WO2023056985A1 - 荧光免疫检测分析仪温育温度控制方法、介质、pcr检测系统 - Google Patents

荧光免疫检测分析仪温育温度控制方法、介质、pcr检测系统 Download PDF

Info

Publication number
WO2023056985A1
WO2023056985A1 PCT/CN2022/129446 CN2022129446W WO2023056985A1 WO 2023056985 A1 WO2023056985 A1 WO 2023056985A1 CN 2022129446 W CN2022129446 W CN 2022129446W WO 2023056985 A1 WO2023056985 A1 WO 2023056985A1
Authority
WO
WIPO (PCT)
Prior art keywords
incubation
temperature
immunoassay analyzer
heating
module
Prior art date
Application number
PCT/CN2022/129446
Other languages
English (en)
French (fr)
Inventor
林佳慧
黄维雷
颜金鹏
Original Assignee
苏州国科均豪生物科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州国科均豪生物科技有限公司 filed Critical 苏州国科均豪生物科技有限公司
Publication of WO2023056985A1 publication Critical patent/WO2023056985A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/18Means for temperature control
    • B01L2300/1805Conductive heating, heat from thermostatted solids is conducted to receptacles, e.g. heating plates, blocks

Definitions

  • the invention relates to the technical field of fluorescence detection, in particular to a method for controlling the incubation temperature of a fluorescence immunoassay analyzer, a medium, and a PCR detection system.
  • the substance for nucleic acid detection is the nucleic acid of the virus. Nucleic acid detection is to find out whether there is nucleic acid of foreign invading virus in the respiratory specimen, blood or stool of the patient, so as to determine whether it is infected by the virus. Therefore, once the test is positive for nucleic acid, it can prove that there is a virus in the patient's body. All organisms contain nucleic acid, which includes deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). Taking the new coronavirus as an example, it is a virus that only contains RNA. The specific RNA sequence in the virus is to distinguish the virus from other Pathogen markers. During clinical laboratory testing, if the specific nucleic acid sequence of the new coronavirus can be detected in the patient sample, it should be suggested that the patient may be infected by the new coronavirus.
  • DNA deoxyribonucleic acid
  • RNA ribonucleic acid
  • the most common method for detecting virus-specific sequences is fluorescent quantitative PCR (polymerase chain reaction). It is a method of measuring the total amount of products after each polymerase chain reaction cycle with a fluorescent chemical substance in a DNA amplification reaction, and a method for quantitative analysis of a specific DNA sequence in a sample to be tested by using an internal or external reference method .
  • the fluorescent quantitative PCR instrument can monitor that the number of cycles (Ct value) at which the fluorescence reaches a preset threshold is related to the concentration of viral nucleic acid. The higher the concentration of viral nucleic acid, the smaller the Ct value.
  • the traditional nucleic acid detection method has many processing steps, takes a long time, has a low degree of automation, and is easily disturbed by the environment.
  • the object of the present invention is to provide a method for controlling the incubation temperature of a fluorescent immunoassay analyzer, comprising the following steps:
  • the incubation executable parameters include at least a temperature value
  • the incubation module of the fluorescent immunoassay analyzer is equipped with at least Two mutually independent heating devices.
  • the incubation executable parameters also include a sequence of temperature changes
  • the movement sequence of the different heating devices is controlled according to the temperature change sequence, so that the different heating devices sequentially provide heating at different temperatures to the disc.
  • the incubation executable parameters also include working hours;
  • the incubation time when different heating devices are in contact with the disk is configured according to the working time.
  • the incubation executable parameters also include moving distance
  • the movement of the disk and/or the incubation module is configured according to the moving distance, so as to change the relative distance between the disk and/or the incubation module.
  • the incubation executable parameters also include motion angle
  • the movement mode of the incubation module and/or the disk is configured according to the movement angle, so that the incubation module is close to the area to be incubated on the disk.
  • the disc type can be identified by identifying the physical structural features of the disc and/or acquiring information data of identifiable information modules on the disc;
  • the present invention also provides a medium on which a computer program is stored, and the computer program is executed by a processor to perform the method as described above.
  • the present invention also provides a PCR detection system, including: a reaction module arranged sequentially from top to bottom; an incubation module configured to perform the above-mentioned incubation temperature switching method; a chip rotation mechanism, a movement movement mechanism, and a fluorescence detection module ; The contact between different incubation modules and the reaction chambers on the disk is controlled in turn through the movement mechanism, so as to alternately control the temperature of the reaction chambers.
  • the moving mechanism includes: a fixed plate, a guide rod and a push rod, one end of the guide rod is connected to the fixed plate, and the other end is connected to the heating device; the push rod pushes the fixed plate to move, to drive the heating device to move towards the reaction chamber on the disk.
  • the invention relates to a method for controlling the incubation temperature of a fluorescence immunoassay analyzer, comprising the following steps: obtaining the incubation rule of the fluorescence immunoassay analyzer; configuring the incubation module and/or disc of the fluorescence immunoassay analyzer according to the incubation rule
  • the executable parameters of the incubation match the heating device corresponding to the temperature in the incubation module according to the temperature value, so as to realize the heating at different temperatures during the incubation of the disk until the entire reaction process is completed.
  • the invention also relates to a medium and a PCR detection system.
  • Fig. 1 is the structural representation of the incubation module of the present invention
  • Fig. 2 is the structural representation of several heating devices of the present invention.
  • Fig. 3 is the structural representation of moving mechanism of the present invention.
  • Fig. 4 is a schematic structural view of different heating bodies of the present invention.
  • Fig. 5 is the structural representation of the second heating device of the present invention.
  • Fig. 6 is a structural schematic diagram of a third heating device of the present invention.
  • Fig. 7 is a structural schematic diagram of the first heating device of the present invention.
  • Fig. 8 is a structural schematic diagram of the chip rotation mechanism of the present invention.
  • Fig. 9 is a schematic structural view of the fluorescence detection module of the present invention.
  • Fig. 10 is a flow chart of a method for controlling the incubation temperature of a fluorescent immunoassay analyzer of the present invention
  • Fig. 11 is a flowchart of a method for obtaining temperature rules in an embodiment of the present invention.
  • Fig. 12 is a flow chart of a method for obtaining temperature rules in another embodiment of the present invention.
  • the second heating device 120.
  • the second heating device 121.
  • the third heating device 131.
  • Chip rotation mechanism 1031. Servo motor; 1032. Servo motor vertical plate; 1033. Servo motor fixing plate; 1034. Chip fixing bracket; 1035. Microfluidic chip;
  • a fluorescence detection module 1041.
  • a spectroscopic sheet 1042.
  • a light emitter 1043.
  • An imaging detector 1041.
  • a method for controlling the incubation temperature of a fluorescent immunoassay analyzer comprising the following steps, as shown in Figure 10:
  • S101 Obtain the incubation rule of the fluorescent immunoassay analyzer; the incubation rule can be input by the user or identified by the information identification module to obtain the corresponding incubation rule.
  • the user can directly customize and input corresponding incubation rules according to the type of sample to be detected, expected incubation time, temperature, etc.; in other embodiments, the identification of the information module can be used to obtain the incubation rules. rule.
  • S111 Obtain the category of the sample to be tested added to the disk; that is, obtain the name of the sample to be tested added; on the one hand, the name of the sample to be tested can be automatically input; on the other hand, the information on the container loaded with the sample to be tested can be scanned
  • the identification module acquires the name of the sample to be tested.
  • S112 Match the incubation rules of the fluorescent immunoassay analyzer according to the type of the sample. Since different samples to be tested correspond to different amplification temperatures, the corresponding values of different samples to be tested and amplification temperatures can be formulated in advance as a database and stored in the computer medium. Measure the amplification temperature corresponding to the sample.
  • the disc type can be identified by identifying the physical structural features of the disc (additional structural features on the disc) and/or acquiring information data of an identifiable information module (such as an NFC module) on the disc;
  • S122 Match the incubation rules of the fluorescent immunoassay analyzer according to the disk type.
  • additional structural features can be added on the disk, and different structural features correspond to the temperatures of different incubation modules. Get the required temperature value based on the structural characteristics of the obtained disk.
