WO2023056724A1 - 一种锡冶炼中间物料处理系统及其处理方法 - Google Patents

一种锡冶炼中间物料处理系统及其处理方法 Download PDF

Info

Publication number
WO2023056724A1
WO2023056724A1 PCT/CN2022/075956 CN2022075956W WO2023056724A1 WO 2023056724 A1 WO2023056724 A1 WO 2023056724A1 CN 2022075956 W CN2022075956 W CN 2022075956W WO 2023056724 A1 WO2023056724 A1 WO 2023056724A1
Authority
WO
WIPO (PCT)
Prior art keywords
tin
furnace
slag
matte
fuming
Prior art date
Application number
PCT/CN2022/075956
Other languages
English (en)
French (fr)
Inventor
袁海滨
唐都作
杨斌
徐万立
宋兴诚
谢云华
张璋
张志胤
郭祥勇
梁军
陈云
贾洪武
张瑜梅
Original Assignee
昆明理工大学
云南锡业股份有限公司锡业分公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆明理工大学, 云南锡业股份有限公司锡业分公司 filed Critical 昆明理工大学
Priority to US17/693,324 priority Critical patent/US20230111491A1/en
Publication of WO2023056724A1 publication Critical patent/WO2023056724A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B25/00Obtaining tin
    • C22B25/02Obtaining tin by dry processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/14Cements containing slag
    • C04B7/147Metallurgical slag
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0026Pyrometallurgy
    • C22B15/0028Smelting or converting
    • C22B15/003Bath smelting or converting
    • C22B15/0039Bath smelting or converting in electric furnaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B25/00Obtaining tin
    • C22B25/06Obtaining tin from scrap, especially tin scrap
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B30/00Obtaining antimony, arsenic or bismuth
    • C22B30/02Obtaining antimony
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B30/00Obtaining antimony, arsenic or bismuth
    • C22B30/06Obtaining bismuth
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/001Dry processes
    • C22B7/002Dry processes by treating with halogens, sulfur or compounds thereof; by carburising, by treating with hydrogen (hydriding)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding

Definitions

  • the invention relates to the technical field of tin and copper recovery, and more specifically relates to a tin smelting intermediate material processing system and a processing method thereof.
  • the main production process equipment of tin concentrate smelting at home and abroad includes Osmet top blowing furnace, crude tin impurity removal pot, tin electric furnace, fluidized bed furnace, fuming furnace, electric continuous crystallizer, vacuum furnace, tin electrolytic cell system, etc.
  • the crude tin produced is sent to the impurity removal pot, and various tin-containing materials are produced after repeated de-impurity removal, including tin Sulfur-copper slag, the tin-containing sulfur-copper slag is a hazardous waste material.
  • the sales and transportation of this material are relatively strict and standardized, and must be sold at a discount to the next company. loss of operating profit; in addition, with the subsequent deep de-doping of crude tin, a certain amount of tin-containing anode slime will be produced in the tin electrolysis process, and the tin-containing anode slime is enriched with impurity elements antimony, bismuth, and precious metals Gold and silver also contain a certain amount of copper, and at the same time contain high-grade tin, which are also hazardous waste materials.
  • This material is the same as the above-mentioned tin-sulfur-containing copper slag. If it is sold directly, it will also face the profit caused by the low valuation coefficient loss etc.
  • the present invention provides a tin smelting intermediate material processing system and its processing method, enabling it to efficiently separate and recycle tin from other materials, and solve the problems of difficult sales and transportation of complex tin-containing smelting intermediate materials and discounted sales. Loss, transform hazardous waste into value-added valuable materials for comprehensive recycling.
  • a tin smelting intermediate material processing system including: fuming furnace, subsidence electric furnace, lean slag water quenching pool, matte cladding, pulverized coal injection system, flue gas treatment system and secondary air supply system;
  • the fuming furnace is respectively connected with the subsidence electric furnace, pulverized coal injection system, flue gas treatment system and secondary air supply system;
  • the settling electric furnace is also connected with the poor slag water quenching pool and the matte copper ladle respectively.
