WO2023056894A1 - 一种产业用生物基聚酰胺纺丝牵伸卷绕装置及联合机 - Google Patents

一种产业用生物基聚酰胺纺丝牵伸卷绕装置及联合机 Download PDF

Info

Publication number
WO2023056894A1
WO2023056894A1 PCT/CN2022/123182 CN2022123182W WO2023056894A1 WO 2023056894 A1 WO2023056894 A1 WO 2023056894A1 CN 2022123182 W CN2022123182 W CN 2022123182W WO 2023056894 A1 WO2023056894 A1 WO 2023056894A1
Authority
WO
WIPO (PCT)
Prior art keywords
pair
drafting
hot rollers
spinning
melt
Prior art date
Application number
PCT/CN2022/123182
Other languages
English (en)
French (fr)
Inventor
满晓东
邱军先
毛育博
徐凯
李雅迪
任玉国
侯伯
武彦
董雨
白雪
刘鹏
张静
Original Assignee
北京中丽制机工程技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202122277932.9U external-priority patent/CN216663318U/zh
Priority claimed from CN202122263998.2U external-priority patent/CN216663313U/zh
Priority claimed from CN202111090662.9A external-priority patent/CN113622041A/zh
Priority claimed from CN202111090536.3A external-priority patent/CN113638068A/zh
Application filed by 北京中丽制机工程技术有限公司 filed Critical 北京中丽制机工程技术有限公司
Publication of WO2023056894A1 publication Critical patent/WO2023056894A1/zh
Priority to US18/605,769 priority Critical patent/US20240263356A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/084Heating filaments, threads or the like, leaving the spinnerettes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/04Melting filament-forming substances
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/02Heat treatment
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/04Supporting filaments or the like during their treatment
    • D01D10/0436Supporting filaments or the like during their treatment while in continuous movement
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D13/00Complete machines for producing artificial threads
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D4/00Spinnerette packs; Cleaning thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/088Cooling filaments, threads or the like, leaving the spinnerettes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/12Stretch-spinning methods
    • D01D5/16Stretch-spinning methods using rollers, or like mechanical devices, e.g. snubbing pins
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/02Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyamides

Definitions

  • the disclosure relates to the technical field of spinning production and manufacturing, in particular to an industrial bio-based polyamide spinning, drawing and winding device and a combination machine
  • Bio-based polyamide fibers have the same excellent physical properties as ordinary polyamides, especially 55dtex-111dtex fine-denier bio-based polyamide fibers in medical applications, 1670dtex-2222dtex coarse-denier bio-based polyamide fibers for decoration, tire cord fabrics, There are also broad applications in industries such as cables, conveyor belts, automotive textiles, and filter materials. However, in the related art, 555dtex-1670dtex bio-based polyamide fibers are mostly spun, and there is a lack of spinning of fine denier and coarse denier bio-based polyamide fibers.
  • the present disclosure provides an industrial bio-based polyamide spinning, drawing and winding device and a combination machine.
  • an industrial bio-based polyamide spinning, drawing and winding device sequentially includes feeding and splitting tension rollers, a first pair of drafting hot rollers, a second pair of For the pair of drafting hot rolls, the third pair of drafting hot rolls, the fourth pair of drafting hot rolls and the fifth pair of drafting hot rolls, the tow is wound around the The direction of rotation of the drafting hot roller, the direction of rotation around the third pair of drafting hot rollers, and the direction of rotation around the fourth pair of drafting hot rollers are opposite to each other, so as to spin 55dtex-2222dtex Bio-based polyamide industrial silk.
  • an industrial bio-based polyamide spinning, drawing and winding machine including a screw extruder, a melt pipeline, a spinning box, and a metering pump arranged in sequence according to the production process , spinning assembly, slow cooler, monomer suction mechanism, side blowing part, tunnel part, double-face oiling mechanism, pre-network part, guide wire part, feeding and splitting tension roller, the first heating plate, the first Pair of drafting hot rollers, second heating plate, second pair of drafting hot rollers, third heating plate, third pair of drafting hot rollers, fourth heating plate, fourth pair of drafting hot rollers, fifth heating plate, The fifth pair of drafting hot rollers, final network components and fully automatic winding head, the first heating plate, the second heating plate, the third heating plate, the fourth heating plate and the fifth heating plate are all on the area between two adjacent rolls
  • the tow is heated, the tow is wound around the first pair of drafting hot rolls, around the second pair of drafting hot rolls, around the third pair of drafting hot rolls, and a metering pump
  • the disclosure provides an industrial bio-based polyamide spinning, drawing and winding device, which sequentially includes feeding and splitting tension rollers, a first pair of drafting hot rollers, a second pair of drafting hot rollers, and a second pair of drawing hot rollers along the traveling direction of the tow.
  • Three pairs of drafting hot rollers, the fourth pair of drafting hot rollers and the fifth pair of drafting hot rollers, and set the direction of rotation of the tow around the first pair of drafting hot rollers and the direction of rotation of the tow around the second pair of drafting hot rollers The direction of rotation is opposite, the direction of rotation of the tow around the second pair of drafting hot rollers is opposite to that of the third pair of drafting hot rollers, and the direction of rotation of the tow around the third pair of drafting hot rollers is the same as that of the third pair of drafting hot rollers
  • the direction of rotation of the fourth pair of drafting hot rollers around the warp is set in the opposite direction, so that the left and right sides of the tow are heated, which is conducive to improving the crystallinity and orientation of the fibers, and can gradually increase the strength and modulus of the fibers.
  • Stretching rollers realize step-by-step drafting, and can spin 55dtex-2222dtex bio-based polyamide industrial yarns, which can be used for 55dtex-111dtex fine-denier bio-based polyamide fibers and 1670dtex-2222dtex coarse-denier bio-based polyamide fibers spinning.
  • FIG. 1 shows a schematic structural view of an industrial bio-based polyamide spinning, drawing and winding device according to Embodiment 1 of the present disclosure
  • Fig. 2 shows a schematic diagram of the overall structure of the combined spinning, drawing and winding machine comprising the structure shown in Fig. 1;
  • Fig. 3 is a side view of Fig. 1;
  • Fig. 4 is a schematic diagram of the tow operation of feeding the split tension roller to the first pair of drafting hot rollers in Fig. 1;
  • Fig. 5 is a top view of the structure in Fig. 4;
  • Fig. 6 is the enlarged schematic view of place A in Fig. 5;
  • Fig. 7 is a schematic diagram of the tow running from the first pair of drafting hot rolls to the second pair of drafting hot rolls in Fig. 1;
  • Figure 8 is a top view of the structure in Figure 7;
  • Fig. 9 is an enlarged schematic diagram of place B in Fig. 8.
  • Fig. 10 is a schematic diagram of the tow running from the second pair of drafting hot rolls to the third pair of drafting hot rolls in Fig. 1;
  • Figure 11 is a top view of the structure in Figure 10;
  • Fig. 12 is an enlarged schematic diagram of place C in Fig. 11;
  • Fig. 13 is a schematic diagram of the tow running from the third pair of drafting hot rolls to the fourth pair of drafting hot rolls in Fig. 1;
  • Figure 14 is a top view of the structure in Figure 13;
  • Figure 15 is an enlarged schematic view at D in Figure 14;
  • Fig. 16 is a schematic diagram of the tow running from the fourth pair of drafting hot rollers to the fifth pair of drafting hot rollers in Fig. 1;
  • Figure 17 is a top view of the structure in Figure 16;
  • Fig. 18 is an enlarged schematic view at E in Fig. 17;
  • Fig. 19 is a schematic structural view of the heating plate shown in Fig. 1;
  • Figure 20 is a schematic cross-sectional view at A-A in Figure 19;
  • Fig. 21 is another schematic cross-sectional view of the heating plate in Fig. 19;
  • Figure 22 is a schematic structural view of the screw extruder in Figure 2;
  • Fig. 23 is a schematic structural view of the extruder screw in Fig. 22;
  • Fig. 24 is a partial enlarged view of place A in Fig. 23;
  • Fig. 25 is a partial enlarged view of place B in Fig. 23;
  • Fig. 26 is a schematic structural view of the screw extruder, the melt pipeline and the spinning box in Fig. 2;
  • Figure 27 is a front view of the melt pipeline in Figure 26;
  • Figure 28 is a side view of the melt pipeline in Figure 26;
  • Figure 29 is a top view of the melt pipeline in Figure 26;
  • Figure 30 is a front view of the spinning beam in Figure 26;
  • Figure 31 is a vertical sectional view of the spinning box in Figure 26;
  • Figure 32 is a horizontal sectional view of the spinning beam in Figure 26;
  • Figure 33 is a schematic structural view of the spinning assembly, slow cooler and monomer suction mechanism in Figure 2;
  • Fig. 34 is a partial structural schematic diagram of Fig. 33;
  • Fig. 35 is a schematic structural view of the suction assembly of the single suction mechanism in Fig. 33;
  • Figure 36 is a schematic cross-sectional view at A-A in Figure 33;
  • Figure 37 is a schematic cross-sectional view at B-B in Figure 33;
  • Figure 38 is a schematic cross-sectional view at C-C in Figure 36;
  • Fig. 39 is a schematic structural view of the double-face oiling mechanism in Fig. 2;
  • Figure 40 is a schematic diagram of a pair of tankers in Figure 39;
  • Fig. 41 is a schematic structural view of the tanker in Fig. 40;
  • Fig. 42 is a partial structural schematic diagram of the tanker in Fig. 41;
  • Figure 43 is a schematic cross-sectional view at A-A in Figure 41;
  • Figure 44 is a schematic diagram of the direction of the tow through a pair of oil tankers in Figure 39;
  • FIG. 45 is a schematic top view of the structure shown in FIG. 44 .
  • This embodiment discloses an industrial bio-based polyamide spinning, drawing and winding device.
  • Roller 1600, the second pair of drafting hot rollers 1700, the third pair of drafting hot rollers 1800, the fourth pair of drafting hot rollers 1900 and the fifth pair of drafting hot rollers 2000, the tow is wound through the first pair of drafting hot rollers 1600, around the second pair of drafting hot rollers 1700, around the third pair of drafting hot rollers 1800, around the fourth pair of drafting hot rollers 1900 in the adjacent two
  • the rotation directions are set in opposite directions to spin 55dtex-2222dtex bio-based polyamide industrial yarns.
  • the tow passes through the feeding split tension roller 1400, the first pair of drafting hot rollers 1600, the second pair of drafting hot rollers 1700, the third pair of drafting hot rollers, etc.
  • the roll 1800, the fourth pair of drafting hot rolls 1900 and the fifth pair of drafting hot rolls 2000 pass through the final network component 2100 and are wound onto the winder.
  • the spinning comes down through the spinning assembly, passes through the oiling mechanism 1100, the pre-internet component 1200 and the guide yarn component 1300 in turn, and then passes through the feeding split tension roller 1400.
  • peripheral side of the tow is described as being divided into two sides, the tow M surface 10 and the tow N surface 20 .
  • clockwise and counterclockwise directions in the following descriptions are based on the figures.
  • the winding direction of the tow on the second pair of drafting hot rollers 1700 is clockwise, and the second pair of drafting hot rollers 1700 directly contacts and heats the surface 10 of the tow M.
  • the winding direction of the tow on the third pair of drafting hot rollers 1800 is counterclockwise, and the third pair of drafting hot rollers 1800 directly contacts and heats the N surface 20 of the tow.
  • the winding direction of the tow on the fourth pair of drafting hot rollers 1900 is clockwise, and the fourth pair of drafting hot rollers 1900 directly contacts and heats the surface 10 of the tow M.
  • the multi-stage drafting hot roller to achieve step-by-step drafting, it can spin 55dtex-2222dtex bio-based polyamide industrial yarn, so that it can be used Spinning of 55dtex-111dtex fine-denier bio-based polyamide fibers and 1670dtex-2222dtex coarse-denier bio-based polyamide fibers.
  • the winding direction of the tow on the fifth pair of drafting hot rollers 2000 is clockwise, and the fifth pair of drafting hot rollers 2000 is in direct contact with the surface 10 of the tow M , heating, so that the tow hangs from the right side as shown in Figure 1, and enters the winding machine through the final network component 2100, which is beneficial to the overall arrangement of the device.
  • the device may sequentially include a feeding split tension roller 1400, a first heating plate 1510, a first pair of drafting heating rollers 1600, and a second heating plate according to the traveling direction of the tow. 1520, the second pair of drafting hot rollers 1700, the third heating plate 1530, the third pair of drafting hot rollers 1800, the fourth heating plate 1540, the fourth pair of drafting hot rollers 1900, the fifth heating plate 1550 and the fifth pair
  • the drafting hot roller 2000, the first heating plate 1510, the second heating plate 1520, the third heating plate 1530, the fourth heating plate 1540 and the fifth heating plate 1550 all heat the tow in the area between two adjacent rolls.
  • the tow is stretched for the first time on the first pair of drafting hot rollers 1600.
  • both sides of the tow are heated and preheated by the first heating plate 1510. , and then enter the first pair of drafting hot rollers 1600, which is beneficial to overcome the problems of easy broken ends and poor spinnability in the initial drafting; it is set between the first pair of drafting hot rollers 1600 and the second pair of drafting hot rollers 1700
  • the second heating plate 1520 is conducive to improving the crystallinity and orientation of the fiber, and can gradually increase the strength and modulus of the fiber;
  • the third heating plate 1530 improves the internal and external temperature consistency of the tow, improves the heating uniformity of the tow, and facilitates subsequent heating and drafting; it is located on the third pair of drafting hot rollers 1800 and the fourth pair of drafting rollers.
  • the fourth heating plate 1540 between the hot rollers 1900 further improves the internal and external temperature consistency of the tow and improves the heating uniformity of the tow to facilitate subsequent heating and drafting; it is installed on the fourth pair of drafting hot rollers
  • the fifth heating plate 1550 between 1900 and the fifth pair of drafting hot rollers 2000 further improves the internal and external temperature consistency of the tow, improves the heating uniformity of the tow, and facilitates the subsequent setting and shrinkage.
  • the feeding and splitting tension roller 1400 adopts a fixed cold roller 1410 to cooperate with an adjustable angle splitting roller 1420, while the first pair of drafting hot rollers 1600, the second pair of drafting hot rollers 1700, the third pair of drafting hot rollers 1800, the fourth pair of drafting hot rollers 1900, and the fifth pair of drafting hot rollers 2000 all adopt adjustable-angle hot rollers and adjustable-angle hot rollers.
  • the first pair of drafting hot rolls 1600 is a low temperature roll, and the tow is initially heated; while the second pair of drafting hot rolls 1700, the third pair of drafting hot rolls 1800, the fourth pair of drafting hot rolls 1900 and the fifth pair
  • the hot drawing rollers 2000 are all high-temperature rollers, which further heat the tow for drafting, relaxation and shaping.
  • the draft ratio between the feeding split tension roller 1400 and the first pair of drafting hot rollers 1600 is maintained at 1: (1.04-1.08), so that the tow maintains a certain tension; the first pair of drafting hot rollers 1600 and the second pair of drafting hot rollers
  • the drafting ratio of the drafting hot roller 1700 is 1.5 to 3.5 times, which is conducive to high orientation and lower crystallinity; the drafting ratio of the second pair of drafting hot rollers 1700 and the third pair of drafting hot rollers 1800 2.0 to 3.5 times to form secondary heating and drafting;
  • the drafting ratio of the third pair of drafting hot rollers 1800 and the fourth pair of drafting hot rollers 1900 is generally 1.7 to 2.5 times to improve the uniformity and drafting of fibers multiples to improve the strength of the tow; the drafting multiples of the fourth pair of drafting hot rollers 1900 and the fifth pair of drafting hot rollers 2000 are 0.9-1.0 times.
  • the tow is shaped to eliminate the stress of the fiber due to high-speed drafting
  • An industrial bio-based polyamide spinning, drafting and winding device of this embodiment is used to spin 55dtex-2222dtex bio-based polyamide industrial silk, which may include spinning 55dtex-111dtex bio-based polyamide industrial silk, And spinning 1670dtex-2222dtex bio-based polyamide industrial yarn.
  • the bio-based polyamide fiber tow passes through the wire guide part 1300 to enter the silk path and turn it into a wire guide, change the silk path to 0°-90° and then enter the feeding split tension roller 1400, and feed Separation tension roller 1400 is combined with fixed cooling roller 1410 ( ⁇ (110-220) ⁇ 400mm) and adjustable angle separation roller 1420 ( ⁇ (55-110) ⁇ 400mm), and the surface of the roller shell is chromium oxide + aluminum oxide , the tow after 90° deflection moves vertically downwards to the rear end of the effective area of the cylindrical surface that tangentially contacts the stationary chill roll 1410, as shown in FIG. 4 .
  • the rear tow is wound counterclockwise for half a circle from the left side of the cylindrical surface of the fixed cold roll 1410, and then tangentially pulled out from the right side of the cylindrical surface of the fixed cold roll 1410, and then enters the cylindrical surface of the adjustable angle splitting roll 1420 On the right side, wind half a circle counterclockwise and then pull out tangentially from the left side of the cylindrical surface of the adjustable angle splitting roller 1420 and then enter the left side of the cylindrical surface of the fixed cold roller 1410.
  • the front section of the cylindrical roller body of the angle-adjustable wire-splitting roller 1420 is inclined downward, so the tow wound half a circle from the cylindrical surface of the adjustable-angle wire-separating roller 1420 will move to a certain position on the surface of the roller body to the front end of the roller body ( As shown in Figure 5), such tow is continuously wound counterclockwise between the fixed cold roll 1410 and the adjustable angle splitting roll 1420 for 1 to 5 turns, and after the last round of winding, it is wound from the cylindrical roll surface of the fixed cold roll 1410 The lower tangent point of the front end is pulled out counterclockwise, and is wound on the feeding split tension roller 1400 without heating.
  • the tow is fed into the traction of the split tension roller 1400, cooled and formed, and the spinning draft is completed to form the primary fiber.
  • the speed is 550-750m/min, and enters the first heating plate 1510 in turn.
  • the surface of the tow that is in contact with the surface of the shell of the feeding split tension roller 1400 is the surface 20 of the tow N, and the n tows are on the surface of the roll shell. The surface is evenly spread, which can increase the spinning tension enough to reduce the swing of the spun fiber.
  • the tow maintains a certain tension, and it is necessary to preheat the tow to be drawn.
  • the bundle is drawn by the first pair of drafting hot rollers 1600 and passes through the first heating plate 1510. In the first heating plate 1510, both sides of M and N of n filament bundles are heated.
  • the total fineness and single filament fineness are relatively low, and the primary fiber is prone to abnormal phenomena such as end breakage during the initial drafting, which requires a relatively low-temperature heating environment, as shown in Figure 5.
  • 1400 speed is 720m/min and the n tows that come out pass through the first heating plate 1510.
  • the M and N sides of the n tows are all heated.
  • the heating temperature is relatively low as 50-65 °C, give continuous low-temperature preheating to the tow with thinner cross-section, let the inside of the tow be heated as much as possible in the heating plate, improve the penetration of heat, and enter the first pair of drafting hot rollers 1600 in turn.
  • the first pair of drafting hot rollers 1600 adopts adjustable angle hot rollers + adjustable angle hot rollers.
  • the surface of the hot roller shell is chromium oxide + aluminum oxide.
  • the size of the pair of rollers is (2 ⁇ (190-250) ⁇ (350-450) mm), the pair of rolls are low-temperature rolls, the tow is wound on the roll surface of the first pair of drafting hot rolls 1600 for 6.5 to 7.5 turns, and the temperature is set at 75-100° C., and in some embodiments it is 90° C.
  • the spinning speed is 700-800m/min
  • the tow is spread stably on the surface of the first pair of drafting hot rollers 1600
  • the tow is wound counterclockwise on the roller surface and the roller surface of the first pair of drafting hot rollers 1600 for 6.5 turns to 7.5
  • the surface of the tow heated by the tow on the surface of the roll shell is the N surface.
  • the total fineness and single filament fineness are relatively high, and the primary fibers are also prone to abnormal phenomena such as broken ends when they are drawn for the first time. , The bending strength of the tow is too high, and the hand feels hard.
  • a relatively high-temperature heating environment is required, as shown in Figure 4 and Figure 5, the n filament bundles that are fed into the split tension roller 1400 at a speed of 650m/min pass through the first heating plate 1510, and in the first heating plate 1510, n Both the M and N sides of the tow are heated. At this time, the heating temperature is relatively low at 70-90°C.
  • this pair of rollers is a low-temperature roller
  • the tow is wound on the roller surface of the first pair of drafting hot rollers 1600 for 6.5 to 7.5 turns
  • the temperature is set at 75-100 °C, in some possible embodiments, it is 90 °C
  • the spinning speed is 700-800m/min
  • the tow is spread stably on the surface of the first pair of drafting hot rolls 1600
  • the tow is spread on the roll surface of the first pair of drafting hot rolls 1600 Wrap 6.5 to 7.5 turns on the surface of the roll, and at this time, the surface of the tow heated on the surface of the roll shell is the N surface.
  • the tow is wound on the first pair of drafting hot rollers 1600, it is pulled out from the right roller of the first pair of drafting hot rollers 1600 and then passed to the second heating plate 1520, in the second heating plate 1520, the M and N sides of the n tows are all heated, and the n tows are evenly spread on the surface of the left roller of the second pair of drafting hot rollers 1700. At this time, the tows are on the roll shell
  • the surface heated tow surface is the M surface.
  • the second pair of drafting hot rollers 1700 adopts adjustable angle hot roller + adjustable angle hot roller.
  • the surface of the hot roller shell is chromium oxide + aluminum oxide. This roller is a high temperature roller.
  • the first pair of drafting hot rolls 1600 are low-temperature rolls, and the temperature is set at 75-100°C; the second pair of drafting hot rolls 1700 is high-temperature rolls, and the temperature is set at 110-145°C, which can gradually increase the temperature of the tow , which is conducive to the gradual orientation and crystallization of fibers, so as to achieve the mechanical properties of bio-based polyamide silk fibers for industrial use.
  • the second heating plate 1520 is placed so that each filament passes through the heater alone, and will be spread stably on the surface of the second pair of drafting hot rollers 1700, which improves the internal and external temperature consistency of the filament bundle and improves the uniform heating of the filament bundle Sex, in order to facilitate subsequent heating, drafting.
  • the heated surface of the tow is reversed, and the surface of the tow heated by the tow on the surface of the roll shell is the M surface.
  • the M surface of the tow is also heated in this process, and the heating balance of the second heating plate 1520 is conducive to improving the crystallinity and orientation of the fiber, and can gradually increase the strength and strength of the fiber. modulus.
  • the temperature of the second heating plate 1520 is set at 95-115° C., and the tow passes through the second heating plate 1520 to the second pair of drafting hot rollers 1700 .
  • the tow is wound clockwise for 6.5 to 7.5 turns on the roller surfaces of the second pair of drafting hot rollers 1700, and the spinning speed is 1680m/min.
  • the drafting ratio of the first pair of drafting hot rollers 1600 and the second pair of drafting hot rollers 1700 is generally 1.5 to 3.5 times. This level of drafting is to obtain high orientation and low crystallinity. Spinning 55dtex-111dtex is lower than spinning 1670dtex-2222dtex in total fineness and single filament fineness, and the heating area is small, requiring a relatively lower heating environment of 5-10°C. Because the filaments are relatively thin, the draft ratio is 5%-10% smaller.
  • the tow is drawn by the third pair of drafting hot rollers 1800 and passes through the third pair of heating plates 1530 Both M and N sides of n filament bundles are heated.
  • the tow is spread stably on the surface of the third pair of drafting hot rolls 1800, and the tow is wound on the two roller surfaces of the third pair of drafting hot rolls 1800 for 6.5 to 7.5 turns, and the n tows are spread evenly on the surface of the roll shell
  • the surface of the tow heated on the surface of the roll shell is the N surface. Therefore, this level of drafting can obtain a certain strength and elongation.
  • the total fineness and single filament fineness of spinning 55dtex-111dtex are lower than those of spinning 1670dtex-2222dtex, and the heating area is small. It requires a relatively low heating environment of 5-15°C. , The draft ratio is 4%-12% smaller.
  • the temperature of the third heating plate 1530 is set at 110-155°C. After the tow passes through the third heating plate 1530, it is transferred to the third drafting hot roller.
  • the third pair of drafting hot rollers 1800 adopts adjustable angle hot roller + adjustable angle Hot roll, the surface of the hot roll is chromium oxide + aluminum oxide, the size of the pair of rolls (2 ⁇ (190-250) ⁇ (350-450)mm), this roll is a high-temperature roll, and the tow is drawn in the third pair of hot
  • the roller surface of the roller 1800 is wound 6.5 to 7.5 turns, the temperature is set to 130-150°C, in some embodiments it is 140°C, the spinning speed is 2520m/min, the second pair of drafting hot rollers 1700 and the third pair of drawing
  • the drafting ratio of the heating roller 1800 is generally 2.0 to 3.5 times, forming secondary heating and drafting, which further increases the temperature of the tow gradually and steadily, improves the uniformity of the fiber and the drafting ratio, and increases the strength of the tow.
  • the third heating plate 1530 is placed so that each filament passes through the heater alone, and will be spread stably on the surface of the third pair of drafting hot rollers 1800, which further improves the internal and external temperature consistency of the filament bundle and improves the heating of the filament bundle Uniformity, in order to facilitate subsequent heating and drafting.
  • the tow heating surface is reversed again, and the tow surface heated by the tow on the surface of the roll shell is the N surface. Both sides of the tow are heated, coupled with the heating balance of the third heating plate 1530, it is beneficial to improve the crystallinity and orientation of the fiber, and gradually increase the strength and modulus of the fiber.
  • the tow is pulled by the fourth pair of drafting hot rollers 1900 and passed through the fourth heating plate 1540 Both M and N sides of n filament bundles are heated.
  • the tow is spread stably on the surface of the fourth pair of drafting hot rolls 1900, and the tow is wound on the two roll surfaces of the fourth pair of drafting hot rolls 1900 for 6.5 to 7.5 turns, and n tows are spread evenly on the surface of the roll shell At this time, the surface of the tow heated by the tow on the surface of the roll shell is the M surface.
  • This level of drafting is also to obtain a certain strength and elongation, and has a certain presetting effect.
  • Spinning 55dtex-111dtex is lower than spinning 1670dtex-2222dtex in total fineness and single filament fineness, and the heating area is small, requiring a relatively lower heating environment of 2-10°C. Because the filaments are relatively thin, the draft ratio is 2%-8% smaller.
  • the setting temperature of the fourth heating plate 1540 is 125-195°C
  • the third pair of drafting hot rollers 1800 and the fourth pair of drafting hot rollers 1900 form the third heating and drafting
  • the drafting ratio is generally 1.7 ⁇ 2.5 times to further increase the temperature of the tow gradually and stably, improve the uniformity of the fiber and the drafting ratio, and increase the strength of the tow.
  • the fourth heating plate 1540 is placed so that each filament passes through the heater alone, and will be spread stably on the surface of the fourth pair of drafting hot rollers 1900, which further improves the internal and external temperature consistency of the filament bundle and improves the heating of the filament bundle Uniformity, in order to facilitate subsequent heating and drafting.
  • the heated surface of the tow is reversed again, and the surface of the tow heated by the tow on the surface of the roll shell is the M surface. Both sides of the tow are heated, coupled with the heating balance of the fourth heating plate 1540, which is conducive to the increase of the orientation degree and grain size of the crystallization region and the perfection of the crystal region in the subsequent drafting.
  • the tow is passed through the fourth heating plate After 1540, it is transmitted to the fourth pair of drafting hot rollers 1900.
  • the fourth pair of drafting hot rollers 1900 adopts adjustable angle hot rollers and adjustable angle hot rollers.
  • the surface of the hot roller shell is made of ceramics.
  • this roll is a high-temperature roll, and the temperature is set at 130-150°C.
  • the tow is wound on the roll surface of the fourth pair of drafting hot rolls 1900 for 6.5 to 7.5 turns. Speed 3650m/min.
  • the tow is drawn by the fifth pair of drafting hot rollers 2000 and passes through the fifth heating plate 1550 .
  • the fifth heating plate 1550 is set at a temperature of 140-220°C. In the fifth heating plate 1550, both M and N sides of n filament bundles are heated.
  • the tow is spread stably on the surface of the fifth pair of drafting hot rolls 2000, and the tow is wound on the two roll surfaces of the fifth pair of drafting hot rolls 2000 for 6.5 to 7.5 turns, and the n tows are spread evenly on the surface of the roll shell At this time, the surface of the tow heated by the tow on the surface of the roll shell is the M surface.
  • This level plays the role of relaxation and setting. Spinning 55dtex-111dtex has lower total fineness and single filament fineness than spinning 1670dtex-2222dtex, and the heating area is small. It requires a relatively lower heating environment of 1-4°C. Since the filaments are relatively thin, the relaxation ratio is smaller by 1 %-3%.
  • the drafting ratio of the fourth pair of drafting hot rollers 1900 and the fifth pair of drafting hot rollers 2000 is generally 0.9-1.0 times, and the speed of the fifth pair of drafting hot rollers 2000 is slightly lower than that of the fourth pair of drafting hot rollers. There is a certain retraction of the fibers between them.
  • the main function of completing the shaping of the high-strength yarn is to shape the drawn tow and eliminate the stress of the fiber due to high-speed drafting. For better control of low shrinkage.
  • the fifth heating plate 1550 is placed so that each filament passes through the heater alone, and will be spread stably on the surface of the fifth pair of drafting hot rollers 2000, which further improves the internal and external temperature consistency of the filament bundle and improves the heating of the filament bundle Uniformity, so as to facilitate the retraction of the posterior contour.
  • the fifth pair of drafting hot rollers 2000 adopts adjustable angle hot rollers + adjustable angle hot rollers.
  • the surface of the hot roller shell is made of ceramics.
  • Roll size (2 ⁇ (190-220) ⁇ (350-400) mm), this roll is a high-temperature roll, and the tow is wound on the roll surface of the fifth pair of drafting hot rolls 2000 for 6.5 to 7.5 turns. Set at 130-210°C, spinning speed 3550m/min.
  • the spinning, drafting and winding device of this embodiment is used for spinning 55dtex-111dtex fine-denier bio-based polyamide fibers and 1670dtex-2222dtex coarse-denier bio-based polyamide fibers, and can also be used for 111dtex- Spinning of 1670dtex bio-based polyamide fibers.
  • the heating plate may include a heat transfer block 1501 and a plurality of heating rods 1502, the heat transfer block 1501 is provided with an open slot 1503 for the filament bundle to pass through, and a plurality of heating rods 1502 are provided.
  • the rods 1502 are arranged in sequence along the length direction of the opening groove 1503. Three heating rods 1502 are shown in the figure, and the number of heating rods 1502 can be more selected; the heating rods 1502 are arranged in a hook shape and formed with hooks and hook grooves.
  • the heat transfer block 1501 is provided inside, and the hook groove is used for the thread to pass through. With this heating plate, both sides of the passing tow can be fully and evenly heated.
  • This embodiment discloses an industrial bio-based polyamide spinning, drawing and winding machine, which may include a screw extruder 100 arranged in sequence according to the production process, a melting Body pipeline 300, spinning box 400, metering pump 500, spinning assembly 600, slow cooler 700, monomer suction mechanism 800, side blowing part 900, tunnel part 1000, double-face oiling mechanism 1100, pre-network part 1200, guide wire component 1300, feeding and splitting tension roller 1400, first heating plate 1510, first pair of drafting hot rollers 1600, second heating plate 1520, second pair of drafting hot rollers 1700, third heating plate 1530 , the third pair of drafting hot rollers 1800, the fourth heating plate 1540, the fourth pair of drafting hot rollers 1900, the fifth heating plate 1550, the fifth pair of drafting hot rollers 2000, the final network component 2100 and the fully automatic winding head .
  • the first heating plate 1510 , the second heating plate 1520 , the third heating plate 1530 , the fourth heating plate 1540 and the fifth heating plate 1550 all heat the tow in the area between two adjacent rollers.
  • the tow winds around the first pair of drafting hot rolls 1600, around the second pair of drafting hot rolls 1700, around the third pair of drafting hot rolls 1800, around the fourth pair of drafting rolls
  • two adjacent directions of rotation are set in opposite directions, so as to spin 55dtex-2222dtex bio-based polyamide industrial yarn.
  • the tow passes through the feeding split tension roller 1400, the first pair of drafting hot rollers 1600, the second pair of drafting hot rollers 1700, the third pair of drafting hot rollers, etc.
  • the roll 1800, the fourth pair of drafting hot rolls 1900 and the fifth pair of drafting hot rolls 2000 pass through the final network component 2100 and are wound onto the winder.
  • the spinning comes down through the spinning assembly, and then passes through the double-face oiling mechanism 1100, the pre-network component 1200 and the guide yarn component 1300, and then passes through the feed split tension roller 1400.
  • peripheral side of the tow is divided into the surface 10 of the tow M on one side and the surface 20 of the tow N on the other side.
  • the clockwise and counterclockwise directions in the following related descriptions are all described according to the figures.
  • the winding direction of the tow on the second pair of drafting hot rollers 1700 is clockwise, and the second pair of drafting hot rollers 1700 directly contacts and heats the surface 10 of the tow M.
  • the winding direction of the tow on the third pair of drafting hot rollers 1800 is counterclockwise, and the third pair of drafting hot rollers 1800 directly contacts and heats the N surface 20 of the tow.
  • the winding direction of the tow on the fourth pair of drafting hot rollers 1900 is clockwise, and the fourth pair of drafting hot rollers 1900 directly contacts and heats the surface 10 of the tow M.
  • the multi-stage drafting hot roller to achieve step-by-step drafting, it can spin 55dtex-2222dtex bio-based polyamide industrial yarn, so that it can be used Spinning of 55dtex-111dtex fine-denier bio-based polyamide fibers and 1670dtex-2222dtex coarse-denier bio-based polyamide fibers.
  • the winding direction of the tow on the fifth pair of drafting hot rollers 2000 is clockwise, and the fifth pair of drafting hot rollers 2000 directly contacts and heats the surface 10 of the tow M, thereby making the tow
  • the beam hangs down from the right side as shown in Figure 1, and enters the winding machine through the final network component 2100, which is beneficial to the overall arrangement of the combined machine.
  • the combination machine may sequentially include a feeding and splitting tension roller 1400, a first heating plate 1510, a first pair of drafting heating rollers 1600, a second heating Plate 1520, the second pair of drafting hot rollers 1700, the third heating plate 1530, the third pair of drafting hot rollers 1800, the fourth heating plate 1540, the fourth pair of drafting hot rollers 1900, the fifth heating plate 1550 and the fifth
  • the first heating plate 1510, the second heating plate 1520, the third heating plate 1530, the fourth heating plate 1540 and the fifth heating plate 1550 all heat the tow in the area between two adjacent rolls.
  • the tow is stretched for the first time on the first pair of drafting hot rollers 1600.
  • both sides of the tow are heated and preheated by the first heating plate 1510. , and then enter the first pair of drafting hot rollers 1600, which is beneficial to overcome the problems of easy broken ends and poor spinnability in the initial drafting; it is set between the first pair of drafting hot rollers 1600 and the second pair of drafting hot rollers 1700
  • the second heating plate 1520 is conducive to improving the crystallinity and orientation of the fiber, and can gradually increase the strength and modulus of the fiber;
  • the third heating plate 1530 improves the internal and external temperature consistency of the tow, improves the heating uniformity of the tow, and facilitates subsequent heating and drafting; it is located on the third pair of drafting hot rollers 1800 and the fourth pair of drafting rollers.
  • the fourth heating plate 1540 between the hot rollers 1900 further improves the internal and external temperature consistency of the tow and improves the heating uniformity of the tow to facilitate subsequent heating and drafting; it is installed on the fourth pair of drafting hot rollers
  • the fifth heating plate 1550 between 1900 and the fifth pair of drafting hot rollers 2000 further improves the internal and external temperature consistency of the tow, improves the heating uniformity of the tow, and facilitates the subsequent setting and shrinkage.
  • the feeding and splitting tension roller 1400 adopts a fixed cold roller 1410 to cooperate with an adjustable angle splitting roller 1420, while the first pair of drafting hot rollers 1600, the second pair of drafting hot rollers 1700, the third pair of drafting hot rollers 1800, the fourth pair of drafting hot rollers 1900, and the fifth pair of drafting hot rollers 2000 all adopt adjustable-angle hot rollers and adjustable-angle hot rollers.
  • the first pair of drafting hot rolls 1600 is a low temperature roll, and the tow is initially heated; while the second pair of drafting hot rolls 1700, the third pair of drafting hot rolls 1800, the fourth pair of drafting hot rolls 1900 and the fifth pair
  • the hot drawing rollers 2000 are all high-temperature rollers, which further heat the tow for drafting, relaxation and shaping.
  • the draft ratio between the feeding split tension roller 1400 and the first pair of drafting hot rollers 1600 is maintained at 1: (1.04-1.08), so that the tow maintains a certain tension; the first pair of drafting hot rollers 1600 and the second pair of drafting hot rollers
  • the drafting ratio of the drafting hot roller 1700 is 1.5 to 3.5 times, which is conducive to high orientation and lower crystallinity; the drafting ratio of the second pair of drafting hot rollers 1700 and the third pair of drafting hot rollers 1800 2.0 to 3.5 times to form secondary heating and drafting;
  • the drafting ratio of the third pair of drafting hot rollers 1800 and the fourth pair of drafting hot rollers 1900 is generally 1.7 to 2.5 times to improve the uniformity and drafting of fibers multiples to improve the strength of the tow; the drafting multiples of the fourth pair of drafting hot rollers 1900 and the fifth pair of drafting hot rollers 2000 are 0.9-1.0 times.
  • the tow is shaped to eliminate the stress of the fiber due to high-speed drafting
  • a kind of industrial bio-based polyamide spinning, drawing and winding combined machine of this embodiment is used to spin 55dtex-2222dtex bio-based polyamide industrial silk, which may include spinning 55dtex-111dtex bio-based polyamide industrial silk , and spinning 1670dtex-2222dtex bio-based polyamide industrial yarn.
  • the bio-based polyamide fiber tow passes through the wire guide part 1300 to enter the silk path and turn it into a wire guide, change the silk path to 0°-90° and then enter the feeding split tension roller 1400, and feed Separation tension roller 1400 is combined with fixed cooling roller 1410 ( ⁇ (110-220) ⁇ 400mm) and adjustable angle separation roller 1420 ( ⁇ (55-110) ⁇ 400mm), and the surface of the roller shell is chromium oxide + aluminum oxide , the tow after 90° deflection moves vertically downwards to the rear end of the effective area of the cylindrical surface that tangentially contacts the stationary chill roll 1410, as shown in FIG. 4 .
  • the rear tow is wound counterclockwise for half a turn from the left side of the fixed cold roll 1410 cylindrical surface, and then tangentially pulled out from the right side of the fixed cold roll 1410 cylindrical surface, and then enters the right side of the adjustable angle splitting roll 1420 cylindrical surface side, wind half a circle counterclockwise and then pull out tangentially from the left side of the cylindrical surface of the adjustable angle splitting roller 1420 and then enter the left side of the fixed cooling roller 1410 cylindrical surface.
  • the splitting roller has the function of adjusting the angle; adjustable
  • the front part of the cylindrical roller body of the angle splitting roller 1420 is inclined downward, so the tow wound half a circle from the cylindrical surface of the adjustable angle splitting roller 1420 will move to a certain position on the surface of the roller body to the front end of the roller body (such as As shown in Fig. 5), such tow is continuously wound counterclockwise between the fixed cold roll 1410 and the adjustable angle splitting roll 1420 for 1 to 5 turns, and after the last round is wound, it is wound from the fixed cold roll 1410 cylindrical roller surface The lower tangent point of the front end is pulled out counterclockwise, and is wound on the feeding split tension roller 1400 without heating.
  • the tow is fed into the traction of the split tension roller 1400, cooled and formed, and the spinning draft is completed to form the primary fiber.
  • the speed is 550-750m/min, and enters the first heating plate 1510 in turn.
  • the surface of the tow that is in contact with the surface of the shell of the feeding split tension roller 1400 is the surface 20 of the tow N, and the n tows are on the surface of the roll shell. The surface is evenly spread, which can increase the spinning tension enough to reduce the swing of the spun fiber.
  • the tow maintains a certain tension, and it is necessary to preheat the tow to be drawn.
  • the bundle is drawn by the first pair of drafting hot rollers 1600 and passes through the first heating plate 1510. In the first heating plate 1510, both sides of M and N of n filament bundles are heated.
  • the total fineness and single filament fineness are relatively low, and the primary fiber is prone to abnormal phenomena such as end breakage during the initial drafting, which requires a relatively low-temperature heating environment, as shown in Figure 5.
  • 1400 speed is 720m/min and the n tows that come out pass through the first heating plate 1510.
  • the M and N sides of the n tows are all heated.
  • the heating temperature is relatively low as 50-65 °C, give continuous low-temperature preheating to the tow with thinner cross-section, let the inside of the tow be heated as much as possible in the heating plate, improve the penetration of heat, and enter the first pair of drafting hot rollers 1600 in turn.
  • the first pair of drafting hot rollers 1600 adopts adjustable angle hot rollers + adjustable angle hot rollers.
  • the surface of the hot roller shell is chromium oxide + aluminum oxide.
  • the size of the pair of rollers is (2 ⁇ (190-250) ⁇ (350-450) mm), the pair of rolls are low-temperature rolls, and the tow is wound on the roll surface of the first pair of drafting hot rolls 1600 for 6.5 to 7.5 turns, and the temperature is set at 75-100° C., and in some possible embodiments, it is 90° C.
  • the spinning speed is 700-800m/min
  • the tow is spread stably on the surface of the first pair of drafting hot rollers 1600
  • the tow is wound counterclockwise on the roller surface and the roller surface of the first pair of drafting hot rollers 1600 for 6.5 turns ⁇ 7.5 circles, at this time, the surface of the tow heated by the tow on the surface of the roll shell is the N surface.
  • the total fineness and single filament fineness are relatively high, and the primary fibers are also prone to abnormal phenomena such as broken ends when they are drawn for the first time. , The bending strength of the tow is too high, and the hand feels hard.
  • a relatively high-temperature heating environment is required, as shown in Figure 4 and Figure 5, the n filament bundles that are fed into the split tension roller 1400 at a speed of 650m/min pass through the first heating plate 1510, and in the first heating plate 1510, n Both the M and N sides of the tow are heated. At this time, the heating temperature is relatively low at 70-90°C.
  • this pair of rollers is a low-temperature roller
  • the tow is wound on the roller surface of the first pair of drafting hot rollers 1600 for 6.5 to 7.5 turns
  • the temperature is set at 75-100 °C, in some possible embodiments, it is 90 °C
  • the spinning speed is 700-800m/min
  • the tow is spread stably on the surface of the first pair of drafting hot rolls 1600
  • the tow is spread on the roll surface of the first pair of drafting hot rolls 1600 Wrap 6.5 to 7.5 turns on the surface of the roll, and at this time, the surface of the tow heated on the surface of the roll shell is the N surface.
  • the tow is wound on the first pair of drafting hot rollers 1600, it is pulled out from the right roller of the first pair of drafting hot rollers 1600 and then passed to the second heating plate 1520, in the second heating plate 1520, the M and N sides of the n tows are all heated, and the n tows are evenly spread on the surface of the left roller of the second pair of drafting hot rollers 1700. At this time, the tows are on the roll shell
  • the surface heated tow surface is the M surface.
  • the second pair of drafting hot rollers 1700 adopts adjustable angle hot roller + adjustable angle hot roller.
  • the surface of the hot roller shell is chromium oxide + aluminum oxide. This roller is a high temperature roller.
  • the first pair of drafting hot rolls 1600 are low-temperature rolls, and the temperature is set at 75-100°C; the second pair of drafting hot rolls 1700 is high-temperature rolls, and the temperature is set at 110-145°C, which can gradually increase the temperature of the tow , which is conducive to the gradual orientation and crystallization of fibers, so as to achieve the mechanical properties of bio-based polyamide silk fibers for industrial use.
  • the second heating plate 1520 is placed so that each filament passes through the heater alone, and will be spread stably on the surface of the second pair of drafting hot rollers 1700, which improves the internal and external temperature consistency of the filament bundle and improves the uniform heating of the filament bundle Sex, in order to facilitate subsequent heating, drafting.
  • the heated surface of the tow is reversed, and the surface of the tow heated by the tow on the surface of the roll shell is the M surface.
  • the M surface of the tow is also heated, coupled with the heating balance of the second heating plate 1520, it is beneficial to improve the crystallinity and orientation of the fiber, and can gradually increase the strength and modulus of the fiber.
  • the temperature of the second heating plate 1520 is set at 95-115° C., and the tow passes through the second heating plate 1520 to the second pair of drafting hot rollers 1700 .
  • the tow is wound clockwise for 6.5 to 7.5 turns on the roller surfaces of the second pair of drafting hot rollers 1700, and the spinning speed is 1680m/min.
  • the first pair of drafting hot rollers 1600 and the second pair of drafting hot rollers 1700 generally have a draft ratio of 1.5 to 3.5 times. This level of drafting is to obtain high orientation and low crystallinity. Spinning 55dtex-111dtex is lower than spinning 1670dtex-2222dtex in total fineness and single filament fineness, and the heating area is small, requiring a relatively lower heating environment of 5-10°C. Because the filaments are relatively thin, the draft ratio is 5%-10% smaller.
  • the tow is drawn by the third pair of drafting hot rollers 1800 and passes through the third pair of heating plates 1530 Both M and N sides of n filament bundles are heated.
  • the tow is spread stably on the surface of the third pair of drafting hot rolls 1800, and the tow is wound on the two roller surfaces of the third pair of drafting hot rolls 1800 for 6.5 to 7.5 turns, and the n tows are spread evenly on the surface of the roll shell
  • the surface of the tow heated on the surface of the roll shell is the N surface. Therefore, this level of drafting can obtain a certain strength and elongation.
  • the total fineness and single filament fineness of spinning 55dtex-111dtex are lower than those of spinning 1670dtex-2222dtex, and the heating area is small. It requires a relatively low heating environment of 5-15°C. , The draft ratio is 4%-12% smaller.
  • the temperature of the third heating plate 1530 is set at 110-155°C. After the tow passes through the third heating plate 1530, it is transferred to the third drafting hot roller.
  • the third pair of drafting hot rollers 1800 adopts adjustable angle hot roller + adjustable angle Hot roll, the surface of the hot roll is chromium oxide + aluminum oxide, the size of the pair of rolls (2 ⁇ (190-250) ⁇ (350-450)mm), this roll is a high-temperature roll, and the tow is drawn in the third pair of hot
  • the roller surface of the roller 1800 is wrapped around 6.5 to 7.5 turns, the temperature is set at 130-150°C, in some possible embodiments it is 140°C, the spinning speed is 2520m/min, the second pair of drafting hot rollers 1700 and the third pair of
  • the draft hot roller 1800 generally has a draft ratio of 2.0 to 3.5 times, forming secondary heating and drafting, further increasing the temperature of the tow gradually and stably, improving the uniformity of the fiber and the draft ratio, and increasing the strength of the tow.
  • the third heating plate 1530 is placed so that each filament passes through the heater alone, and will be spread stably on the surface of the third pair of drafting hot rollers 1800, which further improves the internal and external temperature consistency of the filament bundle and improves the heating of the filament bundle Uniformity, in order to facilitate subsequent heating and drafting.
  • the tow heating surface is reversed again, and the tow surface heated by the tow on the surface of the roll shell is the N surface. Both sides of the tow are heated, coupled with the heating balance of the third heating plate 1530, it is beneficial to improve the crystallinity and orientation of the fiber, and gradually increase the strength and modulus of the fiber.
  • the tow is pulled by the fourth pair of drafting hot rollers 1900 and passed through the fourth heating plate 1540 Both M and N sides of n filament bundles are heated.
  • the tow is spread stably on the surface of the fourth pair of drafting hot rolls 1900, and the tow is wound on the two roll surfaces of the fourth pair of drafting hot rolls 1900 for 6.5 to 7.5 turns, and n tows are spread evenly on the surface of the roll shell At this time, the surface of the tow heated by the tow on the surface of the roll shell is the M surface.
  • This level of drafting is also to obtain a certain strength and elongation, and has a certain presetting effect.
  • Spinning 55dtex-111dtex is lower than spinning 1670dtex-2222dtex in total fineness and single filament fineness, and the heating area is small, requiring a relatively lower heating environment of 2-10°C. Because the filaments are relatively thin, the draft ratio is 2%-8% smaller.
  • the setting temperature of the fourth heating plate 1540 is 125-195°C
  • the third pair of drafting hot rollers 1800 and the fourth pair of drafting hot rollers 1900 form the third heating and drafting
  • the drafting ratio is generally 1.7 ⁇ 2.5 times to further increase the temperature of the tow gradually and stably, improve the uniformity of the fiber and the drafting ratio, and increase the strength of the tow.
  • the fourth heating plate 1540 is placed so that each filament passes through the heater alone, and will be spread stably on the surface of the fourth pair of drafting hot rollers 1900, which further improves the internal and external temperature consistency of the filament bundle and improves the heating of the filament bundle Uniformity, in order to facilitate subsequent heating and drafting.
  • the heated surface of the tow is reversed again, and the surface of the tow heated by the tow on the surface of the roll shell is the M surface. Both sides of the tow are heated, coupled with the heating balance of the fourth heating plate 1540, which is conducive to the increase of the orientation degree and grain size of the crystallization region and the perfection of the crystal region in the subsequent drafting.
  • the tow is passed through the fourth heating plate After 1540, it is passed to the fourth pair of drafting hot rollers 1900.
  • the fourth pair of drafting hot rollers 1900 adopts adjustable angle hot rollers and adjustable angle hot rollers.
  • the outer shell surface of the hot rollers is made of ceramics.
  • this roll is a high-temperature roll, and the temperature is set at 130-150°C.
  • the tow is wound on the roll surface of the fourth pair of drafting hot rolls 1900 for 6.5 to 7.5 turns. Speed 3650m/min.
  • the tow is drawn by the fifth pair of drafting hot rollers 2000 and passes through the fifth heating plate 1550 .
  • the fifth heating plate 1550 is set at a temperature of 140-220°C. In the fifth heating plate 1550, both M and N sides of n filament bundles are heated.
  • the tow is spread stably on the surface of the fifth pair of drafting hot rolls 2000, and the tow is wound on the two roll surfaces of the fifth pair of drafting hot rolls 2000 for 6.5 to 7.5 turns, and the n tows are spread evenly on the surface of the roll shell At this time, the surface of the tow heated by the tow on the surface of the roll shell is the M surface.
  • This level plays the role of relaxation and setting. Spinning 55dtex-111dtex has lower total fineness and single filament fineness than spinning 1670dtex-2222dtex, and the heating area is small. It requires a relatively lower heating environment of 1-4°C. Since the filaments are relatively thin, the relaxation ratio is smaller by 1 %-3%.
  • the drafting ratio of the fourth pair of drafting hot rollers 1900 and the fifth pair of drafting hot rollers 2000 is generally 0.9-1.0 times, and the speed of the fifth pair of drafting hot rollers 2000 is slightly lower than that of the fourth pair of drafting hot rollers. There is a certain retraction of the fibers between them.
  • the main function of completing the shaping of the high-strength yarn is to shape the drawn tow and eliminate the stress of the fiber due to high-speed drafting. For better control of low shrinkage.
  • the fifth heating plate 1550 is placed so that each filament passes through the heater alone, and will be spread stably on the surface of the fifth pair of drafting hot rollers 2000, which further improves the internal and external temperature consistency of the filament bundle and improves the heating of the filament bundle Uniformity, so as to facilitate the retraction of the posterior contour.
  • the fifth pair of drafting hot rollers 2000 adopts adjustable angle hot rollers + adjustable angle hot rollers.
  • the surface of the hot roller shell is made of ceramics.
  • Roll size (2 ⁇ (190-220) ⁇ (350-400) mm), this roll is a high-temperature roll, and the tow is wound on the roll surface of the fifth pair of drafting hot rolls 2000 for 6.5 to 7.5 turns. Set at 130-210°C, spinning speed 3550m/min.
  • the combination machine of this embodiment is used for spinning 55dtex-111dtex fine denier bio-based polyamide fiber, 1670dtex-2222dtex coarse denier bio-based polyamide fiber, and can also be used for 111dtex-1670dtex bio-based polyamide Fiber spinning.
  • the heating plate 1510, the second heating plate 1520, the third heating plate 1530, the fourth heating plate 1540 and the fifth heating plate are involved.
  • the heating plate 1550 in some embodiments, as shown in Figures 19 to 21, the heating plate can include a heat transfer block 1501 and a plurality of heating rods 1502, and the heat transfer block 1501 is provided with an open slot 1503 for the filament bundle to pass through , a plurality of heating rods 1502 (three shown in the figure, the number is variable) are arranged sequentially along the length direction of the opening groove 1503, and the heating rods 1502 are all arranged in a hook shape and formed with hooks and hook grooves. Block 1501, the hook slots for the tow to pass through. With this heating plate, both sides of the passing tow can be fully and evenly heated.
  • the industrial bio-based polyamide spinning, drawing and winding combined machine disclosed in Embodiment 2 involves a screw extruder, and the screw extruder is equipped with an extruder screw.
  • the present embodiment provides an extruder screw, including a screw feed section 110 , a screw compression section 120 and a screw metering section 130 , one end of the screw feed section 110 and one end of the screw compression section 120 Detachable connection, the other end of the screw compression section 120 is detachably connected to one end of the screw metering section 130 .
  • the screw of the extruder adopts three sections of screw feeding section 110, screw compression section 120 and screw metering section 130, and the two adjacent sections are detachably connected.
  • screw corrosion and screw corrosion due to unstable raw materials of bio-based polyamide In the problem that the dimensional tolerance between the sleeve and the screw will gradually become larger, for the metering section that may be the first to cause wear, the method of regularly replacing the screw metering section 130 can be adopted, and the replacement is convenient to ensure screw extrusion Machine productivity and efficiency.
  • screw compression section 120 and the screw feed section 110 can also be replaced regularly.
  • the screw of the extruder is installed in the screw extruder 100, and the screw extruder 100 is equipped with an extrusion head 200, through which the melt is transported to the subsequent melt pipeline.
  • the screw metering section 130 may also include a mixing head 140, which is arranged at the head of the screw to improve the effect of stirring and homogenizing the melt by the screw of the extruder.
  • the end of the screw feed section 110 away from the screw compression section 120 is also connected with a key connector 150 , which is connected to the transmission mechanism through the key connector 150 to drive the screw to rotate and enter the working state.
  • the extrusion head 200 may include a pressure sensor for detecting the melt pressure, so that the melt pressure can be detected to ensure that the head pressure of the screw extruder 100 is constant.
  • the extrusion head 200 may include a temperature sensor for detecting the temperature of the melt, so as to measure the online temperature parameters of the melt such as biomass polyamide melt, which is beneficial to the overall spinning process.
  • the extrusion head 200 is provided with a pre-filter ring (not shown in the figure) in the melt channel, and the material with larger particles is filtered through the pre-filter ring to ensure that the melt entering the subsequent melt pipeline quality.
  • the detachable connection in the above solution may include threaded connection, and the two ends of the screw compression section 120 are respectively threaded with one end of the screw feeding section 110 and one end of the screw metering section 130 .
  • the detachable connection it is convenient to replace the fast-wearing screw metering section 130 at a higher frequency, so as to ensure the output and efficiency of the screw extruder 100 .
  • a pin joint may be added to improve the connection quality.
  • the detachable connection between the screw compression section 120 and the screw feed section 110 is taken as an example, please refer to FIG. 23 and FIG. 24 .
  • the end of the screw compression section 120 close to the screw feed section 110 includes a first protrusion 121, a second protrusion 122 and a third protrusion 123 connected in sequence, the first protrusion 121, the second protrusion
  • the axes of the protrusion 122 and the third protrusion 123 are all coincidently arranged, the radial lengths of the first protrusion 121, the second protrusion 122 and the third protrusion 123 are successively reduced, and the outer peripheral surface of the second protrusion 122 is provided with first thread.
  • the end of the screw feeding section 110 close to the screw compression section 120 is provided with a first shaft hole 111, the first protrusion 121, the second protrusion 122 and the third protrusion 123 are sequentially penetrated through the first shaft hole 111, and the screw feed
  • the inner wall of the first shaft hole 111 of the section 110 is provided with a second thread (not shown in the figure) coupled with the first thread.
  • the third protrusion 123 is pinned to the screw feeding section 110 through the first positioning pin 123a, corresponding to the first positioning pin 123a, corresponding radially distributed pin holes are opened on the third boss and the screw feeding section 110 .
  • the barrel wall of the screw feed section 110 at the pin joint has a relatively large thickness, and the third protrusion 123 is used to improve the stability of the pin joint;
  • the second protrusion 122 is arranged on the first protrusion 121 and the third protrusion 123, as shown in Figure 24, the outer circumference of the first protrusion 121 is set to be closely attached to the inner wall of the first shaft hole 111 of the screw feed section 110, and the first shaft hole in the middle The thread, the second thread are separated from the space area outside the screw.
  • the end of the screw metering section 130 close to the screw compression section 120 includes sequentially connected fourth protrusions 131, The fifth protrusion 132 and the sixth protrusion 133, the axes of the fourth protrusion 131, the fifth protrusion 132 and the sixth protrusion 133 are all coincidently arranged, and the fourth protrusion 131, the fifth protrusion 132 and the sixth protrusion The radial length of the protrusion 133 decreases successively, and the outer peripheral surface of the fifth protrusion 132 is provided with a third thread.
  • the end of the screw compression section 120 close to the screw metering section 130 is provided with a second shaft hole 124, and the fourth protrusion 131, the fifth protrusion 132 and the sixth protrusion 133 are sequentially penetrated through the second shaft hole 124, and the screw compression section 120
  • the inner wall of the second shaft hole 124 is provided with a fourth thread coupled with the third thread.
  • the sixth protrusion 133 is pinned to the screw compression section 120 through the second positioning pin 133a.
  • the sixth protrusion 133 and the screw compression section 120 are provided with corresponding radially distributed pin holes.
  • the detachable connection between the screw compression section 120 and the screw feed section 110 , and the detachable connection between the screw compression section 120 and the screw metering section 130 can also be threaded connection, screw connection, clamping and other methods.
  • the length-to-diameter ratio of the extruder screw can be controlled to be (25-32):1.
  • the industrial bio-based polyamide spinning, drawing and winding machine disclosed based on the second or fourth embodiment involves a melt pipe.
  • the present embodiment discloses a melt pipeline 300, the melt pipeline 300 cooperates with the screw extruder 100 and the spinning box 400, the melt pipeline 300 may include a melt main pipe 310, a plurality of Melt branch pipe 320, multiple delivery pumps 330 and melt pipe melt pressure measuring element 340, one end of melt main pipe 310 is connected with screw extruder 100, and one end of multiple melt branch pipes 320 is connected with the other end of melt main pipe 310
  • the other ends of a plurality of melt branch pipes 320 are connected to a plurality of spinning beams 400 one by one, and a plurality of delivery pumps 330 are installed in a plurality of melt branch pipes 320 one by one, and the melt pipe melt pressure measuring element 340 is installed in The melt main pipe 310, wherein the spinning box body 400 is equipped with a spinning box melt pressure measuring element 413, and the melt pipeline melt pressure
  • the screw extruder 100, the melt pipe 300 and the spinning box 400 are sequentially connected, and the melt transported from the screw extruder 100 to the melt main pipe 310 is transported to a plurality of melt branch pipes 320, and enters the next step of spinning. Wire box 400.
  • a transfer pump 330 is provided in the melt branch pipe 320 to pump the melt.
  • the melt main pipe 310 is equipped with a melt pipe melt pressure measuring element 340 to detect the pressure value when the melt flows through the melt main pipe 310; the spinning box melt pressure measuring element 413 is arranged on the spinning box body 400, The pressure value of the melt flowing through the spinning box 400 can be detected, and each spinning box 400 is equipped with a spinning box melt pressure measuring element 413 .
  • the electric frequency converter controls the transfer pump 330 to accurately distribute the melt passing through the melt branch pipe 320 to ensure that the pressure drop of each melt branch pipe 320 is in an equal state, so that it can Ensure that the melt is delivered to the pump inlet of each spinning position with equal pressure drop.
  • the residence time, temperature, shear rate and pressure distribution of the melt to each spinning position are uniform, It is beneficial to control the spinning quality and spinning speed of each spinning box 400, and then control different spinning positions to be in the same spinning state.
  • the melt pipeline 300 may include a plurality of static mixers 350, and the plurality of static mixers 350 are set in the melt branch pipe 320 one by one, and the static mixer 350 is close to The spinning beam 400 is provided. After the melt is fully mixed by the static mixer 350, it is sent to the next step of the spinning box 400.
  • the melt pipeline 300 includes a melt pipeline heater assembly 360 and a plurality of melt pipeline temperature measuring elements 370, and the melt pipeline heater assembly 360 is installed on the melt main pipe 310 and the melt pipeline.
  • the body branch pipe 320 and a plurality of melt pipe temperature measuring elements 370 are installed on the plurality of melt branch pipes 320 to detect the temperature of the melt flowing through the melt branch pipe 320 .
  • the relevant heating is used to ensure that the spinning is within the preset temperature range, and the auxiliary control is carried out through the detection of the temperature.
  • the melt pipe heater assembly 360 includes a plurality of melt pipe electric heaters 361 and a melt pipe metal filler 362, the plurality of melt pipe electric heaters 361 encircling the melt
  • the main pipe 310 and the melt branch pipe 320 are arranged, and the melt pipe metal filler 362 is arranged between the melt pipe electric heater 361 and the wall of the melt pipe lumen of the melt main pipe 310, and is arranged on the melt pipe electric heater 361 and the wall of the melt lumen of the melt branch pipe 320 .
  • the melt pipe electric heater 361 is arranged around the melt main pipe 310 and the melt branch pipe 320, and the melt pipe electric heater 361 is arranged in a ring shape, and is arranged along the outer circumference of the pipe lumen of the melt pipe 300 to provide Adequate heating in all directions.
  • the metal filler 362 of the melt pipe plays the role of a soaking block, which can include copper powder, iron powder, aluminum powder, etc., which will realize uniform and sufficient heating of the melt, and play a certain role of heat preservation.
  • the above-mentioned electric heater 361 for the melt pipeline can be arranged in the form of a heating ring.
  • a plurality of heating rings are arranged at intervals along the extending direction of the pipe body of the melt main pipe 310
  • a plurality of heating rings are arranged at intervals along the extending direction of the pipe body of the melt branch pipe 320 .
  • the melt pipe 300 in this embodiment includes a plurality of melt branch pipes 320, which may be two melt branch pipes 320 as shown in Fig. 27 to Fig. 29, or three, four or more forms.
  • the industrial bio-based polyamide spinning-drawing-winding machine disclosed based on the second, fourth or fifth embodiment involves a spinning box and cooperates with a melt pipe 300 .
  • the spinning beam 400 includes an upper housing 410, a lower housing 420, a metering pump 500, a detachable pump seat 483, a spinning assembly 600, a housing pipe 430, an upper housing
  • the body heater assembly 440 and the lower box heater assembly 450, the lower box 420 is fixedly connected with the upper box 410, the metering pump 500 is installed on the detachable pump base 483, and the metering pump 500 and the detachable pump base 483 are both built in
  • the upper box body 410, the spinning assembly 600 is set in the lower box body 420, the box body pipeline 430 includes the melt pipeline 300 and the detachable pump seat 483, and the detachable pump seat 483 and the spinning assembly 600, the upper box body
  • the heater assembly 440 is disposed on the upper case, and the lower case
  • the tank pipeline 430 includes the melt pipeline 300 and the detachable pump base 483, and the detachable pump base 483 and the spinning assembly 600, and the metering pump 500 is installed on the detachable pump base 483, and the melt flows from the melt pipeline 300 is delivered to the detachable pump base 483 along a part of the tank pipeline 430.
  • the metering pump 500 is additionally connected with the transmission mechanism.
  • the spinning box 400 is provided with a plurality of spinning assemblies 600, and there is a part of the box pipeline 430 from the detachable pump base 483 to each spinning assembly 600, and the length of this part of the pipeline can be set to be consistent, such as The uniform distribution of the melt is facilitated by the arrangement of pipe coils and the like shown in Fig. 32 .
  • the spinning box 400 is arranged in a double-layer structure, including an upper box 410 and a lower box 420 fixed to each other, and corresponding components are arranged, which is conducive to reducing the volume and facilitating hoisting and calcination.
  • the spinning beam 400 is set up in a small-volume 1-bit/box structure. Due to the instability of the bio-based polyamide raw material, it will often degrade and carbonize, causing the pipeline to be gradually blocked and need to be disassembled and calcined. At the same time, through the small volume and the double-layer structure of the upper box 410 and the lower box 420, it is convenient to process in a common calciner, thereby avoiding the disadvantage of needing a special large-scale calciner.
  • the metering pump 500 is located in the upper box 410
  • the spinning assembly 600 is located in the lower box 420
  • the upper box 410 and the lower box 420 are heated by different heaters, thereby the upper box 410.
  • the temperature in the lower box 420 is adjusted separately, especially the temperature of the lower box 420 can be controlled to be higher so that the spinning assembly 600 is at a higher temperature, which is beneficial to the spinneret of the spinning assembly 600 and facilitates the spinning speed and spinning quality.
  • the melt is continuously and accurately supplied to the spinning assembly 600 by the metering pump 500 under high pressure for spinning.
  • the drive shaft of the metering pump transmission part is driven by a permanent magnet synchronous motor directly coupled with a cycloidal pin gear reducer, and the speed is adjusted by frequency conversion.
  • Each metering pump transmission electrical component is independently driven.
  • the transmission shaft can be telescopic, and the transmission shaft is provided with a universal joint and a safety pin protection device. It is ensured that the melt is transported to each spinning position with equal residence time, and enters the spinning assembly 600 in turn.
  • the spinning beam 400 may further include spinning beam metal fillers 460 , and the spinning beam metal fillings 460 are respectively built in the upper housing 410 and the lower housing 420 .
  • the heating method adopts the method of the heater and the metal filling 460 of the spinning box, and the heat is transferred and kept warm through the metal filling such as copper powder, aluminum powder, iron powder, etc.
  • the heat transfer of conventional biphenyl steam it is beneficial to It is environmentally friendly and can avoid the pressure vessel design for the shell of the spinning box 400, which improves the operation safety and reduces the processing and use costs.
  • the above-mentioned heater may use a heating rod, and may adopt an electric heating method.
  • the upper box heater assembly 440 includes an upper box basic heater 441 , an upper box auxiliary heater 442 and an upper box adjustment heater 443 ;
  • the lower box The heater assembly 450 includes a lower case base heater 451 and a lower case condition heater 452 .
  • the upper box basic heater 441, the upper box auxiliary heater 442, the upper box adjustment heater 443, the lower box basic heater 451 and the lower box adjustment heater 452 are both independently controlled and interrelated, and can be heated separately It is also possible to heat several groups or all of them.
  • the use of intelligent temperature control system is conducive to reducing energy consumption and environmental protection.
  • the intelligent temperature control system cooperates with various heaters, not only considering that high temperature will accelerate the carbonization of bio-based polyamide fibers, but also providing a higher temperature for the spinning assembly 600 to facilitate spinning, and providing a rapid heating mode.
  • the upper box basic heater 441, the upper box auxiliary heater 442 and the upper box adjusting heater 443 can be fully opened, and the lower box can be turned on.
  • Body basic heater 451 and lower box body adjustment heater 452 are fully opened.
  • the gaps between all parts in the spinning box 400 are covered with metal fillers to transfer heat and keep warm.
  • the upper box 410 includes an upper box temperature measuring element 411
  • the lower box 420 includes a lower box temperature measuring element 421, respectively detecting the spinning box metal filling 460 in the upper box 410, the lower box The metal filler 460 in the spinning box in the body 420, and then feedback data in time to assist in adjusting the power of the heater and realize intelligent temperature control with a temperature control accuracy of ⁇ 1°C.
  • the upper case 410 includes a main body of the upper case 410 and an upper case cover 412 detachably mounted on the top of the upper case 410 .
  • a detachable upper box cover 412 is provided so that when the pipeline is gradually blocked, the upper box cover 412 can be opened for disassembly and maintenance.
  • the spinning box 400 includes a metering pump insulation block 481, the metering pump insulation block 481 is arranged between the metering pump 500 and the upper casing cover plate 412, and the metering pump insulation block 481 surrounds Total metering pump 500 settings.
  • the heat preservation effect of the metering pump 500 is improved by the metering pump heat preservation block 481 .
  • a thermal insulation cover made of thermal insulation material is provided outside the spinning box 400 to improve the overall thermal insulation effect.
  • the spinning beam 400 includes an upper box melt inlet 470, and the melt pipeline 300 is connected to the upper box melt inlet 470, thereby providing the connection position of the melt pipeline 300 .
  • most of the parts in the spinning beam 400 are combined in a modular manner and can be disassembled so as to be processed in a common calciner.
  • the spinning beam 400 includes a pump plate 482 and a detachable pump base 483, the metering pump 500 is installed on the pump plate 482, the pump plate 482 is installed on the detachable pump base 483, and the pump plate 482 is detachable.
  • the pump seat 483 is disposed inside the upper box body 410 .
  • an assembly mounting plate is fixed under the detachable pump base 483 to connect with the spinning assembly 600 .
  • the spinning box 400 includes a sealing gasket 490 to seal off the parts in the spinning box 400 where the melt is likely to overflow.
  • the spinning beam 400 includes a spinning beam melt pressure measuring element 413 , and the spinning beam melt pressure measuring element 413 is installed on the upper housing 410 .
  • the initial pressure at the spinning assembly 600 is generally greater than 10 MPa, and the melt pressure measuring element 413 of the spinning box provides data support for normal spinning.
  • the spinning beam 400 when used in spinning production of bio-based polyamide, is set at a temperature of 268°C to 275°C during use.
  • the bio-based polyamide raw material melted in the screw extruder passes through the melt pipeline 300, enters the spinning box 400, and then distributes into the box pipeline 430, and then reaches the metering pump 500, and each spinning position is equipped with a single metering pump 500 or more.
  • a monomer suction mechanism 800 is involved.
  • the present embodiment provides a monomer suction mechanism 800, which performs monomer suction treatment on the filament bundle coming out of the spinning assembly 600, wherein, between the spinning assembly 600 and the monomer suction A slow cooler 700 is arranged between the mechanism 800, and the slow cooler 700 sprays superheated steam on the filament bundle coming out of the spinning assembly 600 to form hot steam containing monomer, and the hot steam containing monomer is further sucked by the monomer Agency 800 processes.
  • the monomer suction mechanism 800 includes a suction body 810, a suction assembly 820, and a plurality of rectifying heating plates 830, and the suction body 810 is provided with a body channel leading to the spinneret of the spinning assembly 811.
  • the suction assembly 820 includes a suction pipeline 821 , a vacuum pump 822 , a compressed air pipeline 823 and a heating coil 824 .
  • the suction pipeline 821 communicates with the body channel 811 , and the vacuum pump 822 is arranged on the suction pipeline 821 .
  • One end of the compressed air pipeline 823 is used for feeding compressed air, and the other end extends into the suction pipeline 821 , and the other end is placed between the suction body 810 and the vacuum pump 822 .
  • the heating coil 824 is disposed around the suction pipe 821 and between the suction body 810 and the compressed air pipe 823 .
  • a plurality of rectifying heating plates 830 are arranged at intervals in the body channel 811 , and a rectifying channel leading to the suction pipe 821 is formed in the body channel 811 .
  • the hot steam containing monomer is sucked into the suction pipe 821 by negative pressure through the rectification channel, and is discharged from the other end of the suction pipe 821
  • the slow cooler 700 sprays superheated steam to the spinneret of the spinning assembly 600.
  • a protective layer of superheated steam is formed on the surface of the spinneret.
  • the superheated steam It forms a cloud with monomer floats, thereby avoiding attachment to the surface of the spinneret, thereby improving the unfavorable situation of the spinneret being blocked.
  • the hot air containing monomer is sucked out from the suction pipe 821 by negative pressure along the body channel 811 of the suction body 810.
  • the Negative pressure zone is formed in 821, on the basis of several rectification passages formed by rectification heating plate 830 and suction body 810, the hot air containing monomer is evenly sucked into the suction pipe 821 along the rectification passage, and the rectification passage It is also beneficial for the monomer to quickly enter the suction pipeline 821 and be further discharged from the other end of the suction pipeline 821 through the vacuum pump 822 .
  • the suction pipeline 821 between the suction body 810 and the compressed air pipeline 823 is provided with a heating coil 824, which maintains the dry hot air state of the hot air containing the monomer, so as to improve the generation of water due to the cooling of the hot air containing the monomer.
  • the steam has the adverse effect of causing end breaks and affecting fiber strength.
  • the heating coil 824 can be additionally equipped with an electric control box for electric control.
  • the heating coil 824 can also keep this section of pipeline at a certain temperature to prevent residual monomer from crystallizing to block the pipeline and affect the effect of negative pressure suction.
  • the rectifying heating plate 830 has a heating function, which is beneficial to keep the hot air containing monomers in a dry and hot air state during the process from the body passage 811 to the suction pipe 821 .
  • the monomer suction mechanism 800 of this embodiment can be removed in time during the production of bio-based polyamide spinning, and the defects of clogging caused by the monomer, decrease in filament strength, and broken ends can be improved. Ensure tow strength, evenness, dyeing performance, etc., to ensure normal production.
  • the unit suction mechanism 800 includes a transition heater 840 installed in the suction body 810 and arranged between the annealer 700 and the suction assembly 820 In between, the transition heater 840 is disposed at the outer periphery of the body channel 811 .
  • the slow cooler 700 sprays superheated steam to the spinneret to form hot air containing monomers, until the hot air containing monomers enters the suction pipe 821, it needs to go through a certain path, and the transition heater 840 is set to make the hot air containing monomers
  • the hot air of the monomer continues to maintain a dry and hot air state, which is not only beneficial to avoid the unfavorable situation of broken ends caused by water vapor dripping, but also keeps the tow temporarily in the hot environment for a period of time without rapid cooling, preventing bio-based polyamide
  • the sudden cooling of the melt results in the entanglement of macromolecular bonds, which is conducive to ensuring the strength of the tow.
  • a thermal space environment of 180° C. to 240° C. is provided by transition heater 840 .
  • the transition heater 840 includes a plurality of plate heaters 841 arranged to surround the body channel 811 and a plate temperature measuring element 842 fixed in the suction body 810.
  • the plate heaters 841 The plate temperature measuring element 842 is fixed inside the suction body 810 to detect the temperature of the body channel 811 at the plate heater 841 .
  • a plate heater 841 is respectively arranged on the two vertical sides of the body channel 811 .
  • the plate heater 841 can be arranged in the form of straight plate, bent plate and the like.
  • one end of the suction pipe 821 forms a suction port 812 at the suction body 810, and the suction port 812 communicates with the body channel 811, where one end of the suction pipe 821 It refers to the section of the pipeline close to the suction body 810 .
  • the rectification heating plate 830 is vertically arranged, and a plurality of rectification heating plates 830 are arranged at intervals.
  • the rectification heating plates 830 form a plurality of rectification channels with each other and with the wall surface of the body channel 811. One end of the rectification channel is led Leading to the suction port 812 , the fluid flow direction indicated by several arrows in FIG. 37 is limited by the rectification channel.
  • the cross section of the part of the body passage 811 close to the suction assembly 820 is set.
  • the rectification passage can not only be surrounded by several adjacent rectification heating plates 830, but can also include It is formed by enclosing the outer rectifying heating plate 830 and the inner wall of the body channel 811 of the suction body 810 .
  • the rectifying heating plate 830 is embedded with electric heating wires, and the rectifying heating plate 830 is formed of an aluminum plate.
  • the heating wire is equipped with an electric control box to control the use time and power, which is beneficial to energy saving to a certain extent.
  • the plate parts of the rectifying heating plate 830 can be arranged as the above-mentioned aluminum plate, or can be made of copper material, etc., taking thermal conductivity into consideration.
  • the suction pipe 821 includes a first straight pipe section 821a, a second inclined pipe section 821b, a third straight pipe section 821c, a fourth inclined pipe section 821d and a fifth straight pipe section connected in sequence.
  • Pipe section 821e, the first straight pipe section 821a is fixedly connected with the suction body 810, the heating coil 824 is arranged on the first straight pipe section 821a, the vacuum pump 822 is installed at the other end of the fifth straight pipe section 821e, and the suction pipe 821 also includes an exhaust pipe 821f , the exhaust pipe 821f is installed at the other end of the vacuum pump 822 .
  • One end of the compressed air pipeline 823 is provided with a nozzle 823a, and the nozzle 823a is arranged in the suction pipeline 821 and at the junction of the second inclined pipe section 821b and the third straight pipe section 821c, and the opening of the nozzle 823a is set toward the third straight pipe section 821c, so as to A primary negative pressure zone 821cc is formed in the third straight pipe section 821c.
  • the inner diameter of the third straight pipe section 821c is smaller than the inner diameter of the fifth straight pipe section 821e to form a secondary negative pressure zone 821dd in the fourth inclined pipe section 821d.
  • the inner diameter of the third straight pipe section 821c is smaller than the inner diameter of the first straight pipe section 821a.
  • the nozzle 823a of the above compressed air pipeline 823 is combined with the suction pipeline 821 to form a primary negative pressure zone 821cc in the third straight pipe section 821c; through the third straight pipe section 821c, the fourth inclined pipe section 821d to the fifth
  • the diameter of the straight pipe section 821e changes, and the diameter of the fourth inclined pipe section 821d expands to form a secondary negative pressure zone 821dd.
  • the primary negative pressure zone 821cc cooperates with the secondary negative pressure zone 821dd to carry out negative pressure suction on the hot air containing monomer in the body channel 811 .
  • the suction pipe 821 is fixed on the suction body 810 , one end of the suction pipe 821 communicates with the body channel 811 , and the other end of the suction pipe 821 extends into the hot water tank 825 Inside, the monomer polymer in the monomer gas dissolves with water, thereby improving the situation that the monomer escapes into the air and easily causes environmental pollution, which is not conducive to the health of the staff.
  • the compressed air pipeline 823 is provided with an air pressure regulating valve 823b, and the air pressure regulating valve 823b is equipped with a first pressure gauge 823bb, and the outlet of the nozzle 823a of the compressed air pipeline 823 can be adjusted through the air pressure regulating valve 823b.
  • the degree of vacuum is displayed with the help of the first pressure gauge 823bb.
  • the suction pipeline 821 may include a second pressure gauge 826, and the second pressure gauge 826 is installed on the fifth straight pipe section 821e to detect the pressure behind the secondary negative pressure zone 821dd.
  • the second pressure gauge 826 is also connected with Vacuum pump 822 is connected.
  • the pressure in the secondary negative pressure area 821dd is displayed by the second pressure gauge 826 to assist in controlling the pumping speed of the vacuum pump 822 .
  • the slow cooler 700 is based on the industrial bio-based polyamide spinning-drawing-winding combined machine disclosed in Embodiment 2, Embodiment 4, Embodiment 5, Embodiment 6 or Embodiment 7.
  • the slow cooler 700 of this embodiment is used in conjunction with the monomer suction mechanism 800 of the seventh embodiment, and is a kind of slow cooler 700 that can spray superheated steam to the spinneret of the spinning assembly 600 implementation.
  • the slow cooling device 700 includes a slow cooling homogenizer 710 and a steam pipe 720.
  • the slow cooling homogeneous body 710 is provided with a slow cooling tow chamber 711, and the slow cooling The upper side of the tow chamber 711 is connected to the position of the spinneret, and the lower side of the slowly cooling tow chamber 711 is connected to the body channel 811 .
  • Slow cooling heater 710 is provided with a slow cooling heater (not shown in the figure), and slow cooling uniform body 710 includes a spray chamber 713 with a decreasing width.
  • the tow chamber 711 is connected, and the partition plate 714 is provided with a number of injection holes 714a facing the slowly cooling tow chamber 711.
  • the steam pipeline 720 is provided with a pressure reducing valve 721. One end of the steam pipeline 720 is configured to feed steam, and the steam is configured to pass through the tow chamber 711.
  • the decompression valve 721 and the slow cooling heater form superheated steam, and the other end of the steam pipe 720 forms a superheated steam inlet pipe 722 at the slow cooling homogeneous body 710, and the superheated steam inlet pipe 722 communicates with the minimum width of the injection chamber 713.
  • the decompression valve 721 After the steam is decompressed by the decompression valve 721, it is decompressed to 0.005-0.01Mpa in some possible implementations, and then the temperature reaches the state of superheated steam through the slow cooling heater. Hole 714a exits below the spinneret. The steam after decompression is more likely to reach the state of superheated steam.
  • the setting of the ejection chamber 713 with decreasing width as shown in FIG. 36 is beneficial to the thorough mixing of the superheated steam and the gaseous monomers and oligomers.
  • the partition 714 is provided with several injection holes 714a facing the spinneret, and the superheated steam is directly injected to the spinneret through the injection holes 714a, fully avoiding monomer, oligomerization matter attached to the surface of the spinneret.
  • the slow cooling homogenizer 710 is fixed on the suction body 810 , forming an integrated effect of the slow cooling device 700 and the unit suction mechanism 800 .
  • the slow cooler 700 and the monomer suction mechanism 800 are set as an integral mechanism, which is convenient for assembly, maintenance, volume reduction and guaranteed monomer treatment effect.
  • this embodiment provides a double-face oiling mechanism 1100 , which includes a pair of oil tankers located on both sides of the tow 30 , and the pair of tank tanks are distributed up and down.
  • FIG. 45 shows the dislocation distribution of a pair of oil tankers, and the graphics of the upper oil tanker 1153 and the lower oil tanker 1154 in FIG. 45 partially overlap.
  • the double-face oiling mechanism 1100 can be provided with multiple pairs of oil tankers, and the transmission shafts 1110 of the oil tankers are all installed on the same panel. It should be understood that the transmission shaft is rotatably mounted on the panel, and is equipped with bearings for installation. As shown in Figure 40, the drive shaft is also positioned through the panel.
  • the oil tanker includes a transmission shaft 1110, an oil tanker shell 1120 and an oil supply capillary 1130, the oil tanker shell 1120 is coaxially fixed with the transmission shaft 1110, and the outer periphery of the oil tanker shell 1120 is set There are grooves 1125a on the surface of the tanker arranged in the circumferential direction.
  • the tanker shell 1120 is provided with a tanker oil storage cavity 1126.
  • the tanker shell 1120 is provided with several oil outlet holes 1125b arranged at intervals along the circumference. One end of the oil outlet hole 1125b is connected to the tanker oil storage cavity 1126.
  • the other end of the oil outlet hole 1125b is connected to the groove 1125a on the surface of the tanker, the groove 1125a on the surface of the tanker is configured to be in movable contact with the tow 30, and one end of the oil supply capillary 1130 communicates with the oil storage chamber 1126 of the tanker to The tanker oil storage chamber 1126 supplies oil.
  • oil outlet holes 1125 b there are 12 oil outlet holes 1125 b arranged at intervals in the circumferential direction.
  • the oil outlet holes 1125 b are arranged along the radial direction of the tanker shell 1120 .
  • the number of oil outlets can be controlled at 4-16.
  • the above-mentioned double-side oiling mechanism 1100 oils the two sides of the tow 30 through a pair of oil tankers located on both sides of the tow 30, and the dislocation distribution of the pair makes the oiling effect better.
  • the groove 1125a on the surface of the tanker at the outer edge of 1120, the tanker shell 1120 and the transmission shaft 1110 are relatively fixed and the axes of the two coincide.
  • the oil hole 1125b flows out to the groove 1125a on the surface of the tanker.
  • the tow 30 Under the condition that the groove 1125a on the surface of the tanker and each pair of tankers are dislocated up and down, the tow 30 is in close contact with the surface of the tanker and the contact distance is long, so that the tow 30 is evenly oiled , the oil agent can be evenly sprayed on the surface of the bio-based polyamide fiber to the greatest extent, and the rotation speed of the transmission shaft 1110 can also be controlled to control the moisture and oil content of the tow 30 after oiling.
  • the speed of the motor is adjusted through the frequency converter to control the speed of the tanker, so as to achieve the purpose of controlling oiling.
  • the rotational speed of the bio-based polyamide fiber tanker is controlled within 12-32 rpm.
  • the tanker shell 1120 includes a left end cover 1121 , a first right end cover 1122 , an inner tanker shell 1124 and an outer tanker shell 1125 .
  • the left end cover 1121 is fixedly connected with the transmission shaft 1110 .
  • the first right end cover 1122 is relatively fixed to the transmission shaft 1110 , and in some embodiments, the first right end cover 1122 is directly fixedly connected to the transmission shaft 1110 .
  • the first right end cover 1122 is spaced apart from the left end cover 1121.
  • a one-way check plate 1123 is provided on the side of the first right end cover 1122 close to the left end cover 1121.
  • the oil supply capillary 1130 passes through the first right end cover 1122 and the one-way check plate. 1123 is connected, and the oil agent pressure pushes away the one-way check plate 1123 when the oil agent pump continues to supply oil.
  • the tanker inner shell 1124 is arranged in a cylindrical shape and is fixedly disposed between the left end cover 1121 and the first right end cover 1122 .
  • the tanker shell 1125 is arranged in a cylindrical shape and is fixedly arranged in the middle of the left end cover 1121 and the first right end cover 1122.
  • the tanker shell 1125 is arranged outside the tanker inner shell 1124.
  • the above-mentioned oil tanker inner shell 1124 and oil tanker outer shell 1125 can be made of seamless steel pipes, and the similar transmission shaft 1110 can also be made of seamless steel pipes.
  • the fixed connection between the cover 1122 and the outer shell 1125 of the tanker, and the fixed connection between the first right end cover 1122 and the inner shell 1124 of the tanker can all be screwed. In other possible embodiments, welding or the like may also be used. In the way of screw connection, internal threads can be tapped on the two axial ends of the tanker inner shell 1124 and the two axial ends of the tanker shell 1125 respectively.
  • the oil supply capillary 1130 passes through the one-way check plate 1123 and then communicates with the oil storage chamber 1126 of the tanker.
  • the one-way check plate 1123 plays a role of limiting one flow direction, which is conducive to stable oiling.
  • the end of the oil supply capillary 1130 away from the tanker’s oil storage chamber 1126 can be connected to another hose with a loop clamp, and the hose is connected to the oil pump.
  • the oil pump generates pressure to supply oil, and the oil enters the oil supply capillary 1130 through the hose.
  • the oil agent pushes the one-way check plate 1123 to enter the tanker oil storage chamber 1126, and the amount of oil agent in the tanker oil storage chamber 1126 is determined by the pump supply of the oil agent pump.
  • the tanker shell 1120 further includes a second right end cover 1127 , the second right end cover 1127 is arranged on the side of the first right end cover 1122 away from the left end cover 1121 , the second right end cover 1127 It is fixedly connected with the first right end cap 1122 and the transmission shaft 1110 respectively, and the second right end cap 1127 and the first right end cap 1122 enclose and form a chamber 1127a for the oil supply capillary 1130 to pass through.
  • the first right end cover 1122 is fixedly connected to the second right end cover 1127
  • the second right end cover 1127 is fixedly connected to the transmission shaft 1110 , so that the first right end cover 1122 is relatively fixed to the transmission shaft 1110 .
  • the first right end cover 1122 is no longer directly fixed on the transmission shaft 1110, so as to facilitate installation and reduce installation difficulty.
  • the fixed connection is realized by screws
  • the first right end cover 1122 and the second right end cover 1127 can be fixed by screws as shown in FIG. 41
  • the second right end cover 1127 and the transmission shaft 1110 can be fixed by screws.
  • the part of the oil supply capillary 1130 exposed to the first right end cover 1122 is covered by setting the second right end cover 1127 .
  • the oil supply capillary 1130 is partly passed through the through hole 1111 arranged along the axis of the transmission shaft 1110 , so as to realize the technical solution that the oil supply capillary 1130 rotates with the transmission shaft 1110 .
  • the oil supply capillary 1130 includes a first L-shaped capillary 1131 and a second L-shaped capillary 1132, one end of the first L-shaped capillary 1131 communicates with the one-way check plate 1123, the second The other end of an L-shaped capillary 1131 is fixedly connected to one end of a second L-shaped capillary 1132 in the chamber 1127a enclosed by the second right end cap 1127 and the first right end cap 1122, and the second L-shaped capillary 1132 is partly installed on the drive shaft 1110 in the through hole 1111 arranged along the axis.
  • the 41 shows the junction of the first L-shaped capillary 1131 and the second L-shaped capillary 1132 .
  • the two tubes can be integrated by clamping, high-temperature melting and joining.
  • the oil supply capillary 1130 is assembled with two L-shaped tubes, which is easy to disassemble.
  • the tanker shell 1120 further includes a gasket 1128, and the gasket 1128 is arranged in the middle of the tanker inner shell 1124 and the left end cover 1121, between the tanker inner shell 1124 and the first right end cover 1122, The middle of the tanker shell 1125 and the left end cover 1121 and the middle of the tanker shell 1125 and the first right end cover 1122 .
  • the gasket 1128 Through the gasket 1128, the tightness of the oil storage chamber 1126 of the tanker is improved.
  • the tanker further includes an oil receiving box 1140 fixedly disposed under the tanker shell 1120 , and the oil receiving box 1140 is also provided with an overflow hole 1141 .
  • the overflow hole 1141 can be arranged in the form of an overflow pipe, and the overflow port of the overflow pipe is arranged higher than the bottom side of the oil receiving box 1140 .
  • the oil is collected through the oil receiving box 1140 and discharged from the overflow hole 1141 for collection.
  • the tanker shell 1120 rotates and the oil receiving box 1140 is fixed, and the oil liquid collected in the oil receiving box 1140 can also continue to oil the spinning.
  • the transmission shaft 1110 is driven by a motor, which may be through a coupling, gear transmission, chain transmission and the like.
  • a motor which may be through a coupling, gear transmission, chain transmission and the like.
  • chain drives there are sprockets and chains involved. It can be understood that the transmission shaft 1110 is configured with bearings.
  • a first tension rod 1151 and a second tension rod 1152 respectively located on both sides of the tow 30 are also configured, and the first tension rod 1151 and the second tension rod 1151
  • the tension rods 1152 are in movable contact with the tow 30.
  • a pair of oil tankers includes an upper tanker 1153 and a lower tanker 1154.
  • the upper tanker 1153, the first tension rod 1151, the second tension rod 1152 and the lower tanker 1154 are arranged in sequence along the height direction.
  • the upper oil wheel 1153 and the second tension bar 1152 are located on the same side of the tow 30
  • the lower oil wheel 1154 and the first tension bar 1151 are located on the other side of the tow 30 .
  • the double-face oiling mechanism 1100 of this embodiment it is beneficial to oil the 55dtex-2222dtex bio-based polyamide industrial yarn, when the spinning speed is low, the contact range between the filament bundle 30 and the tanker surface is large, and the tanker The oil film formed on the surface is stable, and the tow 30 can obtain a uniform oil film to meet the subsequent large-scale thermal drawing processing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

本文公开了一种产业用生物基聚酰胺纺丝牵伸卷绕装置及联合机,按照丝束行进方向,丝束绕经第一对牵伸热辊(1600)的旋向、绕经第二对牵伸热辊(1700)的旋向、绕经第三对牵伸热辊(1800)的旋向、绕经第四对牵伸热辊(1900)的旋向中相邻两个旋向呈相反设置,以纺制55dtex-2222dtex的生物基聚酰胺产业用丝。

Description

一种产业用生物基聚酰胺纺丝牵伸卷绕装置及联合机
相关申请的交叉引用
本公开要求于2021年09月17日提交、申请号为202111090662.9且名称为“一种产业用生物基聚酰胺纺丝牵伸卷绕装置”;要求于2021年09月17日提交、申请号为202122263998.2且名称为“一种产业用生物基聚酰胺纺丝牵伸卷绕装置”;要求于2021年09月17日提交、申请号为202111090536.3且名称为“一种产业用生物基聚酰胺纺丝牵伸卷绕联合机”;要求于2021年09月17日提交、申请号为202122277932.9且名称为“一种产业用生物基聚酰胺纺丝牵伸卷绕联合机”的中国专利申请的优先权,其全部内容通过引用合并于此。
技术领域
本公开涉及纺丝生产制造技术领域,尤其涉及一种产业用生物基聚酰胺纺丝牵伸卷绕装置及联合机
背景技术
目前市场上的聚酰胺几乎全部由石油化学法生产,用生物法替代石油法,将聚酰胺行业变为可持续发展行业,生物基聚酰胺纤维需求量会大幅增加。
生物基聚酰胺纤维与普通的聚酰胺一样具有优良物理性能,特别是55dtex-111dtex细旦生物基聚酰胺纤维在医疗方面,1670dtex-2222dtex粗旦生物基聚酰胺纤维在装饰用,轮胎帘子布、缆绳、输送带、汽车用纺织品、过滤材料等产业中也有广阔的应用。但相关技术中多对555dtex-1670dtex生物基聚酰胺纤维进行纺制,缺乏细旦、粗旦生物基聚酰胺纤维纺制。
发明内容
基于上述问题,本公开提供一种产业用生物基聚酰胺纺丝牵伸卷绕装置及联合机。
在本公开的一方面,提供了一种产业用生物基聚酰胺纺丝牵伸卷绕装置,装置按照丝束行进方向依次包括喂入分丝张力辊、第一对牵伸热辊、第二对牵伸热辊、第三对牵伸热辊、第四对牵伸热辊以及第五对牵伸热辊,丝束绕经第一对牵伸热辊的旋向、绕经第二对牵伸热辊的旋向、绕经第三对牵伸热辊的旋向、绕经第四对牵伸热辊的旋向中相邻两个旋向呈相反设置,以纺制55dtex-2222dtex的生物基聚酰胺产业用丝。
在本公开的另一方面,提供了一种产业用生物基聚酰胺纺丝牵伸卷绕联合机,包括按生产工艺依次设置的螺杆挤压机、熔体管道、纺丝箱体、计量泵、纺丝组件、缓冷器、单体抽吸机构、侧吹风部件、甬道部件、双面上油机构、预网络部件、导丝部件、喂入分丝张力辊、第一加热板、第一对牵伸热辊、第二加热板、第二对牵伸热辊、第三加热板、第三对牵伸热辊、第四加热板、第四对牵伸热辊、第五加热板、第五对牵伸热辊、终网络部件以及全自动卷绕头,第一加热板、第二加热板、第三加热板、第四加热板以及第五加热板均对相邻两辊间区域的丝束进行加热,丝束绕经第一对牵伸热辊的旋向、绕经第二对 牵伸热辊的旋向、绕经第三对牵伸热辊的旋向、绕经第四对牵伸热辊的旋向中相邻两个旋向呈相反设置,以纺制55dtex-2222dtex的生物基聚酰胺产业用丝。
本公开提供一种产业用生物基聚酰胺纺丝牵伸卷绕装置,沿丝束行进方向依次包括喂入分丝张力辊、第一对牵伸热辊、第二对牵伸热辊、第三对牵伸热辊、第四对牵伸热辊以及第五对牵伸热辊,并且设置丝束绕经第一对牵伸热辊的旋向与绕经第二对牵伸热辊的旋向相反设置,丝束绕经第二对牵伸热辊的旋向与绕经第三对牵伸热辊的旋向相反设置,丝束绕经第三对牵伸热辊的旋向与绕经第四对牵伸热辊的旋向相反设置,从而丝束的左右两侧都受热,有利于提高纤维的结晶度和取向度,可以逐渐提高纤维的强度和模量,配合多级牵伸热辊实现逐级牵伸,能够纺制55dtex-2222dtex的生物基聚酰胺产业用丝,从而可以用于55dtex-111dtex细旦生物基聚酰胺纤维、1670dtex-2222dtex粗旦生物基聚酰胺纤维的纺制。
附图说明
图1示出了本公开实施例一的产业用生物基聚酰胺纺丝牵伸卷绕装置的结构示意图;
图2示出了包括图1所示结构的纺丝牵伸卷绕联合机的整体结构示意图;
图3为图1的侧视图;
图4为图1中喂入分丝张力辊至第一对牵伸热辊的丝束运行示意图;
图5为图4中结构的俯视图;
图6为图5中A处的放大示意图;
图7为图1中第一对牵伸热辊至第二对牵伸热辊的丝束运行示意图;
图8为图7中结构的俯视图;
图9为图8中B处的放大示意图;
图10为图1中第二对牵伸热辊至第三对牵伸热辊的丝束运行示意图;
图11为图10中结构的俯视图;
图12为图11中C处的放大示意图;
图13为图1中第三对牵伸热辊至第四对牵伸热辊的丝束运行示意图;
图14为图13中结构的俯视图;
图15为图14中D处的放大示意图;
图16为图1中第四对牵伸热辊至第五对牵伸热辊的丝束运行示意图;
图17为图16中结构的俯视图;
图18为图17中E处的放大示意图;
图19为图1中所示加热板的结构示意图;
图20为图19中A-A处的截面示意图;
图21为图19中加热板的另一截面示意图;
图22为图2中螺杆挤压机的一种结构示意图;
图23为图22中的挤压机螺杆的结构示意图;
图24为图23中A处的局部放大图;
图25为图23中B处的局部放大图;
图26为图2中螺杆挤压机与熔体管道及纺丝箱体的一种结构示意图;
图27为图26中熔体管道的正视图;
图28为图26中熔体管道的侧视图;
图29为图26中熔体管道的俯视图;
图30为图26中纺丝箱体的正视图;
图31为图26中纺丝箱体的竖向剖视图;
图32为图26中纺丝箱体的水平剖视图;
图33为图2中纺丝组件、缓冷器与单体抽吸机构的一种结构示意图;
图34为图33的局部结构示意图;
图35为图33中单体抽吸机构的抽吸组件的具体结构示意图;
图36为图33中A-A处的截面示意图;
图37为图33中B-B处的截面示意图;
图38为图36中C-C处的截面示意图;
图39为图2中双面上油机构的一种结构示意图;
图40为图39中一对油轮的示意图;
图41为图40中油轮的具体结构示意图;
图42为图41中油轮的局部结构示意图;
图43为图41中A-A处的截面示意图;
图44为图39中丝束经一对油轮的走向示意图;
图45为图44所示结构的俯视视角示意图。
具体实施方式
实施例一
请参照图1至图18,本实施例公开一种产业用生物基聚酰胺纺丝牵伸卷绕装置,装置按照丝束行进方向依次包括喂入分丝张力辊1400、第一对牵伸热辊1600、第二对牵伸热辊1700、第三对牵伸热辊1800、第四对牵伸热辊1900以及第五对牵伸热辊2000,丝束绕经第一对牵伸热辊1600的旋向、绕经第二对牵伸热辊1700的旋向、绕经第三对牵伸热辊1800的旋向、绕经第四对牵伸热辊1900的旋向中相邻两个旋向呈相反设置,以纺制55dtex-2222dtex的生物基聚酰胺产业用丝。
在一些实施方式中,请参照图1和图3,丝束依次经过喂入分丝张力辊1400、第一对牵伸热辊1600、第二对牵伸热辊1700、第三对牵伸热辊1800、第四对牵伸热辊1900以及第五对牵伸热辊2000,后经终网络部件2100,卷绕到卷绕机上。其中,在喂入分丝张力辊1400前,纺丝经纺丝组件下来,依次经过上油机构1100、预网络部件1200和导丝部件1300,后再通过喂入分丝张力辊1400。
在本实施例中将丝束的周侧分成两边的丝束M表面10、丝束N表面20来描述。需要补充的是,下述描述中的顺时针、逆时针方向均是据图。
请参照图4至图6,丝束运行于喂入分丝张力辊1400至第一对牵伸热辊1600时,丝束于喂入分丝张力辊1400的绕经旋向为逆时针方向,丝束于第一对牵伸热辊1600的绕 经旋向为逆时针旋向。其中,喂入分丝张力辊1400与丝束N表面20直接接触、加热,第一对牵伸热辊1600与丝束N表面20直接接触、加热。请参照图7至图9,丝束于第二对牵伸热辊1700的绕经旋向为顺时针方向,第二对牵伸热辊1700与丝束M表面10直接接触、加热。请参照图10至图12,丝束于第三对牵伸热辊1800的绕经旋向为逆时针方向,第三对牵伸热辊1800与丝束N表面20直接接触、加热。请参照图13至图15,丝束于第四对牵伸热辊1900的绕经旋向为顺时针方向,第四对牵伸热辊1900与丝束M表面10直接接触、加热。
从而从第一对牵伸热辊1600至第四对牵伸热辊1900,依次对丝束N表面20、丝束M表面10、丝束N表面20、丝束M表面10接触加热,有利于提高纤维的结晶度和取向度,可以逐渐提高纤维的强度和模量,配合多级牵伸热辊实现逐级牵伸,能够纺制55dtex-2222dtex的生物基聚酰胺产业用丝,从而可以用于55dtex-111dtex细旦生物基聚酰胺纤维、1670dtex-2222dtex粗旦生物基聚酰胺纤维的纺制。
在一些实施方式中,请参照图16至图18,丝束于第五对牵伸热辊2000的绕经旋向为顺时针,第五对牵伸热辊2000与丝束M表面10直接接触、加热,从而使丝束从如图1中的右侧垂下,经终网络部件2100进入卷绕机,有利于装置的整体布置。
在一些实施方式中,请参照图1至图18,装置按照丝束行进方向可以依次包括喂入分丝张力辊1400、第一加热板1510、第一对牵伸热辊1600、第二加热板1520、第二对牵伸热辊1700、第三加热板1530、第三对牵伸热辊1800、第四加热板1540、第四对牵伸热辊1900、第五加热板1550以及第五对牵伸热辊2000,第一加热板1510、第二加热板1520、第三加热板1530、第四加热板1540以及第五加热板1550均对相邻两辊间区域的丝束进行加热。
在一些实施方式中,丝束于第一对牵伸热辊1600进行第一次拉伸,考虑要使丝束保持一定的张力,通过第一加热板1510先给丝束两面进行加热预热后,再进入第一对牵伸热辊1600,有利于克服初次牵伸易出现断头、可纺性差等问题;设于第一对牵伸热辊1600与第二对牵伸热辊1700之间的第二加热板1520,有利于提高纤维的结晶度和取向度,可以逐渐提高纤维的强度和模量;设于第二对牵伸热辊1700与第三对牵伸热辊1800之间的第三加热板1530,提高了丝束的内外温度一致性,提高了丝束的受热均匀性,以利于后道加热、牵伸;设于第三对牵伸热辊1800与第四对牵伸热辊1900之间的第四加热板1540,进一步提高了丝束的内外温度一致性,提高了丝束的受热均匀性,以利于后道加热、牵伸;设于第四对牵伸热辊1900与第五对牵伸热辊2000之间的第五加热板1550,进一步提高了丝束的内外温度一致性,提高了丝束的受热均匀性,以利于后道定型回缩。
在一些实施方式中,如图4所示,喂入分丝张力辊1400采用固定冷辊1410配合可调角度分丝辊1420,而第一对牵伸热辊1600、第二对牵伸热辊1700、第三对牵伸热辊1800、第四对牵伸热辊1900以及第五对牵伸热辊2000均采用可调角度热辊配合可调角度热辊。
第一对牵伸热辊1600为低温辊,对丝束进行初步加热;而第二对牵伸热辊1700、第三对牵伸热辊1800、第四对牵伸热辊1900以及第五对牵伸热辊2000均为高温辊,对丝束进行进一步的加热,以牵伸、松弛定型等。
喂入分丝张力辊1400与第一对牵伸热辊1600的牵伸比保持在1:(1.04-1.08),使丝束保持一定的张力;第一对牵伸热辊1600与第二对牵伸热辊1700的牵伸倍数为1.5至3.5倍,这级牵伸有利于高取向、较低结晶度;第二对牵伸热辊1700与第三对牵伸热辊1800的牵伸倍数为2.0至3.5倍,形成二次加热和牵伸;第三对牵伸热辊1800与第四对牵伸热辊1900的牵伸倍数一般为1.7至2.5倍,提高纤维的均匀性和牵伸倍数,提高丝束强度;第四对牵伸热辊1900与第五对牵伸热辊2000的牵伸倍数为0.9-1.0倍,二者之间纤维有一定的回缩,对牵伸后的丝束进行定型,消除纤维因高速牵伸产生的应力。以便更好控制低收缩率。
本实施例的一种产业用生物基聚酰胺纺丝牵伸卷绕装置以纺制55dtex-2222dtex的生物基聚酰胺产业用丝,可以包括纺制55dtex-111dtex的生物基聚酰胺产业用丝,以及纺制1670dtex-2222dtex的生物基聚酰胺产业用丝。
在一些实施方式中,生物基聚酰胺纤维丝束经导丝部件1300将丝束进入丝路转向导丝,将丝路改为0°-90°再进入喂入分丝张力辊1400,喂入分丝张力辊1400采用固定冷辊1410(φ(110-220)×400mm)和可调角度分丝辊1420(φ(55-110)×400mm)组合使用,辊壳表面为氧化铬+氧化铝,经过90°转向的丝束竖向下移、至相切地接触固定冷辊1410的圆柱表面有效区的后端,如图4所示。请结合图5,后丝束从固定冷辊1410圆柱表面左侧逆时针的缠绕半圈后从固定冷辊1410圆柱表面右侧相切的牵引出来后,进入可调角度分丝辊1420圆柱表面右侧,逆时针缠绕半圈再从可调角度分丝辊1420圆柱表面左侧相切的拉出后进入固定冷辊1410圆柱表面左侧,此时由于分丝辊具有调节角度的作用;可调角度分丝辊1420圆柱形辊体前段向下倾斜,因此从可调角度分丝辊1420圆柱表面缠绕半圈的丝束会在其辊体的表面向辊体的前端产生一定的位置移动(如图5所示),如此丝束逆时针的连续在固定冷辊1410与可调角度分丝辊1420之间缠绕1圈~5圈,最后一圈缠绕完后从固定冷辊1410圆柱辊面的前端的下切点逆时针的牵引出,在喂入分丝张力辊1400部件上缠绕,无加热,其作用是将初生的丝束握持住,并给予丝束一定的速度。丝束在喂入分丝张力辊1400的牵引下,冷却成型,完成纺程牵伸,形成初生纤维。速度为550-750m/min,依次进入第一加热板1510,此时,与喂入分丝张力辊1400辊壳表面相接触的丝束表面为丝束N表面20,n根丝束在辊壳表面均匀铺开,这样可以充分提高纺纱张力以降低纺成纤维的摇摆。由于喂入分丝张力辊1400与第一对牵伸热辊1600保持1:(1.04-1.08)的速比,使丝束保持一定的张力,需要给准备牵伸的丝束进行预热,丝束被第一对牵伸热辊1600牵引,经过第一加热板1510,在第一加热板1510内,n根丝束的M、N两面均被加热。
在纺55dtex-111dtex时,总纤度和单丝纤度都比较低,初生纤维在初次进行牵伸易出现断头等异常现象,需要相对低温的加热环境,如图5所示,喂入分丝张力辊1400速度为720m/min出来的n根丝束经过第一加热板1510,在第一加热板1510内,n根丝束的M、N两面均被加热,此时加热温度比较低为50-65℃,给截面较细的丝束一个持续的低温预热,在加热板内让丝束里面尽最大可能受热,提高热的穿透力,依次进入第一对牵伸热辊1600。第一对牵伸热辊1600采用可调角度热辊+可调角度热辊,热辊外壳表面为氧化铬 +氧化铝,对辊尺寸(2×φ(190-250)×(350-450)mm),此对辊为低温辊,丝束在第一对牵伸热辊1600的辊面上缠绕6.5圈~7.5圈,温度设定为75-100℃,在一些实施方式中为90℃,纺速700-800m/min,丝束在第一对牵伸热辊1600表面稳定铺开,丝束在第一对牵伸热辊1600的辊面和辊面上逆时针的缠绕6.5圈~7.5圈,此时丝束在辊壳表面加热的丝束表面为N表面。
在纺1670dtex-2222dtex时,总纤度和单丝纤度都比较高,初生纤维在初次进行牵伸同样易出现断头等异常现象,同时总纤度和单丝纤度过高又会造成纺丝时可纺性差,丝束弯曲强度过高,手感硬。需要相对高温的加热环境,如图4和图5所示,喂入分丝张力辊1400速度为650m/min出来的n根丝束经过第一加热板1510,在第一加热板1510内,n根丝束的M、N两面均被加热,此时加热温度比较低为70-90℃,给截面较细的丝束一个持续的较高温预热,在加热板内让丝束里面尽最大可能受热,提高热的穿透力,依次进入第一对牵伸热辊1600采用可调角度热辊+可调角度热辊,热辊外壳表面为氧化铬+氧化铝,对辊尺寸(2×φ(190-250)×(350-450)mm),此对辊为低温辊,丝束在第一对牵伸热辊1600的辊面上缠绕6.5圈~7.5圈,温度设定为75-100℃,在一些可实施方式中为90℃,纺速700-800m/min,丝束在第一对牵伸热辊1600表面稳定铺开,丝束在第一对牵伸热辊1600的辊面和辊面上缠绕6.5圈~7.5圈,此时丝束在辊壳表面加热的丝束表面为N表面。
在一些实施方式中,如图7至图9所示,丝束在第一对牵伸热辊1600上缠绕后,从第一对牵伸热辊1600右辊牵引出后传至第二加热板1520,在第二加热板1520内,n根丝束的M、N两面均被加热,n根丝束在第二对牵伸热辊1700左辊表面均匀铺开,此时丝束在辊壳表面加热的丝束表面为M表面。第二对牵伸热辊1700采用可调角度热辊+可调角度热辊,热辊外壳表面为氧化铬+氧化铝,此辊为高温辊,对辊尺寸(2×φ(190-250)×(350-450)mm)。第一对牵伸热辊1600为低温辊,温度设定为75-100℃,第二对牵伸热辊1700为高温辊,温度设定为110-145℃,可以使丝束温度逐步稳定上升,有利于使纤维逐渐取向、结晶,以达到生物基聚酰胺产业用丝纤维的力学性能。放置第二加热板1520使每根丝单独从加热器间通过,并将在第二对牵伸热辊1700表面稳定铺开,提高了丝束的内外温度一致性,提高了丝束的受热均匀性,以利于后道加热、牵伸。从第一对牵伸热辊1600到第二对牵伸热辊1700,丝束受热面反过来了,此时丝束在辊壳表面加热的丝束表面为M表面。如图II放大图所示,此过程丝束的M表面也受到了加热,再加上第二加热板1520的加热平衡,有利于提高纤维的结晶度和取向度,可以逐渐提高纤维的强度和模量。第二加热板1520设定温度95-115℃,丝束在经过第二加热板1520后传至第二对牵伸热辊1700。丝束在第二对牵伸热辊1700的辊面上顺时针的缠绕6.5圈~7.5圈,纺速1680m/min。第一对牵伸热辊1600与第二对牵伸热辊1700牵伸倍数一般为1.5~3.5倍,这级牵伸是为了获得具有高取向、较低结晶度。纺55dtex-111dtex比纺1670dtex-2222dtex总纤度和单丝纤度都低,受热面积小,需要相对低5-10℃的加热环境,由于丝相对细,牵伸比小5%-10%。
在一些实施方式中,如图10至图12所示,丝束在第二对牵伸热辊1700上缠绕后,丝束被第三对牵伸热辊1800牵引,经过第三加热板1530对n根丝束的M、N两面均被加 热。丝束在第三对牵伸热辊1800表面稳定铺开,丝束在第三对牵伸热辊1800的两辊辊面上缠绕6.5圈~7.5圈,n根丝束在辊壳表面均匀铺开,丝束在辊壳表面加热的丝束表面为N表面。从而这级牵伸可获得一定的强力和伸长,纺55dtex-111dtex比纺1670dtex-2222dtex总纤度和单丝纤度都低,受热面积小,需要相对低5-15℃的加热环境,由于丝相对细,牵伸比小4%-12%。第三加热板1530设定温度110-155℃,丝束在经过第三加热板1530后传至第三牵伸热辊,第三对牵伸热辊1800采用可调角度热辊+可调角度热辊,热辊外壳表面为氧化铬+氧化铝,对辊尺寸(2×φ(190-250)×(350-450)mm),此辊为高温辊,丝束在第三对牵伸热辊1800的辊面上缠绕6.5圈~7.5圈,温度设定为130-150℃,在一些实施方式中为140℃,纺速2520m/min,第二对牵伸热辊1700与第三对牵伸热辊1800牵伸倍数一般为2.0~3.5倍,形成二次加热和牵伸,进一步使丝束温度逐步稳定上升,提高纤维的均匀性和牵伸倍数,提高丝束强度。放置第三加热板1530使每根丝单独从加热器间通过,并将在第三对牵伸热辊1800表面稳定铺开,进一步提高了丝束的内外温度一致性,提高了丝束的受热均匀性,以利于后道加热、牵伸。从第二对牵伸热辊1700到第三对牵伸热辊1800,丝束受热面再次反过来了,此时丝束在辊壳表面加热的丝束表面为N表面。使丝束两面都受到加热,再加上第三加热板1530的加热平衡,有利于提高纤维的结晶度和取向度,可以逐渐提高纤维的强度和模量。
在一些实施方式中,如图13至图15所示,丝束在第三对牵伸热辊1800上缠绕后,丝束被第四对牵伸热辊1900牵引,经过第四加热板1540内n根丝束的M、N两面均被加热。丝束在第四对牵伸热辊1900表面稳定铺开,丝束在第四对牵伸热辊1900的两辊辊面上缠绕6.5圈~7.5圈,n根丝束在辊壳表面均匀铺开,此时丝束在辊壳表面加热的丝束表面为M表面。这级牵伸同样是为了获得一定的强力和伸长,具有一定的预定型作用。纺55dtex-111dtex比纺1670dtex-2222dtex总纤度和单丝纤度都低,受热面积小,需要相对低2-10℃的加热环境,由于丝相对细,牵伸比小2%-8%。第四加热板1540的设定温度为125-195℃,第三对牵伸热辊1800与第四对牵伸热辊1900之间形成第三次加热和牵伸,牵伸倍数一般为1.7~2.5倍,进一步使丝束温度逐步稳定上升,提高纤维的均匀性和牵伸倍数,提高丝束强度。放置第四加热板1540使每根丝单独从加热器间通过,并将在第四对牵伸热辊1900表面稳定铺开,进一步提高了丝束的内外温度一致性,提高了丝束的受热均匀性,以利于后道加热、牵伸。从第三对牵伸热辊1800到第四对牵伸热辊1900,丝束受热面再次反过来了,此时丝束在辊壳表面加热的丝束表面为M表面。使丝束两面都受到加热,再加上第四加热板1540的加热平衡,有利于后续牵伸中结晶区取向度和晶粒尺寸的增加和晶区的完善,丝束在经过第四加热板1540后传至第四对牵伸热辊1900,第四对牵伸热辊1900采用可调角度热辊配合可调角度热辊,热辊外壳表面为陶瓷,对辊尺寸(2×φ(190-235)×(350-400)mm),此辊为高温辊,温度设定为130-150℃,丝束在第四对牵伸热辊1900的辊面上缠绕6.5圈~7.5圈,纺速3650m/min。
在一些实施方式中,如图16至图18所示,丝束在第四对牵伸热辊1900上缠绕后,丝束被第五对牵伸热辊2000牵引,经过第五加热板1550,第五加热板1550设定温度140-220℃,在第五加热板1550内,n根丝束的M、N两面均被加热。丝束在第五对牵伸 热辊2000表面稳定铺开,丝束在第五对牵伸热辊2000的两辊辊面上缠绕6.5圈~7.5圈,n根丝束在辊壳表面均匀铺开,此时丝束在辊壳表面加热的丝束表面为M表面。这级起到松弛定型作用,纺55dtex-111dtex比纺1670dtex-2222dtex总纤度和单丝纤度都低,受热面积小,需要相对低1-4℃的加热环境,由于丝相对细,松弛比小1%-3%。第四对牵伸热辊1900与第五对牵伸热辊2000牵伸倍数一般为0.9-1.0倍,第五对牵伸热辊2000的速度略低于第四对牵伸热辊,二者之间纤维又有一定的回缩,完成高强丝的定型主要作用是对牵伸后的丝束进行定型,消除纤维因高速牵伸产生的应力。以便更好控制低收缩率。放置第五加热板1550使每根丝单独从加热器间通过,并将在第五对牵伸热辊2000表面稳定铺开,进一步提高了丝束的内外温度一致性,提高了丝束的受热均匀性,以利于后道定型回缩。丝束在经过第五加热板1550后传至第五对牵伸热辊2000,第五对牵伸热辊2000采用可调角度热辊+可调角度热辊,热辊外壳表面为陶瓷,对辊尺寸(2×φ(190-220)×(350-400)mm),此辊为高温辊,丝束在第五对牵伸热辊2000的辊面上缠绕6.5圈~7.5圈,温度设定为130-210℃,纺速3550m/min。
在一些实施方式中,本实施例的纺丝牵伸卷绕装置用于55dtex-111dtex细旦生物基聚酰胺纤维、1670dtex-2222dtex粗旦生物基聚酰胺纤维的纺制,也可以用于111dtex-1670dtex生物基聚酰胺纤维的纺制。
在一些实施方式中,如图19至图21所示,加热板均可以包括传热块1501和多个加热棒1502,传热块1501设有供丝束穿过的开口槽1503,多个加热棒1502沿开口槽1503长度方向依次排列设置,图中展示三根加热棒1502,加热棒1502的数量还可以有更多选择;加热棒1502均呈钩状布置且形成有钩部和钩槽,钩部内设于传热块1501,钩槽以供丝束穿过。通过本加热板,可对穿过的丝束的两侧进行充分、均匀加热。
实施例二
请参照图1至图18以及图30至图33,本实施例公开一种产业用生物基聚酰胺纺丝牵伸卷绕联合机,可以包括按生产工艺依次设置的螺杆挤压机100、熔体管道300、纺丝箱体400、计量泵500、纺丝组件600、缓冷器700、单体抽吸机构800、侧吹风部件900、甬道部件1000、双面上油机构1100、预网络部件1200、导丝部件1300、喂入分丝张力辊1400、第一加热板1510、第一对牵伸热辊1600、第二加热板1520、第二对牵伸热辊1700、第三加热板1530、第三对牵伸热辊1800、第四加热板1540、第四对牵伸热辊1900、第五加热板1550、第五对牵伸热辊2000、终网络部件2100以及全自动卷绕头。
其中,第一加热板1510、第二加热板1520、第三加热板1530、第四加热板1540以及第五加热板1550均对相邻两辊间区域的丝束进行加热。丝束绕经第一对牵伸热辊1600的旋向、绕经第二对牵伸热辊1700的旋向、绕经第三对牵伸热辊1800的旋向、绕经第四对牵伸热辊1900的旋向中相邻两个旋向呈相反设置,以纺制55dtex-2222dtex的生物基聚酰胺产业用丝。
在一些实施方式中,请参照图1和图3,丝束依次经过喂入分丝张力辊1400、第一对牵伸热辊1600、第二对牵伸热辊1700、第三对牵伸热辊1800、第四对牵伸热辊1900以及第五对牵伸热辊2000,后经终网络部件2100,卷绕到卷绕机上。其中,在喂入分丝张 力辊1400前,纺丝经纺丝组件下来,依次经过双面上油机构1100、预网络部件1200和导丝部件1300,后再通过喂入分丝张力辊1400。
请知晓,在本实施例中,将丝束的周侧分成一侧的丝束M表面10、另一侧的丝束N表面20来描述。下述相关描述中的顺时针、逆时针方向均是据图描述。
请参照图4至图6,丝束运行于喂入分丝张力辊1400至第一对牵伸热辊1600时,丝束于喂入分丝张力辊1400的绕经旋向为逆时针方向,丝束于第一对牵伸热辊1600的绕经旋向为逆时针旋向。其中,喂入分丝张力辊1400与丝束N表面20直接接触、加热,第一对牵伸热辊1600与丝束N表面20直接接触、加热。请参照图7至图9,丝束于第二对牵伸热辊1700的绕经旋向为顺时针方向,第二对牵伸热辊1700与丝束M表面10直接接触、加热。请参照图10至图12,丝束于第三对牵伸热辊1800的绕经旋向为逆时针方向,第三对牵伸热辊1800与丝束N表面20直接接触、加热。请参照图13至图15,丝束于第四对牵伸热辊1900的绕经旋向为顺时针方向,第四对牵伸热辊1900与丝束M表面10直接接触、加热。
从而从第一对牵伸热辊1600至第四对牵伸热辊1900,依次对丝束N表面20、丝束M表面10、丝束N表面20、丝束M表面10接触加热,有利于提高纤维的结晶度和取向度,可以逐渐提高纤维的强度和模量,配合多级牵伸热辊实现逐级牵伸,能够纺制55dtex-2222dtex的生物基聚酰胺产业用丝,从而可以用于55dtex-111dtex细旦生物基聚酰胺纤维、1670dtex-2222dtex粗旦生物基聚酰胺纤维的纺制。
请参照图16至图18,丝束于第五对牵伸热辊2000的绕经旋向为顺时针,第五对牵伸热辊2000与丝束M表面10直接接触、加热,从而使丝束从如图1中的右侧垂下,经终网络部件2100进入卷绕机,有利于联合机的整体布置。
在一些实施方式中,请参照图1至图18,联合机按照丝束行进方向可以依次包括喂入分丝张力辊1400、第一加热板1510、第一对牵伸热辊1600、第二加热板1520、第二对牵伸热辊1700、第三加热板1530、第三对牵伸热辊1800、第四加热板1540、第四对牵伸热辊1900、第五加热板1550以及第五对牵伸热辊2000,第一加热板1510、第二加热板1520、第三加热板1530、第四加热板1540以及第五加热板1550均对相邻两辊间区域的丝束进行加热。
在一些实施方式中,丝束于第一对牵伸热辊1600进行第一次拉伸,考虑要使丝束保持一定的张力,通过第一加热板1510先给丝束两面进行加热预热后,再进入第一对牵伸热辊1600,有利于克服初次牵伸易出现断头、可纺性差等问题;设于第一对牵伸热辊1600与第二对牵伸热辊1700之间的第二加热板1520,有利于提高纤维的结晶度和取向度,可以逐渐提高纤维的强度和模量;设于第二对牵伸热辊1700与第三对牵伸热辊1800之间的第三加热板1530,提高了丝束的内外温度一致性,提高了丝束的受热均匀性,以利于后道加热、牵伸;设于第三对牵伸热辊1800与第四对牵伸热辊1900之间的第四加热板1540,进一步提高了丝束的内外温度一致性,提高了丝束的受热均匀性,以利于后道加热、牵伸;设于第四对牵伸热辊1900与第五对牵伸热辊2000之间的第五加热板1550,进一步提高了丝束的内外温度一致性,提高了丝束的受热均匀性,以利于后道定型回缩。
在一些实施方式中,如图4所示,喂入分丝张力辊1400采用固定冷辊1410配合可调角度分丝辊1420,而第一对牵伸热辊1600、第二对牵伸热辊1700、第三对牵伸热辊1800、第四对牵伸热辊1900以及第五对牵伸热辊2000均采用可调角度热辊配合可调角度热辊。
第一对牵伸热辊1600为低温辊,对丝束进行初步加热;而第二对牵伸热辊1700、第三对牵伸热辊1800、第四对牵伸热辊1900以及第五对牵伸热辊2000均为高温辊,对丝束进行进一步的加热,以牵伸、松弛定型等。
喂入分丝张力辊1400与第一对牵伸热辊1600的牵伸比保持在1:(1.04-1.08),使丝束保持一定的张力;第一对牵伸热辊1600与第二对牵伸热辊1700的牵伸倍数为1.5至3.5倍,这级牵伸有利于高取向、较低结晶度;第二对牵伸热辊1700与第三对牵伸热辊1800的牵伸倍数为2.0至3.5倍,形成二次加热和牵伸;第三对牵伸热辊1800与第四对牵伸热辊1900的牵伸倍数一般为1.7至2.5倍,提高纤维的均匀性和牵伸倍数,提高丝束强度;第四对牵伸热辊1900与第五对牵伸热辊2000的牵伸倍数为0.9-1.0倍,二者之间纤维有一定的回缩,对牵伸后的丝束进行定型,消除纤维因高速牵伸产生的应力。以便更好控制低收缩率。
本实施例的一种产业用生物基聚酰胺纺丝牵伸卷绕联合机以纺制55dtex-2222dtex的生物基聚酰胺产业用丝,可以包括纺制55dtex-111dtex的生物基聚酰胺产业用丝,以及纺制1670dtex-2222dtex的生物基聚酰胺产业用丝。
在一些实施方式中,生物基聚酰胺纤维丝束经导丝部件1300将丝束进入丝路转向导丝,将丝路改为0°-90°再进入喂入分丝张力辊1400,喂入分丝张力辊1400采用固定冷辊1410(φ(110-220)×400mm)和可调角度分丝辊1420(φ(55-110)×400mm)组合使用,辊壳表面为氧化铬+氧化铝,经过90°转向的丝束竖向下移、至相切地接触固定冷辊1410的圆柱表面有效区的后端,如图4所示。结合图5,后丝束从固定冷辊1410圆柱表面左侧逆时针的缠绕半圈后从固定冷辊1410圆柱表面右侧相切的牵引出来后,进入可调角度分丝辊1420圆柱表面右侧,逆时针缠绕半圈再从可调角度分丝辊1420圆柱表面左侧相切的拉出后进入固定冷辊1410圆柱表面左侧,此时由于分丝辊具有调节角度的作用;可调角度分丝辊1420圆柱形辊体前段向下倾斜,因此从可调角度分丝辊1420圆柱表面缠绕半圈的丝束会在其辊体的表面向辊体的前端产生一定的位置移动(如图5所示),如此丝束逆时针的连续在固定冷辊1410与可调角度分丝辊1420之间缠绕1圈~5圈,最后一圈缠绕完后从固定冷辊1410圆柱辊面的前端的下切点逆时针的牵引出,在喂入分丝张力辊1400部件上缠绕,无加热,其作用是将初生的丝束握持住,并给予丝束一定的速度。丝束在喂入分丝张力辊1400的牵引下,冷却成型,完成纺程牵伸,形成初生纤维。速度为550-750m/min,依次进入第一加热板1510,此时,与喂入分丝张力辊1400辊壳表面相接触的丝束表面为丝束N表面20,n根丝束在辊壳表面均匀铺开,这样可以充分提高纺纱张力以降低纺成纤维的摇摆。由于喂入分丝张力辊1400与第一对牵伸热辊1600保持1:(1.04-1.08)的速比,使丝束保持一定的张力,需要给准备牵伸的丝束进行预热,丝束被第一对牵伸热辊1600牵引,经过第一加热板1510,在第一加热板1510内,n根丝束的M、N两面均被加热。
在纺55dtex-111dtex时,总纤度和单丝纤度都比较低,初生纤维在初次进行牵伸易出现断头等异常现象,需要相对低温的加热环境,如图5所示,喂入分丝张力辊1400速度为720m/min出来的n根丝束经过第一加热板1510,在第一加热板1510内,n根丝束的M、N两面均被加热,此时加热温度比较低为50-65℃,给截面较细的丝束一个持续的低温预热,在加热板内让丝束里面尽最大可能受热,提高热的穿透力,依次进入第一对牵伸热辊1600。第一对牵伸热辊1600采用可调角度热辊+可调角度热辊,热辊外壳表面为氧化铬+氧化铝,对辊尺寸(2×φ(190-250)×(350-450)mm),此对辊为低温辊,丝束在第一对牵伸热辊1600的辊面上缠绕6.5圈~7.5圈,温度设定为75-100℃,在一些可实施方式中为90℃,纺速700-800m/min,丝束在第一对牵伸热辊1600表面稳定铺开,丝束在第一对牵伸热辊1600的辊面和辊面上逆时针的缠绕6.5圈~7.5圈,此时丝束在辊壳表面加热的丝束表面为N表面。
在纺1670dtex-2222dtex时,总纤度和单丝纤度都比较高,初生纤维在初次进行牵伸同样易出现断头等异常现象,同时总纤度和单丝纤度过高又会造成纺丝时可纺性差,丝束弯曲强度过高,手感硬。需要相对高温的加热环境,如图4和图5所示,喂入分丝张力辊1400速度为650m/min出来的n根丝束经过第一加热板1510,在第一加热板1510内,n根丝束的M、N两面均被加热,此时加热温度比较低为70-90℃,给截面较细的丝束一个持续的较高温预热,在加热板内让丝束里面尽最大可能受热,提高热的穿透力,依次进入第一对牵伸热辊1600采用可调角度热辊+可调角度热辊,热辊外壳表面为氧化铬+氧化铝,对辊尺寸(2×φ(190-250)×(350-450)mm),此对辊为低温辊,丝束在第一对牵伸热辊1600的辊面上缠绕6.5圈~7.5圈,温度设定为75-100℃,在一些可实施方式中为90℃,纺速700-800m/min,丝束在第一对牵伸热辊1600表面稳定铺开,丝束在第一对牵伸热辊1600的辊面和辊面上缠绕6.5圈~7.5圈,此时丝束在辊壳表面加热的丝束表面为N表面。
在一些实施方式中,如图7至图9所示,丝束在第一对牵伸热辊1600上缠绕后,从第一对牵伸热辊1600右辊牵引出后传至第二加热板1520,在第二加热板1520内,n根丝束的M、N两面均被加热,n根丝束在第二对牵伸热辊1700左辊表面均匀铺开,此时丝束在辊壳表面加热的丝束表面为M表面。第二对牵伸热辊1700采用可调角度热辊+可调角度热辊,热辊外壳表面为氧化铬+氧化铝,此辊为高温辊,对辊尺寸(2×φ(190-250)×(350-450)mm)。第一对牵伸热辊1600为低温辊,温度设定为75-100℃,第二对牵伸热辊1700为高温辊,温度设定为110-145℃,可以使丝束温度逐步稳定上升,有利于使纤维逐渐取向、结晶,以达到生物基聚酰胺产业用丝纤维的力学性能。放置第二加热板1520使每根丝单独从加热器间通过,并将在第二对牵伸热辊1700表面稳定铺开,提高了丝束的内外温度一致性,提高了丝束的受热均匀性,以利于后道加热、牵伸。从第一对牵伸热辊1600到第二对牵伸热辊1700,丝束受热面反过来了,此时丝束在辊壳表面加热的丝束表面为M表面。此过程丝束的M表面也受到了加热,再加上第二加热板1520的加热平衡,有利于提高纤维的结晶度和取向度,可以逐渐提高纤维的强度和模量。第二加热板1520设定温度95-115℃,丝束在经过第二加热板1520后传至第二对牵伸热辊1700。丝束在第二对牵伸热辊1700的辊面上顺时针的缠绕6.5圈~7.5圈,纺速1680m/min。第一对牵伸 热辊1600与第二对牵伸热辊1700牵伸倍数一般为1.5~3.5倍,这级牵伸是为了获得具有高取向、较低结晶度。纺55dtex-111dtex比纺1670dtex-2222dtex总纤度和单丝纤度都低,受热面积小,需要相对低5-10℃的加热环境,由于丝相对细,牵伸比小5%-10%。
在一些实施方式中,如图10至图12所示,丝束在第二对牵伸热辊1700上缠绕后,丝束被第三对牵伸热辊1800牵引,经过第三加热板1530对n根丝束的M、N两面均被加热。丝束在第三对牵伸热辊1800表面稳定铺开,丝束在第三对牵伸热辊1800的两辊辊面上缠绕6.5圈~7.5圈,n根丝束在辊壳表面均匀铺开,丝束在辊壳表面加热的丝束表面为N表面。从而这级牵伸可获得一定的强力和伸长,纺55dtex-111dtex比纺1670dtex-2222dtex总纤度和单丝纤度都低,受热面积小,需要相对低5-15℃的加热环境,由于丝相对细,牵伸比小4%-12%。第三加热板1530设定温度110-155℃,丝束在经过第三加热板1530后传至第三牵伸热辊,第三对牵伸热辊1800采用可调角度热辊+可调角度热辊,热辊外壳表面为氧化铬+氧化铝,对辊尺寸(2×φ(190-250)×(350-450)mm),此辊为高温辊,丝束在第三对牵伸热辊1800的辊面上缠绕6.5圈~7.5圈,温度设定为130-150℃,在一些可实施方式中为140℃,纺速2520m/min,第二对牵伸热辊1700与第三对牵伸热辊1800牵伸倍数一般为2.0~3.5倍,形成二次加热和牵伸,进一步使丝束温度逐步稳定上升,提高纤维的均匀性和牵伸倍数,提高丝束强度。放置第三加热板1530使每根丝单独从加热器间通过,并将在第三对牵伸热辊1800表面稳定铺开,进一步提高了丝束的内外温度一致性,提高了丝束的受热均匀性,以利于后道加热、牵伸。从第二对牵伸热辊1700到第三对牵伸热辊1800,丝束受热面再次反过来了,此时丝束在辊壳表面加热的丝束表面为N表面。使丝束两面都受到加热,再加上第三加热板1530的加热平衡,有利于提高纤维的结晶度和取向度,可以逐渐提高纤维的强度和模量。
在一些实施方式中,如图13至图15所示,丝束在第三对牵伸热辊1800上缠绕后,丝束被第四对牵伸热辊1900牵引,经过第四加热板1540内n根丝束的M、N两面均被加热。丝束在第四对牵伸热辊1900表面稳定铺开,丝束在第四对牵伸热辊1900的两辊辊面上缠绕6.5圈~7.5圈,n根丝束在辊壳表面均匀铺开,此时丝束在辊壳表面加热的丝束表面为M表面。这级牵伸同样是为了获得一定的强力和伸长,具有一定的预定型作用。纺55dtex-111dtex比纺1670dtex-2222dtex总纤度和单丝纤度都低,受热面积小,需要相对低2-10℃的加热环境,由于丝相对细,牵伸比小2%-8%。第四加热板1540的设定温度为125-195℃,第三对牵伸热辊1800与第四对牵伸热辊1900之间形成第三次加热和牵伸,牵伸倍数一般为1.7~2.5倍,进一步使丝束温度逐步稳定上升,提高纤维的均匀性和牵伸倍数,提高丝束强度。放置第四加热板1540使每根丝单独从加热器间通过,并将在第四对牵伸热辊1900表面稳定铺开,进一步提高了丝束的内外温度一致性,提高了丝束的受热均匀性,以利于后道加热、牵伸。从第三对牵伸热辊1800到第四对牵伸热辊1900,丝束受热面再次反过来了,此时丝束在辊壳表面加热的丝束表面为M表面。使丝束两面都受到加热,再加上第四加热板1540的加热平衡,有利于后续牵伸中结晶区取向度和晶粒尺寸的增加和晶区的完善,丝束在经过第四加热板1540后传至第四对牵伸热辊1900,第四对牵伸热辊1900采用可调角度热辊配合可调角度热辊,热辊外壳表面为陶瓷,对辊尺寸(2 ×φ(190-235)×(350-400)mm),此辊为高温辊,温度设定为130-150℃,丝束在第四对牵伸热辊1900的辊面上缠绕6.5圈~7.5圈,纺速3650m/min。
在一些实施方式中,如图16至图18所示,丝束在第四对牵伸热辊1900上缠绕后,丝束被第五对牵伸热辊2000牵引,经过第五加热板1550,第五加热板1550设定温度140-220℃,在第五加热板1550内,n根丝束的M、N两面均被加热。丝束在第五对牵伸热辊2000表面稳定铺开,丝束在第五对牵伸热辊2000的两辊辊面上缠绕6.5圈~7.5圈,n根丝束在辊壳表面均匀铺开,此时丝束在辊壳表面加热的丝束表面为M表面。这级起到松弛定型作用,纺55dtex-111dtex比纺1670dtex-2222dtex总纤度和单丝纤度都低,受热面积小,需要相对低1-4℃的加热环境,由于丝相对细,松弛比小1%-3%。第四对牵伸热辊1900与第五对牵伸热辊2000牵伸倍数一般为0.9-1.0倍,第五对牵伸热辊2000的速度略低于第四对牵伸热辊,二者之间纤维又有一定的回缩,完成高强丝的定型主要作用是对牵伸后的丝束进行定型,消除纤维因高速牵伸产生的应力。以便更好控制低收缩率。放置第五加热板1550使每根丝单独从加热器间通过,并将在第五对牵伸热辊2000表面稳定铺开,进一步提高了丝束的内外温度一致性,提高了丝束的受热均匀性,以利于后道定型回缩。丝束在经过第五加热板1550后传至第五对牵伸热辊2000,第五对牵伸热辊2000采用可调角度热辊+可调角度热辊,热辊外壳表面为陶瓷,对辊尺寸(2×φ(190-220)×(350-400)mm),此辊为高温辊,丝束在第五对牵伸热辊2000的辊面上缠绕6.5圈~7.5圈,温度设定为130-210℃,纺速3550m/min。
在一些实施方式中,本实施例的联合机用于55dtex-111dtex细旦生物基聚酰胺纤维、1670dtex-2222dtex粗旦生物基聚酰胺纤维的纺制,也可以用于111dtex-1670dtex生物基聚酰胺纤维的纺制。
实施例三
基于实施例二公开的产业用生物基聚酰胺纺丝牵伸卷绕联合机中,涉及有第一加热板1510、第二加热板1520、第三加热板1530、第四加热板1540和第五加热板1550,在一些实施方式中,如图19至图21所示,加热板均可以包括传热块1501和多个加热棒1502,传热块1501设有供丝束穿过的开口槽1503,多个加热棒1502(图中所示三根,数量不定)沿开口槽1503长度方向依次排列设置,加热棒1502均呈钩状布置且形成有钩部和钩槽,钩部内设于传热块1501,钩槽以供丝束穿过。通过本加热板,可对穿过的丝束的两侧进行充分、均匀加热。
实施例四
基于实施例二公开的产业用生物基聚酰胺纺丝牵伸卷绕联合机,涉及有螺杆挤压机,螺杆挤压机安装有挤压机螺杆。请参照图22至图25,本实施例提供一种挤压机螺杆,包括螺杆进料段110、螺杆压缩段120和螺杆计量段130,螺杆进料段110的一端与螺杆压缩段120的一端可拆卸连接,螺杆压缩段120的另一端与螺杆计量段130的一端可拆卸连接。
挤压机螺杆采用螺杆进料段110、螺杆压缩段120和螺杆计量段130的三段设置且相邻两段间进行可拆卸连接,在由于生物基聚酰胺原料不稳定而导致螺杆腐蚀、螺套和螺 杆之间的尺寸公差会逐渐变大的问题中,针对可能最先造成磨损的计量段,能够采用进行定期更换螺杆计量段130的方式,且该更换具有便捷性,来保证螺杆挤压机的产量和效率。
同样也可以对螺杆压缩段120、螺杆进料段110定期更换。
其中,如图22所示,挤压机螺杆安装于螺杆挤压机100,螺杆挤压机100安装有挤出头200,通过挤压头将熔体输送至后续的熔体管道中。
在一些实施方式中,螺杆计量段130还可以包括混炼头140,混炼头140设置在螺杆的头部位置,提高挤压机螺杆搅拌均化熔体作用效果。
在一些实施方式中,如图22所示,螺杆进料段110远离螺杆压缩段120的一端还连接有键连接体150,通过键连接体150与传动机构连接,带动螺杆转动进入工作状态。
在一些实施方式中,挤出头200可以包括检测熔体压力值的压力传感器,从而可以检测到熔体压力值,以保证螺杆挤压机100的机头压力恒定。
在一些实施方式中,挤出头200可以包括检测熔体温度的温度传感器,以测量熔体例如生物质聚酰胺熔体的在线温度参数,有利于整体的纺丝过程。
在一些实施方式中,挤出头200于熔体通道中设有预过滤环(图中未示出),通过预过滤环对较大颗粒的物料进行过滤,保证进入后续熔体管道的熔体质量。
在一些实施方式中,上述方案中的可拆卸连接,可以包括螺纹连接,螺杆压缩段120的两端分别与螺杆进料段110的一端、螺杆计量段130的一端螺纹连接。通过可拆卸连接,便于对磨损快的螺杆计量段130进行更高频率的更换,保证螺杆挤压机100的产量和效率。
在一些实施方式中,还可以在两段螺纹连接的方案中,增加销接以提高连接质量。在一些实施方式中,以螺杆压缩段120与螺杆进料段110的可拆卸连接举例,请参照图23和图24。
请参照图23和图24,螺杆压缩段120靠近螺杆进料段110的一端包括依次连接的第一凸起121、第二凸起122和第三凸起123,第一凸起121、第二凸起122和第三凸起123的轴线均重合设置,第一凸起121、第二凸起122和第三凸起123的径向长度依次减小,第二凸起122的外周面设有第一螺纹。螺杆进料段110靠近螺杆压缩段120的一端设有第一轴孔111,第一凸起121、第二凸起122和第三凸起123依次穿设于第一轴孔111,螺杆进料段110的第一轴孔111的内壁设有与第一螺纹联接的第二螺纹(图中未示出)。第三凸起123与螺杆进料段110通过第一定位销123a销接,对应于第一定位销123a,于第三凸台和螺杆进料段110开设有相应径向分布的销孔。
通过三凸起的设置,使得销接处的螺杆进料段110的筒壁具有较大的厚度,配合第三凸起123提高销接的稳定性;第二凸起122设于第一凸起121与第三凸起123之间,如图24所示,第一凸起121的外周免被设为与螺杆进料段110的第一轴孔111孔内壁紧密贴合,将中间的第一螺纹、第二螺纹与螺杆外空间区域隔开。
类似地,在螺杆压缩段120与螺杆计量段130的可拆卸连接的方案中,请参照图23和图25,螺杆计量段130靠近螺杆压缩段120的一端包括依次连接的第四凸起131、第五凸起132和第六凸起133,第四凸起131、第五凸起132和第六凸起133的轴线均重合 设置,第四凸起131、第五凸起132和第六凸起133的径向长度依次减小,第五凸起132的外周面设有第三螺纹。螺杆压缩段120靠近螺杆计量段130的一端设有第二轴孔124,第四凸起131、第五凸起132和第六凸起133依次穿设于第二轴孔124,螺杆压缩段120的第二轴孔124的内壁设有与第三螺纹联接的第四螺纹。第六凸起133与螺杆压缩段120通过第二定位销133a销接,对应于第二定位销133a,第六凸起133和螺杆压缩段120设有相应径向分布的销孔。
在其它可实施方式中,螺杆压缩段120与螺杆进料段110的可拆卸连接,螺杆压缩段120与螺杆计量段130的可拆卸连接,还可采用螺纹连接配合螺钉连接、卡接等方式。
在一些实施方式中,上述挤压机螺杆的螺杆可控制长径比为(25-32):1。
实施例五
基于实施例二或实施例四公开的产业用生物基聚酰胺纺丝牵伸卷绕联合机,涉及有熔体管道。请参照图26至图29,本实施例公开一种熔体管道300,熔体管道300与螺杆挤压机100、纺丝箱体400配合,熔体管道300可以包括熔体总管310、多个熔体支管320、多个输送泵330以及熔体管道熔体压力测量元件340,熔体总管310一端与螺杆挤压机100连接,多个熔体支管320的一端均与熔体总管310另一端连通,多个熔体支管320的另一端与多个纺丝箱体400一一连接,多个输送泵330一一安装于多个熔体支管320,熔体管道熔体压力测量元件340安装于熔体总管310,其中,纺丝箱体400均设有纺丝箱熔体压力测量元件413,熔体管道熔体压力测量元件340与纺丝箱熔体压力测量元件413均连接电气变频器,以辅助电气变频器调控输送泵330。
上述螺杆挤压机100、熔体管道300与纺丝箱体400依次连接,从螺杆挤压机100输至熔体总管310的熔体,输送到多个熔体支管320,进入下一步的纺丝箱体400。请参照图26和图27,在熔体支管320设有输送泵330对熔体进行泵送。
熔体总管310安装有熔体管道熔体压力测量元件340,以检测熔体流经熔体总管310该处时的压力值;纺丝箱熔体压力测量元件413设于纺丝箱体400,可检测熔体流经纺丝箱体400该处的压力值,且每个纺丝箱体400均设有纺丝箱熔体压力测量元件413。通过熔体管道熔体压力测量元件340和纺丝箱熔体压力测量元件413的检测数据配合,得到从熔体支管320至各个纺丝箱体400的熔体的压力降数据,进而在线实时反馈作用下通过该压力降数据,电气变频器调控输送泵330,对经过熔体支管320的熔体进行精确的熔体分配,保证每个熔体支管320的压力降都是相等的状态,从而可以保证熔体以相等的压力降输送至每一个纺丝位的泵入口。
可以理解的是,在压力降一致下,也保证了熔体以相等的停留时间输送到每一个纺丝位的泵入口;在压力降一致,也可以理解成多个熔体支管320的压力状态基本控制一致,从而还能够保证每个熔体支管320的流量也是相等的状态。
综上,通过本实施例的熔体管道300配合对纺丝箱体400内熔体压力的检测,使熔体到每个纺丝位的滞留时间、温度、切变速率和压力分布均匀一致,有利于控制各纺丝箱体400的纺丝质量和纺丝速度,进而控制不同纺丝位处于相同的纺丝状态。
在一些实施方式中,如图27和图28所示,熔体管道300可以包括多个静态混合 器350,多个静态混合器350一一内设于熔体支管320,且静态混合器350靠近纺丝箱体400设置。通过静态混合器350,对熔体充分混合后,输送至下一步的纺丝箱体400中。
在一些实施方式中,如图27所示,熔体管道300包括熔体管道加热器组件360以及多个熔体管道测温元件370,熔体管道加热器组件360安装于熔体总管310和熔体支管320,多个熔体管道测温元件370一一安装于多个熔体支管320,以检测流经熔体支管320的熔体的温度。通过相关加温保证纺丝处于预设温度区间内,且通过对温度的检测进行辅助控制。
在一些实施方式中,如图27所示,熔体管道加热器组件360包括多个熔体管道电加热器361以及熔体管道金属填充物362,多个熔体管道电加热器361环绕熔体总管310以及熔体支管320设置,熔体管道金属填充物362设于熔体管道电加热器361与熔体总管310的熔体管腔的腔壁之间、以及设于熔体管道电加热器361与熔体支管320的熔体管腔的腔壁之间。
熔体管道电加热器361环绕熔体总管310以及熔体支管320设置,则熔体管道电加热器361呈环形设置,并且沿熔体管道300的管体管腔外周布置,以给熔体的全周向的充分加热。并且熔体管道金属填充物362起到均热块的作用,可以包括铜粉、铁粉、铝粉等形式,将实现对熔体的均匀、充分加热,并且起一定的保温作用。
如图27至图29所示,上述熔体管道电加热器361可以加热圈形式设置。在一些实施方式中,沿熔体总管310的管身延展方向设有多个加热圈间隔布置,沿熔体支管320的管身延展方向设有多个加热圈间隔布置。
本实施例中的熔体管道300包括多个熔体支管320,可如图27至图29所示的两个熔体支管320,也可以是三个、四个等更多形式。
实施例六
基于实施例二、实施例四或实施例五公开的产业用生物基聚酰胺纺丝牵伸卷绕联合机,涉及有纺丝箱体,与熔体管道300配合。如图26和图30至图32所示,纺丝箱体400包括上箱体410、下箱体420、计量泵500、可拆卸泵座483、纺丝组件600、箱体管道430、上箱体加热器组件440以及下箱体加热器组件450,下箱体420与上箱体410固定连接,计量泵500安装于可拆卸泵座483,计量泵500和可拆卸泵座483均内设于上箱体410,纺丝组件600内设于下箱体420,箱体管道430包括连通熔体管道300与可拆卸泵座483、以及连通可拆卸泵座483与纺丝组件600,上箱体加热器组件440设于上箱体,下箱体加热器组件450设于下箱体。
其中,箱体管道430包括连通熔体管道300与可拆卸泵座483、以及连通可拆卸泵座483与纺丝组件600,配合计量泵500安装于可拆卸泵座483,熔体从熔体管道300沿一部分箱体管道430输送到可拆卸泵座483内,可拆卸泵座483内设有通道,并且该通道经过计量泵后又回到泵座内并从另一处开口,以将熔体沿另一部分箱体管道430输送到纺丝组件600内。
其中,计量泵500另与传动机构连接。
在一些实施方式中,纺丝箱400设有多个纺丝组件600,从可拆卸泵座483至每个 纺丝组件600分别有一部分箱体管道430,可设置该部分管道的长度一致,如通过图32中所示管道盘绕等设置,有利于熔体均匀分配。
本实施例中纺丝箱体400,设置成双层结构,包括相互固定的上箱体410和下箱体420,且相应设置元件,有利于减小体积,便于吊装、煅烧处理。在另一方面,纺丝箱体400呈体积较小的1位/箱结构设置,在由于生物基聚酰胺原料的不稳定性,经常会降解碳化,造成管路逐渐堵塞,需要拆解和煅烧时,通过小体积和上箱体410、下箱体420的双层结构设置,便于在普通煅烧炉中处理,从而避免了需要特殊大型的煅烧设备的不利情形。
其中,如图31所示,计量泵500处于上箱体410,纺丝组件600处于下箱体420,并且上箱体410、下箱体420采用不同的加热器进行加热,从而对上箱体410、下箱体420内的温度分开调节,尤其可控制下箱体420温度较高从而使纺丝组件600处于较高的温度,有利于纺丝组件600的喷丝板出丝,便于出丝速度和纺丝质量。
其中,通过计量泵500将熔体利用高压连续地准确地供给纺丝组件600用于纺丝。因为计量泵500要求有高精密的计量准确性,计量泵传动部件传动轴是由永磁同步电机直联摆线针齿减速器驱动、变频调速。每个计量泵传动电部件分别独立传动。传动轴可以伸缩,传动轴设有万向联轴节和安全销保护装置。保证熔体以相等的停留时间输送到每一个纺丝部位,依次进入纺丝组件600。
在一些实施方式中,如图31所示,纺丝箱体400还可以包括纺丝箱金属填充物460,纺丝箱金属填充物460分别内设于上箱体410以及下箱体420。
加热方式采用加热器配合纺丝箱金属填充物460的方式,通过金属填充物例如铜粉、铝粉、铁粉等来传递热量并保温,相较于常规的联苯蒸汽传递热量,既有利于环保,又可以避免对纺丝箱体400的壳体进行压力容器设计,提高了操作安全,降低了加工和使用成本。
在一些实施方式中,上述加热器可采用加热棒,并可采用电加热方式。
在一些实施方式中,请结合参照图30和图31,上箱体加热器组件440包括上箱体基本加热器441、上箱体辅助加热器442以及上箱体调节加热器443;下箱体加热器组件450包括下箱体基本加热器451以及下箱体调节加热器452。
通过对上箱体加热器组件440、下箱体加热器组件450上述设计,提供了依据不同情况而采用不同的加热模式的方式。上箱体基本加热器441、上箱体辅助加热器442、上箱体调节加热器443、下箱体基本加热器451以及下箱体调节加热器452既单独控制又相互关联,既可以单独加热也可以几组或全部加热。采用智能温控系统,有利于降低耗能和环保。通过智能温控系统配合多种加热器,既考虑温度高会加速生物基聚酰胺纤维碳化,又给纺丝组件600提供较高的温度以利于出丝,以及提供迅速升温的模式。
例如,温度相对低时,如在纺丝箱体400刚投入工作时,可将上箱体基本加热器441、上箱体辅助加热器442以及上箱体调节加热器443全开、将下箱体基本加热器451与下箱体调节加热器452全开。对于下箱体420,后续关闭下箱体调节加热器452,使下箱体基本加热器451处于工作状态即可;对于上箱体410,后续关闭上箱体调节加热器443,再关闭上箱体辅助加热器442。
其中,纺丝箱体400内所有零件间的空隙都铺设金属填充物,以传递热量和保温。在一些实施方式中,上箱体410包括上箱体测温元件411,下箱体420包括下箱体测温元件421,分别检测上箱体410内的纺丝箱金属填充物460、下箱体420内的纺丝箱金属填充物460,进而及时反馈数据,以辅助调整加热器的功率,实现智能控温,可控温精度±1℃。
在一些实施方式中,上箱体410包括上箱体410本体以及可拆卸安装于上箱体410本体顶部的上箱体盖板412。通过设置可拆卸的上箱体盖板412,以便在管路逐渐堵塞时,通过打开上箱体盖板412来进行拆卸、检修。
在一些实施方式中,如图31所示,纺丝箱体400包括计量泵保温块481,计量泵保温块481设于计量泵500与上箱体盖板412之间,计量泵保温块481围合计量泵500设置。通过计量泵保温块481,提高对计量泵500的保温效果。
在一些实施方式中,在纺丝箱体400外再设置一由绝热材料制成的保温罩,提高整体保温效果。
在一些实施方式中,如图30所示,纺丝箱体400包括上箱体熔体进口470,熔体管道300连接于上箱体熔体进口470处,从而提供熔体管道300的连接位置。
在一些实施方式中,纺丝箱体400内的零件多采用模块式组合并可拆卸,以便于在普通煅烧炉中处理。
在一些实施方式中,如图31所示,纺丝箱体400包括泵板482和可拆卸泵座483,计量泵500安装于泵板482,泵板482安装于可拆卸泵座483,可拆卸泵座483内设于上箱体410。
在一些实施方式中,如图31所示,可拆卸泵座483下方固定有组件安装板,以与纺丝组件600连接。
在一些实施方式中,纺丝箱体400包括密封垫490,以对纺丝箱体400内熔体易溢出的部位进行封堵。
在一些实施方式中,纺丝箱体400包括纺丝箱熔体压力测量元件413,纺丝箱熔体压力测量元件413安装于上箱体410。以在生物基聚酰胺纺丝生产时,在纺丝组件600处起始压力一般要大于10Mpa,通过纺丝箱熔体压力测量元件413为正常纺丝提供数据支撑。
在一些实施方式中,在用于生物基聚酰胺纺丝生产时,纺丝箱体400在使用中设定温度268℃~275℃。在螺杆挤压机内熔化的生物基聚酰胺原料经熔体管道300,进入纺丝箱体400后分配进入箱体管道430,进一步到达计量泵500,每个纺丝位配有计量泵500单个或多个。
实施例七
基于实施例二、实施例四、实施例五或实施例六公开的产业用生物基聚酰胺纺丝牵伸卷绕联合机,涉及有单体抽吸机构800。请参照图33至图37,本实施例提供一种单体抽吸机构800,对从纺丝组件600出来的丝束进行单体抽吸处理,其中,在纺丝组件600和单体抽吸机构800之间设有缓冷器700,缓冷器700对从纺丝组件600出来的丝束喷射过热蒸汽,以形成含单体的热蒸汽,含单体的热蒸汽进一步被单体抽吸机构800处理。
在一些实施方式中,单体抽吸机构800包括可以抽吸本体810、抽吸组件820和多 个整流加热板830,抽吸本体810设有导通至纺丝组件的喷丝板的本体通道811。抽吸组件820包括抽吸管道821、真空泵822、压缩空气管道823和加热线圈824,抽吸管道821与本体通道811连通,真空泵822设于抽吸管道821上。压缩空气管道823一端以通入压缩空气,另一端伸入抽吸管道821内、并且该另一端置于抽吸本体810与真空泵822之间。加热线圈824环绕抽吸管道821设置且设于抽吸本体810与压缩空气管道823之间。多个整流加热板830间隔布置于本体通道811,且于本体通道811中形成导通至抽吸管道821的整流通道。含单体的热蒸汽经整流通道被负压吸入到抽吸管道821内,并从抽吸管道821另一端排出
缓冷器700向纺丝组件600的喷丝板喷射过热蒸汽,在单体和低聚物于高温下随熔体从喷丝孔中逸出时,于喷丝板表面形成过热蒸汽保护层,过热蒸汽与单体漂浮物形成云状,从而避免附着在喷丝板表面,从而改善喷丝板被堵孔的不利情形。
含单体的热空气沿抽吸本体810的本体通道811从抽吸管道821被负压抽出,在一些实施方式中,压缩空气管道823向抽吸管道821通入压缩空气时,于抽吸管道821内形成负压区,在整流加热板830与抽吸本体810形成的若干整流通道的基础上,含单体的热空气沿整流通道被均匀地抽吸到抽吸管道821内,并且整流通道还有利于单体较快进入抽吸管道821,进一步通过真空泵822从抽吸管道821另一端排出。
其中,抽吸本体810与压缩空气管道823之间的抽吸管道821设有加热线圈824,维持含单体的热空气的干热空气状态,以改善由于含单体的热空气降温而产生水蒸气导致断头、影响纤维强度的不利影响。加热线圈824可另配置电控箱进行电控。通过加热线圈824还可以使该段管道保持一定温度,防止残留单体结晶而堵塞管路、影响负压抽吸效果。
在另一方面,整流加热板830具有加热功能,有利于含单体的热空气沿本体通道811至抽吸管道821的过程中保持干热空气状态。
通过本实施例的单体抽吸机构800配合纺丝组件600,能够在生物基聚酰胺纺丝的生产中及时除去单体,改善单体引起的堵塞、丝束强度下降、断头的缺陷,保障丝束强度、条干均匀率、染色性能等,保证生产的正常进行。
在一些实施方式中,如图33和图34所示,单体抽吸机构800包括过渡加热器840,过渡加热器840安装于抽吸本体810内且设于缓冷器700与抽吸组件820之间,过渡加热器840设于本体通道811外周处。经缓冷器700向喷丝板喷射过热蒸汽而形成含单体的热空气,直至含单体热空气进入抽吸管道821的过程中,需要经过一段路径,通过设置过渡加热器840,使含单体的热空气继续维持干热空气状态,既有利于避免水蒸气滴下而造成断头的不利情形,又使丝束暂时在热环境中保持一段时间而不至于迅速冷却,防止生物基聚酰胺熔体突然冷却而造成大分子键交缠的情形,有利于保障丝束强度。
在一些实施方式中,通过过渡加热器840提供180℃至240℃的热空间环境。
在一些实施方式中,如图34所示,过渡加热器840包括共同围合本体通道811设置的多块板加热器841以及固定于抽吸本体810内的板测温元件842,板加热器841固定内设于抽吸本体810,板测温元件842,以检测板加热器841处的本体通道811的温度。如图34所示的截面情形,于本体通道811两竖侧分别设置一个板加热器841。其中,板加热 器841可呈直板、弯板等形式设置。
在一些实施方式中,如图32和图37所示,抽吸管道821一端于抽吸本体810形成抽吸口812,抽吸口812与本体通道811导通,此处抽吸管道821的一端指的是管道靠近抽吸本体810的一截。在一些实施方式中,整流加热板830沿竖向布置,多个整流加热板830排列间隔布置,整流加热板830相互间且与本体通道811的壁面间共同形成多个整流通道,整流通道一端导通至抽吸口812,如图37中若干箭头示意的流体流向是受整流通道的限定。
如图37所示,对靠近抽吸组件820的本体通道811的部分的截面进行设置,需要理解的是,整流通道不仅仅可以包括由相邻的若干整流加热板830围合形成,也可以包括由外侧的整流加热板830与抽吸本体810的本体通道811的内壁围合形成。
一种可实施方案中,整流加热板830内嵌设有电热丝,整流加热板830包括呈铝板设置。电热丝配置有电控箱,以控制使用时间和功率,一定程度上有利于节约能源。整流加热板830的板件可如上述铝板设置,也可以是铜质材料等制成,考虑了热传导性。
在一些实施方式中,如图32至图35所示,抽吸管道821包括依次连接的第一直管段821a、第二斜管段821b、第三直管段821c、第四斜管段821d以及第五直管段821e,第一直管段821a与抽吸本体810固定连接,加热线圈824设于第一直管段821a上,真空泵822安装于第五直管段821e另一端,抽吸管道821还包括排气管821f,排气管821f安装于真空泵822另一端。压缩空气管道823一端设有喷嘴823a,喷嘴823a内设于抽吸管道821且设于第二斜管段821b与第三直管段821c的交界处且喷嘴823a的开口朝向第三直管段821c设置,以于第三直管段821c形成一次负压区821cc。第三直管段821c的内径小于第五直管段821e的内径,以于第四斜管段821d形成二次负压区821dd。第三直管段821c的内径小于第一直管段821a的内径。
如图35所示,通过如上压缩空气管道823的喷嘴823a结合抽吸管道821设置,于第三直管段821c形成一次负压区821cc;通过第三直管段821c、第四斜管段821d至第五直管段821e的管径变化,于第四斜管段821d的管径扩张,形成二次负压区821dd。一次负压区821cc和二次负压区821dd配合,对本体通道811中含单体的热空气进行负压抽吸。
在一些实施方式中,如图33和图35所示,抽吸管道821固定设于抽吸本体810,抽吸管道821一端与本体通道811连通,抽吸管道821另一端伸入热水箱825内,单体气体中的单体聚合物与水溶合,从而改善单体逸散到空气中容易导致环境污染、不利于工作人员身体健康的情形。
在一些实施方式中,如图35所示,压缩空气管道823设有气压调节阀823b,气压调节阀823b配置有第一压力表823bb,通过气压调节阀823b可调节压缩空气管道823的喷嘴823a出口真空度,并辅助以第一压力表823bb显示。
在一些实施方式中,抽吸管道821可以包括第二压力表826,第二压力表826安装于第五直管段821e,以检测二次负压区821dd后的压力,第二压力表826还与真空泵822连接。通过第二压力表826显示二次负压区821dd的压力,辅助控制真空泵822抽取速度。
实施例八
基于实施例二、实施例四、实施例五、实施例六或实施例七公开的产业用生物基聚酰胺纺丝牵伸卷绕联合机,缓冷器700。在一些实施方式中,本实施例的缓冷器700与实施例七的单体抽吸机构800配合使用,为一种向纺丝组件600的喷丝板喷射过热蒸汽的缓冷器700的可实施方式。
请参照图33、图34和图36,在本实施例中,缓冷器700包括缓冷均热体710和蒸汽管道720,缓冷均热体710设有缓冷丝束室711,缓冷丝束室711上侧导通至喷丝板位置处,缓冷丝束室711下侧与本体通道811导通。缓冷均热体710内设有缓冷加热器(图中未示出),缓冷均热体710包括宽度递减的喷射室713,喷射室713的宽度最大处通过隔板714与缓冷丝束室711相接,隔板714设有若干朝向缓冷丝束室711的喷射孔714a,蒸汽管道720设有减压阀721,蒸汽管道720一端被配置为通入蒸汽,蒸汽被配置为经减压阀721和缓冷加热器后形成过热蒸汽,蒸汽管道720另一端于缓冷均热体710形成过热蒸汽进口管722,过热蒸汽进口管722与喷射室713的宽度最小处相连通。
在一些实施方式中,蒸汽经过减压阀721减压后,在一些可实施方式中减压至0.005-0.01Mpa,后经缓冷加热器使温度达到过热蒸汽的状态,经喷射室713、喷射孔714a向喷丝板下方喷出。经过减压后的蒸汽更易达到过热蒸汽状态。
如图36所示的宽度递减的喷射室713的设置,有利于过热蒸汽与气态的单体与低聚物充分混合。
在一些实施方式中,如图36和图38所示,隔板714设有若干朝向喷丝板的喷射孔714a,过热蒸汽经喷射孔714a直接喷射到喷丝板,充分避免单体、低聚物附着在喷丝板表面。
在一些实施方式中,缓冷均热体710固定设于抽吸本体810上,形成缓冷器700与单体抽吸机构800一体化的效果。在整机装置中,将缓冷器700与单体抽吸机构800设置成一整体机构,便于装配、检修、减小体积以及保障单体处理效果。
实施例九
基于实施例二、实施例四、实施例五、实施例六、实施例七或实施例八公开的产业用生物基聚酰胺纺丝牵伸卷绕联合机,涉及有双面上油机构1100。请参照图44,本实施例提供一种双面上油机构1100,包括位于丝束30两侧的一对油轮,一对油轮呈上下错位分布。请参照图45,图45展示有一对油轮的错位分布,以图45中的上油轮1153与下油轮1154的图形有部分重叠。
在一些实施方式中,请参照图39和图44,双面上油机构1100可设置多对油轮,油轮的传动轴1110均安装于同一面板。需要理解的是,传动轴属于可转动地安装于面板,配置有轴承进行安装。如图40所示,传动轴还穿过面板设置。
请参照图39至图43,在双面上油机构1100中,油轮包括传动轴1110、油轮壳1120和供油毛细管1130,油轮壳1120与传动轴1110同轴固定,油轮壳1120的外周缘设有周向布置的油轮表面凹槽1125a,油轮壳1120内设有油轮储油腔1126,油轮壳1120沿周向设有若干间隔布置的出油孔1125b,出油孔1125b一端与油轮储油腔1126导通,出油孔1125b另一端导通至油轮表面凹槽1125a,油轮表面凹槽1125a被配置与丝束30相活动触 接,供油毛细管1130一端与所述油轮储油腔1126连通,以向油轮储油腔1126供油。
如图43所示,展示有周向间隔布置的12个出油孔1125b,在一些实施方式中出油孔1125b沿油轮壳1120的径向方向布置。在一些实施方式中,出油口的数量可控制在4-16。
上述双面上油机构1100,通过位于丝束30两侧的一对油轮对丝束30进行两面上油,并且该对上下错位分布使得上油效果好,在一些实施方式中还可以通过油轮壳1120外缘处的油轮表面凹槽1125a,油轮壳1120与传动轴1110相对固定且两者轴线重合,传动轴1110在驱动下转动而带动油轮壳1120转动,油轮储油腔1126的油剂经出油孔1125b流出至油轮表面凹槽1125a,在油轮表面凹槽1125a以及每对油轮呈上下错位分布的情形下,丝束30与油轮表面紧贴、接触距离长,对丝束30进行均匀上油,可将油剂最大限度均匀喷涂在生物基聚酰胺纤维表面,且还可控制传动轴1110的转速从而控制丝束30上油后的含湿及含油率。
相应有通过变频器调整电机的速度,以控制油轮的转速,从而达到控制上油的目的。通常生物基聚酰胺纤维油轮的转速控制在12~32转/分之内。
在一些实施方式中,请参照图41和图42,油轮壳1120包括左端盖1121、第一右端盖1122、油轮内壳1124和油轮外壳1125。左端盖1121与传动轴1110固定连接。第一右端盖1122与传动轴1110相对固定,在一些实施方式中,第一右端盖1122直接与传动轴1110固定连接。第一右端盖1122与左端盖1121间隔设置,第一右端盖1122靠近左端盖1121的一侧设有单向止回板1123,供油毛细管1130穿过第一右端盖1122与单向止回板1123连接,油剂泵持续供油时油剂压力推开单向止回板1123。油轮内壳1124呈筒状设置且固定设于左端盖1121与第一右端盖1122的中间。油轮外壳1125呈筒状设置且固定设于左端盖1121与第一右端盖1122的中间,油轮外壳1125布置于油轮内壳1124外,油轮外壳1125、油轮内壳1124、左端盖1121、第一右端盖1122共同围合形成油轮储油腔1126,油轮表面凹槽1125a设于油轮外壳1125的外缘,出油孔1125b贯穿油轮外壳1125设置。
上述油轮内壳1124和油轮外壳1125可取材无缝钢管,类似的传动轴1110也可以取材无缝钢管。左端盖1121与传动轴1110的固定连接、左端盖1121与油轮外壳1125的固定连接、左端盖1121与油轮内壳1124的固定连接、第一右端盖1122与传动轴1110的相对固定、第一右端盖1122与油轮外壳1125的固定连接、第一右端盖1122与油轮内壳1124的固定连接可均采用螺钉连接的方式。在其它可实施方式中,也可采用焊接等。在螺钉连接的方式中,可在油轮内壳1124的轴向两端、油轮外壳1125的轴向两端分别攻内螺纹。
上述供油毛细管1130经过单向止回板1123再与油轮储油腔1126连通,单向止回板1123起到限定单流向的作用,有利于稳定上油。供油毛细管1130远离油轮储油腔1126的一端可用活套卡箍另连接软管,软管与油剂泵相接,油剂泵产生压力供油,油剂通过软管进入供油毛细管1130,油剂推动单向止回板1123进入油轮储油腔1126,油轮储油腔1126内的油剂多少由油剂泵的泵供量决定。
在一些实施方式中,请参照图41和图42,油轮壳1120还包括第二右端盖1127,第二右端盖1127设于第一右端盖1122远离左端盖1121的一侧,第二右端盖1127分别与 第一右端盖1122、传动轴1110固定连接,第二右端盖1127与第一右端盖1122围合形成有用于供油毛细管1130穿设的腔室1127a。
在一些实施方式中,第一右端盖1122与第二右端盖1127固定连接,第二右端盖1127与传动轴1110固定连接,以实现第一右端盖1122与传动轴1110相对固定。在本方式中,基于第二右端盖1127与传动轴1110固定连接,不再将第一右端盖1122直接固定在传动轴1110上,以便于安装、减小安装难度。在本实施方式中,若通过螺钉实现固定连接时,可如图41所示第一右端盖1122与第二右端盖1127通过螺钉固定,第二右端盖1127与传动轴1110通过螺钉固定。通过设置第二右端盖1127将供油毛细管1130裸露出第一右端盖1122的部分管道给盖住。
在一些实施方式中,供油毛细管1130部分穿设于传动轴1110的沿轴线布置的通孔1111中,便于实现供油毛细管1130随传动轴1110转动的技术方案。
在一些实施方式中,请参照图41和图42,供油毛细管1130包括第一L形毛细管1131以及第二L形毛细管1132,第一L形毛细管1131一端与单向止回板1123连通,第一L形毛细管1131另一端与第二L形毛细管1132一端固定连接于第二右端盖1127与第一右端盖1122围合的腔室1127a中,第二L形毛细管1132部分穿设于传动轴1110的沿轴线布置的通孔1111中。其中图41中的局部放大图展示有第一L形毛细管1131与第二L形毛细管1132的连接处。关于第一L形毛细管1131与第二L形毛细管1132的连接,可通过卡箍、高温融化相接等方法使两管成为一体。供油毛细管1130采用两段L形管组装,便于拆装。
在一些实施方式中,如图42所示,油轮壳1120还包括密封垫1128,密封垫1128设于油轮内壳1124与左端盖1121的中间、油轮内壳1124与第一右端盖1122的中间、油轮外壳1125与左端盖1121的中间以及油轮外壳1125与第一右端盖1122的中间。通过密封垫1128,提高油轮储油腔1126的密封性。
在一些实施方式中,请参照图41和图43,油轮还包括接油盒1140,接油盒1140固定设于油轮壳1120下方,接油盒1140还设有溢流孔1141。溢流孔1141可以溢流管道形式设置,溢流管道的溢流口高于接油盒1140底侧设置。通过接油盒1140对油液进行收集,并从溢流孔1141排出汇总。其中,上油时油轮壳1120转动而接油盒1140固定不动,接油盒1140中汇集的油液还可以继续对纺丝进行上油。
在一些实施方式中,传动轴1110通过电机驱动,可通过联轴器、齿轮传动、链传动等方式。当采用链传动时,涉及有链轮和链条。可以理解的是,传动轴1110配置有轴承。
在一些实施方式中,如图44所示,对于每对油轮而言,还配置有分别位于丝束30两侧的第一张力棒1151和第二张力棒1152,第一张力棒1151和第二张力棒1152均与丝束30相活动触接,一对油轮包括上油轮1153和下油轮1154,沿高度方向上油轮1153、第一张力棒1151、第二张力棒1152和下油轮1154依次设置,上油轮1153和第二张力棒1152位于丝束30同一侧,下油轮1154和第一张力棒1151位于丝束30另一侧。
通过本实施例的双面上油机构1100,有利于在对于55dtex-2222dtex生物基聚酰胺产业用丝上油时,纺丝速度较低时,丝束30与油轮表面接触范围较大,且油轮表面形成 的油膜稳定,丝束30可获得均匀油膜,以满足后续的大倍数热牵伸加工。
以上所举实施例为本公开的较佳实施方式,仅用来方便说明本公开,并非对本公开作任何形式上的限制,任何所述技术领域中具有通常知识者,若在不脱离本公开所提技术特征的范围内,利用本公开所揭示技术内容所作出局部更动或修饰的等效实施例,并且未脱离本公开的技术特征内容,均仍属于本公开技术特征的范围内。

