライマー層が設けられる側の表面には、プライマー層またはバリア層との密着性等を向上させるために、予め所望の表面処理が施されていてもよい。表面処理としては、例えば、コロナ放電処理、オゾン処理、酸素ガス若しくは窒素ガス等を用いた低温プラズマ処理、グロー放電処理、化学薬品等を用いて処理する酸化処理などが挙げられる。
 また、プライマー層またはバリア層との密着性を改善する方法として、予め、アンカーコート剤層、接着剤層等の下地層を形成してもよい。
 下地層としては、例えば、ポリエステル系樹脂、ポリアミド系樹脂、ポリウレタン系樹脂、エポキシ系樹脂、フェノール系樹脂、(メタ)アクリル系樹脂、ポリ酢酸ビニル系樹脂、ポリエチレンあるいはポリプロピレン等のポリオレフィン系樹脂あるいはその共重合体ないし変性樹脂、セルロース系樹脂、その他等をビヒクルの主成分とする樹脂組成物を使用することができる。
[バリア層]
 バリア層は、波長変換シート用フィルムにガスバリア性を付与する層である。バリア層は、波長変換シート用フィルムに要求されるガスバリア性に応じて任意に設けられる層である。バリア層は、基材層のプライマー層と反対側、または、基材層とプライマー層との間に設けられてもよい。波長変換シート用フィルムの製造過程及び波長変換シートの製造過程でバリア層の損傷を防止するため、また、波長変換シートとしたときに蛍光体層がシート端部から劣化することを抑制するため、バリア層は、基材層とプライマー層との間に設けられることが好ましい。
 図1に示す例では、バリア層40は、基材層20側から順に、無機酸化物層42及び有機被覆層44が積層されて構成される。有機被覆層44は、プライマー層30と接触する。
 なお、本開示のバリア層は図1の積層構成に限定されない。バリア層を構成する層としては、「無機酸化物を蒸着することにより形成される無機酸化物層」、「ゾル-ゲル法により形成される無機酸化物層」、「ポリビニルアルコール等の水溶性高分子等を含むコーティング剤を塗布して形成される有機被覆層」、及び、「金属酸化物とリン化合物とを含む組成物の反応物を含む層(以下、「金属リン酸反応物層」と称する)」がある。本開示におけるバリア層の構成としては、これらの層からなる群から選ばれる単一種の単層、前記群から選ばれる単一種を複数積層した層、前記群から選ばれる二種以上を交互に積層した層等が挙げられる。これらの中でも、図1に示すように無機酸化物層と有機被覆層とを積層させた構成、または、金属リン酸反応物層の単層構成であることが好ましい。
<無機酸化物層>
 無機酸化物層は、酸化アルミニウム、酸化珪素、酸化マグネシウム又はこれらの混合物からなる層を例示することができる。ガスバリア性、透明性、生産性などの観点から、無機酸化物層は、酸化アルミニウム又は酸化珪素を主成分とする薄膜層であることが好ましい。
 無機酸化物層を形成する方法は、無機酸化物を蒸着することにより形成する方法、ゾル-ゲル法により形成する方法を挙げることができる。蒸着膜の形成方法としては、例えば、真空蒸着法、スパッタリング法、及びイオンプレーティング法等の物理気相成長法(Physical Vapor Deposition法、PVD法)、あるいは、プラズマ化学気相成長法、熱化学気相成長法、及び光化学気相成長法等の化学気相成長法(Chemical Vapor Deposition法、CVD法)等を挙げることができる。
 無機酸化物層の厚みは、特に限定されるものではないが、5nm以上500nm以下であることが好ましい。無機酸化物層の厚みが5nm以上であることにより、無機酸化物層が均一となり、波長変換シート用フィルムに十分なガスバリア性を付与することができる。無機酸化物層は、ガスバリア性を考慮すると、8nm以上であることがより好ましく、10nm以上であることが更に好ましい。また、無機酸化物層の厚みが500nm以下であることにより、無機酸化物層に十分に可撓性を付与することができるようになり、各無機酸化物層に傷や割れが発生することを軽減することができる。無機酸化物層は、透明性及び生産性等を考慮すると、100nm以下であることがより好ましく、50nm以下であることが更に好ましく、20nm以下であることが特に好ましい。無機酸化物層を複数設ける場合は、それぞれの無機酸化物層が上記の厚み範囲であることが好ましい。
<有機被覆層>
 有機被覆層は、後工程での二次的な各種損傷を防止すると共に、波長変換シート用フィルムに高いガスバリア性を付与する層である。また、無機酸化物層が基材層と有機被覆層との間に位置することにより、無機酸化物層に傷や割れが発生することを軽減することができる。また、有機被覆層がプライマー層と接触して設けられることにより、本開示のプライマー層とバリア層の密着性を良好にすることができる。
 有機被覆層は、例えば水溶性高分子と、1種以上の金属アルコキシド及び加水分解物、又は塩化錫の少なくとも一方を含む水溶液若しくは水/アルコール混合溶液と、を含むガスバリア性組成物をコーティング液として、該コーティング液を塗布して形成される。有機被覆層は、水酸基含有高分子化合物、金属アルコキシド、金属アルコキシド加水分解物及び金属アルコキシド重合物からなる群より選択される少なくとも1種を成分として含有していることが好ましい。有機被覆層に用いられる水溶性高分子としては、ポリビニルアルコール、ポリビニルピロリドン、エチレン-ビニルアルコール共重合体等が挙げられる。特に、ポリビニルアルコール及び/又はエチレン-ビニルアルコール共重合体を用いた場合に、優れたガスバリア性を得ることができる。ポリビニルアルコ-ル系樹脂及び/又はエチレン-ビニルアルコール共重合体との含有量は、上記のアルコキシドの合計量100質量部に対して5質量部以上500質量部以下の範囲であることが好ましく、20質量部以上200質量部以下の範囲であることがより好ましい。
 ガスバリア性組成物には、シランカップリング剤等も添加することができる。シランカップリング剤としては、既知の有機反応性基含有オルガノアルコキシシランを用いることができる。本開示においては、特に、エポキシ基を有するオルガノアルコキシシランが好適であり、それには、例えば、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、あるいは、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン等を使用することができる。上記のようなシランカップリング剤は、1種ないし2種以上を混合して用いてもよい。本開示において、上記のようなシランカップリング剤の使用量は、上記のアルコキシシラン100質量部に対して1質量部以上20質量部以下であることが好ましい。
 有機被覆層の厚みは、特に限定されるものではないが、100nm以上500nm以下であることが好ましい。有機被覆層の厚みが100nm以上であることにより、波長変換シート用フィルムに十分なガスバリア性を付与することができる。有機被覆層は、ガスバリア性を考慮すると、120nm以上であることがより好ましく、150nm以上であることが更に好ましい。また、有機被覆層の厚みが500nm以下であることにより、十分な透明性を確保することができる。透明性及び生産性等を考慮すると、有機被覆層は、300nm以下であることがより好ましく、200nm以下であることが更に好ましい。有機被覆層を複数設ける場合は、それぞれの有機被覆層が上記の厚み範囲であることが好ましい。
<金属リン酸反応物層>
 金属酸化物とリン化合物とを含む組成物の反応物を含む層(金属リン酸反応物層)としては、例えば、国際公開WO2011/122036に記載されている層が挙げられる。上記金属としては、アルミニウムが好ましい。
 金属リン酸反応物層の厚みは、特に限定されるものではないが、100nm以上2000nm以下であることが好ましい。金属リン酸反応物層層の厚みが100nm以上であることにより、波長変換シート用フィルムに十分なガスバリア性を付与することができる。金属リン酸反応物層層は、ガスバリア性を考慮すると、200nm以上であることがより好ましく、300nm以上であることが更に好ましい。また、金属リン酸反応物層の厚みが2,000nm以下であることにより、成膜時の膜割れを抑制することができる。耐屈曲性等を考慮すると、金属リン酸反応物層は、1,000nm以下であることがより好ましく、900nm以下であることが更に好ましい。
[プライマー層]
 プライマー層は、波長変換シートとしたときに蛍光体層との良好な密着性を確保して、高温高湿環境下においても波長変換シート用フィルムと蛍光体層との剥離を防止し、蛍光体層の劣化を防止する役割を果たす。
 本開示において、プライマー層は、ポリウレタン系樹脂を含む樹脂組成物の硬化物を含有する。なお、プライマー層がポリウレタン系樹脂を含むことは、X線光電子分光法(XPS)、赤外分光法(IR)、核磁気共鳴法(NMR)、ガスクロマトグラフィー質量分析法(GCMS)などによりウレタン結合が検出されることで確認できる。
 本開示において、プライマー層を構成する樹脂組成物の硬化物の軟化点は、250℃以上である。硬化物の軟化点は、サーマルプローブを用いた局所熱分析で測定される値である。
 サーマルプローブを用いた局所熱分析では、プライマー層の表面にサーマルプローブを接触させた状態で、温度を上昇させながらサーマルプローブの加熱前からの変位を計測し、熱膨張曲線を得る。具体的に、加熱によりプライマー層の樹脂が膨張することで、サーマルプローブが押し上げられる。プライマー層の樹脂が軟化すると、サーマルプローブの先端が樹脂内に入り込むため、サーマルプローブが下降する。サーマルプローブの変位が上昇から下降に転じる点が、熱膨張曲線のピークに相当する。熱膨張曲線のピークの温度を、プライマー層を構成する樹脂組成物の硬化物の軟化点と定義する。なお、本発明において、軟化点は、プライマー層表面の任意の10箇所について測定した値の平均値である。