  • NFC modules can be installed on different discs, and when the discs are placed in the fluorescent immunoassay analyzer, the incubation temperature value corresponding to the discs can be obtained by reading the information of the NFC modules on the discs. In this example, the characteristics of the disc dictate the temperature of the different incubation modules.
  • S102 Configure the incubation executable parameters of the incubation module and/or disk of the fluorescent immunoassay analyzer according to the incubation rules; wherein, the incubation executable parameters include at least a temperature value;
  • the incubation executable parameters of the incubation module of the fluorescent immunoassay analyzer are configured according to the incubation rule, that is, the temperature values of different temperature modules are configured to provide the disk with the required temperature value for the incubation reaction.
  • the incubation executable parameters of the disk of the fluorescent immunoassay analyzer are configured according to the incubation rule, that is, the required temperature value of the detected object carried on the disk is configured according to the incubation rule.
  • the incubation executable parameters of the incubation module and the disk can also be configured according to the incubation rule, so as to provide a more accurate incubation temperature value for the disk.
  • S103 Match the heating device corresponding to the temperature in the incubation module according to the temperature value, so as to realize heating at different temperatures during the disk incubation process until the entire reaction process is completed; wherein, the incubation module of the fluorescent immunoassay analyzer is equipped with at least Two mutually independent heating devices.
  • the method for controlling the incubation temperature of the fluorescent immunoassay analyzer of the present invention can automatically match and perform corresponding incubation operations, is simple and flexible, and has good user experience.
  • executable parameters of incubation also include the sequence of temperature changes
  • the movement sequence of the different heating devices is controlled according to the temperature change sequence, so that the different heating devices sequentially provide heating at different temperatures to the disc. Because different samples to be detected require different amplification temperatures when performing immunoassays, and the numerical values of the amplification temperatures change differently. Specifically, in one embodiment, the required temperature of a sample to be detected in the disk during the detection process and its sequence are 50°C to 95°C to 75°C; The desired temperature and its sequence are from 50°C to 75°C to 50°C to 90°C. The incubation sequence can be adjusted at any time according to the different samples to be detected.
  • the incubation executable parameters also include working hours
  • a heating device with a temperature of 50°C is placed in contact with the disc for 10 minutes, a heating device with a temperature of 75°C is placed in contact with the disc for 15 minutes, and a heating device with a temperature of 90°C is placed in contact with the disc. Contact for 15 minutes.
  • a heating device with a temperature of 50°C is placed in contact with the disc for 15 minutes, a heating device with a temperature of 75°C is placed in contact with the disc for 10 minutes, and a heating device with a temperature of 90°C is placed in contact with the disc for 15 minutes. minute.
  • the contact time between different heating devices and the disk can be adjusted at any time according to the difference of the samples to be detected, so as to ensure the complete amplification of the samples to be detected.
  • the executable parameter of incubation also includes moving distance
  • the movement of the disk and/or the incubation module is configured according to the moving distance, so as to change the relative distance between the disk and/or the incubation module.
  • the movement of the disk can be controlled to shorten the distance between the disk and the heating device in the incubation module, so as to provide a suitable temperature for the disk.
  • the movement of the incubation module can be controlled to shorten the distance between the disk and the heating device in the incubation module, so that the heating device can provide a suitable temperature for the disk. It should be understood that both the disk and the heating device in the temperature module can also be controlled to participate in the movement to shorten the distance between the disk and the heating device, so that the heating device can provide an appropriate temperature for the disk.
  • the incubation executable parameters also include motion angles
  • the movement mode of the incubation module and/or the disk is configured according to the movement angle, so that the incubation module is close to the area to be incubated on the disk.
  • the movement mode of the incubation module is configured according to the movement angle.
  • the movement mode of the disk is configured according to the movement angle.
  • the heating device does not correspond to all the areas to be incubated on the disk, and it is necessary to drive the disk to rotate and lift so that the heating device contacts all the areas to be incubated on the disk. incubation area.
  • the disk can be close to the heating device in a vertical direction, and can also be rotated to contact the heating device.
  • the present invention relates to a medium on which a computer program is stored, and the computer program is executed by a processor such as the method in the first embodiment.
  • a PCR detection system comprising: a reaction module arranged sequentially from top to bottom; an incubation module configured to perform the incubation temperature switching method as in Embodiment 1; a chip rotation mechanism, a motion movement mechanism, and a fluorescence detection module; by The motion moving mechanism controls different incubation modules in turn to contact with the reaction chambers on the disk, so as to alternately control the temperature of the reaction chambers.
  • the motion moving mechanism 101 includes: a fixed plate, a guide rod and a push rod, one end of the guide rod is connected to the fixed plate, and the other end is connected to the heating device; the push rod pushes the fixed plate to move to drive the reaction of the heating device to the disk Cavity movement.
  • the present invention relates to a switchable incubation module 102, including an incubation body for heating a microfluidic chip, and the incubation body includes:
  • heating devices are used to heat the reaction chamber on the microfluidic chip; wherein, at least two heating devices have different heating temperatures;
  • the heat preservation layer is used to maintain the temperature in the incubation body; preferably, the heat preservation layer is arranged around the periphery of the microfluidic chip to provide a better heat preservation environment for the microfluidic chip;
  • Each heating device is provided with the same number of heating zones (in some embodiments, the heating zone is a raised heating zone on the heating device), and the distances between the heating zones on several heating devices and the central axis of the heating device are equal, so that Ensure that the heating areas on different heating devices can heat the reaction chamber on the microfluidic chip; control the relative movement between the microfluidic chip and the heating device, and sequentially control the heating areas on different heating devices to contact the microfluidic chip
  • the reaction chamber is used to realize heating at different temperatures during the incubation of the microfluidic chip until the entire reaction process is completed.
  • the number of heating devices is related to the number of different temperature values required for microfluidic chip reactions.
  • the incubation module 102 includes three heating devices, as shown in FIGS. 2 and 4. At this time, the incubation module 102 It includes a number of variable temperature zones, and each temperature variable zone includes a heating zone on each heating device. For example, a temperature variable zone includes a heating zone on the first heating device 110, a heating zone on the second heating device 130 and a third heating device. A heating zone on 120.
  • the incubation body is a common incubation device in the heating process of the microfluidic chip, and is generally a sealed structure.
  • the heating device further includes a heating body, which can be set in any shape, and it is only necessary to ensure that the heating area on the heating body can heat the reaction chamber on the microfluidic chip.
  • the microfluidic chip can be arranged in any shape.
  • the heating body is arranged in a ring shape.
  • the microfluidic chip can also be arranged in a disk shape, and the two cooperate to ensure that the heating area can fully contact the reaction chamber.
  • the heating body of the heating device When the heating body of the heating device is arranged in a ring shape and includes three heating devices, as shown in Figure 4-7, it may specifically include: a first heating device 110, a second heating device 120 and a third heating device 130, Three heating devices can be arranged under the microfluidic chip or above the microfluidic chip at the same time, such as when three heating devices are arranged under the microfluidic chip, as shown in Figure 4, the first heating device 110 1.
  • the second heating device 120 and the third heating device 130 are installed one by one under the microfluidic chip from top to bottom; or are separately arranged on the upper and lower sides of the microfluidic chip.