Claims (20)

  1. 一种产业用生物基聚酰胺纺丝牵伸卷绕装置,按照丝束行进方向依次包括喂入分丝张力辊、第一对牵伸热辊、第二对牵伸热辊、第三对牵伸热辊、第四对牵伸热辊以及第五对牵伸热辊,所述丝束绕经所述第一对牵伸热辊的旋向、绕经所述第二对牵伸热辊的旋向、绕经所述第三对牵伸热辊的旋向、绕经所述第四对牵伸热辊的旋向中相邻两个旋向呈相反设置,以纺制55dtex-2222dtex的生物基聚酰胺产业用丝。
  2. 如权利要求1所述的产业用生物基聚酰胺纺丝牵伸卷绕装置,其中,按照丝束行进方向依次包括所述喂入分丝张力辊、第一加热板、所述第一对牵伸热辊、第二加热板、所述第二对牵伸热辊、第三加热板、所述第三对牵伸热辊、第四加热板、所述第四对牵伸热辊、第五加热板以及第五对牵伸热辊,所述第一加热板、所述第二加热板、所述第三加热板、所述第四加热板以及所述第五加热板均对相邻两辊间区域的丝束进行加热。
  3. 如权利要求2所述的产业用生物基聚酰胺纺丝牵伸卷绕装置,其中:
    所述喂入分丝张力辊采用固定冷辊配合可调角度分丝辊,所述第一对牵伸热辊、所述第二对牵伸热辊、所述第三对牵伸热辊、所述第四对牵伸热辊以及所述第五对牵伸热辊均采用可调角度热辊配合可调角度热辊;
    所述第一对牵伸热辊为低温辊,所述第二对牵伸热辊、所述第三对牵伸热辊、所述第四对牵伸热辊以及所述第五对牵伸热辊均为高温辊;
    所述喂入分丝张力辊与所述第一对牵伸热辊的牵伸比保持在1:(1.04-1.08),所述第一对牵伸热辊与所述第二对牵伸热辊的牵伸倍数为1.5至3.5倍,所述第二对牵伸热辊与所述第三对牵伸热辊的牵伸倍数为2.0至3.5倍,所述第三对牵伸热辊与所述第四对牵伸热辊的牵伸倍数一般为1.7至2.5倍,所述第四对牵伸热辊与所述第五对牵伸热辊的牵伸倍数为0.9-1.0倍。
  4. 如权利要求2或3所述的产业用生物基聚酰胺纺丝牵伸卷绕装置,其中:
    以纺制55dtex-111dtex的生物基聚酰胺产业用丝时,所述第一加热板设定加热温度设定为50-65℃,所述第一对牵伸热辊温度设定为75-100℃;
    以纺制1670dtex-2222dtex的生物基聚酰胺产业用丝时,所述第一加热板设定加热温度设定为70-90℃,所述第一对牵伸热辊温度设定为75-100℃。
  5. 如权利要求2或3所述的产业用生物基聚酰胺纺丝牵伸卷绕装置,其中,所述第二加热板设定加热温度设定为95-115℃,所述第二对牵伸热辊温度设定为110-145℃。
  6. 如权利要求2或3所述的产业用生物基聚酰胺纺丝牵伸卷绕装置,其中,所述第三加热板的加热温度设定为110-155℃,所述第三对牵伸热辊温度设定为130-150℃。
  7. 如权利要求2或3所述的产业用生物基聚酰胺纺丝牵伸卷绕装置,其中,所述第四加热板的加热温度设定为125-195℃,所述第四对牵伸热辊温度设定为130-150℃。
  8. 如权利要求2或3所述的产业用生物基聚酰胺纺丝牵伸卷绕装置,其中,所述第五加热板的加热温度设定为140-220℃,所述第五对牵伸热辊温度设定为130-210℃。
  9. 如权利要求4所述的产业用生物基聚酰胺纺丝牵伸卷绕装置,其中:
    所述第二加热板设定加热温度设定为95-115℃,所述第二对牵伸热辊温度设定为110-145℃;
    所述第三加热板的加热温度设定为110-155℃,所述第三对牵伸热辊温度设定为130-150℃;
    所述第四加热板的加热温度设定为125-195℃,所述第四对牵伸热辊温度设定为130-150℃;
    所述第五加热板的加热温度设定为140-220℃,所述第五对牵伸热辊温度设定为130-210℃。
  10. 如权利要求2所述的产业用生物基聚酰胺纺丝牵伸卷绕装置,其中,所述第一加热板、所述第二加热板、所述第三加热板、所述第四加热板、所述第五加热板均包括传热块和多个加热棒,所述传热块设有供所述丝束穿过的开口槽,多个所述加热棒沿所述开口槽长度方向依次排列设置,所述加热棒均呈钩状布置且形成有钩部和钩槽,所述钩部内设于所述传热块,所述钩槽以供所述丝束穿过。
  11. 一种产业用生物基聚酰胺纺丝牵伸卷绕联合机,其特征在于,包括按生产工艺依次设置的螺杆挤压机、熔体管道、纺丝箱体、计量泵、纺丝组件、缓冷器、单体抽吸机构、侧吹风部件、甬道部件、双面上油机构、预网络部件、导丝部件、喂入分丝张力辊、第一加热板、第一对牵伸热辊、第二加热板、第二对牵伸热辊、第三加热板、第三对牵伸热辊、第四加热板、第四对牵伸热辊、第五加热板、第五对牵伸热辊、终网络部件以及全自动卷绕头;
    所述第一加热板、所述第二加热板、所述第三加热板、所述第四加热板以及所述第五加热板均对相邻两辊间区域的丝束进行加热;
    所述丝束绕经所述第一对牵伸热辊的旋向、绕经所述第二对牵伸热辊的旋向、绕经所述第三对牵伸热辊的旋向、绕经所述第四对牵伸热辊的旋向中相邻两个旋向呈相反设置,以纺制55dtex-2222dtex的生物基聚酰胺产业用丝。
  12. 如权利要求11所述的产业用生物基聚酰胺纺丝牵伸卷绕联合机,其中,所述喂入分丝张力辊采用固定冷辊配合可调角度分丝辊,所述第一对牵伸热辊、所述第二对牵伸热辊、所述第三对牵伸热辊、所述第四对牵伸热辊以及所述第五对牵伸热辊均采用可调角度热辊配合可调角度热辊;
    所述第一对牵伸热辊为低温辊,所述第二对牵伸热辊、所述第三对牵伸热辊、所述第四对牵伸热辊以及所述第五对牵伸热辊均为高温辊;
    所述喂入分丝张力辊与所述第一对牵伸热辊的牵伸比保持在1:(1.04-1.08),所述第一对牵伸热辊与所述第二对牵伸热辊的牵伸倍数为1.5至3.5倍,所述第二对牵伸热辊与所述第三对牵伸热辊的牵伸倍数为2.0至3.5倍,所述第三对牵伸热辊与所述第四对牵伸热辊的牵伸倍数一般为1.7至2.5倍,所述第四对牵伸热辊与所述第五对牵伸热辊的牵伸倍数为0.9-1.0倍。
  13. 如权利要求12所述的产业用生物基聚酰胺纺丝牵伸卷绕联合机,其中,以纺制55dtex-111dtex的生物基聚酰胺产业用丝时,所述第一加热板设定加热温度设定为50-65℃, 所述第一对牵伸热辊温度设定为75-100℃,以纺制1670dtex-2222dtex的生物基聚酰胺产业用丝时,所述第一加热板设定加热温度设定为70-90℃,所述第一对牵伸热辊温度设定为75-100℃;
    所述第二加热板设定加热温度设定为95-115℃,所述第二对牵伸热辊温度设定为110-145℃;
    所述第三加热板的加热温度设定为110-155℃,所述第三对牵伸热辊温度设定为130-150℃;
    所述第四加热板的加热温度设定为125-195℃,所述第四对牵伸热辊温度设定为130-150℃;
    所述第五加热板的加热温度设定为140-220℃,所述第五对牵伸热辊温度设定为130-210℃。
  14. 如权利要求11所述的产业用生物基聚酰胺纺丝牵伸卷绕联合机,其中,所述螺杆挤压机内设有挤压机螺杆,所述挤压机螺杆包括螺杆进料段、螺杆压缩段和螺杆计量段,所述螺杆进料段的一端与所述螺杆压缩段的一端可拆卸连接,所述螺杆压缩段的另一端与所述螺杆计量段的一端可拆卸连接;
    所述螺杆挤压机安装有挤出头,所述挤出头包括检测熔体压力值的压力传感器,所述挤出头于熔体通道中设有预过滤环。
  15. 如权利要求11所述的产业用生物基聚酰胺纺丝牵伸卷绕联合机,其中,所述熔体管道包括:
    熔体总管,一端与所述螺杆挤压机连接;
    多个熔体支管,多个所述熔体支管的一端均与所述熔体总管另一端连通,多个所述熔体支管的另一端与多个所述纺丝箱体一一连接;
    多个输送泵,一一安装于多个所述熔体支管;
    熔体管道熔体压力测量元件,安装于所述熔体总管;
    其中,所述纺丝箱体均设有纺丝箱熔体压力测量元件,所述熔体管道熔体压力测量元件与所述纺丝箱熔体压力测量元件均连接电气变频器,以辅助所述电气变频器调控所述输送泵。
  16. 如权利要求15所述的产业用生物基聚酰胺纺丝牵伸卷绕联合机,其中,所述熔体管道包括:
    熔体管道加热器组件,安装于所述熔体总管和所述熔体支管;以及
    多个熔体管道测温元件,一一安装于多个所述熔体支管,以检测流经所述熔体支管的熔体的温度;
    所述熔体管道加热器组件包括:
    多个熔体管道电加热器,环绕所述熔体总管以及所述熔体支管设置;以及
    熔体管道金属填充物,设于所述熔体管道电加热器与所述熔体总管的熔体管腔的腔壁之间,以及设于所述熔体管道电加热器与所述熔体支管的熔体管腔的腔壁之间。
  17. 如权利要求11所述的产业用生物基聚酰胺纺丝牵伸卷绕联合机,其中,所述纺丝 箱体包括:
    上箱体;
    下箱体,与所述上箱体固定连接;
    计量泵和可拆卸泵座,所述计量泵安装于所述可拆卸泵座,所述计量泵和所述可拆卸泵座均内设于所述上箱体;
    纺丝组件,内设于所述下箱体;
    箱体管道,所述箱体管道包括连通所述熔体管道与所述可拆卸泵座、以及连通所述可拆卸泵座与所述纺丝组件;
    上箱体加热器组件,设于所述上箱体;
    下箱体加热器组件,设于所述下箱体;以及
    纺丝箱金属填充物,分别内设于所述上箱体以及所述下箱体。
  18. 如权利要求11所述的产业用生物基聚酰胺纺丝牵伸卷绕联合机,其中,所述单体抽吸机构包括:
    抽吸本体,所述抽吸本体设有导通至所述纺丝组件的本体通道,所述单体抽吸机构和所述纺丝组件之间设有缓冷器,所述缓冷器对从所述纺丝组件出来的丝束喷射过热蒸汽,以形成含单体的热蒸汽;
    抽吸组件,所述抽吸组件包括与所述本体通道连通的抽吸管道、设于所述抽吸管道上的真空泵、一端以通入压缩空气的压缩空气管道,和环绕所述抽吸管道设置的加热线圈,所述压缩空气管道另一端伸入所述抽吸本体与所述真空泵之间的所述抽吸管道内,所述加热线圈设于所述抽吸本体与所述压缩空气管道之间;
    多个整流加热板,多个所述整流加热板间隔布置于所述本体通道,且于所述本体通道中形成导通至所述抽吸管道的整流通道,所述含单体的热蒸汽经所述整流通道被吸附至所述抽吸管道。
  19. 如权利要求18所述的产业用生物基聚酰胺纺丝牵伸卷绕联合机,其中,所述抽吸管道包括依次连接的第一直管段、第二斜管段、第三直管段、第四斜管段以及第五直管段,所述第一直管段与所述抽吸本体固定连接,所述加热线圈设于所述第一直管段上,所述真空泵安装于所述第五直管段另一端,所述抽吸管道还包括排气管,所述排气管安装于所述真空泵另一端;
    所述压缩空气管道一端设有喷嘴,所述喷嘴内设于所述抽吸管道且设于所述第二斜管段与所述第三直管段的交界处且所述喷嘴的开口朝向第三直管段设置,以于所述第三直管段形成一次负压区;
    所述第三直管段的内径小于所述第五直管段的内径,以于所述第四斜管段形成二次负压区;
    所述第三直管段的内径小于所述第一直管段的内径。
  20. 如权利要求11所述的产业用生物基聚酰胺纺丝牵伸卷绕联合机,其中,所述双面上油机构包括位于丝束两侧的一对油轮,所述一对油轮呈上下错位分布,所述油轮包括:
    传动轴;
    油轮壳,所述油轮壳与所述传动轴同轴固定,所述油轮壳的外周缘设有周向布置的油轮表面凹槽,所述油轮壳内设有油轮储油腔,所述油轮壳设有沿周向若干间隔布置的出油孔,所述出油孔一端与所述油轮储油腔导通,所述出油孔另一端导通至所述油轮表面凹槽,所述油轮表面凹槽被配置与所述丝束相活动触接;
    供油毛细管,所述供油毛细管一端与所述油轮储油腔连通,以向所述油轮储油腔供油。
PCT/CN2022/123182 2021-09-17 2022-09-30 一种产业用生物基聚酰胺纺丝牵伸卷绕装置及联合机 WO2023056894A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/605,769 US20240263356A1 (en) 2021-09-17 2024-03-14 Spinning-Drawing-winding device and combined machine for industrial bio-based polyamide

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202122263998.2 2021-09-17
CN202111090662.9 2021-09-17
CN202111090536.3 2021-09-17
CN202122277932.9U CN216663318U (zh) 2021-09-17 2021-09-17 一种产业用生物基聚酰胺纺丝牵伸卷绕联合机
CN202122263998.2U CN216663313U (zh) 2021-09-17 2021-09-17 一种产业用生物基聚酰胺纺丝牵伸卷绕装置
CN202122277932.9 2021-09-17
CN202111090662.9A CN113622041A (zh) 2021-09-17 2021-09-17 一种产业用生物基聚酰胺纺丝牵伸卷绕装置
CN202111090536.3A CN113638068A (zh) 2021-09-17 2021-09-17 一种产业用生物基聚酰胺纺丝牵伸卷绕联合机

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/605,769 Continuation US20240263356A1 (en) 2021-09-17 2024-03-14 Spinning-Drawing-winding device and combined machine for industrial bio-based polyamide

Publications (1)

Publication Number Publication Date
WO2023056894A1 true WO2023056894A1 (zh) 2023-04-13

Family

ID=85803175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/123182 WO2023056894A1 (zh) 2021-09-17 2022-09-30 一种产业用生物基聚酰胺纺丝牵伸卷绕装置及联合机

Country Status (2)

Country Link
US (1) US20240263356A1 (zh)
WO (1) WO2023056894A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6447703B1 (en) * 2000-06-22 2002-09-10 Basf Corporation Processes and systems for making synthetic bulked continuous filament yarns
CN107034533A (zh) * 2017-05-05 2017-08-11 桐昆集团浙江恒通化纤有限公司 一种涤纶fdy多辊式无油全牵伸纤维的生产工艺方法
CN107904685A (zh) * 2017-12-27 2018-04-13 北京中丽制机工程技术有限公司 一种生产生物质聚酰胺56纤维的纺丝机及方法
CN108441975A (zh) * 2018-05-17 2018-08-24 北京中丽制机工程技术有限公司 聚酯细旦工业丝牵伸卷绕机
CN108642583A (zh) * 2018-05-23 2018-10-12 北京中丽制机工程技术有限公司 一种纺丝牵伸联合机以及纺丝机用单体抽吸装置
CN113622041A (zh) * 2021-09-17 2021-11-09 北京中丽制机工程技术有限公司 一种产业用生物基聚酰胺纺丝牵伸卷绕装置
CN113638068A (zh) * 2021-09-17 2021-11-12 北京中丽制机工程技术有限公司 一种产业用生物基聚酰胺纺丝牵伸卷绕联合机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6447703B1 (en) * 2000-06-22 2002-09-10 Basf Corporation Processes and systems for making synthetic bulked continuous filament yarns
CN107034533A (zh) * 2017-05-05 2017-08-11 桐昆集团浙江恒通化纤有限公司 一种涤纶fdy多辊式无油全牵伸纤维的生产工艺方法
CN107904685A (zh) * 2017-12-27 2018-04-13 北京中丽制机工程技术有限公司 一种生产生物质聚酰胺56纤维的纺丝机及方法
CN108441975A (zh) * 2018-05-17 2018-08-24 北京中丽制机工程技术有限公司 聚酯细旦工业丝牵伸卷绕机
CN108642583A (zh) * 2018-05-23 2018-10-12 北京中丽制机工程技术有限公司 一种纺丝牵伸联合机以及纺丝机用单体抽吸装置
CN113622041A (zh) * 2021-09-17 2021-11-09 北京中丽制机工程技术有限公司 一种产业用生物基聚酰胺纺丝牵伸卷绕装置
CN113638068A (zh) * 2021-09-17 2021-11-12 北京中丽制机工程技术有限公司 一种产业用生物基聚酰胺纺丝牵伸卷绕联合机

Also Published As

Publication number Publication date
US20240263356A1 (en) 2024-08-08

Similar Documents

Publication Publication Date Title
CN113638068A (zh) 一种产业用生物基聚酰胺纺丝牵伸卷绕联合机
CN108642583B (zh) 一种纺丝牵伸联合机以及纺丝机用单体抽吸装置
CN101619503B (zh) 一种高强度超低热收缩锦纶66纤维及其生产方法
WO2011009498A1 (de) Verfahren zum schmelzspinnen, verstrecken und aufwickeln eines multifilen fadens sowie eine vorrichtung zur durchführung des verfahrens
CN108642584B (zh) 一种分纤母丝纺牵联合机
CN205223433U (zh) 一种细旦缝纫线用涤纶工业丝的加工设备
CN113737301A (zh) 一种聚乳酸产业用纤维纺丝牵伸卷绕联合机
CN104911729A (zh) 一种重旦涤纶工业丝及其加工装置
CN103347675A (zh) 由合成原料挤压出扁平纤维的挤出生产线
CN108642585B (zh) 一种fdy长丝纺牵联合机
CN111054221A (zh) 一种制备中空纤维膜的装置及方法
CN107904685A (zh) 一种生产生物质聚酰胺56纤维的纺丝机及方法
CN1109780C (zh) 用来制造高取向长丝的方法和装置
US20160102421A1 (en) Apparatus for stretching acrylic fibers in a pressurized steam environment and automatic fiber drawing-in device for said apparatus
CN103403234B (zh) 用于熔融纺丝的设备
WO2023056894A1 (zh) 一种产业用生物基聚酰胺纺丝牵伸卷绕装置及联合机
CN105543988A (zh) 一种细旦缝纫线用涤纶工业丝及其加工设备
CN103409828A (zh) 一种高强度8头纺锦纶6中低旦全牵伸丝的制备方法
CN216663318U (zh) 一种产业用生物基聚酰胺纺丝牵伸卷绕联合机
CN216192925U (zh) 一种聚乳酸产业用纤维纺丝牵伸卷绕联合机
CN216663305U (zh) 一种熔体管道及产业用生物基聚酰胺纺丝牵伸卷绕装置
CN210796726U (zh) 聚乳酸涤纶全拉伸丝的生产设备
CN113638058A (zh) 一种熔体管道及产业用生物基聚酰胺纺丝牵伸卷绕装置
CN1882721A (zh) 纺丝设备
CN105483845A (zh) 一种细旦缝纫线用涤纶工业丝的加工设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22877913

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24/06/2024)