  • the furnace also includes: a furnace top belt feeding system and a hook scale system;
  • the intermediate materials for tin smelting include hot tin slag, tin-containing copper mineral materials and lump coal;
  • the hot tin slag is added to the smoke through the hook scale system
  • the tin-containing copper mineral material and lump coal are fed into the fuming furnace through the top belt feeding system.
  • the fuming furnace is provided with a hot tin slag feed chute, a top feed port and a high-temperature melt chute;
  • the settling electric furnace is provided with a matte discharge chute and a lean slag discharge chute;
  • the hook scale system cooperates with the hot slag feeding chute; the furnace top belt feeding system cooperates with the furnace top feeding port; the high-temperature melt chute cooperates with the internal melting furnace Pool connectivity;
  • the matte discharge chute communicates with the inside of the matte ladle; the lean slag discharge chute communicates with the lean slag water quenching pool.
  • the flue gas treatment system includes: dust collection device, tin electric furnace, vacuum furnace, top blowing furnace, vacuum tin chute, vacuum tin mold, antimony bismuth alloy chute, antimony bismuth alloy mold, high antimony bismuth thick tin chute;
  • the dust collection device is respectively communicated with the tin electric furnace and the top-blown furnace;
  • the tin electric furnace is also communicated with the vacuum furnace through the high-antimony-bismuth thick tin chute;
  • the vacuum tin mold is located at the end of the vacuum tin chute for holding vacuum tin;
  • the antimony-bismuth alloy mold is located at the end of the vacuum tin chute.
  • the end of the antimony-bismuth alloy chute is used to hold the antimony-bismuth alloy;
  • the top-blowing furnace is provided with a top-blowing furnace slag port and a top-blowing furnace thick tin port; the hot slag transfer slag bag is located under the top-blowing furnace slag port, and is used for receiving hot tin slag.
  • the present invention also discloses a method for processing the intermediate material of tin smelting by using the above-mentioned processing system, including the following steps:
  • Furnace top belt feeding After receiving the hot tin slag in the fuming furnace, start the furnace top belt feeding system, and add tin-copper minerals and lump coal into the fuming furnace, evenly within 60 to 120 minutes added;
  • Fuming volatilized tin heat up and smelt until the cold material in the fuming furnace is completely melted, then insert the sample rod into the molten pool inside the fuming furnace to take a melt sample for rapid elemental analysis, based on the results of the rapid elemental analysis, Start the fuming furnace vulcanization and volatile tin step, add vulcanizing agent volatilized tin into the fuming furnace through the belt feeding system on the top of the furnace, and simultaneously close the oxygen enrichment of the secondary air supply system.
  • Sn+Cu molar ratio of 1:3 is calculated, the excess coefficient is 1.2 ⁇ 1.3, and the vulcanizing agent is added within 90 ⁇ 120min.
  • the high temperature melt in the fuming furnace contains tin ⁇ 0.3wt.%.
  • the volatile tin operation has reached the end, otherwise, according to the calculation difference of the test tin higher than 0.3wt.%, continue to add vulcanizing agent to volatilize tin until the high temperature melt contains tin ⁇ 0.3wt.%.
  • step (f) Separation of copper and poor slag in the subsidence electric furnace: when the subsidence electric furnace is initially expecting materials, use the slag with Fe/SiO 2 in the range of 0.9 to 1.3 to create a molten pool, and keep the temperature of the molten pool in the subsidence electric furnace at 1200 to 1230 ° C; step (e) The high-temperature melt of the fuming furnace after fuming and volatilization of tin reaches the standard is discharged into the sinking electric furnace through the high-temperature melt chute, and the sinking electric furnace is kept warm until the upper layer of poor slag contains copper ⁇ 0.7wt.%. Drain the matte in the subsidence electric furnace to the matte bag through the matte discharge chute.
  • the slag discharge chute is discharged into the poor slag water quenching pool for water quenching. After water quenching, the poor slag can be sold outside after being separated from the slag water; The poor slag remaining in the pool is 300-500mm, block the poor slag outlet, stop the poor slag discharge, and the remaining poor slag is used for heat preservation of the subsidence electric furnace, so that the subsidence electric furnace can be connected to the next high-temperature melt of the fuming furnace.