  • the three heating devices When the three heating devices are located on the same side of the microfluidic chip, the three heating devices have different diameters, that is, the first heating device 110, the second heating device 120, and the third heating device 130 are nested with each other and have the same center of circle , to ensure that they do not interfere with each other during exercise. When the three heating devices are located on different sides of the microfluidic chip, it is ensured that the apertures of the heating devices located on the same side will not interfere with each other. It should be understood that when the heating body is ring-shaped, the heating device can heat all the reaction chambers on the microfluidic chip at one time, which is quick and time-saving.
  • the heating device can be set in any shape at this time.
  • the shape of the heating device is different from that of the microfluidic chip, but the heating device can fully contact the microfluidic chip. on the reaction chamber.
  • a heating device only corresponds to a part of the microfluidic chip. For example, if the microfluidic chip includes N (N can be any positive integer) reaction chambers, that is, corresponding to 16 fluxes, a heating The device corresponds to one or more reaction chambers on the microfluidic chip; at this time, it is only necessary to ensure that several heating devices are staggered.
  • the staggered arrangement is to ensure that the three heating devices are They will not interfere with each other when moving in the height direction of the meter.
  • the three heating devices are arranged in a staggered arrangement. It should be noted that if the heating device is rotatable, there is no need to limit the distribution of the three heating devices, and the target heating device can be rotated to a non-interfering position first, and then move along the height direction of the PCR amplification analyzer; at this time , the heating device only heats part of the reaction chambers at one time, but with the relative movement between the microfluidic chip and the heating device, the heating device can complete the heating of all the reaction chambers on the microfluidic chip.
  • the first heating device 110 includes a first heating body 115, the first heating body 115 is a temperature-controlled heat conduction plate, and the temperature-controlled heat conduction plate approaches its center along its outer contour.
  • a number of first extension columns 111 are extended in the axial direction, and the first extension columns 111 are evenly or unevenly distributed along the temperature-controlled heat conduction plate, and there is also a first heating column 112 on the side of the first extension column 111 close to the microfluidic chip.
  • the first heating column 112 is recorded as the heating zone on the first heating device 110, that is, the first heating column 112 on the first heating device 110 is controlled to move to the reaction chamber on the microfluidic chip to provide a suitable reaction temperature .
  • the first heating body 115 and the first temperature-controlled heating plate 113 are fixed by the first heat-insulating fixing block 114 .
  • the second heating device 120 includes a second heating body 124, which is a temperature-controlled heat conduction plate, and the second heating body 124 is provided with several The heat conduction column 121 , the heat conduction column 121 is detachably or non-detachably connected to the second heating body 124 , and the second heating body 124 and the second temperature-controlled heating plate 122 are fixed by the heat insulating fixing column 123 .
  • the third heating device 130 includes a third heating body 135, which is a temperature-controlled heat conduction plate, and the third heating body 135 moves away from the first heating body 135 along its outer contour.
  • Several second extension columns 131 are extended from the central axis of the third heating body 135.
  • the second extension columns 131 are evenly or unevenly distributed along the third heating body 135.
  • the second extension columns 131 are close to the side where the microfluidic chip is located.
  • a second heating column 132 is also provided, and the second heating column 132 is recorded as a heating zone on the third heating device 130, that is, the second heating column 132 on the third heating device 130 is controlled to move to the reaction on the microfluidic chip. cavity to provide a suitable reaction temperature.
  • the third heating body 135 and the third temperature-controlled heating plate 133 are fixed by the third heat-insulating fixing block 134 .
  • first, second, and third do not refer to the importance of objects, but are only used to distinguish different objects.
  • the heating devices can be set as one or more of the first heating device 110 , the second heating device 120 , and the third heating device 130 .
  • the temperature-controlled heat-conducting plate extends a number of first extension columns 111 along its outer contour toward its central axis, and forms between two adjacent first extension columns 111.
  • the gap is used for accommodating the heat conduction column 121 on the second heating device 120 and the second heating column 132 on the third heating device 130, and a gap can be formed between two adjacent first extending columns 111 (first heating columns).
  • the temperature changing area includes a first heating column corresponding to the first temperature, a heat conduction column 121 corresponding to the second temperature, and a second heating column 132 corresponding to the third temperature.
  • each variable temperature zone there is a gap of 1cm-5cm between the first heating column 112 and the thermal conduction column 121, a gap of 1cm-5cm between the thermal conduction column and the second heating column 132, and a gap of 1cm-5cm between the second heating column and the lower heating column.
  • a PCR amplification detector 100 comprising reaction modules arranged sequentially from top to bottom, switchable incubation modules as in Embodiment 1, chip rotation mechanism, movement movement mechanism and fluorescence detection module; Different heating devices are controlled to be in contact with the reaction chambers on the microfluidic chip, so as to alternately control the temperature of the reaction chambers.
  • the reaction module includes a microfluidic chip, and the microfluidic chip can be provided with several reaction chambers for multiple reactions to be performed simultaneously. In some embodiments, there are 16 PCR reaction chambers on the microfluidic chip, corresponding to 16 throughputs.
  • the chip rotation mechanism 103 includes a turntable 1035 , and the turntable 1035 also includes at least one accommodating area, and the heating column passes through the accommodating area to contact the reaction chamber on the microfluidic chip.
  • the chip rotation mechanism 103 also includes a servo motor 1031 , a servo motor riser 1032 , a servo motor fixing plate 1033 , and a chip fixing bracket 1034 .
  • the servo motor 1031 is fixed on the temperature control module fixing plate 1025 through the servo motor fixing plate 1033 and the servo motor vertical plate 1032, and the chip fixing bracket 1034 is fixed on the servo motor 1031 to control the rotation of the turntable 1035.
  • the movement mechanism 101 includes: a fixed plate, a guide rod and a push rod.
  • One end of the guide rod is connected to the fixed plate, and the other end is connected to the heating device; the push rod pushes the fixed plate to move to drive the heating device to react on the microfluidic chip. Cavity movement.
  • the first heating device 110, the second heating device 120, and the third heating device 130 are respectively fixed on the first fixing plate 1023, the second fixing plate 1022, and the third fixing plate 1021 through guide rods 1024.
  • Running push rods such as miniature push rods can achieve motion control in the height direction on linear bearings 1026).
  • FIG. 1-4 it consists of a bracket 1011, a circular shaft 1012, a miniature push rod 1013, and a vertical plate 1014.
  • the two brackets 1011 fixed on the two vertical plates are used to fix the circular shaft 1012, and the three miniature push rods 1013 is fixed on the circular shaft 12, and can independently realize the control of different orientations (three-dimensional directions).
  • the fluorescence detection module 104 As shown in FIG.
  • the first heating device 110, the second heating device 130, the third heating device 120 and the PCR reaction on the microfluidic chip are pushed in turn. Chamber contact, and finally realize the alternate control of the temperature of the PCR reaction chamber.
  • the light emitter 1042 When the PCR reaction is over, the light emitter 1042 is turned on, and the light passes through the spectroscopic sheet 1041) to the PCR reaction chamber, then is reflected to the spectroscopic sheet 1041, refracted and finally enters the imaging detector 1043 to realize fluorescence detection.
  • MP Mycoplasma pneumoniae
  • PCR fluorescence method PCR fluorescence method
  • PCR amplification steps 50°C, 2 minutes, 1 cycle; 95°C, 10 minutes, 1 cycle; 55°C, 45 seconds, 45 cycles.
  • the reported fluorescence is FAM (excitation wavelength 494nm, emission wavelength 522nm), the measured Ct value is 40, and the result shows that it is a positive sample.
  • PCR amplification temperature control is 50°C (module A), 75°C (module B), 95°C (module C), the cycle is 50°C ⁇ 95°C ⁇ 75°C, and a total of 40 cycles are tested.
  • Experimental analysis use a multi-channel thermometer to measure the temperature of the PCR reaction chamber.
  • Experimental goal The temperature of the PCR reaction chamber must be maintained at the set value ⁇ 0.5°C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Analytical Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Hematology (AREA)
  • Dispersion Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种荧光免疫检测分析仪温育温度控制方法,包括以下步骤:获取荧光免疫检测分析仪的温育规则;根据温育规则配置荧光免疫检测分析仪的温育模块(102)和/或盘片的温育可执行参数;根据温度值匹配温育模块(102)中对应温度的加热装置,以实现盘片温育过程中不同温度的加热,直至完成整个反应过程。一种介质、PCR检测系统,通过执行该控制方法,可实现自动提供温育过程中的所需温度,且自动完成整个温育反应,过程简单、灵活,用户体验好。

