WO2023056830A1 - 工作电压处理方法、装置、电子设备和存储介质 - Google Patents

工作电压处理方法、装置、电子设备和存储介质 Download PDF

Info

Publication number
WO2023056830A1
WO2023056830A1 PCT/CN2022/118840 CN2022118840W WO2023056830A1 WO 2023056830 A1 WO2023056830 A1 WO 2023056830A1 CN 2022118840 W CN2022118840 W CN 2022118840W WO 2023056830 A1 WO2023056830 A1 WO 2023056830A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
processing module
load
power supply
resistor
Prior art date
Application number
PCT/CN2022/118840
Other languages
English (en)
French (fr)
Inventor
杨涛
潘权威
毕延帅
张书浩
Original Assignee
北京比特大陆科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京比特大陆科技有限公司 filed Critical 北京比特大陆科技有限公司
Publication of WO2023056830A1 publication Critical patent/WO2023056830A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/266Arrangements to supply power to external peripherals either directly from the computer or under computer control, e.g. supply of power through the communication port, computer controlled power-strips
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/28Supervision thereof, e.g. detecting power-supply failure by out of limits supervision
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/76Architectures of general purpose stored program computers
    • G06F15/78Architectures of general purpose stored program computers comprising a single central processing unit
    • G06F15/7803System on board, i.e. computer system on one or more PCB, e.g. motherboards, daughterboards or blades
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the present disclosure relates to the field of electronic technology but not limited to the field of electronic technology, and in particular relates to a working voltage processing method, device, electronic equipment and storage medium.
  • the overclocking determination method in the related art is mainly to obtain the frequency history log of the hash board through the control board and judge manually, but this method has low efficiency and low accuracy.
  • Embodiments of the present disclosure provide a working voltage processing method, device, electronic equipment, and storage medium.
  • a working voltage processing method is provided, which is applied to the processing module on the computing power board, including:
  • a working voltage processing device which is applied to a processing module on a computing power board, and the device includes:
  • a voltage collection unit configured to collect the operating voltage of the load on the computing power board
  • a voltage determination unit configured to determine whether the minimum operating voltage of the load in the current period exceeds a stored voltage, wherein the stored voltage is: the minimum operating voltage of the load in a historical period;
  • a voltage updating unit configured to update the minimum operating voltage in the current period to the stored voltage when the minimum operating voltage in the current period exceeds the stored voltage, wherein the stored voltage is at least used for Determine whether the load on the computing power board has worked under the overclocking state.
  • an electronic device including:
  • memory for storing processor-executable instructions
  • the processor is configured to execute the steps in any one of the working voltage processing methods provided in the first aspect of the above-mentioned embodiments.
  • a non-transitory computer-readable storage medium When the instructions in the storage medium are executed by the processor of the mobile terminal, the computer can execute the first The working voltage processing method described in any one of the aspects provided.
  • the minimum operating voltage of the load in the current period exceeds the storage voltage, the minimum operating voltage of the current period It is updated to the stored voltage. If the minimum working voltage in the current period exceeds or is equal to the working voltage in the overclocking state of the load, it means that the load must have been overclocked in the current period. In this way, when determining whether the load on the hashboard has been overclocked, you can directly read the stored voltage to know whether the load on the hashboard has worked under the overclocking state, and realize the accuracy of whether the load on the hashboard is overclocked. and easy recording.
  • Fig. 1 is a flowchart showing a method for processing an operating voltage according to an exemplary embodiment.
  • Fig. 2 is a flow chart showing another working voltage processing method according to an exemplary embodiment.
  • Fig. 3 is a flow chart showing another working voltage processing method according to an exemplary embodiment.
  • Fig. 4 is a schematic diagram showing the connection between the voltage divider circuit and the processing module and the power supply bus according to an exemplary embodiment
  • Fig. 5 is a circuit diagram of a voltage dividing circuit shown according to an exemplary embodiment
  • Fig. 6 is a schematic diagram of pin connections of a processing module according to an exemplary embodiment
  • Fig. 7 is a block diagram of an operating voltage processing device according to an exemplary embodiment.
  • Fig. 8 is a block diagram showing a hardware structure of an electronic device according to an exemplary embodiment.
  • Fig. 1 is a flowchart of a working voltage processing method according to an exemplary embodiment.
  • the working voltage processing method can be used in a processing module on a computing power board or embedded in a microprocessor such as a controller
  • the computing power board can be various computing power chips and/or image processing chips, etc., but not limited to computing power chips and/or image processing chips (GPU, Graphics Processing Unit), etc., wherein the computing power chips include but not Limited to ASIC (Application Specific Integrated Circuit) chips.
  • the disclosed method includes the following steps:
  • step S11 the operating voltage of the load on the computing power board is collected.
  • the load on the hashboard can be part or all of the load on the hashboard, for example, the load of each chip on the hashboard, the load of some integrated circuits, or the load of some components, etc.
  • the working voltage refers to the voltage required by the load of the entire hashboard when it is working, such as 18V or 20V.
  • the processing module of this embodiment can be installed on the hashboard, as shown in Figure 4, which can reduce the use of connecting wires, simplifies the structure of the hashboard, and facilitates the collection of the operating voltage of the load on the hashboard.
  • step S12 it is determined whether the minimum operating voltage of the load in the current period exceeds the stored voltage, wherein the stored voltage is: the minimum operating voltage of the load in the historical period.
  • the current period may be a preset period during the current load working process.
  • the processing module collects the working voltage of the load on the computing power board, and determines the preset duration T to divide the time.
  • the current time period is: the time period equal to T in which the current moment is located.
  • Said T may be 5, 10, 15 or 30 minutes etc. in length.
  • this embodiment does not specifically limit the preset period, for example, It could be 20 minutes or 40 minutes etc.
  • the processing module of this embodiment regularly collects the operating voltage of the load on the computing power board within a preset period of time.
  • the processing module collects the operating voltage of the load on the computing power board within half an hour every 10 minutes, and determines whether the minimum operating voltage in the current half hour exceeds the stored voltage, or the processing module according to the set
  • the time point starts to collect the working voltage of the load on the hash board within half an hour.
  • the processing module starts to collect the working voltage of the load on the hash board within half an hour at 13:10, and determines the current half hour. Whether the minimum operating voltage exceeds the storage voltage.
  • the minimum operating voltage in the historical period at this time can be 0V; for a hashboard that has been in use for a period of time, the minimum operating voltage in the historical period at this time can be The minimum operating voltage of the board.
  • the voltage value that the processing module can collect may be smaller than the actual working voltage of the load, when the processing module collects the working voltage of the load, it can first step down the working voltage of the load, so that the voltage value after the step-down conforms to that of the processing module. voltage collection requirements. It should be understood that this embodiment does not specifically limit the setting of the minimum operating voltage in the historical period, and it may also be a pre-fabricated overfrequency voltage at the factory. For example, the overfrequency voltage can be written according to statistical data or laboratory data. The operating voltage of the overclocking state, etc.
  • step S13 when the minimum operating voltage in the current period exceeds the storage voltage, update the minimum operation voltage in the current period to the storage voltage, wherein the storage voltage is at least used to determine the Check whether the load on the computing power board has worked under the overclocking state.
  • the processing module collects the operating voltage of the load on the computing power board, and determines whether the minimum operating voltage in the current period exceeds the stored voltage, for example, determines that the minimum operating voltage in the current 30-minute period is 4V, the storage voltage is 3V, so the minimum operating voltage 4V in the current period exceeds the storage voltage 3V, and the minimum operating voltage 4V in the current period is updated to the storage voltage, that is, the storage voltage becomes 4V.
  • the processing module collects the operating voltage of the load on the computing power board, and determines that the minimum operating voltage in the current 10-minute period is 2V, and the stored voltage is 3V. In this way, the minimum operating voltage of 2V in the current period does not exceed the stored voltage of 3V , to maintain the storage voltage, that is, the storage voltage is still 3V.
  • This stored voltage can be used at least to determine whether the load on the hashboard has ever worked in an overclocked state.
  • the processing module of this embodiment can directly determine whether the load on the computing power board has worked under the overclocking state through the stored voltage. Exemplarily, in the case that the storage voltage is greater than the minimum overclocking voltage, it is determined that the load on the computing power board has worked under the overclocking state. In the case that the storage voltage is not greater than the minimum overclocking voltage, it is determined that the load on the computing power board is not working under the overclocking state.
  • the current storage voltage is 4V and the minimum overclocking voltage is 3.5V
  • the original voltage of the storage voltage may be 0V, so that the minimum operating voltage of the hashboard just put into use in the first period can be successfully recorded as the storage voltage.
  • the host computer can obtain the stored voltage of the processing module, and then the host computer can determine whether the load on the computing power board has worked in an overclocking state through the stored voltage.
  • the host computer is connected to a signal output pin of the processing module, and the host computer obtains the current storage voltage of the processing module.
  • the storage voltage is greater than the minimum overclocking voltage, it is determined that the load on the computing power board is working in an overclocking state. Pass.
  • the storage voltage is not greater than the minimum overclocking voltage, it is determined that the load on the computing power board is not working under the overclocking state. For example, if the current storage voltage acquired by the host computer is the first voltage, and the minimum overclocking voltage stored inside the host computer is the second voltage higher than the first voltage, then it is determined that the load on the hashboard has worked under the overclocking state.
  • the minimum overclocking voltage here is the minimum voltage stored in the host computer that the load on the hashboard has worked under the overclocking state.
  • the storage voltage of the current overclocking state, the overclocking time period or time and other information are also recorded to facilitate the determination of the faulty computing power board, and Quickly determine the cause of the failure of the hashboard.
  • the storage voltage of this embodiment can also be used to determine whether the load on the computing power board is in a normal working state, or whether there is a fault, etc.
  • the processing module on the computing power board obtains the operating voltage of the load in real time, and compares the minimum operating voltage of the load in the current period with the stored voltage to determine the voltage on the computing power board. Whether the load has worked under the overclocking state, that is, this embodiment solidifies the above method on the computing power board. As long as the user performs pressurized overclocking, it will be recognized and recorded by the processing module on the computing power board.
  • the identification speed Fast, high accuracy, and at the same time, it is convenient for the after-sales department to judge the faulty hashboard and quickly determine the cause of the hashboard failure.
  • all operating voltages collected at a preset frequency in the current period are recorded, and when the minimum operating voltage in the current period needs to be determined, all the recorded operating voltages are traversed to determine the minimum operating voltage.
  • the working voltage processing method may further include:
  • step S21 within the current period, the current operating voltage of the load collected at a preset frequency is compared with the recorded voltage.
  • the recorded voltage may be a prefabricated voltage at the factory, which is used to determine the minimum operating voltage of the load in the current period, for example, the recorded voltage is 5V, or it may be the operating voltage written in statistical data or laboratory data.
  • the processing module collects the current working voltage of the load at a frequency of 20000 Hz, and compares the working voltage of the load collected each time with the recorded voltage.
  • the recorded voltage can be 5V
  • the processing module compares the operating voltage with 5V every time it collects.
  • This embodiment does not specifically limit the preset frequency.
  • the preset frequency is greater than 10000 Hz, so that the voltage collection in the overclocking state will not be missed due to too few collection times, ensuring real-time monitoring of the load on the computing power board. Working status, improve the accuracy of overclocking identification.
  • step S22 if the current working voltage is lower than the recording voltage, update the current working voltage to the recording voltage.
  • step S23 if the current working voltage is greater than the recording voltage, the current recording voltage is maintained.
  • step S24 when the current period ends, the recording voltage is determined as the minimum working voltage in the current period.
  • the recording voltage is A
  • the current working voltage is B
  • the storage voltage is C.
  • the processing module collects the operating voltage of the load on the computing power board at a preset frequency, and compares the collected current operating voltage B of the load with the recorded voltage A in the current half-hour period. If the current operating voltage B is less than the recorded voltage A , and update the current working voltage B to the recording voltage A.
  • the current recorded voltage A is determined as the minimum working voltage in the current period.
  • the processing module determines whether the minimum operating voltage of the load in the current period exceeds the stored voltage C, and if the minimum operating voltage in the current period exceeds the stored voltage C, update the minimum operating voltage in the current period is the storage voltage C. If the minimum working voltage in the current period does not exceed the storage voltage C, maintain the current storage voltage C, and continue to collect the current working voltage B in the next period, and determine whether the minimum working voltage in the next period exceeds the storage voltage C. Finally, it can be determined according to the stored voltage C whether the load has worked in an overclocking state.
  • the recording voltage can be directly determined as the minimum operating voltage of the current period, thus having the characteristic of fast determination of the minimum operating voltage.
  • the working voltage processing method may further include: outputting a power-off signal when the minimum working voltage in the current period exceeds the stored voltage.
  • the power-off signal is used to control the power supply module to stop supplying power to the load.
  • the processing module is also connected to the power supply module that supplies power to the load on the computing power board.
  • the processing module determines that the minimum operating voltage in the current period exceeds the storage voltage, it can determine that the load has worked in the overclocking state.
  • the processing module will output a power-off signal to control the power supply module to stop supplying power supply of the load.
  • the minimum working voltage in the current period is 4.5V, and the storage voltage is 4V.
  • the processing module outputs a power-off signal to control the power supply module to stop supplying power to the load. It can realize the forced power off after a random period of time during overclocking, and reduce the damage to the hashboard caused by the overclocking work of the hashboard.
  • the processing module of this embodiment can also store the minimum overclocking voltage. When the current stored voltage is greater than the minimum overclocking voltage, it is determined that the load on the computing power board has worked under the overclocking state, and outputs a power-off signal. To control the power supply module to stop supplying power to the load.
  • the processing module determines that the load on the computing power board has worked under the overclocking state, and outputs a power-off signal to control the power supply module to stop supplying power to the load, reducing
  • the duration of the overclocking work of the hashboard reduces the damage to the hashboard caused by the overclocking work of the hashboard.
  • the power-off signal may include: a set of signals, which will control the power supply to sequentially cut off the power supply of different loads on the hashboard according to the power-off protection sequence of the hashboard, thereby reducing the power supply of the hashboard.
  • the host computer is connected to the processing module, and may also be connected to the power supply module.
  • the current storage voltage of the processing module can be obtained through the host computer.
  • the storage voltage is greater than the minimum overclocking voltage, it is determined that the load on the computing power board has worked under the overclocking state, and a power-off signal is output to the power supply module to control the power supply.
  • the module stops supplying power to the load, reducing the overclocking phenomenon of the hash board.
  • the stored voltage can only be used to locate the fault of the computing power board in the future.
  • the host computer does not need to output a power-off signal when the stored voltage is greater than the overclocking working voltage. In this case, the output power-off signal is reduced, so that the user satisfaction caused by the stop of the hash board or the work of the hash board is forced to stop.
  • a processing module may have a first mode and a second mode.
  • the power-off signal is generated when the processing module determines that the minimum operating voltage in the current period exceeds the stored voltage.
  • the processing module does not generate the power-off signal when it determines that the minimum operating voltage in the current period exceeds the stored voltage.
  • the usage mode of the processing module can be selected according to actual needs. For example, a sudden power failure may cause data loss, etc., resulting in unnecessary losses.
  • the second mode is selected, and the processing module only needs to record the storage voltage.
  • the hashboard fails, it can provide data for maintenance personnel; for example, if you want to use the hashboard normally and stably, in order not to damage the equipment, or the data of the hashboard will not be lost after power failure, you can continue to use the power supply Work before power failure, so set the working mode of the processing module to the second mode.
  • a power failure signal will be generated to protect the power board, improve its life and reduce the power board. software and hardware failures, etc.
  • At least one pin of the processing module is connected to the power supply bus of the load on the computing power board; wherein, the power supply bus supplies power to the load, and the power supply voltage of the power supply bus is the operating voltage of the load .
  • a signal receiving pin of the processing module is connected to the power supply bus of the load on the computing power board to collect the power supply voltage of the power supply bus
  • a signal output pin of the processing module is also connected to the power supply bus of the load on the computing power board.
  • the processing module may include: an ADC, a programmable unit, and a memory.
  • the analog pin of the ADC is connected to the power supply bus; the output pin of the programmable unit is connected to the switch on the power supply bus, and is used for disconnecting or connecting the connection between the load and the power supply bus.
  • the data receiving pin of the programmable unit is connected with the memory for obtaining the storage voltage recorded by the memory.
  • the ADC is used to convert the acquired analog signal of the working voltage of the load into a digital signal, and output it to the programmable unit
  • the memory is used for the processing module to record the stored voltage
  • the programmable unit can obtain the stored voltage from the memory voltage, compared to the minimum operating voltage.
  • the memory may be a Flash memory, or a data storage device such as a ROM or a random access memory (RAM).
  • the processing module may be a PIC chip, and the PIC chip includes an ADC, a programmable unit and a memory.
  • the analog pin RC2 of the PIC chip is connected to the power supply bus to collect the voltage of the power supply bus
  • the signal output pin RA2 of the PIC chip is connected to the switch on the power supply bus to control the disconnection or switching of the switch on the power supply bus. connected, and then control the power supply bus to supply power to the load.
  • the programmable unit inside the PIC chip determines whether the minimum operating voltage of the load in the current period exceeds the storage voltage in the memory, and if the minimum operating voltage in the current period exceeds the storage voltage, update the minimum operating voltage in the current period In order to store the voltage, it can be determined according to the stored voltage whether the load on the computing power board has worked under the overclocking state.
  • the voltage of the power supply bus is divided and given to the analog pins of the processing module.
  • the processing module can be guaranteed to use the preset The frequency does the work of collecting the working voltage of the load, and compares the minimum working voltage in the current period with the internal storage voltage.
  • the minimum working voltage exceeds the storage voltage, the minimum working voltage is updated to the storage voltage, that is, it is updated to the memory Carry out storage to record the stored voltage into the internal memory, and determine whether the load is overclocked according to the stored voltage.
  • the overclocking identification structure and process are simplified, and the overclocking identification speed is fast and the accuracy is high, thereby avoiding overclocking of the hashboard and ensuring normal Work.
  • the stored voltage recorded in the internal memory can also be used for after-sales verification.
  • after-sales personnel can obtain the voltage value stored in the internal memory of the processing module from the hash board through a special fixture, and compare it with the minimum overclocking voltage, that is It can be judged whether the hash board is overclocked with special firmware.
  • this embodiment uses a voltage divider circuit to reduce the actual working voltage according to the divider ratio.
  • the working voltage collected by the processing module can be 3V or less than 3V to meet the collection requirements of the processing module; at the same time, the voltage divider circuit can also be used as a protection circuit to prevent the impact of high voltage on the processing module.
  • the voltage dividing circuit of this embodiment may include: a first resistor R29 , a second resistor R32 , a third resistor R28 and a filtering unit 20 .
  • the first end of the first resistor R29 is connected to the power supply bus (VDD_18V0 end) of the load on the computing power board, and the second end of the first resistor R29 is connected to the first end of the second resistor R32; the second resistor R32 The second end of the second end is respectively connected with the first end of the third resistance R28 and the input end of the filter unit 20; the second end of the third resistance R28 and the ground end of the filter unit 20 are all grounded; group (AN6 pin) connection.
  • the voltage divider circuit also includes a VDD_IN terminal, so that the voltage divider circuit can also be applied to other integrated circuits, such as integrated circuits with a working voltage of 20V, which makes the voltage divider circuit of this embodiment more practical and can be adapted to various integrated circuits, so that the processing module of this embodiment can identify the overclocking status of various integrated circuits.
  • the above voltage divider circuit forms a certain voltage divider ratio through the first resistor R29, the second resistor R32, and the third resistor R28 to realize the divider of the operating voltage of the load.
  • the divider ratio is 1:6, so that the voltage of 18V
  • the voltage is reduced to 3V for collection by the processing module, and the filtering unit 20 filters the voltage signal to reduce interference to the collected voltage signal.
  • the filtering unit 20 of this embodiment may include: a fourth resistor R25, a first capacitor C22, and a second capacitor C21. As shown in Figure 5, the first end of the fourth resistor and the first end of the first capacitor are connected to the second end of the third resistor R28; the second end of the fourth resistor and the first end of the second capacitor are connected to The analog pins of the processing module are connected; the second end of the first capacitor and the second end of the second capacitor are both grounded.
  • the above filtering unit can realize low-pass filtering, filter out high-frequency signals, reduce the interference to the collected working voltage, and make the collected voltage more stable and accurate.
  • the filtering frequency of the low-pass filter is greater than 300KHZ, which meets the collection requirements of the processing module and reduces the interference to the collected working voltage.
  • the outer surface of the processing module has an anti-counterfeit protection layer, wherein the anti-counterfeit protection layer is used to determine the authenticity of the stored voltage recorded in the memory at least through the anti-counterfeit protection layer.
  • This embodiment implements cracking from the hardware structure, and realizes overclocking by connecting the processing module with the power supply bus of the load of the hash board, so that the disclosed method can work normally in various situations. Tampering with group programs, so an anti-counterfeit protection layer is applied.
  • the anti-counterfeit protection layer can prevent the user from deciphering the method of the present disclosure, and realize the protection of the processing module. Through the anti-counterfeit protection layer, it can be found in time whether the user removes the processing module or modifies the data stored inside the processing module, thereby ensuring the authenticity of the stored voltage recorded in the memory of the processing module, and thus ensuring the accuracy of overclocking identification.
  • the anti-counterfeit protection layer of this embodiment may include: thermally conductive glue.
  • heat-conducting glue can be applied on the processing module and the connection between the processing module and the computing power board, so as to realize the protection of the processing module. Whether the user dismantles the processing module or modifies the data stored inside the processing module is judged by the damage degree of the thermal conductive adhesive, thereby ensuring the authenticity of the stored voltage recorded in the memory of the processing module and reducing the anti-counterfeiting cost.
  • the thermally conductive adhesive is also used to dissipate heat from the processing module, that is, the thermally conductive adhesive in this embodiment can be used not only as an anti-counterfeiting protective layer, but also as a heat dissipation layer of the processing module, which simplifies the outer structure of the processing module and achieves the effect of killing two birds with one stone.
  • the material of the thermally conductive adhesive is not limited in this embodiment, and may be at least one or more of thermally conductive silicone grease, thermally conductive silica gel, and thermally conductive mud.
  • the anti-counterfeiting protective layer may further include: anti-counterfeiting paint.
  • the anti-counterfeit paint can be applied on the processing module and the connection between the processing module and the computing power board, so as to realize the protection of the processing module. Whether the user removes the processing module or modifies the data stored inside the processing module is judged by the degree of damage of the anti-counterfeiting paint, thereby ensuring the authenticity of the stored voltage recorded in the memory of the processing module and reducing the cost of anti-counterfeiting.
  • heat-conducting glue or anti-counterfeiting paint is used as an anti-counterfeiting protective layer to protect the processing module, which not only reduces the anti-counterfeiting
  • This disclosure is applied to the processing module on the computing power board, directly obtains the working voltage of the load on the computing power board through the processing module, and performs overfrequency identification through the obtained voltage, and the recognition speed is fast; among them, when the load is within the current period When the minimum working voltage exceeds the stored voltage, update the minimum working voltage of the current period to the stored voltage, and determine whether the load on the hashboard has worked under the overclocking state according to the stored voltage, so that the operating voltage of the load on the hashboard Realize overclocking recognition, not only the recognition speed is fast, the accuracy is higher, and the overclocking of the power board can be avoided as much as possible; at the same time, the anti-counterfeiting protective layer is set on the processing module by using thermal conductive glue or anti-counterfeiting paint, which not only reduces the anti-counterfeiting cost, but also can Whether the user removes the processing module or modifies the data stored inside the processing module is discovered in time, thereby ensuring the authenticity of the stored voltage recorded in the memory
  • Fig. 7 is a block diagram of an operating voltage processing device 120 according to an exemplary embodiment.
  • the device can be a processing module on a computing power board.
  • the device may include a voltage acquisition unit 121 , a voltage determination unit 122 and a voltage update unit 123 .
  • the voltage collection unit 121 is configured to collect the working voltage of the load on the computing power board.
  • the voltage determining unit 122 is configured to determine whether the minimum operating voltage of the load in the current period exceeds a stored voltage, wherein the stored voltage is: the minimum operating voltage of the load in a historical period.
  • the voltage update unit 123 is configured to update the minimum operating voltage in the current period to the stored voltage when the minimum operating voltage in the current period exceeds the stored voltage, wherein the stored voltage is at least used It is used to determine whether the load on the computing power board has worked under the overclocking state.
  • the voltage update unit is further configured to:
  • a power-off signal is output, wherein the power-off signal is used to control the power supply module to stop supplying power to the load.
  • the processing module has a first mode and a second mode
  • the processing module determines that the minimum operating voltage within the current period exceeds the stored voltage, the power-off signal is generated;
  • the processing module does not generate the power-off signal when it determines that the minimum operating voltage within the current period exceeds the stored voltage.
  • At least one pin of the processing module is connected to the power supply bus of the load; wherein, the power supply voltage of the power supply bus is the working voltage of the load;
  • the voltage acquisition unit is configured to:
  • the processing module collects the power supply voltage of the power supply bus.
  • the processing module includes: an analog-to-digital converter ADC, a programmable unit, and a memory;
  • the analog pin of the ADC is connected to the power supply bus
  • the output pin of the programmable unit is connected to a switch on the power supply bus for disconnecting or connecting the connection between the analog pin and the power supply bus;
  • the memory is used for the processing module to record the storage voltage.
  • the voltage divider circuit includes:
  • the first end of the first resistor is connected to the power supply bus, the second end of the first resistor is connected to the first end of the second resistor; the second end of the second resistor is respectively connected to the The first end of the third resistor is connected to the input end of the filtering unit;
  • Both the second terminal of the third resistor and the ground terminal of the filtering unit are grounded;
  • the output terminal of the filtering unit is connected with the processing module.
  • the filtering unit includes:
  • Both the first end of the fourth resistor and the first end of the first capacitor are connected to the input end of the filter unit; the second end of the fourth resistor and the first end of the second capacitor are both connected to the output terminal of the filter unit; the second terminal of the first capacitor and the second terminal of the second capacitor are both connected to the ground terminal of the filter unit.
  • the outer surface of the processing module has an anti-counterfeit protection layer, wherein the anti-counterfeit protection layer is used to determine the authenticity of the stored voltage recorded in the memory at least through the anti-counterfeit protection layer.
  • the anti-counterfeiting protection layer includes:
  • Thermally conductive adhesive the thermally conductive adhesive is also used to dissipate heat from the processing module
  • the voltage determination unit is further configured to compare the current operating voltage of the load collected at a preset frequency with the recorded voltage within the current period;
  • the recording voltage is determined as the minimum operating voltage in the current period.
  • Fig. 8 is a block diagram of an electronic device 800 according to an exemplary embodiment.
  • the electronic device 800 may be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, and the like.
  • electronic device 800 may include one or more of the following components: processing component 802, memory 804, power component 806, multimedia component 808, audio component 810, input/output (I/O) interface 812, sensor component 814 , and the communication component 816.
  • the processing component 802 generally controls the overall operations of the electronic device 800, such as those associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 802 may include one or more processors 820 to execute instructions to complete all or part of the steps of the above method. Additionally, processing component 802 may include one or more modules that facilitate interaction between processing component 802 and other components. For example, processing component 802 may include a multimedia module to facilitate interaction between multimedia component 808 and processing component 802 .
  • the memory 804 is configured to store various types of data to support operations at the electronic device 800 . Examples of such data include instructions for any application or method operating on the electronic device 800, contact data, phonebook data, messages, pictures, videos, and the like.
  • the memory 804 can be implemented by any type of volatile or non-volatile storage device or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • the power component 806 provides power to various components of the electronic device 800 .
  • Power components 806 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for electronic device 800 .
  • the multimedia component 808 includes a screen that provides an output interface between the device 800 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. The touch sensor may not only sense a boundary of a touch or slide action, but also acquire duration and pressure related to the touch or slide operation.
  • the multimedia component 808 includes a front camera and/or a rear camera. When the device 800 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capability.
  • the audio component 810 is configured to output and/or input audio signals.
  • the audio component 810 includes a microphone (MIC), which is configured to receive external audio signals when the electronic device 800 is in operation modes, such as call mode, recording mode and voice recognition mode. Received audio signals may be further stored in memory 804 or sent via communication component 816 .
  • the audio component 810 also includes a speaker for outputting audio signals.
  • the I/O interface 812 provides an interface between the processing component 802 and a peripheral interface module, which may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: a home button, volume buttons, start button, and lock button.
  • Sensor assembly 814 includes one or more sensors for providing status assessments of various aspects of electronic device 800 .
  • the sensor component 814 can detect the open/closed state of the device 800, the relative positioning of components, such as the display and the keypad of the electronic device 800, the sensor component 814 can also detect the electronic device 800 or a component of the electronic device 800 Changes in the position of , presence or absence of user contact with the electronic device 800 , orientation or acceleration/deceleration of the electronic device 800 and temperature changes of the electronic device 800 .
  • Sensor assembly 814 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 814 may also include an optical sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 814 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • the communication component 816 is configured to facilitate wired or wireless communication between the electronic device 800 and other devices.
  • the electronic device 800 can access a wireless network based on communication standards, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 816 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 816 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module may be implemented based on Radio Frequency Identification (RFID) technology, Infrared Data Association (IrDA) technology, Ultra Wide Band (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • UWB Ultra Wide Band
  • Bluetooth Bluetooth
  • electronic device 800 may be implemented by one or more application-specific integrated circuits, digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGA), controller, microcontroller, processing module or other electronic components for implementing the above method.
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable gate arrays
  • controller microcontroller, processing module or other electronic components for implementing the above method.
  • non-transitory computer-readable storage medium including instructions, such as the memory 804 including instructions, which can be executed by the processor 820 of the electronic device 800 to complete the above method.
  • the non-transitory computer readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • An embodiment of the present disclosure also provides a non-transitory computer-readable storage medium.
  • the mobile terminal can execute a working voltage processing method, and the method includes : collect the working voltage of the load on the computing power board;
  • the non-transitory computer-readable storage medium stores an embodiment capable of executing any one of the aforementioned working voltage processing methods, for example, any one of the methods shown in FIG. 1 to FIG. 3 .