  • the step (c) adds tin-containing copper mineral materials to the fuming furnace, and the components are Sn 0-65wt.%, Cu 0-24wt.%, S 0-30wt.%, Sb 0-20wt.%. , Bi 0-20wt.%, As 0-7wt.%, Au 0-30g/t, Ag 0-800g/t, the tin-containing copper mineral material is tin-containing mineral material, copper-tin material, high-sulfur copper One or more of concentrates; the main element components in the hot tin slag are Sn 2-6wt.%, Fe 18-25wt.%, Si 13-25wt.%.
  • the tin-containing mineral material refers to the material Containing only tin but not copper
  • the copper-tin-containing material means that the material contains tin and copper at the same time
  • the high-sulfur copper concentrate means that the material only contains copper but does not contain tin.
  • high-sulfur copper concentrate is (30-70): (0-35): (0-20): (0-30)
  • the principle of batching is based on the Sn grade of the above-mentioned mixed material integrated into the furnace at 3-10wt.%, and the Cu grade is not required to be controlled.
  • the mass of the lump coal accounts for 3-5% of the tin smelting intermediate material.
  • the vulcanizing agent described in the step (e) is one or more of sulfur, pyrite or high-sulfur copper concentrate; the tin fumes obtained by the fuming and volatilization of the step (e), according to the difference in the composition of the tin fumes , when the tin fume contains antimony + bismuth higher than 5wt.%, the high antimony bismuth tin fume is sent to the tin electric furnace for reduction smelting to produce high antimony bismuth crude tin, and the high antimony bismuth crude tin is sent to the vacuum furnace for refining, and the output
  • the by-product antimony-bismuth alloy and vacuum tin products can be directly sold; when the tin fume contains less than 5wt.% antimony + bismuth, the low-antimony bismuth tin fume is directly returned to the main production process for reduction smelting in the top-blowing furnace.
  • step (f) after the matte is covered with the high-temperature matte melt in the subsidence electric furnace, the matte is naturally cooled for 72 to 96 hours, and then the matte is completely solidified, and the solidified matte in the matte is turned over, and the matte
  • the material of the upper layer in the bag is slag, and the material of the lower layer is qualified matte; the slag is sampled and analyzed, if the slag contains copper ⁇ 0.7wt.%, it will be merged into the poor slag after water quenching, and sold if the slag contains copper > 0.7wt. .%, it will be crushed and returned to the sinking electric furnace to melt and recover copper; qualified matte can be sold outside after being crushed.
  • the beneficial effect of the present invention lies in: adopting the existing mature vulcanization fuming technology and equipment to realize high-efficiency and low-cost separation and recovery of tin and other valuable elements in complex tin-containing materials.
  • Tin fume is collected in the form of tin fume, and according to the difference in the amount of impurities contained in tin fume, it is further divided into different main production process devices for processing; in addition, combined with the characteristics of various complex tin-containing materials, tin fume needs sulfur, and ice-making copper is used.
  • the upper layer of low-tin and low-copper ferrosilicon slag is quenched in water and sold to cement plants for recycling, while the matte After being discharged into special steamed stuffed buns for cooling and crushing, they are sold outside to create benefits. Therefore, the whole process of the present invention does not generate any solid waste or hazardous waste, and the tin material returns to the main production process without any economic loss.
  • the technical process is simple and efficient, and the recovery rate of valuable metals is high, which can realize full recovery of high value.
  • Fig. 1 is the schematic diagram of the tin smelting intermediate material processing system disclosed by the utility model
  • Fig. 2 is a process flow diagram of the tin smelting intermediate material processing system disclosed by the utility model.
  • 1 is the fuming furnace
  • 2 is the furnace top belt feeding system
  • 3 is the hook scale system
  • 4 is the hot slag feeding chute
  • 5 is the hot slag transfer slag bag
  • 6 is the furnace top feeding port
  • 7 is Settling electric furnace
  • 8 is poor slag water quenching pool
  • 9 is matte copper cladding
  • 10 is matte discharge chute
  • 11 is poor slag discharge chute
  • 12 is high temperature melt chute
  • 13 is pulverized coal injection system
  • 14 is dust collection device
  • 15 is tin electric furnace
  • 16 is vacuum furnace
  • 17 is top blowing furnace
  • 18 is vacuum tin chute
  • 19 is vacuum tin mold
  • 20 is antimony bismuth alloy chute
  • 21 is antimony bismuth alloy mold
  • 22 is high antimony bismuth coarse Tin chute
  • 23 are the slag mouth of the top-blowing furnace
  • 24 are the thick tin mouth of the top-blowing furnace.