Description

荧光免疫检测分析仪温育温度控制方法、介质、PCR检测系统 【技术领域】
本发明涉及荧光检测技术领域,具体涉及一种荧光免疫检测分析仪温育温度控制方法、介质、PCR检测系统。
【背景技术】
核酸检测的物质是病毒的核酸。核酸检测是查找患者的呼吸道标本、血液或粪便中是否存在外来入侵的病毒的核酸,来确定是否被病毒感染。因此一旦检测为核酸阳性,即可证明患者体内有病毒存在。所有生物都含有核酸,核酸包括脱氧核糖核酸(DNA)和核糖核酸(RNA),以新型冠状病毒为例,系为一种仅含有RNA的病毒,病毒中特异性RNA序列是区分该病毒与其它病原体的标志物。临床实验室检测过程中,如果能在患者样本中检测到新型冠状病毒的特异核酸序列,应提示该患者可能被新型冠状病毒感染。
检测病毒特异序列的方法最常见的是荧光定量PCR(聚合酶链式反应)。系为一种在DNA扩增反应中,以荧光化学物质测每次聚合酶链式反应循环后产物总量的方法,通过内参或者外参法对待测样品中的特定DNA序列进行定量分析的方法。荧光定量PCR仪能够监测出荧光到达预先设定阈值的循环数(Ct值)与病毒核酸浓度有关,病毒核酸浓度越高,Ct值越小。传统的核酸检测方法,处理步骤多且耗费时间长,自动化程度低,容易受环境干扰。
因此,有必要对现有技术予以改良以克服现有技术中的所述缺陷。
【发明内容】
针对现有技术的不足之处,本发明的目的在于提供一种荧光免疫检测分析仪温育温度控制方法,包括以下步骤:
获取荧光免疫检测分析仪的温育规则;
根据所述温育规则配置荧光免疫检测分析仪的温育模块和/或盘片的温育可执行参数;其中,所述温育可执行参数至少包括温度值;
根据所述温度值匹配温育模块中对应温度的加热装置,以实现盘片温育过程中不同温度的加热,直至完成整个反应过程;其中,荧光免疫检测分析仪的温育模块内至少配置有两相互独立加热装置。
优选地,所述温育可执行参数还包括温度变化顺序;
根据所述温度变化顺序控制不同加热装置的运动顺序,以使得不同加热装置依序给盘片提供不同温度的加热。
优选地,所述温育可执行参数还包括工作时间;
根据所述工作时间配置不同加热装置与盘片接触时的温育时间。
优选地,所述温育可执行参数还包括移动距离;
根据所述移动距离配置盘片和/或温育模块运动,以改变盘片和/或温育模块之间的相对距离。
优选地,所述温育可执行参数还包括运动角度;
根据所述运动角度配置温育模块和/或盘片的运动方式,使得温育模块靠近盘片上的待温育区域。
优选地,在获取荧光免疫检测分析仪的温育规则前,还包括步骤:
获取加入盘片的待测样本的类别;
根据所述样本的类别匹配荧光免疫检测分析仪的温育规则。
优选地,在获取荧光免疫检测分析仪的温育规则前,还包括步骤:
获取盘片类型,所述盘片类型可通过识别盘片的物理结构特征和/或获取盘片上可识别信息模块的信息数据;
根据所述盘片类型匹配荧光免疫检测分析仪的温育规则。
本发明还提供一种介质,其上存储有计算机程序,所述计算机程序被处理器执行如上所述的方法。
本发明还提供一种PCR检测系统,包括:从上往下依次设置的反应模块;温育模块,配置为执行如上所述的温育温度切换方法;芯片旋转机构、运动移动机构以及荧光检测模块;通过运动移动机构轮流控制不同所述温育模块与盘片上的反应腔接触,以对反应腔的温度交替控制。
优选地,所述运动移动机构包括:固定板、导杆以及推杆,所述导杆的一端与所述固定板相连,另一端与加热装置相连;所述推杆推动所述固 定板运动,以带动所述加热装置往盘片上的反应腔运动。
相比现有技术,本发明的有益效果在于:
本发明涉及一种荧光免疫检测分析仪温育温度控制方法,包括以下步骤:获取荧光免疫检测分析仪的温育规则;根据温育规则配置荧光免疫检测分析仪的温育模块和/或盘片的温育可执行参数;根据温度值匹配温育模块中对应温度的加热装置,以实现盘片温育过程中不同温度的加热,直至完成整个反应过程。本发明还涉及一种介质、PCR检测系统。通过执行该控制方法,可实现自动提供温育过程中的所需温度,且自动完成整个温育反应,过程简单、灵活,用户体验好。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,并可依照说明书的内容予以实施,以下以本发明的较佳实施例并配合附图详细说明如后。本发明的具体实施方式由以下实施例及其附图详细给出。
【附图说明】
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明的温育模块的结构示意图;
图2为本发明的若干加热装置的结构示意图;
图3为本发明的移动机构的结构示意图;
图4为本发明的不同加热本体的结构示意图;
图5为本发明的第二加热装置的结构示意图;
图6为本发明的第三加热装置的结构示意图;
图7为本发明的第一加热装置的结构示意图;
图8为本发明的芯片旋转机构的结构示意图;
图9为本发明的荧光检测模块的结构示意图;
图10为本发明的一种荧光免疫检测分析仪温育温度控制方法流程图;
图11为本发明在一实施例中获取温度规则方法的流程图;
图12为本发明在另一实施例中获取温度规则方法的流程图。
附图标记说明:
100、检测仪;
101、移动机构;1011、支架;1012、圆轴;1013、微型推杆;1014、竖板;1021、第三固定板;1022、第二固定板;1023、第一固定板;1024、导杆;1025、温控模块固定板;1026、轴承;
102、温育模块;110、第一加热装置;111、第一延伸柱;112、第一加热柱;113、第一温控加热板;114、第一隔热固定块;115、第一加热本体;
120、第二加热装置;121、导热柱;122、第二温控加热板;123、固定柱;124、第二加热本体;
130、第三加热装置;131、第二延伸柱;132、第二加热柱;133、第三温控加热板;134、第三隔热固定块;135、第三加热本体;
103、芯片旋转机构;1031、伺服电机;1032、伺服电机竖板;1033、伺服电机固定板;1034、芯片固定支架;1035、微流控芯片;
104、荧光检测模块;1041、分光片;1042、发光器;1043、成像检测器。
【具体实施方式】
下面结合附图对本发明做进一步的详细说明,本发明的前述和其它目的、特征、方面和优点将变得更加明显,以令本领域技术人员参照说明书文字能够据以实施。在附图中,为清晰起见,可对形状和尺寸进行放大,并将在所有图中使用相同的附图标记来指示相同或相似的部件。在下列描述中,诸如中心、厚度、高度、长度、前部、背部、后部、左边、右边、顶部、底部、上部、下部等用词为基于附图所示的方位或位置关系。特别地,“高度”相当于从顶部到底部的尺寸,“宽度”相当于从左边到右边的尺寸,“深度”相当于从前到后的尺寸。这些相对术语是为了说明方便起见并且通常并不旨在需要具体取向。涉及附接、联接等的术语(例如,“连接”和“附接”)是指这些结构通过中间结构彼此直接或间接固定或附接的关系、以及可动或刚性附接或关系,除非以其他方式明确地说明。
接下来,结合附图以及具体实施方式,对本发明做进一步描述,需要说明的是,在不相冲突的前提下,以下描述的各实施例之间或各技术特征之间可以任意组合形成新的实施例。应当理解,本文所使用的诸如“具 有”、“包含”以及“包括”术语并不配出一个或多个其它元件或其组合的存在或添加。
实施例一
一种荧光免疫检测分析仪温育温度控制方法,包括以下步骤,如图10所示:
S101:获取荧光免疫检测分析仪的温育规则;该温育规则可由用户输入或者通过信息识别模块识别以得到相应的温育规则。
在一些实施例中,用户可直接根据待检测样本的类别、期望温育的时间、温度等自定义输入相应的温育规则;在另一些实施例中,可通过信息模块的识别以得到温育规则。
