WO2023058227A1 - Wiring forming method, and information processing device - Google Patents

Wiring forming method, and information processing device Download PDF

Info

Publication number
WO2023058227A1
WO2023058227A1 PCT/JP2021/037360 JP2021037360W WO2023058227A1 WO 2023058227 A1 WO2023058227 A1 WO 2023058227A1 JP 2021037360 W JP2021037360 W JP 2021037360W WO 2023058227 A1 WO2023058227 A1 WO 2023058227A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
array pattern
ink
wiring
ink dots
Prior art date
Application number
PCT/JP2021/037360
Other languages
French (fr)
Japanese (ja)
Inventor
亮二郎 富永
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to PCT/JP2021/037360 priority Critical patent/WO2023058227A1/en
Publication of WO2023058227A1 publication Critical patent/WO2023058227A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern

Definitions

  • the present invention relates to a wiring forming method for forming wiring with a metal-containing liquid containing fine metal particles.
  • the following patent document describes a technique for forming wiring with a metal-containing liquid containing fine metal particles.
  • the wiring is formed by the metal-containing liquid containing metal fine particles
  • the wiring is formed by laminating the metal-containing liquid. Therefore, the present specification aims to appropriately form wiring by stacking metal-containing liquids.
  • the present specification provides a first ejection step of ejecting a metal-containing liquid containing fine metal particles in a first array pattern consisting of a plurality of rows of ink dots extending in a predetermined direction; , an array pattern obtained by removing one row of ink dots located at an end in the predetermined direction from the first array pattern on the metal-containing liquid ejected in the first ejection step, and performing the first ejection; a second ejection step of ejecting the metal-containing liquid at a position shifted in the predetermined direction by a distance corresponding to an interval narrower than the pitch of the ink dots from the ejection position of the metal-containing liquid in the step, and Disclosed is a wiring forming method for forming wiring by laminating a containing liquid.
  • the arrangement pattern of the N-th layer of metal ink when wiring is formed by laminating a metal-containing liquid containing fine metal particles is composed of a plurality of rows of ink dots extending in a predetermined direction.
  • the array pattern obtained by removing one row of ink dots located at the end in the direction intersecting the predetermined direction is set to be narrower than the pitch of the ink dots from the ejection position of the metal-containing liquid in the first array pattern.
  • an information processing apparatus including a distance corresponding to the interval and a second calculation unit that calculates the array pattern shifted in the predetermined direction.
  • the metal-containing liquid is ejected in a first array pattern consisting of multiple rows of ink dots extending in a predetermined direction. Then, on the metal-containing liquid, an array pattern obtained by removing one line of ink dots located at the end in a predetermined direction from the first array pattern is applied, and the pitch of the ink dots from the ejection position of the first array pattern is increased.
  • the metal-containing liquid is discharged at a position shifted in a predetermined direction by a distance corresponding to a narrow interval. Also, as the arrangement pattern of the N-th layer of metal ink, a first arrangement pattern consisting of a plurality of rows of ink dots extending in a predetermined direction is calculated.
  • one row of ink dots located at the end in a predetermined direction from the first arrangement pattern is removed, and at the end in the direction intersecting the predetermined direction, a row of ink dots is removed.
  • the array pattern obtained by removing the ink dots in one row is shifted in a predetermined direction by a distance corresponding to an interval narrower than the pitch of the ink dots from the ejection position of the first array pattern.
  • FIG. 4 is a cross-sectional view showing a circuit in which a resin laminate is formed;
  • FIG. 4 is a cross-sectional view showing a circuit in which wiring is formed on a resin laminate; It is a figure which shows the nozzle surface of an inkjet head. It is a figure which shows an arrangement pattern. It is a figure which shows an arrangement pattern.
  • FIG. 4 is a diagram showing arrangement patterns and wiring of odd-numbered layers and even-numbered layers; It is a figure which shows the conventional wiring. It is a figure which shows the arrangement pattern of an odd-numbered layer.
  • FIG. 10 is a diagram showing an arrangement pattern of even-numbered layers; 11. It is a figure which shows the wiring formed by the arrangement pattern of FIG. 10, and the arrangement pattern of FIG. It is a figure which shows the arrangement pattern of an odd-numbered layer.
  • FIG. 10 is a diagram showing an arrangement pattern of even-numbered layers;
  • the circuit forming apparatus 10 includes a conveying device 20, a first shaping unit 22, a second shaping unit 24, and a control device (see FIG. 2) .
  • the conveying device 20 , the first shaping unit 22 and the second shaping unit 24 are arranged on the base 29 of the circuit forming device 10 .
  • the base 29 has a generally rectangular shape, and in the following description, the longitudinal direction of the base 29 is the X-axis direction, the lateral direction of the base 29 is the Y-axis direction, and both the X-axis direction and the Y-axis direction are perpendicular to each other.
  • the direction will be referred to as the Z-axis direction for explanation. Note that the Z-axis direction is the same direction as the vertical direction.
  • the transport device 20 includes an X-axis slide mechanism 30 and a Y-axis slide mechanism 32 .
  • the X-axis slide mechanism 30 has an X-axis slide rail 34 and an X-axis slider 36 .
  • the X-axis slide rail 34 is arranged on the base 29 so as to extend in the X-axis direction.
  • the X-axis slider 36 is held by an X-axis slide rail 34 so as to be slidable in the X-axis direction.
  • the X-axis slide mechanism 30 has an electromagnetic motor (see FIG. 2) 38, and by driving the electromagnetic motor 38, the X-axis slider 36 moves to any position in the X-axis direction.
  • the Y-axis slide mechanism 32 has a Y-axis slide rail 50 and a table 52 .
  • the Y-axis slide rail 50 is arranged on the base 29 so as to extend in the Y-axis direction, and is movable in the X-axis direction.
  • One end of the Y-axis slide rail 50 is connected to the X-axis slider 36 .
  • a table 52 is held on the Y-axis slide rail 50 so as to be slidable in the Y-axis direction.
  • the Y-axis slide mechanism 32 has an electromagnetic motor (see FIG. 2) 56, and the driving of the electromagnetic motor 56 moves the table 52 to any position in the Y-axis direction. As a result, the table 52 is moved to any position on the base 29 by driving the X-axis slide mechanism 30 and the Y-axis slide mechanism 32 .
  • the table 52 has a base 60, a holding device 62, and an elevating device (see FIG. 2) 64.
  • the base 60 is formed in a flat plate shape, and a pallet (see FIG. 3) 70 is placed on the upper surface thereof.
  • the holding devices 62 are provided on both sides of the base 60 in the X-axis direction. Both edges in the X-axis direction of the pallet 70 placed on the base 60 are sandwiched by the holding device 62 , so that the pallet 70 is fixedly held.
  • the lifting device 64 is arranged below the base 60 and lifts the base 60 up and down.
  • the first shaping unit 22 is a unit that shapes the wiring of the circuit board, and has a first printing section 72 and a baking section 74 .
  • the first printing unit 72 has an inkjet head (see FIG. 2) 76, and the inkjet head 76 linearly ejects the metal ink.
  • the metal ink is a dispersion of fine particles of nanometer-sized metal, such as silver, in a solvent. The surfaces of the fine metal particles are coated with a dispersant to prevent aggregation in the solvent.
  • the inkjet head 76 ejects metal ink from a plurality of nozzles by, for example, a piezo method using piezoelectric elements.
  • the baking unit 74 has an infrared irradiation device (see FIG. 2) 78.
  • the infrared irradiation device 78 is a device for irradiating the ejected metal ink with infrared rays, and the metal ink irradiated with the infrared rays is baked to form wiring.
  • Baking metal ink means that the solvent is vaporized and the protective film of the metal fine particles, that is, the dispersing agent is decomposed, by applying energy, and the metal fine particles come into contact or fuse to become conductive. This is a phenomenon in which the rate increases. Then, by baking the metal ink, a metal wiring is formed.
  • the second molding unit 24 is a unit for molding the resin layer of the circuit board, and has a second printing section 84 and a curing section 86 .
  • the second printing unit 84 has an inkjet head (see FIG. 2) 88, and the inkjet head 88 ejects ultraviolet curable resin.
  • An ultraviolet curable resin is a resin that is cured by irradiation with ultraviolet rays.
  • the inkjet head 88 may be, for example, a piezo system using piezoelectric elements, or a thermal system in which resin is heated to generate bubbles and ejected from a plurality of nozzles.
  • the curing section 86 has a flattening device (see FIG. 2) 90 and an irradiation device (see FIG. 2) 92.
  • the flattening device 90 flattens the upper surface of the ultraviolet curable resin ejected by the inkjet head 88. For example, the surface of the ultraviolet curable resin is leveled and the surplus resin is scraped off with a roller or a blade. to make the thickness of the UV curable resin uniform.
  • the irradiation device 92 has a mercury lamp or an LED as a light source, and irradiates the discharged ultraviolet curable resin with ultraviolet rays. As a result, the discharged ultraviolet curable resin is cured to form a resin layer.
  • the control device 28 also includes a controller 110 and a plurality of drive circuits 112, as shown in FIG.
  • a plurality of drive circuits 112 are connected to the electromagnetic motors 38 , 56 , holding device 62 , lifting device 64 , inkjet head 76 , infrared irradiation device 78 , inkjet head 88 , flattening device 90 and irradiation device 92 .
  • the controller 110 includes a CPU, ROM, RAM, etc., is mainly a computer, and is connected to a plurality of drive circuits 112 . Accordingly, the controller 110 controls the operations of the conveying device 20 , the first modeling unit 22 , and the second modeling unit 24 .
  • the resin laminate is formed on the pallet 70 placed on the base 60 of the table 52, and the wiring is formed on the upper surface of the resin laminate to form the circuit.
  • a substrate is formed.
  • the pallet 70 when the pallet 70 is set on the base 60 of the table 52 , the table 52 moves below the second modeling unit 24 . Then, in the second modeling unit 24, the resin laminate 122 is formed on the pallet 70, as shown in FIG.
  • the resin layered body 122 is formed by repeating the ejection of the ultraviolet curable resin from the inkjet head 88 and the irradiation of the ultraviolet ray by the irradiation device 92 to the ejected ultraviolet curable resin.
  • the inkjet head 88 ejects the UV curable resin onto the upper surface of the pallet 70 in the form of a thin film. Subsequently, when the ultraviolet curable resin is discharged in the form of a thin film, the ultraviolet curable resin is flattened by the flattening device 90 in the curing section 86 so that the film thickness of the ultraviolet curable resin becomes uniform. Then, the irradiation device 92 irradiates the thin film-like ultraviolet curable resin with ultraviolet rays. Thereby, a thin resin layer 124 is formed on the pallet 70 .
  • the inkjet head 88 ejects a thin film of ultraviolet curable resin onto the thin resin layer 124 .
  • the flattening device 90 flattens the thin film of ultraviolet curable resin
  • the irradiation device 92 irradiates the ultraviolet curable resin discharged in the form of a thin film with ultraviolet rays, thereby forming a thin film on the resin layer 124 .
  • a thin film resin layer 124 is laminated.
  • the resin layered body 122 is formed by repeating the discharge of the ultraviolet curable resin onto the thin resin layer 124 and the irradiation of the ultraviolet rays to laminate a plurality of resin layers 124 .
  • the table 52 moves below the first modeling unit 22 .
  • the inkjet head 76 linearly ejects the metal ink 130 onto the upper surface of the resin laminate 122 according to the circuit pattern, as shown in FIG.
  • the infrared irradiation device 78 irradiates the metal ink 130 ejected according to the circuit pattern with infrared rays in the baking section 74 of the first modeling unit 22 .
  • the metal ink 130 is baked, and the wiring 132 is formed on the upper surface of the resin layered body 122 .
  • the resin laminate 122 is formed on the pallet 70 in the second modeling unit 24, and the wiring 132 is formed on the resin laminate 122 in the first modeling unit 22, thereby forming the circuit board 136. It is formed.
  • the wiring 132 formed on the resin layered body 122 is formed by layering the metal ink 130 . Specifically, the first layer of metal ink 130 is discharged onto the upper surface of the resin laminate 122, and the first layer of metal ink 130 is irradiated with infrared rays. As a result, the first-layer metal ink 130 is baked to form the first-layer metal thin film.
  • a second layer of metal ink 130 is discharged onto the first layer of metal thin film, and the second layer of metal ink 130 is irradiated with infrared rays.