  • this embodiment provides a tin smelting intermediate material processing system, including: fuming furnace 1, settling electric furnace 7, poor slag water quenching pool 8, matte copper bag 9, pulverized coal injection system 13, smoke Air treatment system and secondary air supply system;
  • the fuming furnace 1 is respectively connected with the subsidence electric furnace 7, the pulverized coal injection system 13, the flue gas treatment system and the secondary air supply system;
  • the settling electric furnace 7 is also connected with the poor slag water quenching pool 8 and the matte copper bag 9 respectively.
  • Furnace top belt feeding system 2 and hook scale system 3; intermediate materials for tin smelting include hot tin slag, tin-containing copper mineral materials and lump coal; hot tin slag is fed into fuming furnace 1 through hook scale system 3, containing tin Copper ore materials and lump coal are fed into the fuming furnace 1 through the top belt feeding system 2 .
  • Fuming furnace 1 is provided with hot tin slag feed chute 4, furnace top feed port 6 and high-temperature melt chute 12; settling electric furnace 7 is provided with matte discharge chute 10 and poor slag discharge chute 11;
  • the hook scale system 3 cooperates with the hot slag feeding chute 4; the furnace top belt feeding system 2 cooperates with the furnace top feeding port 6; the high temperature melt chute 12 communicates with the molten pool inside the subsidence electric furnace 1;
  • the matte discharge chute 10 communicates with the matte copper ladle 9; the lean slag discharge chute 11 communicates with the lean slag water quenching pool 8.
  • the flue gas treatment system includes: dust collection device 14, tin electric furnace 15, vacuum furnace 16, top blowing furnace 17, vacuum tin chute 18, vacuum tin mold 19, antimony bismuth alloy chute 20, antimony bismuth alloy mold 21, high antimony bismuth coarse tin chute 22;
  • the dust collection device 14 communicates with the tin electric furnace 15 and the top blowing furnace 17 respectively;
  • Tin electric furnace 15 also communicates with vacuum furnace 16 through thick tin chute 22 of high antimony bismuth; Vacuum tin mold 19 is positioned at the end of vacuum tin chute 18, is used to hold vacuum tin; , for holding antimony bismuth alloy;
  • the top-blowing furnace 17 is provided with a top-blowing furnace slag port 23 and a top-blowing furnace coarse tin port 24; the hot slag transfer slag bag 5 is located below the top-blowing furnace slag port 23, and is used for receiving hot tin slag.
  • processing method is:
  • Furnace top belt feeding After receiving the hot tin slag in the fuming furnace, start the furnace top belt feeding system, and add mixed tin-containing mineral materials, copper-tin-containing materials, and high-sulfur copper concentrate to the fuming furnace , Lump coal, evenly added within 60min;
  • (d) Heating up smelting: After the top belt feeding of the fuming furnace is completed, stop the top belt feeding, increase the oxygen-enriched concentration of the secondary air supply system, increase the pulverized coal supply of the pulverized coal injection system, and speed up the fuming furnace Heat up and melt the internally cooled material, keep the temperature of the flue gas in the furnace at 1050°C, control the Fe/SiO 2 1.0 in the melting pool of the fuming furnace, and keep it for 30 minutes;
  • Fuming volatilized tin heat up and smelt until the cold material in the fuming furnace is completely melted, then insert the sample rod into the melting pool of the fuming furnace to take a melt sample for rapid elemental analysis, and start the process based on the results of the rapid elemental analysis.
  • step of vulcanizing and volatilizing tin in the fuming furnace add vulcanizing agent volatilized tin into the fuming furnace through the belt feeding system on the top of the furnace, and simultaneously shut down the oxygen enrichment of the secondary air supply system.