具体地,在获取荧光免疫检测分析仪的温育规则前,还包括步骤,如图11所示:
S111:获取加入盘片的待测样本的类别;即获取加入的待测样本的名称;一方面可通过自动输入待测样本的名称;另一方面可通过扫描装载待测样本的容器上的信息识别模块获取待测样本的名称。
S112:根据样本的类别匹配荧光免疫检测分析仪的温育规则。由于不同的待测样本对应不同的扩增温度,可预先将不同待测样本与扩增温度的对应值制定成一数据库存储于计算机介质中,当获取待测样本类别后,可自动匹配出该待测样本对应的扩增温度。
或者,在获取荧光免疫检测分析仪的温育规则前,还包括步骤,如图12所示:
S121:获取盘片类型,该盘片类型可通过识别盘片的物理结构特征(盘片上额外的结构特征)和/或获取盘片上可识别信息模块(如:NFC模块)的信息数据;
S122:根据盘片类型匹配荧光免疫检测分析仪的温育规则。在一些实施例中,可在盘片上增设额外的结构特征,不同结构特征对应不同温育模块的温度,通过预先将不同结构特征与对应温度的数值一一存储于计算机介质中,以根据传感器扫描到的盘片的结构特征调取需要的温度值。具体地,可在不同盘片上分别设置NFC模块,当盘片放置于荧光免疫检测分析仪 后,可通过读取盘片上NFC模块的信息以获取该盘片对应的温育温度值。在该实施例中,盘片的特征规定不同温育模块的温度。
S102:根据温育规则配置荧光免疫检测分析仪的温育模块和/或盘片的温育可执行参数;其中,温育可执行参数至少包括温度值;
在一些实施例中,当根据温育规则配置荧光免疫检测分析仪的温育模块的温育可执行参数,即配置不同温度模块的温度值,以为盘片提供温育反应所需温度值。
在一些实施例中,当根据温育规则配置荧光免疫检测分析仪的盘片的温育可执行参数,即根据温育规则配置盘片上载有的被检测对象所需的温度值。
应当理解,也可根据温育规则配置温育模块和盘片的温育可执行参数,以为盘片提供更为精准的温育温度值。
S103:根据温度值匹配温育模块中对应温度的加热装置,以实现盘片温育过程中不同温度的加热,直至完成整个反应过程;其中,荧光免疫检测分析仪的温育模块内至少配置有两相互独立加热装置。本发明的荧光免疫检测分析仪温育温度控制方法,可自动匹配并执行相应的温育操作,简单、灵活,用户体验好。
进一步地,温育可执行参数还包括温度变化顺序;
根据温度变化顺序控制不同加热装置的运动顺序,以使得不同加热装置依序给盘片提供不同温度的加热。由于不同待检测样本在进行免疫检测时所需的扩增温度不同且扩增温度的数值变化不同。具体地,在一实施例中,盘片内的一待检测样本在检测过程中所需温度及其顺序为50℃至95℃至75℃;盘片内另一待检测样本在检测过程中所需温度及其顺序为50℃至75℃再到50℃再到90℃。即可根据待检测样本的不同随时调整温育顺序。
进一步地,温育可执行参数还包括工作时间;
根据工作时间配置不同加热装置与盘片接触时的温育时间。具体地,在一实施例中,配置温度为50℃的加热装置与盘片接触10分钟,配置温度为75℃的加热装置与盘片接触15分钟,配置温度为90℃的加热装置与盘片接触15分钟。在另一实施例中,配置温度为50℃的加热装置与盘片接触15 分钟,配置温度为75℃的加热装置与盘片接触10分钟,配置温度为90℃的加热装置与盘片接触15分钟。即可根据待检测样本的不同随时调整不同加热装置与盘片的接触时间,保证待检测样本完全扩增。
进一步地,温育可执行参数还包括移动距离;
根据移动距离配置盘片和/或温育模块运动,以改变盘片和/或温育模块之间的相对距离。在一实施例中,可控制盘片运动以缩短盘片与温育模块中加热装置之间的距离,以使得为盘片提供合适的温度。在另一实施例中,可控制温育模块运动以缩短盘片与温育模块中加热装置之间的距离,以使得加热装置为盘片提供合适的温度。应当理解,也可控制盘片、温度模块中加热装置均参与运动以缩短盘片与加热装置之间的距离,以使得加热装置为盘片提供合适的温度。
进一步地,温育可执行参数还包括运动角度;
根据运动角度配置温育模块和/或盘片的运动方式,使得温育模块靠近盘片上的待温育区域。在一实施例中,根据运动角度配置温育模块的运动方式,此时,温育模块中加热装置未对应盘片上的所有待温育区域,需要驱使加热装置旋转、升降以使得加热装置接触所有待温育区域。具体地,加热装置除了可在竖直(荧光免疫检测分析仪的站立方向)方向上靠近盘片所在位置,还可通过旋转以接触盘片上的待温育区域。
在另一实施例中,根据运动角度配置盘片的运动方式,此时,加热装置未对应盘片上的所有待温育区域,需要驱使盘片旋转、升降以使得加热装置接触盘片上的所有待温育区域。具体地,盘片可在竖直方向上靠近加热装置,还可通过旋转以接触加热装置。
应当理解,也可通过控制加热装置、盘片一起运动(包括升降、旋转)以使得加热装置为盘片提供合适的温育温度。
实施例二
本发明涉及一种介质,其上存储有计算机程序,计算机程序被处理器执行如实施例一中的方法。
一种PCR检测系统,包括:从上往下依次设置的反应模块;温育模块,配置为执行如实施例一中的温育温度切换方法;芯片旋转机构、运动移动 机构以及荧光检测模块;通过运动移动机构轮流控制不同温育模块与盘片上的反应腔接触,以对反应腔的温度交替控制。
进一步地,运动移动机构101包括:固定板、导杆以及推杆,导杆的一端与固定板相连,另一端与加热装置相连;推杆推动固定板运动,以带动加热装置往盘片上的反应腔运动。
如图1-9所示,本发明涉及一种可切换的温育模块102,包括用于加温微流控芯片的温育本体,温育本体包括:
若干加热装置,用于加热微流控芯片上的反应腔;其中,至少有两加热装置上的加热温度不同;
保温层,用以维持温育本体内的温度;优选地,保温层围绕微流控芯片的外周设置,以提供微流控芯片较好的保温环境;
每一加热装置上均设置有相同数量的加热区(在一些实施例中,加热区为加热装置上凸起的加热区),若干加热装置上的加热区与加热装置中心轴的距离相等,以确保不同加热装置上的加热区均能够对微流控芯片上的反应腔进行加热;控制微流控芯片与加热装置发生相对运动,依序控制不同加热装置上的加热区接触微流控芯片上的反应腔,以实现微流控芯片温育过程中不同温度的加热,直至完成整个反应过程。加热装置的数量与微流控芯片反应所需的不同温度数值的个数有关。当微流控芯片用于PCR扩增反应时,一般需要设置三种不同的温度,此时,该温育模块102包括三个加热装置,如图2、4所示,此时温育模块102包括若干变温区,每一变温区内包含每一加热装置上的加热区,如一变温区包括第一加热装置110上的一加热区,第二加热装置130上的一加热区以及第三加热装置120上的一加热区。
应当理解,温育本体为微流控芯片加温过程中常见的温育装置,一般为密封结构等。
在一些实施例中,加热装置还包括加热本体,该加热本体可设置为任意形状,仅需保证加热本体上的加热区能加热微流控芯片上的反应腔即可。应当理解,微流控芯片可设置为任意形状。优选地,加热本体设置为环形,此时,微流控芯片也可设置为盘式,两者配合以保证加热区能与反应腔充分接触。
当加热装置的加热本体设置为环形时,且包括三个加热装置时,如图4-7所示,可具体包括:第一加热装置110、第二加热装置120以及第三加热装置130,三个加热装置可同时设置在微流控芯片的下方或同时设置在微流控芯片的上方,如当三个加热装置设置在微流控芯片下方时,如图4所示,第一加热装置110、第二加热装置120、第三加热装置130于微流控芯片下方从上到下逐一安装;或者分设于微流控芯片的上下两侧。当三个加热装置位于微流控芯片的同一侧时,三个加热装置具有不同的直径,即第一加热装置110、第二加热装置120、第三加热装置130相互套设且具有相同的圆心,以确保其在运动过程中不会相互干扰。当三个加热装置位于微流控芯片的不同侧时,保证位于同一侧的加热装置的口径不会相互干扰。应当理解,当加热本体为环形时,加热装置可一次性对微流控芯片上的所有反应腔进行加热,快捷、省时。
