WO2023058474A1 - イマージョン回折素子及びその製造方法 - Google Patents

イマージョン回折素子及びその製造方法 Download PDF

Info

Publication number
WO2023058474A1
WO2023058474A1 PCT/JP2022/035576 JP2022035576W WO2023058474A1 WO 2023058474 A1 WO2023058474 A1 WO 2023058474A1 JP 2022035576 W JP2022035576 W JP 2022035576W WO 2023058474 A1 WO2023058474 A1 WO 2023058474A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffraction
immersion
amorphous glass
diffraction element
prism
Prior art date
Application number
PCT/JP2022/035576
Other languages
English (en)
French (fr)
Inventor
充 富田
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021164117A external-priority patent/JP2023055029A/ja
Priority claimed from JP2022109880A external-priority patent/JP2023055193A/ja
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2023058474A1 publication Critical patent/WO2023058474A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/32Non-oxide glass compositions, e.g. binary or ternary halides, sulfides or nitrides of germanium, selenium or tellurium
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings

Definitions

  • the present invention relates to an immersion diffraction element and a method for manufacturing the immersion diffraction element.
  • the immersion diffraction element has, for example, a structure in which a prism is provided with a diffraction section. A plurality of diffraction grooves are provided periodically in the diffraction section. In spectroscopy by the immersion diffraction element, light passes through the prism and is reflected and spectroscopy at the diffraction section. The split light is then emitted from the prism.
  • the wavelength of the light becomes 1/n when the light passes through the prism. Therefore, the pitch of the diffraction grooves required for spectroscopy is 1/n. Therefore, even if the immersion diffraction element is miniaturized, a large number of diffraction grooves can be provided, and the wavelength resolution can be improved.
  • Patent Documents 1 and 2 below disclose a diffraction grating as an example of an immersion diffraction element.
  • Patent Literature 1 discloses a diffraction grating in which a single-crystal Ge or single-crystal Si material is used and grating grooves are formed in the (111) plane of the crystal orientation.
  • Patent Document 2 discloses a diffraction grating in which grating grooves are provided in a crystal material of InP or InAs. The lattice grooves contain the (110) plane, which is the crystallographic orientation of the crystalline material.
  • An object of the present invention is to provide an immersion diffraction element and a method for manufacturing the immersion diffraction element, which are easy to manufacture and can improve the degree of freedom in designing the diffraction section.
  • An immersion diffraction element includes a prism section and a diffraction section, and is characterized in that the prism section and the diffraction section are made of amorphous glass.
  • An immersion diffraction element comprises a prism portion having a first principal surface, a second principal surface, and a third principal surface, and on the first principal surface of the prism portion and a diffractive portion made of amorphous glass.
  • the first and second inventions of the present application may be collectively referred to as the present invention.
  • the amorphous glass preferably has a refractive index of 3.0 or more at a wavelength of 10 ⁇ m.
  • the amorphous glass is preferably chalcogenide glass.
  • the amorphous glass contains 4% to 80% of Te, 0% to 50% of Ge (but not including 0%), and 0% to 20% of Ga in molar percentage. good.
  • the amorphous glass is composed of, in molar percentage, S 50% to 80%, Sb 0% to 40% (but not including 0%), Ge 0% to 18% (but including 0%). no), Sn 0% to 20%, and Bi 0% to 20%.
  • the value obtained by dividing the angle R of the bottom point portion of the concave portion by the angle R of the apex portion of the convex portion is 2.0 or less. It is more preferable that the angle formed by the surfaces forming the bottom point of the concave portion is 60° or more and 120° or less.
  • the surface of the diffraction section is covered with a reflective film. More preferably, the reflective film is made of Au.
  • the absolute value of the difference in refractive index at a wavelength of 10 ⁇ m between the material forming the prism portion and the amorphous glass forming the diffraction portion is 0.3 or less.
  • the absolute value of the difference in thermal expansion coefficient between the material forming the prism portion and the amorphous glass forming the diffraction portion is 150 ⁇ 10 ⁇ 7 /° C. or less. is preferred.
  • the prism portion is made of Si.
  • the diffraction section has a diffraction optical surface, a bottom surface facing the diffraction optical surface, and side surfaces connected to the diffraction optical surface and the bottom surface, and the diffraction section
  • the solder is not interposed between the first main surface of the prism portion and the bottom surface of the diffraction portion. It is preferable that the prism portion is bonded and the melting point of the solder is lower than the glass transition point of the amorphous glass.
  • the absolute value of the difference in thermal expansion coefficient between the solder and the amorphous glass is preferably 170 ⁇ 10 ⁇ 7 /° C. or less.
  • the solder preferably contains In, Sn, or Bi.
  • the solder is provided over the entire circumference of the side surface of the diffraction section.
  • the second invention further comprises a first base film provided on the first main surface of the prism section, wherein the solder is applied to the side surface of the diffraction section and the first base film. It is preferably provided over.
  • the first underlayer is provided so as to surround the diffraction section when viewed from the direction in which the diffractive optical surface and the bottom surface face each other.
  • the first base film is not provided between the diffraction section and the prism section.
  • the diffraction section is provided on the first main surface of the prism section with a second base film interposed therebetween.
  • the second underlayer is made of Si.
  • a method for manufacturing an immersion diffraction element according to a first invention of the present application comprises the steps of preparing an amorphous glass and forming a diffraction portion by mold-press molding the amorphous glass. Characterized by
  • a method for manufacturing an immersion diffraction element according to a second invention of the present application includes steps of preparing a prism and an amorphous glass, forming a diffraction portion by mold-press molding the amorphous glass, and forming the prism and a step of joining the diffraction portion.
  • the amorphous Mold press molding of the glass when forming the unevenness of the diffraction portion, is preferred.
  • the amorphous glass may be molded and press-molded so that the angle between the surfaces forming the bottom point portion of the concave portion is 60° or more and 120° or less. more preferred.
  • the amorphous glass is molded and press-molded using a press die in which the is 10.0 or less. More preferably, the amorphous glass is molded and press-molded using a press die in which the angles formed by the surfaces forming the apexes of the protrusions are 60° or more and 120° or less.
  • the glass transition point of the amorphous glass is preferably 140°C or higher and 250°C or lower.
  • the diffractive portion when forming the diffractive portion, it is preferable to mold-press the amorphous glass at a temperature of +5°C to the glass transition temperature +50°C of the amorphous glass.
  • the diffractive portion when forming the diffractive portion, it is preferable to mold-press the amorphous glass using a press mold plated with nickel-phosphorus.
  • the diffraction section is arranged on the first main surface of the prism, and solder is provided over the side surface of the diffraction section and the prism, Preferably, the prism and the diffractive portion are joined by the solder.
  • an immersion diffraction element and a method for manufacturing the immersion diffraction element that are easy to manufacture and can improve the degree of freedom in designing the diffraction section.
  • FIG. 1 is a schematic cross-sectional view showing an immersion diffraction element according to a first embodiment of the invention.
  • FIG. 2 is a schematic plan view showing a diffraction surface in the immersion diffraction element according to the first embodiment of the invention.
  • FIG. 3 is a schematic cross-sectional view for explaining spectroscopy in the immersion diffraction element. 4 is an enlarged view of the diffractive portion in FIG. 3.
  • FIG. FIG. 5 is a schematic cross-sectional view for explaining a press die used in the method for manufacturing an immersion diffraction element according to the first embodiment of the invention.
  • FIG. 6 is a schematic cross-sectional view showing an immersion diffraction element according to a second embodiment of the invention.
  • FIG. 1 is a schematic cross-sectional view showing an immersion diffraction element according to a first embodiment of the invention.
  • FIG. 2 is a schematic plan view showing a diffraction surface in the immersion diffraction element according to the first embodiment of the invention
  • FIG. 7 is a schematic cross-sectional view showing an immersion diffraction element according to a third embodiment of the invention.
  • FIG. 8 is a scanning electron microscope (SEM) photograph of the mold used in the experimental example.
  • FIG. 9 is a scanning electron microscope (SEM) photograph of the mold used in the experimental example.
  • FIG. 10 is a scanning electron microscope (SEM) photograph of the immersion diffraction element produced in Experimental Example.
  • FIG. 11 is a scanning electron microscope (SEM) photograph of the immersion diffraction element produced in Experimental Example.
  • FIG. 12 is a scanning electron microscope (SEM) photograph of the immersion diffraction element produced in Experimental Example.
  • FIG. 13 is a schematic cross-sectional view showing an immersion diffraction element according to a fourth embodiment of the invention.
  • FIG. 13 is a schematic cross-sectional view showing an immersion diffraction element according to a fourth embodiment of the invention.
  • FIG. 14 is a schematic plan view showing diffraction surfaces in an immersion diffraction element according to a fourth embodiment of the invention.
  • FIG. 15 is a schematic cross-sectional view for explaining spectroscopy in the immersion diffraction element.
  • 16 is an enlarged view of the diffraction portion in FIG. 15.
  • FIG. 17 is a schematic cross-sectional view for explaining a press die used in the method for manufacturing an immersion diffraction element according to the fourth embodiment of the invention.
  • FIG. 18 is a schematic cross-sectional view showing an immersion diffraction element according to a fifth embodiment of the invention.
  • FIG. 19 is a schematic plan view showing a diffraction surface in an immersion diffraction element according to a fifth embodiment of the invention.
  • FIG. 15 is a schematic cross-sectional view for explaining spectroscopy in the immersion diffraction element.
  • 16 is an enlarged view of the diffraction portion in FIG. 15.
  • FIG. 17 is a schematic cross-sectional view
  • FIG. 20 is a schematic cross-sectional view showing a modification of the immersion diffraction element according to the fifth embodiment of the invention.
  • FIG. 21 is a schematic cross-sectional view showing an immersion diffraction element according to a sixth embodiment of the invention.
  • FIG. 22 is a schematic cross-sectional view showing an immersion diffraction element according to a seventh embodiment of the invention.
  • FIG. 23 is a schematic cross-sectional view showing an immersion diffraction element according to an eighth embodiment of the invention.
  • FIG. 1 is a schematic cross-sectional view showing an immersion diffraction element according to a first embodiment of the invention.
  • FIG. 2 is a schematic plan view showing a diffraction surface in the immersion diffraction element according to the first embodiment of the present invention.
  • 1 is a schematic cross-sectional view along line II in FIG.
  • the immersion diffraction element 1 includes a prism portion 2 and a diffraction portion 4.
  • the prism section 2 and the diffraction section 4 are integrally provided.
  • the prism part 2 has a triangular prism shape.
  • the prism portion 2 has a first surface 2a, a second surface 2b, and a third surface 2c.
  • the first surface 2a, the second surface 2b, and the third surface 2c correspond to the side surfaces of the triangular prism shape.
  • the first surface 2a of the prism portion 2 is provided with a plurality of diffraction grooves 3 periodically.
  • the diffraction section 4 is thus configured. More specifically, the plurality of diffraction grooves 3 are provided so that the diffraction portion 4 has a stepped shape.
  • the shape of the prism portion 2 is not particularly limited as long as it has a surface on which the diffraction portion 4 is provided.
  • the diffraction section 4 has a fourth surface 4a and a fifth surface 4b.
  • the concave portions 4c and the convex portions 4d are alternately and repeatedly provided. Thereby, a stepped diffraction portion 4 is formed.
  • FIG. 3 is a schematic cross-sectional view for explaining spectroscopy in the immersion diffraction element.
  • 4 is an enlarged view of the diffractive portion in FIG. 3.
  • FIG. 3 and 4 are not hatched.
  • the second surface 2 b of the prism section 2 is the incident section of the immersion diffraction element 1 .
  • the diffraction portion 4 includes a bottom point portion 4c1 shown in FIG. More specifically, diffraction portion 4 includes a plurality of bottom point portions 4c1.
  • the light A enters from the second surface 2b, passes through the prism section 2, and reaches the diffraction section 4.
  • the light A is dispersed by being reflected and diffracted by each fourth surface 4a and each bottom point portion 4c1 in the diffraction portion 4.
  • Dashed line arrows and dashed line arrows in FIG. 3 indicate examples of the dispersed light.
  • the split light is emitted from the prism section 2 .
  • the wavelength of the light A inside the prism portion 2 is shorter than the wavelength of the light A outside the prism portion 2 . Therefore, it is possible to shorten the pitch of the diffraction grooves 3 required for spectroscopy. Therefore, in the immersion diffraction element 1, both improvement in wavelength resolution and miniaturization can be achieved.
  • the prism portion 2 and the diffraction portion 4 are made of amorphous glass. Therefore, manufacturing is easy, and the degree of freedom in designing the diffraction section 4 can be improved.
  • the diffraction part of an immersion diffraction element was made of a crystal material such as single crystal Ge.
  • the diffraction section is made of a crystal material
  • the diffraction grooves are formed by processing the crystal material, such as cutting or etching. Therefore, there is a problem that it is difficult to easily manufacture the immersion diffraction element.
  • the processing shape is restricted by the crystal orientation, so there is a problem that the degree of freedom in designing the diffraction section is not sufficient and it is difficult to improve the optical degree of freedom.
  • the prism portion 2 and the diffraction portion 4 are made of amorphous glass. Therefore, the immersion diffraction element 1 can be easily formed by subjecting the prism portion 2 to mold press molding, as will be described later in the manufacturing method column. In addition, in the case of amorphous glass, since the processing shape is not restricted by the crystal orientation, the degree of freedom in designing the diffraction section 4 can be improved. Therefore, the immersion diffraction element 1 of this embodiment can improve the optical degree of freedom.
  • amorphous glass refers to glass in which no crystalline peak is observed and a halo pattern peculiar to glass is observed as measured by powder X-ray diffraction.
  • the refractive index at a wavelength of 10 ⁇ m of the amorphous glass forming the prism portion 2 and the diffraction portion 4 is preferably 3.0 or more, more preferably 3.1 or more, and still more preferably 3.2 or more. be. If the refractive index of the amorphous glass is equal to or higher than the above lower limit, the immersion diffraction element 1 can be further miniaturized.
  • the upper limit of the refractive index of the amorphous glass is not particularly limited, it can be, for example, 4.1 or less due to the properties of the material.
  • the amorphous glass forming the prism portion 2 and the diffraction portion 4 is preferably chalcogenide glass. In this case, the refractive index of the amorphous glass can be further increased.
  • the amorphous glass preferably contains 4% to 80% Te, 0% to 50% Ge (but not including 0%), and 0% to 20% Ga in terms of molar percentage.
  • the refractive index of the amorphous glass can be further increased.
  • the content of Te in terms of molar percentage is preferably 10% or more, more preferably 20% or more, particularly preferably 30% or more, more preferably 75% or less, and still more preferably 70%. It is below.
  • the content of Te in the amorphous glass is less than 4%, vitrification becomes difficult.
  • Te content in the amorphous glass exceeds 80%, Te-based crystals precipitate from the glass, making it difficult to obtain the refractive index and transmittance that satisfy the characteristics of the immersion diffraction element 1.
  • the surface quality of the immersion diffraction element 1 may deteriorate due to a large amount of Te evaporation during mold press molding.
  • the content of Ge is preferably 1% or more, more preferably 5% or more, more preferably 40% or less, and still more preferably 30% or less in terms of molar percentage. If the amorphous glass does not contain Ge, it becomes difficult to vitrify. On the other hand, when the Ge content in the amorphous glass exceeds 50%, Ge-based crystals precipitate from the glass, making it difficult to obtain the refractive index and transmittance that satisfy the characteristics of the immersion diffraction element 1. When the viscosity of the glass is increased during mold press molding, the followability of the shape of the diffraction section 4 to the press die 10 described later may be deteriorated.
  • the content of Ga in terms of molar percentage is preferably 0.1% or more, more preferably 1% or more, more preferably 15% or less, and still more preferably 10% or less.
  • the vitrification range can be broadened and the thermal stability (vitrification stability) of the glass can be further enhanced.
  • the amorphous glass in terms of molar percentages, is 50% to 80% S, 0% to 40% Sb (but not including 0%), 0% to 18% Ge (but not including 0%), Sn A glass containing 0% to 20% Bi and 0% to 20% Bi is preferred. In this case, the refractive index of the amorphous glass can be further increased.
  • the S content is more preferably 55% or more, more preferably 60% or more, more preferably 75% or less, and still more preferably 70% or less in terms of molar percentage.
  • the content of S in the amorphous glass is less than 50%, vitrification becomes difficult.
  • the content of S in the amorphous glass exceeds 80%, the weather resistance of the glass is lowered, which may limit the usage environment of the immersion diffraction element 1 .
  • the Sb content is more preferably 5% or more, more preferably 10% or more, more preferably 35% or less, and still more preferably 33% or less in terms of molar percentage. If the amorphous glass does not contain Sb, or if the content exceeds 40%, vitrification may become difficult.
  • the content of Ge is more preferably 2% or more, more preferably 4% or more, and more preferably 15% or less in terms of molar percentage. If the glass does not contain Ge, it becomes difficult to vitrify. On the other hand, when the Ge content in the amorphous glass exceeds 18%, Ge-based crystals precipitate out of the glass, making it difficult to obtain the refractive index and transmittance that satisfy the characteristics of the immersion diffraction element 1. Also, when the viscosity of the glass is increased during mold press molding, there are cases where the followability of the shape of the diffraction section 4 to the press die 10, which will be described later, deteriorates.
  • the Sn content is more preferably 1% or more, more preferably 5% or more, more preferably 15% or less, and still more preferably 10% or less in terms of molar percentage.
  • Sn in the amorphous glass is a component that promotes vitrification, but when the Sn content in the amorphous glass exceeds 20%, vitrification becomes difficult.
  • the molar percentage of Bi content is preferably 0.5% or more, more preferably 2% or more, more preferably 10% or less, and still more preferably 8% or less.
  • Bi in the amorphous glass is a component that reduces the energy required for vitrification of the raw material when the glass is melted.