  • the second-layer metal ink 130 is baked to form a second-layer metal thin film.
  • metal thin films are laminated to form the wiring 132 with a predetermined thickness.
  • a nozzle surface 150 of the inkjet head 76 is formed with a plurality of nozzle holes 152 .
  • the nozzle surface 150 is generally rectangular, and is disposed on the inkjet head 76 such that the longitudinal direction of the nozzle surface 150 faces the X direction.
  • a plurality of nozzle holes 152 are formed in two rows on the nozzle surface 150 so as to extend in the X direction.
  • the longitudinal direction in which the plurality of nozzle holes 152 are arranged is the longitudinal direction of the nozzle surface 150 and is the X direction.
  • the plurality of nozzle holes 152 arranged in the X direction are formed at equal pitches. That is, the plurality of nozzle holes 152 arranged in the X direction are formed so that the distance between two adjacent nozzle holes 152 is the same.
  • the metal ink is ejected in an array pattern consisting of a plurality of rows of ink dots 160 extending in the X direction.
  • the array pattern is designed so that the ink dots 160 overlap (slanted lines in FIG. 5). Based on this, the ejection pitch of the metal ink in the Y direction is calculated. Then, by ejecting the metal ink at the calculated ejection pitch, the metal ink is ejected in an array pattern with overlapping areas of the ink dots 160 .
  • the array pattern is an array pattern of one layer of metal ink, and a wiring is formed by stacking a plurality of metal inks ejected according to the array pattern.
  • the ejection positions of the respective metal inks of the plurality of layers are the same. That is, the metal ink is ejected at predetermined positions according to the array pattern. Then, by irradiating the metal ink with infrared rays, the first metal thin film is formed. Subsequently, on the metal thin film of the first layer, the metal ink is ejected according to the arrangement pattern at the same position as the ejection position of the metal ink of the first layer, and by irradiating the metal thin film of the second layer. It is formed. In this way, by repeating the ejection of the metal ink to the same position according to the arrangement pattern and the irradiation of the infrared rays, the metal thin films are laminated to form the wiring.
  • positional deviation of the ink dots 160 may occur due to the tolerance of the positional accuracy of the plurality of nozzle holes formed in the nozzle surface 150 of the inkjet head 76 . Further, when a large print area is divided and printed by one inkjet head or a plurality of inkjet heads, positional deviation of the ink dots 160 may occur at the joints of the divided and printed areas. In such a case, if the positional deviation of the ink dots 160 becomes larger than the overlapping area of the ink dots 160, there is a possibility that a disconnected wiring is formed. Specifically, even if the metal ink is ejected according to the array pattern, gaps 166 without overlapping areas (hatched lines) of the ink dots 160 are generated as shown in FIG.
  • the wiring is formed by differentiating the ejection position of the metal ink for the odd-numbered layers from the ejection position of the metal ink for the even-numbered layers.
  • metal ink is ejected according to an arrangement pattern at a predetermined position, so that a plurality of rows of ink dots 160a are arranged as shown in FIG.
  • Metal ink is ejected in an array pattern.
  • the metal thin film 168a of the first layer is formed.
  • a gap 166a is formed in the metal thin film 168a of the first layer.
  • the metal ink is ejected according to the array pattern at a position shifted in the X direction by 0.5 pixels from the ejection position of the first layer of metal ink.
  • the metal ink is ejected in an array pattern consisting of a plurality of rows of ink dots 160b. Then, by irradiating the metal ink with infrared rays, the second metal thin film 168b is formed.
  • a gap 166b also occurs in the metal thin film 168b of the second layer.
  • gaps 166a and 166b are generated between the metal thin films 168a and 168b as shown in FIG.
  • the metal thin film 168b of the second layer is laminated on the metal thin film 168a of the first layer, so that the wiring 170 without gaps is formed as shown in FIG.
  • One pixel is the formation pitch of the plurality of nozzle holes 152 extending in the X direction.
  • one pixel is the distance between the center of one of two adjacent nozzle holes of the plurality of nozzle holes 152 extending in the X direction and the center of the other. It is the distance between the center of one of the two ink dots and the center of the other.
  • the wiring 170 is formed by stacking two layers of metal thin films 168a and 168b. , 5th and 7th layers of metal ink are ejected at predetermined positions according to the arrangement pattern, and 2nd, 4th and 6th layers of metal ink are ejected at positions shifted by 0.5 pixels in the X direction from the predetermined positions according to the arrangement pattern. Dispensed.
  • the odd-numbered layers of metal ink are ejected at a predetermined position according to the array pattern, and the even-numbered layers of metal ink are ejected at a position shifted in the X direction by 0.5 pixel from the predetermined position according to the array pattern.
  • wiring without gaps can be formed.
  • the odd-numbered metal thin films are ejected according to the array pattern at predetermined positions, and the even-numbered metal thin films are displaced from the predetermined positions by 0.5 pixel in the X direction with metal ink according to the array pattern.
  • the even-numbered metal thin film is ejected at a position shifted in the X direction by 0.5 pixel from the ejection position of the odd-numbered metal ink.
  • the even-layer arrangement pattern in which the metal ink is ejected at a position shifted in the X direction by 0.5 pixel from the ejection position of the metal ink in the odd-numbered layer is the odd-numbered array pattern.
  • the array pattern is obtained by removing one row of ink dots 160 positioned at the end in the X direction from the top. Specifically, for example, an odd-numbered layer arrangement pattern 180a is shown in FIG.
  • one line of ink dots (dotted line in FIG. 10) 160c positioned at the end in the X direction from the odd-numbered array pattern 180a is removed.
  • the even-layer array pattern 180b becomes an array pattern obtained by removing one line of ink dots 160c positioned at the end in the X direction from the odd-layer array pattern 180a.
  • the odd-numbered layers of metallic ink are ejected at predetermined positions according to the arrangement pattern 180a (FIG. 10), and the even-numbered layers of metallic ink are ejected at positions shifted by 0.5 pixels in the X direction from the prescribed positions.
  • the even-layered array pattern 180b is an array pattern obtained by removing one row of ink dots 160c located at the end in the X direction from the odd-layered array pattern 180a, thereby making the wiring widths the same.
  • the electrical quality of the wiring varies depending on the direction in which the wiring extends. Specifically, when the even-numbered array pattern 180b is an array pattern obtained by removing one row of ink dots 160c located at the end in the X direction from the odd-numbered array pattern 180a, the dots extend in the Y direction. One row of ink dots 160c in the width direction (X direction) is removed from the wiring 170b.
  • the cross-sectional area in the width direction of the wiring 170b extending in the Y direction is smaller than the cross-sectional area of the wiring 170a extending in the X direction.
  • the resistance value and the like differ depending on the direction in which the wiring extends, and the electrical quality of the wiring is affected. changes.
  • the array pattern of the even-numbered layer is not only the one row of ink dots 160c located at the end in the X direction from the array pattern 180a of the odd-numbered layer, but also the ink dot 160c located at the end in the X direction.
  • An array pattern in which one line of ink dots is also removed is formed. Specifically, as shown in FIG. 13, one column of ink dots 160c located at the end in the X direction is removed from the array pattern 180a of the odd-numbered layer, and one row of ink dots located at the end in the Y direction is removed. The ink dot (chain line in FIG. 10) 160d is also removed. As a result, as shown in FIG.
  • the even-numbered array pattern 180c includes not only one row of ink dots 160c positioned at the end in the X direction from the odd-numbered array pattern 180a, but also a row of ink dots 160c located at the end in the Y direction. 1 line of ink dots 160d positioned at . Then, the odd-numbered layers of metallic ink are ejected at predetermined positions according to the array pattern 180a (FIG. 13), and the even-numbered layers of metallic ink are ejected at positions shifted by 0.5 pixel in the X direction from the predetermined positions, in the array pattern 180c. By discharging according to (FIG. 14), the cross-sectional area in the width direction of the wiring can be made the same regardless of the direction in which the wiring extends.
  • the electrical quality of the wiring 170b extending in the Y direction can be made the same as the electrical quality of the wiring 170a extending in the X direction.
  • wiring with the same electrical quality can be formed regardless of the direction in which the wiring extends.
  • the controller 110 of the control device 28 has a first calculation section 200, a second calculation section 202, a first ejection section 204, and a second ejection section 206, as shown in FIG.
  • the first calculation unit 200 is a functional unit for the controller 110 to calculate the odd-numbered layer array pattern 180a composed of a plurality of lines of ink dot arrays.
  • the second calculation unit 202 removes one column of ink dots 160c and one row of ink dots 160d from the odd-numbered layer array pattern 180a, and removes 0.5 pixels from the odd-numbered layer metal ink ejection position in the X direction. It is a functional unit for calculating the shifted array pattern as the even-layer array pattern 180c.
  • the first ejection section 204 is a functional section for ejecting the metal ink according to the odd-numbered array pattern 180a.
  • the second ejection unit 206 displaces 0.5 pixels in the X direction from the ejection position of the odd-numbered metallic ink onto the metallic ink ejected to the odd-numbered layer according to the even-numbered array pattern 180c. It is a functional part for ejecting metal ink.
  • control device 28 is an example of an information processing device.
  • the nozzle hole 152 is an example of a nozzle hole.
  • the first calculator 200 is an example of a first calculator.
  • the second calculator 202 is an example of a second calculator.
  • the process executed by the first ejection section 204 is an example of the first ejection process.
  • the process executed by the second ejection section 206 is an example of the second ejection process.
  • the present invention is not limited to the above embodiments, and can be implemented in various aspects with various modifications and improvements based on the knowledge of those skilled in the art.
  • the even-numbered layers of metal ink are ejected at positions shifted in the X direction.
  • the even-numbered layer is shifted in the X direction by 0.5 pixels from the ejection position of the metal ink on the odd-numbered layer. of metal ink may be ejected.
  • the electrical quality of the wiring varies depending on the direction in which the wiring extends, it is possible to form the wiring with the same width regardless of the direction in which the wiring extends.
  • the metal ink is ejected according to the even-layer array pattern 180c at a position shifted in the X direction by 0.5 pixels from the ejection position of the odd-numbered metal ink, but the amount of deviation is 1. Any interval narrower than a pixel is sufficient. Therefore, the metal ink may be ejected according to the even-layer arrangement pattern 180c at a position shifted in the X direction by a distance of more than 0 pixel and narrower than 1 pixel from the ejection position of the metal ink on the odd-number layer.
  • the controller 110 of the control device 28 calculates the array pattern, and controls the operation of the first modeling unit 22 so that the metal ink is ejected according to the calculated array pattern.
  • the arrangement pattern may be calculated in an information processing device different from the control device 28 .
  • the arrangement pattern calculated by the information processing device is input to the control device 28, and the control device 28 controls the operation of the first molding unit 22 so that the metal ink is ejected according to the input arrangement pattern. good.
  • the information processing device may include the first calculation section 200 and the second calculation section 202
  • the controller 110 of the control device 28 may include the first discharge section 204 and the second discharge section 206 .
  • the metal ink for forming the wiring is used as the metal-containing liquid, but various metal-containing liquids can be used as long as they contain fine metal particles.
  • a conductive paste in which micrometer-sized metal fine particles are dispersed in a solvent can be employed as the metal-containing liquid.
  • Control device information processing device
  • Nozzle hole 200 First calculation unit 202: Second calculation unit 204: First discharge unit (first discharge process) 206: Second discharge unit (second discharge process)