加热装置不为环形且设置三个加热装置时,此时加热装置可设置为任意形状,在一些实施例中,加热装置与微流控芯片的形状不同,但加热装置可充分接触微流控芯片上的反应腔。在另一些实施例中,一加热装置仅对应微流控芯片上的部分区域,如若微流控芯片上包括N个(N可为任意正整数)反应腔,即对应16个通量,一加热装置对应微流控芯片上的一个或一个以上反应腔;此时,仅需保证若干加热装置错落排布即可,错落排布的目的是为了保证该三个加热装置在沿着PCR扩增分析仪高度方向运动时不会互相干扰。当包括三个加热装置时,设置三个加热装置错落排布。应当注意的是,若加热装置可旋转,则无需限制三个加热装置错落分布,即可先使得目标加热装置转动至无干扰位置处,再进行沿着PCR扩增分析仪高度方向运动;此时,加热装置一次性仅对部分反应腔进行加热,但随着微流控芯片与加热装置的相对运动,加热装置可完成对微流控芯片上所有反应腔的加热。
在一些实施例中,如图7所示,第一加热装置110包括第一加热本体115,该第一加热本体115为温控导热板,该温控导热板沿着其外轮廓往靠近其中心轴方向延伸出若干第一延伸柱111,第一延伸柱111沿着温控导热板均匀或不均匀分布,第一延伸柱111上靠着微流控芯片所在侧还设有第一加热柱 112,该第一加热柱112记为第一加热装置110上的加热区,即控制第一加热装置110上的第一加热柱112移动至微流控芯片上的反应腔,以提供合适的反应温度。第一加热本体115与第一温控加热板113通过第一隔热固定块114进行固定。
在一些实施例中,如图6所示,第二加热装置120包括第二加热本体124,该第二加热本体124为温控导热板,第二加热本体124靠近微流控芯片侧设有若干导热柱121,导热柱121与第二加热本体124可拆卸连接或不可拆卸连接,第二加热本体124与第二温控加热板122通过隔热固定柱123进行固定。
在一些实施例中,如图5所示,第三加热装置130包括第三加热本体135,该第三加热本体135为温控导热板,该第三加热本体135沿着其外围轮廓往远离第三加热本体135中心轴的位置延伸出若干个第二延伸柱131,第二延伸柱131沿着第三加热本体135均匀或不均匀分布,第二延伸柱131上靠着微流控芯片所在侧还设有第二加热柱132,该第二加热柱132记为第三加热装置130上的加热区,即控制第三加热装置130上的第二加热柱132移动至微流控芯片上的反应腔,以提供合适的反应温度。第三加热本体135与第三温控加热板133通过第三隔热固定块134进行固定。
应当理解,第一、第二、第三不指代对象的重要程度,仅用于区别不同对象。
当包含两个或两个以上加热装置时,该加热装置可设置为第一加热装置110、第二加热装置120、第三加热装置130中的一个或多个。
当某一加热装置上设有若干延伸柱时,相邻两延伸柱之间存在间隙,以用于容置其他加热装置上的一加热区。具体地,当加热装置为第一加热装置110时,该温控导热板沿着其外轮廓往靠近其中心轴方向延伸出若干第一延伸柱111,相邻两第一延伸柱111之间形成间隙,以用于容置第二加热装置120上的导热柱121以及第三加热装置130上的第二加热柱132,相邻两第一延伸柱111(第一加热柱)之间形成一可变温区域,该区域内包括对应第一温度的第一加热柱、对应第二温度的导热柱121以及对应第三温度的第二加热柱132。进一步地,不同加热装置上加热区之间存在间隙,该间隙为 1cm-5cm,以保证各加热装置之间的温度互不影响。具体地,每一可变温区域内,第一加热柱112与导热柱121之间存在1cm-5cm的间隙,导热柱与第二加热柱132之间存在1cm-5cm间隙,第二加热柱与下一个第一加热柱112之间存在1cm-5cm间隙。
实施例二
一种PCR扩增检测仪100,包括从上往下依次设置的反应模块、如实施例一中的可切换的温育模块、芯片旋转机构、运动移动机构以及荧光检测模块;通过运动移动机构轮流控制不同所述加热装置与微流控芯片上的反应腔接触,以对反应腔的温度交替控制。
反应模块包括微流控芯片,该微流控芯片上可设有若干反应腔,以供多个反应同时进行。在一些实施例中,微流控芯片上有16个PCR反应腔,对应16个通量。
如图8所示,芯片旋转机构103包括转盘1035,转盘1035上还包括至少一容置区,加热柱穿过容置区接触微流控芯片上的反应腔。此外,芯片旋转机构103还包括伺服电机1031、伺服电机竖板1032、伺服电机固定板1033、芯片固定支架1034。伺服电机1031通过伺服电机固定板1033和伺服电机竖板1032固定到温控模块固定板1025上,芯片固定支架1034固定于伺服电机1031上,用以控制转盘1035进行旋转。
运动移动机构101包括:固定板、导杆以及推杆,导杆的一端与固定板相连,另一端与加热装置相连;推杆推动固定板运动,以带动加热装置往微流控芯片上的反应腔运动。具体地,第一加热装置110、第二加热装置120、第三加热装置130通过导杆1024分别固定于第一固定板1023、第二固定板1022、第三固定板1021上,通过三个独立运行的推杆如微型推杆可在直线轴承1026)实现高度方向的运动控制。如图1-4所示,由支架1011、圆轴1012、微型推杆1013、竖板1014所组成,固定于两个竖板的两个支架1011用于固定圆轴1012,三个微型推杆1013固定于圆轴12上,可以独立实现不同方位(三维方向)的控制。
荧光检测模块104,如图9所示,由分光片1041、发光器1042、成像检测器1043组成。当微流控芯片上有16个PCR反应腔时,通过微型推杆1013 的作用,轮流推动第一加热装置110、第二加热装置130、第三加热装置120与微流控芯片上的PCR反应腔接触,最终实现PCR反应腔的温度交替控制。当PCR反应结束后,开启发光器1042,光线通过分光片1041)达到PCR反应腔,再反射到分光片1041并折射最终进入成像检测器1043实现荧光检测。具体实施应用1:肺炎支原体(MP)核酸检测(PCR荧光法)
将咽拭子样本(35岁、男性样本)加入1mL无菌生理食盐水,充分震荡摇匀后,吸取液体至离心管,并以12,000RPM离心5分钟,透过人工手动操作,将100μL的沉淀液及50μL核酸提取液,分别加入至微流控芯片的储存槽,以2,000RPM(加速度为6,000RPM/s)操控微流控芯片进行旋转7分钟。待完成核酸提取后,以1,500RPM(加速度为3,000RPM/s)操控微流控芯片进行旋转10秒钟,可将50μL的上清液传送至PCR反应腔。PCR扩增步骤:50℃、2分钟、1各循环数;95℃、10分钟、1各循环数;55℃、45秒钟、45各循环数。报告荧光为FAM(激发波长494nm、发射波长522nm),测得Ct值为40,结果显示为阳性样本。
具体实施应用2:验证PCR温控模块的温度精准度
实验参数:PCR扩增温控为50℃(模块A)、75℃(模块B)、95℃(模块C),循环为50℃→95℃→75℃,总计测试40各循环。实验分析:使用多路温度计进行PCR反应腔的温度量测。实验目标:PCR反应腔温度必须维持在设定值±0.5℃。实验结果:模块A(50℃)切换到模块C(95℃),PCR反应腔的平均温度在92秒钟内可达到95℃±0.25℃;模块C(95℃)切换到模块B(75℃),PCR反应腔的平均温度在85秒钟内可达到75℃±0.31℃;模块B(75℃)切换到模块A(50℃),PCR反应腔的平均温度在105秒钟内可达到50℃±0.41℃。上述结果显示该本发明能在短时间完成PCR扩增步骤。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。