 プライマー層が、ポリウレタン系樹脂を含む樹脂組成物の硬化物を含有することにより、波長変換シートとしたときにプライマー層と蛍光体層との間の剥離強度が高く、高温高湿環境下に暴露する前の密着性(「初期密着性」と称する場合がある。)が良好となる。
 プライマー層を構成する樹脂組成物の硬化物の軟化点が250℃未満である場合、初期密着性は良好であっても、高温高湿環境(例えば、60℃90%RH)下で放置されると、プライマー層と蛍光体層との間で剥離が発生する。すなわち、高温高湿環境下で放置することにより、密着性(「経時的な密着性」、「経時密着性」などと称する場合がある。)が低下する。プライマー層を構成する樹脂組成物の硬化物の軟化点が250℃以上であることにより、高温高湿環境下で500時間を超えて長期間放置されても、剥離強度の低下、すなわち、経時密着性の低下を抑制することができる。該軟化点は、270℃以上であることが好ましく、280℃以上であることがより好ましい。
 プライマー層を構成する樹脂組成物の硬化物の軟化点が、高温高湿環境に暴露されたときにプライマー層と蛍光体層との剥離状態(密着性)に与える影響については、以下のように推測される。
 まず、初期密着性については、以下のように推測される。波長変換シートの蛍光体層は、後述するように、波長変換シート用フィルムのプライマー層表面に、蛍光体層の前駆体となる樹脂組成物を塗布し、該樹脂組成物を硬化させることにより形成される。プライマー層の蛍光体層側では、蛍光体層の収縮に伴い、収縮応力が発生する。一方、プライマー層の蛍光体層と反対側は、基材層またはバリア層と接触しているため、蛍光体層硬化時に収縮応力は発生しない。すなわち、蛍光体層の形成により、プライマー層の厚み方向の応力分布があり、プライマー層内部に歪みが発生している。蛍光体層とプライマー層との間の初期密着性が弱い場合、プライマー層内部の歪みの影響により蛍光体層とプライマー層との間で剥離が生じる。
 波長変換シートが高温高湿環境下に長期間放置されると、環境温度よりも軟化点が高かったとしても、プライマー層を構成する樹脂組成物が熱及び水蒸気による影響を受ける。硬化物の軟化点が250℃未満である場合、熱及び水蒸気により、樹脂の性質が変化しやすい。樹脂の性質の変化としては、ポリウレタン系樹脂の加水分解や軟化が考えられる。このため、初期密着性が良好であったとしても、プライマー層内部の応力バランスが変化したり、蛍光体層との界面でのプライマー層が劣化したりするなどして、密着性が低下し、剥離が発生すると考えられる。一方、硬化物の軟化点が250℃以上であれば樹脂の性質の変化が発生しにくいため、応力バランスの変化やプライマー層の劣化が抑制される。この結果、高温高湿環境下に放置された場合でも、蛍光体層とプライマー層との間で高い密着性を維持することができると考えられる。
 ポリウレタン系樹脂組成物は、多官能イソシアネートとヒドロキシル基含有化合物との反応によって得られる一液ないし二液型ポリウレタン系樹脂を含む。
 多官能イソシアネート及びヒドロキシル基含有化合物の組み合わせ、多官能イソシアネート及びヒドロキシル基含有化合物の配合比、軟化点の異なる複数のヒドロキシル基含有化合物の組み合わせ及びその配合比、ポリウレタン系樹脂中のNCO/OH比、ポリウレタン系樹脂の分子量などを変えることにより、プライマー層を構成する樹脂組成物の硬化物の軟化点を変えることができる。また、ポリウレタン系樹脂と軟化点が異なる粘着付与樹脂(タッキーファイヤー)を添加することに依っても、プライマー層を構成する樹脂組成物の硬化物の軟化点を変えることができる。
 多官能イソシアネート及びヒドロキシル基含有化合物はそれぞれ、1種のみ用いられていてもよいし、複数種が用いられていてもよい。
 多官能イソシアネートとしては、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、ポリメチレンポリフェニレンポリイソシアネート等の芳香族ポリイソシアネ-ト;ヘキサメチレンジイソシアネート、イソホロンジイソシアネート等の脂肪族ポリイソシアネート等が挙げられる。多官能イソシアネートは、アダクト体、ビュレット体、イソシアヌレート体などの高分子量化した変性体として使用してもよく、ブロック体として使用してもよい。変性体及びブロック体は、水酸基、カルボキシル基、エポキシ基、アミノ基、メルカプト基、ビニル基、アクリロイル基、メタクリロイル基などの官能基を有していてもよい。中でも、(メタ)アクリル基含有ポリイソシアネートを用いることが好ましい。すなわち、本開示のポリウレタン系樹脂は、(メタ)アクリル基を有する多官能イソシアネートと、ヒドロキシル基含有化合物との反応によって得られるポリウレタン系樹脂を含む。
 また、ヒドロキシル基含有化合物としては、ポリエーテルポリオール、ポリエステルポリオール、ポリエステルポリウレタンポリオール、ポリアクリレートポリオールなどが挙げられる。
 NCO/OH比については、1.1以上が好ましく、1.2以上がより好ましく、1.3以上であることが更に好ましい。NCO/OH比が1.1以上であることにより、初期密着性に優れるとともに、軟化点が250℃以上となりやすくなる。なお、NCO/OH比が高いと、プライマー層がタック性を有するようになる。このため、NCO/OH比は、4.0以下であることが好ましく、3.0以下であることがより好ましい。
 多官能イソシアネート及びヒドロキシル基含有化合物の種類にもよるが、ポリウレタン系樹脂の分子量が大きい程、ポリウレタン系樹脂の軟化点が高くなり、この結果、樹脂組成物の硬化物の軟化点が250℃以上となりやすくなる。ポリウレタン系樹脂の分子量(重量平均分子量)としては、100以上100,000以下であることが好ましい。
 上記ポリウレタン系樹脂組成物の硬化物は、プライマー層全量中で40質量%以上含有することが好ましく、70質量%以上含有することがより好ましい。ポリウレタン系樹脂を40質量%以上含有することにより、プライマー層と蛍光体層との初期密着性及び経時密着性を向上させることができる。
 本開示において、プライマー層は、シランカップリング剤を更に含有することが好ましい。シランカップリング剤を含むことにより、シランカップリング剤は、高温高湿環境下で長時間放置された場合に、ポリウレタン系樹脂中のウレタン結合が加水分解されることにより経時密着性が低下することを抑制する効果がある。また、バリア層が設けられる構成においては、プライマー層とバリア層(特に有機被覆層)との密着性を向上させることができる。
 シランカップリング剤は、その分子の一端にある官能基、通常、クロロ、アルコキシ、又は、アセトキシ基等が加水分解してシラノ-ル基(Si-OH)を形成する。これにより、プライマー層の樹脂組成物が共有結合等で修飾され、強固な結合を形成する。このため、高温高湿環境下でのウレタン結合の加水分解が抑制され、経時的な密着性の低下を抑制できると考えられる。また、シランカップリング剤の他端にあるビニル、メタクリロキシ、アミノ系、エポキシ系、あるいは、メルカプト等の有機官能基により、プライマー層と蛍光体層との密着性、及び、バリア層とプライマー層との密着性を高めることができる。
 シランカップリング剤としては、二元反応性を有する有機官能性シランモノマ-類を使用することができ、例えば、γ-クロロプロピルトリメトキシシラン、ビニルトリクロロシラン、ビニルトリエトキシシラン、ビニル-トリス(β-メトキシエトキシ)シラン、γ-メタクリルオキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、γ-メルカプトプロピルトリメトキシシラン、N-β(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、γ-ウレイドプロピルトリエトキシシラン、ビス(β-ヒドロキシエチル)-γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルシリコ-ンの水溶液等の1種ないしそれ以上を使用することができる。
 上記のシランカップリング剤は、プライマー層全量中1質量%以上で含有することが好ましく、2質量%以上で含有することがより好ましい。シランカップリング剤の含有量が上記範囲であると、プライマー層と蛍光体層との間の初期密着性、及び、バリア層とプライマー層との間の密着性を更に向上させることができる。また、プライマー層と蛍光体層との間で、経時的に良好な密着性を維持することができる。なお、プライマー層の伸長性を良好とするとともに、プライマー層のクラック発生を抑制するために、シランカップリング剤は、プライマー層全量中30質量%以下で含有することが好ましく、20質量%以下で含有することがより好ましい。
 また、本開示では更に、プライマー層を形成した後に、プライマー層の表面(蛍光体層との接触面)に、コロナ放電処理、オゾン処理、酸素ガス若しくは窒素ガス等を用いた低温プラズマ処理、グロー放電処理、化学薬品等を用いて処理する酸化処理などの表面処理を施してもよい。
 本開示において、プライマー層は、充填剤を更に含んでいてもよい。充填剤は、プライマー層を形成するための塗布液の粘度等を調整し、コーティング適性等を高める役割を有する。充填剤としては、例えば、炭酸カルシウム、硫酸バリウム、アルミナホワイト、シリカ、タルク、ガラスフリットなどの粉末、樹脂粉末などを使用することができる。
 プライマー層は、更に、必要に応じて、安定剤、架橋剤、滑剤、紫外線吸収剤、その他等の添加剤を含んでいてもよい。
 プライマー層の厚みは特に限定されるものではないが、0.05μm以上であることが好ましく、0.1μm以上であることがより好ましい。プライマー層内部の歪みを小さくするために、プライマー層は比較的厚い方が好ましい。ただし、プライマー層が厚すぎると、ハンドリング性や生産性が低下することから、プライマー層の厚みは、10μm以下であることが好ましく、3μm以下であることがより好ましい。
 本実施形態に関するプライマー層は、光源からの光を効率よく変換するために、JIS K 7361-1:1997に基づき測定される全光線透過率が高いことが好ましい。具体的には、本実施形態に関するプライマー層は、PETフィルム(膜厚:12μm)上にプライマー層を形成した際のJIS K 7361-1:1997に基づき測定される全光線透過率が85%以上であることが好ましく、90%以上であることがより好ましい。
[拡散層]
 拡散層は、光の出射角分布の異方性の低減、及び、貼り付き防止を目的として設けられる層であり、本開示においては任意に設けられる層である。
 拡散層は、バインダー樹脂及びフィラーを含む。フィラー自体がバインダー樹脂中に埋設されること、また、フィラーの少なくとも一部分がバインダー樹脂から層表面側に露出して拡散層表面に凹凸形状が付与されることによって、光の出射角分布の異方性の低減効果が得られる。
 更に、拡散層表面が凹凸形状であることにより、波長変換シート用フィルムまたは波長変換シートの製造過程で、波長変換シート用フィルムまたは波長変換シート同士が接触しても貼り付きを防止する役割を有する。例えば、巻き取り方式で波長変換シート用フィルムまたは波長変換シートを製造する場合、波長変換シート用フィルムまたは波長変換シートの取り扱いが容易になるとともに、表面の傷つきを抑制することができる。また、表示装置としたときに、導光板または拡散板と波長変換シートとの貼り付きを防止する役割も有し、導光板または拡散板と波長変換シートとの擦れによる傷発生を抑制し、表示装置の外観不良の発生を低減する効果も奏する。
 拡散層のバインダー樹脂は、波長変換シート用フィルム及び波長変換シートに要求される仕様を満たすものであれば、特に制限はされない。例えば、アクリル系樹脂、エポキシ樹脂、ウレタン樹脂、ポリエステル系樹脂、ポリエステルアクリレート系樹脂、ポリウレタンアクリレート系樹脂、アクリルウレタン系樹脂、エポキシアクリレート系樹脂等を用いることができる。高硬度を有するという観点から、バインダー樹脂はアクリル系樹脂であることが好ましい。
 フィラーは、波長変換シート用フィルム及び波長変換シートに要求される光学性能の観点から、樹脂フィラーであることが好ましい。フィラーに用いられる樹脂としては、例えば、アクリル系樹脂やポリスチレン系樹脂等を挙げることができる。拡散層の耐傷性を向上させるとの観点では、アクリル系樹脂フィラーであることが特に好ましい。ここでのアクリル系樹脂とは、メタクリル酸、アクリル酸、メタクリル酸エステル、及びアクリル酸エステルからなる群より選ばれる少なくとも1種のカルボキシル基又はカルボン酸エステル基を持つエチレン性不飽和単量体を単量体成分として含む重合体である。
 フィラーの屈折率と樹脂バインダーの屈折率との屈折率差は、0.5以下であることが好ましく、0.3以下であることがより好ましく、0.1以下であることがさらに好ましい。
 フィラーの平均粒径は、1μm以上50μm以下であることが好ましく、1.5μm以上10μm以下であることがより好ましい。フィラーの平均粒径が1μm以上であることにより、フィラーの少なくとも一部が拡散層の表面からより多く露出するようになり、適度な光拡散性を与えるとともに、貼り付きをより効果的に抑制することができる。フィラーの平均粒径が50μm以下であることにより、フィラーが拡散層から脱離しにくくなり、拡散層の機能低下や脱落したフィラーによる傷つきを抑制することができる。
 なお、本開示において、平均粒径は、レーザー光回折法による粒度分布測定における質量平均値d50を意味する。
 フィラーの含有量は、拡散層全量に対して5質量%以上50質量%以下であることが好ましく、10質量%以上40質量%以下であることがより好ましい。5質量%以上であることにより、適度な光拡散性を与えることができるとともに、貼り付きを効果的に防止することができる。50質量%以下であることにより、波長変換シート用フィルム及び波長変換シートとして要求される光学特性を満たしやすくなり、更に拡散層の成膜性も良好とすることができる。
 拡散層は、必要に応じて、安定剤、硬化剤、架橋剤、滑剤、紫外線吸収剤、その他等の添加剤を任意に含んでいてもよい。
 拡散層の厚みは特に制限されず、フィラーの平均粒径、波長変換シート用フィルム及び波長変換シートに要求される仕様などに応じて適宜設定することができる。例えば、拡散層の厚みは、1.0μm以上50.0μm以下であることが好ましく、1.5μm以上10.0μm以下であることがより好ましい。尚、拡散層の厚みとは、拡散層中のフィラー以外の樹脂部分の厚さを意味し、樹脂の上に頭出ししたフィラーの部分は含まない。拡散防止層の厚みは、例えば、走査型電子顕微鏡等により断面を観察することにより測定することができる。
[波長変換シート用フィルムの製造方法]
 本開示の波長変換シート用フィルムは、下記の工程により製造される。
(1)バリア層形成工程
 基材層(あるいは、第1の基材)の一方の表面に、バリア層を形成する。なお、バリア層形成工程は省略することができる。
 図1に例示するように有機被覆層及び無機酸化物層をバリア層とする場合は、まず基材層(あるいは、第1の基材)上に、無機酸化物層を形成し、該無機酸化物層上に有機被覆層を形成する。
 尚、基材層(あるいは、第1の基材)のバリア層が形成される面に、予め、上述した表面処理が施されていてもよいし、下地層が形成されていてもよい。
 無機酸化物層は、蒸着またはゾル-ゲル法により形成することができる。無機酸化物を蒸着する方法は、真空蒸着法、スパッタリング法、及びイオンプレーティング法等の物理気相成長法(Physical Vapor Deposition法、PVD法)、あるいは、プラズマ化学気相成長法、熱化学気相成長法、及び光化学気相成長法等の化学気相成長法(Chemical Vapor Deposition法、CVD法)等を挙げることができる。
 有機被覆層は、上記ガスバリア性組成物を含むコーティング剤を塗布し、加熱により硬化させて形成することができる。コーティング剤は、所望のガスバリア性、厚み、粘度などが得られるように、上記ガスバリア性組成物に溶媒等を加えて調製される。コーティング剤を塗布する方法は、ロールコート、グラビアコート、ナイフコート、デップコート、スプレイコート、その他のコーティング法の塗布方式を挙げることができる。
 金属リン酸反応物層は、国際公開WO2011/122036に記載されている方法により形成することができる。
(2)プライマー層形成工程
 基材層上またはバリア層上に、プライマー層を形成する。プライマー層は、上記ポリウレタン系樹脂を含む樹脂組成物のコーティング剤を塗布し、加熱により硬化させて形成することができる。コーティング剤は、厚み、粘度などが得られるように、上記コーティング剤に溶媒等を加えて調製される。コーティング剤を塗布する方法は、ロールコート、グラビアコート、ナイフコート、デップコート、スプレイコート、その他のコーティング法の塗布方式を挙げることができる。加熱温度は、50℃以上180℃以下の範囲内であることが好ましい。
 図1に示すように基材層が複数の基材を積層させて構成される場合、本開示の波長変換シート用フィルムの製造方法は、(2)プライマー層形成工程の後に、(3)接着工程を更に有する。
(3)接着工程
 接着工程では、第1の基材のバリア層と反対側の面と、第2の基材とを、接着層を介して積層する。
 具体的に、第1の基材の表面に、上述した接着剤を塗布し、第2の基材を重ね合わせ、接着層を硬化させる。あるいは、第1の基材の表面に、架橋剤及び樹脂を含むコーティング剤を塗布した後、第2の基材を重ね合わせ、該コーティング剤を熱などにより架橋させる。接着剤あるいはコーティング剤を塗布する方法は、ロールコート、グラビアコート、ナイフコート、デップコート、スプレイコート、その他のコーティング法、あるいは、印刷法等によって施すことができる。
 あるいは、押出しラミネートにより、第1の基材と第2の基材との間に溶融した熱可塑性樹脂を流し、その後冷却して接着層を形成してもよい。
 なお、図1に示すように拡散層が設けられている場合、基材層または第2の基材に、予め拡散層が形成されていることが好ましい。
 具体的には、樹脂とフィラーと溶剤等とを含むコーティング剤を、基材層または第2の基材のバリア層が設けられる面と反対側の表面に塗布し、硬化させて形成することができる。コーティング剤を塗布する方法は、ロールコート、グラビアコート、ナイフコート、デップコート、スプレイコート、その他のコーティング法の塗布方式を挙げることができる。
[波長変換シート用フィルムの用途]
 本開示の波長変換シート用フィルムは、例えば、面光源の波長変換シート用の波長変換シート用フィルムに用いることができる。面光源としては、液晶表示装置などの表示装置のバックライト光源、検査機器のバックライト光源等が挙げられる。すなわち、本開示の波長変換シート用フィルムは、「表示装置のバックライト光源の波長変換シート用の波長変換シート用フィルム」、「検査機器のバックライト光源の波長変換シート用の波長変換シート用フィルム」等に用いることができる。
 さらに、本開示の波長変換シート用フィルムは、「園芸の波長変換シート用の波長変換シート用フィルム」にも用いることができる。園芸の波長変換シートとしては、例えば、紫外線を植物の成長に適した波長に変換する機能を備えたシートが挙げられる。植物の成長に適した波長としては、光合成に適した波長が挙げられる。園芸の波長変換シートは、例えば、ビニールハウス及びガラス室の園芸施設の天井等に設置することができる。
[波長変換シート]
 図2は、本開示の波長変換シートの一実施形態を模式的に説明する断面概略図である。図2の波長変換シート100は、蛍光体層60の両表面に図1に示す波長変換シート用フィルム10(10a,10b)を備える。本開示の波長変換シートの構成は、図2に限定されない。本開示の波長変換シートは、例えば、一方の表面側に図1に示す波長変換シート用フィルムを備え、他方の表面側には別の積層構成を有する本開示の波長変換シート用フィルムを備えていてもよい。別の積層構成を有する本開示の波長変換シート用フィルムとしては、例えば、バリア層が形成されていない波長変換シート用フィルム、バリア層の構成が異なる波長変換シート用フィルムなどがある。
 また、本開示の波長変換シート用フィルム10は、蛍光体層60の少なくとも一方の表面側に設けられればよい。すなわち、蛍光体層60の一方の表面側に本開示の波長変換シート用フィルム10(10a)が設け、蛍光体層60の他方の表面側に上述した本開示の波長変換シート用フィルムではない他の波長変換シート用フィルムが設けられていてもよい。
[蛍光体層]
 蛍光体層は、バックライト光源から発せられた光の発光波長を調整するための層である。蛍光体層は、蛍光体が含有された封止樹脂を積層することで形成することができる。例えば、蛍光体と封止樹脂とが含有された混合液を基材層の表面に塗布し、硬化することにより形成することができる。蛍光体層には、量子ドットからなる1種又は2種以上の蛍光体が含有される。
 蛍光体を形成する量子ドットは、量子閉じ込め効果(quantum confinement effect)を有する所定のサイズの半導体粒子である。量子ドットは、励起源から光を吸収してエネルギー励起状態に達すると、量子ドットのエネルギーバンドギャップに該当するエネルギーを放出する。量子ドットのサイズ又は物質の組成を調節すると、エネルギーバンドギャップを調節することができ、様々なレベルの波長帯のエネルギーを得ることができる。とりわけ、量子ドットは、狭い波長帯で強い蛍光を発生することができる。このため、表示装置が色純度の優れた三原色の光で照明することができるようになることで、優れた色再現性を有する表示装置とすることができる。
 量子ドットは、赤に相当する波長の二次光を放出する量子ドット、緑に相当する波長の二次光を放出する量子ドット、及び、これらの組み合わせを含むことが好ましい。なお、量子ドットは、赤に相当する波長の二次光を放出する量子ドット、緑に相当する波長の二次光を放出する量子ドット以外の量子ドットを含有してもよい。
 量子ドットのコアは、半導体のナノメートルサイズの微粒子であり、量子閉じ込め効果(量子サイズ効果)を生じる材料であれば特に限定されない。量子ドットとしては、自らの粒径によって発光色が規制される半導体微粒子及びドーパントを有する半導体微粒子が挙げられる。
 コアとなる材料として、具体的に、MgS、MgSe、MgTe、CaS、CaSe、CaTe、SrS、SrSe、SrTe、BaS、BaSe、BaTe、ZnS、ZnSe、ZnTe、CdS、CdSe、CdTe、HgS、HgSe及びHgTeのようなII-VI族半導体化合物;AlN、AlP、AlAs、AlSb、GaAs、GaP、GaN、GaSb、InN、InAs、InP、InSb、TiN、TiP、TiAs及びTiSbのようなIII-V族半導体化合物;Si、Ge及びPbのようなIV族半導体、等の半導体化合物又は半導体を含有する半導体結晶を例示できる。また、InGaPのような3元素以上を含んだ半導体化合物を含む半導体結晶を用いることもできる。
 さらに、ドーパントを有する半導体微粒子からなる量子ドットとしては、上記半導体化合物に、Eu3+、Tb3+、Ag、Cuのような希土類金属のカチオン又は遷移金属のカチオンをドープしてなる半導体結晶を用いることもできる。
 量子ドットのコアとなる材料としては、作製の容易性、可視域での発光を得られる粒径の制御性、蛍光量子収率の観点から、CdS、CdSe、CdTe、InP、InGaP等の半導体結晶が好適である。
 量子ドットは、1種の半導体化合物からなるものであっても、2種以上の半導体化合物からなるものであってもよい。例えば、量子ドットは、発光部としてのコアが保護層(シェル)により被覆された構造(コアシェル構造)を有していてもよい。
 コアシェル型の量子ドットを用いる場合にシェルを構成する半導体としては、励起子がコアに閉じ込められるように、コアを形成する半導体化合物よりもバンドギャップの高い材料を用いることで、量子ドットの発光効率を高めることができる。
 このようなバンドギャップの大小関係を有するコアシェル構造(コア/シェル)としては、例えば、CdSe/ZnS、CdSe/ZnSe、CdSe/CdS、CdTe/CdS、InP/ZnS、Gap/ZnS、Si/ZnS、InN/GaN、InP/CdSSe、InP/ZnSeTe、InGaP/ZnSe、InGaP/ZnS、Si/AlP、InP/ZnSTe、InGaP/ZnSTe、InGaP/ZnSSe等が挙げられる。
 量子ドットのサイズは、所望の波長の光が得られるように、量子ドットを構成する材料によって適宜制御すればよい。量子ドットは粒径が小さくなるに従い、エネルギーバンドギャップが大きくなる。すなわち、結晶サイズが小さくなるにつれて、量子ドットの発光は青色側へ、つまり、高エネルギー側へとシフトする。
 一般的には、量子ドットの粒径(直径)は0.5nm以上20nm以下の範囲内であることが好ましく、特に1nm以上10nm以下の範囲内であることが好ましい。なお、量子ドットのサイズ分布が狭いほど、より鮮明な発光色を得ることができる。
 量子ドットの形状は特に限定されず、例えば、球状、棒状、円盤状、その他の形状であってもよい。量子ドットの粒径は、量子ドットが球状でない場合、同体積を有する真球状の値とすることができる。
 量子ドットは、樹脂で被覆されているものであってもよい。
 量子ドットの含有量は、蛍光体層の厚み、バックライトにおける光のリサイクル率、目的とする色味等に応じて適宜調整する。蛍光体層の厚みが後述する範囲であれば、蛍光体層の封止樹脂100質量部に対して、量子ドットの含有量は、0.01質量部以上1.0質量部以下であることが好ましい。
 蛍光体層の封止樹脂としては、熱硬化性樹脂組成物の硬化物、電離放射線硬化性樹脂組成物の硬化物が挙げられる。これらの中でも、耐久性の観点から、熱硬化性樹脂組成物の硬化物、電離放射線硬化性樹脂組成物の硬化物が好ましく、電離放射線硬化性樹脂組成物の硬化物がより好ましい。
 熱硬化性樹脂組成物は、少なくとも熱硬化性樹脂を含む組成物であり、加熱により、硬化する樹脂組成物である。熱硬化性樹脂としては、アクリル樹脂、ウレタン樹脂、フェノール樹脂、尿素メラミン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、シリコーン樹脂等が挙げられる。これらを単独で使用してもよいし、若しくは1つ以上を混合して使用してもよい。熱硬化性樹脂組成物には、これら硬化性樹脂に、必要に応じて硬化剤が添加される。
 電離放射線硬化性樹脂組成物は、電離放射線硬化性官能基を有する化合物(以下、「電離放射線硬化性化合物」ともいう)を含む組成物である。
 電離放射線硬化性官能基としては、(メタ)アクリロイル基、ビニル基、アリル基等のエチレン性不飽和結合基、及びエポキシ基、オキセタニル基等が挙げられ、その中でもエチレン性不飽和結合基が好ましい。また、エチレン性不飽和結合基の中でも(メタ)アクリロイル基が好ましい。以下、(メタ)アクリロイル基を有する電離放射線硬化性化合物を(メタ)アクリレート系化合物と称する。すなわち、封止樹脂は、(メタ)アクリレート系化合物を含む組成物の硬化物を含むことが好ましい。
 なお、本明細書において「(メタ)アクリレート」は、メタクリレート及びアクリレートを指すものである。また、本明細書において、「電離放射線」は、電磁波又は荷電粒子線のうち、分子を重合あるいは架橋し得るエネルギー量子を有するものを意味し、通常、紫外線(UV)又は電子線(EB)が用いられるが、その他、X線、γ線などの電磁波、α線、イオン線などの荷電粒子線も使用可能である。
 電離放射線硬化性化合物は、上記官能基を1つのみ有する単官能の電離放射線硬化性化合物であってもよく、上記官能基を2つ以上有する多官能の電離放射線硬化性化合物であってもよく、これらの混合物であってもよい。これらの中でも、多官能の電離放射線硬化性化合物が好ましく、2つ以上の(メタ)アクリロイル基を有してなる多官能の(メタ)アクリレート系化合物がより好ましい。すなわち、封止樹脂は、多官能の電離放射線硬化性化合物の硬化物を含むことが好ましく、多官能(メタ)アクリレート系化合物の硬化物を含むことがより好ましい。
 多官能(メタ)アクリレート系化合物は、アルキレンオキシ基を有するものであってもよい。
 アルキレンオキシ基としては、例えば、炭素数が2~4のアルキレンオキシ基が好ましく、炭素数が2又は3のアルキレンオキシ基がより好ましく、炭素数が2のアルキレンオキシ基がさらに好ましい。
 アルキレンオキシ基を有する多官能(メタ)アクリレート系化合物は、複数個のアルキレンオキシ基を含むポリアルキレンオキシ基を有する多官能(メタ)アクリレート系化合物であってもよい。
 多官能(メタ)アクリレート系化合物がアルキレンオキシ基を有する場合、一分子中のアルキレンオキシ基の数は、2個~30個であることが好ましく、2個~20個であることがより好ましく、3個~10個であることがさらに好ましく、3個~5個であることがよりさらに好ましい。
 多官能(メタ)アクリレート系化合物がアルキレンオキシ基を有する場合、ビスフェノール構造を有することが好ましい。これにより、硬化物の耐熱性が向上する傾向にある。ビスフェノール構造としては、例えば、ビスフェノールA構造及びビスフェノールF構造が挙げられ、中でも、ビスフェノールA構造が好ましい。
 アルキレンオキシ基を有する多官能(メタ)アクリレート化合物としては、中でも、エトキシ化ビスフェノールA型ジ(メタ)アクリレート、プロポキシ化ビスフェノールA型ジ(メタ)アクリレート及びプロポキシ化エトキシ化ビスフェノールA型ジ(メタ)アクリレートが好ましく、エトキシ化ビスフェノールA型ジ(メタ)アクリレートがより好ましい。
 また、電離放射線硬化性化合物は、モノマーであってもよく、オリゴマーであってもよく、低分子量のポリマーであってもよく、これらの混合物であってもよい。
 電離放射線硬化性化合物が紫外線硬化性化合物である場合には、電離放射線硬化性組成物は、光重合開始剤や光重合促進剤等の添加剤を含むことが好ましい。
 蛍光体層中には、内部拡散粒子を含んでいてもよい。
 内部拡散粒子は、有機粒子及び無機粒子の何れも用いることができる。有機粒子としては、ポリメチルメタクリレート、アクリル-スチレン共重合体、メラミン樹脂、ポリカーボネート、ポリスチレン、ポリ塩化ビニル、ベンゾグアナミン-メラミン-ホルムアルデヒド縮合物、シリコーン樹脂、フッ素系樹脂及びポリエステル等からなる粒子が挙げられる。無機微粒子としては、シリカ、アルミナ、ジルコニア及びチタニア等からなる微粒子が挙げられる。
 内部拡散粒子の形状は、球形、円盤状、ラグビーボール状、不定形等の形状が挙げられる。また、内部拡散粒子は、中空粒子、多孔質粒子及び中実粒子の何れであってもよい。
 内部拡散粒子の含有量は、封止樹脂100質量部に対して、1質量部以上40質量部以下であることが好ましく、3質量部以上30質量部以下であることがより好ましい。
 内部拡散粒子の平均粒径は、1μm以上7μm以下であることが好ましく、1μm以上3μm以下であることがより好ましい。
 蛍光体層の厚みは、10μm以上200μm以下であることが好ましく、20μm以上150μm以下であることがより好ましく、30μm以上130μm以下であることがさらに好ましい。
[波長変換シートの製造方法]
 本開示の波長変換シートは、上記製造方法により製造した波長変換シート用フィルムを少なくとも1つ用いて製造することができる。以下では、図2に示すように、蛍光体層を本開示の波長変換シート用フィルムで挟む構成の波長変換シートを製造する方法を例に挙げる。
 具体的には、本開示の波長変換シート用フィルムのプライマー層の表面に、蛍光体と封止樹脂とを含む混合液(インク)を塗布する。混合液(インク)を塗布する方法は、ロールコート、グラビアコート、ナイフコート、デップコート、スプレイコート、その他のコーティング法の塗布方式を挙げることができる。
 そして、蛍光体層と、別の本開示の波長変換シート用フィルムのプライマー層と接触させる。その後、混合液(インク)を熱などにより硬化させて、波長変換シートを得る。
[バックライト]
 本開示のバックライトは、一次光を放出する少なくとも1つの光源と、該光源に隣接して配置され、導光又は拡散のための光学板と、該光学板の光出射側に配置された波長変換シート(量子ドットシート)とを備えたバックライトにおいて、該波長変換シートが上述した本開示の波長変換シートであるものである。
 本開示のバックライト200としては、図3に示すエッジライト型のバックライト、あるいは、図4に示す直下型のバックライトのいずれも採用することができる。
 図3のエッジライト型のバックライト201に用いられる光学板120は、光源110で放出された一次光を導光するための光学部材であり、いわゆる導光板121である。導光板121は、例えば、少なくとも一つの面を光入射面とし、これと略直交する一方の面を光出射面とするように成形された略平板状の形状からなる。
 導光板は、主としてポリメチルメタクリレート等の高透明な樹脂から選ばれるマトリックス樹脂からなる。導光板は、必要に応じてマトリックス樹脂と屈折率の異なる樹脂粒子が添加されていてもよい。導光板の各面は、一様な平面ではなく複雑な表面形状をしているものであってもよく、ドットパターン等が設けられていてもよい。
 図4の直下型のバックライト202に用いられる光学板120は、光源110のパターンを見えにくくするための光拡散性を有する光学部材(光拡散材122)である。光拡散材122としては、例えば、厚み1~3mm程度の乳白色の樹脂板が挙げられる。
 エッジライト型及び直下型のバックライトには、上述した光源、光学板及び波長変換シートの他に、目的に応じて、反射板、光拡散フィルム、プリズムシート、輝度上昇フィルム(BEF)及び反射型偏光フィルム(DBEF)等から選ばれる一種以上の部材を備えていてもよい。反射板は、光学板の光出射面側と反対側に配置される。光拡散フィルム、プリズムシート、輝度上昇フィルム及び反射型偏光フィルムは、光学板の光出射面側に配置される。反射板、光拡散フィルム、プリズムシート、輝度上昇フィルム及び反射型偏光フィルム等から選ばれる一種以上の部材を備える構成とすることで、正面輝度、視野角等のバランスに優れたバックライトとすることができる。
 エッジライト型及び直下型のバックライトにおいて、光源110は、一次光を放出する発光体であり、青に相当する波長の一次光を放出する発光体を用いることが好ましい。青に相当する波長の一次光は、ピーク波長が380nm~480nmの範囲であることが好ましい。当該ピーク波長は450nm±7nmであることがより好ましく、450nm±5nmであることがより好ましく、450nm±3nmであることがより好ましく、450nm±1nmであることがより好ましい。
 光源110としては、バックライトを設置する装置が単純化及び小型化できるという観点から、LED光源であることが好ましく、青色単色のLED光源であることがより好ましい。あるいは、青色単色のLED光源の上に赤色蛍光体を塗布し、青色及び赤色を呈する光源としてもよい。光源110は、少なくとも1つであり、十分な一次光を放出するという観点から、複数個であることが好ましい。
[表示装置]
 表示装置としては、例えば液晶表示装置が挙げられる。液晶表示装置は、バックライトと、液晶パネルを備えている。該バックライトが上記した本開示のバックライトである。
 液晶パネルは、特に限定されず、液晶表示装置の液晶パネルとして汎用のものを用いることができる。例えば、液晶層の上下をガラス板で挟んだ一般的な構造を有する液晶パネル、具体的には、TN、STN、VA、IPS及びOCB等の表示方式のものを用いることができる。
 液晶表示装置は、さらに、偏光板及びカラーフィルタ等を備える。偏光板及びカラーフィルタは汎用のものを用いることができる。
 本開示の波長変換シートは、波長変換シート用フィルムと蛍光体層との密着性が特に優れたものである。このため、本開示の波長変換シートを表示装置(液晶表示装置)に適用した場合に、外部環境からの水蒸気や酸素の侵入による蛍光体層の劣化を効果的に抑制することができる。この結果、環境安定性に優れるバックライト光源を備える表示装置とすることができる。
 次に、本開示を実施例により、さらに詳細に説明するが、本開示は、この例によってなんら限定されるものではない。
1.評価、測定
 下記製法により製造された波長変換シート用フィルム及び波長変換シートについて、以下の測定及び評価を行った。結果を表1に示す。なお、特記しない限り、及び、試験が特定の環境下で行われない限り、各測定及び評価時の雰囲気は、温度23±5℃、相対湿度40~65%とし、各測定及び評価の開始前に、対象サンプルを前記雰囲気に30分以上晒してから測定及び評価を行った。
1-1.軟化点測定
 実施例及び比較例の波長変換シート用フィルムについて、以下の工程によりプライマー層の軟化点を測定した。
 測定装置としてANASYS INSTRUMENT社製nanoTA、サーマルプローブとしてANASYS INSTRUMENTS社製PR-EX-AN2-300-5を用いた。
 測定前に、下記の工程によりキャリブレーションを行った。
 標準試料として、BRUKER社製nanoTA Calibration Samplesを準備した。前記標準試料には、軟化点が公知であるポリカプロラクトン(軟化点:55℃)、ポリエチレン(軟化点:116℃)、ポリエチレンテレフタレート(軟化点:235℃)が載っている。各標準試料の表面にサーマルプローブを接触させながら加熱した。加熱中に、サーマルプローブ直下の熱膨張を計測し、Voltage(電位)に対するDeflection(変位)を表すグラフを取得した。装置で設定する測定条件は以下の通りとした。
 測定開始温度:0.1V
 測定終了温度:10V
 昇温速度:0.2V/sec
 各標準試料の軟化点を用い、電位に対するサーマルプローブの変位を表すグラフを温度に対する変位のグラフに変換した。
 キャリブレーション後、実施例及び比較例の波長変換シート用フィルムについて、プライマー層表面にサーマルプローブを接触させた。その後、サーマルプローブを接触させた状態で、下記条件で加熱し、温度に対するサーマルプローブの変位を表すグラフ(熱膨張カーブ)を取得した。プライマー層の表面が出ていない場合、試料を樹脂に包埋したあと、DiATOME社製ダイヤモンドナイフ等で形成した断面からプライマー層を測定してもよい。
 測定開始温度:40℃
 測定終了温度:350℃
 昇温速度:5℃/sec
 得られた熱膨張カーブにおいて、カーブの頂点となる時の温度を取得した。実施例及び比較例の波長変換シート用フィルムのプライマー層表面の任意の10箇所について上記測定を行った。得られた温度の平均値を、軟化点とした。結果を表1に示す。
1-2.初期密着性評価
 実施例及び比較例の波長変換シートを作製した後、波長変換シートの任意の3箇所から25mm×150mmの試験片を切り出した。卓上型材料試験機(STA-1150、高千穂精機(株)製)を用い、23℃の温度環境下、引張速度:300mm/分、剥離方向180°、チャック間距離:15mmの条件でピーリング試験を行い、各試験片について波長変換シート用フィルム(プライマー層)と蛍光体層との間の剥離強度を測定した。得られた剥離強度の平均値を、初期(高温高湿試験前)の剥離強度とした。結果を表1に示す。
1-3.経時密着性評価
 実施例及び比較例の波長変換シートを、60℃90%RHに調整した恒温恒湿槽に入れた。250時間、500時間経過後に、波長変換シートを恒温恒湿槽から取り出した。
 取り出した波長変換シートについて、上記1-2の手順に従い、各試験片の剥離強度を測定した。任意の3箇所から取得した試験片の剥離強度の平均値を、各経過時間後の剥離強度とした。結果を表1に示す。
2.試料の作製
2-1.波長変換シート用フィルムの作製
<実施例1>
 第1の基材として、PETフィルム(厚み:12μm)上に、真空蒸着法により酸化アルミニウム薄膜(AlOx、目標厚み:8nm)を蒸着し、無機酸化物層を形成した。
 水、イソプロピルアルコ―ル及び0.5N塩酸を混合した溶液(pH2.2)に、テトラエトキシシランを10℃になるように冷却しながら混合させて、溶液Aを調製した。別途、ケン化価99%以上のポリビニルアルコール、イソプロピルアルコールを混合した溶液Bを調製した。溶液Aと溶液Bとを混合し、有機被覆層形成用塗布液(固形分:5%)を調製した。
 次いで、無機酸化物層上に、有機被覆層形成用塗布液をグラビア印刷により塗布し、180℃で60秒間加熱処理し、厚み180nmの有機被覆層を形成した。
 次いで、下記処方のプライマー層形成用塗布液を調製した。塗布液のNCO/OH比は1.3であった。
・アクリル系ポリオール樹脂1  50質量部
・アクリル基を有する変性ポリイソシアネート  80質量部
・シランカップリング剤(3-グリシドキシプロピルトリメトキシシラン)  2.0質量部
・シリカ粉末(平均粒径3μm)  2.0質量部
 次いで、有機被覆層上に、プライマー層形成用塗布液を塗布した。塗布液の塗布量は、0.5g/mとした。その後、80℃で60秒間乾燥させて、厚み0.4μmのプライマー層を形成した。
 第1の基材の無機酸化物層からプライマー層までが形成された面と反対側の面に、ウレタン系接着剤(ロックペイント社製、商品名「RU-004、H-1」)をグラビア印刷により塗布し、乾燥させ、厚み4μmの接着層を形成した。
 次いで、第1の基材の接着層側に、第2の基材としてPETフィルム(厚み:100μm)を配置し、ニップ圧:0.2MPa、ライン速度:50m/分の条件で第1の基材と第2の基材とを貼り合わせ、実施例1の波長変換シート用フィルムを作製した。
<実施例2>
 下記処方のプライマー層形成用塗布液を用いたこと以外は、実施例1と同様の工程にて実施例2のバリアフィルムを作製した。なお、塗布液のNCO/OH比は1.3であった。塗布液の塗布量は、0.5g/mとした。
・アクリル系ポリオール樹脂1  40質量部
・ポリエステルウレタン系樹脂  20質量部
・アクリル基を有する変性ポリイソシアネート  70質量部
・シランカップリング剤(3-グリシドキシプロピルトリメトキシシラン)  2.0質量部
・シリカ粉末(平均粒径3μm)  2.0質量部
<実施例3>
 下記処方のプライマー層形成用塗布液を用いたこと以外は、実施例1と同様の工程にて実施例3のバリアフィルムを作製した。なお、塗布液のNCO/OH比は4.0であった。塗布液の塗布量は、0.5g/mとした。
・アクリル系ポリオール樹脂1  15質量部
・ポリエステルウレタン系樹脂  20質量部
・アクリル基を有する変性ポリイソシアネート  60質量部
・シランカップリング剤(3-グリシドキシプロピルトリメトキシシラン)  2.0質量部
・シリカ粉末(平均粒径3μm)  2.0質量部
<実施例4>
 下記処方のプライマー層形成用塗布液を用いたこと以外は、実施例1と同様の工程にて実施例4のバリアフィルムを作製した。なお、塗布液のNCO/OH比は1.3であった。塗布液の塗布量は、0.5g/mとした。アクリル系ポリオール樹脂2は、アクリル系ポリオール樹脂1より分子量が大きい樹脂である。
・アクリル系ポリオール樹脂2  30質量部
・ポリエステルウレタン系樹脂  20質量部
アクリル基を有する変性ポリイソシアネート  40質量部
・シランカップリング剤(3-グリシドキシプロピルトリメトキシシラン)  2.0質量部
・シリカ粉末(平均粒径3μm)  2.0質量部
<実施例5>
 下記処方のプライマー層形成用塗布液を用いたこと以外は、実施例1と同様の工程にて実施例5のバリアフィルムを作製した。なお、塗布液のNCO/OH比は4.0であった。塗布液の塗布量は、0.5g/mとした。
・アクリル系ポリオール樹脂2  10質量部
・ポリエステルウレタン系樹脂  20質量部
・アクリル基を有する変性ポリイソシアネート  30質量部
・シランカップリング剤(3-グリシドキシプロピルトリメトキシシラン)  2.0質量部
・シリカ粉末(平均粒径3μm)  2.0質量部
<比較例1>
 下記処方のプライマー層形成用塗布液を用いたこと以外は、実施例1と同様の工程にて比較例1のバリアフィルムを作製した。なお、塗布液のNCO/OH比は1.3であった。塗布液の塗布量は、0.5g/mとした。
・ポリエステルウレタン系樹脂  20質量部
・アクリル基を有する変性ポリイソシアネート  5質量部
・シランカップリング剤(3-グリシドキシプロピルトリメトキシシラン)  2.0質量部
・シリカ粉末(平均粒径3μm)  2.0質量部
<比較例2>
 下記処方のプライマー層形成用塗布液を用いたこと以外は、実施例1と同様の工程にて比較例2のバリアフィルムを作製した。なお、塗布液のNCO/OH比は8.0であった。塗布液の塗布量は、0.5g/mとした。
・ポリエステルウレタン系樹脂  20質量部
・アクリル基を有する変性ポリイソシアネート  30質量部
・シランカップリング剤(3-グリシドキシプロピルトリメトキシシラン)  2.0質量部
・シリカ粉末(平均粒径3μm)  2.0質量部
<比較例3>
 下記処方のプライマー層形成用塗布液を用いたこと以外は、実施例1と同様の工程にて比較例3のバリアフィルムを作製した。なお、塗布液のNCO/OH比は1.3であった。塗布液の塗布量は、0.5g/mとした。
・アクリル系ポリオール樹脂1  15質量部
・ポリエステルウレタン系樹脂  20質量部
・アクリル基を有する変性ポリイソシアネート  20質量部
・シランカップリング剤(3-グリシドキシプロピルトリメトキシシラン)  2.0質量部
・シリカ粉末(平均粒径3μm)  2.0質量部
<比較例4>
 下記処方のプライマー層形成用塗布液を用いたこと以外は、実施例1と同様の工程にて比較例4のバリアフィルムを作製した。なお、塗布液のNCO/OH比は1.3であった。塗布液の塗布量は、0.5g/mとした。
・アクリル系ポリオール樹脂2  10質量部
・ポリエステルウレタン系樹脂  20質量部
・アクリル基を有する変性ポリイソシアネート  10質量部
・シランカップリング剤(3-グリシドキシプロピルトリメトキシシラン)  2.0質量部
・シリカ粉末(平均粒径3μm)  2.0質量部
<比較例5>
 下記処方のプライマー層形成用塗布液を用いたこと以外は、実施例1と同様の工程にて比較例5のバリアフィルムを作製した。なお、塗布液のNCO/OH比は4.0であった。塗布液の塗布量は、0.5g/mとした。
・アクリル系ポリオール樹脂1  15質量部
・ポリエステルウレタン系樹脂  20質量部
・アクリル基を持たない変性ポリイソシアネート  40質量部
・シランカップリング剤(3-グリシドキシプロピルトリメトキシシラン)  2.0質量部
・シリカ粉末(平均粒径3μm)  2.0質量部
2-2.波長変換シートの作製
 コアがセレン化カドミウム(CdSe)、シェルが硫化亜鉛(ZnS)からなる蛍光体(平均粒径3~5nmの量子ドット)に、封止樹脂(電離放射線硬化型ウレタンアクリレート系樹脂)を、封止樹脂100質量部に対して蛍光体が1質量部となるように混合して蛍光体層形成用混合液(インク)を作製した。
 実施例及び比較例の波長変換シート用フィルムのプライマー層上に、厚み100μm(乾燥後)となるように上記インクを塗布し、蛍光体層を形成した。
 別の実施例及び比較例の波長変換シート用フィルム(それぞれ、上記インクを塗布したバリアフィルムと同じもの)を、上記蛍光体層上にプライマー層が蛍光体層と接触するように積層させた。その後、蛍光体層の封止樹脂をUV硬化することにより、実施例1~5、比較例1~5の波長変換シートを作製した。
3.結果
Figure JPOXMLDOC01-appb-T000001
 実施例1,4は、測定温度範囲でカーブの頂点が見られなかった。すなわち、実施例1,4のプライマー層は、樹脂組成物の硬化物の軟化点が350℃を超えていると判断した。
 実施例1-5では、いずれも、プライマー層の樹脂組成物の硬化物の軟化点が250℃以上であった。実施例1-5の波長変換シートは、250時間経過後の密着性が初期密着性から向上した。また、500時間経過後でも、高い密着性を維持していた。
 これに対し、比較例1-5は、プライマー層の樹脂組成物の硬化物の軟化点が低いものであった。比較例1-5の波長変換シートは、初期密着性が実施例1-5と同程度であるものの、250時間経過後の密着性が大幅に低下した。
10(10a,10b) 波長変換シート用フィルム
20 基材層
20-1 第1の基材
20-2 第2の基材
22 接着剤層
30 プライマー層
40 バリア層
42 無機酸化物層
44 有機被覆層
50 拡散層
60 蛍光体層
100 波長変換シート
110 光源
120 光学板
121 導光板
122 拡散板
130 反射板
140 プリズムシート
200 バックライト
201 エッジライト型バックライト
202 直下型バックライト

 

Claims (10)

  1.  基材上に、プライマー層を有し、
     前記プライマー層がポリウレタン系樹脂を含む樹脂組成物の硬化物を含有し、前記硬化物の軟化点が250℃以上である、波長変換シート用フィルム。
  2.  前記樹脂組成物は、水酸基に対するイソシアネート基のモル比(NCO/OH比)が1.1以上である、請求項1に記載の波長変換シート用フィルム。
  3.  前記ポリウレタン系樹脂が、(メタ)アクリル基を有する多官能イソシアネートと、ヒドロキシル基含有化合物との反応によって得られるポリウレタン系樹脂を含む、請求項1または請求項2に記載の波長変換シート用フィルム。
  4.  前記樹脂組成物が、シランカップリング剤を含む、請求項1乃至請求項3のいずれか1項に記載の波長変換シート用フィルム。
  5.  前記基材と前記プライマー層との間にバリア層を更に含む、請求項1乃至請求項4のいずれか1項に記載の波長変換シート用フィルム。
  6.  前記バリア層が、無機酸化物層と、有機被覆層とを含み、前記有機被覆層が前記プライマー層と接触する、請求項5に記載の波長変換シート用フィルム。
  7.  前記バリア層が、金属酸化物とリン化合物とを含む組成物の反応物を含む層である、請求項5に記載の波長変換シート用フィルム。
  8.  蛍光体を含む蛍光体層の少なくとも一方の表面側に、前記プライマー層と前記蛍光体層とが接触するように請求項1乃至請求項7のいずれか1項に記載のフィルムが設けられる、波長変換シート。
  9.  一次光を放出する少なくとも1つの光源と、前記光源に隣接して配置され、導光又は拡散のための光学板と、前記光学板の光出射側に配置された波長変換シートとを備えたバックライトであって、
     前記波長変換シートが請求項8に記載の波長変換シートであるバックライト。
  10.  バックライト及び液晶パネルを備えた表示装置であって、前記バックライトが請求項9に記載のバックライトである表示装置。

     
PCT/JP2022/037050 2021-10-08 2022-10-04 波長変換シート用フィルム、波長変換シート、バックライト、及び、表示装置 WO2023058626A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020247014760A KR20240072259A (ko) 2021-10-08 2022-10-04 파장 변환 시트용 필름, 파장 변환 시트, 백라이트 및 표시 장치
EP22878495.5A EP4414755A1 (en) 2021-10-08 2022-10-04 Wavelength conversion sheet-use film, wavelength conversion sheet, backlight, and display device
CN202280079894.0A CN118355298A (zh) 2021-10-08 2022-10-04 波长转换片用膜、波长转换片、背光源和显示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021166429A JP2023056922A (ja) 2021-10-08 2021-10-08 波長変換シート用フィルム、波長変換シート、バックライト、及び、表示装置
JP2021-166429 2021-10-08

Publications (1)

Publication Number Publication Date
WO2023058626A1 true WO2023058626A1 (ja) 2023-04-13

Family

ID=85803464

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037050 WO2023058626A1 (ja) 2021-10-08 2022-10-04 波長変換シート用フィルム、波長変換シート、バックライト、及び、表示装置

Country Status (6)

Country Link
EP (1) EP4414755A1 (ja)
JP (1) JP2023056922A (ja)
KR (1) KR20240072259A (ja)
CN (1) CN118355298A (ja)
TW (1) TW202319239A (ja)
WO (1) WO2023058626A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122036A1 (ja) 2010-03-30 2011-10-06 株式会社クラレ 複合構造体、それを用いた包装材料および成形品、複合構造体の製造方法、ならびにコーティング液
JP2019044136A (ja) * 2017-09-07 2019-03-22 凸版印刷株式会社 プライマー層形成用組成物、バリアフィルム、波長変換シート、及び、波長変換シートの製造方法
JP2019066759A (ja) * 2017-10-04 2019-04-25 凸版印刷株式会社 蛍光体保護フィルム、波長変換シート及び発光ユニット
JP2020049836A (ja) * 2018-09-27 2020-04-02 大日本印刷株式会社 バリアフィルム、それを用いた波長変換シート、及びそれを用いた表示装置
WO2021200426A1 (ja) * 2020-03-31 2021-10-07 大日本印刷株式会社 バリアフィルム、波長変換シート、バックライト、及び表示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015037733A1 (ja) 2013-09-13 2015-03-19 凸版印刷株式会社 波長変換シート及びバックライトユニット
JP6465368B2 (ja) 2016-07-28 2019-02-06 ジャパンマテックス株式会社 混合グラファイトを用いた放熱材およびその製造方法
KR102206965B1 (ko) 2017-11-01 2021-01-25 수 조우 오리엔탈 세미컨덕터 콤퍼니 리미티드 트렌치형 전력 트랜지스터

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011122036A1 (ja) 2010-03-30 2011-10-06 株式会社クラレ 複合構造体、それを用いた包装材料および成形品、複合構造体の製造方法、ならびにコーティング液
JP2019044136A (ja) * 2017-09-07 2019-03-22 凸版印刷株式会社 プライマー層形成用組成物、バリアフィルム、波長変換シート、及び、波長変換シートの製造方法
JP2019066759A (ja) * 2017-10-04 2019-04-25 凸版印刷株式会社 蛍光体保護フィルム、波長変換シート及び発光ユニット
JP2020049836A (ja) * 2018-09-27 2020-04-02 大日本印刷株式会社 バリアフィルム、それを用いた波長変換シート、及びそれを用いた表示装置
WO2021200426A1 (ja) * 2020-03-31 2021-10-07 大日本印刷株式会社 バリアフィルム、波長変換シート、バックライト、及び表示装置

Also Published As

Publication number Publication date
KR20240072259A (ko) 2024-05-23
EP4414755A1 (en) 2024-08-14
TW202319239A (zh) 2023-05-16
CN118355298A (zh) 2024-07-16
JP2023056922A (ja) 2023-04-20

Similar Documents

Publication Publication Date Title
JP7193009B2 (ja) バリアフィルム、波長変換シート、バックライト、及び表示装置
JP7323266B2 (ja) 波長変換シート用のバリアフィルム、波長変換シートおよびそれに用いられる表示装置
JP6874918B2 (ja) バリアフィルム、それを用いた波長変換シート、及びそれを用いた表示装置
JP7091977B2 (ja) バリアフィルム、それを用いた波長変換シート、及びそれを用いた表示装置
JP7310700B2 (ja) バリアフィルム、それを用いた波長変換シート、及びそれを用いた表示装置
KR20220107318A (ko) 배리어 필름, 그리고 이것을 이용한 파장 변환 시트, 백라이트 및 액정 표시 장치
JP7151921B1 (ja) 波長変換シート用フィルム、波長変換シート、バックライト、及び、表示装置
WO2023058626A1 (ja) 波長変換シート用フィルム、波長変換シート、バックライト、及び、表示装置
WO2022239819A1 (ja) 波長変換シート用のバリアフィルム、並びに、これを用いた波長変換シート、バックライト及び液晶表示装置、並びに、波長変換シート用のバリアフィルムの選定方法
JP7070767B2 (ja) 波長変換シート及びそれに用いられるバリアフィルム
JP2023047016A (ja) 波長変換シート用フィルム、波長変換シート、バックライト、及び表示装置
JP7373084B1 (ja) 波長変換シート、並びに、これを用いたバックライト及び液晶表示装置
JP6911981B2 (ja) 波長変換シート及びそれに用いられるバリアフィルム
KR102635067B1 (ko) 파장 변환 시트용 필름, 그리고 이것을 이용한 파장 변환 시트, 백라이트 및 액정 표시 장치
US12078890B2 (en) Barrier film, and wavelength conversion sheet, back light, and liquid crystal display device which use same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22878495

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18697972

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20247014760

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202447035719

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2022878495

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022878495

Country of ref document: EP

Effective date: 20240508