  • the content of Bi in the amorphous glass exceeds 20%, Bi-based crystals are precipitated from the glass, making it difficult to obtain the refractive index and transmittance that satisfy the characteristics of the immersion diffraction element 1.
  • the density of the amorphous glass forming the prism portion 2 and the diffraction portion 4 is preferably 6.5 g/cm 3 or less, more preferably 6.3 g/cm 3 or less, and still more preferably 6.0 g/cm 3 or less. be. If the density of the amorphous glass satisfies the above range, the weight of the immersion diffraction element 1 can be further reduced.
  • the amorphous glass constituting the prism portion 2 and the diffraction portion 4 preferably has an internal transmittance of 80% or more, more preferably 85% or more, in an infrared wavelength range at a wavelength of 7.0 ⁇ m to 11.0 ⁇ m. Preferably it is 90% or more. In this case, desired optical performance can be obtained more reliably.
  • the upper limit of the internal transmittance in the infrared wavelength region in the wavelength range of 7.0 ⁇ m to 11.0 ⁇ m can be set to 99.5%, for example.
  • the internal transmittance is for a wall thickness of 2.0 mm.
  • the bottom point portion 4c1 of the concave portion 4c has a sharper shape than the apex portion 4d1 of the convex portion 4d. Since the fourth surface 4a and the bottom point 4c1 of the recess 4c greatly affect the characteristic surface of the immersion diffraction element 1, the bottom point 4c1 of the recess 4c is sharper than the peak 4d1 of the projection 4d.
  • the value obtained by dividing R4c1 by R4d1 is By setting it to preferably 2.0 or less, more preferably 1.0 or less, the diffraction efficiency of the immersion diffraction element 1 can be further improved.
  • the value of R4c1 is preferably 0.1 ⁇ m to 10 ⁇ m, and the value of R4d1 is preferably 5 ⁇ m to 20 ⁇ m.
  • the angle ⁇ 1 formed by the fourth surface 4a and the fifth surface 4b forming the bottom portion 4c1 of the recess 4c is preferably 60° or more, more preferably 65° or more, and further preferably 65° or more. It is preferably 70° or more, particularly preferably 80° or more, preferably 120° or less, more preferably 115° or less, still more preferably 110° or less, and particularly preferably 100° or less.
  • the angle ⁇ 1 formed by the fourth surface 4a and the fifth surface 4b forming the bottom portion 4c1 of the recess 4c is preferably 90° ⁇ 1°, more preferably 90°. In this case, the diffraction efficiency of the immersion diffraction element 1 can be further improved.
  • an amorphous glass is prepared.
  • the same amorphous glass as that constituting the prism portion 2 and the diffraction portion 4 can be used.
  • the amorphous glass for example, chalcogenide glass with a glass composition of 60% S, 30% Sb, 5% Ge, and 5% Sn in terms of molar percentages, or a glass composition with a molar percentage of Te of 70%, A base glass made of chalcogenide glass of 25% Ge and 5% Ga is prepared.
  • the diffractive portion 4 is formed by mold-pressing the amorphous glass.
  • the prism portion 2 and the diffraction portion 4 can be formed by preparing a prism (precursor prism) made of amorphous glass and subjecting this precursor prism to mold press molding.
  • the diffractive portion 4 can be easily formed by mold-pressing the precursor prism.
  • the amorphous glass can be transferred as described above, and the processed shape is not limited by the crystal orientation, so the degree of freedom in designing the diffraction section 4 can be improved. Therefore, in the manufacturing method of the present embodiment, the optical degree of freedom of the immersion diffraction element 1 can be improved.
  • the angle R of the bottom point portion 4c1 of the concave portion 4c is R4c1, and the angle R of the apex portion 4d1 of the convex portion 4d is R4d1.
  • R4d1 is preferably 2.0 or less, more preferably 1.0 or less.
  • R4c1 is divided by R4d1.
  • the value of R4c1 is preferably 0.1 ⁇ m to 10 ⁇ m, and the value of R4d1 is preferably 5 ⁇ m to 20 ⁇ m.
  • the angle formed by the fourth surface 4a and the fifth surface 4b forming the bottom portion 4c1 of the concave portion 4c is 60° or more and 120° or less. It is preferable to mold-press the amorphous glass so as to obtain the following.
  • the angle formed by the fourth surface 4a and the fifth surface 4b forming the bottom portion 4c1 of the recessed portion 4c is preferably 65° or more, more preferably 70° or more, and particularly preferably 80° or more. It is preferably 115° or less, more preferably 110° or less, and particularly preferably 100° or less.
  • the angle formed by the fourth surface 4a and the fifth surface 4b forming the bottom portion 4c1 of the recess 4c is preferably 90° ⁇ 1°, more preferably 90°. In this case, the diffraction efficiency of the immersion diffraction element 1 can be further improved.
  • FIG. 5 is a schematic cross-sectional view for explaining a press die used in the method for manufacturing an immersion diffraction element according to the first embodiment of the invention.
  • the press die 10 has a shape corresponding to the unevenness of the diffraction section 4 .
  • the apex 12a of the projection 12 is sharper than the bottom 11a of the recess 11.
  • the value obtained by dividing R12a by R11a is preferably 10.0 or less, more preferably 8.0 or less.
  • the value of R11a is preferably 1 ⁇ m to 20 ⁇ m, and the value of R12a is preferably 0.05 ⁇ m to 10 ⁇ m.
  • the angle ⁇ 2 formed by the sixth surface 13 and the seventh surface 14 forming the apex portion 12a of the convex portion 12 is preferably 60° or more, more preferably 65° or more, more preferably 65° or more. is 70° or more, particularly preferably 80° or more, preferably 120° or less, more preferably 115° or less, even more preferably 110° or less, and particularly preferably 100° or less.
  • the angle ⁇ 2 formed by the sixth surface 13 and the seventh surface 14 forming the apex portion 12a of the convex portion 12 is preferably 90° ⁇ 1°, more preferably 90°.
  • the angle formed by the fourth surface 4a and the fifth surface 4b forming the bottom point portion 4c1 of the concave portion 4c by press-molding amorphous glass using such a press die 10 is as described above. It can be adjusted within a preferable range, and the diffraction efficiency of the immersion diffraction element 1 can be further improved.
  • the material of the press die 10 is not particularly limited, but for example, cemented carbide, STAVAX, HPM38, etc. can be used.
  • the diffractive portion 4 when forming the diffractive portion 4, it is preferable to mold-press the amorphous glass at a temperature equal to or higher than the glass transition temperature of the amorphous glass +5°C and equal to or lower than the glass transition temperature +50°C.
  • the temperature for the mold press molding of the amorphous glass is more preferably the glass transition temperature of the amorphous glass +10°C or higher and the glass transition temperature +45°C or lower, and more preferably the glass transition temperature of the amorphous glass +15°C or higher. , glass transition temperature + 40°C or less.
  • the glass transition point of the amorphous glass is preferably 140° C. or higher, more preferably 145° C. or higher, still more preferably 150° C. or higher, preferably 250° C. or lower, more preferably 245° C. or lower, further preferably 240° C. or higher. °C or less.
  • nickel-phosphorus-plated press dies may become difficult to use due to crystallization at high temperatures, so they can be suitably used when pressing at low temperatures as described above.
  • a nickel-phosphorus-plated press die it becomes easier to obtain a specular surface of the press die, and the surface accuracy of the mold press molding can be further improved, so that the design freedom of the diffraction section 4 is further improved.
  • a nickel-phosphorus plated press die is used, but the type of plating is not limited to this, and nickel-molybdenum plating, nickel-tungsten plating, or the like can be used.
  • an immersion diffraction element was manufactured based on the method for manufacturing an immersion diffraction element according to the first embodiment of the present invention. Specifically, an immersion diffraction element was produced by mold-pressing amorphous glass under the conditions of a reduced pressure environment (degree of vacuum of 0.3 Pa), a temperature of 185°C, a press time of 1 minute, and a press pressure of 2 kN. . Chalcogenide glass containing 70% Te, 20% Ge, and 10% Ga in molar percentage was used as the amorphous glass.
  • FIGS. 8 and 9 are scanning electron microscope (SEM) photographs of the molds used in the experimental examples.
  • FIG. 8 is a SEM photograph of the cross section of the diffraction surface forming portion of the mold used in the experimental example
  • FIG. 9 is an enlarged view of the diffraction surface forming portion.
  • a cemented carbide material (Cemented Carbide EF10, manufactured by Kyoritsu Gokin Seisakusho Co., Ltd.) was used as the material of the mold.
  • FIG. 10 to 12 are scanning electron microscope (SEM) photographs of the immersion diffraction element produced in the experimental example. Note that FIG. 10 is an SEM photograph of the diffraction surface of the immersion diffraction element. FIG. 11 is a cross-sectional SEM photograph of the immersion diffraction element, and FIG. 12 is an enlarged view of the diffraction portion.
  • SEM scanning electron microscope
  • the immersion diffraction element is manufactured by mold press molding as in this experimental example, it is difficult to generate processing waste due to chipping. Deterioration of the optical characteristics of the element can be made difficult to occur. More specifically, cleaning after cutting or polishing may damage the diffraction section during cleaning, or the aggregation of processing scraps or floating dust in the diffraction section or diffraction grooves may deteriorate the optical characteristics.
  • this problem can be solved by manufacturing by mold press molding as in this experimental example.
  • FIG. 6 is a schematic cross-sectional view showing an immersion diffraction element according to a second embodiment of the invention.
  • the surface of the diffraction section 4 is covered with the reflective film 22 . More specifically, the reflective film 22 covers the fourth surface 4 a and the fifth surface 4 b of the diffraction section 4 .
  • the material of the reflective film 22 is not particularly limited, but metal such as Au can be used.
  • An appropriate dielectric multilayer film may be used as the reflective film 22 .
  • the thickness of the reflective film 22 can be, for example, 1 ⁇ m or more and 10 ⁇ m or less.
  • the reflective film 22 can be formed by vapor deposition or sputtering, for example.
  • the reflective film 22 may use Si as its underlying film. Other points are the same as in the first embodiment.
  • the prism portion 2 and the diffraction portion 4 are made of amorphous glass. Therefore, manufacturing is easy, and the degree of freedom in designing the diffraction section 4 can be improved.
  • the surface of the diffraction section 4 may be covered with the reflective film 22 .
  • the light that has entered the prism section 2 can be more reliably reflected by the diffraction section 4 and can be more reliably dispersed.
  • FIG. 7 is a schematic cross-sectional view showing an immersion diffraction element according to a third embodiment of the invention.
  • an antireflection film 32 is provided on the second main surface 2b of the prism portion 2. As shown in FIG. 7, in the immersion diffraction element 31, an antireflection film 32 is provided on the second main surface 2b of the prism portion 2. As shown in FIG. 7, in the immersion diffraction element 31, an antireflection film 32 is provided on the second main surface 2b of the prism portion 2. As shown in FIG. 7, in the immersion diffraction element 31, an antireflection film 32 is provided on the second main surface 2b of the prism portion 2. As shown in FIG.
  • the antireflection film 32 is preferably made of at least one selected from, for example, Ge, Si, fluoride, ZnSe, ZnS, and diamond-like carbon.
  • the antireflection film 32 can be formed by, for example, a vapor deposition method or a sputtering method. Also, the thickness of the antireflection film 32 can be set to, for example, 1.0 ⁇ m or more and 5.0 ⁇ m or less. Other points are the same as in the first embodiment.
  • the prism portion 2 and the diffraction portion 4 are made of amorphous glass. Therefore, manufacturing is easy, and the degree of freedom in designing the diffraction section 4 can be improved.
  • an antireflection film 32 may be provided on the second main surface 2b of the prism portion 2.
  • the second surface 2 b of the prism portion 2 is the incident portion of the immersion diffraction element 31 . Therefore, by providing the anti-reflection film 32 on this incident portion, the incident light is less likely to be reflected. Therefore, in this case, the utilization efficiency of light in the immersion diffraction element 31 can be further improved.
  • FIG. 13 is a schematic cross-sectional view showing an immersion diffraction element according to a fourth embodiment of the invention. Also, FIG. 14 is a schematic plan view showing a diffraction surface in an immersion diffraction element according to a fourth embodiment of the present invention. 13 is a schematic cross-sectional view taken along line II-II of FIG.
  • the immersion diffraction element 101 includes a prism section 102 and a diffraction section 104. As shown in FIG. The prism section 102 and the diffraction section 104 are provided separately.
  • the prism part 102 has a triangular prism shape.
  • the prism portion 102 has a first surface 102a (first principal surface 102a), a second surface 102b (second principal surface 102b), and a third surface 102c (third principal surface 102c). have.
  • the first main surface 102a, the second main surface 102b, and the third main surface 102c correspond to the side surfaces of the triangular prism shape.
  • a diffraction section 104 is provided on the first main surface 102 a of the prism section 102 .
  • the shape of the prism section 102 is not particularly limited as long as it has a surface on which the diffraction section 104 is provided.
  • a plurality of diffraction grooves 103 are periodically provided in the diffraction section 104 . More specifically, the plurality of diffraction grooves 103 are provided so that the diffraction portion 104 has a stepped shape.
  • the diffraction section 104 has a fourth surface 104a and a fifth surface 104b.
  • the fourth surface 104a and the fifth surface 104b are alternately and repeatedly provided, so that the concave portions 104c and the convex portions 104d are alternately and repeatedly provided. Thereby, a stepped diffraction portion 104 is formed.
  • FIG. 15 is a schematic cross-sectional view for explaining spectroscopy in the immersion diffraction element.
  • 16 is an enlarged view of the diffraction portion in FIG. 15.
  • FIG. 15 and 16 are not hatched. Also, the boundary between the prism section 102 and the diffraction section 104 is omitted.
  • the second main surface 102b of the prism portion 102 is the incident portion of the immersion diffraction element 101.
  • the diffraction portion 104 includes a bottom point portion 104c1 shown in FIG. More specifically, diffraction portion 104 includes a plurality of bottom point portions 104c1.
  • light B is incident from the second main surface 102b, passes through the prism section 102, and reaches the diffraction section 104.
  • the light B is dispersed by being reflected and diffracted by each fourth surface 104a and each bottom point portion 104c1 in the diffraction portion 104 .
  • Dashed arrows and dashed-dotted arrows in FIG. 15 indicate examples of dispersed light.
  • the split light is emitted from the prism section 102 .
  • the wavelength of the light B inside the prism section 102 is shorter than the wavelength of the light B outside the prism section 102 . Therefore, the pitch of the diffraction grooves 103 necessary for spectroscopy can be shortened. Therefore, in the immersion diffraction element 101, both improvement in wavelength resolution and miniaturization can be achieved.
  • the diffraction section 104 is made of amorphous glass.
  • amorphous glass refers to glass in which no crystalline peak is observed and a halo pattern peculiar to glass is observed as measured by powder X-ray diffraction.
  • the immersion diffraction element 101 of this embodiment has the above configuration, it is easy to manufacture, and the degree of freedom in designing the diffraction section 104 can be improved.
  • the diffraction part of an immersion diffraction element was made of a crystal material such as single crystal Ge.
  • the diffraction section is made of a crystal material
  • the diffraction grooves are formed by processing the crystal material, such as cutting or etching. Therefore, there is a problem that it is difficult to easily manufacture the immersion diffraction element.
  • the processing shape is restricted by the crystal orientation, so there is a problem that the degree of freedom in designing the diffraction section is not sufficient and it is difficult to improve the optical degree of freedom.
  • the diffraction section 104 is made of amorphous glass. Therefore, as will be described later in the manufacturing method section, the diffractive portion 104 can be easily formed by molding and press-molding the amorphous glass.
  • the shape to be processed is not limited by the crystal orientation, so the degree of freedom in designing the diffraction section 104 can be improved. Therefore, the immersion diffraction element 101 of this embodiment can improve the optical degree of freedom.
  • the material forming the prism portion 102 is not particularly limited, but Si, GaAs, etc. can be used, for example.
  • the material of the prism section 102 may be amorphous glass similar to that of the diffraction section 104 . These materials may be used individually by 1 type, and may use multiple types together.
  • the refractive index of the material forming the prism portion 102 at a wavelength of 10 ⁇ m is preferably 3.0 or higher, more preferably 3.1 or higher, and still more preferably 3.2 or higher.
  • the immersion diffraction element 101 can be further miniaturized.
  • the upper limit of the refractive index of the material forming the prism section 102 is not particularly limited, it can be, for example, 4.1 or less due to the properties of the material.
  • the density of the material forming the prism portion 102 is preferably 6.5 g/cm 3 or less, more preferably 6.3 g/cm 3 or less. When the density of the material forming the prism portion 102 is within the above range, the weight of the immersion diffraction element 101 can be further reduced.
  • the material constituting the prism part 102 preferably has an internal transmittance of 80.0% or more, more preferably 85.0% or more, and even more preferably 90.0% in the infrared wavelength region at a wavelength of 7.0 ⁇ m to 11.0 ⁇ m. % or more. In this case, desired optical performance can be obtained more reliably.
  • the upper limit of the internal transmittance in the infrared wavelength region in the wavelength range of 7.0 ⁇ m to 11.0 ⁇ m can be, for example, 99.5% or less.
  • the internal transmittance is for a wall thickness of 2.0 mm.
  • the absolute value of the difference in refractive index at a wavelength of 10 ⁇ m between the material forming the prism portion 102 and the amorphous glass forming the diffraction portion 104 is preferably 0.3 or less, more preferably 0.28 or less, and even more preferably. is 0.26 or less. In this case, the utilization efficiency of light can be further improved.
  • the lower limit of the absolute value of the difference in refractive index at a wavelength of 10 ⁇ m between the material forming the prism section 102 and the amorphous glass forming the diffraction section 104 is not particularly limited, but is, for example, 0.01 or more. can do. A combination of materials having the same refractive index is not excluded.
  • the absolute value of the difference in thermal expansion coefficient between the material forming the prism section 102 and the amorphous glass forming the diffraction section 104 is preferably 150 ⁇ 10 ⁇ 7 /° C. or less, more preferably 140 ⁇ 10 ⁇ 7 . /° C. or less, more preferably 130 ⁇ 10 ⁇ 7 /° C. or less. In this case, the adhesion between the prism section 102 and the diffraction section 104 can be further improved.
  • the amorphous glass forming the diffraction section 104 is preferably chalcogenide glass.
  • the refractive index of the amorphous glass can be further increased.
  • the amorphous glass preferably contains 4% to 80% Te, 0% to 50% Ge (but not including 0%), and 0% to 20% Ga in terms of molar percentage.
  • the refractive index of the amorphous glass can be further increased.
  • the content of Te in terms of molar percentage is preferably 10% or more, more preferably 20% or more, particularly preferably 30% or more, more preferably 75% or less, and still more preferably 70%. It is below.
  • the content of Te in the amorphous glass is less than 4%, vitrification becomes difficult.
  • Te content in the amorphous glass exceeds 80%, Te-based crystals precipitate from the glass, making it difficult to obtain the refractive index and internal transmittance that satisfy the characteristics of the immersion diffraction element 101.
  • the surface quality of the immersion diffraction element 101 may be degraded due to an increase in the amount of evaporation of Te during mold press molding.
  • the content of Ge is preferably 1% or more, more preferably 5% or more, more preferably 40% or less, and still more preferably 30% or less in terms of molar percentage. If the amorphous glass does not contain Ge, it becomes difficult to vitrify. On the other hand, when the Ge content in the amorphous glass exceeds 50%, Ge-based crystals precipitate from the glass, making it difficult to obtain the refractive index and internal transmittance that satisfy the characteristics of the immersion diffraction element 101. Also, when the viscosity of the glass is increased during mold press molding, the shape followability of the diffraction portion 104 to the press mold 110, which will be described later, may deteriorate.
  • the content of Ga in terms of molar percentage is preferably 0.1% or more, more preferably 1% or more, more preferably 15% or less, and still more preferably 10% or less.
  • the vitrification range can be broadened and the thermal stability (vitrification stability) of the glass can be further enhanced.
  • the amorphous glass in terms of molar percentages, is 50% to 80% S, 0% to 40% Sb (but not including 0%), 0% to 18% Ge (but not including 0%), Sn A glass containing 0% to 20% Bi and 0% to 20% Bi is preferred. In this case, the refractive index of the amorphous glass can be further increased.
  • the S content is more preferably 55% or more, more preferably 60% or more, more preferably 75% or less, and still more preferably 70% or less in terms of molar percentage.
  • the content of S in the amorphous glass is less than 50%, vitrification becomes difficult.
  • the content of S in the amorphous glass exceeds 80%, the weather resistance of the glass is lowered, which may limit the usage environment of the immersion diffraction element 101 .
  • the Sb content is more preferably 5% or more, more preferably 10% or more, more preferably 35% or less, and still more preferably 33% or less in terms of molar percentage. If the amorphous glass does not contain Sb, or if the content exceeds 40%, vitrification may become difficult.
  • the content of Ge is more preferably 2% or more, more preferably 4% or more, and more preferably 15% or less in terms of molar percentage. If the glass does not contain Ge, it becomes difficult to vitrify. On the other hand, when the Ge content in the amorphous glass exceeds 18%, Ge-based crystals precipitate out of the glass, making it difficult to obtain the refractive index and internal transmittance that satisfy the characteristics of the immersion diffraction element 101. At the same time, the increase in the viscosity of the glass during mold press molding may deteriorate the followability of the shape of the diffraction portion 104 to the press mold 110, which will be described later.
  • the Sn content is more preferably 1% or more, more preferably 5% or more, more preferably 15% or less, and still more preferably 10% or less in terms of molar percentage.
  • Sn in the amorphous glass is a component that promotes vitrification, but when the Sn content in the amorphous glass exceeds 20%, vitrification becomes difficult.
  • the molar percentage of Bi content is preferably 0.5% or more, more preferably 2% or more, more preferably 10% or less, and still more preferably 8% or less.
  • Bi in the amorphous glass is a component that reduces the energy required for vitrification of the raw material when the glass is melted.
  • Bi content in the amorphous glass exceeds 20%, Bi-based crystals precipitate out of the glass, making it difficult to obtain an internal transmittance that satisfies the characteristics of the immersion diffraction element 101 .
  • the refractive index of the amorphous glass forming the diffraction section 104 at a wavelength of 10 ⁇ m is preferably 3.0 or higher, more preferably 3.1 or higher, and still more preferably 3.2 or higher. If the refractive index of the amorphous glass is equal to or higher than the above lower limit, the immersion diffraction element 101 can be further miniaturized.
  • the upper limit of the refractive index of the amorphous glass is not particularly limited, it can be, for example, 4.1 or less due to the properties of the material.
  • the density of the amorphous glass forming the diffraction section 104 is preferably 6.5 g/cm 3 or less, more preferably 6.3 g/cm 3 or less, and still more preferably 6.0 g/cm 3 or less.
  • the weight of the immersion diffraction element 101 can be further reduced.
  • the amorphous glass constituting the diffraction section 104 preferably has an internal transmittance of 80% or more, more preferably 85% or more, and still more preferably 90% in the infrared wavelength region at a wavelength of 7.0 ⁇ m to 11.0 ⁇ m. That's it. In this case, desired optical performance can be obtained more reliably.
  • the upper limit of the internal transmittance in the infrared wavelength region in the wavelength range of 7.0 ⁇ m to 11.0 ⁇ m can be set to 99.5%, for example.
  • the internal transmittance is for a wall thickness of 2.0 mm.
  • the bottom portion 104c1 of the concave portion 104c has a sharper shape than the apex portion 104d1 of the convex portion 104d. Since the fourth surface 104a and the bottom point 104c1 of the recess 104c greatly affect the characteristic surface of the immersion diffraction element 101, the bottom point 104c1 of the recess 104c is sharper than the top 104d1 of the projection 104d.
  • R104c1 is the angle R (radius, ⁇ m) of the bottom portion 104c1 of the concave portion 104c
  • R104d1 is the angle R (radius, ⁇ m) of the apex portion 104d1 of the convex portion 104d.
  • the value of R104c1 is preferably 0.1 ⁇ m to 10 ⁇ m
  • the value of R104d1 is preferably 5 ⁇ m to 20 ⁇ m.
  • the angle ⁇ 3 formed by the fourth surface 104a and the fifth surface 104b forming the bottom point portion 104c1 of the recessed portion 104c is preferably 60° or more, more preferably 65° or more, still more preferably 70° or more.
  • the angle is preferably 80° or more, preferably 120° or less, more preferably 115° or less, still more preferably 110° or less, and particularly preferably 100° or less.
  • the angle ⁇ 3 formed by the fourth surface 104a and the fifth surface 104b forming the bottom portion 104c1 of the recess 104c is preferably 90° ⁇ 1°, more preferably 90°. In this case, the diffraction efficiency of the immersion diffraction element 101 can be further improved.
  • a prism and amorphous glass are prepared.
  • the prism the same one as the prism section 102 described above can be used.
  • the amorphous glass the same amorphous glass as that constituting the diffraction section 104 described above can be used.
  • the amorphous glass for example, a chalcogenide glass having a glass composition of 60% S, 30% Sb, 5% Ge, and 5% Sn in terms of molar percentage, or a glass composition of Te 70% in terms of molar percentage, A base glass made of chalcogenide glass of 25% Ge and 5% Ga is prepared.
  • the diffractive portion 104 is formed by mold-pressing the amorphous glass.
  • the amorphous glass is press molded so that the bottom point portion 104c1 of the recessed portion 104c is sharper than the apex portion 104d1 of the projected portion 104d. is preferred.
  • the fourth surface 104a and the bottom point portion 104c1 of the recessed portion 104c greatly affect the characteristic surface of the immersion diffraction element 101.
  • the bottom point of the recessed portion 104c Assuming that the portion 104c1 is sharper than the apex portion 104d1 of the convex portion 104d, the angle R of the bottom point portion 104c1 of the concave portion 104c is R104c1, and the angle R of the apex portion 104d1 of the convex portion 104d is R104d1, R104c1 is divided by R104d1.
  • R104c1 is preferably 0.1 ⁇ m to 10 ⁇ m, and the value of R104d1 is preferably 5 ⁇ m to 20 ⁇ m.
  • the angle ⁇ 3 formed by the fourth surface 104a and the fifth surface 104b forming the bottom portion 104c1 of the concave portion 104c is 60° or more and 120°. It is preferable to mold-press the amorphous glass so as to achieve the following.
  • the angle ⁇ 3 formed by the fourth surface 104a and the fifth surface 104b forming the bottom portion 104c1 of the recess 104c is preferably 60° or more, more preferably 65° or more, more preferably 120° or less, and even more preferably 120° or less. is less than or equal to 115°.
  • the angle ⁇ 3 formed by the fourth surface 104a and the fifth surface 104b forming the bottom portion 104c1 of the recess 104c is preferably 90° ⁇ 1°, more preferably 90°. In this case, the diffraction efficiency of the immersion diffraction element 101 can be further improved.
  • FIG. 17 is a schematic cross-sectional view for explaining a press die used in the method for manufacturing an immersion diffraction element according to the fourth embodiment of the invention.
  • the press die 110 has a shape corresponding to the unevenness of the diffraction section 104 .
  • the apex 112a of the projection 112 is sharper than the bottom 111a of the recess 111. That is, the angle R of the apex 112a of the projection 112 is R112a, Assuming that the angle R is R111a, the value obtained by dividing R112a by R111a is preferably 10.0 or less, more preferably 8.0 or less.
  • the value obtained by dividing the above R104c1 by R104d1 in the diffractive portion 104 can more reliably be 10.0 or less, preferably 2.0. Below, more preferably, it can be formed to be 1.0 or less, and the diffraction efficiency in the immersion diffraction element 101 can be further improved.
  • the value of R111a is preferably 1 ⁇ m to 20 ⁇ m, and the value of R112a is preferably 0.05 ⁇ m to 10 ⁇ m.
  • the angle ⁇ 4 formed by the sixth surface 113 and the seventh surface 114 forming the apex portion 112a of the convex portion 112 is preferably 60° or more, more preferably 65° or more, more preferably 65° or more. is 70° or more, particularly preferably 80° or more, preferably 120° or less, more preferably 115° or less, even more preferably 110°, particularly preferably 100° or less.
  • the angle ⁇ 4 formed by the sixth surface 113 and the seventh surface 114 forming the vertex 112a of the convex portion 112 is preferably 90° ⁇ 1°, more preferably 90°.
  • the angle formed by the fourth surface 104a and the fifth surface 104b forming the bottom portion 104c1 of the recess 104c is preferably The range can be adjusted, and the diffraction efficiency of the immersion diffraction element 101 can be further improved.
  • the material of the press die 110 is not particularly limited, for example, cemented carbide, STAVAX, HPM38, etc. can be used.
  • a press die plated with nickel may be used.
  • the diffraction portion 104 when forming the diffraction portion 104, it is preferable to mold-press the amorphous glass at a temperature equal to or higher than the glass transition temperature of the amorphous glass +5°C and equal to or lower than the glass transition temperature +50°C.
  • the temperature for the mold press molding of the amorphous glass is more preferably the glass transition temperature of the amorphous glass +10°C or higher and the glass transition temperature +45°C or lower, and more preferably the glass transition temperature of the amorphous glass +15°C or higher. , glass transition temperature + 40°C or less.
  • the glass transition point of the amorphous glass is preferably 140° C. or higher, more preferably 145° C. or higher, still more preferably 150° C. or higher, preferably 250° C. or lower, more preferably 245° C. or lower, further preferably 240° C. or higher. °C or less.
  • nickel-phosphorus-plated press dies may become difficult to use due to crystallization at high temperatures, so they can be suitably used when pressing at low temperatures as described above.
  • a press die plated with nickel-phosphorus By using a press die plated with nickel-phosphorus, the mirror surface of the press die can be easily obtained, and the surface accuracy of the press molding can be further improved, so that the design freedom of the diffraction section 104 is further improved.
  • a press die plated with nickel is described as an example, but the type of plating is not limited to this, and nickel-molybdenum plating, nickel-tungsten plating, etc. can be used.
  • the prism and the diffraction section 104 are bonded.
  • the prism and diffraction section 104 can be bonded by a room temperature bonding method such as optical contact or surface activated bonding, for example.
  • the prism and diffraction section 104 may be joined by solder as in the fifth embodiment described later.
  • the immersion diffraction element 101 can be easily manufactured by forming the diffraction section 104 by mold press molding amorphous glass and joining the prism and the diffraction section 104 together.
  • the amorphous glass used for forming the diffractive portion 104 can be easily transferred, and the processed shape is not limited by the crystal orientation, so the degree of freedom in designing the diffractive portion 104 can be improved. Therefore, the manufacturing method of this embodiment can improve the optical degree of freedom of the immersion diffraction element 101 .
  • FIG. 18 is a schematic cross-sectional view showing an immersion diffraction element according to a fifth embodiment of the invention. Also, FIG. 19 is a schematic plan view showing a diffraction surface in an immersion diffraction element according to the fifth embodiment of the present invention. 18 is a schematic cross-sectional view along line III-III in FIG.
  • the diffractive portion 104 is connected to the diffractive optical surface 104A, the bottom surface 104B facing the diffractive optical surface 104A, and the diffractive optical surface 104A and the bottom surface 104B. and a side surface 104C that extends downward.
  • solder 122 is provided over the side surface 104 ⁇ /b>C of the diffraction section 104 and the prism section 102 . Solder 122 joins the prism section 102 and the diffraction section 104 .
  • the melting point of the solder 122 is lower than the glass transition point of the amorphous glass forming the diffraction portion 104 . Therefore, the shape stability and positional accuracy of the diffraction section 104 can be further improved.
  • the absolute value of the difference in thermal expansion coefficient between the solder 122 and the amorphous glass forming the diffractive portion 104 is preferably 170 ⁇ 10 ⁇ 7 /° C. or less, more preferably 160 ⁇ 10 ⁇ 7 /° C. or less, and even more preferably 160 ⁇ 10 ⁇ 7 /° C. or less. is 150 ⁇ 10 ⁇ 7 /° C. or less. In this case, the bonding strength between the prism section 102 and the diffraction section 104 can be further improved.
  • the lower limit of the absolute value of the difference in thermal expansion coefficient between the solder 122 and the amorphous glass forming the diffraction section 104 is not particularly limited, but can be set to 50 ⁇ 10 ⁇ 7 /° C., for example.
  • the solder 122 preferably contains In, Sn, or Bi.
  • the material of the solder 122 includes, for example, a Su—Bi—In ternary alloy containing an element selected from the group consisting of Ag, Cu, Ni, Zn, and Sb. be able to.
  • the thickness of the solder 122 is not particularly limited, and can be, for example, 10 ⁇ m or more and 100 ⁇ m or less.
  • the solder 122 is preferably provided over the entire circumference of the side surface 104C of the diffraction section 104.
  • the prism section 102 and the diffraction section 104 can be joined more reliably.
  • the solder 122 only needs to be provided on at least a part of the circumference of the side surface 104C of the diffraction section 104 .
  • a first base film 123 provided on the first main surface 102a of the prism section 102 is further provided, and the solder 122 is applied to the side surface 104C of the diffraction section 104 and the first base film 123. It may be provided over one base film 123 .
  • the first base film 123 is preferably provided so as to surround the diffractive portion 104 when the diffractive optical surface 104A is viewed from above. In this case, the prism section 102 and the diffraction section 104 can be joined more reliably.
  • the first base film 123 may be provided at least partially around the side surface 104 ⁇ /b>C of the diffraction section 104 .
  • the material of the first base film 123 is not particularly limited, and Si, Ti, Cu, Ni, Cr, Pt, Pd, etc. can be used, for example.
  • the thickness of the first base film 123 is not particularly limited, and can be, for example, 0.1 ⁇ m or more and 20 ⁇ m or less.
  • the diffraction section 104 is made of amorphous glass. Therefore, manufacturing is easy, and the degree of freedom in designing the diffraction section 104 can be improved.
  • FIG. 21 is a schematic cross-sectional view showing an immersion diffraction element according to a sixth embodiment of the invention.
  • the diffraction section 104 is provided on the first main surface 102a of the prism section 102 with the second base film 132 interposed therebetween.
  • the material of the second base film 132 is preferably the same as that of the prism portion 102 . Therefore, for example, when the prism portion 102 is made of Si, it is preferable to use Si for the second base film 132 , and when the prism portion 102 is made of GaAs, it is preferable to use GaAs for the second base film 132 .
  • the thickness of the second base film 132 is not particularly limited, and can be, for example, 0.1 ⁇ m or more and 20 ⁇ m or less. Other points are the same as those of the fourth embodiment.
  • the diffraction section 104 is made of amorphous glass. Therefore, manufacturing is easy, and the degree of freedom in designing the diffraction section 104 can be improved.
  • the diffraction section 104 may be provided on the first main surface 102a of the prism section 102 with the second base film 132 interposed therebetween. Thereby, the prism section 102 and the diffraction section 104 can be joined more reliably.
  • FIG. 22 is a schematic cross-sectional view showing an immersion diffraction element according to a seventh embodiment of the invention.
  • the surface of the diffraction section 104 is covered with a reflective film 142.
  • the reflective film 142 covers the fourth surface 104 a and the fifth surface 104 b of the diffraction section 104 .
  • the material for the reflective film 142 is not particularly limited, Au or the like can be used.
  • An appropriate dielectric multilayer film may be used as the reflective film 142 .
  • the thickness of the reflective film 142 can be, for example, 1 ⁇ m or more and 10 ⁇ m or less.
  • the reflective film 142 can be formed by vapor deposition or sputtering, for example.
  • the diffraction section 104 is made of amorphous glass. Therefore, manufacturing is easy, and the degree of freedom in designing the diffraction section 104 can be improved.
  • the surface of the diffraction section 104 may be covered with a reflective film 142 .
  • the light that has entered the prism section 102 can be more reliably reflected by the diffraction section 104 and can be more reliably dispersed.
  • FIG. 23 is a schematic cross-sectional view showing an immersion diffraction element according to an eighth embodiment of the invention.
  • an antireflection film 152 is provided on the second main surface 102b of the prism portion 102. As shown in FIG. 23, in the immersion diffraction element 151, an antireflection film 152 is provided on the second main surface 102b of the prism portion 102. As shown in FIG. 23, in the immersion diffraction element 151, an antireflection film 152 is provided on the second main surface 102b of the prism portion 102. As shown in FIG. 23, in the immersion diffraction element 151, an antireflection film 152 is provided on the second main surface 102b of the prism portion 102. As shown in FIG.
  • the antireflection film 152 is preferably made of at least one selected from, for example, Ge, Si, fluoride, ZnSe, ZnS, and diamond-like carbon. Note that the antireflection film 152 can be formed by, for example, a vapor deposition method or a sputtering method. Also, the thickness of the antireflection film 152 can be, for example, 1.0 ⁇ m or more and 5.0 ⁇ m or less. Other points are the same as those of the fourth embodiment.
  • the diffraction section 104 is made of amorphous glass. Therefore, manufacturing is easy, and the degree of freedom in designing the diffraction section 104 can be improved.
  • an antireflection film 152 may be provided on the second main surface 102b of the prism portion 102.
  • a second principal surface 102 b of the prism portion 102 is an incident portion of the immersion diffraction element 151 . Therefore, by providing the anti-reflection film 152 on this incident portion, the incident light is less likely to be reflected. Therefore, in this case, the utilization efficiency of light in the immersion diffraction element 151 can be further improved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

製造が容易であり、かつ回折部の設計自由度を向上させることができる、イマージョン回折素子を提供する。 プリズム部2と、回折部4とを備え、プリズム部2及び回折部4が、非晶質ガラスにより構成されている、イマージョン回折素子1。

Description

イマージョン回折素子及びその製造方法
 本発明は、イマージョン回折素子及び該イマージョン回折素子の製造方法に関する。
 近年、一般的な反射型素子と比較して、分光器の小型化や波長分解能の向上を可能とする、イマージョン回折素子が注目を集めている。イマージョン回折素子は、例えば、プリズムに回折部が設けられた構成を有している。回折部においては、複数の回折溝が周期的に設けられている。イマージョン回折素子による分光に際しては、光がプリズムを通り、回折部において反射及び分光される。その後、分光された光がプリズムから出射される。
 プリズムの屈折率をnとした場合、光がプリズムを通るときには、光の波長は1/nとなる。従って、分光するために必要な回折溝のピッチは1/nとなる。そのため、イマージョン回折素子を小型化しても、多数の回折溝を設けることができ、波長分解能を高めることができる。
 下記の特許文献1や特許文献2には、イマージョン回折素子の一例としての回折格子が開示されている。特許文献1では、単結晶Geまたは単結晶Siの材料を用い、結晶方位の(111)面に格子溝が形成されている、回折格子が開示されている。また、特許文献2には、InPまたはInAsの結晶材料に、格子溝が設けられている、回折格子が開示されている。格子溝は、結晶材料の結晶方位である(110)面を含んでいる。
特開2003-75622号公報 特開2015-121605号公報
 しかしながら、特許文献1や特許文献2のように、結晶材料に格子溝を形成する場合、結晶材料に切削やエッチング等の加工を施すことにより、格子溝が形成される。そのため、イマージョン回折素子を容易に製造することが難しいという問題がある。また、結晶方位により加工形状が制限されるので、回折部の設計自由度が十分ではなく、光学自由度を向上させることが難しいという問題がある。
 本発明の目的は、製造が容易であり、かつ回折部の設計自由度を向上させることができる、イマージョン回折素子及び該イマージョン回折素子の製造方法を提供することにある。
 本願の第1の発明に係るイマージョン回折素子は、プリズム部と、回折部とを備え、前記プリズム部及び前記回折部が、非晶質ガラスにより構成されていることを特徴としている。
 本願の第2の発明に係るイマージョン回折素子は、第1の主面、第2の主面、及び第3の主面を有する、プリズム部と、前記プリズム部の前記第1の主面上に設けられており、非晶質ガラスにより構成されている、回折部とを備えることを特徴としている。
 以下、本願の第1の発明及び第2の発明を総称して本発明と称する場合があるものとする。
 本発明においては、前記非晶質ガラスの屈折率が、波長10μmにおいて、3.0以上であることが好ましい。
 本発明においては、前記非晶質ガラスが、カルコゲナイドガラスであることが好ましい。
 本発明においては、前記非晶質ガラスが、モル百分率で、Te 4%~80%、Ge 0%~50%(但し0%を含まない)、Ga 0%~20%を含有していてもよい。
 本発明においては、前記非晶質ガラスが、モル百分率で、S 50%~80%、Sb 0%~40%(但し0%を含まない)、Ge 0%~18%(但し0%を含まない)、Sn 0%~20%、Bi 0%~20%を含有していてもよい。
 本発明においては、前記回折部において、凹部の底点部の角Rを凸部の頂点部の角Rで除した値が2.0以下であることが好ましい。前記凹部の底点部を形成する面同士のなす角度が、60°以上、120°以下であることがより好ましい。
 本発明においては、前記回折部の表面が、反射膜により覆われていることが好ましい。前記反射膜が、Auにより構成されていることがより好ましい。
 第2の発明においては、前記プリズム部を構成する材料と、前記回折部を構成する非晶質ガラスとの波長10μmにおける屈折率の差の絶対値が、0.3以下であることが好ましい。
 第2の発明においては、前記プリズム部を構成する材料と、前記回折部を構成する前記非晶質ガラスとの熱膨張係数の差の絶対値が、150×10-7/℃以下であることが好ましい。
 第2の発明においては、前記プリズム部が、Siにより構成されていることが好ましい。
 第2の発明においては、前記回折部が、回折光学面と、前記回折光学面に対向している底面と、前記回折光学面及び前記底面に接続されている側面とを有し、前記回折部の前記側面及び前記プリズム部にわたりはんだが設けられていることによって、前記プリズム部の前記第1の主面と前記回折部の前記底面との間に前記はんだを介することなく、前記回折部及び前記プリズム部が接合されており、かつ前記はんだの融点が前記非晶質ガラスのガラス転移点よりも低いことが好ましい。
 第2の発明においては、前記はんだと前記非晶質ガラスとの熱膨張係数の差の絶対値が、170×10-7/℃以下であることが好ましい。
 第2の発明においては、前記はんだが、In、Sn、またはBiを含むことが好ましい。
 第2の発明においては、前記はんだが、前記回折部の前記側面の全周にわたり設けられていることが好ましい。
 第2の発明においては、前記プリズム部の前記第1の主面上に設けられている、第1の下地膜をさらに備え、前記はんだが、前記回折部の前記側面及び前記第1の下地膜にわたり設けられていることが好ましい。
 第2の発明においては、前記回折光学面及び前記底面が対向する方向から視たときに、前記第1の下地膜が、前記回折部を囲むように設けられていることが好ましい。
 第2の発明においては、前記第1の下地膜が、前記回折部及び前記プリズム部の間に設けられていないことが好ましい。
 第2の発明においては、前記プリズム部の前記第1の主面上に、第2の下地膜を介して前記回折部が設けられていることが好ましい。
 第2の発明においては、前記第2の下地膜が、Siにより構成されていることが好ましい。
 本願の第1の発明に係るイマージョン回折素子の製造方法は、非晶質ガラスを準備する工程と、前記非晶質ガラスをモールドプレス成型することにより、回折部を形成する工程とを備えることを特徴としている。
 本願の第2の発明に係るイマージョン回折素子の製造方法は、プリズム及び非晶質ガラスを準備する工程と、前記非晶質ガラスをモールドプレス成型することにより回折部を形成する工程と、前記プリズムと前記回折部とを接合する工程とを備えることを特徴としている。
 本発明においては、前記回折部の凹凸を形成するに際し、凹部の底点部の角Rを凸部の頂点部の角Rで除した値が2.0以下となるように、前記非晶質ガラスをモールドプレス成型することが好ましい。前記回折部の凹凸を形成するに際し、前記凹部の底点部を形成する面同士のなす角度が、60°以上、120°以下となるように、前記非晶質ガラスをモールドプレス成型することがより好ましい。
 本発明においては、前記回折部の凹凸を形成するに際し、前記回折部の凹凸に対応する形状を有し、かつ凸部の頂点部の角Rを凹部の底点部の角Rで除した値が10.0以下であるプレス型を用いて、前記非晶質ガラスをモールドプレス成型することが好ましい。前記凸部の頂点部を形成する面同士のなす角度が、60°以上、120°以下であるプレス型を用いて、前記非晶質ガラスをモールドプレス成型することがより好ましい。
 本発明においては、前記非晶質ガラスのガラス転移点が、140℃以上、250℃以下であることが好ましい。
 本発明においては、前記回折部を形成するに際し、前記非晶質ガラスのガラス転移温度+5℃以上、ガラス転移温度+50℃以下の温度で、前記非晶質ガラスをモールドプレス成型することが好ましい。
 本発明においては、前記回折部を形成するに際し、ニッケル-リンめっきされたプレス型を用いて前記非晶質ガラスをモールドプレス成型することが好ましい。
 第2の発明においては、前記プリズムと前記回折部とを接合する工程において、前記プリズムの第1の主面上に前記回折部を配置し、前記回折部の側面及び前記プリズムにわたりはんだを設け、該はんだにより前記プリズムと前記回折部とを接合することが好ましい。
 本発明によれば、製造が容易であり、かつ回折部の設計自由度を向上させることができる、イマージョン回折素子及び該イマージョン回折素子の製造方法を提供することができる。
図1は、本発明の第1の実施形態に係るイマージョン回折素子を示す模式的断面図である。 図2は、本発明の第1の実施形態に係るイマージョン回折素子における回折面を示す模式的平面図である。 図3は、イマージョン回折素子における分光を説明するための模式的断面図である。 図4は、図3における回折部の拡大図である。 図5は、本発明の第1の実施形態に係るイマージョン回折素子の製造方法で用いるプレス型を説明するための模式的断面図である。 図6は、本発明の第2の実施形態に係るイマージョン回折素子を示す模式的断面図である。 図7は、本発明の第3の実施形態に係るイマージョン回折素子を示す模式的断面図である。 図8は、実験例で使用した金型の走査型電子顕微鏡(SEM)写真である。 図9は、実験例で使用した金型の走査型電子顕微鏡(SEM)写真である。 図10は、実験例で作製したイマージョン回折素子の走査型電子顕微鏡(SEM)写真である。 図11は、実験例で作製したイマージョン回折素子の走査型電子顕微鏡(SEM)写真である。 図12は、実験例で作製したイマージョン回折素子の走査型電子顕微鏡(SEM)写真である。 図13は、本発明の第4の実施形態に係るイマージョン回折素子を示す模式的断面図である。 図14は、本発明の第4の実施形態に係るイマージョン回折素子における回折面を示す模式的平面図である。 図15は、イマージョン回折素子における分光を説明するための模式的断面図である。 図16は、図15における回折部の拡大図である。 図17は、本発明の第4の実施形態に係るイマージョン回折素子の製造方法で用いるプレス型を説明するための模式的断面図である。 図18は、本発明の第5の実施形態に係るイマージョン回折素子を示す模式的断面図である。 図19は、本発明の第5の実施形態に係るイマージョン回折素子における回折面を示す模式的平面図である。 図20は、本発明の第5の実施形態に係るイマージョン回折素子の変形例を示す模式的断面図である。 図21は、本発明の第6の実施形態に係るイマージョン回折素子を示す模式的断面図である。 図22は、本発明の第7の実施形態に係るイマージョン回折素子を示す模式的断面図である。 図23は、本発明の第8の実施形態に係るイマージョン回折素子を示す模式的断面図である。
 以下、好ましい実施形態について説明する。但し、以下の実施形態は単なる例示であり、本発明は以下の実施形態に限定されるものではない。また、各図面において、実質的に同一の機能を有する部材は同一の符号で参照する場合がある。なお、第1~第3の実施形態では、第1の発明について説明するものとし、第4~第8の実施形態では、第2の発明について説明するものとする。
 [第1の実施形態]
 図1は、本発明の第1の実施形態に係るイマージョン回折素子を示す模式的断面図である。また、図2は、本発明の第1の実施形態に係るイマージョン回折素子における回折面を示す模式的平面図である。なお、図1は、図2のI-I線に沿う模式的断面図である。
 図1に示すように、イマージョン回折素子1は、プリズム部2と、回折部4とを備える。プリズム部2及び回折部4は、一体として設けられている。
 プリズム部2は、三角柱状の形状を有する。プリズム部2は、第1の面2aと、第2の面2bと、第3の面2cとを有する。第1の面2a、第2の面2b、及び第3の面2cは、三角柱状の形状における側面に相当している。
 図1及び図2に示すように、プリズム部2の第1の面2aには、複数の回折溝3が周期的に設けられている。これにより、回折部4が構成されている。より具体的には、複数の回折溝3は、回折部4の形状が階段状となるように設けられている。なお、プリズム部2の形状は、回折部4が設けられる面を有する限りにおいて、特に限定されない。
 回折部4は、第4の面4a及び第5の面4bを有する。第4の面4a及び第5の面4bが交互に繰り返し設けられることにより、凹部4c及び凸部4dが交互に繰り返し設けられている。それによって、階段状の回折部4が構成されている。
 図3は、イマージョン回折素子における分光を説明するための模式的断面図である。図4は、図3における回折部の拡大図である。図3及び図4においてはハッチングを付していない。
 図3に示すように、プリズム部2の第2の面2bは、イマージョン回折素子1の入射部である。なお、回折部4は、図4に示す底点部4c1を含む。より具体的には、回折部4は複数の底点部4c1を含む。図3に示すように、光Aは第2の面2bから入射し、プリズム部2内を通り、回折部4に至る。そして、光Aは、回折部4における各第4の面4a、各底点部4c1において反射及び回折されることで分光される。図3中における破線の矢印及び一点鎖線の矢印は、分光された光の例を示す。分光された光は、プリズム部2から出射される。なお、図3中の波状の線により示すように、プリズム部2外における光Aの波長よりも、プリズム部2内における光Aの波長は短くなっている。そのため、分光に必要な回折溝3のピッチを短くすることができる。従って、イマージョン回折素子1においては、波長分解能の向上及び小型化を両立させることができる。
 本実施形態のイマージョン回折素子1では、プリズム部2及び回折部4が、非晶質ガラスにより構成されている。そのため、製造が容易であり、かつ回折部4の設計自由度を向上させることができる。
 従来、イマージョン回折素子の回折部は、単結晶Geなどの結晶材料により構成されていた。このように、回折部が結晶材料により構成される場合、結晶材料に切削やエッチング等の加工を施すことにより回折溝が形成される。そのため、イマージョン回折素子を容易に製造することが難しいという問題があった。また、回折部が結晶材料により構成される場合、結晶方位により加工形状が制限されるので、回折部の設計自由度が十分でなく、光学自由度を向上させることが難しいという問題があった。
 これに対して、本実施形態のイマージョン回折素子1は、プリズム部2及び回折部4が、非晶質ガラスにより構成されている。そのため、後述する製造方法の欄で説明するように、プリズム部2にモールドプレス成型を施すことにより、イマージョン回折素子1を容易に形成することができる。また、非晶質ガラスでは、結晶方位により加工形状が制限されないので、回折部4の設計自由度を向上させることができる。従って、本実施形態のイマージョン回折素子1では、光学自由度を向上させることができる。
 なお、本明細書において、「非晶質ガラス」とは、粉末X線回折による測定で、結晶ピークが認められず、ガラス特有のハローパターンが認められるものをいう。
 本実施形態において、プリズム部2及び回折部4を構成する非晶質ガラスの波長10μmにおける屈折率は、好ましくは3.0以上、より好ましくは3.1以上、さらに好ましくは3.2以上である。非晶質ガラスの屈折率が上記下限値以上である場合、イマージョン回折素子1をより一層小型化することができる。なお、非晶質ガラスの屈折率の上限値は、特に限定されないが、材料の性質上、例えば、4.1以下とすることができる。
 プリズム部2及び回折部4を構成する非晶質ガラスは、カルコゲナイドガラスであることが好ましい。この場合、非晶質ガラスの屈折率をより一層大きくすることができる。
 なかでも、非晶質ガラスは、モル百分率で、Te 4%~80%、Ge 0%~50%(但し0%を含まない)、Ga 0%~20%を含有するガラスであることが好ましい。この場合、非晶質ガラスの屈折率をより一層大きくすることができる。
 上記非晶質ガラスにおいて、Teの含有量は、モル百分率で、より好ましくは10%以上、さらに好ましくは20%以上、特に好ましくは30%以上、より好ましくは75%以下、さらに好ましくは70%以下である。非晶質ガラス中のTeの含有量が4%未満になると、ガラス化し難くなる。一方、非晶質ガラス中のTeの含有量が80%を超えると、ガラスからTe系の結晶が析出することにより、イマージョン回折素子1の特性を満たす屈折率や透過率が得難くなるとともに、モールドプレス成型をする際のTeの蒸発量が多くなることで、イマ―ジョン回折素子1の面品位が悪化する場合がある。
 上記非晶質ガラスにおいて、Geの含有量は、モル百分率で、より好ましくは1%以上、さらに好ましくは5%以上、より好ましくは40%以下、さらに好ましくは30%以下である。非晶質ガラス中にGeを含有しない場合、ガラス化し難くなる。一方、非晶質ガラス中のGeの含有量が50%を超えると、ガラスからGe系の結晶が析出することにより、イマージョン回折素子1の特性を満たす屈折率や透過率が得難くなるとともに、モールドプレス成型をする際のガラスの粘度が高くなることで、後述する回折部4のプレス型10に対する形状の追従性が悪化する場合がある。
 上記非晶質ガラスにおいて、Gaの含有量は、モル百分率で、より好ましくは0.1%以上、さらに好ましくは1%以上、より好ましくは15%以下、さらに好ましくは10%以下である。非晶質ガラス中にGaを含有することにより、ガラス化範囲をより広げ、ガラスの熱的安定性(ガラス化の安定性)をより一層高めることができる。
 あるいは、非晶質ガラスは、モル百分率で、S 50%~80%、Sb 0%~40%(但し0%を含まない)、Ge 0%~18%(但し0%を含まない)、Sn 0%~20%、Bi 0%~20%を含有するガラスであることが好ましい。この場合、非晶質ガラスの屈折率をより一層大きくすることができる。
 上記非晶質ガラスにおいて、Sの含有量は、モル百分率で、より好ましくは55%以上、さらに好ましくは60%以上、より好ましくは75%以下、さらに好ましくは70%以下である。非晶質ガラス中のSの含有量が50%未満になると、ガラス化し難くなる。一方、非晶質ガラス中のSの含有量が80%を超えると、ガラスの耐候性が低下することにより、イマージョン回折素子1の使用環境が制限されることになる場合がある。
 上記非晶質ガラスにおいて、Sbの含有量は、モル百分率で、より好ましくは5%以上、さらに好ましくは10%以上、より好ましくは35%以下、さらに好ましくは33%以下である。非晶質ガラス中にSbを含有しない場合、または、その含有量が40%を超えると、ガラス化し難くなる場合がある。
 上記非晶質ガラスにおいて、Geの含有量は、モル百分率で、より好ましくは2%以上、さらに好ましくは4%以上、より好ましくは15%以下である。ガラス中にGeを含有しない場合、ガラス化し難くなる。一方、非晶質ガラス中のGeの含有量が18%を超えると、ガラス中からGe系の結晶が析出することにより、イマージョン回折素子1の特性を満たす屈折率や透過率が得難くなるとともに、モールドプレス成型をする際のガラスの粘度が高くなることで、後述する回折部4のプレス型10に対する形状の追従性が悪化する場合がある。
 上記非晶質ガラスにおいて、Snの含有量は、モル百分率で、より好ましくは1%以上、さらに好ましくは5%以上、より好ましくは15%以下、さらに好ましくは10%以下である。非晶質ガラス中のSnは、ガラス化を促進する成分であるが、非晶質ガラス中のSnの含有量が20%を超えると、ガラス化し難くなる。
 上記非晶質ガラスにおいて、Biの含有量は、モル百分率で、より好ましくは0.5%以上、さらに好ましくは2%以上、より好ましくは10%以下、さらに好ましくは8%以下である。非晶質ガラス中のBiは、ガラスの溶融時に、原料がガラス化するのに必要なエネルギーを抑える成分である。しかし、非晶質ガラス中のBiの含有量が20%を超えると、ガラス中からBi系の結晶が析出することにより、イマージョン回折素子1の特性を満たす屈折率や透過率が得難くなる場合がある。
 プリズム部2及び回折部4を構成する非晶質ガラスの密度は、好ましくは6.5g/cm以下、より好ましくは6.3g/cm以下、さらに好ましくは6.0g/cm以下である。非晶質ガラスの密度が、上記範囲を満たせば、イマージョン回折素子1をより一層軽量化することができる。
 また、プリズム部2及び回折部4を構成する非晶質ガラスは、波長7.0μm~11.0μmにおける赤外線波長域の内部透過率が、好ましくは80%以上、より好ましくは85%以上、さらに好ましくは90%以上である。この場合、所望の光学性能をより一層確実に得ることができる。なお、波長7.0μm~11.0μmにおける赤外線波長域の内部透過率の上限値は、例えば、99.5%とすることができる。ここで、内部透過率は、肉厚が2.0mmでのものである。
 本実施形態では、回折部4において、凹部4cの底点部4c1が凸部4dの頂点部4d1よりも尖った形状を有することが好ましい。イマージョン回折素子1の特性面に大きく影響するのは第4の面4a及び凹部4cの底点部4c1であるため、凹部4cの底点部4c1が凸部4dの頂点部4d1よりも尖った形状、すなわち、凹部4cの底点部4c1の角R(半径、μm)をR4c1、凸部4dの頂点部4d1の角R(半径、μm)をR4d1とすると、R4c1をR4d1で除した値を、好ましくは2.0以下、より好ましくは1.0以下とすることにより、イマージョン回折素子1における回折効率をより一層向上させることができる。なお、R4c1の値は、0.1μm~10μmであることが好ましく、R4d1の値は、5μm~20μmであることが好ましい。
 また、図3に示すように、凹部4cの底点部4c1を形成する第4の面4a及び第5の面4bのなす角度θ1が、好ましくは60°以上、より好ましくは65°以上、さらに好ましくは70°以上、特に好ましくは80°以上であり、好ましくは120°以下、より好ましくは115°以下、さらに好ましくは110°以下、特に好ましくは100°以下である。凹部4cの底点部4c1を形成する第4の面4a及び第5の面4bのなす角度θ1は、90°±1°であることが好ましく、特に90°であることがより好ましい。この場合、イマージョン回折素子1における回折効率をより一層向上させることができる。
 以下、イマージョン回折素子1の製造方法の一例について説明する。
 (製造方法)
 本実施形態の製造方法では、まず、非晶質ガラスを準備する。非晶質ガラスとしては、上述したプリズム部2及び回折部4を構成する非晶質ガラスと同じものを用いることができる。非晶質ガラスとしては、例えば、ガラス組成が、モル百分率で、S 60%、Sb 30%、Ge 5%、Sn 5%のカルコゲナイドガラス、又は、ガラス組成が、モル百分率で、Te 70%、Ge 25%、Ga 5%のカルコゲナイドガラスにより構成される母材ガラスを準備する。次に、非晶質ガラスをモールドプレス成型することにより、回折部4を形成する。具体的には、非晶質ガラスにより構成されているプリズム(前駆体プリズム)を準備し、この前駆体プリズムをモールドプレス成型することにより、プリズム部2及び回折部4を形成することができる。
 本実施形態の製造方法では、前駆体プリズムをモールドプレス成型することにより、容易に回折部4を形成することができる。また、非晶質ガラスでは、上記のように転写加工することができ、結晶方位により加工形状が制限されないので、回折部4の設計自由度を向上させることができる。従って、本実施形態の製造方法では、イマージョン回折素子1の光学自由度を向上させることができる。
 本発明においては、回折部4の凹凸を形成するに際し、凹部4cの底点部4c1の角RをR4c1、凸部4dの頂点部4d1の角RをR4d1とすると、R4c1をR4d1で除した値を、好ましくは2.0以下、より好ましくは1.0以下となるように非晶質ガラスをモールドプレス成型することが好ましい。図3に示すように、得られる回折部4において、イマージョン回折素子1の特性面に大きく影響するのは第4の面4a及び凹部4cの底点部4c1であるため、R4c1をR4d1で除した値を上記の通り規定することで、イマージョン回折素子1における回折効率をより一層向上させることができる。なお、R4c1の値は、0.1μm~10μmであることが好ましく、R4d1の値は、5μm~20μmであることが好ましい。
 また、本発明においては、回折部4の凹凸を形成するに際し、凹部4cの底点部4c1を形成する第4の面4a及び第5の面4bのなす角度が、60°以上、120°以下となるように、非晶質ガラスをモールドプレス成型することが好ましい。凹部4cの底点部4c1を形成する第4の面4a及び第5の面4bのなす角度は、より好ましくは65°以上、さらに好ましくは70°以上、特に好ましくは80°以上であり、より好ましくは115°以下、さらに好ましくは110°以下、特に好ましくは100°以下である。凹部4cの底点部4c1を形成する第4の面4a及び第5の面4bのなす角度は、90°±1°であることが好ましく、90°であることがより好ましい。この場合、イマージョン回折素子1における回折効率をより一層向上させることができる。
 図5は、本発明の第1の実施形態に係るイマージョン回折素子の製造方法で用いるプレス型を説明するための模式的断面図である。
 図5に示すように、プレス型10は、回折部4の凹凸に対応する形状を有する。プレス型10においては、凸部12の頂点部12aが凹部11の底点部11aよりも尖った形状、即ち、凸部12の頂点部12aの角RをR12a、凹部11の底点部11aの角RをR11aとすると、R12aをR11aで除した値が10.0以下であることが好ましく、8.0以下であることがより好ましい。このようなプレス型10を用いて、非晶質ガラスをモールドプレス成型することにより、回折部4における上記R4c1をR4d1で除した値を、より一層確実に10.0以下、好ましくは2.0以下、より好ましくは1.0以下とすることができ、イマージョン回折素子1における回折効率をより一層向上させることができる。なお、R11aの値は、1μm~20μmであることが好ましく、R12aの値は、0.05μm~10μmであることが好ましい。
 また、プレス型10においては、凸部12の頂点部12aを形成する第6の面13及び第7の面14のなす角度θ2が、好ましくは60°以上、より好ましくは65°以上、さらに好ましくは70°以上、特に好ましくは80°以上であり、好ましくは120°以下、より好ましくは115°以下、さらに好ましくは110°以下、特に好ましくは100°以下である。凸部12の頂点部12aを形成する第6の面13及び第7の面14のなす角度θ2は、90°±1°であることが好ましく、90°であることがより好ましい。このようなプレス型10を用いて、非晶質ガラスをモールドプレス成型することにより、凹部4cの底点部4c1を形成する第4の面4a及び第5の面4bのなす角度を、上述した好ましい範囲に調整することができ、イマージョン回折素子1における回折効率をより一層向上させることができる。
 プレス型10の材料としては、特に限定されないが、例えば、超硬材、STAVAX、HPM38などを用いることができる。プレス型10としては、ニッケル-リンめっきされたプレス型を用いてもよい。
 本発明においては、回折部4を形成するに際し、非晶質ガラスのガラス転移温度+5℃以上、ガラス転移温度+50℃以下の温度で、非晶質ガラスをモールドプレス成型することが好ましい。非晶質ガラスのモールドプレス成型の温度は、非晶質ガラスのガラス転移温度+10℃以上、ガラス転移温度+45℃以下の温度であることがより好ましく、非晶質ガラスのガラス転移温度+15℃以上、ガラス転移温度+40℃以下の温度であることがさらに好ましい。
 なお、上記非晶質ガラスのガラス転移点は、好ましくは140℃以上、より好ましくは145℃以上、さらに好ましくは150℃以上、好ましくは250℃以下、より好ましくは245℃以下、さらに好ましくは240℃以下である。
 上記のような温度でモールドプレス成型した場合、より低温でプレスできるので、大型の非晶質ガラスを成形した場合にも、熱バラつきがより一層生じ難い。また、寸法変化を引き起こすような熱歪みをより一層生じ難くすることができる。
 また、ニッケル-リンめっきされたプレス型は、高温では結晶化により使用し難くなることがあるので、上記のような低温でプレスする場合には、好適に使用することができる。ニッケル-リンめっきされたプレス型を用いることにより、プレス型の鏡面性が得やすくなり、モールドプレス成型の面精度をより一層向上させることができるので、回折部4の設計自由度をより一層向上させることができる。ここでは、例として、ニッケル-リンめっきされたプレス型を挙げたが、めっきの種類はこれに限定されるものではなく、ニッケル-モリブデンめっき、ニッケル-タングステンめっき等を用いることができる。
 (実験例)
 実験例では、本発明の第1の実施形態に係るイマージョン回折素子の製造方法に基づき、イマージョン回折素子を作製した。具体的には、減圧環境下(真空度0.3Pa)、温度185℃、プレス時間1分、プレス圧力2kNの条件で、非晶質ガラスをモールドプレス成型することにより、イマージョン回折素子を作製した。非晶質ガラスとしては、ガラス組成として、モル百分率で、Te 70%、Ge 20%、Ga 10%を含有するカルコゲナイドガラスを用いた。
 図8及び図9は、実験例で使用した金型の走査型電子顕微鏡(SEM)写真である。なお、図8は、実験例で使用した金型における回折面形成部の断面のSEM写真であり、図9は、その回折面形成部の拡大図である。なお、金型の材料としては、超硬材(超硬EF10、共立合金製作所社製)を用いた。
 図10~図12は、実験例で作製したイマージョン回折素子の走査型電子顕微鏡(SEM)写真である。なお、図10は、イマージョン回折素子における回折面のSEM写真である。また、図11は、イマージョン回折素子における断面のSEM写真であり、図12は、その回折部の拡大図である。
 図10~図12に示すように、モールドプレス成形により製造されたイマージョン回折素子では、回折部4や回折溝3にチッピングが生じ難い。この点に関しては、以下のように説明できる。
 結晶材料や非晶質ガラス材料に直接切削や研磨等を施すことにより得られる従来のイマージョン回折素子では、回折部にチッピングが生じ易いという問題があった。これに対して、超硬材料等の鋼材に切削や研磨等を施す場合、回折部にチッピングが生じにくい。そのため、図8及び図9に示すような金型を用いて非晶質ガラスへモールド転写を行なうことにより、チッピングを抑制した回折構造を非晶質ガラスに付与することができる。
 このように、モールドプレス成形により製造された本実験例のイマージョン回折素子は、結晶材料に切削や研磨等を施す場合と比較して、回折部4や回折溝3にチッピングが生じ難いので、チッピングによる光散乱を抑制することができ、光学特性(回折特性)の悪化を生じ難くすることができる。
 また、図10~図12に示すように、モールドプレス成型により得られたイマージョン回折素子では、回折部4や回折溝3にチッピングによる加工屑が付着しないため、後述する反射膜等の成膜後に、加工屑に起因する反射膜の剥がれを抑制することができ、それにより反射損失や光散乱を抑制することができる。
 また、本実験例のように、モールドプレス成型によりイマージョン回折素子を製造する場合、チッピングによる加工屑が発生し難いため、イマージョン回折素子を洗浄する必要がなく、工程を簡略化できるとともに、イマージョン回折素子の光学特性の悪化を生じ難くすることができる。より具体的には、切削や研磨の後に洗浄すると、洗浄時に回折部が破損したり、回折部や回折溝に加工屑や浮遊ダストが凝集したりすることにより、光学特性が悪化するおそれがあるところ、本実験例のようにモールドプレス成型により製造することによりこの問題を解決することができる。
 [第2の実施形態]
 図6は、本発明の第2の実施形態に係るイマージョン回折素子を示す模式的断面図である。
 図6に示すように、イマージョン回折素子21においては、回折部4の表面が反射膜22によって覆われている。より具体的には、反射膜22は、回折部4の第4の面4a及び第5の面4bを覆っている。