Claims (10)

  1. 一种荧光免疫检测分析仪温育温度控制方法,其特征在于,包括以下步骤:
    获取荧光免疫检测分析仪的温育规则;
    根据所述温育规则配置荧光免疫检测分析仪的温育模块和/或盘片的温育可执行参数;其中,所述温育可执行参数至少包括温度值;
    根据所述温度值匹配温育模块中对应温度的加热装置,以实现盘片温育过程中不同温度的加热,直至完成整个反应过程;其中,荧光免疫检测分析仪的温育模块内至少配置有两相互独立加热装置。
  2. 如权利要求1所述的荧光免疫检测分析仪温育温度控制方法,其特征在于,所述温育可执行参数还包括温度变化顺序;
    根据所述温度变化顺序控制不同加热装置的运动顺序,以使得不同加热装置依序给盘片提供不同温度的加热。
  3. 如权利要求1或2所述的荧光免疫检测分析仪温育温度控制方法,其特征在于,所述温育可执行参数还包括工作时间;
    根据所述工作时间配置不同加热装置与盘片接触时的温育时间。
  4. 如权利要求3所述的荧光免疫检测分析仪温育温度控制方法,其特征在于,所述温育可执行参数还包括移动距离;
    根据所述移动距离配置盘片和/或温育模块运动,以改变盘片和/或温育模块之间的相对距离。
  5. 如权利要求3所述的荧光免疫检测分析仪温育温度控制方法,其特征在于,所述温育可执行参数还包括运动角度;
    根据所述运动角度配置温育模块和/或盘片的运动方式,使得温育模块靠近盘片上的待温育区域。
  6. 如权利要求1所述的荧光免疫检测分析仪温育温度控制方法,其特征在于,在获取荧光免疫检测分析仪的温育规则前,还包括步骤:
    获取加入盘片的待测样本的类别;
    根据所述样本的类别匹配荧光免疫检测分析仪的温育规则。
  7. 如权利要求1所述的荧光免疫检测分析仪温育温度控制方法,其特征 在于,在获取荧光免疫检测分析仪的温育规则前,还包括步骤:
    获取盘片类型,所述盘片类型可通过识别盘片的物理结构特征和/或获取盘片上可识别信息模块的信息数据;
    根据所述盘片类型匹配荧光免疫检测分析仪的温育规则。
  8. 一种介质,其上存储有计算机程序,其特征在于:所述计算机程序被处理器执行如权利要求1-7任一项所述的方法。
  9. 一种PCR检测系统,其特征在于,包括:从上往下依次设置的反应模块;温育模块,配置为执行如权利要求1所述的温育温度切换方法;芯片旋转机构、运动移动机构以及荧光检测模块;通过运动移动机构轮流控制不同所述温育模块与盘片上的反应腔接触,以对反应腔的温度交替控制。
  10. 如权利要求9所述的PCR检测系统,其特征在于,所述运动移动机构包括:固定板、导杆以及推杆,所述导杆的一端与所述固定板相连,另一端与加热装置相连;所述推杆推动所述固定板运动,以带动所述加热装置往盘片上的反应腔运动。
PCT/CN2022/129446 2021-10-09 2022-11-03 荧光免疫检测分析仪温育温度控制方法、介质、pcr检测系统 WO2023056985A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111176417.X 2021-10-09
CN202111176417.XA CN113930331A (zh) 2021-10-09 2021-10-09 荧光免疫检测分析仪温育温度控制方法、介质、pcr检测系统