Abstract

This wiring forming method for forming wiring by stacking a plurality of layers of a metal-containing liquid, which contains metal fine particles, includes: a first ejecting step for ejecting the metal-containing liquid in a first array pattern comprising an array, extending in a predetermined direction, of a plurality of rows of ink dots; and a second ejecting step for ejecting the metal-containing liquid onto the metal-containing liquid ejected in the first ejecting step, in a position that is offset, in the predetermined direction, from an ejection position of the metal-containing liquid in the first ejecting step by a distance corresponding to a gap less than a pitch of the ink dots, in an array pattern obtained by removing from the first array pattern one row of ink dots positioned at an edge thereof in the predetermined direction.

Description

配線形成方法、および情報処理装置Wiring forming method and information processing device
 本発明は、金属微粒子を含有する金属含有液により配線を形成する配線形成方法などに関する。 The present invention relates to a wiring forming method for forming wiring with a metal-containing liquid containing fine metal particles.
 下記特許文献には、金属微粒子を含有する金属含有液により配線を形成する技術が記載されている。 The following patent document describes a technique for forming wiring with a metal-containing liquid containing fine metal particles.
特開2012-084566号公報JP 2012-084566 A
 金属微粒子を含有する金属含有液により配線が形成される際に、金属含有液が積層されて配線が形成される。そこで、本明細書は、金属含有液を積層させて、適切に配線を形成することを課題とする。 When the wiring is formed by the metal-containing liquid containing metal fine particles, the wiring is formed by laminating the metal-containing liquid. Therefore, the present specification aims to appropriately form wiring by stacking metal-containing liquids.
 上記課題を解決するために、本明細書は、金属微粒子を含有する金属含有液を、所定の方向に延びる複数行のインクドットの配列からなる第1の配列パターンで吐出する第1吐出工程と、前記第1吐出工程で吐出された金属含有液の上に、前記第1の配列パターンから前記所定の方向での端に位置する1列のインクドットを除去した配列パターンで、前記第1吐出工程での金属含有液の吐出位置からインクドットのピッチより狭い間隔に相当する距離、前記所定の方向にズラした位置に金属含有液を吐出する第2吐出工程と、を含み、複数層の金属含有液を積層することで配線を形成する配線形成方法を開示する。 In order to solve the above problems, the present specification provides a first ejection step of ejecting a metal-containing liquid containing fine metal particles in a first array pattern consisting of a plurality of rows of ink dots extending in a predetermined direction; , an array pattern obtained by removing one row of ink dots located at an end in the predetermined direction from the first array pattern on the metal-containing liquid ejected in the first ejection step, and performing the first ejection; a second ejection step of ejecting the metal-containing liquid at a position shifted in the predetermined direction by a distance corresponding to an interval narrower than the pitch of the ink dots from the ejection position of the metal-containing liquid in the step, and Disclosed is a wiring forming method for forming wiring by laminating a containing liquid.
 また、本明細書は、金属微粒子を含有する金属含有液を積層させて配線を形成する際のN層目の金属インクの配列パターンとして、所定の方向に延びる複数行のインクドットの配列からなる第1の配列パターンを演算する第1演算部と、(N+1)層目の金属インクの配列パターンとして、前記第1の配列パターンから前記所定の方向での端に位置する1列のインクドットを除去するとともに前記所定の方向と交差する方向での端に位置する1行のインクドットを除去した配列パターンを、前記第1の配列パターンでの金属含有液の吐出位置からインクドットのピッチより狭い間隔に相当する距離、前記所定の方向にズラした配列パターンを演算する第2演算部と、を備える情報処理装置を開示する。 Further, in the present specification, the arrangement pattern of the N-th layer of metal ink when wiring is formed by laminating a metal-containing liquid containing fine metal particles is composed of a plurality of rows of ink dots extending in a predetermined direction. a first calculation unit for calculating a first array pattern; and a line of ink dots located at an end of the first array pattern in the predetermined direction as the array pattern of the (N+1)-th layer of metallic ink. The array pattern obtained by removing one row of ink dots located at the end in the direction intersecting the predetermined direction is set to be narrower than the pitch of the ink dots from the ejection position of the metal-containing liquid in the first array pattern. Disclosed is an information processing apparatus including a distance corresponding to the interval and a second calculation unit that calculates the array pattern shifted in the predetermined direction.
 本開示では、金属含有液が、所定の方向に延びる複数行のインクドットの配列からなる第1の配列パターンで吐出される。そして、その金属含有液の上に、第1の配列パターンから所定の方向での端に位置する1列のインクドットを除去した配列パターンで、第1配列パターンの吐出位置からインクドットのピッチより狭い間隔に相当する距離、所定の方向にズラした位置に金属含有液が吐出される。また、N層目の金属インクの配列パターンとして、所定の方向に延びる複数行のインクドットの配列からなる第1の配列パターンが演算される。そして、(N+1)層目の金属インクの配列パターンとして、第1の配列パターンから所定の方向での端に位置する1列のインクドットを除去するとともに所定の方向と交差する方向での端に位置する1行のインクドットを除去した配列パターンを、第1の配列パターンの吐出位置からインクドットのピッチより狭い間隔に相当する距離、所定の方向にズラした配列パターンが演算される。これにより、金属含有液を積層させて、適切に配線を形成することができる。 In the present disclosure, the metal-containing liquid is ejected in a first array pattern consisting of multiple rows of ink dots extending in a predetermined direction. Then, on the metal-containing liquid, an array pattern obtained by removing one line of ink dots located at the end in a predetermined direction from the first array pattern is applied, and the pitch of the ink dots from the ejection position of the first array pattern is increased. The metal-containing liquid is discharged at a position shifted in a predetermined direction by a distance corresponding to a narrow interval. Also, as the arrangement pattern of the N-th layer of metal ink, a first arrangement pattern consisting of a plurality of rows of ink dots extending in a predetermined direction is calculated. Then, as the arrangement pattern of the (N+1)-th layer of metallic ink, one row of ink dots located at the end in a predetermined direction from the first arrangement pattern is removed, and at the end in the direction intersecting the predetermined direction, a row of ink dots is removed. The array pattern obtained by removing the ink dots in one row is shifted in a predetermined direction by a distance corresponding to an interval narrower than the pitch of the ink dots from the ejection position of the first array pattern. Thereby, the metal-containing liquid can be layered and the wiring can be appropriately formed.
回路形成装置を示す図である。It is a figure which shows a circuit formation apparatus. 制御装置を示すブロック図である。It is a block diagram which shows a control apparatus. 樹脂積層体が形成された状態の回路を示す断面図である。FIG. 4 is a cross-sectional view showing a circuit in which a resin laminate is formed; 樹脂積層体の上に配線が形成された状態の回路を示す断面図である。FIG. 4 is a cross-sectional view showing a circuit in which wiring is formed on a resin laminate; インクジェットヘッドのノズル面を示す図である。It is a figure which shows the nozzle surface of an inkjet head. 配列パターンを示す図である。It is a figure which shows an arrangement pattern. 配列パターンを示す図である。It is a figure which shows an arrangement pattern. 奇数層及び偶数層の配列パターン及び配線を示す図である。FIG. 4 is a diagram showing arrangement patterns and wiring of odd-numbered layers and even-numbered layers; 従来の配線を示す図である。It is a figure which shows the conventional wiring. 奇数層の配列パターンを示す図である。It is a figure which shows the arrangement pattern of an odd-numbered layer. 偶数層の配列パターンを示す図である。FIG. 10 is a diagram showing an arrangement pattern of even-numbered layers; 図10の配列パターンと図11の配列パターンとにより形成された配線を示す図である。11. It is a figure which shows the wiring formed by the arrangement pattern of FIG. 10, and the arrangement pattern of FIG. 奇数層の配列パターンを示す図である。It is a figure which shows the arrangement pattern of an odd-numbered layer. 偶数層の配列パターンを示す図である。FIG. 10 is a diagram showing an arrangement pattern of even-numbered layers;
 図1に回路形成装置10を示す。回路形成装置10は、搬送装置20と、第1造形ユニット22と、第2造形ユニット24と、制御装置(図2参照)28とを備える。それら搬送装置20と第1造形ユニット22と第2造形ユニット24とは、回路形成装置10のベース29の上に配置されている。ベース29は、概して長方形状をなしており、以下の説明では、ベース29の長手方向をX軸方向、ベース29の短手方向をY軸方向、X軸方向及びY軸方向の両方に直交する方向をZ軸方向と称して説明する。なお、Z軸方向は、鉛直方向と同じ方向である。 A circuit forming apparatus 10 is shown in FIG. The circuit forming apparatus 10 includes a conveying device 20, a first shaping unit 22, a second shaping unit 24, and a control device (see FIG. 2) . The conveying device 20 , the first shaping unit 22 and the second shaping unit 24 are arranged on the base 29 of the circuit forming device 10 . The base 29 has a generally rectangular shape, and in the following description, the longitudinal direction of the base 29 is the X-axis direction, the lateral direction of the base 29 is the Y-axis direction, and both the X-axis direction and the Y-axis direction are perpendicular to each other. The direction will be referred to as the Z-axis direction for explanation. Note that the Z-axis direction is the same direction as the vertical direction.
 搬送装置20は、X軸スライド機構30と、Y軸スライド機構32とを備えている。そのX軸スライド機構30は、X軸スライドレール34とX軸スライダ36とを有している。X軸スライドレール34は、X軸方向に延びるように、ベース29の上に配設されている。X軸スライダ36は、X軸スライドレール34によって、X軸方向にスライド可能に保持されている。さらに、X軸スライド機構30は、電磁モータ(図2参照)38を有しており、電磁モータ38の駆動により、X軸スライダ36がX軸方向の任意の位置に移動する。また、Y軸スライド機構32は、Y軸スライドレール50とテーブル52とを有している。Y軸スライドレール50は、Y軸方向に延びるように、ベース29の上に配設されており、X軸方向に移動可能とされている。そして、Y軸スライドレール50の一端部が、X軸スライダ36に連結されている。そのY軸スライドレール50には、テーブル52が、Y軸方向にスライド可能に保持されている。さらに、Y軸スライド機構32は、電磁モータ(図2参照)56を有しており、電磁モータ56の駆動により、テーブル52がY軸方向の任意の位置に移動する。これにより、テーブル52は、X軸スライド機構30及びY軸スライド機構32の駆動により、ベース29上の任意の位置に移動する。 The transport device 20 includes an X-axis slide mechanism 30 and a Y-axis slide mechanism 32 . The X-axis slide mechanism 30 has an X-axis slide rail 34 and an X-axis slider 36 . The X-axis slide rail 34 is arranged on the base 29 so as to extend in the X-axis direction. The X-axis slider 36 is held by an X-axis slide rail 34 so as to be slidable in the X-axis direction. Further, the X-axis slide mechanism 30 has an electromagnetic motor (see FIG. 2) 38, and by driving the electromagnetic motor 38, the X-axis slider 36 moves to any position in the X-axis direction. Also, the Y-axis slide mechanism 32 has a Y-axis slide rail 50 and a table 52 . The Y-axis slide rail 50 is arranged on the base 29 so as to extend in the Y-axis direction, and is movable in the X-axis direction. One end of the Y-axis slide rail 50 is connected to the X-axis slider 36 . A table 52 is held on the Y-axis slide rail 50 so as to be slidable in the Y-axis direction. Furthermore, the Y-axis slide mechanism 32 has an electromagnetic motor (see FIG. 2) 56, and the driving of the electromagnetic motor 56 moves the table 52 to any position in the Y-axis direction. As a result, the table 52 is moved to any position on the base 29 by driving the X-axis slide mechanism 30 and the Y-axis slide mechanism 32 .
 テーブル52は、基台60と、保持装置62と、昇降装置(図2参照)64とを有している。基台60は、平板状に形成され、上面にパレット(図3参照)70が載置される。保持装置62は、基台60のX軸方向の両側部に設けられている。そして、基台60に載置されたパレット70のX軸方向の両縁部が、保持装置62によって挟まれることで、パレット70が固定的に保持される。また、昇降装置64は、基台60の下方に配設されており、基台60を昇降させる。 The table 52 has a base 60, a holding device 62, and an elevating device (see FIG. 2) 64. The base 60 is formed in a flat plate shape, and a pallet (see FIG. 3) 70 is placed on the upper surface thereof. The holding devices 62 are provided on both sides of the base 60 in the X-axis direction. Both edges in the X-axis direction of the pallet 70 placed on the base 60 are sandwiched by the holding device 62 , so that the pallet 70 is fixedly held. The lifting device 64 is arranged below the base 60 and lifts the base 60 up and down.
 第1造形ユニット22は、回路基板の配線を造形するユニットであり、第1印刷部72と、焼成部74とを有している。第1印刷部72は、インクジェットヘッド(図2参照)76を有しており、インクジェットヘッド76が金属インクを線状に吐出する。金属インクは、ナノメートルサイズの金属、例えば、銀の微粒子が溶剤中に分散されたものである。なお、金属微粒子の表面は分散剤によりコーティングされており、溶剤中での凝集が防止されている。また、インクジェットヘッド76は、例えば、圧電素子を用いたピエゾ方式によって複数のノズルから金属インクを吐出する。 The first shaping unit 22 is a unit that shapes the wiring of the circuit board, and has a first printing section 72 and a baking section 74 . The first printing unit 72 has an inkjet head (see FIG. 2) 76, and the inkjet head 76 linearly ejects the metal ink. The metal ink is a dispersion of fine particles of nanometer-sized metal, such as silver, in a solvent. The surfaces of the fine metal particles are coated with a dispersant to prevent aggregation in the solvent. In addition, the inkjet head 76 ejects metal ink from a plurality of nozzles by, for example, a piezo method using piezoelectric elements.
 焼成部74は、赤外線照射装置(図2参照)78を有している。赤外線照射装置78は、吐出された金属インクに赤外線を照射する装置であり、赤外線が照射された金属インクは焼成し、配線が形成される。なお、金属インクの焼成とは、エネルギーを付与することによって、溶媒の気化や金属微粒子の保護膜、つまり、分散剤の分解等が行われ、金属微粒子が接触または融着をすることで、導電率が高くなる現象である。そして、金属インクが焼成することで、金属製の配線が形成される。 The baking unit 74 has an infrared irradiation device (see FIG. 2) 78. The infrared irradiation device 78 is a device for irradiating the ejected metal ink with infrared rays, and the metal ink irradiated with the infrared rays is baked to form wiring. Baking metal ink means that the solvent is vaporized and the protective film of the metal fine particles, that is, the dispersing agent is decomposed, by applying energy, and the metal fine particles come into contact or fuse to become conductive. This is a phenomenon in which the rate increases. Then, by baking the metal ink, a metal wiring is formed.
 また、第2造形ユニット24は、回路基板の樹脂層を造形するユニットであり、第2印刷部84と、硬化部86とを有している。第2印刷部84は、インクジェットヘッド(図2参照)88を有しており、インクジェットヘッド88は紫外線硬化樹脂を吐出する。紫外線硬化樹脂は、紫外線の照射により硬化する樹脂である。なお、インクジェットヘッド88は、例えば、圧電素子を用いたピエゾ方式でもよく、樹脂を加熱して気泡を発生させ複数のノズルから吐出するサーマル方式でもよい。 Also, the second molding unit 24 is a unit for molding the resin layer of the circuit board, and has a second printing section 84 and a curing section 86 . The second printing unit 84 has an inkjet head (see FIG. 2) 88, and the inkjet head 88 ejects ultraviolet curable resin. An ultraviolet curable resin is a resin that is cured by irradiation with ultraviolet rays. The inkjet head 88 may be, for example, a piezo system using piezoelectric elements, or a thermal system in which resin is heated to generate bubbles and ejected from a plurality of nozzles.
 硬化部86は、平坦化装置(図2参照)90と照射装置(図2参照)92とを有している。平坦化装置90は、インクジェットヘッド88によって吐出された紫外線硬化樹脂の上面を平坦化するものであり、例えば、紫外線硬化樹脂の表面を均しながら余剰分の樹脂を、ローラもしくはブレードによって掻き取ることで、紫外線硬化樹脂の厚みを均一させる。また、照射装置92は、光源として水銀ランプもしくはLEDを備えており、吐出された紫外線硬化樹脂に紫外線を照射する。これにより、吐出された紫外線硬化樹脂が硬化し、樹脂層が形成される。 The curing section 86 has a flattening device (see FIG. 2) 90 and an irradiation device (see FIG. 2) 92. The flattening device 90 flattens the upper surface of the ultraviolet curable resin ejected by the inkjet head 88. For example, the surface of the ultraviolet curable resin is leveled and the surplus resin is scraped off with a roller or a blade. to make the thickness of the UV curable resin uniform. Further, the irradiation device 92 has a mercury lamp or an LED as a light source, and irradiates the discharged ultraviolet curable resin with ultraviolet rays. As a result, the discharged ultraviolet curable resin is cured to form a resin layer.
 また、制御装置28は、図2に示すように、コントローラ110と、複数の駆動回路112とを備えている。複数の駆動回路112は、上記電磁モータ38,56、保持装置62、昇降装置64、インクジェットヘッド76、赤外線照射装置78、インクジェットヘッド88、平坦化装置90、照射装置92に接続されている。コントローラ110は、CPU,ROM,RAM等を備え、コンピュータを主体とするものであり、複数の駆動回路112に接続されている。これにより、搬送装置20、第1造形ユニット22、第2造形ユニット24の作動が、コントローラ110によって制御される。 The control device 28 also includes a controller 110 and a plurality of drive circuits 112, as shown in FIG. A plurality of drive circuits 112 are connected to the electromagnetic motors 38 , 56 , holding device 62 , lifting device 64 , inkjet head 76 , infrared irradiation device 78 , inkjet head 88 , flattening device 90 and irradiation device 92 . The controller 110 includes a CPU, ROM, RAM, etc., is mainly a computer, and is connected to a plurality of drive circuits 112 . Accordingly, the controller 110 controls the operations of the conveying device 20 , the first modeling unit 22 , and the second modeling unit 24 .
 回路形成装置10では、上述した構成によって、テーブル52の基台60に載置されたパレット70の上に樹脂積層体が形成され、その樹脂積層体の上面に配線が形成されることで、回路基板が形成される。 In the circuit forming apparatus 10, with the above-described configuration, the resin laminate is formed on the pallet 70 placed on the base 60 of the table 52, and the wiring is formed on the upper surface of the resin laminate to form the circuit. A substrate is formed.
 具体的には、テーブル52の基台60にパレット70がセットされると、テーブル52が、第2造形ユニット24の下方に移動する。そして、第2造形ユニット24において、図3に示すように、パレット70の上に樹脂積層体122が形成される。樹脂積層体122は、インクジェットヘッド88からの紫外線硬化樹脂の吐出と、吐出された紫外線硬化樹脂への照射装置92による紫外線の照射とが繰り返されることにより形成される。 Specifically, when the pallet 70 is set on the base 60 of the table 52 , the table 52 moves below the second modeling unit 24 . Then, in the second modeling unit 24, the resin laminate 122 is formed on the pallet 70, as shown in FIG. The resin layered body 122 is formed by repeating the ejection of the ultraviolet curable resin from the inkjet head 88 and the irradiation of the ultraviolet ray by the irradiation device 92 to the ejected ultraviolet curable resin.
 詳しくは、第2造形ユニット24の第2印刷部84において、インクジェットヘッド88が、パレット70の上面に紫外線硬化樹脂を薄膜状に吐出する。続いて、紫外線硬化樹脂が薄膜状に吐出されると、硬化部86において、紫外線硬化樹脂の膜厚が均一となるように、紫外線硬化樹脂が平坦化装置90によって平坦化される。そして、照射装置92が、その薄膜状の紫外線硬化樹脂に紫外線を照射する。これにより、パレット70の上に薄膜状の樹脂層124が形成される。 Specifically, in the second printing section 84 of the second modeling unit 24, the inkjet head 88 ejects the UV curable resin onto the upper surface of the pallet 70 in the form of a thin film. Subsequently, when the ultraviolet curable resin is discharged in the form of a thin film, the ultraviolet curable resin is flattened by the flattening device 90 in the curing section 86 so that the film thickness of the ultraviolet curable resin becomes uniform. Then, the irradiation device 92 irradiates the thin film-like ultraviolet curable resin with ultraviolet rays. Thereby, a thin resin layer 124 is formed on the pallet 70 .
 続いて、インクジェットヘッド88が、その薄膜状の樹脂層124の上に紫外線硬化樹脂を薄膜状に吐出する。そして、平坦化装置90によって薄膜状の紫外線硬化樹脂が平坦化され、照射装置92が、その薄膜状に吐出された紫外線硬化樹脂に紫外線を照射することで、薄膜状の樹脂層124の上に薄膜状の樹脂層124が積層される。このように、薄膜状の樹脂層124の上への紫外線硬化樹脂の吐出と、紫外線の照射とが繰り返され、複数の樹脂層124が積層されることで、樹脂積層体122が形成される。 Subsequently, the inkjet head 88 ejects a thin film of ultraviolet curable resin onto the thin resin layer 124 . Then, the flattening device 90 flattens the thin film of ultraviolet curable resin, and the irradiation device 92 irradiates the ultraviolet curable resin discharged in the form of a thin film with ultraviolet rays, thereby forming a thin film on the resin layer 124 . A thin film resin layer 124 is laminated. In this way, the resin layered body 122 is formed by repeating the discharge of the ultraviolet curable resin onto the thin resin layer 124 and the irradiation of the ultraviolet rays to laminate a plurality of resin layers 124 .
 次に、樹脂積層体122が形成されると、テーブル52が第1造形ユニット22の下方に移動する。そして、第1造形ユニット22の第1印刷部72において、インクジェットヘッド76が、図4に示すように、樹脂積層体122の上面に金属インク130を、回路パターンに応じて線状に吐出する。続いて、回路パターンに応じて吐出された金属インク130に、第1造形ユニット22の焼成部74において、赤外線照射装置78が赤外線を照射する。これにより、金属インク130が焼成し、樹脂積層体122の上面に配線132が形成される。 Next, when the resin laminate 122 is formed, the table 52 moves below the first modeling unit 22 . Then, in the first printing unit 72 of the first modeling unit 22, the inkjet head 76 linearly ejects the metal ink 130 onto the upper surface of the resin laminate 122 according to the circuit pattern, as shown in FIG. Subsequently, the infrared irradiation device 78 irradiates the metal ink 130 ejected according to the circuit pattern with infrared rays in the baking section 74 of the first modeling unit 22 . Thereby, the metal ink 130 is baked, and the wiring 132 is formed on the upper surface of the resin layered body 122 .
 このように、第2造形ユニット24においてパレット70の上に樹脂積層体122が形成されて、第1造形ユニット22において樹脂積層体122の上に配線132が形成されることで、回路基板136が形成される。なお、樹脂積層体122の上に形成される配線132は、金属インク130が積層されることで形成される。詳しくは、樹脂積層体122の上面に1層目の金属インク130が吐出され、その1層目の金属インク130に赤外線が照射される。これにより、1層目の金属インク130が焼成し、1層目の金属薄膜が形成される。次に、1層目の金属薄膜の上に2層目の金属インク130が吐出され、その2層目の金属インク130に赤外線が照射される。これにより、2層目の金属インク130が焼成し、2層目の金属薄膜が形成される。このように、金属インク130の吐出と赤外線の照射とが繰り返されることで、金属薄膜が積層されて、所定の厚さの配線132が形成される。 In this manner, the resin laminate 122 is formed on the pallet 70 in the second modeling unit 24, and the wiring 132 is formed on the resin laminate 122 in the first modeling unit 22, thereby forming the circuit board 136. It is formed. Note that the wiring 132 formed on the resin layered body 122 is formed by layering the metal ink 130 . Specifically, the first layer of metal ink 130 is discharged onto the upper surface of the resin laminate 122, and the first layer of metal ink 130 is irradiated with infrared rays. As a result, the first-layer metal ink 130 is baked to form the first-layer metal thin film. Next, a second layer of metal ink 130 is discharged onto the first layer of metal thin film, and the second layer of metal ink 130 is irradiated with infrared rays. As a result, the second-layer metal ink 130 is baked to form a second-layer metal thin film. In this way, by repeating the ejection of the metal ink 130 and the irradiation of the infrared rays, metal thin films are laminated to form the wiring 132 with a predetermined thickness.
 ただし、インクジェットヘッド76により金属インクが吐出される際に複数のノズル穴から金属インクが吐出されるが、複数のノズル穴から吐出された金属インクのドット(以下、「インクドット」と記載する)の位置ズレによって、断線した状態の配線が形成される虞がある。具体的には、図5に示すように、インクジェットヘッド76のノズル面150には、複数のノズル穴152が形成されている。ノズル面150は概して矩形であり、ノズル面150の長手方向がX方向を向く姿勢でインクジェットヘッド76に配設されている。そして、そのノズル面150に、複数のノズル穴152がX方向に延びるように2行に並んだ状態で形成されている。つまり、複数のノズル穴152が並ぶ長手方向が、ノズル面150の長手方向であり、X方向である。なお、X方向に並ぶ複数のノズル穴152は、等ピッチで形成されている。つまり、X方向に並ぶ複数のノズル穴152は、隣り合う2つのノズル穴152の間隔が同じとなるように形成されている。そして、インクジェットヘッド76により金属インクが吐出される際に、インクジェットヘッド76がY方向に移動することで、複数行のインクドットの配列からなる配列パターンで金属インクが吐出される。 However, when the inkjet head 76 ejects the metal ink, the metal ink is ejected from the plurality of nozzle holes. There is a possibility that a disconnected wiring may be formed due to the positional deviation of . Specifically, as shown in FIG. 5, a nozzle surface 150 of the inkjet head 76 is formed with a plurality of nozzle holes 152 . The nozzle surface 150 is generally rectangular, and is disposed on the inkjet head 76 such that the longitudinal direction of the nozzle surface 150 faces the X direction. A plurality of nozzle holes 152 are formed in two rows on the nozzle surface 150 so as to extend in the X direction. That is, the longitudinal direction in which the plurality of nozzle holes 152 are arranged is the longitudinal direction of the nozzle surface 150 and is the X direction. Note that the plurality of nozzle holes 152 arranged in the X direction are formed at equal pitches. That is, the plurality of nozzle holes 152 arranged in the X direction are formed so that the distance between two adjacent nozzle holes 152 is the same. When the inkjet head 76 ejects the metal ink, the inkjet head 76 moves in the Y direction, thereby ejecting the metal ink in an array pattern consisting of a plurality of rows of ink dots.