 反射膜22の材料としては、特に限定されないが、Au等の金属を用いることができる。反射膜22としては、適宜の誘電体多層膜を用いてもよい。反射膜22の厚みは、例えば、1μm以上、10μm以下とすることができる。反射膜22は、例えば、蒸着法又はスパッタリング法により形成することができる。反射膜22は、その下地膜としてSiを用いてもよい。その他の点は、第1の実施形態と同様である。
 第2の実施形態のイマージョン回折素子21においても、プリズム部2及び回折部4が、非晶質ガラスにより構成されている。そのため、製造が容易であり、かつ回折部4の設計自由度を向上させることができる。
 また、イマージョン回折素子21のように、回折部4の表面が反射膜22によって覆われていてもよい。この場合、プリズム部2に入射した光を、回折部4においてより確実に反射させることができ、より確実に分光させることができる。
 [第3の実施形態]
 図7は、本発明の第3の実施形態に係るイマージョン回折素子を示す模式的断面図である。
 図7に示すように、イマージョン回折素子31においては、プリズム部2の第2の主面2b上に反射防止膜32が設けられている。
 反射防止膜32は、例えば、Ge、Si、フッ化物、ZnSe、ZnS、及びダイヤモンドライクカーボンから選択される少なくとも1種以上からなることが好ましい。
 なお、反射防止膜32は、例えば、蒸着法又はスパッタリング法により形成することができる。また、反射防止膜32の厚みは、例えば、1.0μm以上、5.0μm以下とすることができる。その他の点は、第1の実施形態と同様である。
 第3の実施形態のイマージョン回折素子31においても、プリズム部2及び回折部4が、非晶質ガラスにより構成されている。そのため、製造が容易であり、かつ回折部4の設計自由度を向上させることができる。
 また、イマージョン回折素子31のように、プリズム部2の第2の主面2b上に反射防止膜32が設けられていてもよい。プリズム部2の第2の面2bは、イマージョン回折素子31における入射部である。そのため、この入射部に反射防止膜32を設けることにより、入射光が反射され難くなる。よって、この場合、イマージョン回折素子31における光の利用効率をより一層高めることができる。
 [第4の実施形態]
 図13は、本発明の第4の実施形態に係るイマージョン回折素子を示す模式的断面図である。また、図14は、本発明の第4の実施形態に係るイマージョン回折素子における回折面を示す模式的平面図である。なお、図13は、図14のII-II線に沿う模式的断面図である。
 図13に示すように、イマージョン回折素子101は、プリズム部102と、回折部104とを備える。プリズム部102及び回折部104は、別体として設けられている。
 プリズム部102は、三角柱状の形状を有する。プリズム部102は、第1の面102a(第1の主面102a)と、第2の面102b(第2の主面102b)と、第3の面102c(第3の主面102c)とを有する。第1の主面102a、第2の主面102b、及び第3の主面102cは、三角柱状の形状における側面に相当している。プリズム部102の第1の主面102a上に、回折部104が設けられている。なお、プリズム部102の形状は、回折部104が設けられる面を有する限りにおいて、特に限定されない。
 図14に示すように、回折部104には、複数の回折溝103が周期的に設けられている。より具体的には、複数の回折溝103は、回折部104の形状が階段状となるように設けられている。
 回折部104は、第4の面104a及び第5の面104bを有する。第4の面104a及び第5の面104bが交互に繰り返し設けられることにより、凹部104c及び凸部104dが交互に繰り返し設けられている。それによって、階段状の回折部104が構成されている。
 図15は、イマージョン回折素子における分光を説明するための模式的断面図である。図16は、図15における回折部の拡大図である。図15及び図16においてはハッチングを付していない。また、プリズム部102と回折部104の境界も省略しているものとする。
 プリズム部102の第2の主面102bは、イマージョン回折素子101の入射部である。なお、回折部104は、図16に示す底点部104c1を含む。より具体的には、回折部104は複数の底点部104c1を含む。図15に示すように、光Bは第2の主面102bから入射し、プリズム部102内を通り、回折部104に至る。そして、光Bは、回折部104における各第4の面104a、各底点部104c1において反射及び回折されることで分光される。図15中における破線の矢印及び一点鎖線の矢印は、分光された光の例を示す。分光された光は、プリズム部102から出射される。なお、図15中の波状の線により示すように、プリズム部102外における光Bの波長よりも、プリズム部102内における光Bの波長は短くなっている。そのため、分光に必要な回折溝103のピッチを短くすることができる。従って、イマージョン回折素子101においては、波長分解能の向上及び小型化を両立させることができる。
 本実施形態のイマージョン回折素子101では、回折部104が、非晶質ガラスにより構成されている。なお、本明細書において、「非晶質ガラス」とは、粉末X線回折による測定で、結晶ピークが認められず、ガラス特有のハローパターンが認められるものをいう。
 本実施形態のイマージョン回折素子101は、上記の構成を備えるので、製造が容易であり、かつ回折部104の設計自由度を向上させることができる。
 従来、イマージョン回折素子の回折部は、単結晶Geなどの結晶材料により構成されていた。このように、回折部が結晶材料により構成される場合、結晶材料に切削やエッチング等の加工を施すことにより回折溝が形成される。そのため、イマージョン回折素子を容易に製造することが難しいという問題があった。また、回折部が結晶材料により構成される場合、結晶方位により加工形状が制限されるので、回折部の設計自由度が十分でなく、光学自由度を向上させることが難しいという問題があった。
 これに対して、本実施形態のイマージョン回折素子101は、回折部104が、非晶質ガラスにより構成されている。そのため、後述する製造方法の欄で説明するように、非晶質ガラスをモールドプレス成型することにより、回折部104を容易に形成することができる。また、非晶質ガラスでは、結晶方位により加工形状が制限されないので、回折部104の設計自由度を向上させることができる。従って、本実施形態のイマージョン回折素子101では、光学自由度を向上させることができる。
 本実施形態において、プリズム部102を構成する材料は、特に限定されないが、例えば、Si、GaAs等を用いることができる。プリズム部102の材料は、回折部104と同様の非晶質ガラスであってもよい。これらの材料は、1種を単独で用いてもよく、複数種を併用してもよい。
 プリズム部102を構成する材料の波長10μmにおける屈折率は、好ましくは3.0以上、より好ましくは3.1以上、さらに好ましくは3.2以上である。プリズム部102を構成する材料の屈折率が上記下限値以上である場合、イマージョン回折素子101をより一層小型化することができる。なお、プリズム部102を構成する材料の屈折率の上限値は、特に限定されないが、材料の性質上、例えば、4.1以下とすることができる。
 プリズム部102を構成する材料の密度は、好ましくは6.5g/cm以下、より好ましくは6.3g/cm以下である。プリズム部102を構成する材料の密度が、上記範囲内にある場合、イマージョン回折素子101をより一層軽量化することができる。
 プリズム部102を構成する材料は、波長7.0μm~11.0μmにおける赤外線波長域の内部透過率が、好ましくは80.0%以上、より好ましくは85.0%以上、さらに好ましくは90.0%以上である。この場合、所望の光学性能をより一層確実に得ることができる。なお、波長7.0μm~11.0μmにおける赤外線波長域の内部透過率の上限値は、例えば、99.5%以下とすることができる。ここで、内部透過率は、肉厚が2.0mmでのものである。
 プリズム部102を構成する材料と、回折部104を構成する非晶質ガラスとの波長10μmにおける屈折率の差の絶対値は、好ましくは0.3以下、より好ましくは0.28以下、さらに好ましくは0.26以下である。この場合、光の利用効率をより一層高めることができる。なお、プリズム部102を構成する材料と、回折部104を構成する非晶質ガラスとの波長10μmにおける屈折率の差の絶対値の下限値は、特に限定されないが、例えば、0.01以上とすることができる。なお、屈折率が同一の材料の組み合わせを排除するものではない。
 プリズム部102を構成する材料と、回折部104を構成する非晶質ガラスとの熱膨張係数の差の絶対値は、好ましくは150×10-7/℃以下、より好ましくは140×10-7/℃以下、さらに好ましくは130×10-7/℃以下である。この場合、プリズム部102と回折部104との密着性をより一層向上させることができる。
 本実施形態において、回折部104を構成する非晶質ガラスは、カルコゲナイドガラスであることが好ましい。この場合、非晶質ガラスの屈折率をより一層大きくすることができる。
 なかでも、非晶質ガラスは、モル百分率で、Te 4%~80%、Ge 0%~50%(但し0%を含まない)、Ga 0%~20%を含有するガラスであることが好ましい。この場合、非晶質ガラスの屈折率をより一層大きくすることができる。
 上記非晶質ガラスにおいて、Teの含有量は、モル百分率で、より好ましくは10%以上、さらに好ましくは20%以上、特に好ましくは30%以上、より好ましくは75%以下、さらに好ましくは70%以下である。非晶質ガラス中のTeの含有量が4%未満になると、ガラス化し難くなる。一方、非晶質ガラス中のTeの含有量が80%を超えると、ガラスからTe系の結晶が析出することにより、イマージョン回折素子101の特性を満たす屈折率や内部透過率を得難くなるとともに、モールドプレス成型をする際のTeの蒸発量が多くなることで、イマ―ジョン回折素子101の面品位が悪化する場合がある。
 上記非晶質ガラスにおいて、Geの含有量は、モル百分率で、より好ましくは1%以上、さらに好ましくは5%以上、より好ましくは40%以下、さらに好ましくは30%以下である。非晶質ガラス中にGeを含有しない場合、ガラス化し難くなる。一方、非晶質ガラス中のGeの含有量が50%を超えると、ガラスからGe系の結晶が析出することにより、イマージョン回折素子101の特性を満たす屈折率や内部透過率を得難くなるとともに、モールドプレス成型をする際のガラスの粘度が高くなることで、後述する回折部104のプレス型110に対する形状の追従性が悪化する場合がある。
 上記非晶質ガラスにおいて、Gaの含有量は、モル百分率で、より好ましくは0.1%以上、さらに好ましくは1%以上、より好ましくは15%以下、さらに好ましくは10%以下である。非晶質ガラス中にGaを含有することにより、ガラス化範囲をより広げ、ガラスの熱的安定性(ガラス化の安定性)をより一層高めることができる。
 あるいは、非晶質ガラスは、モル百分率で、S 50%~80%、Sb 0%~40%(但し0%を含まない)、Ge 0%~18%(但し0%を含まない)、Sn 0%~20%、Bi 0%~20%を含有するガラスであることが好ましい。この場合、非晶質ガラスの屈折率をより一層大きくすることができる。
 上記非晶質ガラスにおいて、Sの含有量は、モル百分率で、より好ましくは55%以上、さらに好ましくは60%以上、より好ましくは75%以下、さらに好ましくは70%以下である。非晶質ガラス中のSの含有量が50%未満になると、ガラス化し難くなる。一方、非晶質ガラス中のSの含有量が80%を超えると、ガラスの耐候性が低下することにより、イマージョン回折素子101の使用環境が制限されることになる場合がある。
 上記非晶質ガラスにおいて、Sbの含有量は、モル百分率で、より好ましくは5%以上、さらに好ましくは10%以上、より好ましくは35%以下、さらに好ましくは33%以下である。非晶質ガラス中にSbを含有しない場合、または、その含有量が40%を超えると、ガラス化し難くなる場合がある。
 上記非晶質ガラスにおいて、Geの含有量は、モル百分率で、より好ましくは2%以上、さらに好ましくは4%以上、より好ましくは15%以下である。ガラス中にGeを含有しない場合、ガラス化し難くなる。一方、非晶質ガラス中のGeの含有量が18%を超えると、ガラス中からGe系の結晶が析出することにより、イマージョン回折素子101の特性を満たす屈折率や内部透過率を得難くなるとともに、モールドプレス成型をする際のガラスの粘度が高くなることで、後述する回折部104のプレス型110に対する形状の追従性が悪化する場合がある。
 上記非晶質ガラスにおいて、Snの含有量は、モル百分率で、より好ましくは1%以上、さらに好ましくは5%以上、より好ましくは15%以下、さらに好ましくは10%以下である。非晶質ガラス中のSnは、ガラス化を促進する成分であるが、非晶質ガラス中のSnの含有量が20%を超えると、ガラス化し難くなる。
 上記非晶質ガラスにおいて、Biの含有量は、モル百分率で、より好ましくは0.5%以上、さらに好ましくは2%以上、より好ましくは10%以下、さらに好ましくは8%以下である。非晶質ガラス中のBiは、ガラスの溶融時に、原料がガラス化するのに必要なエネルギーを抑える成分である。しかし、非晶質ガラス中のBiの含有量が20%を超えると、ガラス中からBi系の結晶が析出することにより、イマージョン回折素子101の特性を満たす内部透過率を得難くなる。
 回折部104を構成する非晶質ガラスの波長10μmにおける屈折率は、好ましくは3.0以上、より好ましくは3.1以上、さらに好ましくは3.2以上である。非晶質ガラスの屈折率が上記下限値以上である場合、イマージョン回折素子101をより一層小型化することができる。なお、非晶質ガラスの屈折率の上限値は、特に限定されないが、材料の性質上、例えば、4.1以下とすることができる。
 回折部104を構成する非晶質ガラスの密度は、好ましくは6.5g/cm以下、より好ましくは6.3g/cm以下、更に好ましくは6.0g/cm以下である。非晶質ガラスの密度が、上記範囲内にある場合、イマージョン回折素子101をより一層軽量化することができる。
 また、回折部104を構成する非晶質ガラスは、波長7.0μm~11.0μmにおける赤外線波長域の内部透過率が、好ましくは80%以上、より好ましくは85%以上、さらに好ましくは90%以上である。この場合、所望の光学性能をより一層確実に得ることができる。なお、波長7.0μm~11.0μmにおける赤外線波長域の内部透過率の上限値は、例えば、99.5%とすることができる。ここで、内部透過率は、肉厚が2.0mmでのものである。
 図15及び図16に示すように、本実施形態では、回折部104において、凹部104cの底点部104c1が凸部104dの頂点部104d1よりも尖った形状を有することが好ましい。イマージョン回折素子101の特性面に大きく影響するのは、第4の面104a及び凹部104cの底点部104c1であるため、凹部104cの底点部104c1が凸部104dの頂点部104d1よりも尖った形状、すなわち、凹部104cの底点部104c1の角R(半径、μm)をR104c1、凸部104dの頂点部104d1の角R(半径、μm)をR104d1とすると、R104c1をR104d1で除した値を、好ましくは2.0以下、より好ましくは1.0以下とすることにより、イマージョン回折素子101における回折効率をより一層向上させることができる。なお、R104c1の値は、0.1μm~10μmであることが好ましく、R104d1の値は、5μm~20μmであることが好ましい。
 また、凹部104cの底点部104c1を形成する第4の面104a及び第5の面104bのなす角度θ3は、好ましくは60°以上、より好ましくは65°以上、さらに好ましくは70°以上、特に好ましくは80°以上であり、好ましくは120°以下、より好ましくは115°以下、さらに好ましくは110°以下、特に好ましくは100°以下である。凹部104cの底点部104c1を形成する第4の面104a及び第5の面104bのなす角度θ3は、90°±1°であることが好ましく、特に90°であることがより好ましい。この場合、イマージョン回折素子101における回折効率をより一層向上させることができる。
 以下、イマージョン回折素子101の製造方法の一例について説明する。
 (製造方法)
 準備工程;
 本実施形態の製造方法では、まず、プリズム及び非晶質ガラスを準備する。プリズムとしては、上述したプリズム部102と同様のものを用いることができる。非晶質ガラスとしては、上述した回折部104を構成する非晶質ガラスと同様のものを用いることができる。非晶質ガラスとしては、例えば、ガラス組成が、モル百分率で、S 60%、Sb 30%、Ge 5%、Sn 5%のカルコゲナイドガラス、又は、ガラス組成が、モル百分率で、Te 70%、Ge 25%、Ga 5%のカルコゲナイドガラスにより構成される母材ガラスを準備する。
 回折部形成工程;
 次に、非晶質ガラスをモールドプレス成型することにより、回折部104を形成する。
 本発明においては、回折部104の凹凸を形成するに際し、凹部104cの底点部104c1が凸部104dの頂点部104d1よりも尖った形状となるように、非晶質ガラスをモールドプレス成型することが好ましい。図15に示すように、得られる回折部104において、イマージョン回折素子101の特性面に大きく影響するのは、第4の面104a及び凹部104cの底点部104c1であるため、凹部104cの底点部104c1を凸部104dの頂点部104d1よりも尖った形状、凹部104cの底点部104c1の角RをR104c1、凸部104dの頂点部104d1の角RをR104d1とすると、R104c1をR104d1で除した値を、好ましくは2.0以下、より好ましくは1.0以下とすることにより、イマージョン回折素子101における回折効率をより一層向上させることができる。なお、R104c1の値は、0.1μm~10μmであることが好ましく、R104d1の値は、5μm~20μmであることが好ましい。
 また、本発明においては、回折部104の凹凸を形成するに際し、凹部104cの底点部104c1を形成する第4の面104a及び第5の面104bのなす角度θ3が、60°以上、120°以下となるように、非晶質ガラスをモールドプレス成型することが好ましい。凹部104cの底点部104c1を形成する第4の面104a及び第5の面104bのなす角度θ3は、より好ましくは60°以上、さらに好ましくは65°以上、より好ましくは120°以下、さらに好ましくは115°以下である。凹部104cの底点部104c1を形成する第4の面104a及び第5の面104bのなす角度θ3は、90°±1°であることが好ましく、90°であることがより好ましい。この場合、イマージョン回折素子101における回折効率をより一層向上させることができる。
 図17は、本発明の第4の実施形態に係るイマージョン回折素子の製造方法で用いるプレス型を説明するための模式的断面図である。
 図17に示すように、プレス型110は、回折部104の凹凸に対応する形状を有する。プレス型110においては、凸部112の頂点部112aが凹部111の底点部111aよりも尖った形状、すなわち、凸部112の頂点部112aの角RをR112a、凹部111の底点部111aの角RをR111aとすると、R112aをR111aで除した値が、10.0以下であることが好ましく、8.0以下であることがより好ましい。このようなプレス型110を用いて、非晶質ガラスをモールドプレス成型することにより、回折部104における上記R104c1をR104d1で除した値を、より一層確実に10.0以下、好ましくは2.0以下、より好ましくは1.0以下に形成することができ、イマージョン回折素子101における回折効率をより一層向上させることができる。なお、R111aの値は、1μm~20μmであることが好ましく、R112aの値は、0.05μm~10μmであることが好ましい。
 また、プレス型110においては、凸部112の頂点部112aを形成する第6の面113及び第7の面114のなす角度θ4が、好ましくは60°以上、より好ましくは65°以上、さらに好ましくは70°以上、特に好ましくは80°以上であり、好ましくは120°以下、より好ましくは115°以下、さらに好ましくは110°、特に好ましくは100°以下である。凸部112の頂点部112aを形成する第6の面113及び第7の面114のなす角度θ4は、90°±1°であることが好ましく、90°であることがより好ましい。このようなプレス型110を用いて、非晶質ガラスをモールドプレス成型することにより、凹部104cの底点部104c1を形成する第4の面104a及び第5の面104bのなす角度を上述した好ましい範囲に調整することができ、イマージョン回折素子101における回折効率をより一層向上させることができる。
 プレス型110の材料としては、特に限定されないが、例えば、超硬材、STAVAX、HPM38などを用いることができる。プレス型110としては、ニッケルを含むめっき処理がされたプレス型を用いてもよい。
 本発明においては、回折部104を形成するに際し、非晶質ガラスのガラス転移温度+5℃以上、ガラス転移温度+50℃以下の温度で、非晶質ガラスをモールドプレス成型することが好ましい。非晶質ガラスのモールドプレス成型の温度は、非晶質ガラスのガラス転移温度+10℃以上、ガラス転移温度+45℃以下の温度であることがより好ましく、非晶質ガラスのガラス転移温度+15℃以上、ガラス転移温度+40℃以下の温度であることがさらに好ましい。
 なお、上記非晶質ガラスのガラス転移点は、好ましくは140℃以上、より好ましくは145℃以上、さらに好ましくは150℃以上、好ましくは250℃以下、より好ましくは245℃以下、さらに好ましくは240℃以下である。
 上記のような温度でモールドプレス成型した場合、より低温でプレスできるので、大型の非晶質ガラスを成形した場合にも、熱バラつきがより一層生じ難い。また、寸法変化を引き起こすような熱歪みをより一層生じ難くすることができる。
 また、ニッケル-リンめっきされたプレス型は、高温では結晶化により使用し難くなることがあるので、上記のような低温でプレスする場合には、好適に使用することができる。ニッケル-リンめっきされたプレス型を用いることにより、プレス型の鏡面性を得やすくなり、モールドプレス成型の面精度をより一層向上させることができるので、回折部104の設計自由度をより一層向上させることができる。ここでは、例示としてニッケルを含むめっき処理がされたプレス型を記載したが、めっきの種類はこれに限定されるものではなく、ニッケル-モリブデンめっき、ニッケル-タングステンめっき等を用いることができる。
 接合工程;
 次に、プリズムと回折部104とを接合する。プリズム及び回折部104は、例えば、オプティカルコンタクトまたは表面活性化接合等の常温接合法により接合することができる。プリズム及び回折部104は、後述する第5の実施形態のようにはんだにより接合してもよい。
 本実施形態の製造方法では、非晶質ガラスをモールドプレス成型して回折部104を形成し、プリズムと回折部104を接合することにより、容易にイマージョン回折素子101を製造することができる。また、回折部104の形成に用いる非晶質ガラスは、容易に転写加工することができ、結晶方位により加工形状が制限されないので、回折部104の設計自由度を向上させることができる。従って、本実施形態の製造方法では、イマージョン回折素子101の光学自由度を向上させることができる。
 [第5の実施形態]
 図18は、本発明の第5の実施形態に係るイマージョン回折素子を示す模式的断面図である。また、図19は、本発明の第5の実施形態に係るイマージョン回折素子における回折面を示す模式的平面図である。なお、図18は、図19のIII-III線に沿う模式的断面図である。
 図18及び図19に示すように、イマージョン回折素子121では、回折部104が、回折光学面104Aと、回折光学面104Aに対向している底面104Bと、回折光学面104A及び底面104Bに接続されている側面104Cとを有する。また、イマージョン回折素子121では、回折部104の側面104C及びプリズム部102にわたりはんだ122が設けられている。はんだ122により、プリズム部102及び回折部104が接合されている。
 また、はんだ122の融点は、回折部104を構成する非晶質ガラスのガラス転移点よりも低い。そのため、回折部104の形状安定性や、位置精度をより一層向上させることができる。
 はんだ122と回折部104を構成する非晶質ガラスとの熱膨張係数の差の絶対値は、好ましくは170×10-7/℃以下、より好ましくは160×10-7/℃以下、さらに好ましくは150×10-7/℃以下である。この場合、プリズム部102及び回折部104の接合強度をより一層向上させることができる。はんだ122と回折部104を構成する非晶質ガラスとの熱膨張係数の差の絶対値の下限値は、特に限定されないが、例えば、50×10-7/℃とすることができる。
 はんだ122は、In、Sn、またはBiを含むことが好ましい。具体的には、はんだ122の材料としては、例えば、Su-Bi-In三元系合金にAg、Cu、Ni、Zn、及びSbからなる群から選択される元素を含んでいる材料等を挙げることができる。
 はんだ122の厚みは、特に限定されず、例えば、10μm以上、100μm以下とすることができる。
 また、図19に示すように、はんだ122は、回折部104の側面104Cの全周にわたり設けられていることが好ましい。この場合、プリズム部102及び回折部104をより一層確実に接合することができる。もっとも、はんだ122は、回折部104の側面104Cの周囲における少なくとも一部に設けられていればよい。
 また、図20に示す変形例のように、プリズム部102の第1の主面102a上に設けられている第1の下地膜123をさらに備え、はんだ122が、回折部104の側面104C及び第1の下地膜123にわたり設けられていてもよい。回折光学面104Aを平面視したときに、第1の下地膜123は、回折部104を囲むように設けられていることが好ましい。この場合、プリズム部102及び回折部104をより一層確実に接合することができる。第1の下地膜123は、回折部104の側面104Cの周囲における少なくとも一部に設けられていればよい。
 第1の下地膜123の材料は、特に限定されず、例えば、Si、Ti、Cu、Ni、Cr、Pt、Pd等を用いることができる。
 第1の下地膜123の厚みは、特に限定されず、例えば、0.1μm以上、20μm以下とすることができる。
 第5の実施形態のイマージョン回折素子121においても、回折部104が、非晶質ガラスにより構成されている。そのため、製造が容易であり、かつ回折部104の設計自由度を向上させることができる。
 [第6の実施形態]
 図21は、本発明の第6の実施形態に係るイマージョン回折素子を示す模式的断面図である。
 図21に示すように、イマージョン回折素子131においては、プリズム部102の第1の主面102a上に、第2の下地膜132を介して回折部104が設けられている。この場合、第2の下地膜132の材料は、プリズム部102と同じ材質であることが好ましい。従って、例えば、プリズム部102がSiである場合、第2の下地膜132にSiを用いることが好ましく、プリズム部102がGaAsである場合、第2の下地膜132にGaAsを用いることが好ましい。また、第2の下地膜132の厚みは、特に限定されず、例えば、0.1μm以上、20μm以下とすることができる。その他の点は、第4の実施形態と同様である。
 第6の実施形態のイマージョン回折素子131においても、回折部104が、非晶質ガラスにより構成されている。そのため、製造が容易であり、かつ回折部104の設計自由度を向上させることができる。
 また、イマージョン回折素子131のように、プリズム部102の第1の主面102a上には、第2の下地膜132を介して回折部104が設けられていてもよい。これにより、プリズム部102及び回折部104をより一層確実に接合することができる。
 [第7の実施形態]
 図22は、本発明の第7の実施形態に係るイマージョン回折素子を示す模式的断面図である。
 図22に示すように、イマージョン回折素子141においては、回折部104の表面が反射膜142によって覆われている。より具体的には、反射膜142は、回折部104の第4の面104a及び第5の面104bを覆っている。
 反射膜142の材料としては、特に限定されないが、Au等を用いることができる。反射膜142としては、適宜の誘電体多層膜を用いてもよい。反射膜142の厚みは、例えば、1μm以上、10μm以下とすることができる。反射膜142は、例えば、蒸着法又はスパッタリング法により形成することができる。
 その他の点は、第4の実施形態と同様である。
 第7の実施形態のイマージョン回折素子141においても、回折部104が、非晶質ガラスにより構成されている。そのため、製造が容易であり、かつ回折部104の設計自由度を向上させることができる。
 また、イマージョン回折素子141のように、回折部104の表面が反射膜142によって覆われていてもよい。この場合、プリズム部102に入射した光を、回折部104においてより確実に反射させることができ、より確実に分光させることができる。
 [第8の実施形態]
 図23は、本発明の第8の実施形態に係るイマージョン回折素子を示す模式的断面図である。
 図23に示すように、イマージョン回折素子151においては、プリズム部102の第2の主面102b上に反射防止膜152が設けられている。
 反射防止膜152としては、例えば、Ge、Si、フッ化物、ZnSe、ZnS、及びダイヤモンドライクカーボンから選択される少なくとも1種以上からなることが好ましい。なお、反射防止膜152は、例えば、蒸着法又はスパッタリング法により形成することができる。また、反射防止膜152の厚みは、例えば、1.0μm以上、5.0μm以下とすることができる。その他の点は、第4の実施形態と同様である。
 第8の実施形態のイマージョン回折素子151においても、回折部104が、非晶質ガラスにより構成されている。そのため、製造が容易であり、かつ回折部104の設計自由度を向上させることができる。
 また、イマージョン回折素子151のように、プリズム部102の第2の主面102b上に反射防止膜152が設けられていてもよい。プリズム部102の第2の主面102bは、イマージョン回折素子151における入射部である。そのため、この入射部に反射防止膜152を設けることにより、入射光が反射され難くなる。よって、この場合、イマージョン回折素子151における光の利用効率をより一層高めることができる。
1,21,31,101,121,131,141,151…イマージョン回折素子
2,102…プリズム部
2a~2c…第1~第3の面
3,103…回折溝
4,104…回折部
4a,104a…第4の面
4b,104b…第5の面
4c,11,104c,111…凹部
4c1,11a,104c1,111a…底点部
4d,12,104d,112…凸部
4d1,12a,104d1,112a…頂点部
10,110…プレス型
13,113…第6の面
14,114…第7の面
22,142…反射膜
32,152…反射防止膜
A,B…光
R4c1,R104c1…凹部の底点部の角R
R4d1,R104d1…凸部の頂点部の角R
R11a,R111a…凹部の底点部の角R
R12a,R112a…凸部の頂点部の角R
θ1,θ2,θ3,θ4…角度
102a…第1の主面
102b…第2の主面
102c…第3の主面
104A‥‥回折光学面
104B…底面
104C…側面
122…はんだ
123…第1の下地膜
132…第2の下地膜

Claims (32)

  1.  プリズム部と、回折部とを備え、
     前記プリズム部及び前記回折部が、非晶質ガラスにより構成されている、イマージョン回折素子。
  2.  第1の主面、第2の主面、及び第3の主面を有する、プリズム部と、
     前記プリズム部の前記第1の主面上に設けられており、非晶質ガラスにより構成されている、回折部と、
    を備える、イマージョン回折素子。
  3.  前記非晶質ガラスの屈折率が、波長10μmにおいて、3.0以上である、請求項1又は2に記載のイマージョン回折素子。
  4.  前記非晶質ガラスが、カルコゲナイドガラスである、請求項1~3のいずれか1項に記載のイマージョン回折素子。
  5.  前記非晶質ガラスが、モル百分率で、Te 4%~80%、Ge 0%~50%(但し0%を含まない)、Ga 0%~20%を含有する、請求項1~4のいずれか1項に記載のイマージョン回折素子。
  6.  前記非晶質ガラスが、モル百分率で、S 50%~80%、Sb 0%~40%(但し0%を含まない)、Ge 0%~18%(但し0%を含まない)、Sn 0%~20%、Bi 0%~20%を含有する、請求項1~4のいずれか1項に記載のイマージョン回折素子。
  7.  前記回折部において、凹部の底点部の角Rを凸部の頂点部の角Rで除した値が2.0以下である、請求項1~6のいずれか1項に記載のイマージョン回折素子。
  8.  前記凹部の底点部を形成する面同士のなす角度が、60°以上、120°以下である、請求項7に記載のイマージョン回折素子。
  9.  前記回折部の表面が、反射膜により覆われている、請求項1~8のいずれか1項に記載のイマージョン回折素子。
  10.  前記反射膜が、Auにより構成されている、請求項9に記載のイマージョン回折素子。
  11.  前記プリズム部を構成する材料と、前記回折部を構成する非晶質ガラスとの波長10μmにおける屈折率の差の絶対値が、0.3以下である、請求項2~10のいずれか1項に記載のイマージョン回折素子。
  12.  前記プリズム部を構成する材料と、前記回折部を構成する前記非晶質ガラスとの熱膨張係数の差の絶対値が、150×10-7/℃以下である、請求項2~11のいずれか1項に記載のイマージョン回折素子。
  13.  前記プリズム部が、Siにより構成されている、請求項2~12のいずれか1項に記載のイマージョン回折素子。
  14.  前記回折部が、回折光学面と、前記回折光学面に対向している底面と、前記回折光学面及び前記底面に接続されている側面とを有し、
     前記回折部の前記側面及び前記プリズム部にわたりはんだが設けられていることによって、前記プリズム部の前記第1の主面と前記回折部の前記底面との間に前記はんだを介することなく、前記回折部及び前記プリズム部が接合されており、かつ前記はんだの融点が前記非晶質ガラスのガラス転移点よりも低い、請求項2~13のいずれか1項に記載のイマージョン回折素子。
  15.  前記はんだと前記非晶質ガラスとの熱膨張係数の差の絶対値が、170×10-7/℃以下である、請求項14に記載のイマージョン回折素子。
  16.  前記はんだが、In、Sn、またはBiを含む、請求項14または15に記載のイマージョン回折素子。
  17.  前記はんだが、前記回折部の前記側面の全周にわたり設けられている、請求項14~16のいずれか1項に記載のイマージョン回折素子。
  18.  前記プリズム部の前記第1の主面上に設けられている、第1の下地膜をさらに備え、
     前記はんだが、前記回折部の前記側面及び前記第1の下地膜にわたり設けられている、請求項14~17のいずれか1項に記載のイマージョン回折素子。
  19.  前記回折光学面及び前記底面が対向する方向から視たときに、前記第1の下地膜が、前記回折部を囲むように設けられている、請求項18に記載のイマージョン回折素子。
  20.  前記第1の下地膜が、前記回折部及び前記プリズム部の間に設けられていない、請求項18または19に記載のイマージョン回折素子。
  21.  前記プリズム部の前記第1の主面上に、第2の下地膜を介して前記回折部が設けられている、請求項2~20のいずれか1項に記載のイマージョン回折素子。
  22.  前記第2の下地膜が、Siにより構成されている、請求項21に記載のイマージョン回折素子。
  23.  非晶質ガラスを準備する工程と、
     前記非晶質ガラスをモールドプレス成型することにより、回折部を形成する工程と、を備える、イマージョン回折素子の製造方法。
  24.  プリズム及び非晶質ガラスを準備する工程と、
     前記非晶質ガラスをモールドプレス成型することにより回折部を形成する工程と、
     前記プリズムと前記回折部とを接合する工程と、
    を備える、イマージョン回折素子の製造方法。
  25.  前記回折部の凹凸を形成するに際し、凹部の底点部の角Rを凸部の頂点部の角Rで除した値が2.0以下となるように、前記非晶質ガラスをモールドプレス成型する、請求項23又は24に記載のイマージョン回折素子の製造方法。
  26.  前記回折部の凹凸を形成するに際し、前記凹部の底点部を形成する面同士のなす角度が、60°以上、120°以下となるように、前記非晶質ガラスをモールドプレス成型する、請求項25に記載のイマージョン回折素子の製造方法。
  27.  前記回折部の凹凸を形成するに際し、前記回折部の凹凸に対応する形状を有し、かつ凸部の頂点部の角Rを凹部の底点部の角Rで除した値が10.0以下であるプレス型を用いて、前記非晶質ガラスをモールドプレス成型する、請求項23~26のいずれか1項に記載のイマージョン回折素子の製造方法。
  28.  前記凸部の頂点部を形成する面同士のなす角度が、60°以上、120°以下であるプレス型を用いて、前記非晶質ガラスをモールドプレス成型する、請求項27に記載のイマージョン回折素子の製造方法。
  29.  前記非晶質ガラスのガラス転移点が、140℃以上、250℃以下である、請求項23~28のいずれか1項に記載のイマージョン回折素子の製造方法。
  30.  前記回折部を形成するに際し、前記非晶質ガラスのガラス転移温度+5℃以上、ガラス転移温度+50℃以下の温度で、前記非晶質ガラスをモールドプレス成型する、請求項23~29のいずれか1項に記載のイマージョン回折素子の製造方法。
  31.  前記回折部を形成するに際し、ニッケル-リンめっきされたプレス型を用いて前記非晶質ガラスをモールドプレス成型する、請求項23~30のいずれか1項に記載のイマージョン回折素子の製造方法。
  32.  前記プリズムと前記回折部とを接合する工程において、
     前記プリズムの第1の主面上に前記回折部を配置し、前記回折部の側面及び前記プリズムにわたりはんだを設け、該はんだにより前記プリズムと前記回折部とを接合する、請求項24~31のいずれか1項に記載のイマージョン回折素子の製造方法。
PCT/JP2022/035576 2021-10-05 2022-09-26 イマージョン回折素子及びその製造方法 WO2023058474A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2021164119 2021-10-05
JP2021-164119 2021-10-05
JP2021-164117 2021-10-05
JP2021164117A JP2023055029A (ja) 2021-10-05 2021-10-05 イマージョン回折素子及びその製造方法
JP2022-109880 2022-07-07
JP2022109880A JP2023055193A (ja) 2021-10-05 2022-07-07 イマージョン回折素子及びその製造方法

Publications (1)

Publication Number Publication Date
WO2023058474A1 true WO2023058474A1 (ja) 2023-04-13

Family

ID=85804221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035576 WO2023058474A1 (ja) 2021-10-05 2022-09-26 イマージョン回折素子及びその製造方法

Country Status (1)

Country Link
WO (1) WO2023058474A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002362938A (ja) * 2001-06-06 2002-12-18 Ohara Inc 光学ガラス
JP2011081132A (ja) * 2009-10-06 2011-04-21 Olympus Corp 分散素子、分光装置、及び波長選択スイッチ
JP2013101280A (ja) * 2011-11-09 2013-05-23 Alps Electric Co Ltd 光学装置及び光受信モジュール
JP2020177256A (ja) * 2014-10-30 2020-10-29 住友電気工業株式会社 光学部品
JP2021018392A (ja) * 2019-07-23 2021-02-15 キヤノン株式会社 回折素子および分光装置、ならびに回折素子の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002362938A (ja) * 2001-06-06 2002-12-18 Ohara Inc 光学ガラス
JP2011081132A (ja) * 2009-10-06 2011-04-21 Olympus Corp 分散素子、分光装置、及び波長選択スイッチ
JP2013101280A (ja) * 2011-11-09 2013-05-23 Alps Electric Co Ltd 光学装置及び光受信モジュール
JP2020177256A (ja) * 2014-10-30 2020-10-29 住友電気工業株式会社 光学部品
JP2021018392A (ja) * 2019-07-23 2021-02-15 キヤノン株式会社 回折素子および分光装置、ならびに回折素子の製造方法

Similar Documents

Publication Publication Date Title
US7488170B2 (en) Metallic mold for optical element and optical element
US7366395B2 (en) Manufacturing method of die for optical element molding
US8298354B2 (en) Corrosion and heat resistant metal alloy for molding die and a die therewith
JP4110506B2 (ja) 光学素子成形用金型
US8865314B2 (en) Press molding glass material, manufacturing method thereof, and manufacturing method of optical element
EP2214037B1 (en) Diffraction grating element, and production method of diffraction grating element
US8646290B2 (en) Method of manufacturing a glass optical element
CN1733444A (zh) 光学元件用成形模具的制造方法,光学元件用成形模具和光学元件
TWI477458B (zh) 光學透鏡用壓製成形模具及玻璃製光學透鏡之製造方法
JP4690100B2 (ja) ガラス光学素子用成形型およびガラス光学素子の製造方法
WO2023058474A1 (ja) イマージョン回折素子及びその製造方法
JP5691520B2 (ja) 光学素子形成用の金型、光学素子形成用の金型の製造方法、ウエハレンズの製造方法及びウエハレンズ
CN101842724A (zh) 衍射光学元件及其制造方法
JP2023055029A (ja) イマージョン回折素子及びその製造方法
JP2023055193A (ja) イマージョン回折素子及びその製造方法
JP2013024982A (ja) ワイヤーグリッド偏光子およびその製造方法
US20230280508A1 (en) Visible quality additive manufactured aluminum mirror finishing
CN112062450B (zh) 一种非晶玻璃热压模具的制备方法以及热压模具
JP3575927B2 (ja) 熱可塑性樹脂製光反射部材の成形方法及び熱可塑性樹脂製光反射部品の作製方法
JP2002348129A (ja) ガラス光学素子成型金型の製造方法及びガラス光学素子の成形方法
JP4525900B2 (ja) 光学素子用成形金型の製造方法及び光学素子用成形金型
CN218969084U (zh) 一种加工双突面预形体的模具
CN114656133B (zh) 一种抗粘减磨超精密模具、加工系统及方法
JPS60237401A (ja) 屈折率分布型媒体及びその製造方法
US20030234982A1 (en) Diffraction optical element and transfer mold therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22878345

Country of ref document: EP

Kind code of ref document: A1