Publications (1)

Publication Number Publication Date
WO2023056985A1 true WO2023056985A1 (zh) 2023-04-13

Family

ID=79278342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129446 WO2023056985A1 (zh) 2021-10-09 2022-11-03 荧光免疫检测分析仪温育温度控制方法、介质、pcr检测系统

Country Status (2)

Country Link
CN (1) CN113930331A (zh)
WO (1) WO2023056985A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113930331A (zh) * 2021-10-09 2022-01-14 苏州国科均豪生物科技有限公司 荧光免疫检测分析仪温育温度控制方法、介质、pcr检测系统
CN117511725A (zh) * 2023-12-21 2024-02-06 北京康润诚业生物科技有限公司 一种酶分子定向进化生物信息分析装置及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102066950A (zh) * 2008-06-23 2011-05-18 株式会社日立高新技术 核酸分析装置、自动分析装置以及分析方法
CN208443845U (zh) * 2018-07-23 2019-01-29 苏州长光华医生物医学工程有限公司 一种温育盘
CN110470854A (zh) * 2018-05-11 2019-11-19 博阳生物科技(上海)有限公司 全自动免疫分析仪
CN110791423A (zh) * 2019-11-15 2020-02-14 上海速创诊断产品有限公司 核酸检测装置、方法及系统
CN111197003A (zh) * 2019-12-26 2020-05-26 中国科学院合肥物质科学研究院 一种基于智能手机的集成核酸提取扩增检测的分析装置及方法
US20200200680A1 (en) * 2017-06-23 2020-06-25 Konica Minolta, Inc. Specimen detection device and specimen detection method
CN112538415A (zh) * 2020-12-23 2021-03-23 深圳市刚竹医疗科技有限公司 单盘式自动核酸分析装置
WO2021135366A1 (zh) * 2019-12-31 2021-07-08 科美诊断技术股份有限公司 样本测试项的排布方法及装置
CN113930331A (zh) * 2021-10-09 2022-01-14 苏州国科均豪生物科技有限公司 荧光免疫检测分析仪温育温度控制方法、介质、pcr检测系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208266181U (zh) * 2018-01-23 2018-12-21 上海速创诊断产品有限公司 一种用于恒温微流控芯片的核酸分析装置
CN108277149B (zh) * 2018-06-04 2018-09-25 上海速创诊断产品有限公司 核酸检测装置、方法及系统
CN111487422B (zh) * 2019-01-28 2024-03-12 深圳市帝迈生物技术有限公司 时序控制方法、存储介质及样本分析仪

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102066950A (zh) * 2008-06-23 2011-05-18 株式会社日立高新技术 核酸分析装置、自动分析装置以及分析方法
US20200200680A1 (en) * 2017-06-23 2020-06-25 Konica Minolta, Inc. Specimen detection device and specimen detection method
CN110470854A (zh) * 2018-05-11 2019-11-19 博阳生物科技(上海)有限公司 全自动免疫分析仪
CN208443845U (zh) * 2018-07-23 2019-01-29 苏州长光华医生物医学工程有限公司 一种温育盘
CN110791423A (zh) * 2019-11-15 2020-02-14 上海速创诊断产品有限公司 核酸检测装置、方法及系统
CN111197003A (zh) * 2019-12-26 2020-05-26 中国科学院合肥物质科学研究院 一种基于智能手机的集成核酸提取扩增检测的分析装置及方法
WO2021135366A1 (zh) * 2019-12-31 2021-07-08 科美诊断技术股份有限公司 样本测试项的排布方法及装置
CN112538415A (zh) * 2020-12-23 2021-03-23 深圳市刚竹医疗科技有限公司 单盘式自动核酸分析装置
CN113930331A (zh) * 2021-10-09 2022-01-14 苏州国科均豪生物科技有限公司 荧光免疫检测分析仪温育温度控制方法、介质、pcr检测系统

Also Published As

Publication number Publication date
CN113930331A (zh) 2022-01-14

Similar Documents

Publication Publication Date Title
WO2023056985A1 (zh) 荧光免疫检测分析仪温育温度控制方法、介质、pcr检测系统
JP6765659B2 (ja) 核酸増幅装置、核酸増幅方法及び核酸増幅用チップ
US11634758B2 (en) Nucleic acid amplification and detection apparatus and method
CN107805597B (zh) 基于微流控芯片的基因检测系统及检测方法
Renner et al. Detection of ESKAPE bacterial pathogens at the point of care using isothermal DNA-based assays in a portable degas-actuated microfluidic diagnostic assay platform
CN102618439B (zh) 基于封闭反应器的dna片段扩增和定量检测系统
KR102206856B1 (ko) 중합효소 연쇄반응 시스템
KR20170024827A (ko) 미세유로 필름 반응기, 핵산 추출 모듈 및 qPCR 반응조성물 모듈이 구비된 qPCR 카트리지 및 이를 이용한 고속 qPCR 시스템
KR102089633B1 (ko) 미세 유체 제어를 위한 진단용 카트리지 및 이를 포함하는 현장형 분자진단 시스템
Li et al. Multiplexed detection of respiratory pathogens with a portable analyzer in a “raw-sample-in and answer-out” manner
CN111719018B (zh) 新型冠状病毒环介导等温扩增检测芯片及制备和使用方法
CA2960859A1 (en) Hybrid multi-step nucleic acid amplification
CN113755316A (zh) 可切换的温育模块、pcr扩增检测仪
KR101722997B1 (ko) 원심력 기반 일체형 생체분자 분석장치
Wang et al. Construction of dPCR and qPCR integrated system based on commercially available low-cost hardware
CN215975838U (zh) 用于扩增反应的加热组件、pcr扩增检测仪
Renner et al. Detection of ESKAPE bacterial pathogens at the point-of-care using isothermal DNA based assays in a portable, de-gas microfluidic diagnostic assay platform
Zhang et al. Combination-lock SlipChip integrating nucleic acid sample preparation and isothermal LAMP amplification for the detection of SARS-CoV-2
AU2015275310B2 (en) Nucleic acid amplification and detection apparatus and method
Yang et al. Design and application of a point-of-care testing system for triple detection of SARS-CoV-2, influenza A, and influenza B
Li et al. Representative Products
Schad et al. Process Analytical Technologies (PAT) and Quality by Design (QbD) for Bioprocessing of Virus-Based Therapeutics
KR20220152813A (ko) 질병진단용 유체제어칩 및 이를 이용한 진단시스템
Jain et al. POINT OF CARE TESTING IN INFECTIOUS DISEASE DIAGNOSIS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22877999

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE