WO2023058317A1 - Substrate processing device and substrate processing method - Google Patents

Substrate processing device and substrate processing method Download PDF

Info

Publication number
WO2023058317A1
WO2023058317A1 PCT/JP2022/030162 JP2022030162W WO2023058317A1 WO 2023058317 A1 WO2023058317 A1 WO 2023058317A1 JP 2022030162 W JP2022030162 W JP 2022030162W WO 2023058317 A1 WO2023058317 A1 WO 2023058317A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
processing
substrate
concentration
cup
Prior art date
Application number
PCT/JP2022/030162
Other languages
French (fr)
Japanese (ja)
Inventor
至 菅野
光則 中森
洋介 八谷
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2023058317A1 publication Critical patent/WO2023058317A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching

Definitions

  • the disclosed embodiments relate to a substrate processing apparatus and a substrate processing method.
  • the present disclosure provides a technology capable of accurately detecting the concentration of components contained in the processing liquid used for single-wafer processing of substrates.
  • a substrate processing apparatus includes a holding section, a liquid supply section, and an analysis section.
  • the holding unit holds and rotates the substrate.
  • the liquid supply unit supplies the processing liquid to the substrate.
  • the analysis section analyzes the treatment liquid. Further, the analysis section has a liquid receiving section and a concentration sensor.
  • the liquid receiver receives the processing liquid flowing out from the substrate.
  • a concentration sensor detects a concentration of a component contained in the processing liquid staying in the liquid receiving section.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a substrate processing system according to an embodiment.
  • FIG. 2 is a schematic diagram illustrating an example of a specific configuration of a processing unit according to the embodiment; 3 is a diagram illustrating an example of a configuration of an analysis unit according to the embodiment;
  • FIG. 4 is a diagram illustrating an example of a configuration of an analysis unit according to Modification 1 of the embodiment;
  • FIG. 5 is a diagram illustrating an example of a configuration of an analysis unit according to Modification 2 of the embodiment; 6 is a diagram illustrating an example of a configuration of an analysis unit according to Modification 3 of the embodiment;
  • FIG. FIG. 7 is a schematic diagram illustrating an example of a specific configuration of a processing unit according to Modification 4 of the embodiment;
  • FIG. 8 is a schematic diagram illustrating an example of a specific configuration of a processing unit according to Modification 5 of the embodiment.
  • FIG. 9 is a schematic diagram illustrating an example of a specific configuration of a processing unit according to Modification 6 of the embodiment;
  • FIG. 10 is a schematic diagram illustrating an example of a specific configuration and operation of a processing unit according to Modification 7 of the embodiment;
  • FIG. 11 is a schematic diagram illustrating an example of a specific configuration and operation of a processing unit according to Modification 7 of the embodiment;
  • FIG. 12 is a schematic diagram illustrating an example of a specific configuration and operation of a processing unit according to Modification 7 of the embodiment;
  • 13 is a schematic diagram illustrating an example of a specific configuration of a processing unit according to Modification 8 of the embodiment;
  • FIG. 1 is a diagram showing a schematic configuration of a substrate processing system 1 according to an embodiment.
  • a substrate processing system 1 is an example of a substrate processing apparatus.
  • the X-axis, Y-axis and Z-axis are defined to be orthogonal to each other, and the positive direction of the Z-axis is defined as the vertically upward direction.
  • the substrate processing system 1 includes a loading/unloading station 2 and a processing station 3 .
  • the loading/unloading station 2 and the processing station 3 are provided adjacently.
  • the loading/unloading station 2 includes a hoop placement section 11 and a transport section 12 .
  • the transport section 12 is provided adjacent to the hoop mounting section 11 and includes a substrate transport device 13 and a transfer section 14 therein.
  • the substrate transfer device 13 includes a wafer holding mechanism that holds the wafer W. As shown in FIG. Further, the substrate transfer device 13 can move in the horizontal direction and the vertical direction and can rotate around the vertical axis, and transfers the wafer W between the FOUP H and the transfer section 14 using the wafer holding mechanism. conduct.
  • the processing station 3 is provided adjacent to the transport section 12 .
  • the processing station 3 comprises a transport section 15 and a plurality of processing units 16 .
  • a plurality of processing units 16 are arranged side by side on both sides of the transport section 15 .
  • the transport unit 15 includes a substrate transport device 17 inside.
  • the substrate transfer device 17 includes a wafer holding mechanism that holds the wafer W. As shown in FIG.
  • the substrate transfer device 17 can move in the horizontal direction and the vertical direction and can rotate about the vertical axis, and transfers the wafer W between the delivery section 14 and the processing unit 16 using a wafer holding mechanism. I do.
  • the processing unit 16 performs predetermined substrate processing on the wafer W transferred by the substrate transfer device 17 .
  • the substrate processing system 1 also includes a control device 4 .
  • Control device 4 is, for example, a computer, and includes control unit 18 and storage unit 19 .
  • the storage unit 19 stores programs for controlling various processes executed in the substrate processing system 1 .
  • the control unit 18 controls the operation of the substrate processing system 1 by reading and executing programs stored in the storage unit 19 .
  • the program may be recorded in a computer-readable storage medium and installed in the storage unit 19 of the control device 4 from the storage medium.
  • Examples of computer-readable storage media include hard disks (HD), flexible disks (FD), compact disks (CD), magnet optical disks (MO), and memory cards.
  • the substrate transfer device 13 of the loading/unloading station 2 takes out the wafer W from the FOUP H placed on the FOUP placing part 11, and receives the taken out wafer W. It is placed on the transfer section 14 .
  • the wafer W placed on the transfer section 14 is taken out from the transfer section 14 by the substrate transfer device 17 of the processing station 3 and carried into the processing unit 16 .
  • the wafer W loaded into the processing unit 16 is processed by the processing unit 16, then unloaded from the processing unit 16 by the substrate transport device 17, and placed on the delivery section 14. Then, the processed wafer W placed on the transfer section 14 is returned to the FOUP H of the FOUP placement section 11 by the substrate transfer device 13 .
  • FIG. 2 is a schematic diagram showing an example of a specific configuration of the processing unit 16.
  • the processing unit 16 includes a chamber 20, a substrate processing section 30, a liquid supply section 40, a collection cup 50, and an analysis section 60.
  • the processing unit 16 includes a chamber 20, a substrate processing section 30, a liquid supply section 40, a collection cup 50, and an analysis section 60.
  • the chamber 20 accommodates the substrate processing section 30 , the liquid supply section 40 , the recovery cup 50 and the analysis section 60 .
  • An FFU (Fan Filter Unit) 21 is provided on the ceiling of the chamber 20 .
  • FFU 21 forms a downflow in chamber 20 .
  • the substrate processing section 30 includes a holding section 31, a support section 32, and a driving section 33, and performs liquid processing on the placed wafer W.
  • the holding part 31 holds the wafer W horizontally.
  • the column portion 32 is a member extending in the vertical direction, the base end portion of which is rotatably supported by the drive portion 33, and the tip portion of which supports the holding portion 31 horizontally.
  • the drive section 33 rotates the support section 32 around the vertical axis.
  • the substrate processing section 30 rotates the supporting section 31 supported by the supporting section 32 by rotating the supporting section 32 using the driving section 33, thereby rotating the wafer W held by the supporting section 31. .
  • the holding part 31 horizontally holds the wafer W by sucking the lower surface of the wafer W, for example.
  • the holding portion 31 is not limited to the adsorption chuck, and may be an electrostatic chuck or the like.
  • the wafer W is held by the holder 31 with the surface on which substrate processing is performed directed upward.
  • the liquid supply unit 40 supplies the processing fluid to the wafer W.
  • the liquid supply unit 40 includes nozzles 41a and 41b, an arm 42a that horizontally supports the nozzles 41a and 41b, and a swing/lift mechanism 43a that swings and lifts the arm 42a.
  • the liquid supply unit 40 also includes a nozzle 41c, an arm 42b that horizontally supports the nozzle 41c, and a turning and lifting mechanism 43b that turns and lifts the arm 42b.
  • the nozzle 41a is connected to a DHF supply source 46a via a valve 44a and a flow regulator 45a.
  • the DHF supply source 46a is, for example, a tank that stores DHF (dilute hydrofluoric acid). Such DHF is an example of a treatment liquid.
  • the nozzle 41b is connected to an IPA supply source 46b via a valve 44b and a flow regulator 45b.
  • the IPA supply source 46b is, for example, a tank that stores IPA (IsoPropyl Alcohol). Such IPA is another example of a treatment liquid.
  • the nozzle 41c is connected to a DIW supply source 46c via a valve 44c and a flow regulator 45c.
  • the DIW supply source 46c is, for example, a tank that stores DIW (DeIonized Water). Such DIW is yet another example of a processing liquid.
  • DHF supplied from a DHF supply source 46a is discharged from the nozzle 41a.
  • IPA supplied from an IPA supply source 46b is discharged from the nozzle 41b.
  • DIW supplied from the DIW supply source 46c is discharged from the nozzle 41c.
  • the collection cup 50 is arranged to surround the holding portion 31 and collects the processing liquid S (see FIG. 3) scattered from the wafer W due to the rotation of the holding portion 31 .
  • a drain port 51 is formed at the bottom of the recovery cup 50 , and the processing liquid S collected by the recovery cup 50 is discharged to the outside of the processing unit 16 through the drain port 51 .
  • An exhaust port 52 is formed at the bottom of the collection cup 50 to discharge the gas supplied from the FFU 21 to the outside of the processing unit 16 .
  • the analysis unit 60 detects the concentration of components contained in the processing liquid S flowing out from the wafer W due to the rotation of the holding unit 31 .
  • the analysis unit 60 is arranged, for example, outside the edge of the wafer W and inside the recovery cup 50 . Also, the analysis unit 60 is arranged at a position lower than the wafer W held by the holding unit 31 .
  • FIG. 3 is a diagram showing an example of the configuration of the analysis unit 60 according to the embodiment.
  • the analysis unit 60 includes a liquid receiver 61 and a concentration sensor 62.
  • the liquid receiver 61 receives the processing liquid S flowing out from the wafer W (see FIG. 2) to be liquid-processed while rotating.
  • the concentration sensor 62 detects the concentration of components contained in the processing liquid S staying in the liquid receiving portion 61 .
  • the concentration sensor 62 detects the concentration of components contained in the treatment liquid S by infrared spectroscopy, for example.
  • the density sensor 62 has a light projecting portion 62a and a light receiving portion 62b.
  • the light projecting part 62a is connected to an infrared light source (not shown) by, for example, an optical fiber (not shown).
  • the light projecting part 62 a irradiates the light receiving part 62 b via the measured part 65 of the liquid receiving part 61 with the infrared light IR supplied from the infrared light source.
  • the light receiving section 62b is connected to a photometry section (not shown) by, for example, an optical fiber (not shown).
  • the light receiving portion 62b receives the infrared light IR irradiated from the light projecting portion 62a through the measured portion 65 of the liquid receiving portion 61, and sends the received light to the photometry portion.
  • the photometry unit splits the received infrared light IR and sends the data to the control unit 18 (see FIG. 1).
  • the control unit 18 can obtain the absorbance at a predetermined wavelength corresponding to the component to be measured from the absorption spectrum of the infrared light IR, and can calculate the concentration of the component.
  • the wavelength around 1460 (nm) is the overtone of the OH group stretching vibration
  • the wavelength around 1690 (nm) is the overtone of the CH group stretching vibration.
  • the absorbance A is represented by the following formula (1) according to the Beer-Lambert law.
  • A ⁇ LC (1)
  • the value of the concentration C can be obtained.
  • the distance L0 between the light projecting portion 62a and the light receiving portion 62b is the measurement length L, as shown in FIG.
  • the infrared light source of the concentration sensor 62 preferably emits infrared light IR in a continuous wavelength range. This makes it possible to detect the concentrations of many components simply by changing the settings of the control unit 18 .
  • the absorption peak wavelength may shift depending on the coexisting surrounding substances.
  • a commercially available one such as a halogen tungsten lamp can be used.
  • the infrared light IR generated by the infrared light source may have a single wavelength.
  • the infrared light source may be a wavelength tunable laser, or may selectively extract the absorption peak wavelength of the target component using an interference filter or the like.
  • an interference filter which is a bandpass filter, may be installed in the light projecting section 62a to irradiate infrared light IR of a desired wavelength.
  • the light projecting part 62a is preferably capable of projecting parallel rays using a collimator or the like, but may be capable of projecting light rays condensed on the light receiving part 62b in order to ensure the brightness of the optical system.
  • the photometry unit connected to the light receiving unit 62b splits the infrared light IR guided by the optical fiber from the light receiving unit 62b as necessary, detects it, converts it into an electric signal, and processes such as amplification as necessary. I do.
  • the structure of the photometry unit is not particularly limited, and a known one such as a dispersive spectrophotometer using a diffraction grating or the like, a non-dispersive spectrophotometer such as a Fourier transform infrared spectrophotometer, or the like can be used. Note that when the infrared light IR of a specific wavelength is projected from the light projecting section 62a, the spectroscopic means in the photometry section is unnecessary.
  • the control unit 18 calculates the absorption spectrum and absorbance at a predetermined wavelength based on the electrical signal from the photometry unit. In addition, the control unit 18 performs averaging processing by integrating the absorbance, or processing to suppress variation in measurement data by creating a frequency distribution within a unit time and obtaining a median value. After that, the control unit 18 performs density calculation and the like.
  • the wavelength range should include the wavelengths at which the component to be detected absorbs.
  • infrared light IR in a wavelength range including 1350 (nm) to 1720 (nm) is preferably irradiated.
  • the absorption peaks for measuring the concentration of H 2 O are not only near the wavelength 1460 (nm), but also near the wavelength 1200 (nm), the wavelength 1900 (nm), and the wavelength 2600 (nm). exist.
  • An absorption peak near a wavelength of 1200 (nm) has a small absorption coefficient, but absorption peaks near a wavelength of 1900 (nm) and a wavelength of 2600 (nm) have large absorption coefficients, so these absorption peaks may be used.
  • the liquid receiving portion 61 has an inlet 63 , an outlet 64 , and a portion 65 to be measured.
  • the processing liquid S flowing out from the wafer W flows into the inflow port 63 .
  • the discharge port 64 discharges the processing liquid S staying inside the liquid receiving portion 61 .
  • the outlet 64 is arranged at a position lower than the inlet 63 .
  • the measured portion 65 is a portion where the treatment liquid S is measured by the concentration sensor 62 . That is, the measured portion 65 is located between the light projecting portion 62a and the light receiving portion 62b, and is a portion through which the infrared light IR for measurement passes. The measured portion 65 is arranged at a position lower than the inlet 63 and higher than the outlet 64 .
  • the processing liquid S flowing out from the wafer W to be subjected to the liquid processing while rotating is once received by the liquid receiving section 61, and the concentration of the components contained in the processing liquid S is measured in the liquid receiving section 61. It is detected by the sensor 62 .
  • the measurement length L is sufficient to accurately detect the concentration of the component compared to the case where the liquid film of the processing liquid S formed on the wafer W is irradiated with infrared light to detect the concentration.
  • the concentrations of the components contained in the processing liquid S used for the single wafer processing of the wafers W can be detected with high accuracy.
  • the measurement length L is preferably 1 (mm) or more, and more preferably 10 (mm) or more.
  • the liquid receiver 61 has an inlet 63 at a position higher than the part 65 to be measured, and an outlet 64 at a position lower than the part 65 to be measured.
  • the processing liquid S received by the liquid receiving section 61 can always flow to the outside so as not to stagnate in the measurement target section 65 .
  • the sizes of the inlet 63 and the outlet 64 may be appropriately set so that the processing liquid S always stays in the measured portion 65 during the liquid processing of the wafer W. As a result, from the beginning to the end of the liquid processing of the wafer W, the passage of time in the component concentration of the processing liquid S can be continuously detected.
  • the substrate is first processed with DHF, then rinsed with DIW, and then dried with IPA.
  • the end point of the rinse treatment can be detected by detecting the concentration of DHF contained in the treatment liquid S with the analysis unit 60 . Furthermore, in the drying process using IPA, by detecting the concentration of DIW contained in the treatment liquid S, the end point of the drying process can be detected. That is, in the embodiment, extra time of liquid treatment can be saved.
  • the analysis unit 60 in the processing unit 16 by providing the analysis unit 60 in the processing unit 16, the overall processing time of the wafer W can be shortened, so that the wafer W can be efficiently processed with the liquid.
  • the liquid processing of the wafer W according to the embodiment is not limited to the above example, and any liquid processing in which two or more components are mixed in the processing liquid S can be applied.
  • Chemical solutions used for the liquid treatment of the wafer W according to the embodiment include, for example, HF (hydrofluoric acid), NH 4 OH (ammonia water), H 2 SO 4 (sulfuric acid), and H 2 O 2 (hydrogen peroxide solution). , HCl (hydrochloric acid), NH 4 F (ammonium fluoride), and the like.
  • HNO 3 nitric acid
  • H 3 PO 4 phosphoric acid
  • TMAH tetramethylammonium hydroxide
  • end point detection processing of the liquid processing according to the embodiment is not limited to the above example. End point detection may be performed.
  • components to be etched in the treatment liquid S include Si (silicon), Ti (titanium), W (tungsten), Ge (germanium), Ni (nickel), Co (cobalt), and Ru (ruthenium). etc.
  • the analyzing section 60 may be provided with a nozzle (not shown) for discharging a cleaning liquid (for example, DIW or the like) into the liquid receiving section 61 . Then, the controller 18 may discharge the cleaning liquid from the nozzle to clean the inside of the liquid receiving section 61 when the wafer W is not liquid-processed.
  • a cleaning liquid for example, DIW or the like
  • the concentration of the component contained in the processing liquid S used for the single wafer processing of the wafer W can be detected with higher accuracy.
  • control unit 18 may correct the sensitivity of infrared spectroscopic analysis during the cleaning process of the liquid receiving unit 61 described above. As a result, the concentrations of the components contained in the processing liquid S used for single-wafer processing of the wafers W can be detected more accurately.
  • the concentration sensor 62 capable of infrared spectroscopic analysis detects the concentration of the component contained in the treatment liquid S, but the present disclosure is not limited to this example.
  • the concentration sensor 62 can detect the processing liquid S flowing out from the wafer W by liquid chromatography mass spectrometry (LC/MS), gas chromatography mass spectrometry (GC/MS), ion chromatography (IC), or the like. You may detect the density
  • LC/MS liquid chromatography mass spectrometry
  • GC/MS gas chromatography mass spectrometry
  • IC ion chromatography
  • the concentration sensor 62 detects the concentration of the components contained in the processing liquid S flowing out from the wafer W by, for example, total organic carbon measurement (TOC) or plasma mass spectrometry (ICP-MS). good too.
  • TOC total organic carbon measurement
  • ICP-MS plasma mass spectrometry
  • the conductivity of the processing liquid S flowing out from the wafer W and staying in the liquid receiving portion 61 is measured by a conductivity meter, and the components contained in the processing liquid S are measured based on the measured conductivity. Concentration may be detected.
  • the concentration sensor 62 may include a conductivity meter. Also by this, the density
  • the analysis unit 60 detects the concentration of the component contained in the processing liquid S flowing out from the wafer W
  • the present disclosure is not limited to such an example.
  • the analysis unit 60 according to the embodiment may detect the amount of particles contained in the treatment liquid S received by the liquid receiving unit 61 with a particle sensor provided in the analysis unit 60 .
  • the end point of the liquid treatment is detected based on the measured value of the component concentration of the treatment liquid S detected by the analysis unit 60 (that is, the measured value of the component concentration is used as the trigger for the end of the liquid treatment). ), the disclosure is not limited to such examples.
  • the liquid processing execution time (step processing time) stored in various recipe information may be set based on the measured value of the component concentration of the processing liquid S detected by the analysis unit 60. .
  • the replacement state can be determined. A determination can be made as to whether or not the In this case, the determination of the component concentration of the treatment liquid S may be performed using pure water or IPA.
  • a low surface tension liquid for example, IPA
  • examples of the acidic treatment liquid include SPM (mixture of sulfuric acid and hydrogen peroxide).
  • examples of the alkaline processing liquid include SC1.
  • the operator or the like measures in advance the time required for the component concentration of the treatment liquid S detected by the analysis unit 60 to reach a given concentration. Then, after the component concentration of the treatment liquid S reaches the given concentration, without measuring the component concentration, the measured time until reaching the given concentration is added to the given fixed time. , is input to the recipe information as the execution time of the liquid treatment to be replaced with a different treatment liquid.
  • the component concentration of the processing liquid S is set to the given concentration If the concentration is higher than the concentration, an alarm to that effect may be output to the outside.
  • the determination may be made by measuring the concentration of the treatment liquid to be replaced, or by measuring the concentration of a different treatment liquid for replacement.
  • Conditions in which this alarm is generated include, for example, when some trouble occurs in the processing liquid supply valve executed in the processing recipe, and when some trouble occurs in the rotation control mechanism (for example, the drive unit 33, etc.). etc. can be considered.
  • control unit 18 when the above alarm is output, the control unit 18 removes the processing unit 16 to which the alarm is output from the transfer schedule for transferring the wafer W. Change the delivery schedule. Then, the control section 18 may transfer the unprocessed wafer W to the processing unit 16 capable of processing, and the processing unit 16 to which the alarm is output may perform control to stop the transfer.
  • control unit 18 executes a rescue recipe for the wafer W being processed in the processing unit 16 to which the alarm is output.
  • the wafer W should be rescued.
  • This rescue recipe is a setting for interrupting the step next to the replacement step that is executed for a predetermined delay time in order to extend the set execution time of the step that completes the replacement process. Then, the controller 18 determines whether or not to interrupt the rescue recipe based on the concentration measurement value at the end of the time for the replacement step.
  • the replacement process can be completed for the wafer W that is the target of the rescue recipe.
  • the time required for the complete replacement process obtained by preliminary test evaluation may be set.
  • FIG. 4 is a diagram showing an example of the configuration of the analysis unit 60 according to Modification 1 of the embodiment.
  • the analysis unit 60 according to Modification 1 differs from the above embodiment in the configuration of the concentration sensor 62 .
  • a density sensor 62 is used in which a light projecting portion 62a (see FIG. 3) and a light receiving portion 62b (see FIG. 3) are integrated.
  • a mirror 66 is provided on the opposite side of the measured portion 65 in the liquid receiving portion 61 so as to face the concentration sensor 62 .
  • the mirror 66 reflects the infrared light IR emitted from the density sensor 62 to the density sensor 62 .
  • the concentration of the components contained in the processing liquid S used for the single-wafer processing of the wafer W can be accurately determined. can be detected well.
  • the measurement length L which is twice the distance between the density sensor 62 and the mirror 66, can be taken. That is, in Modification 1, even if the size of the liquid receiving portion 61 is reduced, a sufficient measurement length L can be obtained.
  • the analysis section 60 can be installed without any problem.
  • FIG. 5 is a diagram showing an example of the configuration of the analysis unit 60 according to Modification 2 of the embodiment.
  • the analyzing section 60 according to Modification 2 differs from the above-described embodiment in the configuration of the liquid receiving section 61 .
  • a plurality of discharge ports 64 are provided at the bottom of the liquid receiving portion 61 .
  • the processing liquid S received by the liquid receiving portion 61 can be prevented from stagnation in the portion 65 to be measured, and can be made to flow to the outside more smoothly. Therefore, according to Modification 2, in the single-wafer processing of wafers W, it is possible to smoothly detect the passage of time in the component concentrations of the processing liquid S flowing out from the wafers W.
  • FIG. 1 In the single-wafer processing of wafers W, it is possible to smoothly detect the passage of time in the component concentrations of the processing liquid S flowing out from the wafers W.
  • FIG. 5 shows an example in which two discharge ports 64 are provided in the liquid receiving portion 61
  • the present disclosure is not limited to such an example, and three or more discharge ports 64 are provided in the liquid receiving portion 61.
  • FIG. 6 is a diagram showing an example of the configuration of the analysis unit 60 according to Modification 3 of the embodiment. As shown in FIG. 6, the analysis unit 60 according to Modification 3 differs from the above embodiment in the arrangement and configuration of the liquid receiver 61 . Specifically, in Modification 3, the liquid receiver 61 is provided outside the recovery cup 50 and integrated with the recovery cup 50 .
  • an opening 50b is formed in the side wall 50a of the collection cup 50, and the opening 50b and the inlet 63 of the liquid receiver 61 are connected.
  • a part of the side wall 50a is used to form a liquid receiver 61 outside the side wall 50a of the recovery cup 50. As shown in FIG.
  • a discharge channel 67 is connected to the discharge port 64 of the liquid receiver 61 , and the discharge channel 67 is connected to the discharge port 51 of the recovery cup 50 .
  • the concentration sensor 62 (see FIG. 3) of the processing liquid S remaining in the liquid receiving portion 61, the concentration of the processing liquid S contained in the processing liquid S used for the single-wafer processing of the wafer W can be detected.
  • the concentration of the component can be detected with high accuracy.
  • Modification 3 even in a processing unit 16 with no extra space in the collection cup 50, the analysis section 60 can be installed without any problem.
  • the liquid receiver 61 and the like may be configured to be detachable.
  • the opening 50b formed in the recovery cup 50 should be closed with a lid or the like when removing the liquid receiver 61 and the like.
  • FIG. 7 is a schematic diagram showing an example of a specific configuration of the processing unit 16 according to Modification 4 of the embodiment. As shown in FIG. 7, in modification 4, the arrangement of the analysis unit 60 is different from that in the above embodiment. Specifically, in Modification 4, the analysis unit 60 is provided in the discharge channel 53 connected to the discharge port 51 of the collection cup 50 instead of inside the collection cup 50 .
  • the treatment liquid S (see FIG. 3) that has been collected by the collection cup 50 and flowed out from the drain port 51 to the discharge channel 53 is received by the liquid receiver 61 (see FIG. 3). Furthermore, the concentration of the components contained in the treatment liquid S received by the liquid receiving portion 61 is detected by a concentration sensor 62 (see FIG. 3).
  • control unit 18 can accurately detect the concentration of the components contained in the processing liquid S used for the single-wafer processing of the wafers W.
  • Modification 4 even in a processing unit 16 with no extra space in the collection cup 50, the analysis section 60 can be installed without any problem.
  • FIG. 8 is a schematic diagram showing an example of a specific configuration of the processing unit 16 according to Modification 5 of the embodiment. As shown in FIG. 8, in modification 5, the arrangement and configuration of the analysis unit 60 are different from those of the above embodiment.
  • the liquid receiver 61 of the analysis unit 60 is provided in the discharge channel 53 connected to the drain port 51 of the recovery cup 50 instead of inside the recovery cup 50 .
  • a liquid sending pipe 68 is connected to the liquid receiving portion 61 .
  • the liquid feeding pipe 68 is connected to a measured portion 69 provided at a location different from the liquid receiving portion 61, and feeds the treatment liquid S received by the liquid receiving portion 61 from the liquid receiving portion 61 to the measured portion 69. . Then, the analysis unit 60 uses the concentration sensor 62 to detect the concentration of the components contained in the treatment liquid S sent to the measurement target unit 69 .
  • control unit 18 can accurately detect the concentration of the components contained in the processing liquid S used for the single-wafer processing of the wafers W.
  • Modification 5 even in a processing unit 16 in which there is no surplus space in the collection cup 50 and the surplus space around the discharge channel 53 is small, the analysis section 60 can be installed without any problem.
  • FIG. 9 is a schematic diagram showing an example of a specific configuration of the processing unit 16 according to Modification 6 of the embodiment. As shown in FIG. 9, in Modification 6, the arrangement of the liquid receiver 61 is different from that in Modification 5 described above.
  • the liquid receiver 61 of the analysis unit 60 is provided inside the collection cup 50 instead of the discharge channel 53 (see FIG. 8).
  • a liquid sending pipe 68 is connected to the liquid receiving portion 61 .
  • the liquid feeding pipe 68 is connected to a measured portion 69 provided at a location different from the liquid receiving portion 61, and feeds the treatment liquid S received by the liquid receiving portion 61 from the liquid receiving portion 61 to the measured portion 69. . Then, the analysis unit 60 uses the concentration sensor 62 to detect the concentration of the components contained in the treatment liquid S sent to the measurement target unit 69 .
  • control unit 18 can accurately detect the concentration of the components contained in the processing liquid S used for the single-wafer processing of the wafers W.
  • ⁇ Modification 7> 10 to 12 are schematic diagrams showing an example of the specific configuration and operation of the processing unit 16 according to Modification 7 of the embodiment. As shown in FIG. 10, in modification 7, the configuration of the collection cup 50 is different from that of the above embodiment.
  • the recovery cup 50 has a first recovery cup 80 , a second recovery cup 90 and a third recovery cup 100 .
  • the first recovery cup 80 is the outermost recovery cup
  • the third recovery cup 100 is the innermost recovery cup
  • the second recovery cup 90 is the first recovery cup 80 and the third recovery cup. This is a collection cup provided between the cup 100 and the cup 100 .
  • the second recovery cup 90 has an elevating cup 91 , a fixed cup 92 , an elevating rod 93 and an eaves portion 94 .
  • the elevating cup 91 has a cylindrical lower portion and a semi-conical upper portion that tapers inward as it goes upward.
  • the fixed cup 92 is a substantially cylindrical portion provided below the elevating cup 91 .
  • the fixed cup 92 and the elevating cup 91 form a cup body that receives the processing liquid S scattered from the rotating wafer W.
  • the elevating cup 91 and the fixed cup 92 are partially overlapped so that the cup body can be maintained even when the elevating cup 91 is raised.
  • the elevating rod 93 is provided below the elevating cup 91 so as to be embedded inside the fixed cup 92 .
  • the elevating rod 93 is connected to the elevating cup 91 by magnetic force, for example, and moves up and down integrally with the elevating cup 91 .
  • the eaves portion 94 is provided on the fixed cup 92 and covers from above the opening of the exhaust port 52 that is formed to penetrate inside the fixed cup 92 . As a result, it is possible to suppress the processing liquid S recovered in the recovery cup 50 from flowing into the exhaust port 52 .
  • the third collection cup 100 has an elevating cup 101 , a fixed cup 102 , an elevating rod 103 and an eaves portion 104 .
  • the elevating cup 101 has a cylindrical lower portion and a semi-conical upper portion that tapers inward as it goes upward.
  • the fixed cup 102 is a substantially cylindrical portion provided below the elevating cup 101 .
  • the fixed cup 102 and the elevating cup 101 form a cup body that receives the processing liquid S scattered from the rotating wafer W. As shown in FIG.
  • the elevating cup 101 and the fixed cup 102 are partially overlapped so that the cup body can be maintained even when the elevating cup 101 is raised.
  • the elevating rod 103 is provided below the elevating cup 101 so as to be embedded inside the fixed cup 102 .
  • the elevating rod 103 is connected to the elevating cup 101 by magnetic force, for example, and moves up and down integrally with the elevating cup 101 .
  • the eaves portion 104 is provided on the fixed cup 102 and covers from above the opening of the exhaust port 52 that is formed to penetrate inside the fixed cup 102 . Thereby, it is possible to suppress the processing liquid S recovered in the third recovery cup 100 from flowing into the exhaust port 52 .
  • the processing liquid S scattered from the rotating wafer W flows into the space G1 formed between the first recovery cup 80 and the second recovery cup 90 . Then, the treatment liquid S is discharged to the outside from a drain port 51A formed on the downstream side of the space G1.
  • the analysis section 60A is arranged in the space G1 formed between the first collection cup 80 and the second collection cup 90. Thereby, in liquid processing in which DHF is supplied to the wafer W from the nozzle 41a, the concentration of the component contained in the processing liquid S can be detected.
  • the treatment liquid S can be discharged to a liquid drain port different from the liquid drain port 51A.
  • the controller 18 moves the elevating cup 91 and the elevating rod 93 to a given elevated position.
  • the processing liquid S scattered from the rotating wafer W flows into the space G2 formed between the second recovery cup 90 and the third recovery cup 100 . Then, the treatment liquid S is discharged to the outside from a drain port 51B formed on the downstream side of the space G2.
  • the analysis section 60B is arranged in the space G2 formed between the second collection cup 90 and the third collection cup 100. Accordingly, in liquid processing in which DIW is supplied to the wafer W from the nozzle 41c, the concentration of the component contained in the processing liquid S can be detected.
  • the processing liquid S scattered from the rotating wafer W flows into the space G3 formed between the third recovery cup 100 and the inner wall portion 110 positioned inside the third recovery cup 100. Then, the treatment liquid S is discharged to the outside from a drain port 51C formed on the downstream side of the space G3.
  • the analysis section 60C is arranged in the space G3 formed between the third collection cup 100 and the inner wall section 110 . Thereby, in liquid processing in which IPA is supplied to the wafer W from the nozzle 41b, the concentration of the component contained in the processing liquid S can be detected.
  • the processing unit 16 has a plurality of recovery cups (here, the first recovery cup 80, the second recovery cup 90, and the third recovery cup) that receive the processing liquid S scattered from the wafer W. 100) provided.
  • a plurality of analysis units 60 are provided for each of these collection cups.
  • the processing unit 16 in which a plurality of recovery cups are provided for each of a plurality of types of chemical liquids, it is possible to detect the concentration of the components contained in the processing liquid S in all the liquid processing.
  • 10 to 12 are examples in which a plurality of analysis units 60 (analysis units 60A, 60B, 60C) are provided inside the first collection cup 80, the second collection cup 90, and the third collection cup 100, respectively. , the disclosure is not limited to such examples.
  • a plurality of analysis units 60 are provided downstream (i.e., discharge channels) of the drain ports 51A, 51B, and 51C connected to the first recovery cup 80, the second recovery cup 90, and the third recovery cup 100, respectively.
  • Analysis units 60A, 60B, 60C may be provided.
  • a plurality of liquid receivers 61 are provided inside the first recovery cup 80, the second recovery cup 90, and the third recovery cup 100, respectively. (that is, the same configuration as in the example of FIG. 9).
  • a plurality of liquid receivers 61 are provided downstream of the liquid drain ports 51A, 51B, and 51C, respectively, and the treatment liquid S is sent from each of the liquid receivers 61 to a measurement target 69 provided at a different location. (ie a configuration similar to the example of FIG. 8).
  • 10 to 12 show examples in which three recovery cups (first recovery cup 80, second recovery cup 90 and third recovery cup 100) are provided in one processing unit 16, The present disclosure is not limited to such examples. For example, two recovery cups may be provided within one processing unit 16, or four or more recovery cups may be provided within one processing unit 16.
  • FIG. 1 A first recovery cup 80, second recovery cup 90 and third recovery cup 100
  • FIG. 13 is a schematic diagram showing an example of a specific configuration of the processing unit 16 according to Modification 8 of the embodiment.
  • FIG. 13 in Modification 8, in addition to the analysis unit 60 described in the above embodiment, another concentration sensor 62A for detecting the component concentration of the processing liquid S (see FIG. 3) on the surface of the wafer W is provided. be provided.
  • the density sensor 62A is formed by integrating a light projecting section 62a (see FIG. 3) and a light receiving section 62b (see FIG. 3), and is arranged above the wafer W held by the holding section 31.
  • FIG. 3 Such density sensor 62A is supported by, for example, arm 42a or arm 42b (arm 42b in the figure).
  • the concentration sensor 62A detects the component concentration of the processing liquid S on the surface of the wafer W by reflecting the infrared light IR on the surface of the wafer W made of silicon.
  • the control unit 18 detects the component concentration detection result by the concentration sensor 62 (see FIG. 3) provided in the analysis unit 60 and the component concentration detection result by the concentration sensor 62A. Based on, it is preferable to determine the end point of the liquid treatment. This makes it possible to accurately determine the end point of liquid processing.
  • the substrate processing apparatus (substrate processing system 1) according to the embodiment includes a holding section 31, a liquid supply section 40, and an analysis section 60.
  • the holding unit 31 holds and rotates the substrate (wafer W).
  • the liquid supply unit 40 supplies the processing liquid S to the substrate (wafer W).
  • the analysis unit 60 analyzes the treatment liquid S.
  • the analysis section 60 also has a liquid receiving section 61 and a concentration sensor 62 .
  • the liquid receiver 61 receives the processing liquid S flowing out from the substrate (wafer W).
  • the concentration sensor 62 detects the concentration of components contained in the processing liquid S staying in the liquid receiving portion 61 . As a result, the concentrations of the components contained in the processing liquid S used for single-wafer processing of the wafers W can be accurately detected.
  • the liquid receiving portion 61 has an inlet 63, an outlet 64, and a portion 65 to be measured.
  • the processing liquid S flowing out from the substrate (wafer W) flows into the inflow port 63 .
  • the discharge port 64 is arranged at a position lower than the inflow port 63 and discharges the processing liquid S staying inside.
  • the measured portion 65 is arranged at a position lower than the inlet 63 and higher than the outlet 64 , and the processing liquid S is measured by the concentration sensor 62 .
  • the inflow port 63 and the discharge port 64 are arranged so that the processing liquid S always stays in the measured portion 65 during liquid processing of the substrate (wafer W). size is set. As a result, from the beginning to the end of the liquid processing of the wafer W, the passage of time in the component concentration of the processing liquid S can be continuously detected.
  • a plurality of discharge ports 64 are provided in the liquid receiver 61 .
  • the substrate processing apparatus (substrate processing system 1) according to the embodiment also includes a collection cup 50 that receives the processing liquid S scattered from the substrate (wafer W). Also, the liquid receiver 61 is provided outside the recovery cup 50 . As a result, even if the processing unit 16 has no extra space in the collection cup 50, the analysis section 60 can be installed without any problem.
  • the substrate processing apparatus (substrate processing system 1 ) according to the embodiment includes a holding section 31 , a liquid supply section 40 and an analysis section 60 .
  • the holding unit 31 holds and rotates the substrate (wafer W).
  • the liquid supply unit 40 supplies the processing liquid S to the substrate (wafer W).
  • the analysis unit 60 analyzes the treatment liquid S.
  • the analysis unit 60 also has a liquid receiver 61 , a liquid feed pipe 68 , and a concentration sensor 62 .
  • the liquid receiver 61 receives the processing liquid S flowing out from the substrate (wafer W).
  • the liquid feeding pipe 68 feeds the processing liquid S from the liquid receiving portion 61 to the measured portion 69 .
  • the concentration sensor 62 detects the concentration of the components contained in the treatment liquid S in the portion 69 to be measured. As a result, the concentrations of the components contained in the processing liquid S used for single-wafer processing of the wafers W can be accurately detected.
  • the substrate processing apparatus (substrate processing system 1) according to the embodiment also includes a collection cup 50 that receives the processing liquid S scattered from the substrate (wafer W). Further, the liquid receiver 61 is provided inside the recovery cup 50 . As a result, the concentrations of the components contained in the processing liquid S used for single-wafer processing of the wafers W can be accurately detected.
  • the substrate processing apparatus (substrate processing system 1) according to the embodiment includes a collection cup 50 for receiving the processing liquid S scattered from the substrate (wafer W), and a discharge channel 53 for discharging the processing liquid S from the collection cup 50. , provided. Also, the liquid receiver 61 is provided in the discharge flow path 53 . As a result, even if the processing unit 16 has no extra space in the collection cup 50, the analysis section 60 can be installed without any problem.
  • the substrate processing apparatus (substrate processing system 1) according to the embodiment includes a plurality of recovery cups (first recovery cup 80, second recovery cup 90, and third recovery cup 80) for receiving the processing liquid S scattered from the substrate (wafer W). cup 100).
  • a plurality of liquid receivers 61 are provided for each recovery cup (first recovery cup 80, second recovery cup 90, and third recovery cup 100).
  • the concentration sensor 62 detects the concentration of the component by infrared spectroscopy. As a result, the concentration of the component contained in the processing liquid S flowing out from the wafer W can be detected accurately and easily.
  • the concentration sensor 62 detects the concentration of the component using a conductivity meter. Thereby, the concentration of the component contained in the processing liquid S flowing out from the wafer W can be detected with high accuracy.
  • the substrate processing method according to the embodiment is configured such that, in the processing of replacing the processing liquid on the substrate (wafer W) with a different processing liquid, the set time of the processing is set by the concentration sensor. a decision process that determines based on the 62 measurements. As a result, the running cost of liquid processing can be reduced.
  • the substrate processing method includes determination processing and notification processing in the above-described substrate processing apparatus (substrate processing system 1).
  • determination process based on the measured value of the concentration sensor 62, it is determined whether or not the liquid processing has been completed normally.
  • the notification process outputs an alarm to the outside when the liquid process is not completed normally. Thereby, the liquid processing of the wafer W can be stably performed.
  • the substrate processing method according to the embodiment further includes a rescue process of rescuing the substrate (wafer W) that has been subject to the liquid processing using a rescue recipe when the liquid processing has not been completed normally.
  • a rescue process of rescuing the substrate (wafer W) that has been subject to the liquid processing using a rescue recipe when the liquid processing has not been completed normally whereby, the yield of the wafer W can be improved.
  • Substrate processing system (an example of a substrate processing apparatus) 16 processing unit 31 holding part 40 liquid supply part 50 recovery cup 53 discharge channel 60 analysis part 61 liquid receiving part 62 concentration sensor 63 inlet 64 outlet 65 part to be measured 68 liquid feeding pipe 69 part to be measured 80 first collection cup 90 Second collection cup 100 Third collection cup S Treatment liquid

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Weting (AREA)

Abstract

A substrate processing device according to one embodiment of the present disclosure comprises a holder (31), a liquid supplying unit (40), and an analysis unit (60). The holder (31) holds and rotates a substrate. The liquid supplying unit (40) supplies a processing liquid (S) to the substrate. The analysis unit (60) analyzes the processing liquid (S). Moreover, the analysis unit (60) comprises a liquid receiver (61) and a concentration sensor (62). The liquid receiver (61) receives the processing liquid (S) flowing from the substrate. The concentration sensor (62) detects the concentration of components contained in the processing liquid (S) accumulated inside the liquid receiver (61).

Description

基板処理装置および基板処理方法SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD
 開示の実施形態は、基板処理装置および基板処理方法に関する。 The disclosed embodiments relate to a substrate processing apparatus and a substrate processing method.
 従来、半導体ウェハ(以下、ウェハとも呼称する。)などの基板を複数まとめて浸漬処理するバッチ処理において、かかる処理に用いられた処理液に含まれる成分の濃度を検出する技術が知られている(特許文献1参照)。 BACKGROUND ART Conventionally, in batch processing in which a plurality of substrates such as semiconductor wafers (hereinafter also referred to as wafers) are immersed together, a technique for detecting the concentration of components contained in the processing liquid used for such processing is known. (See Patent Document 1).
特開2010-261793号公報JP 2010-261793 A
 本開示は、基板の枚葉処理に用いられた処理液に含まれる成分の濃度を精度よく検出することができる技術を提供する。 The present disclosure provides a technology capable of accurately detecting the concentration of components contained in the processing liquid used for single-wafer processing of substrates.
 本開示の一態様による基板処理装置は、保持部と、液供給部と、分析部と、を備える。保持部は、基板を保持して回転させる。液供給部は、前記基板に処理液を供給する。分析部は、前記処理液を分析する。また、前記分析部は、液受け部と、濃度センサと、を有する。液受け部は、前記基板から流れ出る前記処理液を受ける。濃度センサは、前記液受け部内に滞留する前記処理液に含まれる成分の濃度を検出する。 A substrate processing apparatus according to one aspect of the present disclosure includes a holding section, a liquid supply section, and an analysis section. The holding unit holds and rotates the substrate. The liquid supply unit supplies the processing liquid to the substrate. The analysis section analyzes the treatment liquid. Further, the analysis section has a liquid receiving section and a concentration sensor. The liquid receiver receives the processing liquid flowing out from the substrate. A concentration sensor detects a concentration of a component contained in the processing liquid staying in the liquid receiving section.
 本開示によれば、基板の枚葉処理に用いられた処理液に含まれる成分の濃度を精度よく検出することができる。 According to the present disclosure, it is possible to accurately detect the concentration of the component contained in the processing liquid used for single-wafer processing of substrates.
図1は、実施形態に係る基板処理システムの概略構成を示す模式図である。FIG. 1 is a schematic diagram showing a schematic configuration of a substrate processing system according to an embodiment. 図2は、実施形態に係る処理ユニットの具体的な構成の一例を示す模式図である。FIG. 2 is a schematic diagram illustrating an example of a specific configuration of a processing unit according to the embodiment; 図3は、実施形態に係る分析部の構成の一例を示す図である。3 is a diagram illustrating an example of a configuration of an analysis unit according to the embodiment; FIG. 図4は、実施形態の変形例1に係る分析部の構成の一例を示す図である。4 is a diagram illustrating an example of a configuration of an analysis unit according to Modification 1 of the embodiment; FIG. 図5は、実施形態の変形例2に係る分析部の構成の一例を示す図である。FIG. 5 is a diagram illustrating an example of a configuration of an analysis unit according to Modification 2 of the embodiment; 図6は、実施形態の変形例3に係る分析部の構成の一例を示す図である。6 is a diagram illustrating an example of a configuration of an analysis unit according to Modification 3 of the embodiment; FIG. 図7は、実施形態の変形例4に係る処理ユニットの具体的な構成の一例を示す模式図である。FIG. 7 is a schematic diagram illustrating an example of a specific configuration of a processing unit according to Modification 4 of the embodiment; 図8は、実施形態の変形例5に係る処理ユニットの具体的な構成の一例を示す模式図である。FIG. 8 is a schematic diagram illustrating an example of a specific configuration of a processing unit according to Modification 5 of the embodiment. 図9は、実施形態の変形例6に係る処理ユニットの具体的な構成の一例を示す模式図である。FIG. 9 is a schematic diagram illustrating an example of a specific configuration of a processing unit according to Modification 6 of the embodiment; 図10は、実施形態の変形例7に係る処理ユニットの具体的な構成および動作の一例を示す模式図である。FIG. 10 is a schematic diagram illustrating an example of a specific configuration and operation of a processing unit according to Modification 7 of the embodiment; 図11は、実施形態の変形例7に係る処理ユニットの具体的な構成および動作の一例を示す模式図である。FIG. 11 is a schematic diagram illustrating an example of a specific configuration and operation of a processing unit according to Modification 7 of the embodiment; 図12は、実施形態の変形例7に係る処理ユニットの具体的な構成および動作の一例を示す模式図である。FIG. 12 is a schematic diagram illustrating an example of a specific configuration and operation of a processing unit according to Modification 7 of the embodiment; 図13は、実施形態の変形例8に係る処理ユニットの具体的な構成の一例を示す模式図である。13 is a schematic diagram illustrating an example of a specific configuration of a processing unit according to Modification 8 of the embodiment; FIG.
 以下、添付図面を参照して、本願の開示する基板処理装置および基板処理方法の実施形態を詳細に説明する。なお、以下に示す実施形態により本開示が限定されるものではない。また、図面は模式的なものであり、各要素の寸法の関係、各要素の比率などは、現実と異なる場合があることに留意する必要がある。さらに、図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。 Hereinafter, embodiments of the substrate processing apparatus and the substrate processing method disclosed in the present application will be described in detail with reference to the accompanying drawings. It should be noted that the present disclosure is not limited by the embodiments shown below. Also, it should be noted that the drawings are schematic, and the relationship of dimensions of each element, the ratio of each element, and the like may differ from reality. Furthermore, even between the drawings, there are cases where portions having different dimensional relationships and ratios are included.
 従来、半導体ウェハ(以下、ウェハとも呼称する。)などの基板を複数まとめて浸漬処理するバッチ処理において、かかる処理に用いられた処理液に含まれる成分の濃度を検出する技術が知られている。 BACKGROUND ART Conventionally, in batch processing in which a plurality of substrates such as semiconductor wafers (hereinafter also referred to as wafers) are immersed together, a technique for detecting the concentration of components contained in the processing liquid used for such processing is known. .
 一方で、基板を一枚ずつ回転させながら処理液を吐出して液処理する枚葉処理において、かかる処理に用いられた処理液に含まれる成分の濃度を精度よく検出することは非常に困難である。なぜなら、基板上に形成される液膜の膜厚が非常に薄いため、基板上の処理液を測定した場合、成分の濃度を精度よく検出するための測定長が十分に取れないからである。 On the other hand, in single-wafer processing in which substrates are rotated one by one while being discharged with a processing liquid for liquid processing, it is very difficult to accurately detect the concentration of components contained in the processing liquid used for such processing. be. This is because the film thickness of the liquid film formed on the substrate is very thin, so that when the processing liquid on the substrate is measured, a sufficient measurement length for accurately detecting the concentration of the component cannot be obtained.
 そこで、上述の問題点を克服し、基板の枚葉処理に用いられた処理液に含まれる成分の濃度を精度よく検出することができる技術の実現が期待されている。 Therefore, it is expected to overcome the above-mentioned problems and realize a technology that can accurately detect the concentration of components contained in the processing liquid used for single-wafer processing of substrates.
<基板処理システムの概要>
 最初に、図1を参照しながら、実施形態に係る基板処理システム1の概略構成について説明する。図1は、実施形態に係る基板処理システム1の概略構成を示す図である。かかる基板処理システム1は、基板処理装置の一例である。以下では、位置関係を明確にするために、互いに直交するX軸、Y軸およびZ軸を規定し、Z軸正方向を鉛直上向き方向とする。
<Overview of substrate processing system>
First, a schematic configuration of a substrate processing system 1 according to an embodiment will be described with reference to FIG. FIG. 1 is a diagram showing a schematic configuration of a substrate processing system 1 according to an embodiment. Such a substrate processing system 1 is an example of a substrate processing apparatus. Hereinafter, in order to clarify the positional relationship, the X-axis, Y-axis and Z-axis are defined to be orthogonal to each other, and the positive direction of the Z-axis is defined as the vertically upward direction.
 図1に示すように、基板処理システム1は、搬入出ステーション2と、処理ステーション3とを備える。搬入出ステーション2と処理ステーション3とは隣接して設けられる。 As shown in FIG. 1, the substrate processing system 1 includes a loading/unloading station 2 and a processing station 3 . The loading/unloading station 2 and the processing station 3 are provided adjacently.
 搬入出ステーション2は、フープ載置部11と、搬送部12とを備える。フープ載置部11には、複数枚の基板、実施形態では半導体ウェハW(以下、ウェハWと呼称する。)を水平状態で収容する複数のフープHが載置される。 The loading/unloading station 2 includes a hoop placement section 11 and a transport section 12 . A plurality of FOUPs H for accommodating a plurality of substrates, or semiconductor wafers W (hereinafter referred to as wafers W) in a horizontal state, are placed on the FOUP mounting portion 11 .
 搬送部12は、フープ載置部11に隣接して設けられ、内部に基板搬送装置13と、受渡部14とを備える。基板搬送装置13は、ウェハWを保持するウェハ保持機構を備える。また、基板搬送装置13は、水平方向および鉛直方向への移動ならびに鉛直軸を中心とする旋回が可能であり、ウェハ保持機構を用いてフープHと受渡部14との間でウェハWの搬送を行う。 The transport section 12 is provided adjacent to the hoop mounting section 11 and includes a substrate transport device 13 and a transfer section 14 therein. The substrate transfer device 13 includes a wafer holding mechanism that holds the wafer W. As shown in FIG. Further, the substrate transfer device 13 can move in the horizontal direction and the vertical direction and can rotate around the vertical axis, and transfers the wafer W between the FOUP H and the transfer section 14 using the wafer holding mechanism. conduct.
 処理ステーション3は、搬送部12に隣接して設けられる。処理ステーション3は、搬送部15と、複数の処理ユニット16とを備える。複数の処理ユニット16は、搬送部15の両側に並べて設けられる。 The processing station 3 is provided adjacent to the transport section 12 . The processing station 3 comprises a transport section 15 and a plurality of processing units 16 . A plurality of processing units 16 are arranged side by side on both sides of the transport section 15 .
 搬送部15は、内部に基板搬送装置17を備える。基板搬送装置17は、ウェハWを保持するウェハ保持機構を備える。また、基板搬送装置17は、水平方向および鉛直方向への移動ならびに鉛直軸を中心とする旋回が可能であり、ウェハ保持機構を用いて受渡部14と処理ユニット16との間でウェハWの搬送を行う。 The transport unit 15 includes a substrate transport device 17 inside. The substrate transfer device 17 includes a wafer holding mechanism that holds the wafer W. As shown in FIG. In addition, the substrate transfer device 17 can move in the horizontal direction and the vertical direction and can rotate about the vertical axis, and transfers the wafer W between the delivery section 14 and the processing unit 16 using a wafer holding mechanism. I do.
 処理ユニット16は、基板搬送装置17によって搬送されるウェハWに対して所定の基板処理を行う。 The processing unit 16 performs predetermined substrate processing on the wafer W transferred by the substrate transfer device 17 .
 また、基板処理システム1は、制御装置4を備える。制御装置4は、たとえばコンピュータであり、制御部18と記憶部19とを備える。記憶部19には、基板処理システム1において実行される各種の処理を制御するプログラムが格納される。制御部18は、記憶部19に記憶されたプログラムを読み出して実行することによって基板処理システム1の動作を制御する。 The substrate processing system 1 also includes a control device 4 . Control device 4 is, for example, a computer, and includes control unit 18 and storage unit 19 . The storage unit 19 stores programs for controlling various processes executed in the substrate processing system 1 . The control unit 18 controls the operation of the substrate processing system 1 by reading and executing programs stored in the storage unit 19 .
 なお、かかるプログラムは、コンピュータによって読み取り可能な記憶媒体に記録されていたものであって、その記憶媒体から制御装置4の記憶部19にインストールされたものであってもよい。コンピュータによって読み取り可能な記憶媒体としては、たとえばハードディスク(HD)、フレキシブルディスク(FD)、コンパクトディスク(CD)、マグネットオプティカルディスク(MO)、メモリカードなどがある。 The program may be recorded in a computer-readable storage medium and installed in the storage unit 19 of the control device 4 from the storage medium. Examples of computer-readable storage media include hard disks (HD), flexible disks (FD), compact disks (CD), magnet optical disks (MO), and memory cards.
 上記のように構成された基板処理システム1では、まず、搬入出ステーション2の基板搬送装置13が、フープ載置部11に載置されたフープHからウェハWを取り出し、取り出したウェハWを受渡部14に載置する。受渡部14に載置されたウェハWは、処理ステーション3の基板搬送装置17によって受渡部14から取り出されて、処理ユニット16へ搬入される。 In the substrate processing system 1 configured as described above, first, the substrate transfer device 13 of the loading/unloading station 2 takes out the wafer W from the FOUP H placed on the FOUP placing part 11, and receives the taken out wafer W. It is placed on the transfer section 14 . The wafer W placed on the transfer section 14 is taken out from the transfer section 14 by the substrate transfer device 17 of the processing station 3 and carried into the processing unit 16 .
 処理ユニット16へ搬入されたウェハWは、処理ユニット16によって処理された後、基板搬送装置17によって処理ユニット16から搬出されて、受渡部14に載置される。そして、受渡部14に載置された処理済のウェハWは、基板搬送装置13によってフープ載置部11のフープHへ戻される。 The wafer W loaded into the processing unit 16 is processed by the processing unit 16, then unloaded from the processing unit 16 by the substrate transport device 17, and placed on the delivery section 14. Then, the processed wafer W placed on the transfer section 14 is returned to the FOUP H of the FOUP placement section 11 by the substrate transfer device 13 .
<処理ユニットの構成>
 次に、分析部60が搭載される処理ユニット16の構成について、図2を参照しながら説明する。図2は、処理ユニット16の具体的な構成の一例を示す模式図である。図2に示すように、処理ユニット16は、チャンバ20と、基板処理部30と、液供給部40と、回収カップ50と、分析部60とを備える。
<Configuration of processing unit>
Next, the configuration of the processing unit 16 in which the analysis section 60 is mounted will be described with reference to FIG. FIG. 2 is a schematic diagram showing an example of a specific configuration of the processing unit 16. As shown in FIG. As shown in FIG. 2, the processing unit 16 includes a chamber 20, a substrate processing section 30, a liquid supply section 40, a collection cup 50, and an analysis section 60. As shown in FIG.
 チャンバ20は、基板処理部30と、液供給部40と、回収カップ50と、分析部60とを収容する。チャンバ20の天井部には、FFU(Fan Filter Unit)21が設けられる。FFU21は、チャンバ20内にダウンフローを形成する。 The chamber 20 accommodates the substrate processing section 30 , the liquid supply section 40 , the recovery cup 50 and the analysis section 60 . An FFU (Fan Filter Unit) 21 is provided on the ceiling of the chamber 20 . FFU 21 forms a downflow in chamber 20 .
 基板処理部30は、保持部31と、支柱部32と、駆動部33とを備え、載置されたウェハWに液処理を施す。保持部31は、ウェハWを水平に保持する。支柱部32は、鉛直方向に延在する部材であり、基端部が駆動部33によって回転可能に支持され、先端部において保持部31を水平に支持する。駆動部33は、支柱部32を鉛直軸まわりに回転させる。 The substrate processing section 30 includes a holding section 31, a support section 32, and a driving section 33, and performs liquid processing on the placed wafer W. The holding part 31 holds the wafer W horizontally. The column portion 32 is a member extending in the vertical direction, the base end portion of which is rotatably supported by the drive portion 33, and the tip portion of which supports the holding portion 31 horizontally. The drive section 33 rotates the support section 32 around the vertical axis.
 かかる基板処理部30は、駆動部33を用いて支柱部32を回転させることによって支柱部32に支持された保持部31を回転させ、これにより、保持部31に保持されたウェハWを回転させる。 The substrate processing section 30 rotates the supporting section 31 supported by the supporting section 32 by rotating the supporting section 32 using the driving section 33, thereby rotating the wafer W held by the supporting section 31. .
 保持部31は、たとえば、ウェハWの下面を吸着することにより、かかるウェハWを水平に保持する。なお、保持部31は、吸着チャックに限られず、静電チャックなどであってもよい。なお、ウェハWは、基板処理が行われる表面を上方に向けた状態で保持部31に保持される。 The holding part 31 horizontally holds the wafer W by sucking the lower surface of the wafer W, for example. Note that the holding portion 31 is not limited to the adsorption chuck, and may be an electrostatic chuck or the like. The wafer W is held by the holder 31 with the surface on which substrate processing is performed directed upward.
 液供給部40は、ウェハWに対して処理流体を供給する。液供給部40は、ノズル41a、41bと、ノズル41a、41bを水平に支持するアーム42aと、アーム42aを旋回および昇降させる旋回昇降機構43aとを備える。 The liquid supply unit 40 supplies the processing fluid to the wafer W. The liquid supply unit 40 includes nozzles 41a and 41b, an arm 42a that horizontally supports the nozzles 41a and 41b, and a swing/lift mechanism 43a that swings and lifts the arm 42a.
 また、液供給部40は、ノズル41cと、ノズル41cを水平に支持するアーム42bと、アーム42bを旋回および昇降させる旋回昇降機構43bとを備える。 The liquid supply unit 40 also includes a nozzle 41c, an arm 42b that horizontally supports the nozzle 41c, and a turning and lifting mechanism 43b that turns and lifts the arm 42b.
 ノズル41aは、バルブ44aおよび流量調整器45aを介してDHF供給源46aに接続される。DHF供給源46aは、たとえば、DHF(希フッ酸)を貯留するタンクである。かかるDHFは、処理液の一例である。 The nozzle 41a is connected to a DHF supply source 46a via a valve 44a and a flow regulator 45a. The DHF supply source 46a is, for example, a tank that stores DHF (dilute hydrofluoric acid). Such DHF is an example of a treatment liquid.
 ノズル41bは、バルブ44bおよび流量調整器45bを介してIPA供給源46bに接続される。IPA供給源46bは、たとえば、IPA(IsoPropyl Alcohol)を貯留するタンクである。かかるIPAは、処理液の別の一例である。 The nozzle 41b is connected to an IPA supply source 46b via a valve 44b and a flow regulator 45b. The IPA supply source 46b is, for example, a tank that stores IPA (IsoPropyl Alcohol). Such IPA is another example of a treatment liquid.
 ノズル41cは、バルブ44cおよび流量調整器45cを介してDIW供給源46cに接続される。DIW供給源46cは、たとえば、DIW(DeIonized Water:脱イオン水)を貯留するタンクである。かかるDIWは、処理液のさらに別の一例である。 The nozzle 41c is connected to a DIW supply source 46c via a valve 44c and a flow regulator 45c. The DIW supply source 46c is, for example, a tank that stores DIW (DeIonized Water). Such DIW is yet another example of a processing liquid.
 ノズル41aからは、DHF供給源46aより供給されるDHFが吐出される。ノズル41bからは、IPA供給源46bより供給されるIPAが吐出される。ノズル41cからは、DIW供給源46cより供給されるDIWが吐出される。 DHF supplied from a DHF supply source 46a is discharged from the nozzle 41a. IPA supplied from an IPA supply source 46b is discharged from the nozzle 41b. DIW supplied from the DIW supply source 46c is discharged from the nozzle 41c.
 回収カップ50は、保持部31を取り囲むように配置され、保持部31の回転によってウェハWから飛散する処理液S(図3参照)を捕集する。回収カップ50の底部には、排液口51が形成されており、回収カップ50によって捕集された処理液Sは、かかる排液口51から処理ユニット16の外部へ排出される。また、回収カップ50の底部には、FFU21から供給される気体を処理ユニット16の外部へ排出する排気口52が形成される。 The collection cup 50 is arranged to surround the holding portion 31 and collects the processing liquid S (see FIG. 3) scattered from the wafer W due to the rotation of the holding portion 31 . A drain port 51 is formed at the bottom of the recovery cup 50 , and the processing liquid S collected by the recovery cup 50 is discharged to the outside of the processing unit 16 through the drain port 51 . An exhaust port 52 is formed at the bottom of the collection cup 50 to discharge the gas supplied from the FFU 21 to the outside of the processing unit 16 .
 分析部60は、保持部31の回転によってウェハWから流れ出る処理液Sに含まれる成分の濃度を検出する。分析部60は、たとえば、ウェハWの縁部よりも外側かつ回収カップ50よりも内側に配置される。また、分析部60は、保持部31に保持されるウェハWよりも低い位置に配置される。 The analysis unit 60 detects the concentration of components contained in the processing liquid S flowing out from the wafer W due to the rotation of the holding unit 31 . The analysis unit 60 is arranged, for example, outside the edge of the wafer W and inside the recovery cup 50 . Also, the analysis unit 60 is arranged at a position lower than the wafer W held by the holding unit 31 .
<分析部の構成>
 次に、実施形態に係る分析部60の構成について、図3を参照しながら説明する。図3は、実施形態に係る分析部60の構成の一例を示す図である。
<Configuration of Analysis Department>
Next, the configuration of the analysis unit 60 according to the embodiment will be described with reference to FIG. FIG. 3 is a diagram showing an example of the configuration of the analysis unit 60 according to the embodiment.
 図3に示すように、実施形態に係る分析部60は、液受け部61と、濃度センサ62とを備える。液受け部61は、回転しながら液処理が施されるウェハW(図2参照)から流れ出る処理液Sを受ける。濃度センサ62は、液受け部61内に滞留する処理液Sに含まれる成分の濃度を検出する。 As shown in FIG. 3, the analysis unit 60 according to the embodiment includes a liquid receiver 61 and a concentration sensor 62. The liquid receiver 61 receives the processing liquid S flowing out from the wafer W (see FIG. 2) to be liquid-processed while rotating. The concentration sensor 62 detects the concentration of components contained in the processing liquid S staying in the liquid receiving portion 61 .
 実施形態に係る濃度センサ62は、たとえば、赤外分光法によって処理液Sに含まれる成分の濃度を検出する。濃度センサ62は、投光部62aおよび受光部62bを有する。 The concentration sensor 62 according to the embodiment detects the concentration of components contained in the treatment liquid S by infrared spectroscopy, for example. The density sensor 62 has a light projecting portion 62a and a light receiving portion 62b.
 投光部62aは、たとえば、光ファイバ(図示せず)によって赤外線光源(図示せず)と接続される。投光部62aは、かかる赤外線光源から供給される赤外光IRを、液受け部61の被測定部65を介して受光部62bに照射する。 The light projecting part 62a is connected to an infrared light source (not shown) by, for example, an optical fiber (not shown). The light projecting part 62 a irradiates the light receiving part 62 b via the measured part 65 of the liquid receiving part 61 with the infrared light IR supplied from the infrared light source.
 受光部62bは、たとえば、光ファイバ(図示せず)によって測光部(図示せず)と接続される。受光部62bは、投光部62aから液受け部61の被測定部65を介して照射された赤外光IRを受光し、かかる受光した光を測光部に送る。かかる測光部は、受光した赤外光IRを分光し、そのデータを制御部18(図1参照)に送る。 The light receiving section 62b is connected to a photometry section (not shown) by, for example, an optical fiber (not shown). The light receiving portion 62b receives the infrared light IR irradiated from the light projecting portion 62a through the measured portion 65 of the liquid receiving portion 61, and sends the received light to the photometry portion. The photometry unit splits the received infrared light IR and sends the data to the control unit 18 (see FIG. 1).
 物質は、それぞれ固有の吸収スペクトルを有する。制御部18は、赤外光IRの吸収スペクトルから、測定したい成分に応じた所定波長における吸光度を求め、かかる成分の濃度を算出することができる。 Each substance has its own absorption spectrum. The control unit 18 can obtain the absorbance at a predetermined wavelength corresponding to the component to be measured from the absorption spectrum of the infrared light IR, and can calculate the concentration of the component.
 たとえば、測光部で得られた赤外光IRの吸収スペクトルにおいて、波長1460(nm)付近には、HOのOH結合に起因する吸収のピークが認められる。また、波長1690(nm)付近には、IPAのCH結合に起因する2つの吸収ピークが認められる。 For example, in the absorption spectrum of infrared light IR obtained by the photometry unit, an absorption peak due to the OH bond of H 2 O is observed near a wavelength of 1460 (nm). Also, two absorption peaks due to CH bonds of IPA are observed near a wavelength of 1690 (nm).
 そこで、処理液SにおけるHOの濃度を検出したい場合には、波長約1460(nm)付近のOH基の吸収ピークにおける吸光度Aに着目すればよい。なお、波長1460(nm)付近はOH基の伸縮振動の倍音であり、波長1690(nm)付近はCH基の伸縮振動の倍音である。 Therefore, when it is desired to detect the concentration of H 2 O in the treatment liquid S, attention should be paid to the absorbance A at the absorption peak of the OH group near the wavelength of about 1460 (nm). The wavelength around 1460 (nm) is the overtone of the OH group stretching vibration, and the wavelength around 1690 (nm) is the overtone of the CH group stretching vibration.
 吸光度Aは、ランベルト・ベールの法則により、以下の式(1)で表される。
 A=αLC ・・・(1)
 A:吸光度
 α:吸光係数
 L:測定長
 C:濃度
The absorbance A is represented by the following formula (1) according to the Beer-Lambert law.
A=αLC (1)
A: Absorbance α: Absorption coefficient L: Measurement length C: Concentration
 上記の式(1)に基づけば、検出対象となる成分の吸光係数αおよび測定長Lが既知であれば、濃度Cの値を求めることができる。そして、実施形態では、図3に示すように、投光部62aと受光部62bとの間の距離L0が測定長Lとなる。 Based on the above formula (1), if the absorption coefficient α and the measurement length L of the component to be detected are known, the value of the concentration C can be obtained. In the embodiment, the distance L0 between the light projecting portion 62a and the light receiving portion 62b is the measurement length L, as shown in FIG.
 一方で、吸光係数αは共存する成分の影響等を受けて変化するため、実際の処理条件に近い条件において、測定長Lが等しい処理液Sを用いて測定を行って検量線を作成し、その検量線に基づいて濃度Cの値を算出するのが好ましい。 On the other hand, since the extinction coefficient α changes due to the influence of coexisting components, etc., a calibration curve is created by performing measurement using the treatment liquid S with the same measurement length L under conditions close to the actual treatment conditions, It is preferable to calculate the value of concentration C based on the calibration curve.
 実施形態では、濃度センサ62の赤外線光源が、連続する波長範囲の赤外光IRを発生するとよい。これにより、制御部18の設定を変更するだけで、多くの成分の濃度検出に対応することができる。 In the embodiment, the infrared light source of the concentration sensor 62 preferably emits infrared light IR in a continuous wavelength range. This makes it possible to detect the concentrations of many components simply by changing the settings of the control unit 18 .
 また、検出する成分が定まっている場合でも、吸収ピーク波長は共存する周囲の物質によってシフトする場合があるため、連続した波長の赤外光IRを用いるほうが、より高精度での測定が可能となる。このような光源としては、ハロゲンタングステンランプなどの市販のものを用いることができる。 In addition, even if the component to be detected is fixed, the absorption peak wavelength may shift depending on the coexisting surrounding substances. Become. As such a light source, a commercially available one such as a halogen tungsten lamp can be used.
 なお、赤外線光源が発生する赤外光IRは、単一の波長であってもよい。たとえば、赤外線光源は、波長可変レーザであってもよいし、干渉フィルタなどを用いて目的とする成分の吸収ピーク波長を選択的に取り出すものであってもよい。また、投光部62aに、バンドパスフィルタである干渉フィルタを設置して、所望の波長の赤外光IRを照射してもよい。 The infrared light IR generated by the infrared light source may have a single wavelength. For example, the infrared light source may be a wavelength tunable laser, or may selectively extract the absorption peak wavelength of the target component using an interference filter or the like. Alternatively, an interference filter, which is a bandpass filter, may be installed in the light projecting section 62a to irradiate infrared light IR of a desired wavelength.
 このように、単一の波長の赤外光IRを用いることにより、制御部18における演算処理を単純にすることができることから、演算速度を速くすることができる。 In this way, by using infrared light IR of a single wavelength, it is possible to simplify the arithmetic processing in the control unit 18, so that the arithmetic speed can be increased.
 投光部62aは、コリメータなどを用いて平行光線を投光できることが好ましいが、光学系の明るさを確保するために受光部62bに集光する光線を投光できてもよい。 The light projecting part 62a is preferably capable of projecting parallel rays using a collimator or the like, but may be capable of projecting light rays condensed on the light receiving part 62b in order to ensure the brightness of the optical system.
 受光部62bに接続される測光部は、受光部62bから光ファイバによって導かれた赤外光IRを必要に応じて分光し、検出して電気信号に変換し、必要に応じて増幅等の処理を行う。 The photometry unit connected to the light receiving unit 62b splits the infrared light IR guided by the optical fiber from the light receiving unit 62b as necessary, detects it, converts it into an electric signal, and processes such as amplification as necessary. I do.
 かかる測光部の構造は特に限定されず、回折格子等を用いた分散型分光光度計、フーリエ変換赤外分光光度計等の非分散型分光光度計など、公知のものを用いることができる。なお、投光部62aから特定の波長の赤外光IRが投光される場合は、測光部での分光手段は不要である。 The structure of the photometry unit is not particularly limited, and a known one such as a dispersive spectrophotometer using a diffraction grating or the like, a non-dispersive spectrophotometer such as a Fourier transform infrared spectrophotometer, or the like can be used. Note that when the infrared light IR of a specific wavelength is projected from the light projecting section 62a, the spectroscopic means in the photometry section is unnecessary.
 制御部18は、測光部からの電気信号に基づいて、吸収スペクトルや所定波長における吸光度を計算する。また、制御部18は、吸光度を積算による平均化処理あるいは、単位時間内に度数分布を作成して、メディアン値(中央値)を求めて、測定データのばらつきを抑える処理を行う。その後、制御部18は、濃度演算等を行う。 The control unit 18 calculates the absorption spectrum and absorbance at a predetermined wavelength based on the electrical signal from the photometry unit. In addition, the control unit 18 performs averaging processing by integrating the absorbance, or processing to suppress variation in measurement data by creating a frequency distribution within a unit time and obtaining a median value. After that, the control unit 18 performs density calculation and the like.
 連続する波長範囲の赤外光IRを用いる場合、その波長範囲は、検出対象となる成分が吸収する波長を含む必要がある。たとえば、HOとIPAとを測定する場合、好ましくは、1350(nm)~1720(nm)を含む波長範囲の赤外光IRを照射する。 If a continuous wavelength range of infrared light IR is used, the wavelength range should include the wavelengths at which the component to be detected absorbs. For example, when measuring H 2 O and IPA, infrared light IR in a wavelength range including 1350 (nm) to 1720 (nm) is preferably irradiated.
 また、HOの濃度を測定するための吸収ピークは、前述の波長1460(nm)付近の他に、波長1200(nm)付近、波長1900(nm)付近、波長2600(nm)付近にも存在する。波長1200(nm)付近の吸収ピークは吸光係数が小さいが、波長1900(nm)および波長2600(nm)付近の吸収ピークは吸光係数が大きいため、かかる吸収ピークを用いてもよい。 In addition, the absorption peaks for measuring the concentration of H 2 O are not only near the wavelength 1460 (nm), but also near the wavelength 1200 (nm), the wavelength 1900 (nm), and the wavelength 2600 (nm). exist. An absorption peak near a wavelength of 1200 (nm) has a small absorption coefficient, but absorption peaks near a wavelength of 1900 (nm) and a wavelength of 2600 (nm) have large absorption coefficients, so these absorption peaks may be used.
 図3の説明に戻る。液受け部61は、流入口63と、排出口64と、被測定部65とを有する。流入口63は、ウェハWから流れ出る処理液Sが流入する。排出口64は、液受け部61の内部に滞留する処理液Sを排出する。かかる排出口64は、流入口63よりも低い位置に配置される。 Return to the description of Fig. 3. The liquid receiving portion 61 has an inlet 63 , an outlet 64 , and a portion 65 to be measured. The processing liquid S flowing out from the wafer W flows into the inflow port 63 . The discharge port 64 discharges the processing liquid S staying inside the liquid receiving portion 61 . The outlet 64 is arranged at a position lower than the inlet 63 .
 被測定部65は、濃度センサ62によって処理液Sが測定される部位である。すなわち、被測定部65は、投光部62aと受光部62bとの間に位置し、測定用の赤外光IRが通過する部位である。被測定部65は、流入口63よりも低く、かつ排出口64よりも高い位置に配置される。 The measured portion 65 is a portion where the treatment liquid S is measured by the concentration sensor 62 . That is, the measured portion 65 is located between the light projecting portion 62a and the light receiving portion 62b, and is a portion through which the infrared light IR for measurement passes. The measured portion 65 is arranged at a position lower than the inlet 63 and higher than the outlet 64 .
 ここで、実施形態では、回転しながら液処理が施されるウェハWから流れ出る処理液Sを一旦液受け部61で受けて、かかる液受け部61において処理液Sに含まれる成分の濃度を濃度センサ62で検出する。 Here, in the embodiment, the processing liquid S flowing out from the wafer W to be subjected to the liquid processing while rotating is once received by the liquid receiving section 61, and the concentration of the components contained in the processing liquid S is measured in the liquid receiving section 61. It is detected by the sensor 62 .
 これにより、ウェハW上に形成される処理液Sの液膜に対して赤外光を照射して濃度を検出する場合と比べて、成分の濃度を精度よく検出するための測定長Lを十分に取ることができる。 As a result, the measurement length L is sufficient to accurately detect the concentration of the component compared to the case where the liquid film of the processing liquid S formed on the wafer W is irradiated with infrared light to detect the concentration. can be taken to
 したがって、実施形態によれば、ウェハWの枚葉処理に用いられた処理液Sに含まれる成分の濃度を精度よく検出することができる。 Therefore, according to the embodiment, the concentrations of the components contained in the processing liquid S used for the single wafer processing of the wafers W can be detected with high accuracy.
 なお、実施形態において、測定長Lは、たとえば、1(mm)以上であるとよく、10(mm)以上であるとより好ましい。これにより、ウェハWの枚葉処理に用いられた処理液Sに含まれる成分の濃度をさらに精度よく検出することができる。 In addition, in the embodiment, the measurement length L is preferably 1 (mm) or more, and more preferably 10 (mm) or more. As a result, the concentrations of the components contained in the processing liquid S used for single-wafer processing of the wafers W can be detected more accurately.
 また、実施形態では、液受け部61が、被測定部65よりも高い位置に流入口63を有し、被測定部65よりも低い位置に排出口64を有する。これにより、液受け部61で受けた処理液Sが被測定部65で澱まないように、常に外部に流れるようにすることができる。 Further, in the embodiment, the liquid receiver 61 has an inlet 63 at a position higher than the part 65 to be measured, and an outlet 64 at a position lower than the part 65 to be measured. As a result, the processing liquid S received by the liquid receiving section 61 can always flow to the outside so as not to stagnate in the measurement target section 65 .
 したがって、実施形態によれば、ウェハWの枚葉処理において、かかるウェハWから流れ出る処理液Sの成分濃度の時間経過を連続的に検出することができる。 Therefore, according to the embodiment, in the single-wafer processing of wafers W, it is possible to continuously detect the passage of time in the component concentration of the processing liquid S flowing out from the wafer W.
 また、実施形態では、ウェハWの液処理時において、被測定部65に処理液Sが常時滞留するように、流入口63および排出口64の大きさが適宜設定されるとよい。これにより、ウェハWの液処理の最初から最後まで、処理液Sの成分濃度の時間経過を連続的に検出することができる。 In addition, in the embodiment, the sizes of the inlet 63 and the outlet 64 may be appropriately set so that the processing liquid S always stays in the measured portion 65 during the liquid processing of the wafer W. As a result, from the beginning to the end of the liquid processing of the wafer W, the passage of time in the component concentration of the processing liquid S can be continuously detected.
 たとえば、実施形態に係るウェハWの液処理では、最初にDHFによる基板処理が行われ、次にDIWによるリンス処理が行われ、次にIPAによる乾燥処理が行われる。 For example, in the liquid processing of the wafer W according to the embodiment, the substrate is first processed with DHF, then rinsed with DIW, and then dried with IPA.
 そして、DIWによるリンス処理では、処理液Sに含まれるDHFの濃度を分析部60で検出することにより、かかるリンス処理の終点検知が可能となる。さらに、IPAによる乾燥処理では、処理液Sに含まれるDIWの濃度を検出することにより、かかる乾燥処理の終点検知が可能となる。すなわち、実施形態では、余分な時間の液処理を省くことができる。 Then, in the DIW rinse treatment, the end point of the rinse treatment can be detected by detecting the concentration of DHF contained in the treatment liquid S with the analysis unit 60 . Furthermore, in the drying process using IPA, by detecting the concentration of DIW contained in the treatment liquid S, the end point of the drying process can be detected. That is, in the embodiment, extra time of liquid treatment can be saved.
 したがって、実施形態によれば、処理ユニット16に分析部60が設けられることにより、ウェハWの全体的な処理時間を短くすることができることから、ウェハWを効率的に液処理することができる。 Therefore, according to the embodiment, by providing the analysis unit 60 in the processing unit 16, the overall processing time of the wafer W can be shortened, so that the wafer W can be efficiently processed with the liquid.
 また、実施形態では、余分な液処理を省くことができることから、使用済みの処理液Sの排液処理コストや、処理液Sの準備コストなどを低減することができる。 In addition, in the embodiment, since unnecessary liquid processing can be omitted, the cost of draining the used processing liquid S, the cost of preparing the processing liquid S, and the like can be reduced.
 なお、実施形態に係るウェハWの液処理は、上記の例に限られず、2種類以上の成分が処理液S内で混ざった状態となる液処理であれば適用可能である。 The liquid processing of the wafer W according to the embodiment is not limited to the above example, and any liquid processing in which two or more components are mixed in the processing liquid S can be applied.
 実施形態に係るウェハWの液処理に用いられる薬液としては、たとえば、HF(フッ酸)、NHOH(アンモニア水)、HSO(硫酸)、H(過酸化水素水)、HCl(塩酸)、NHF(フッ化アンモニウム)などが挙げられる。 Chemical solutions used for the liquid treatment of the wafer W according to the embodiment include, for example, HF (hydrofluoric acid), NH 4 OH (ammonia water), H 2 SO 4 (sulfuric acid), and H 2 O 2 (hydrogen peroxide solution). , HCl (hydrochloric acid), NH 4 F (ammonium fluoride), and the like.
 また、実施形態に係るウェハWの液処理では、HNO(硝酸)、HPO(リン酸)、TMAH(水酸化テトラメチルアンモニウム)などが用いられてもよい。 Further, in the liquid processing of the wafer W according to the embodiment, HNO 3 (nitric acid), H 3 PO 4 (phosphoric acid), TMAH (tetramethylammonium hydroxide), or the like may be used.
 また、実施形態に係る液処理の終点検知処理は、上記の例に限られず、たとえば、エッチング液によるエッチング処理において、処理液S中のエッチング対象となる成分の濃度を検出することにより、エッチング処理の終点検知を行ってもよい。 Further, the end point detection processing of the liquid processing according to the embodiment is not limited to the above example. end point detection may be performed.
 この処理液S中のエッチング対象となる成分としては、たとえば、Si(シリコン)やTi(チタン)、W(タングステン)、Ge(ゲルマニウム)、Ni(ニッケル)、Co(コバルト)、Ru(ルテニウム)などが挙げられる。 Examples of components to be etched in the treatment liquid S include Si (silicon), Ti (titanium), W (tungsten), Ge (germanium), Ni (nickel), Co (cobalt), and Ru (ruthenium). etc.
 また、実施形態では、液受け部61内に洗浄液(たとえば、DIWなど)を吐出するノズル(図示せず)が分析部60に設けられてもよい。そして、制御部18は、ウェハWが液処理されていない時に、かかるノズルから洗浄液を吐出し、液受け部61の内部を洗浄処理してもよい。 In addition, in the embodiment, the analyzing section 60 may be provided with a nozzle (not shown) for discharging a cleaning liquid (for example, DIW or the like) into the liquid receiving section 61 . Then, the controller 18 may discharge the cleaning liquid from the nozzle to clean the inside of the liquid receiving section 61 when the wafer W is not liquid-processed.
 これにより、直前の液処理において液受け部61に残留する成分によって、次の液処理における濃度検出に誤差が生じることを抑制することができる。したがって、実施形態によれば、ウェハWの枚葉処理に用いられた処理液Sに含まれる成分の濃度をさらに精度よく検出することができる。 As a result, it is possible to prevent an error in concentration detection in the next liquid treatment from occurring due to components remaining in the liquid receiving part 61 in the previous liquid treatment. Therefore, according to the embodiment, the concentration of the component contained in the processing liquid S used for the single wafer processing of the wafer W can be detected with higher accuracy.
 また、実施形態では、制御部18が、上述した液受け部61の洗浄処理の際に、赤外分光分析の感度を補正してもよい。これにより、ウェハWの枚葉処理に用いられた処理液Sに含まれる成分の濃度をさらに精度よく検出することができる。 In addition, in the embodiment, the control unit 18 may correct the sensitivity of infrared spectroscopic analysis during the cleaning process of the liquid receiving unit 61 described above. As a result, the concentrations of the components contained in the processing liquid S used for single-wafer processing of the wafers W can be detected more accurately.
 なお、上記の実施形態では、赤外分光分析が可能な濃度センサ62によって、処理液Sに含まれる成分の濃度を検出する例について示したが、本開示はかかる例に限られない。 In the above embodiment, the concentration sensor 62 capable of infrared spectroscopic analysis detects the concentration of the component contained in the treatment liquid S, but the present disclosure is not limited to this example.
 たとえば、実施形態に係る濃度センサ62は、液体クロマトグラフィー質量分析(LC/MS)やガスクロマトグラフィー質量分析(GC/MS)、イオンクロマトグラフ法(IC)などで、ウェハWから流れ出る処理液Sに含まれる成分の濃度を検出してもよい。 For example, the concentration sensor 62 according to the embodiment can detect the processing liquid S flowing out from the wafer W by liquid chromatography mass spectrometry (LC/MS), gas chromatography mass spectrometry (GC/MS), ion chromatography (IC), or the like. You may detect the density|concentration of the component contained in.
 また、実施形態に係る濃度センサ62は、たとえば、全有機体炭素測定(TOC)やプラズマ質量分析(ICP-MS)などで、ウェハWから流れ出る処理液Sに含まれる成分の濃度を検出してもよい。 Further, the concentration sensor 62 according to the embodiment detects the concentration of the components contained in the processing liquid S flowing out from the wafer W by, for example, total organic carbon measurement (TOC) or plasma mass spectrometry (ICP-MS). good too.
 また、実施形態では、たとえば、ウェハWから流れ出て液受け部61に滞留する処理液Sの導電率を導電率計で測定し、測定された導電率に基づいて処理液Sに含まれる成分の濃度を検出してもよい。 Further, in the embodiment, for example, the conductivity of the processing liquid S flowing out from the wafer W and staying in the liquid receiving portion 61 is measured by a conductivity meter, and the components contained in the processing liquid S are measured based on the measured conductivity. Concentration may be detected.
 すなわち、実施形態に係る濃度センサ62は、導電率計を含んでいてもよい。これによっても、ウェハWの枚葉処理に用いられた処理液Sに含まれる成分の濃度を精度よく検出することができる。 That is, the concentration sensor 62 according to the embodiment may include a conductivity meter. Also by this, the density|concentration of the component contained in the process liquid S used for the single wafer process of the wafer W can be detected accurately.
 さらに、上記の実施形態では、分析部60において、ウェハWから流れ出る処理液Sに含まれる成分の濃度を検出する例について示したが、本開示はかかる例に限られない。たとえば、実施形態に係る分析部60は、液受け部61で受けた処理液Sに含まれるパーティクルの量を、分析部60に設けられるパーティクルセンサで検出してもよい。 Furthermore, in the above-described embodiment, an example in which the analysis unit 60 detects the concentration of the component contained in the processing liquid S flowing out from the wafer W has been described, but the present disclosure is not limited to such an example. For example, the analysis unit 60 according to the embodiment may detect the amount of particles contained in the treatment liquid S received by the liquid receiving unit 61 with a particle sensor provided in the analysis unit 60 .
 また、上記の実施形態では、分析部60で検出された処理液Sの成分濃度の測定値に基づいて、液処理の終点を検知する(すなわち、成分濃度の測定値を液処理終了のトリガとする)例について示したが、本開示はかかる例に限られない。 In the above embodiment, the end point of the liquid treatment is detected based on the measured value of the component concentration of the treatment liquid S detected by the analysis unit 60 (that is, the measured value of the component concentration is used as the trigger for the end of the liquid treatment). ), the disclosure is not limited to such examples.
 たとえば、本開示では、分析部60で検出される処理液Sの成分濃度の測定値に基づいて、各種のレシピ情報に記憶される液処理の実施時間(ステップ処理時間)を設定してもよい。 For example, in the present disclosure, the liquid processing execution time (step processing time) stored in various recipe information may be set based on the measured value of the component concentration of the processing liquid S detected by the analysis unit 60. .
 たとえば、SC1(アンモニアと過酸化水素水との混合液)の処理ステップの次に実施する純水リンスステップにてSC1を水洗洗浄するステップにおいて、SC1から純水に置換された判定を処理液Sの成分濃度の測定値で行うことができる。 For example, in the step of rinsing SC1 with water in the pure water rinsing step that follows the SC1 (mixed solution of ammonia and hydrogen peroxide solution) treatment step, it is determined that SC1 has been replaced with pure water. can be performed with measurements of the component concentrations of
 この場合、SC1から純水に置換される途中の濃度を判定できるので、所定の濃度に低下した状態を判定することができる。また、完全に純水への置換が完了すれば、SC1の濃度は検出されないため、置換処理が完了したことを判定することができる。 In this case, since it is possible to determine the concentration in the process of replacement with pure water from SC1, it is possible to determine the state in which the concentration has decreased to a predetermined level. Further, when the replacement with pure water is completely completed, the concentration of SC1 is not detected, so it can be determined that the replacement process is completed.
 さらに、純水から低表面張力液(たとえば、IPAなど)への置換処理においても同様に、処理途中の処理液Sの成分濃度の測定を行うことにより、置換状態を判定できることから、完全に置換したか否かの判定を行うことができる。この場合には、処理液Sの成分濃度の判定を純水で行ってもよいし、IPAで行ってもよい。 Furthermore, in the process of replacing pure water with a low surface tension liquid (for example, IPA), similarly, by measuring the component concentration of the treatment liquid S during the process, the replacement state can be determined. A determination can be made as to whether or not the In this case, the determination of the component concentration of the treatment liquid S may be performed using pure water or IPA.
 また、酸性処理液からアルカリ性処理液、またはアルカリ性処理液から酸性処理液への切り替えにおいて、それらの処理液の濃度を本開示の技術を用いて測定することにより、置換された状態を把握して適切なタイミングで処理液の供給を停止することができる。この場合、酸性処理液としては、たとえば、SPM(硫酸と過酸化水素水との混合液)などが挙げられる。また、アルカリ性処理液としては、たとえば、SC1などが挙げられる。 In addition, when switching from an acidic processing liquid to an alkaline processing liquid, or from an alkaline processing liquid to an acidic processing liquid, by measuring the concentrations of the processing liquids using the technology of the present disclosure, it is possible to grasp the state of replacement. The supply of the processing liquid can be stopped at an appropriate timing. In this case, examples of the acidic treatment liquid include SPM (mixture of sulfuric acid and hydrogen peroxide). Examples of the alkaline processing liquid include SC1.
 この場合、作業者等は、分析部60で検出された処理液Sの成分濃度が所与の濃度に達するまでの時間を予め計測する。そして、処理液Sの成分濃度が所与の濃度に達してからは、成分濃度の測定を行わずに、計測された所与の濃度に達するまでの時間と、所与の固定時間を合算し、異なる処理液に置換する液処理の実施時間としてレシピ情報に入力する。 In this case, the operator or the like measures in advance the time required for the component concentration of the treatment liquid S detected by the analysis unit 60 to reach a given concentration. Then, after the component concentration of the treatment liquid S reaches the given concentration, without measuring the component concentration, the measured time until reaching the given concentration is added to the given fixed time. , is input to the recipe information as the execution time of the liquid treatment to be replaced with a different treatment liquid.
 これにより、精度が高い高価な濃度センサを用いることなく、妥当性の高い液処理の実施時間をレシピ情報に記録することができる。したがって、実施形態によれば、液処理のランニングコストを低減することができる。 As a result, it is possible to record the execution time of liquid processing with high validity in the recipe information without using an expensive concentration sensor with high accuracy. Therefore, according to the embodiment, the running cost of liquid processing can be reduced.
 また、本開示では、制御部18が、処理液を異なる処理液に置換する液処理において、レシピ情報に基づいた実施時間に到達した時に、処理液Sの成分濃度が設定された所与の濃度よりも高い濃度であった場合、その旨をアラームとして外部に出力してもよい。 Further, in the present disclosure, when the control unit 18 reaches the execution time based on the recipe information in the liquid processing of replacing the processing liquid with a different processing liquid, the component concentration of the processing liquid S is set to the given concentration If the concentration is higher than the concentration, an alarm to that effect may be output to the outside.
 この場合、置換される処理液の濃度を測定して判定してもよいし、置換するための異なる処理液の濃度を測定して判定してもよい。 In this case, the determination may be made by measuring the concentration of the treatment liquid to be replaced, or by measuring the concentration of a different treatment liquid for replacement.
 このアラームが発生する状況としては、たとえば、処理レシピで実行される処理液の供給バルブに何らかの不具合が生じた場合、および、回転制御機構(たとえば、駆動部33など)に何らかの不具合が生じた場合などが考えられる。 Conditions in which this alarm is generated include, for example, when some trouble occurs in the processing liquid supply valve executed in the processing recipe, and when some trouble occurs in the rotation control mechanism (for example, the drive unit 33, etc.). etc. can be considered.
 また、たとえば、処理液供給ノズルの移動機構(たとえば、旋回昇降機構43a、43bなど)に何らかの不具合が生じた場合、および、測定手段(たとえば、濃度センサ62など)自体に何らかの不具合が生じた場合などが考えられる。なおこの場合、かかるアラームは、処理ユニット16に何らかの異常が生じたことを示す異常アラームとして出力されてもよい。 In addition, for example, when some trouble occurs in the movement mechanism of the treatment liquid supply nozzle (for example, the rotating and lifting mechanisms 43a, 43b, etc.), and when some trouble occurs in the measuring means (for example, the concentration sensor 62, etc.) itself etc. can be considered. In this case, such an alarm may be output as an anomaly alarm indicating that some anomaly has occurred in the processing unit 16 .
 また、本開示では、上記のアラームが出力された場合、制御部18は、かかるアラームが出力された処理ユニット16をウェハWが搬送される搬送スケジュールから除外するように、未処理のウェハWの搬送スケジュールを変更する。そして、制御部18は、未処理のウェハWを処理可能な処理ユニット16に搬送し、アラームが出力された処理ユニット16は搬入停止の制御をおこなうとよい。 In addition, in the present disclosure, when the above alarm is output, the control unit 18 removes the processing unit 16 to which the alarm is output from the transfer schedule for transferring the wafer W. Change the delivery schedule. Then, the control section 18 may transfer the unprocessed wafer W to the processing unit 16 capable of processing, and the processing unit 16 to which the alarm is output may perform control to stop the transfer.
 このアラームがウェハWを数枚処理して連続で発生した場合、またはロット中に複数回に分けて発生する場合などは、上述した何らかの不具合がその処理ユニット16に発生しているとみなし、制御部18は搬送スケジュールに変更を掛けることになる。 If this alarm occurs continuously after several wafers W have been processed, or if it occurs several times during a lot, it is assumed that the processing unit 16 has some kind of problem as described above, and control is performed. The department 18 will change the transfer schedule.
 また、本開示では、上記のアラームが出力された場合、制御部18は、かかるアラームが出力された処理ユニット16で処理中のウェハWに対してレスキュー(救済)レシピを実施することにより、かかるウェハWを救出するとよい。 In addition, in the present disclosure, when the above alarm is output, the control unit 18 executes a rescue recipe for the wafer W being processed in the processing unit 16 to which the alarm is output. The wafer W should be rescued.
 このレスキューレシピとは、置換処理を完了させるステップの実施時間の設定時間を延長して処理するために、所定の遅延時間を実行される置換ステップの次のステップに割り込ませる設定である。そして、置換ステップの時間が終わった時点での濃度の測定値に基づいて判定を行い、レスキューレシピの割り込みを行うか否かが制御部18によって決められる。 This rescue recipe is a setting for interrupting the step next to the replacement step that is executed for a predetermined delay time in order to extend the set execution time of the step that completes the replacement process. Then, the controller 18 determines whether or not to interrupt the rescue recipe based on the concentration measurement value at the end of the time for the replacement step.
 これにより、レスキューレシピの対象となるウェハWでは、置換処理の完了が可能になる。上述の所定の遅延時間には、事前のテスト評価によって得られた完全に置換処理が完了する時間を設定すればよい。 As a result, the replacement process can be completed for the wafer W that is the target of the rescue recipe. For the predetermined delay time described above, the time required for the complete replacement process obtained by preliminary test evaluation may be set.
<変形例1>
 つづいては、実施形態に係る基板処理の各種変形例について、図4~図13を参照しながら説明する。図4は、実施形態の変形例1に係る分析部60の構成の一例を示す図である。
<Modification 1>
Next, various modifications of substrate processing according to the embodiment will be described with reference to FIGS. 4 to 13. FIG. FIG. 4 is a diagram showing an example of the configuration of the analysis unit 60 according to Modification 1 of the embodiment.
 図4に示すように、変形例1に係る分析部60は、濃度センサ62の構成が上記の実施形態と異なる。具体的には、変形例1では、投光部62a(図3参照)と受光部62b(図3参照)とが一体となった濃度センサ62が用いられる。 As shown in FIG. 4, the analysis unit 60 according to Modification 1 differs from the above embodiment in the configuration of the concentration sensor 62 . Specifically, in Modification 1, a density sensor 62 is used in which a light projecting portion 62a (see FIG. 3) and a light receiving portion 62b (see FIG. 3) are integrated.
 また、この濃度センサ62と向かい合うように、液受け部61における被測定部65の反対側にミラー66が設けられる。かかるミラー66は、濃度センサ62から照射される赤外光IRを、かかる濃度センサ62に反射させる。 Also, a mirror 66 is provided on the opposite side of the measured portion 65 in the liquid receiving portion 61 so as to face the concentration sensor 62 . The mirror 66 reflects the infrared light IR emitted from the density sensor 62 to the density sensor 62 .
 このような構成であっても、液受け部61に滞留する処理液Sを濃度センサ62で測定することにより、ウェハWの枚葉処理に用いられた処理液Sに含まれる成分の濃度を精度よく検出することができる。 Even with such a configuration, by measuring the processing liquid S staying in the liquid receiving portion 61 with the concentration sensor 62, the concentration of the components contained in the processing liquid S used for the single-wafer processing of the wafer W can be accurately determined. can be detected well.
 また、変形例1では、濃度センサ62とミラー66との間の距離の2倍の長さの測定長Lを取ることができる。すなわち、変形例1では、液受け部61のサイズを小さくしたとしても、測定長Lを十分に取ることができる。 Also, in Modification 1, the measurement length L, which is twice the distance between the density sensor 62 and the mirror 66, can be taken. That is, in Modification 1, even if the size of the liquid receiving portion 61 is reduced, a sufficient measurement length L can be obtained.
 したがって、実施形態によれば、回収カップ50内の余剰スペースが小さい処理ユニット16であっても、分析部60を問題無く設置することができる。 Therefore, according to the embodiment, even in the processing unit 16 with a small excess space in the collection cup 50, the analysis section 60 can be installed without any problem.
<変形例2>
 図5は、実施形態の変形例2に係る分析部60の構成の一例を示す図である。図5に示すように、変形例2に係る分析部60は、液受け部61の構成が上記の実施形態と異なる。具体的には、変形例2では、液受け部61の底部に排出口64が複数(図では2つ)設けられる。
<Modification 2>
FIG. 5 is a diagram showing an example of the configuration of the analysis unit 60 according to Modification 2 of the embodiment. As shown in FIG. 5, the analyzing section 60 according to Modification 2 differs from the above-described embodiment in the configuration of the liquid receiving section 61 . Specifically, in Modification 2, a plurality of discharge ports 64 (two in the figure) are provided at the bottom of the liquid receiving portion 61 .
 これにより、液受け部61で受けた処理液Sが被測定部65で澱まないように、さらに円滑に外部に流れるようにすることができる。したがって、変形例2によれば、ウェハWの枚葉処理において、かかるウェハWから流れ出る処理液Sの成分濃度の時間経過を円滑に検出することができる。 As a result, the processing liquid S received by the liquid receiving portion 61 can be prevented from stagnation in the portion 65 to be measured, and can be made to flow to the outside more smoothly. Therefore, according to Modification 2, in the single-wafer processing of wafers W, it is possible to smoothly detect the passage of time in the component concentrations of the processing liquid S flowing out from the wafers W. FIG.
 なお、図5の例では、液受け部61に排出口64が2つ設けられる例について示したが、本開示はかかる例に限られず、液受け部61に排出口64が3つ以上設けられてもよい。 Although the example of FIG. 5 shows an example in which two discharge ports 64 are provided in the liquid receiving portion 61, the present disclosure is not limited to such an example, and three or more discharge ports 64 are provided in the liquid receiving portion 61. may
<変形例3>
 図6は、実施形態の変形例3に係る分析部60の構成の一例を示す図である。図6に示すように、変形例3に係る分析部60は、液受け部61の配置および構成が上記の実施形態と異なる。具体的には、変形例3では、液受け部61が回収カップ50よりも外側に、かつ回収カップ50と一体となって設けられる。
<Modification 3>
FIG. 6 is a diagram showing an example of the configuration of the analysis unit 60 according to Modification 3 of the embodiment. As shown in FIG. 6, the analysis unit 60 according to Modification 3 differs from the above embodiment in the arrangement and configuration of the liquid receiver 61 . Specifically, in Modification 3, the liquid receiver 61 is provided outside the recovery cup 50 and integrated with the recovery cup 50 .
 具体的には、回収カップ50の側壁50aに開口部50bが形成され、かかる開口部50bと液受け部61の流入口63とが繋がっている。また、回収カップ50の側壁50aの外側に、かかる側壁50aの一部を用いて液受け部61が形成される。 Specifically, an opening 50b is formed in the side wall 50a of the collection cup 50, and the opening 50b and the inlet 63 of the liquid receiver 61 are connected. A part of the side wall 50a is used to form a liquid receiver 61 outside the side wall 50a of the recovery cup 50. As shown in FIG.
 さらに、液受け部61の排出口64に排出流路67が接続され、かかる排出流路67は回収カップ50の排液口51に繋がっている。 Furthermore, a discharge channel 67 is connected to the discharge port 64 of the liquid receiver 61 , and the discharge channel 67 is connected to the discharge port 51 of the recovery cup 50 .
 このような構成であっても、液受け部61に滞留する処理液Sを濃度センサ62(図3参照)で測定することにより、ウェハWの枚葉処理に用いられた処理液Sに含まれる成分の濃度を精度よく検出することができる。 Even with such a configuration, by measuring the concentration sensor 62 (see FIG. 3) of the processing liquid S remaining in the liquid receiving portion 61, the concentration of the processing liquid S contained in the processing liquid S used for the single-wafer processing of the wafer W can be detected. The concentration of the component can be detected with high accuracy.
 また、変形例3では、回収カップ50内に余剰スペースが無い処理ユニット16であっても、分析部60を問題無く設置することができる。 Also, in Modification 3, even in a processing unit 16 with no extra space in the collection cup 50, the analysis section 60 can be installed without any problem.
 なお、この変形例3において、液受け部61などは、着脱可能に構成されていてもよい。またこの場合、液受け部61などを取り外す際には、回収カップ50に形成される開口部50bが蓋などで塞がれるとよい。 It should be noted that in Modification 3, the liquid receiver 61 and the like may be configured to be detachable. In this case, the opening 50b formed in the recovery cup 50 should be closed with a lid or the like when removing the liquid receiver 61 and the like.
<変形例4>
 図7は、実施形態の変形例4に係る処理ユニット16の具体的な構成の一例を示す模式図である。図7に示すように、変形例4では、分析部60の配置が上記の実施形態と異なる。具体的には、変形例4では、分析部60が回収カップ50の内部ではなく、回収カップ50の排液口51に接続される排出流路53に設けられる。
<Modification 4>
FIG. 7 is a schematic diagram showing an example of a specific configuration of the processing unit 16 according to Modification 4 of the embodiment. As shown in FIG. 7, in modification 4, the arrangement of the analysis unit 60 is different from that in the above embodiment. Specifically, in Modification 4, the analysis unit 60 is provided in the discharge channel 53 connected to the discharge port 51 of the collection cup 50 instead of inside the collection cup 50 .
 そして、変形例4では、回収カップ50によって捕集され、排液口51から排出流路53に流れ出た処理液S(図3参照)を、液受け部61(図3参照)で受ける。さらに、かかる液受け部61で受けた処理液Sに含まれる成分の濃度を、濃度センサ62(図3参照)で検出する。 Then, in Modification 4, the treatment liquid S (see FIG. 3) that has been collected by the collection cup 50 and flowed out from the drain port 51 to the discharge channel 53 is received by the liquid receiver 61 (see FIG. 3). Furthermore, the concentration of the components contained in the treatment liquid S received by the liquid receiving portion 61 is detected by a concentration sensor 62 (see FIG. 3).
 このような構成であっても、制御部18(図1参照)は、ウェハWの枚葉処理に用いられた処理液Sに含まれる成分の濃度を精度よく検出することができる。 Even with such a configuration, the control unit 18 (see FIG. 1) can accurately detect the concentration of the components contained in the processing liquid S used for the single-wafer processing of the wafers W.
 また、変形例4では、回収カップ50内に余剰スペースが無い処理ユニット16であっても、分析部60を問題無く設置することができる。 Also, in Modification 4, even in a processing unit 16 with no extra space in the collection cup 50, the analysis section 60 can be installed without any problem.
<変形例5>
 図8は、実施形態の変形例5に係る処理ユニット16の具体的な構成の一例を示す模式図である。図8に示すように、変形例5では、分析部60の配置および構成が上記の実施形態と異なる。
<Modification 5>
FIG. 8 is a schematic diagram showing an example of a specific configuration of the processing unit 16 according to Modification 5 of the embodiment. As shown in FIG. 8, in modification 5, the arrangement and configuration of the analysis unit 60 are different from those of the above embodiment.
 具体的には、変形例5では、分析部60の液受け部61が回収カップ50の内部ではなく、回収カップ50の排液口51に接続される排出流路53に設けられる。また、かかる液受け部61には、送液管68が接続される。 Specifically, in Modification 5, the liquid receiver 61 of the analysis unit 60 is provided in the discharge channel 53 connected to the drain port 51 of the recovery cup 50 instead of inside the recovery cup 50 . A liquid sending pipe 68 is connected to the liquid receiving portion 61 .
 送液管68は、液受け部61とは異なる場所に設けられる被測定部69に繋がっており、液受け部61で受けた処理液Sを液受け部61から被測定部69に送液する。そして、分析部60は、被測定部69に送液された処理液Sに含まれる成分の濃度を、濃度センサ62で検出する。 The liquid feeding pipe 68 is connected to a measured portion 69 provided at a location different from the liquid receiving portion 61, and feeds the treatment liquid S received by the liquid receiving portion 61 from the liquid receiving portion 61 to the measured portion 69. . Then, the analysis unit 60 uses the concentration sensor 62 to detect the concentration of the components contained in the treatment liquid S sent to the measurement target unit 69 .
 このような構成であっても、制御部18(図1参照)は、ウェハWの枚葉処理に用いられた処理液Sに含まれる成分の濃度を精度よく検出することができる。 Even with such a configuration, the control unit 18 (see FIG. 1) can accurately detect the concentration of the components contained in the processing liquid S used for the single-wafer processing of the wafers W.
 また、変形例5では、回収カップ50内に余剰スペースが無く、かつ排出流路53の周囲の余剰スペースが小さい処理ユニット16であっても、分析部60を問題無く設置することができる。 Further, in Modification 5, even in a processing unit 16 in which there is no surplus space in the collection cup 50 and the surplus space around the discharge channel 53 is small, the analysis section 60 can be installed without any problem.
<変形例6>
 図9は、実施形態の変形例6に係る処理ユニット16の具体的な構成の一例を示す模式図である。図9に示すように、変形例6では、液受け部61の配置が上記の変形例5と異なる。
<Modification 6>
FIG. 9 is a schematic diagram showing an example of a specific configuration of the processing unit 16 according to Modification 6 of the embodiment. As shown in FIG. 9, in Modification 6, the arrangement of the liquid receiver 61 is different from that in Modification 5 described above.
 具体的には、変形例6では、分析部60の液受け部61が排出流路53(図8参照)ではなく、回収カップ50の内部に設けられる。また、かかる液受け部61には、送液管68が接続される。 Specifically, in modification 6, the liquid receiver 61 of the analysis unit 60 is provided inside the collection cup 50 instead of the discharge channel 53 (see FIG. 8). A liquid sending pipe 68 is connected to the liquid receiving portion 61 .
 送液管68は、液受け部61とは異なる場所に設けられる被測定部69に繋がっており、液受け部61で受けた処理液Sを液受け部61から被測定部69に送液する。そして、分析部60は、被測定部69に送液された処理液Sに含まれる成分の濃度を、濃度センサ62で検出する。 The liquid feeding pipe 68 is connected to a measured portion 69 provided at a location different from the liquid receiving portion 61, and feeds the treatment liquid S received by the liquid receiving portion 61 from the liquid receiving portion 61 to the measured portion 69. . Then, the analysis unit 60 uses the concentration sensor 62 to detect the concentration of the components contained in the treatment liquid S sent to the measurement target unit 69 .
 このような構成であっても、制御部18(図1参照)は、ウェハWの枚葉処理に用いられた処理液Sに含まれる成分の濃度を精度よく検出することができる。 Even with such a configuration, the control unit 18 (see FIG. 1) can accurately detect the concentration of the components contained in the processing liquid S used for the single-wafer processing of the wafers W.
 また、変形例6では、回収カップ50内の余剰スペースが小さい処理ユニット16であっても、分析部60を問題無く設置することができる。 Further, in Modification 6, even in the processing unit 16 with a small surplus space in the collection cup 50, the analysis section 60 can be installed without any problem.
<変形例7>
 図10~図12は、実施形態の変形例7に係る処理ユニット16の具体的な構成および動作の一例を示す模式図である。図10に示すように、変形例7では、回収カップ50の構成が上記の実施形態と異なる。
<Modification 7>
10 to 12 are schematic diagrams showing an example of the specific configuration and operation of the processing unit 16 according to Modification 7 of the embodiment. As shown in FIG. 10, in modification 7, the configuration of the collection cup 50 is different from that of the above embodiment.
 具体的には、変形例7に係る回収カップ50は、第1回収カップ80と、第2回収カップ90と、第3回収カップ100とを有する。第1回収カップ80は、最も外側に設けられる回収カップであり、第3回収カップ100は、最も内側に設けられる回収カップであり、第2回収カップ90は、第1回収カップ80と第3回収カップ100との間に設けられる回収カップである。 Specifically, the recovery cup 50 according to Modification 7 has a first recovery cup 80 , a second recovery cup 90 and a third recovery cup 100 . The first recovery cup 80 is the outermost recovery cup, the third recovery cup 100 is the innermost recovery cup, and the second recovery cup 90 is the first recovery cup 80 and the third recovery cup. This is a collection cup provided between the cup 100 and the cup 100 .
 第2回収カップ90は、昇降カップ91と、固定カップ92と、昇降ロッド93と、庇部94とを有する。昇降カップ91は、下部が円筒形状であり、上部が上方に進むにしたがい内側にすぼむ半円錐形状を有する。 The second recovery cup 90 has an elevating cup 91 , a fixed cup 92 , an elevating rod 93 and an eaves portion 94 . The elevating cup 91 has a cylindrical lower portion and a semi-conical upper portion that tapers inward as it goes upward.
 固定カップ92は、昇降カップ91の下方に設けられる略円筒形状の部位である。かかる固定カップ92と昇降カップ91とで、回転するウェハWから飛散する処理液Sを受けるカップ体が形成される。また、昇降カップ91と固定カップ92とは、昇降カップ91が上昇した際にもカップ体が維持できるように、一部が重畳して配置される。 The fixed cup 92 is a substantially cylindrical portion provided below the elevating cup 91 . The fixed cup 92 and the elevating cup 91 form a cup body that receives the processing liquid S scattered from the rotating wafer W. As shown in FIG. Further, the elevating cup 91 and the fixed cup 92 are partially overlapped so that the cup body can be maintained even when the elevating cup 91 is raised.
 昇降ロッド93は、固定カップ92の内部に埋め込まれるように、昇降カップ91の下方に設けられる。昇降ロッド93は、たとえば磁力によって昇降カップ91と接続され、かかる昇降カップ91と一体的に昇降する。 The elevating rod 93 is provided below the elevating cup 91 so as to be embedded inside the fixed cup 92 . The elevating rod 93 is connected to the elevating cup 91 by magnetic force, for example, and moves up and down integrally with the elevating cup 91 .
 庇部94は、固定カップ92に設けられ、かかる固定カップ92の内部で貫通するように形成される排気口52の開口部を上方から覆う。これにより、回収カップ50で回収される処理液Sが排気口52に流入することを抑制することができる。 The eaves portion 94 is provided on the fixed cup 92 and covers from above the opening of the exhaust port 52 that is formed to penetrate inside the fixed cup 92 . As a result, it is possible to suppress the processing liquid S recovered in the recovery cup 50 from flowing into the exhaust port 52 .
 第3回収カップ100は、昇降カップ101と、固定カップ102と、昇降ロッド103と、庇部104とを有する。昇降カップ101は、下部が円筒形状であり、上部が上方に進むにしたがい内側にすぼむ半円錐形状を有する。 The third collection cup 100 has an elevating cup 101 , a fixed cup 102 , an elevating rod 103 and an eaves portion 104 . The elevating cup 101 has a cylindrical lower portion and a semi-conical upper portion that tapers inward as it goes upward.
 固定カップ102は、昇降カップ101の下方に設けられる略円筒形状の部位である。かかる固定カップ102と昇降カップ101とで、回転するウェハWから飛散する処理液Sを受けるカップ体が形成される。また、昇降カップ101と固定カップ102とは、昇降カップ101が上昇した際にもカップ体が維持できるように、一部が重畳して配置される。 The fixed cup 102 is a substantially cylindrical portion provided below the elevating cup 101 . The fixed cup 102 and the elevating cup 101 form a cup body that receives the processing liquid S scattered from the rotating wafer W. As shown in FIG. The elevating cup 101 and the fixed cup 102 are partially overlapped so that the cup body can be maintained even when the elevating cup 101 is raised.
 昇降ロッド103は、固定カップ102の内部に埋め込まれるように、昇降カップ101の下方に設けられる。昇降ロッド103は、たとえば磁力によって昇降カップ101と接続され、かかる昇降カップ101と一体的に昇降する。 The elevating rod 103 is provided below the elevating cup 101 so as to be embedded inside the fixed cup 102 . The elevating rod 103 is connected to the elevating cup 101 by magnetic force, for example, and moves up and down integrally with the elevating cup 101 .
 庇部104は、固定カップ102に設けられ、かかる固定カップ102の内部で貫通するように形成される排気口52の開口部を上方から覆う。これにより、第3回収カップ100で回収される処理液Sが排気口52に流入することを抑制することができる。 The eaves portion 104 is provided on the fixed cup 102 and covers from above the opening of the exhaust port 52 that is formed to penetrate inside the fixed cup 102 . Thereby, it is possible to suppress the processing liquid S recovered in the third recovery cup 100 from flowing into the exhaust port 52 .
 図10の例では、ノズル41aからウェハWにDHFが供給される場合に、第2回収カップ90の昇降カップ91と、第3回収カップ100の昇降カップ101とが、いずれも所与の下降位置に配置される。 In the example of FIG. 10, when DHF is supplied from the nozzle 41a to the wafer W, the elevating cup 91 of the second collection cup 90 and the elevating cup 101 of the third collection cup 100 are both at a given lowered position. placed in
 そのため、回転するウェハWから飛散する処理液Sは、第1回収カップ80と第2回収カップ90との間に形成される空間G1に流れ込む。そして、かかる空間G1の下流側に形成される排液口51Aから処理液Sが外部に排出される。 Therefore, the processing liquid S scattered from the rotating wafer W flows into the space G1 formed between the first recovery cup 80 and the second recovery cup 90 . Then, the treatment liquid S is discharged to the outside from a drain port 51A formed on the downstream side of the space G1.
 ここで、変形例7では、第1回収カップ80と第2回収カップ90との間に形成される空間G1に、分析部60Aが配置される。これにより、ノズル41aからウェハWにDHFが供給される液処理において、処理液Sに含まれる成分の濃度を検出することができる。 Here, in Modified Example 7, the analysis section 60A is arranged in the space G1 formed between the first collection cup 80 and the second collection cup 90. Thereby, in liquid processing in which DHF is supplied to the wafer W from the nozzle 41a, the concentration of the component contained in the processing liquid S can be detected.
 そして、変形例7では、回収カップ50を動作させることにより、処理液Sを排液口51Aとは異なる排液口に排出することができる。たとえば、図11に示すように、ノズル41cからウェハWにDIWが供給される場合に、制御部18(図1参照)は、昇降カップ91および昇降ロッド93を所与の上昇位置に移動させる。 Further, in the seventh modification, by operating the collection cup 50, the treatment liquid S can be discharged to a liquid drain port different from the liquid drain port 51A. For example, as shown in FIG. 11, when DIW is supplied from the nozzle 41c to the wafer W, the controller 18 (see FIG. 1) moves the elevating cup 91 and the elevating rod 93 to a given elevated position.
 これにより、回転するウェハWから飛散する処理液Sは、第2回収カップ90と第3回収カップ100との間に形成される空間G2に流れ込む。そして、かかる空間G2の下流側に形成される排液口51Bから処理液Sが外部に排出される。 As a result, the processing liquid S scattered from the rotating wafer W flows into the space G2 formed between the second recovery cup 90 and the third recovery cup 100 . Then, the treatment liquid S is discharged to the outside from a drain port 51B formed on the downstream side of the space G2.
 ここで、変形例7では、第2回収カップ90と第3回収カップ100との間に形成される空間G2に、分析部60Bが配置される。これにより、ノズル41cからウェハWにDIWが供給される液処理において、処理液Sに含まれる成分の濃度を検出することができる。 Here, in Modified Example 7, the analysis section 60B is arranged in the space G2 formed between the second collection cup 90 and the third collection cup 100. Accordingly, in liquid processing in which DIW is supplied to the wafer W from the nozzle 41c, the concentration of the component contained in the processing liquid S can be detected.
 さらに、変形例7では、図12に示すように、ノズル41bからウェハWにIPAが供給される場合に、制御部18(図1参照)が、昇降カップ91および昇降ロッド93に加えて、昇降カップ101および昇降ロッド103も所与の上昇位置に移動させる。 Furthermore, in Modified Example 7, as shown in FIG. 12, when IPA is supplied from the nozzle 41b to the wafer W, the controller 18 (see FIG. 1) controls the lift cup 91 and the lift rod 93 as well as the lift cup 91 and the lift rod 93. The cup 101 and lift rod 103 are also moved to a given raised position.
 これにより、回転するウェハWから飛散する処理液Sは、第3回収カップ100とかかる第3回収カップ100の内側に位置する内壁部110との間に形成される空間G3に流れ込む。そして、かかる空間G3の下流側に形成される排液口51Cから処理液Sが外部に排出される。 As a result, the processing liquid S scattered from the rotating wafer W flows into the space G3 formed between the third recovery cup 100 and the inner wall portion 110 positioned inside the third recovery cup 100. Then, the treatment liquid S is discharged to the outside from a drain port 51C formed on the downstream side of the space G3.
 ここで、変形例7では、第3回収カップ100と内壁部110との間に形成される空間G3に、分析部60Cが配置される。これにより、ノズル41bからウェハWにIPAが供給される液処理において、処理液Sに含まれる成分の濃度を検出することができる。 Here, in Modified Example 7, the analysis section 60C is arranged in the space G3 formed between the third collection cup 100 and the inner wall section 110 . Thereby, in liquid processing in which IPA is supplied to the wafer W from the nozzle 41b, the concentration of the component contained in the processing liquid S can be detected.
 ここまで説明したように、変形例7では、処理ユニット16にウェハWから飛散する処理液Sを受ける回収カップが複数(ここでは、第1回収カップ80、第2回収カップ90および第3回収カップ100)設けられる。そして、分析部60は、これらの回収カップごとに複数設けられる。 As described above, in the seventh modification, the processing unit 16 has a plurality of recovery cups (here, the first recovery cup 80, the second recovery cup 90, and the third recovery cup) that receive the processing liquid S scattered from the wafer W. 100) provided. A plurality of analysis units 60 are provided for each of these collection cups.
 これにより、複数種類の薬液ごとに回収カップが複数設けられる処理ユニット16において、すべての液処理で処理液Sに含まれる成分の濃度を検出することができる。 Thereby, in the processing unit 16 in which a plurality of recovery cups are provided for each of a plurality of types of chemical liquids, it is possible to detect the concentration of the components contained in the processing liquid S in all the liquid processing.
 なお、図10~図12の例では、第1回収カップ80、第2回収カップ90および第3回収カップ100の内側にそれぞれ複数の分析部60(分析部60A、60B、60C)が設けられる例について示したが、本開示はかかる例に限られない。 10 to 12 are examples in which a plurality of analysis units 60 ( analysis units 60A, 60B, 60C) are provided inside the first collection cup 80, the second collection cup 90, and the third collection cup 100, respectively. , the disclosure is not limited to such examples.
 たとえば、第1回収カップ80、第2回収カップ90および第3回収カップ100にそれぞれ接続される排液口51A、51B、51Cの下流側(すなわち、排出流路)に、それぞれ複数の分析部60(分析部60A、60B、60C)が設けられてもよい。 For example, a plurality of analysis units 60 are provided downstream (i.e., discharge channels) of the drain ports 51A, 51B, and 51C connected to the first recovery cup 80, the second recovery cup 90, and the third recovery cup 100, respectively. ( Analysis units 60A, 60B, 60C) may be provided.
 また、第1回収カップ80、第2回収カップ90および第3回収カップ100の内側にそれぞれ複数の液受け部61が設けられ、それぞれの液受け部61から別の場所に設けられる被測定部69に処理液Sが送液されてもよい(すなわち、図9の例と同様の構成)。 A plurality of liquid receivers 61 are provided inside the first recovery cup 80, the second recovery cup 90, and the third recovery cup 100, respectively. (that is, the same configuration as in the example of FIG. 9).
 また、排液口51A、51B、51Cの下流側にそれぞれ複数の液受け部61が設けられ、それぞれの液受け部61から別の場所に設けられる被測定部69に処理液Sが送液されてもよい(すなわち、図8の例と同様の構成)。 Further, a plurality of liquid receivers 61 are provided downstream of the liquid drain ports 51A, 51B, and 51C, respectively, and the treatment liquid S is sent from each of the liquid receivers 61 to a measurement target 69 provided at a different location. (ie a configuration similar to the example of FIG. 8).
 また、図10~図12の例では、1つの処理ユニット16内に3つの回収カップ(第1回収カップ80、第2回収カップ90および第3回収カップ100)が設けられる例について示したが、本開示はかかる例に限られない。たとえば、1つの処理ユニット16内に2つの回収カップが設けられてもよいし、1つの処理ユニット16内に4つ以上の回収カップが設けられてもよい。 10 to 12 show examples in which three recovery cups (first recovery cup 80, second recovery cup 90 and third recovery cup 100) are provided in one processing unit 16, The present disclosure is not limited to such examples. For example, two recovery cups may be provided within one processing unit 16, or four or more recovery cups may be provided within one processing unit 16. FIG.
<変形例8>
 図13は、実施形態の変形例8に係る処理ユニット16の具体的な構成の一例を示す模式図である。図13に示すように、変形例8では、上記の実施形態で説明した分析部60に加えて、ウェハW表面の処理液S(図3参照)の成分濃度を検出する別の濃度センサ62Aが設けられる。
<Modification 8>
FIG. 13 is a schematic diagram showing an example of a specific configuration of the processing unit 16 according to Modification 8 of the embodiment. As shown in FIG. 13, in Modification 8, in addition to the analysis unit 60 described in the above embodiment, another concentration sensor 62A for detecting the component concentration of the processing liquid S (see FIG. 3) on the surface of the wafer W is provided. be provided.
 かかる濃度センサ62Aは、投光部62a(図3参照)と受光部62b(図3参照)とが一体となっており、保持部31に保持されるウェハWの上方に配置される。かかる濃度センサ62Aは、たとえば、アーム42aまたはアーム42b(図ではアーム42b)に支持される。 The density sensor 62A is formed by integrating a light projecting section 62a (see FIG. 3) and a light receiving section 62b (see FIG. 3), and is arranged above the wafer W held by the holding section 31. FIG. Such density sensor 62A is supported by, for example, arm 42a or arm 42b (arm 42b in the figure).
 そして、濃度センサ62Aは、シリコンで構成されるウェハWの表面で赤外光IRを反射させることにより、ウェハW表面の処理液Sの成分濃度を検出する。 The concentration sensor 62A detects the component concentration of the processing liquid S on the surface of the wafer W by reflecting the infrared light IR on the surface of the wafer W made of silicon.
 ここで、変形例8では、制御部18(図1参照)が、分析部60に設けられる濃度センサ62(図3参照)による成分濃度の検出結果と、濃度センサ62Aによる成分濃度の検出結果とに基づいて、液処理の終点を判定するとよい。これにより、液処理の終点を精度よく判定することができる。 Here, in Modification 8, the control unit 18 (see FIG. 1) detects the component concentration detection result by the concentration sensor 62 (see FIG. 3) provided in the analysis unit 60 and the component concentration detection result by the concentration sensor 62A. Based on, it is preferable to determine the end point of the liquid treatment. This makes it possible to accurately determine the end point of liquid processing.
 実施形態に係る基板処理装置(基板処理システム1)は、保持部31と、液供給部40と、分析部60と、を備える。保持部31は、基板(ウェハW)を保持して回転させる。液供給部40は、基板(ウェハW)に処理液Sを供給する。分析部60は、処理液Sを分析する。また、分析部60は、液受け部61と、濃度センサ62と、を有する。液受け部61は、基板(ウェハW)から流れ出る処理液Sを受ける。濃度センサ62は、液受け部61内に滞留する処理液Sに含まれる成分の濃度を検出する。これにより、ウェハWの枚葉処理に用いられた処理液Sに含まれる成分の濃度を精度よく検出することができる。 The substrate processing apparatus (substrate processing system 1) according to the embodiment includes a holding section 31, a liquid supply section 40, and an analysis section 60. The holding unit 31 holds and rotates the substrate (wafer W). The liquid supply unit 40 supplies the processing liquid S to the substrate (wafer W). The analysis unit 60 analyzes the treatment liquid S. As shown in FIG. The analysis section 60 also has a liquid receiving section 61 and a concentration sensor 62 . The liquid receiver 61 receives the processing liquid S flowing out from the substrate (wafer W). The concentration sensor 62 detects the concentration of components contained in the processing liquid S staying in the liquid receiving portion 61 . As a result, the concentrations of the components contained in the processing liquid S used for single-wafer processing of the wafers W can be accurately detected.
 また、実施形態に係る基板処理装置(基板処理システム1)において、液受け部61は、流入口63と、排出口64と、被測定部65と、を有する。流入口63は、基板(ウェハW)から流れ出る処理液Sが流入する。排出口64は、流入口63よりも低い位置に配置され、内部に滞留する処理液Sを排出する。被測定部65は、流入口63よりも低く、かつ排出口64よりも高い位置に配置され、濃度センサ62によって処理液Sが測定される。これにより、ウェハWの枚葉処理において、かかるウェハWから流れ出る処理液Sの成分濃度の時間経過を連続的に検出することができる。 In addition, in the substrate processing apparatus (substrate processing system 1) according to the embodiment, the liquid receiving portion 61 has an inlet 63, an outlet 64, and a portion 65 to be measured. The processing liquid S flowing out from the substrate (wafer W) flows into the inflow port 63 . The discharge port 64 is arranged at a position lower than the inflow port 63 and discharges the processing liquid S staying inside. The measured portion 65 is arranged at a position lower than the inlet 63 and higher than the outlet 64 , and the processing liquid S is measured by the concentration sensor 62 . As a result, in single-wafer processing of wafers W, it is possible to continuously detect the passage of time in the component concentrations of the processing liquid S flowing out of the wafers W. FIG.
 また、実施形態に係る基板処理装置(基板処理システム1)において、基板(ウェハW)の液処理時において被測定部65に処理液Sが常時滞留するように、流入口63および排出口64の大きさが設定される。これにより、ウェハWの液処理の最初から最後まで、処理液Sの成分濃度の時間経過を連続的に検出することができる。 Further, in the substrate processing apparatus (substrate processing system 1) according to the embodiment, the inflow port 63 and the discharge port 64 are arranged so that the processing liquid S always stays in the measured portion 65 during liquid processing of the substrate (wafer W). size is set. As a result, from the beginning to the end of the liquid processing of the wafer W, the passage of time in the component concentration of the processing liquid S can be continuously detected.
 また、実施形態に係る基板処理装置(基板処理システム1)において、排出口64は、液受け部61に複数設けられる。これにより、ウェハWの枚葉処理において、かかるウェハWから流れ出る処理液Sの成分濃度の時間経過を円滑に検出することができる。 Also, in the substrate processing apparatus (substrate processing system 1 ) according to the embodiment, a plurality of discharge ports 64 are provided in the liquid receiver 61 . As a result, in single-wafer processing of wafers W, it is possible to smoothly detect the passage of time in the component concentrations of the processing liquid S flowing out from the wafers W. FIG.
 また、実施形態に係る基板処理装置(基板処理システム1)は、基板(ウェハW)から飛散する処理液Sを受ける回収カップ50、を備える。また、液受け部61は、回収カップ50の外側に設けられる。これにより、回収カップ50内に余剰スペースが無い処理ユニット16であっても、分析部60を問題無く設置することができる。 The substrate processing apparatus (substrate processing system 1) according to the embodiment also includes a collection cup 50 that receives the processing liquid S scattered from the substrate (wafer W). Also, the liquid receiver 61 is provided outside the recovery cup 50 . As a result, even if the processing unit 16 has no extra space in the collection cup 50, the analysis section 60 can be installed without any problem.
 また、実施形態に係る基板処理装置(基板処理システム1)は、保持部31と、液供給部40と、分析部60と、を備える。保持部31は、基板(ウェハW)を保持して回転させる。液供給部40は、基板(ウェハW)に処理液Sを供給する。分析部60は、処理液Sを分析する。また、分析部60は、液受け部61と、送液管68と、濃度センサ62と、を有する。液受け部61は、基板(ウェハW)から流れ出る処理液Sを受ける。送液管68は、液受け部61から被測定部69まで処理液Sを送液する。濃度センサ62は、被測定部69において処理液Sに含まれる成分の濃度を検出する。これにより、ウェハWの枚葉処理に用いられた処理液Sに含まれる成分の濃度を精度よく検出することができる。 Further, the substrate processing apparatus (substrate processing system 1 ) according to the embodiment includes a holding section 31 , a liquid supply section 40 and an analysis section 60 . The holding unit 31 holds and rotates the substrate (wafer W). The liquid supply unit 40 supplies the processing liquid S to the substrate (wafer W). The analysis unit 60 analyzes the treatment liquid S. As shown in FIG. The analysis unit 60 also has a liquid receiver 61 , a liquid feed pipe 68 , and a concentration sensor 62 . The liquid receiver 61 receives the processing liquid S flowing out from the substrate (wafer W). The liquid feeding pipe 68 feeds the processing liquid S from the liquid receiving portion 61 to the measured portion 69 . The concentration sensor 62 detects the concentration of the components contained in the treatment liquid S in the portion 69 to be measured. As a result, the concentrations of the components contained in the processing liquid S used for single-wafer processing of the wafers W can be accurately detected.
 また、実施形態に係る基板処理装置(基板処理システム1)は、基板(ウェハW)から飛散する処理液Sを受ける回収カップ50、を備える。また、液受け部61は、回収カップ50内に設けられる。これにより、ウェハWの枚葉処理に用いられた処理液Sに含まれる成分の濃度を精度よく検出することができる。 The substrate processing apparatus (substrate processing system 1) according to the embodiment also includes a collection cup 50 that receives the processing liquid S scattered from the substrate (wafer W). Further, the liquid receiver 61 is provided inside the recovery cup 50 . As a result, the concentrations of the components contained in the processing liquid S used for single-wafer processing of the wafers W can be accurately detected.
 また、実施形態に係る基板処理装置(基板処理システム1)は、基板(ウェハW)から飛散する処理液Sを受ける回収カップ50と、回収カップ50から処理液Sを排出する排出流路53と、を備える。また、液受け部61は、排出流路53に設けられる。これにより、回収カップ50内に余剰スペースが無い処理ユニット16であっても、分析部60を問題無く設置することができる。 Further, the substrate processing apparatus (substrate processing system 1) according to the embodiment includes a collection cup 50 for receiving the processing liquid S scattered from the substrate (wafer W), and a discharge channel 53 for discharging the processing liquid S from the collection cup 50. , provided. Also, the liquid receiver 61 is provided in the discharge flow path 53 . As a result, even if the processing unit 16 has no extra space in the collection cup 50, the analysis section 60 can be installed without any problem.
 また、実施形態に係る基板処理装置(基板処理システム1)は、基板(ウェハW)から飛散する処理液Sを受ける回収カップを複数(第1回収カップ80、第2回収カップ90および第3回収カップ100)備える。また、液受け部61は、回収カップ(第1回収カップ80、第2回収カップ90および第3回収カップ100)ごとに複数設けられる。これにより、複数種類の薬液ごとに回収カップが複数設けられる処理ユニット16において、すべての液処理で処理液Sに含まれる成分の濃度を検出することができる。 Further, the substrate processing apparatus (substrate processing system 1) according to the embodiment includes a plurality of recovery cups (first recovery cup 80, second recovery cup 90, and third recovery cup 80) for receiving the processing liquid S scattered from the substrate (wafer W). cup 100). A plurality of liquid receivers 61 are provided for each recovery cup (first recovery cup 80, second recovery cup 90, and third recovery cup 100). As a result, in the processing unit 16 in which a plurality of recovery cups are provided for each of a plurality of types of chemical liquids, the concentrations of the components contained in the processing liquid S can be detected in all the liquid processing.
 また、実施形態に係る基板処理装置(基板処理システム1)において、濃度センサ62は、赤外分光法によって成分の濃度を検出する。これにより、ウェハWから流れ出る処理液Sに含まれる成分の濃度を精度よくかつ簡便に検出することができる。 Also, in the substrate processing apparatus (substrate processing system 1) according to the embodiment, the concentration sensor 62 detects the concentration of the component by infrared spectroscopy. As a result, the concentration of the component contained in the processing liquid S flowing out from the wafer W can be detected accurately and easily.
 また、実施形態に係る基板処理装置(基板処理システム1)において、濃度センサ62は、導電率計によって成分の濃度を検出する。これにより、ウェハWから流れ出る処理液Sに含まれる成分の濃度を精度よく検出することができる。 In addition, in the substrate processing apparatus (substrate processing system 1) according to the embodiment, the concentration sensor 62 detects the concentration of the component using a conductivity meter. Thereby, the concentration of the component contained in the processing liquid S flowing out from the wafer W can be detected with high accuracy.
 また、実施形態に係る基板処理方法は、上記の基板処理装置(基板処理システム1)において、基板(ウェハW)上の処理液を異なる処理液に置換する処理において、処理の設定時間を濃度センサ62の測定値に基づいて決定する決定処理、を含む。これにより、液処理のランニングコストを低減することができる。 Further, in the substrate processing apparatus (substrate processing system 1) described above, the substrate processing method according to the embodiment is configured such that, in the processing of replacing the processing liquid on the substrate (wafer W) with a different processing liquid, the set time of the processing is set by the concentration sensor. a decision process that determines based on the 62 measurements. As a result, the running cost of liquid processing can be reduced.
 また、実施形態に係る基板処理方法は、上記の基板処理装置(基板処理システム1)において、判定処理と、報知処理とを含む。判定処理は、濃度センサ62の測定値に基づいて、液処理が正常に完了しているか否かを判定する。報知処理は、液処理が正常に完了していない場合に、外部にアラームを出力する。これにより、ウェハWの液処理を安定して実施することができる。 Further, the substrate processing method according to the embodiment includes determination processing and notification processing in the above-described substrate processing apparatus (substrate processing system 1). In the determination process, based on the measured value of the concentration sensor 62, it is determined whether or not the liquid processing has been completed normally. The notification process outputs an alarm to the outside when the liquid process is not completed normally. Thereby, the liquid processing of the wafer W can be stably performed.
 また、実施形態に係る基板処理方法において、液処理が正常に完了していない場合に、かかる液処理の対象であった基板(ウェハW)をレスキューレシピによって救出する救出処理をさらに含む。これにより、ウェハWの歩留まりを向上させることができる。 In addition, the substrate processing method according to the embodiment further includes a rescue process of rescuing the substrate (wafer W) that has been subject to the liquid processing using a rescue recipe when the liquid processing has not been completed normally. Thereby, the yield of the wafer W can be improved.
 以上、本開示の実施形態について説明したが、本開示は上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて種々の変更が可能である。 Although the embodiments of the present disclosure have been described above, the present disclosure is not limited to the above embodiments, and various modifications are possible without departing from the gist thereof.
 今回開示された実施形態は全ての点で例示であって制限的なものではないと考えられるべきである。実に、上記した実施形態は多様な形態で具現され得る。また、上記の実施形態は、添付の請求の範囲及びその趣旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。 The embodiments disclosed this time should be considered illustrative in all respects and not restrictive. Indeed, the above-described embodiments may be embodied in many different forms. Also, the above-described embodiments may be omitted, substituted, or modified in various ways without departing from the scope and spirit of the appended claims.
 W   ウェハ(基板の一例)
 1   基板処理システム(基板処理装置の一例)
 16  処理ユニット
 31  保持部
 40  液供給部
 50  回収カップ
 53  排出流路
 60  分析部
 61  液受け部
 62  濃度センサ
 63  流入口
 64  排出口
 65  被測定部
 68  送液管
 69  被測定部
 80  第1回収カップ
 90  第2回収カップ
 100 第3回収カップ
 S   処理液
W Wafer (an example of a substrate)
1 Substrate processing system (an example of a substrate processing apparatus)
16 processing unit 31 holding part 40 liquid supply part 50 recovery cup 53 discharge channel 60 analysis part 61 liquid receiving part 62 concentration sensor 63 inlet 64 outlet 65 part to be measured 68 liquid feeding pipe 69 part to be measured 80 first collection cup 90 Second collection cup 100 Third collection cup S Treatment liquid

Claims (14)

  1.  基板を保持して回転させる保持部と、
     前記基板に処理液を供給する液供給部と、
     前記処理液を分析する分析部と、
     を備え、
     前記分析部は、
     前記基板から流れ出る前記処理液を受ける液受け部と、
     前記液受け部内に滞留する前記処理液に含まれる成分の濃度を検出する濃度センサと、
     を有する基板処理装置。
    a holding unit that holds and rotates the substrate;
    a liquid supply unit that supplies a processing liquid to the substrate;
    an analysis unit that analyzes the treatment liquid;
    with
    The analysis unit
    a liquid receiver that receives the processing liquid flowing out from the substrate;
    a concentration sensor for detecting a concentration of a component contained in the processing liquid staying in the liquid receiving section;
    A substrate processing apparatus having
  2.  前記液受け部は、
     前記基板から流れ出る前記処理液が流入する流入口と、
     前記流入口よりも低い位置に配置され、内部に滞留する前記処理液を排出する排出口と、
     前記流入口よりも低く、かつ前記排出口よりも高い位置に配置され、前記濃度センサによって前記処理液が測定される被測定部と、
     を有する請求項1に記載の基板処理装置。
    The liquid receiver is
    an inlet through which the processing liquid flowing out from the substrate flows;
    a discharge port disposed at a position lower than the inflow port for discharging the processing liquid staying therein;
    a measurement target portion disposed at a position lower than the inlet and higher than the outlet, and for measuring the processing liquid by the concentration sensor;
    The substrate processing apparatus according to claim 1, comprising:
  3.  前記基板の液処理時において前記被測定部に前記処理液が常時滞留するように、前記流入口および前記排出口の大きさが設定される
     請求項2に記載の基板処理装置。
    3. The substrate processing apparatus according to claim 2, wherein sizes of said inlet and said outlet are set so that said processing liquid always stays in said portion to be measured during liquid processing of said substrate.
  4.  前記排出口は、前記液受け部に複数設けられる
     請求項2または3に記載の基板処理装置。
    4. The substrate processing apparatus according to claim 2, wherein a plurality of said discharge ports are provided in said liquid receiver.
  5.  前記基板から飛散する前記処理液を受ける回収カップ、を備え、
     前記液受け部は、
     前記回収カップの外側に設けられる
     請求項1~4のいずれか一つに記載の基板処理装置。
    a recovery cup that receives the processing liquid that scatters from the substrate;
    The liquid receiver is
    The substrate processing apparatus according to any one of claims 1 to 4, wherein the substrate processing apparatus is provided outside the recovery cup.
  6.  基板を保持して回転させる保持部と、
     前記基板に処理液を供給する液供給部と、
     前記処理液を分析する分析部と、
     を備え、
     前記分析部は、
     前記基板から流れ出る前記処理液を受ける液受け部と、
     前記液受け部から被測定部まで前記処理液を送液する送液管と、
     前記被測定部において前記処理液に含まれる成分の濃度を検出する濃度センサと、
     を有する基板処理装置。
    a holding unit that holds and rotates the substrate;
    a liquid supply unit that supplies a processing liquid to the substrate;
    an analysis unit that analyzes the treatment liquid;
    with
    The analysis unit
    a liquid receiver that receives the processing liquid flowing out from the substrate;
    a liquid feeding pipe for feeding the treatment liquid from the liquid receiving section to the measurement target section;
    a concentration sensor that detects the concentration of a component contained in the treatment liquid in the measurement target portion;
    A substrate processing apparatus having
  7.  前記基板から飛散する前記処理液を受ける回収カップ、を備え、
     前記液受け部は、前記回収カップ内に設けられる
     請求項1~6のいずれか一つに記載の基板処理装置。
    a recovery cup that receives the processing liquid that scatters from the substrate;
    The substrate processing apparatus according to any one of claims 1 to 6, wherein the liquid receiver is provided inside the recovery cup.
  8.  前記基板から飛散する前記処理液を受ける回収カップと、
     前記回収カップから前記処理液を排出する排出流路と、
     を備え、
     前記液受け部は、前記排出流路に設けられる
     請求項1~6のいずれか一つに記載の基板処理装置。
    a collection cup that receives the processing liquid that scatters from the substrate;
    a discharge channel for discharging the processing liquid from the recovery cup;
    with
    The substrate processing apparatus according to any one of claims 1 to 6, wherein the liquid receiver is provided in the discharge channel.
  9.  前記基板から飛散する前記処理液を受ける回収カップを複数備え、
     前記液受け部は、前記回収カップごとに複数設けられる
     請求項1~6のいずれか一つに記載の基板処理装置。
    a plurality of recovery cups for receiving the processing liquid scattered from the substrate;
    The substrate processing apparatus according to any one of claims 1 to 6, wherein a plurality of said liquid receivers are provided for each of said recovery cups.
  10.  前記濃度センサは、赤外分光法によって前記成分の濃度を検出する
     請求項1~9のいずれか一つに記載の基板処理装置。
    The substrate processing apparatus according to any one of claims 1 to 9, wherein the concentration sensor detects the concentration of the component by infrared spectroscopy.
  11.  前記濃度センサは、導電率計によって前記成分の濃度を検出する
     請求項1~9のいずれか一つに記載の基板処理装置。
    The substrate processing apparatus according to any one of claims 1 to 9, wherein the concentration sensor detects the concentration of the component using a conductivity meter.
  12.  基板を保持して回転させる保持部と、前記基板に処理液を供給する液供給部と、前記処理液を分析する分析部と、を備え、前記分析部は、前記基板から流れ出る前記処理液を受ける液受け部と、前記液受け部内に滞留する前記処理液に含まれる成分の濃度を検出する濃度センサと、を有する基板処理装置において、
     前記基板上の処理液を異なる処理液に置換する処理において、処理の設定時間を前記濃度センサの測定値に基づいて決定する決定処理、
     を含む基板処理方法。
    A holding section that holds and rotates a substrate, a liquid supply section that supplies a processing liquid to the substrate, and an analysis section that analyzes the processing liquid, wherein the analysis section analyzes the processing liquid flowing out from the substrate. A substrate processing apparatus comprising: a liquid receiver for receiving liquid; and a concentration sensor for detecting the concentration of a component contained in the processing liquid staying in the liquid receiver,
    determination processing of determining a set time for processing based on the measurement value of the concentration sensor in the processing of replacing the processing liquid on the substrate with a different processing liquid;
    A substrate processing method comprising:
  13.  基板を保持して回転させる保持部と、前記基板に処理液を供給する液供給部と、前記処理液を分析する分析部と、を備え、前記分析部は、前記基板から流れ出る前記処理液を受ける液受け部と、前記液受け部内に滞留する前記処理液に含まれる成分の濃度を検出する濃度センサと、を有する基板処理装置において、
     前記濃度センサの測定値に基づいて、液処理が正常に完了しているか否かを判定する判定処理と、
     前記液処理が正常に完了していない場合に、アラームを出力する報知処理と、
     を含む基板処理方法。
    A holding section that holds and rotates a substrate, a liquid supply section that supplies a processing liquid to the substrate, and an analysis section that analyzes the processing liquid, wherein the analysis section analyzes the processing liquid flowing out from the substrate. A substrate processing apparatus comprising: a liquid receiver for receiving liquid; and a concentration sensor for detecting the concentration of a component contained in the processing liquid staying in the liquid receiver,
    determination processing for determining whether or not liquid processing has been completed normally based on the measured value of the concentration sensor;
    a notification process for outputting an alarm when the liquid process is not completed normally;
    A substrate processing method comprising:
  14.  前記液処理が正常に完了していない場合に、当該液処理の対象であった前記基板をレスキューレシピによって救出する救出処理、
     をさらに含む請求項13に記載の基板処理方法。
    Rescue processing for rescuing the substrate that has been subjected to the liquid processing using a rescue recipe when the liquid processing has not been completed normally;
    14. The substrate processing method of claim 13, further comprising:
PCT/JP2022/030162 2021-10-08 2022-08-05 Substrate processing device and substrate processing method WO2023058317A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-166018 2021-10-08
JP2021166018 2021-10-08

Publications (1)

Publication Number Publication Date
WO2023058317A1 true WO2023058317A1 (en) 2023-04-13

Family

ID=85804150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030162 WO2023058317A1 (en) 2021-10-08 2022-08-05 Substrate processing device and substrate processing method

Country Status (2)

Country Link
TW (1) TW202326884A (en)
WO (1) WO2023058317A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6211520A (en) * 1985-07-10 1987-01-20 Hitachi Ltd Mixing method for chemical liquid
WO2001053803A1 (en) * 2000-01-17 2001-07-26 Norihiro Kiuchi Liquid concentration sensing method and device
JP2005268498A (en) * 2004-03-18 2005-09-29 Seiko Epson Corp Method for monitoring resist solution, method for manufacturing semiconductor device and resist film remover
JP2010021335A (en) * 2008-07-10 2010-01-28 Shibaura Mechatronics Corp Substrate treating apparatus and substrate treatment method
JP2013038184A (en) * 2011-08-05 2013-02-21 Tokyo Electron Ltd Liquid processing apparatus
JP2014120645A (en) * 2012-12-18 2014-06-30 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and its method
JP2016143779A (en) * 2015-02-03 2016-08-08 東京エレクトロン株式会社 Substrate processing apparatus, substrate processing method, and storage medium
JP2019169648A (en) * 2018-03-26 2019-10-03 株式会社Screenホールディングス Substrate processing method and substrate processing device
JP2020072135A (en) * 2018-10-30 2020-05-07 株式会社Screenホールディングス Substrate processing apparatus and drain clogging prevention method
JP2021072415A (en) * 2019-11-01 2021-05-06 東京エレクトロン株式会社 Substrate processing apparatus and substrate processing method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6211520A (en) * 1985-07-10 1987-01-20 Hitachi Ltd Mixing method for chemical liquid
WO2001053803A1 (en) * 2000-01-17 2001-07-26 Norihiro Kiuchi Liquid concentration sensing method and device
JP2005268498A (en) * 2004-03-18 2005-09-29 Seiko Epson Corp Method for monitoring resist solution, method for manufacturing semiconductor device and resist film remover
JP2010021335A (en) * 2008-07-10 2010-01-28 Shibaura Mechatronics Corp Substrate treating apparatus and substrate treatment method
JP2013038184A (en) * 2011-08-05 2013-02-21 Tokyo Electron Ltd Liquid processing apparatus
JP2014120645A (en) * 2012-12-18 2014-06-30 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and its method
JP2016143779A (en) * 2015-02-03 2016-08-08 東京エレクトロン株式会社 Substrate processing apparatus, substrate processing method, and storage medium
JP2019169648A (en) * 2018-03-26 2019-10-03 株式会社Screenホールディングス Substrate processing method and substrate processing device
JP2020072135A (en) * 2018-10-30 2020-05-07 株式会社Screenホールディングス Substrate processing apparatus and drain clogging prevention method
JP2021072415A (en) * 2019-11-01 2021-05-06 東京エレクトロン株式会社 Substrate processing apparatus and substrate processing method

Also Published As

Publication number Publication date
TW202326884A (en) 2023-07-01

Similar Documents

Publication Publication Date Title
US20060066824A1 (en) Method and system for contamination detection and monitoring a lithographic exposure tool and operating method for the same under controlled atmospheric conditions
US6735276B2 (en) Sample preprocessing system for a fluorescent X-ray analysis and X-ray fluorescence spectrometric system using the same
US20080190557A1 (en) Apparatus for real-time dynamic chemical analysis
TW201810480A (en) Measurement apparatus and method of ionic contaminants on surface of wafer
US7191545B2 (en) Apparatus to dry substrates
KR102239956B1 (en) Substrate processing method and substrate processing apparatus
KR20090105584A (en) Vpd chamber and door on/off apparatus for auto scanning system
KR102606005B1 (en) Processing apparatus, processing method, and storage medium
WO2006006370A1 (en) Method of rating water quality, ultrapure water rating apparatus utilizing the method and system for ultrapure water production
TWI638400B (en) Substrate processing device, substrate processing method, and memory medium
US10712328B2 (en) Analysis device
US8146447B2 (en) Contamination analysis unit and method thereof, and reticle cleaning system
JP2017053806A (en) Analysis pretreatment device
WO2023058317A1 (en) Substrate processing device and substrate processing method
JP2001194320A (en) Device and method for measuring surface condition
KR101970338B1 (en) Apparatus and method for analyzing surface of wafer using spinning
WO2006039161A2 (en) Method and system for contamination detection and monitoring in a lithographic exposure tool and operating method for the same under controlled atmospheric conditions
JP2006339598A (en) Cleaning arrangement of semiconductor substrate
JP2023056689A (en) Analyzer
US7637143B2 (en) Substrate processing apparatus and analysis method therefor
WO2006065507A2 (en) System, method and apparatus for in-situ substrate inspection
US20100077839A1 (en) In situ monitoring of metal contamination during microstructure processing
JP3300213B2 (en) Aerial impurity monitoring device and aerial impurity monitoring method
JP6717709B2 (en) Substrate processing equipment
JPH11354482A (en) Washing device and washing method, etching device and etching method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22878188

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023552710

Country of ref document: JP