 具体的には、例えば、図6に示すように、X方向に延びる複数行のインクドット160の配列からなる配列パターンで金属インクが吐出される。なお、配列パターンは、インクドット160の重なり領域(図5での斜線)ができるように設計されており、配列パターンの設計時には、インクドット160の直径、つまり、金属インクの着弾径の直径に基づいてY方向での金属インクの吐出ピッチが演算される。そして、演算された吐出ピッチで金属インクが吐出されることで、インクドット160の重なり領域のある配列パターンで金属インクが吐出される。なお、配列パターンは、1層の金属インクの配列パターンであり、その配列パターンで吐出された金属インクが複数、積層されることで、配線が形成される。なお、複数層の各々の金属インクの吐出位置は同じとされている。つまり、配列パターンに従って金属インクが所定の位置で吐出される。そして、金属インクに赤外線が照射されることで、1層目の金属薄膜が形成される。続いて、1層目の金属薄膜の上に、1層目の金属インクの吐出位置と同じ位置に配列パターンに従って金属インクが吐出され、赤外線が照射されることで、2層目の金属薄膜が形成される。このように、配列パターンに従った同じ位置への金属インクの吐出と赤外線の照射とが繰り返されることで、金属薄膜が積層されて配線が形成される。 Specifically, for example, as shown in FIG. 6, the metal ink is ejected in an array pattern consisting of a plurality of rows of ink dots 160 extending in the X direction. The array pattern is designed so that the ink dots 160 overlap (slanted lines in FIG. 5). Based on this, the ejection pitch of the metal ink in the Y direction is calculated. Then, by ejecting the metal ink at the calculated ejection pitch, the metal ink is ejected in an array pattern with overlapping areas of the ink dots 160 . The array pattern is an array pattern of one layer of metal ink, and a wiring is formed by stacking a plurality of metal inks ejected according to the array pattern. It should be noted that the ejection positions of the respective metal inks of the plurality of layers are the same. That is, the metal ink is ejected at predetermined positions according to the array pattern. Then, by irradiating the metal ink with infrared rays, the first metal thin film is formed. Subsequently, on the metal thin film of the first layer, the metal ink is ejected according to the arrangement pattern at the same position as the ejection position of the metal ink of the first layer, and by irradiating the metal thin film of the second layer. It is formed. In this way, by repeating the ejection of the metal ink to the same position according to the arrangement pattern and the irradiation of the infrared rays, the metal thin films are laminated to form the wiring.
 しかしながら、インクジェットヘッド76のノズル面150に形成された複数のノズル穴の位置精度の公差によりインクドット160の位置ズレが生じる場合がある。また、大きな印刷エリアが1台のインクジェットヘッド若しくは複数台のインクジェットヘッドで分割して印刷される場合に、分割して印刷される繋ぎ目にインクドット160の位置ズレが生じる場合がある。このような場合に、インクドット160の位置ズレが、インクドット160の重なり領域より大きくなると、断線した配線が形成される虞がある。具体的には、配列パターンに従って金属インクを吐出しても、インクドット160の位置ズレにより、図7に示すように、インクドット160の重なり領域(斜線)の無い隙間166が生じる。このため、吐出された金属インクに赤外線が照射されると、隙間166のある状態の連続しない金属薄膜が形成される。そして、上述したように、配列パターンに従った同じ位置への金属インクの吐出と赤外線の照射とが繰り返されても、隙間166が残存し、断線した状態の配線が形成される。 However, positional deviation of the ink dots 160 may occur due to the tolerance of the positional accuracy of the plurality of nozzle holes formed in the nozzle surface 150 of the inkjet head 76 . Further, when a large print area is divided and printed by one inkjet head or a plurality of inkjet heads, positional deviation of the ink dots 160 may occur at the joints of the divided and printed areas. In such a case, if the positional deviation of the ink dots 160 becomes larger than the overlapping area of the ink dots 160, there is a possibility that a disconnected wiring is formed. Specifically, even if the metal ink is ejected according to the array pattern, gaps 166 without overlapping areas (hatched lines) of the ink dots 160 are generated as shown in FIG. 7 due to positional deviation of the ink dots 160 . Therefore, when the ejected metal ink is irradiated with infrared rays, a discontinuous metal thin film with gaps 166 is formed. Then, as described above, even if the ejection of the metal ink to the same position according to the array pattern and the irradiation of the infrared rays are repeated, the gap 166 remains and the disconnected wiring is formed.
 このようなことに鑑みて、奇数層の金属インクの吐出位置と偶数層の金属インクの吐出位置とを異ならせて、配線が形成される。具体的には、例えば、1層目の金属薄膜の形成時に、所定の位置に配列パターンに従って金属インクが吐出されることで、図8に示すように、複数行のインクドット160aの配列からなる配列パターンで金属インクが吐出される。そして、金属インクに赤外線が照射されることで、1層目の金属薄膜168aが形成される。なお、1層目の金属薄膜168aには、隙間166aが生じる。また、2層目の金属薄膜の形成時には、1層目の金属インクの吐出位置から0.5ピクセル、X方向にズラした位置に配列パターンに従って金属インクが吐出される。これにより、図8に示すように、複数行のインクドット160bの配列からなる配列パターンで金属インクが吐出される。そして、金属インクに赤外線が照射されることで、2層目の金属薄膜168bが形成される。 In view of this, the wiring is formed by differentiating the ejection position of the metal ink for the odd-numbered layers from the ejection position of the metal ink for the even-numbered layers. Specifically, for example, when the first layer of metal thin film is formed, metal ink is ejected according to an arrangement pattern at a predetermined position, so that a plurality of rows of ink dots 160a are arranged as shown in FIG. Metal ink is ejected in an array pattern. Then, by irradiating the metal ink with infrared rays, the metal thin film 168a of the first layer is formed. A gap 166a is formed in the metal thin film 168a of the first layer. When forming the second layer of metal thin film, the metal ink is ejected according to the array pattern at a position shifted in the X direction by 0.5 pixels from the ejection position of the first layer of metal ink. As a result, as shown in FIG. 8, the metal ink is ejected in an array pattern consisting of a plurality of rows of ink dots 160b. Then, by irradiating the metal ink with infrared rays, the second metal thin film 168b is formed.
 なお、2層目の金属薄膜168bにも、隙間166bが生じる。このように、1層目の金属薄膜168aと2層目の金属薄膜168bとの各々を単独で記すと、図8に示すように、各金属薄膜168a,bに隙間166a,bが生じる。ただし、実際は、1層目の金属薄膜168aの上に2層目の金属薄膜168bが積層されるため、図8に示すように、隙間の無い配線170が形成される。なお、1ピクセルは、X方向に延びる複数のノズル穴152の形成ピッチである。つまり、1ピクセルは、X方向に延びる複数のノズル穴152の隣り合う2つのノズル穴の一方の中心と他方の中心との間の距離であり、X方向に延びる複数のインクドット160の隣り合う2つのインクドットの一方の中心と他方の中心との間の距離である。また、上記説明では、2層の金属薄膜168a,bを積層させて配線170が形成されているが、例えば、7層の金属薄膜を積層させて配線が形成される場合には、1、3、5、7層目の金属インクが所定の位置に配列パターンに従って吐出され、2、4、6層目の金属インクが所定の位置から0.5ピクセル、X方向にズラした位置に配列パターンに従って吐出される。このように、奇数層目の金属インクが所定の位置に配列パターンに従って吐出され、偶数層目の金属インクが所定の位置から0.5ピクセル、X方向にズラした位置に配列パターンに従って吐出されることで、隙間の無い配線を形成することができる。 A gap 166b also occurs in the metal thin film 168b of the second layer. In this way, when each of the first-layer metal thin film 168a and the second-layer metal thin film 168b is individually described, gaps 166a and 166b are generated between the metal thin films 168a and 168b as shown in FIG. However, in practice, the metal thin film 168b of the second layer is laminated on the metal thin film 168a of the first layer, so that the wiring 170 without gaps is formed as shown in FIG. One pixel is the formation pitch of the plurality of nozzle holes 152 extending in the X direction. That is, one pixel is the distance between the center of one of two adjacent nozzle holes of the plurality of nozzle holes 152 extending in the X direction and the center of the other. It is the distance between the center of one of the two ink dots and the center of the other. In the above description, the wiring 170 is formed by stacking two layers of metal thin films 168a and 168b. , 5th and 7th layers of metal ink are ejected at predetermined positions according to the arrangement pattern, and 2nd, 4th and 6th layers of metal ink are ejected at positions shifted by 0.5 pixels in the X direction from the predetermined positions according to the arrangement pattern. Dispensed. In this way, the odd-numbered layers of metal ink are ejected at a predetermined position according to the array pattern, and the even-numbered layers of metal ink are ejected at a position shifted in the X direction by 0.5 pixel from the predetermined position according to the array pattern. Thus, wiring without gaps can be formed.
 ただし、奇数層目の金属薄膜が所定の位置に配列パターンに従って金属インクが吐出され、偶数層目の金属薄膜が、所定の位置から0.5ピクセル、X方向にズラした位置に配列パターンに従って金属インクが吐出されることで、配線の延びる方向によっては配線の幅が太くなる。具体的には、偶数層目の金属薄膜が、奇数層目の金属インクの吐出位置から0.5ピクセル、X方向にズラした位置に金属インクが吐出されても、図9に示すように、X方向に延びる配線170aでは、0.5ピクセルに相当する距離、長さが長くなるが、幅(=W1)は太くならない。一方、偶数層目の金属薄膜が、奇数層目の金属インクの吐出位置から0.5ピクセル、X方向にズラした位置に金属インクが吐出されることで、Y方向に延びる配線170bでは、長さは変わらないが、0.5ピクセルに相当する距離、幅(=W2)は太くなる。このように、Y方向に延びる配線170bの幅寸法(=W2)は、X方向に延びる配線170aの幅寸法(=W1)より0.5ピクセルに相当する距離、太くなる。 However, the odd-numbered metal thin films are ejected according to the array pattern at predetermined positions, and the even-numbered metal thin films are displaced from the predetermined positions by 0.5 pixel in the X direction with metal ink according to the array pattern. By ejecting ink, the width of the wiring increases depending on the direction in which the wiring extends. Specifically, as shown in FIG. 9, even if the even-numbered metal thin film is ejected at a position shifted in the X direction by 0.5 pixels from the ejection position of the odd-numbered metal ink, The wiring 170a extending in the X direction increases in length and distance corresponding to 0.5 pixel, but does not increase in width (=W1). On the other hand, the even-numbered metal thin film is ejected at a position shifted in the X direction by 0.5 pixel from the ejection position of the odd-numbered metal ink. Although the height does not change, the distance corresponding to 0.5 pixel and the width (=W2) become thicker. Thus, the width dimension (=W2) of the wiring 170b extending in the Y direction is thicker than the width dimension (=W1) of the wiring 170a extending in the X direction by a distance corresponding to 0.5 pixel.
 このように、配線の延びる方向によって配線の幅が太くなると、配線が太くなることで、短絡が発生する虞がある。また、回路設計において配線の幅寸法はW1であるのに、幅寸法がW2の配線が形成されることは、設計通りに配線が形成されないこととなり、望ましくない。このようなことに鑑みて、奇数層目の金属インクの吐出位置から0.5ピクセル、X方向にズラした位置に金属インクが吐出される偶数層目の配列パターンは、奇数層目の配列パターンからX方向での端に位置する1列のインクドット160を除去した配列パターンとされている。具体的には、例えば、奇数層目の配列パターン180aを図10に示す。そして、その奇数層目の配列パターン180aからX方向での端に位置する1列のインクドット(図10の点線)160cを除去する。これにより、図11に示すように、偶数層目の配列パターン180bは、奇数層目の配列パターン180aからX方向での端に位置する1列のインクドット160cを除去した配列パターンとなる。そして、奇数層目の金属インクが所定の位置に配列パターン180a(図10)に従って吐出され、偶数層目の金属インクが所定の位置から0.5ピクセル、X方向にズラした位置に配列パターン180b(図11)に従って吐出されることで、配線の延びる方向に関わらず同じ幅の配線を形成することができる。つまり、図12に示すように、Y方向に延びる配線170bの幅(=W1)と、X方向に延びる配線170aの幅(=W1)とを同じにすることができる。 In this way, if the width of the wiring increases depending on the direction in which the wiring extends, the thickening of the wiring may cause a short circuit. Further, it is not desirable to form a wiring with a width of W2 when the width of the wiring is W1 in the circuit design, because the wiring is not formed as designed. In view of this, the even-layer arrangement pattern in which the metal ink is ejected at a position shifted in the X direction by 0.5 pixel from the ejection position of the metal ink in the odd-numbered layer is the odd-numbered array pattern. The array pattern is obtained by removing one row of ink dots 160 positioned at the end in the X direction from the top. Specifically, for example, an odd-numbered layer arrangement pattern 180a is shown in FIG. Then, one line of ink dots (dotted line in FIG. 10) 160c positioned at the end in the X direction from the odd-numbered array pattern 180a is removed. As a result, as shown in FIG. 11, the even-layer array pattern 180b becomes an array pattern obtained by removing one line of ink dots 160c positioned at the end in the X direction from the odd-layer array pattern 180a. Then, the odd-numbered layers of metallic ink are ejected at predetermined positions according to the arrangement pattern 180a (FIG. 10), and the even-numbered layers of metallic ink are ejected at positions shifted by 0.5 pixels in the X direction from the prescribed positions. Wiring having the same width can be formed regardless of the direction in which the wiring extends by discharging according to (FIG. 11). That is, as shown in FIG. 12, the width (=W1) of the wiring 170b extending in the Y direction can be made the same as the width (=W1) of the wiring 170a extending in the X direction.
 ただし、偶数層目の配列パターン180bを、奇数層目の配列パターン180aからX方向での端に位置する1列のインクドット160cを除去した配列パターンとすることで、配線の幅を同じにすることはできるが、配線の延びる方向によって配線の電気的な品質が変わる。具体的には、偶数層目の配列パターン180bを、奇数層目の配列パターン180aからX方向での端に位置する1列のインクドット160cを除去した配列パターンとした場合に、Y方向に延びる配線170bでは、幅方向(X方向)の1列のインクドット160cが除去されている。一方、X方向に延びる配線170aでは、長さ方向(X方向)の1列のインクドット160cが除去されている。つまり、X方向に延びる配線170aでは、幅方向(Y方向)のインクドット160cは除去されていない。このため、Y方向に延びる配線170bの幅方向での断面積は、X方向に延びる配線170aの断面積より小さくなる。このように、Y方向に延びる配線170bの幅方向での断面積と、X方向に延びる配線170aの断面積とが異なると、配線の延びる方向によって抵抗値などが異なり、配線の電気的な品質が変わる。 However, the even-layered array pattern 180b is an array pattern obtained by removing one row of ink dots 160c located at the end in the X direction from the odd-layered array pattern 180a, thereby making the wiring widths the same. However, the electrical quality of the wiring varies depending on the direction in which the wiring extends. Specifically, when the even-numbered array pattern 180b is an array pattern obtained by removing one row of ink dots 160c located at the end in the X direction from the odd-numbered array pattern 180a, the dots extend in the Y direction. One row of ink dots 160c in the width direction (X direction) is removed from the wiring 170b. On the other hand, in the wiring 170a extending in the X direction, one row of ink dots 160c in the length direction (X direction) is removed. That is, in the wiring 170a extending in the X direction, the ink dots 160c in the width direction (Y direction) are not removed. Therefore, the cross-sectional area in the width direction of the wiring 170b extending in the Y direction is smaller than the cross-sectional area of the wiring 170a extending in the X direction. Thus, if the cross-sectional area of the wiring 170b extending in the Y direction in the width direction differs from the cross-sectional area of the wiring 170a extending in the X direction, the resistance value and the like differ depending on the direction in which the wiring extends, and the electrical quality of the wiring is affected. changes.
 このようなことに鑑みて、偶数層目の配列パターンを、奇数層目の配列パターン180aからX方向での端に位置する1列のインクドット160cだけでなく、X方向での端に位置する1列のインクドットも除去した配列パターンする。具体的には、図13に示すように、奇数層目の配列パターン180aからX方向での端に位置する1列のインクドット160cを除去するとともに、Y方向での端に位置する1行のインクドット(図10の一点鎖線)160dも除去する。これにより、図14に示すように、偶数層目の配列パターン180cは、奇数層目の配列パターン180aからX方向での端に位置する1列のインクドット160cだけでなく、Y方向での端に位置する1行のインクドット160dも除去した配列パターンとなる。そして、奇数層目の金属インクが所定の位置に配列パターン180a(図13)に従って吐出され、偶数層目の金属インクが所定の位置から0.5ピクセル、X方向にズラした位置に配列パターン180c(図14)に従って吐出されることで、配線の延びる方向に関わらず配線の幅方向の断面積を同じにすることができる。これにより、Y方向に延びる配線170bの電気的品質と、X方向に延びる配線170aの電気的品質とを同じにすることができる。つまり、配線の延びる方向に関わらず同じ電気的品質の配線を形成することができる。 In view of this, the array pattern of the even-numbered layer is not only the one row of ink dots 160c located at the end in the X direction from the array pattern 180a of the odd-numbered layer, but also the ink dot 160c located at the end in the X direction. An array pattern in which one line of ink dots is also removed is formed. Specifically, as shown in FIG. 13, one column of ink dots 160c located at the end in the X direction is removed from the array pattern 180a of the odd-numbered layer, and one row of ink dots located at the end in the Y direction is removed. The ink dot (chain line in FIG. 10) 160d is also removed. As a result, as shown in FIG. 14, the even-numbered array pattern 180c includes not only one row of ink dots 160c positioned at the end in the X direction from the odd-numbered array pattern 180a, but also a row of ink dots 160c located at the end in the Y direction. 1 line of ink dots 160d positioned at . Then, the odd-numbered layers of metallic ink are ejected at predetermined positions according to the array pattern 180a (FIG. 13), and the even-numbered layers of metallic ink are ejected at positions shifted by 0.5 pixel in the X direction from the predetermined positions, in the array pattern 180c. By discharging according to (FIG. 14), the cross-sectional area in the width direction of the wiring can be made the same regardless of the direction in which the wiring extends. Thereby, the electrical quality of the wiring 170b extending in the Y direction can be made the same as the electrical quality of the wiring 170a extending in the X direction. In other words, wiring with the same electrical quality can be formed regardless of the direction in which the wiring extends.
 ちなみに、制御装置28のコントローラ110は、図2に示すように、第1演算部200と第2演算部202と第1吐出部204と第2吐出部206とを有している。第1演算部200は、コントローラ110が複数行のインクドットの配列からなる奇数層目の配列パターン180aを演算するための機能部である。第2演算部202は、奇数層目の配列パターン180aから1列のインクドット160cと1行のインクドット160dを除去して、奇数層目の金属インクの吐出位置から0.5ピクセル、X方向にズラした配列パターンを、偶数層目の配列パターン180cとして演算するための機能部である。第1吐出部204は、奇数層目の配列パターン180aに従って金属インクを吐出するための機能部である。第2吐出部206は、奇数層目に吐出された金属インクの上に、奇数層目の金属インクの吐出位置から0.5ピクセル、X方向にズラした位置に偶数層目の配列パターン180cに従って金属インクを吐出するための機能部である。 By the way, the controller 110 of the control device 28 has a first calculation section 200, a second calculation section 202, a first ejection section 204, and a second ejection section 206, as shown in FIG. The first calculation unit 200 is a functional unit for the controller 110 to calculate the odd-numbered layer array pattern 180a composed of a plurality of lines of ink dot arrays. The second calculation unit 202 removes one column of ink dots 160c and one row of ink dots 160d from the odd-numbered layer array pattern 180a, and removes 0.5 pixels from the odd-numbered layer metal ink ejection position in the X direction. It is a functional unit for calculating the shifted array pattern as the even-layer array pattern 180c. The first ejection section 204 is a functional section for ejecting the metal ink according to the odd-numbered array pattern 180a. The second ejection unit 206 displaces 0.5 pixels in the X direction from the ejection position of the odd-numbered metallic ink onto the metallic ink ejected to the odd-numbered layer according to the even-numbered array pattern 180c. It is a functional part for ejecting metal ink.
 なお、上記実施例において、制御装置28は、情報処理装置の一例である。ノズル穴152は、ノズル穴の一例である。第1演算部200は、第1演算部の一例である。第2演算部202は、第2演算部の一例である。また、第1吐出部204により実行される工程は、第1吐出工程の一例である。第2吐出部206により実行される工程は、第2吐出工程の一例である。 It should be noted that in the above embodiment, the control device 28 is an example of an information processing device. The nozzle hole 152 is an example of a nozzle hole. The first calculator 200 is an example of a first calculator. The second calculator 202 is an example of a second calculator. Also, the process executed by the first ejection section 204 is an example of the first ejection process. The process executed by the second ejection section 206 is an example of the second ejection process.
 なお、本発明は、上記実施例に限定されるものではなく、当業者の知識に基づいて種々の変更、改良を施した種々の態様で実施することが可能である。例えば、上記実施例では、奇数層目の配列パターン180aから1列のインクドット160cと1行のインクドット160dを除去した配列パターン180cに従って、奇数層目の金属インクの吐出位置から0.5ピクセル、X方向にズラした位置に偶数層目の金属インクが吐出されている。一方で、奇数層目の配列パターン180aから1列のインクドット160cを除去した配列パターン180bに従って、奇数層目の金属インクの吐出位置から0.5ピクセル、X方向にズラした位置に偶数層目の金属インクが吐出されてもよい。このような場合には、配線の延びる方向によって配線の電気的な品質は変わるが、配線の延びる方向に関わらず同じ幅の配線を形成することができる。 It should be noted that the present invention is not limited to the above embodiments, and can be implemented in various aspects with various modifications and improvements based on the knowledge of those skilled in the art. For example, in the above-described embodiment, 0.5 pixels from the ejection position of the metal ink on the odd-numbered layer according to the array pattern 180c obtained by removing one column of ink dots 160c and one row of ink dots 160d from the odd-numbered layer array pattern 180a. , the even-numbered layers of metal ink are ejected at positions shifted in the X direction. On the other hand, according to the array pattern 180b obtained by removing one row of ink dots 160c from the array pattern 180a of the odd-numbered layer, the even-numbered layer is shifted in the X direction by 0.5 pixels from the ejection position of the metal ink on the odd-numbered layer. of metal ink may be ejected. In such a case, although the electrical quality of the wiring varies depending on the direction in which the wiring extends, it is possible to form the wiring with the same width regardless of the direction in which the wiring extends.
 また、上記実施例では、奇数層目の金属インクの吐出位置から0.5ピクセル、X方向にズラした位置に偶数層目の配列パターン180cに従って金属インクが吐出されているが、ズレ量は1ピクセルより狭い間隔であればよい。このため、奇数層目の金属インクの吐出位置から0ピクセルより広く、1ピクセルより狭い間隔、X方向にズラした位置に偶数層目の配列パターン180cに従って金属インクが吐出されればよい。 In the above-described embodiment, the metal ink is ejected according to the even-layer array pattern 180c at a position shifted in the X direction by 0.5 pixels from the ejection position of the odd-numbered metal ink, but the amount of deviation is 1. Any interval narrower than a pixel is sufficient. Therefore, the metal ink may be ejected according to the even-layer arrangement pattern 180c at a position shifted in the X direction by a distance of more than 0 pixel and narrower than 1 pixel from the ejection position of the metal ink on the odd-number layer.
 また、上記実施例では、制御装置28のコントローラ110において、配列パターンが演算されて、その演算された配列パターンで金属インクを吐出するように第1造形ユニット22の作動が制御される。一方で、制御装置28と異なる情報処理装置において、配列パターンが演算されてもよい。そして、情報処理装置で演算された配列パターンが制御装置28に入力されて、制御装置28において、入力された配列パターンで金属インクを吐出するように第1造形ユニット22の作動が制御されてもよい。つまり、情報処理装置が、第1演算部200と第2演算部202とを備え、制御装置28のコントローラ110が第1吐出部204と第2吐出部206とを備えていてもよい。 Further, in the above embodiment, the controller 110 of the control device 28 calculates the array pattern, and controls the operation of the first modeling unit 22 so that the metal ink is ejected according to the calculated array pattern. On the other hand, the arrangement pattern may be calculated in an information processing device different from the control device 28 . The arrangement pattern calculated by the information processing device is input to the control device 28, and the control device 28 controls the operation of the first molding unit 22 so that the metal ink is ejected according to the input arrangement pattern. good. That is, the information processing device may include the first calculation section 200 and the second calculation section 202 , and the controller 110 of the control device 28 may include the first discharge section 204 and the second discharge section 206 .
 また、上記実施例では、配線を形成するための金属インクが金属含有液として採用されているが、金属微粒子を含有するものであれば、種々の金属含有液を採用することができる。具体的に、例えば、マイクロメートルサイズの金属微粒子が溶剤中に分散された導電性ペーストを、金属含有液として採用することができる。 Also, in the above examples, the metal ink for forming the wiring is used as the metal-containing liquid, but various metal-containing liquids can be used as long as they contain fine metal particles. Specifically, for example, a conductive paste in which micrometer-sized metal fine particles are dispersed in a solvent can be employed as the metal-containing liquid.
 28:制御装置(情報処理装置)  152:ノズル穴  200:第1演算部  202:第2演算部  204:第1吐出部(第1吐出工程)  206:第2吐出部(第2吐出工程) 28: Control device (information processing device) 152: Nozzle hole 200: First calculation unit 202: Second calculation unit 204: First discharge unit (first discharge process) 206: Second discharge unit (second discharge process)

Claims (4)

  1.  金属微粒子を含有する金属含有液を、所定の方向に延びる複数行のインクドットの配列からなる第1の配列パターンで吐出する第1吐出工程と、
     前記第1吐出工程で吐出された金属含有液の上に、前記第1の配列パターンから前記所定の方向での端に位置する1列のインクドットを除去した配列パターンで、前記第1吐出工程での金属含有液の吐出位置からインクドットのピッチより狭い間隔に相当する距離、前記所定の方向にズラした位置に金属含有液を吐出する第2吐出工程と、
     を含み、複数層の金属含有液を積層することで配線を形成する配線形成方法。
    a first ejection step of ejecting a metal-containing liquid containing fine metal particles in a first array pattern consisting of a plurality of rows of ink dots extending in a predetermined direction;
    An array pattern obtained by removing one line of ink dots located at an end in the predetermined direction from the first array pattern on the metal-containing liquid ejected in the first ejecting step, and the first ejecting step a second ejection step of ejecting the metal-containing liquid to a position shifted in the predetermined direction by a distance corresponding to an interval narrower than the pitch of the ink dots from the ejection position of the metal-containing liquid;
    A wiring forming method for forming wiring by laminating a plurality of layers of a metal-containing liquid.
  2.  前記第2吐出工程は、
     前記第1吐出工程で吐出された金属含有液の上に、前記第1の配列パターンから前記1列のインクドットだけでなく、前記所定の方向と交差する方向での端に位置する1行のインクドットを除去した配列パターンで、金属含有液を吐出する請求項1に記載の配線形成方法。
    The second discharging step includes
    On the metal-containing liquid ejected in the first ejection step, not only the one row of ink dots from the first array pattern, but also one row of ink dots located at the end in the direction intersecting the predetermined direction 2. The wiring forming method according to claim 1, wherein the metal-containing liquid is ejected in an array pattern from which ink dots are removed.
  3.  前記所定の方向は、金属含有液を吐出する複数のノズル穴の並ぶ長手方向である請求項1または請求項2に記載の配線形成方法。 The wiring forming method according to claim 1 or 2, wherein the predetermined direction is a longitudinal direction in which a plurality of nozzle holes for ejecting the metal-containing liquid are arranged.
  4.  金属微粒子を含有する金属含有液を積層させて配線を形成する際のN層目の金属インクの配列パターンとして、所定の方向に延びる複数行のインクドットの配列からなる第1の配列パターンを演算する第1演算部と、
     (N+1)層目の金属インクの配列パターンとして、前記第1の配列パターンから前記所定の方向での端に位置する1列のインクドットを除去するとともに前記所定の方向と交差する方向での端に位置する1行のインクドットを除去した配列パターンを、前記第1の配列パターンでの金属含有液の吐出位置からインクドットのピッチより狭い間隔に相当する距離、前記所定の方向にズラした配列パターンを演算する第2演算部と、
     を備える情報処理装置。
    A first array pattern consisting of a plurality of rows of ink dots extending in a predetermined direction is calculated as the array pattern of the N-th layer of metal ink when wiring is formed by laminating the metal-containing liquid containing metal fine particles. a first computing unit for
    As the arrangement pattern of the (N+1)-th layer of metallic ink, one line of ink dots located at the end in the predetermined direction is removed from the first arrangement pattern, and the end in the direction intersecting the predetermined direction is removed. The array pattern obtained by removing one line of ink dots located in the first array pattern is shifted in the predetermined direction by a distance corresponding to an interval narrower than the pitch of the ink dots from the ejection position of the metal-containing liquid in the first array pattern. a second computing unit that computes the pattern;
    Information processing device.
PCT/JP2021/037360 2021-10-08 2021-10-08 Wiring forming method, and information processing device WO2023058227A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/037360 WO2023058227A1 (en) 2021-10-08 2021-10-08 Wiring forming method, and information processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/037360 WO2023058227A1 (en) 2021-10-08 2021-10-08 Wiring forming method, and information processing device

Publications (1)

Publication Number Publication Date
WO2023058227A1 true WO2023058227A1 (en) 2023-04-13

Family

ID=85804065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/037360 WO2023058227A1 (en) 2021-10-08 2021-10-08 Wiring forming method, and information processing device

Country Status (1)

Country Link
WO (1) WO2023058227A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005057140A (en) * 2003-08-06 2005-03-03 Seiko Epson Corp Multilayer wiring board and its manufacturing method
JP2008160105A (en) * 2006-12-20 2008-07-10 Palo Alto Research Center Inc Printing method of smooth microscale profile
JP2011181701A (en) * 2010-03-01 2011-09-15 Seiko Epson Corp Method of forming conductor pattern, wiring substrate, droplet discharge apparatus, and program
JP2012084566A (en) * 2010-10-06 2012-04-26 Fuji Mach Mfg Co Ltd Formation method of lamination printing part
JP2013110315A (en) * 2011-11-22 2013-06-06 Fujifilm Corp Conductive pattern formation method and conductive pattern formation system
WO2013103298A1 (en) * 2012-01-02 2013-07-11 Mutracx B.V. Inkjetsystem for printing a printed circuit board

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005057140A (en) * 2003-08-06 2005-03-03 Seiko Epson Corp Multilayer wiring board and its manufacturing method
JP2008160105A (en) * 2006-12-20 2008-07-10 Palo Alto Research Center Inc Printing method of smooth microscale profile
JP2011181701A (en) * 2010-03-01 2011-09-15 Seiko Epson Corp Method of forming conductor pattern, wiring substrate, droplet discharge apparatus, and program
JP2012084566A (en) * 2010-10-06 2012-04-26 Fuji Mach Mfg Co Ltd Formation method of lamination printing part
JP2013110315A (en) * 2011-11-22 2013-06-06 Fujifilm Corp Conductive pattern formation method and conductive pattern formation system
WO2013103298A1 (en) * 2012-01-02 2013-07-11 Mutracx B.V. Inkjetsystem for printing a printed circuit board

Similar Documents

Publication Publication Date Title
CN109315066B (en) Circuit forming method
US7595716B2 (en) Electronic component and method for manufacturing the same
WO2023058227A1 (en) Wiring forming method, and information processing device
WO2018142577A1 (en) Circuit formation method and circuit formation device
WO2016189577A1 (en) Wiring forming method
US8304015B2 (en) Resin film forming method, resin film forming apparatus, and electronic circuit board manufacturing method
WO2017212567A1 (en) Method for forming circuit
WO2017002926A1 (en) Molding device and molding method
JP6663516B2 (en) Circuit forming method and circuit forming apparatus
JP2019217669A (en) Printing method and printer
JP7428470B2 (en) Circuit formation method
CN114669455A (en) Preparation method of electromagnetic shielding layer
JP7282906B2 (en) Component mounting method and component mounting device
JP6909920B2 (en) Information processing device
WO2023079607A1 (en) Circuit-forming method and circuit-forming apparatus
JP2020080379A (en) Device and method for forming film
JPWO2019016920A1 (en) Wiring forming method and wiring forming apparatus
JP2023131281A (en) Electric circuit formation method and control program
JP6866198B2 (en) Circuit forming device
WO2023058230A1 (en) Circuit forming method and information processing device
WO2019159307A1 (en) Ink jet printing device
WO2022176152A1 (en) Printing work machine, work system, and printing method
WO2023112205A1 (en) Three-dimensional laminate shaping device
WO2024062605A1 (en) Circuit forming device and circuit forming method
KR102268603B1 (en) Substrate, display panel and substrate manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21959968

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023552659

Country of ref document: JP