Abstract

本公开是关于一种工作电压处理方法、装置、电子设备和存储介质,应用于算力板上的处理模组。所述方法包括:采集算力板上负载的工作电压;确定所述负载在当前时段内的最小工作电压是否超过存储电压,其中,存储电压为负载在历史时段内的最小工作电压;在当前时段内的最小工作电压超过存储电压的情况下,将当前时段的最小工作电压更新为存储电压,其中,存储电压至少用于确定算力板上负载是否在超频状态下工作过。本公开可以通过算力板上负载的工作电压实现超频识别,识别速度快,准确度高,进而可以尽量避免算力板的超频。

Description

工作电压处理方法、装置、电子设备和存储介质
本申请要求申请日为2021年10月09日提交的且申请号为202111174088.5的中国申请的优先权。该申请的在先申请的所有内容都包含在本申请内。
技术领域
本公开涉及电子技术领域但不限于电子技术领域,尤其涉及一种工作电压处理方法、装置、电子设备和存储介质。
背景技术
随着电子设备的迅猛发展,用户对集成电路的工作性能要求越来越高,例如算力板。实际生产中,为了保证正常工作与运行稳定性,算力板的工作频率往往都会保证充足的余量,但用户为了获取更大的收益,有时会使用第三方固件使算力板超频工作,这必然会导致系统稳定性下降,故障率会上升。而相关技术中的超频判定方法主要是通过控制板获取算力板的频率历史日志,人工判断,但这种方法效率低且准确率不高。
发明内容
本公开实施例提供一种工作电压处理方法、装置、电子设备和存储介质。
根据本公开实施例的第一方面,提供一种工作电压处理方法,应用于算力板上的处理模组内,包括:
采集所述算力板上负载的工作电压;
确定所述负载在当前时段内的最小工作电压是否超过存储电压,其中,所述存储电压为:所述负载在历史时段内的最小工作电压;
在当前时段内的所述最小工作电压超过所述存储电压时,将当前时段的所述最小工作电压更新为所述存储电压,其中,所述存储电压,至少用于确定所述算力板上负载是否在超频状态下工作过。
根据本公开实施例的第二方面,提供一种工作电压处理装置,应用于算力板上的处理模组内,所述装置包括:
电压采集单元,被配置为采集所述算力板上负载的工作电压;
电压确定单元,被配置为确定所述负载在当前时段内的最小工作电压是否超过存储电压,其中,所述存储电压为:所述负载在历史时段内的最小工作电压;
电压更新单元,被配置为在当前时段内的所述最小工作电压超过所述存储电压时,将当前时段的所述最小工作电压更新为所述存储电压,其中,所述存储电压,至少用于确定所述算力板上负载是否在超频状态下工作过。
根据本公开实施例的第三方面,提供一种电子设备,包括:
用于存储处理器可执行指令的存储器;
处理器,与所述存储器连接;
其中,所述处理器被配置为执行如上述实施例的第一方面提供的任一项所述的工作电压处理方法中的步骤。
根据本公开实施例的第四方面,提供一种非临时性计算机可读存储介质,当所述存储介质中的指令由移动终端的处理器执行时,使得计算机能够执行如上述实施例的第一方面提供的任一项所述的工作电压处理方法。
本公开的实施例提供的技术方案可以包括以下有益效果:
直接获取算力板上负载的工作电压,并通过获取的电压进行超频识别,识别速度快;其中,在负载在当前时段内的最小工作电压超过存储电压的情况下,将当前时段的最小工作电压更新为存储电压,若当前时段的最小工作电压都是超过或等于负载超频状态下的工作电压,则说明负载当前时段必然超频工作过。如此,后续在确定算力板的负载是否超频工作过时,直接读取存储电压,就可以知晓确定算力板上负载是否在超频状态下工作过,实现了算力板上负载是否超频工作的准确及简便记录。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明的实施例,并与说明书一起用于解释本发明的原理。
图1是根据一示例性实施例示出的一种工作电压处理方法的流程图。
图2是根据一示例性实施例示出的另一种工作电压处理方法的流程图。
图3是根据一示例性实施例示出的又一种工作电压处理方法的流程图。
图4是根据一示例性实施例示出的分压电路与处理模组和供电母线连接的结构示意图;
图5是根据一示例性实施例示出的分压电路的电路图;
图6是根据一示例性实施例示出的处理模组的引脚连接示意图;
图7是根据一示例性实施例示出的一种工作电压处理装置的框图。
图8是根据一示例性实施例示出的一种电子设备的硬件结构框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本发明的一些方面相一致的装置和方法的例子。
图1是根据一示例性实施例示出的一种工作电压处理方法的流程图,如图1所示,工作电压处理方法可用于算力板上的处理模组或者嵌入控制器等微型处理器内,该算力板可以为各种算力芯片和/或图像处理芯片等,但不限于算力芯片和/或图像处理芯片(GPU,Graphics Processing Unit)等,其中,该算力芯片包括但不限于专用集成电路(ASIC,Application Specific Integrated Circuit)芯片。如图1所示,本公开方法包括以下步骤:
在步骤S11中,采集所述算力板上负载的工作电压。
这里,算力板上负载可算力板的部分或者全部负载,例如,算力板上的各个芯片的负载、部分集成电路的负载或者某些元器件的负载等等。工作电压是指整个算力板的负载在进行工作时所需要的电压,例如18V或20V等。
本实施例的处理模组可以安装在算力板上,如图4所示,这样可以减少连接线的使用,即简化了算力板的结构,也方便采集算力板上负载的工作电压。
在步骤S12中,确定所述负载在当前时段内的最小工作电压是否超过存储电压,其中,所述存储电压为:所述负载在历史时段内的最小工作电压。
所述当前时段可以是当前负载工作过程中的预设时段。例如,在负载工作过程中,处理模组采集算力板上负载的工作电压,并确定预设时长T来划分时间。当前时段为:当前时刻所在的等于T的时间段内。
所述T可为5、10、15或30分钟等时长。
示例性地,当前10分钟时段内的最小工作电压是否超过存储电压,或,确定当前30分钟时段内的最小工作电压是否超过存储电压等,本实施例对预设时段不进行具体限定,例如还可以是20分钟或40分钟等。
在一种实施例中,本实施例的处理模组定时采集预设时段内的所述算力板上负载的工作电压。示例性地,处理模组每间隔10分钟,采集半小时内的算力板上负载的工作电压,并确定在当前半小时内的最小工作电压是否超过存储电压,或者,处理模组根据设定的时间点开始采集半小时内的算力板上负载的工作电压,比如处理模组在13时10分开始采集半小时内的算力板上负载的工作电压,并确定在当前半小时内的最小工作电压是否超过存储电压。
这里,对于刚投入使用的算力板,此时历史时段内的最小工作电压可以是0V;对于投入使用一段时间的算力板,此时历史时段的最小工作电压可为前一个时段内算力板的最小工作电压。
由于处理模组可采集的电压值可能小于负载的实际工作电压,所以在处理模组采集负载工作电 压时可以先对负载的工作电压进行降压处理,使得降压后的电压值符合处理模组的电压采集要求。应理解,本实施例对历史时段内的最小工作电压的设定不进行具体限定,还可以是出厂时预制的超频工作的电压,例如该超频工作的电压可以根据统计数据或者实验室数据写入的超频状态的工作电压等。
在步骤S13中,在当前时段内的所述最小工作电压超过所述存储电压时,将当前时段的所述最小工作电压更新为所述存储电压,其中,所述存储电压,至少用于确定所述算力板上负载是否在超频状态下工作过。
示例性地,在负载工作过程中,处理模组采集算力板上负载的工作电压,并确定当前时段内的最小工作电压是否超过存储电压,例如,确定当前30分钟时段内的最小工作电压为4V,存储电压为3V,这样,当前时段内的最小工作电压4V超过存储电压3V,将当前时段的最小工作电压4V更新为存储电压,即存储电压变为4V。
在一种实施例中,在当前时段内的所述最小工作电压未超过所述存储电压的情况下,维持所述存储电压。示例性地,处理模组采集算力板上负载的工作电压,确定当前10分钟时段内的最小工作电压为2V,存储电压为3V,这样,当前时段内的最小工作电压2V未超过存储电压3V,维持存储电压,即存储电压依然为3V。
该存储电压可至少用于确定算力板上负载是否在超频状态下工作过。
在相关技术中故障售后在进行超频判定时,是通过控制板抓取日志,人工判断,效率低且并不能100%判定。然而,处于满足工作需求,为了获取更多的数据、资源或利益等,算力板可能经常超频工作。但是日志是很容易被修改或者被删除的内容,如此,通过日志无法准确的确定过算力板是否超频工作所过。
因此,本实施例通过存储电压来确定算力板上负载是否在超频状态下工作过,识别速度快,精准度高。
在一种实施例中,本实施例处理模组可以直接通过存储电压确定算力板上负载是否在超频状态下工作过。示例性地,在存储电压大于最小超频电压的情况下,则确定算力板上负载在超频状态下工作过。在存储电压不大于最小超频电压的情况下,则确定算力板上负载未在超频状态下工作。例如当前存储电压为4V,最小超频电压为3.5V,则确定算力板上负载在超频状态下工作过,或当前存储电压为3V,最小超频电压为3.5V,则确定算力板上负载未在超频状态下工作。
在另一些实施例中,存储电压的原始电压可以为0V,如此刚投入使用的算力板的在第一个时段内的最小工作电压就能够成功被记录为存储电压。
在一种实施例中,本实施例可以通过上位机获取处理模组的存储电压,然后上位机通过存储电压确定算力板上负载是否在超频状态下工作过。
如图4,上位机与处理模组的一个信号输出引脚连接,上位机获取处理模组的当前存储电压,在存储电压大于最小超频电压时,则确定算力板上负载在超频状态下工作过。在存储电压不大于最小超频电压时,则确定算力板上负载未在超频状态下工作。例如,上位机获取的当前存储电压为第 一电压,而上位机内部存储的最小超频电压为比第一电压大的第二电压,则确定算力板上负载在超频状态下工作过。这里的最小超频电压是上位机存储的算力板上负载在超频状态下工作过的最小电压。
在一些实施例中,在确定算力板上负载在超频状态下工作过后,还对当前超频状态的存储电压、超频时间段或时刻等信息进行记录,方便对故障的算力板进行判定,并快速确定该算力板的故障原因。
在另一些实施例中,通过本实施例的存储电压还可以确定算力板上负载是否处于正常工作状态,或者是否出现故障等。
上述实施例中,针对超频需要加压的特征,通过算力板上的处理模组实时获取负载的工作电压,并通过负载在当前时段内的最小工作电压与存储电压比较,确定算力板上负载是否在超频状态下工作过,即本实施例将上述方法固化到算力板上,用户只要进行了加压超频,就会被算力板上的处理模组识别到并做记录,识别速度快,准确度高,同时方便售后部门对故障的算力板进行判定,并快速确定该算力板的故障原因。
在一个实施例中,记录当前时段内以预设频率采集的所有工作电压,在需要确定出当前时段内的最小工作电压时,遍历记录的所有工作电压,确定出最小工作电压。
在另一个实施例中,如图2所示,工作电压处理方法还可以包括:
在步骤S21中,在当前时段内,将以预设频率采集的所述负载的当前工作电压与记录电压进行比较。
这里,记录电压可以是出厂时预制的电压,用于确定当前时段内所述负载的最小工作电压,例如记录电压为5V,也可以是统计数据或者实验室数据写入的工作电压等。
示例性的,在当前半小时的时段内,处理模组以20000Hz的频率采集负载的当前工作电压,并将每次采集的负载的工作电压与记录电压进行比较,例如,记录电压可以为5V,处理模组每采集一次工作电压都与5V进行比较。
本实施例对预设频率不进行具体限定,示例性地,该预设频率大于10000Hz,这样不会因为采集次数过少而错失超频状态时的电压采集,保证了实时监测算力板上负载的工作状态,提高超频识别精准度。
在步骤S22中,在所述当前工作电压小于所述记录电压的情况下,将所述当前工作电压更新为所述记录电压。
在步骤S23中,在所述当前工作电压大于所述记录电压的情况下,维持所述当前记录电压。
在步骤S24中,在当前时段结束的情况下,将所述记录电压确定为当前时段内所述最小工作电压。
示例性地,参见图3,记录电压为A,当前工作电压为B,存储电压为C。处理模组以预设频率采集算力板上负载的工作电压,在当前半小时的时段内,将采集的负载的当前工作电压B与记录电 压A进行比较,若当前工作电压B小于记录电压A,将当前工作电压B更新为记录电压A。
在完成一次当前工作电压和记录电压之间大小判断之后,判断是否本轮的工作电压的采集是否达到预设时长,例如半小时。
若本轮的工作电压的采集已达到预设时长,将当前的记录电压A确定为当前时段内最小工作电压。
若本轮的工作电压的采集未达到预设时长,则继续采集当前工作电压B,并继续与记录电压A比较,直至当前时段结束。
在一种实施例中,处理模组确定负载在当前时段内的最小工作电压是否超过存储电压C,在当前时段内的最小工作电压超过存储电压C的情况下,将当前时段的最小工作电压更新为存储电压C。若当前时段内的最小工作电压未超过存储电压C,维持当前存储电压C,并继续采集下一时段的当前工作电压B,判断下一时段的最小工作电压是否超过存储电压C。最后可以根据存储电压C确定负载是否在超频状态工作过。
采用这种方式,在一个时段内仅需存储一个记录电压,因此相当于存储所有采集的工作电压,减少了存储资源的消耗;且在每采集到一个最新的工作电压时,都会与记录电压进行比较,从而在当前时段结束时,可以直接将记录电压确定为当前时段的最小工作电压,从而具有最小工作电压确定速率快的特点。
在一些实施例中,所述工作电压处理方法还可以包括:在当前时段内的最小工作电压超过存储电压的情况下,输出断电信号。其中,断电信号用于控制供电模组停止向负载的供电。
参见图4,处理模组还与为算力板上对负载供电的供电模组连接。处理模组在确定当前时段内的最小工作电压超过存储电压时,可以确定负载在超频状态工作过,为了防止算力板超频,处理模组则会输出断电信号,以控制供电模组停止向负载的供电。
例如当前时段内的最小工作电压为4.5V,存储电压为4V,处理模组则输出断电信号,控制供电模组停止向负载供电,这样可以减少算力板超频工作的现象,即本实施例可以实现超频时随机时长后强制下电,降低算力板超频工作造成的算力板的损伤程度。
在一种实施例中,本实施例处理模组还可以存储最小超频电压,在当前存储电压大于最小超频电压时,则确定算力板上负载在超频状态下工作过,并输出断电信号,以控制供电模组停止向负载的供电。
例如,当前存储电压为4.5V,最小超频电压为3.5V,则处理模组确定算力板上负载在超频状态下工作过,输出断电信号,以控制供电模组停止向负载的供电,减少算力板超频工作的时长,降低算力板超频工作造成的算力板的损伤程度。
在一些实施例中,所述断电信号可包括:一组信号,该一组信号将根据算力板的断电保护时序,控制电源依次断掉算力板上不同负载的供电,从而减少算力板被一次性断掉所有供电导致的软硬件损伤。
在一种实施例中,如图4,上位机与处理模组连接,还可以与供电模组连接。这样,可以通过 上位机获取处理模组的当前存储电压,在存储电压大于最小超频电压时,则确定算力板上负载在超频状态下工作过,向供电模组输出断电信号,以控制供电模组停止向负载的供电,减少算力板超频工作的现象。
当然,存储电压可仅用于后续定位算力板的故障使用,则此时上位机无需在存储电压大于超频工作电压时,输出断电信号。减少这种情况下输出断电信号,使得算力板停止工作造成的用户满意度差或者算力板的工作强制性停止。
在一些实施例中,处理模组可以具有第一模式和第二模式。
示例性地,在第一模式下,当处理模组确定出当前时段内的最小工作电压超过所述存储电压时生成所述断电信号。在第二模式下,处理模组确定出当前时段内的最小工作电压超过所述存储电压时不生成所述断电信号。
这样,可以根据实际需求选择处理模组的使用模式。比如,突然断电可能会引起数据丢失等,造成不必要的损失,此时基于用户输入,选择使用第二模式,处理模组仅需要记录存储电压即可。
若算力板出现故障后,可以为维修人员提供数据;还比如,想正常稳定的使用算力板,为了不损坏设备,或者算力板在断电后数据等不会丢失,供电后可以继续断电前的工作,这样将处理模组的工作模式设置为第二模式,当前时段内的最小工作电压超过存储电压时便生成断电信号,来保护算力板,提高其寿命减少算力板的软硬件故障等。
在一个实施例中,如图4所示,处理模组的至少一个引脚与算力板上的负载的供电母线连接;其中,供电母线为负载供电,供电母线的供电电压为负载的工作电压。
例如,处理模组的一个信号接收引脚与算力板上的负载的供电母线连接,用于采集供电母线的供电电压,处理模组的一个信号输出引脚也与算力板上的负载的供电母线连接,在处理模组生成断电信号时,可以控制供电母线与负载的连接断开,停止向负载供电。这样,无需将处理模组与供电模组连接,便于采集电压和控制供电,由于减少了连接线的使用,也简化了整体算力板的结构。
在一些实施例中,处理模组可以包括:ADC、可编程单元和存储器。
示例性地,ADC的模拟引脚与供电母线连接;可编程单元的输出引脚与供电母线上的开关连接,用于断开或者连接负载与供电母线之间的连接。可编程单元的数据接收引脚与存储器连接,用于获取存储器记录的存储电压。
又示例性地,ADC用于将获取的负载的工作电压的模拟信号转换成数字信号,并输出给可编程单元,存储器用于供处理模组记录存储电压,可编程单元可以从存储器内获取存储电压,与最小工作电压进行比较。这里,存储器可以是Flash存储器,也可以是ROM或随机存取存储器(RAM)等数据存储设备。
示例性的,参见图6,所述处理模组可以为PIC芯片,PIC芯片包括ADC、可编程单元和存储器。例如,PIC芯片的模拟引脚RC2与供电母线连接,用于采集供电母线的电压,PIC芯片的信号输出引脚RA2与供电母线上的开关连接,用于控制供电母线上的开关的断开或接通,进而控制供电母线为负载供电。PIC芯片内部的可编程单元确定负载在当前时段内的最小工作电压是否超过存储 器内的存储电压,在当前时段内的最小工作电压超过存储电压的情况下,将当前时段的所述最小工作电压更新为存储电压,进而可以根据存储电压确定算力板上负载是否在超频状态下工作过。
上述实施例,在硬件上:将供电母线的电压经过分压后给到处理模组的模拟引脚上,通过处理模组的模拟引脚的连续采集中断功能,可以保证处理模组以预设频率做负载的工作电压采集工作,并将当前时段内的最小工作电压与内部存储的存储电压做比较,最小工作电压超过存储电压时,将最小工作电压更新为存储电压,即更新到到存储器内进行存储,实现把存储电压记录到内部存储器中,根据存储电压确定负载是否超频,这样,简化了超频识别结构和过程,超频识别速度快,精准度高,进而避免算力板超频,保证正常的工作。
同时,记录到内部存储器中的存储电压,还可以供售后核对,比如售后人员可以通过特殊治具,从算力板获取处理模组内部存储器存储的电压值,并与最小超频电压做比较,即可判断该算力板是否使用了特殊固件超频。
在一个实施例中,处理模组与供电母线之间具有分压电路;分压电路用于将供电母线的供电电压分压后输入至处理模组。
由于算力板上负载的正常工作电压在18V至20V之间,处理模组不能直接采集如此高的电压值,因此本实施例利用分压电路,将实际的工作电压按分压比进行降低,例如,处理模组采集到的工作电压可以为3V,或小于3V等,满足处理模组的采集需求;同时,分压电路也可以用作保护电路,防止高电压对处理模组的冲击。
在一种实施例中,参见图5,本实施例的分压电路可以包括:第一电阻R29、第二电阻R32、第三电阻R28和滤波单元20。
示例性地,第一电阻R29的第一端与算力板上负载的供电母线(VDD_18V0端)连接,第一电阻R29的第二端与第二电阻R32的第一端连接;第二电阻R32的第二端分别与第三电阻R28的第一端和滤波单元20的输入端连接;第三电阻R28的第二端和滤波单元20的接地端均接地;滤波单元20的输出端与处理模组(AN6引脚)连接。
另外,分压电路还包括VDD_IN端,这样该分压电路还可以应用到其他集成电路中,例如工作电压为20V的集成电路,使得本实施例的分压电路实用性更强,可以适应多种集成电路,以使本实施例的处理模组可以识别多种集成电路的超频状态。
上述分压电路,通过第一电阻R29、第二电阻R32、第三电阻R28构成一定的分压比,实现对负载的工作电压的分压,例如分压比为1:6,使18V的电压降低为3V供处理模组采集,滤波单元20对电压信号进行滤波,降低对采集的电压信号的干扰。
在一种实施例中,本实施例的滤波单元20可以包括:第四电阻R25、第一电容C22和第二电容C21。如图5所示,第四电阻的第一端和第一电容的第一端均与第三电阻R28的第二端连接;第四电阻的第二端和第二电容的第一端均与处理模组的模拟引脚连接;第一电容的第二端和第二电容的第二端均接地。
上述滤波单元可以实现低通滤波,对高频信号进行滤除,降低对采集的工作电压的干扰,是采 集的电压更加稳定和准确。示例性地,该低通滤波的滤除频率大于300KHZ,满足处理模组的采集需求,降低了对采集的工作电压的干扰。
在一个实施例中,处理模组外表面具有防伪保护层,其中,防伪保护层用于至少通过防伪保护层确定存储器内记录的存储电压的真实性。
本实施例从硬件结构实现破解,通过处理模组与算力板的负载的供电母线连接,进而实现超频,这样本公开的方法可以在各种情况下都能正常工作,为了防止用户对处理模组程序的篡改,因此运用了防伪保护层。
示例性地,防伪保护层可以防止用户对本公开的方法的破解,实现对处理模组的保护。通过防伪保护层可以及时发现用户是否拆除处理模组或是否修改处理模组内部存储的数据,进而保证了处理模组的存储器内记录的存储电压的真实性,进而确保超频识别的准确性。
在一种实施例中,本实施例的防伪保护层可以包括:导热胶。
示例性地,本实施例可以将导热胶涂敷在处理模组上以及处理模组与算力板的连接处,实现对处理模组的保护。通过导热胶的破坏程度判断用户是否拆除处理模组或是否修改处理模组内部存储的数据,进而保证了处理模组的存储器内记录的存储电压的真实性,且降低了防伪成本。
导热胶还用于对处理模组散热,即本实施例的导热胶既可以作为防伪保护层,又可以作为处理模组的散热层,简化了处理模组的外层结构,实现一举两得的效果。应理解,本实施例对导热胶的材料不进行限定,可以是导热硅脂、导热硅胶、导热泥中的至少一种或多种。
在一种实施例中,防伪保护层还可以包括:防伪漆。本实施例可以将防伪漆涂敷在处理模组上以及处理模组与算力板的连接处,实现对处理模组的保护。通过防伪漆的破坏程度判断用户是否拆除处理模组或是否修改处理模组内部存储的数据,进而保证了处理模组的存储器内记录的存储电压的真实性,同时可以降低防伪成本。
本实施例为了防止用户对处理模组程序的篡改,保证处理模组的存储器内记录的存储电压的真实性,将导热胶或防伪漆作为防伪保护层对处理模组进行保护,既降低了防伪成本,又可以及时发现用户是否拆除处理模组或是否修改处理模组内部存储的数据,进而保证了处理模组的存储器内记录的存储电压的真实性,进而确保超频识别的准确性。
本公开应用于算力板上的处理模组内,直接通过处理模组获取算力板上负载的工作电压,并通过获取的电压进行超频识别,识别速度快;其中,在负载在当前时段内的最小工作电压超过存储电压的情况下,将当前时段的最小工作电压更新为存储电压,根据存储电压确定算力板上负载是否在超频状态下工作过,这样通过算力板上负载的工作电压实现超频识别,不仅识别速度快,准确度更高,进而可以尽量避免算力板的超频;同时,利用导热胶或防伪漆在处理模组上设置防伪保护层,既降低了防伪成本,又可以及时发现用户是否拆除处理模组或是否修改处理模组内部存储的数据,进而保证了处理模组的存储器内记录的存储电压的真实性,进而确保超频识别的准确性。
图7是根据一示例性实施例示出的一种工作电压处理装置120的框图。参照图7,该装置可为算力板上的处理模组。该装置可包括电压采集单元121、电压确定单元122和电压更新单元123。
该电压采集单元121被配置为采集所述算力板上负载的工作电压。
该电压确定单元122被配置为确定所述负载在当前时段内的最小工作电压是否超过存储电压,其中,所述存储电压为:所述负载在历史时段内的最小工作电压。
该电压更新单元123被配置为在当前时段内的所述最小工作电压超过所述存储电压时,将当前时段的所述最小工作电压更新为所述存储电压,其中,所述存储电压,至少用于确定所述算力板上负载是否在超频状态下工作过。
在一个实施例中,所述电压更新单元,还被配置为:
在所述当前时段内的最小工作电压超过所述存储电压时,输出断电信号,其中,所述断电信号,用于控制供电模组停止向所述负载的供电。
在一个实施例中,所述处理模组具有第一模式和第二模式;
在所述第一模式下,当所述处理模组确定出所述当前时段内的最小工作电压超过所述存储电压的情况下生成所述断电信号;
在所述第二模式下,所述处理模组确定出所述当前时段内的最小工作电压超过所述存储电压的情况下不生成所述断电信号。
在一个实施例中,所述处理模组的至少一个引脚与所述负载的供电母线连接;其中,所述供电母线的供电电压为所述负载的工作电压;
所述电压采集单元,被配置为:
所述处理模组采集所述供电母线的供电电压。
在一个实施例中,所述处理模组包括:模拟数字转换器ADC、可编程单元和存储器;
所述ADC的模拟引脚与所述供电母线连接;
所述可编程单元的输出引脚与所述供电母线上的开关连接,用于断开或者连接所述模拟引脚与所述供电母线之间的连接;
所述存储器,用于供所述处理模组记录所述存储电压。
在一个实施例中,所述处理模组与所述供电母线之间具有分压电路;所述分压电路,用于将所述供电母线的供电电压分压后输入至所述处理模组。
在一个实施例中,所述分压电路,包括:
第一电阻、第二电阻、第三电阻和滤波单元;
所述第一电阻的第一端与所述供电母线连接,所述第一电阻的第二端与所述第二电阻的第一端连接;所述第二电阻的第二端分别与所述第三电阻的第一端和所述滤波单元的输入端连接;
所述第三电阻的第二端和所述滤波单元的接地端均接地;
所述滤波单元的输出端与所述处理模组连接。
在一个实施例中,所述滤波单元,包括:
第四电阻、第一电容和第二电容;
所述第四电阻的第一端和所述第一电容的第一端均与所述滤波单元的输入端连接;所述第四电 阻的第二端和所述第二电容的第一端均与所述滤波单元的输出端连接;所述第一电容的第二端和所述第二电容的第二端均与所述滤波单元的接地端连接。
在一个实施例中,所述处理模组外表面具有防伪保护层,其中,所述防伪保护层,用于至少通过所述防伪保护层确定所述存储器内记录的存储电压的真实性。
在一个实施例中,所述防伪保护层包括:
导热胶,所述导热胶还用于对所述处理模组散热;
或者,
防伪漆。
在一个实施例中,所述电压确定单元,还被配置为在当前时段内,将以预设频率采集的所述负载的当前工作电压与记录电压进行比较;
在所述当前工作电压小于所述记录电压的情况下,将所述当前工作电压更新为所述记录电压;
在所述当前工作电压大于所述记录电压的情况下,维持所述当前记录电压;
在当前时段结束的情况下,将所述记录电压确定为当前时段内所述最小工作电压。
关于上述实施例中的装置,其中各个单元执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图8是根据一示例性实施例示出的一种电子设备800的框图。例如,电子设备800可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图8,电子设备800可以包括以下一个或多个组件:处理组件802,存储器804,电力组件806,多媒体组件808,音频组件810,输入/输出(I/O)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制电子设备800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在电子设备800的操作。这些数据的示例包括用于在电子设备800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电力组件806为电子设备800的各种组件提供电力。电力组件806可以包括电源管理系统,一个或多个电源,及其他与为电子设备800生成、管理和分配电力相关联的组件。
多媒体组件808包括在所述装置800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还获取与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当设备800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当电子设备800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为电子设备800提供各个方面的状态评估。例如,传感器组件814可以检测到设备800的打开/关闭状态,组件的相对定位,例如所述组件为电子设备800的显示器和小键盘,传感器组件814还可以检测电子设备800或电子设备800一个组件的位置改变,用户与电子设备800接触的存在或不存在,电子设备800方位或加速/减速和电子设备800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于电子设备800和其他设备之间有线或无线方式的通信。电子设备800可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,电子设备800可以被一个或多个应用专用集成电路、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、处理模组或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器804,上述指令可由电子设备800的处理器820执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储 设备等。
本公开实施例还提供一种非临时性计算机可读存储介质,当所述存储介质中的指令由移动终端的处理器执行时,使得移动终端能够执行一种工作电压处理方法,所述方法包括:采集所述算力板上负载的工作电压;
确定所述负载在当前时段内的最小工作电压是否超过存储电压,其中,所述存储电压为:所述负载在历史时段内的最小工作电压;
在当前时段内的所述最小工作电压超过所述存储电压时,将当前时段的所述最小工作电压更新为所述存储电压,其中,所述存储电压,至少用于确定所述算力板上负载是否在超频状态下工作过。
总之,本公开实施例提供的非临时性计算机可读存储介质存储有能够执行前述任意一个工作电压处理方法的实施例,例如,如图1至图3所示方法的任意一个。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本发明的其它实施方案。本申请旨在涵盖本发明的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本发明的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本发明的真正范围和精神由下面的权利要求指出。应当理解的是,本发明并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本发明的范围仅由所附的权利要求来限制。

Claims (23)

  1. 一种工作电压处理方法,其中,包括:
    采集算力板上负载的工作电压;
    确定所述负载在当前时段内的最小工作电压是否超过存储电压,其中,所述存储电压为:所述负载在历史时段内的最小工作电压;
    在当前时段内的所述最小工作电压超过所述存储电压时,将当前时段的所述最小工作电压更新为所述存储电压,其中,所述存储电压,至少用于确定所述算力板上负载是否在超频状态下工作过。
  2. 根据权利要求1所述的方法,其中,所述方法还包括:
    在所述当前时段内的最小工作电压超过所述存储电压的情况下,输出断电信号,其中,所述断电信号,用于控制供电模组停止向所述负载的供电。
  3. 根据权利要求2所述的方法,其中,所述处理模组具有第一模式和第二模式;
    在所述第一模式下,当所述处理模组确定出所述当前时段内的最小工作电压超过所述存储电压时生成所述断电信号;
    在所述第二模式下,所述处理模组确定出所述当前时段内的最小工作电压超过所述存储电压时不生成所述断电信号。
  4. 根据权利要求1所述的方法,其中,所述处理模组的至少一个引脚与所述负载的供电母线连接;其中,所述供电母线的供电电压为所述负载的工作电压;
    所述采集所述算力板上负载的工作电压,包括:
    所述处理模组采集所述供电母线的供电电压。
  5. 根据权利要求4所述的方法,其中,所述处理模组包括:模拟数字转换器ADC、可编程单元和存储器;
    所述ADC的模拟引脚与所述供电母线连接;
    所述可编程单元的输出引脚与所述供电母线上的开关连接,用于断开或者连接所述负载与所述供电母线之间的连接;
    所述存储器,用于供所述处理模组记录所述存储电压。
  6. 根据权利要求1所述的方法,其中,所述处理模组与所述供电母线之间具有分压电路;所述分压电路,用于将所述供电母线的供电电压分压后输入至所述处理模组。
  7. 根据权利要求6所述的方法,所述分压电路,包括:
    第一电阻、第二电阻、第三电阻和滤波单元;
    所述第一电阻的第一端与所述供电母线连接,所述第一电阻的第二端与所述第二电阻的第一端连接;所述第二电阻的第二端分别与所述第三电阻的第一端和所述滤波单元的输入端连接;
    所述第三电阻的第二端和所述滤波单元的接地端均接地;
    所述滤波单元的输出端与所述处理模组连接。
  8. 根据权利要求7所述的方法,其中,所述滤波单元,包括:
    第四电阻、第一电容和第二电容;
    所述第四电阻的第一端和所述第一电容的第一端均与所述滤波单元的输入端连接;所述第四电阻的第二端和所述第二电容的第一端均与所述滤波单元的输出端连接;所述第一电容的第二端和所述第二电容的第二端均与所述滤波单元的接地端连接。
  9. 根据权利要求1至5任一项所述的方法,其中,所述处理模组外表面具有防伪保护层,其中,所述防伪保护层,用于至少通过所述防伪保护层确定所述存储器内记录的存储电压的真实性。
  10. 根据权利要求9所述的方法,其中,所述防伪保护层包括:
    导热胶,所述导热胶还用于对所述处理模组散热;
    或者,
    防伪漆。
  11. 根据权利要求1所述的方法,其中,所述方法还包括:
    在当前时段内,将以预设频率采集的所述负载的当前工作电压与记录电压进行比较;
    在所述当前工作电压小于所述记录电压的情况下,将所述当前工作电压更新为所述记录电压;
    在所述当前工作电压大于所述记录电压的情况下,维持所述当前记录电压;
    在当前时段结束的情况下,将所述记录电压确定为当前时段内所述最小工作电压。
  12. 一种工作电压处理装置,其中,所述装置包括:
    电压采集单元,被配置为采集所述算力板上负载的工作电压;
    电压确定单元,被配置为确定所述负载在当前时段内的最小工作电压是否超过存储电压,其中,所述存储电压为:所述负载在历史时段内的最小工作电压;
    电压更新单元,被配置为在当前时段内的所述最小工作电压超过所述存储电压的情况下,将当前时段的所述最小工作电压更新为所述存储电压,其中,所述存储电压,至少用于确定所述算力板上负载是否在超频状态下工作过。
  13. 根据权利要求12所述的装置,其中,所述电压更新单元,还被配置为:
    在所述当前时段内的最小工作电压超过所述存储电压时,输出断电信号,其中,所述断电信号,用于控制供电模组停止向所述负载的供电。
  14. 根据权利要求13所述的装置,其中,所述处理模组具有第一模式和第二模式;
    在所述第一模式下,当所述处理模组确定出所述当前时段内的最小工作电压超过所述存储电压的情况下生成所述断电信号;
    在所述第二模式下,所述处理模组确定出所述当前时段内的最小工作电压超过所述存储电压的情况下不生成所述断电信号。
  15. 根据权利要求12所述的装置,其中,所述处理模组的至少一个引脚与所述负载的供电母线连接;其中,所述供电母线的供电电压为所述负载的工作电压;
    所述电压采集单元,被配置为:
    所述处理模组采集所述供电母线的供电电压。
  16. 根据权利要求15所述的装置,其中,所述处理模组包括:模拟数字转换器ADC、可编程单元和存储器;
    所述ADC的模拟引脚与所述供电母线连接;
    所述可编程单元的输出引脚与所述供电母线上的开关连接,用于断开或者连接所述模拟引脚与所述供电母线之间的连接;
    所述存储器,用于供所述处理模组记录所述存储电压。
  17. 根据权利要求12所述的装置,其中,所述处理模组与所述供电母线之间具有分压电路;所述分压电路,用于将所述供电母线的供电电压分压后输入至所述处理模组。
  18. 根据权利要求17所述的装置,所述分压电路,包括:
    第一电阻、第二电阻、第三电阻和滤波单元;
    所述第一电阻的第一端与所述供电母线连接,所述第一电阻的第二端与所述第二电阻的第一端连接;所述第二电阻的第二端分别与所述第三电阻的第一端和所述滤波单元的输入端连接;
    所述第三电阻的第二端和所述滤波单元的接地端均接地;
    所述滤波单元的输出端与所述处理模组连接。
  19. 根据权利要求18所述的装置,其中,所述滤波单元,包括:
    第四电阻、第一电容和第二电容;
    所述第四电阻的第一端和所述第一电容的第一端均与所述滤波单元的输入端连接;所述第四电阻的第二端和所述第二电容的第一端均与所述滤波单元的输出端连接;所述第一电容的第二端和所述第二电容的第二端均与所述滤波单元的接地端连接。
  20. 根据权利要求12至16任一项所述的装置,其中,所述处理模组外表面具有防伪保护层,其中,所述防伪保护层,用于至少通过所述防伪保护层确定所述存储器内记录的存储电压的真实性。
  21. 根据权利要求20所述的装置,其中,所述防伪保护层包括:
    导热胶,所述导热胶还用于对所述处理模组散热;
    或者,
    防伪漆。
  22. 根据权利要求12所述的装置,其中,所述电压确定单元,还被配置为:
    在当前时段内,将以预设频率采集的所述负载的当前工作电压与记录电压进行比较;
    在所述当前工作电压小于所述记录电压的情况下,将所述当前工作电压更新为所述记录电压;
    在所述当前工作电压大于所述记录电压的情况下,维持所述当前记录电压;
    在当前时段结束的情况下,将所述记录电压确定为当前时段内所述最小工作电压。
  23. 一种电子设备,其中,包括:
    用于存储处理器可执行指令的存储器;
    处理器,与所述存储器连接;
    其中,所述处理器被配置为执行如权利要求1至11中任一项提供的工作电压处理方法。24、一 种非临时性计算机可读存储介质,当所述存储介质中的指令由计算机的处理器执行时,使得计算机能够执行如权利要求1至11中任一项提供的工作电压处理方法。
PCT/CN2022/118840 2021-10-09 2022-09-14 工作电压处理方法、装置、电子设备和存储介质 WO2023056830A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111174088.5 2021-10-09
CN202111174088.5A CN114115500A (zh) 2021-10-09 2021-10-09 工作电压处理方法、装置、电子设备和存储介质

Publications (1)

Publication Number Publication Date
WO2023056830A1 true WO2023056830A1 (zh) 2023-04-13

Family

ID=80441390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/118840 WO2023056830A1 (zh) 2021-10-09 2022-09-14 工作电压处理方法、装置、电子设备和存储介质

Country Status (2)

Country Link
CN (1) CN114115500A (zh)
WO (1) WO2023056830A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114115500A (zh) * 2021-10-09 2022-03-01 北京比特大陆科技有限公司 工作电压处理方法、装置、电子设备和存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101876845A (zh) * 2009-04-30 2010-11-03 华硕电脑股份有限公司 中央处理器的超频控制方法和超频控制程序
CN109116911A (zh) * 2018-05-31 2019-01-01 艾维克科技股份有限公司 一种智慧型超频方法
CN111752361A (zh) * 2019-03-29 2020-10-09 北京比特大陆科技有限公司 算力自适应方法和装置、设备和存储介质及程序产品
US20210109562A1 (en) * 2020-10-30 2021-04-15 Intel Corporation Methods and apparatus to dynamically configure overclocking frequency
CN114115500A (zh) * 2021-10-09 2022-03-01 北京比特大陆科技有限公司 工作电压处理方法、装置、电子设备和存储介质

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100426196C (zh) * 2005-04-22 2008-10-15 精拓科技股份有限公司 一种调整负载装置执行效能的方法
CN101833365B (zh) * 2009-03-09 2011-09-14 华为技术有限公司 一种单板节能装置、方法及单板
CN101587326B (zh) * 2009-06-29 2012-07-18 深圳市晶导电子有限公司 反馈控制电路及采用该反馈控制电路的电源电路
CN102314213B (zh) * 2010-07-09 2016-03-30 精英电脑股份有限公司 动态调整工作频率的计算机系统
CN102916835B (zh) * 2012-10-18 2015-09-09 华为技术有限公司 一种调整设备功耗的方法及装置
CN105988551A (zh) * 2015-02-13 2016-10-05 华硕电脑股份有限公司 参考电压产生方法及电子装置
CN107741565A (zh) * 2017-09-18 2018-02-27 河源市美晨联合智能硬件电子研究院 测量装置、方法、移动终端及可读存储介质
CN108983946B (zh) * 2018-06-13 2021-04-27 烽火通信科技股份有限公司 一种服务器功耗控制方法、系统及设备
CN109787625B (zh) * 2019-03-05 2022-04-05 上海芷锐电子科技有限公司 一种基于双pll的系统超频引起的电压毛刺保护系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101876845A (zh) * 2009-04-30 2010-11-03 华硕电脑股份有限公司 中央处理器的超频控制方法和超频控制程序
CN109116911A (zh) * 2018-05-31 2019-01-01 艾维克科技股份有限公司 一种智慧型超频方法
CN111752361A (zh) * 2019-03-29 2020-10-09 北京比特大陆科技有限公司 算力自适应方法和装置、设备和存储介质及程序产品
US20210109562A1 (en) * 2020-10-30 2021-04-15 Intel Corporation Methods and apparatus to dynamically configure overclocking frequency
CN114115500A (zh) * 2021-10-09 2022-03-01 北京比特大陆科技有限公司 工作电压处理方法、装置、电子设备和存储介质

Also Published As

Publication number Publication date
CN114115500A (zh) 2022-03-01

Similar Documents

Publication Publication Date Title
US10080194B2 (en) Method, device, and computer-readable storage medium for awaking electronic equipment
KR102336856B1 (ko) 전자 장치 및 그의 배터리 충방전 제어 방법
KR102216484B1 (ko) 충전 제어 방법 및 그 장치
US8843173B2 (en) Portable device and method for providing voice recognition service
WO2018066881A1 (ko) 배터리 충전 방법 및 전자 장치
KR102175103B1 (ko) 저전력 구동 방법과 이를 수행하는 전자 장치
JP7121865B2 (ja) 逆方向充電装置、逆方向充電電流調整方法及び装置
WO2017012267A1 (zh) 充电方法及装置
CN108631401B (zh) 充电电路、方法、电子设备和存储介质
KR20180104987A (ko) 배터리의 전압에 기반한 충전 제어 방법 및 전자 장치
WO2021077611A1 (zh) 电池充电方法、电池充电装置及存储介质
WO2018106022A2 (ko) 전자 장치 및 전자 장치에서의 표면 발열을 제어하기 위한 방법
WO2018026138A1 (ko) 근거리 무선 통신 네트워크에서 스캔 방법 및 이를 구현하는 전자 장치
WO2023056830A1 (zh) 工作电压处理方法、装置、电子设备和存储介质
KR20160064734A (ko) 충전 제어 방법 및 그 방법을 처리하는 전자장치
EP3614523B1 (en) Charging processing method and terminal device
CN111435968A (zh) 一种摄像机及摄像机的控制方法
CN111464671B (zh) 一种电子设备及其充电方法
CN106532876B (zh) 供电控制方法、装置和计算机设备
CN103762390B (zh) 充电方法及行动电子装置
CN106451670A (zh) 一种充电控制方法、装置及终端设备
CN108124098A (zh) 电子设备和用于自动聚焦的方法
US20220247198A1 (en) Charging method and device, and device
CN217902302U (zh) 一种监控主机
CN111984107B (zh) 一种终端设备供电异常处理方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22877850

Country of ref document: EP

Kind code of ref document: A1