  • step (f) Separation of copper and poor slag in the subsidence electric furnace: when the subsidence electric furnace is initially expecting materials, use the slag with Fe/SiO 2 at 0.9 to create a molten pool, and keep the temperature of the molten pool in the subsidence electric furnace at 1200°C; step (e) fuming After the volatilized tin reaches the standard, the high-temperature melt of the fuming furnace is discharged into the sinking electric furnace through the high-temperature melt chute, and the sinking electric furnace is continuously kept warm until the upper layer of poor slag contains copper ⁇ 0.7wt.%.
  • the poor slag in the sinking electric furnace is discharged into the water quenching pool through the poor slag port on the upper part of the sinking electric furnace
  • the poor slag after water quenching can be sold to the cement plant after the slag water is separated; when the poor slag is discharged, the sampling rod is used to detect the depth of the melting pool in the subsidence electric furnace at all times. It can block the poor slag outlet, stop the poor slag discharge, and the remaining poor slag is used for heat preservation of the subsidence electric furnace, so that the subsidence electric furnace can be connected to the next high-temperature melt of the fuming furnace;
  • step (c) adds tin-containing mineral materials to the fuming furnace and the composition is Sn 3wt.%, Cu 0wt.%, S 7wt.%, Sb 0wt.%, Bi 0wt.%, As 0wt.%, Au 0g /t, Ag 0g/t, copper-tin containing material components are Sn 65wt.%, Cu18wt.%, S10wt.%, Sb 0wt.%, Bi 0wt.%, As 1.0wt.%, Au 0g/t, Ag 8g /t, the composition of high sulfur copper concentrate is Sn 0wt.%, Cu 15wt.%, S 28wt.%, Sb 0wt.%, Bi 0wt.%, As 0wt.%, Au 2g/t, Ag 150g/t, 3 types are mixed; while the main element components of hot tin slag are Sn 2wt.%, Fe 18w
  • step (c) adds mixed tin-containing mineral material, copper-tin-containing material, high-sulfur copper concentrate ratio control in fuming furnace, according to step (b) the weight of hot tin slag weighed and measured by hook scale, according to Hot tin slag: tin-containing mineral materials: copper-tin-containing materials, high-sulfur copper concentrate weight ratio is 48%: 27%: 12%: 13% for batching. 10wt.% as the benchmark, the Cu content reaches 3.97wt.%; the mass of lump coal accounts for 3% of the intermediate materials of tin smelting;
  • Step (e) tin fume obtained by fuming and volatilization, when the tin fume containing antimony+bismuth is lower than 5wt.%, the low-antimony bismuth tin fume is directly returned to the main production process for reduction and smelting in the top-blowing furnace;
  • Step (f) After the matte wrap is connected to the high-temperature matte melt in the subsidence electric furnace, the matte wrap is naturally cooled for 72 hours, and the matte is completely solidified, and the solidified matte in the matte wrap is turned over, and the upper layer of the matte wrap
  • the raw material is slag, and the lower layer material is qualified matte; the slag is sampled and analyzed, if the slag contains copper ⁇ 0.7wt.%, it will be merged into water quenching and then sold to the cement plant; after the qualified matte is crushed, it can be exported sale.
  • Example 2 the direct recovery rate of Sn contained in the comprehensive material into the furnace can reach 95%, the matte copper of 22wt.% grade is obtained, the direct recovery rate of Cu is 94%, and the direct recovery rate of Au and Ag deposited by matte copper is 96%. %, without any generation of hazardous waste residues.
  • Furnace top belt feeding After receiving the hot tin slag in the fuming furnace, start the furnace top belt feeding system, and add mixed tin-containing mineral materials, copper-tin-containing materials, and high-sulfur copper concentrate to the fuming furnace , Lump coal, evenly added within 70min;
  • (d) Heating up smelting: After the top belt feeding of the fuming furnace is completed, stop the top belt feeding, increase the oxygen-enriched concentration of the secondary air supply system, increase the pulverized coal supply of the pulverized coal injection system, and speed up the fuming furnace The internal cooling material is heated and melted, the temperature of the flue gas in the furnace is kept at 1100°C, the Fe/SiO 2 1.1 in the melting pool of the fuming furnace is controlled, and the temperature is kept for 40 minutes;
  • Fuming volatilized tin heat up and smelt until the cold material in the fuming furnace is completely melted, then insert the sample rod into the melting pool of the fuming furnace to take a melt sample for rapid elemental analysis, and start the process based on the results of the rapid elemental analysis.
  • step of vulcanizing and volatilizing tin in the fuming furnace add vulcanizing agent volatilized tin into the fuming furnace through the furnace top belt feeding system, and simultaneously close the oxygen enrichment of the secondary air supply system.
  • the poor slag in the sinking electric furnace is discharged into the water quenching pool through the poor slag port on the upper part of the sinking electric furnace After water quenching, the poor slag after water quenching can be sold to the cement plant after being separated from the slag water; when the poor slag is discharged, the sampling rod is used to detect the depth of the molten pool in the subsidence electric furnace at all times, and when the poor slag remains in the molten pool 400mm, that is It can block the poor slag outlet, stop the poor slag discharge, and the remaining poor slag is used for heat preservation of the subsidence electric furnace, so that the subsidence electric furnace can be connected to the next high-temperature melt of the fuming furnace;
  • step (c) adds tin-containing mineral material composition in fuming furnace and is Sn5wt.%, Cu0wt.%, S0wt.%, Sb0wt.%, Bi0wt.%, As0wt.%, Au0g/t, Ag0g/t
  • the composition of copper-tin-containing materials is Sn60wt.%, Cu15wt.%, S8wt.%, Sb0wt.%, Bi0wt.%, As1.5wt.%, Au0g/t, Ag10g/t, and the composition of high-sulfur copper concentrate is Sn0wt.%.
  • the main element composition of hot tin slag is Sn3wt.%, Fe25wt.%, Si25wt.%;
  • Step (c) adds mixed tin-containing mineral material, copper-tin-containing material, and high-sulfur copper concentrate ratio control in the fuming furnace, according to the weight of the hot tin slag weighed and measured by the hook scale in step (b), according to the heat Tin slag: tin-containing mineral material: copper-tin-containing material, high-sulfur copper concentrate weight ratio is 70%: 10%: 10%: 10% for batching, the batching principle is to comprehensively put the above mixture into the furnace, and the Sn grade is 8.6 wt.% as the benchmark, the Cu grade is up to 2.70wt.%; the mass of lump coal accounts for 5% of the intermediate materials of tin smelting;
  • Step (e) tin fume obtained by fuming and volatilization, when the tin fume containing antimony+bismuth is lower than 5wt.%, the low-antimony bismuth tin fume is directly returned to the main production process for reduction and smelting in the top-blowing furnace;
  • Step (f) After the matte wrap is connected to the high-temperature matte melt in the subsidence electric furnace, the matte wrap is naturally cooled for 72 hours, and the matte is completely solidified, and the solidified matte in the matte wrap is turned over, and the upper layer of the matte wrap
  • the material is slag, and the material of the lower layer is qualified matte; the slag is sampled and analyzed, if the slag contains copper ⁇ 0.7wt.%, it will be merged into the water-quenched poor slag and sold to the cement plant; the qualified matte can be sold outside after crushing .
  • Example 3 the direct recovery rate of Sn contained in the comprehensive material into the furnace can reach 96%, and the matte copper of 18wt.% grade is obtained, the direct recovery rate of Cu is 92%, and the direct recovery rate of Au and Ag deposited by matte copper is 95%. %, without any generation of hazardous waste residues.
  • Furnace top belt feeding After receiving the hot tin slag in the fuming furnace, start the furnace top belt feeding system, and add mixed tin-containing mineral materials, copper-tin-containing materials, and high-sulfur copper concentrate to the fuming furnace , Lump coal, evenly added within 90 minutes;
  • (d) Heating up smelting: After the top belt feeding of the fuming furnace is completed, stop the top belt feeding, increase the oxygen-enriched concentration of the secondary air supply system, increase the pulverized coal supply of the pulverized coal injection system, and speed up the fuming furnace Heat up and melt the internally cooled material, keep the temperature of the flue gas in the furnace at 1150°C, control the Fe/SiO 2 1.3 in the melting pool of the fuming furnace, and keep it for 50 minutes;
  • the poor slag in the sinking electric furnace is discharged into the water quenching pool through the poor slag port on the upper part of the sinking electric furnace After water quenching, the poor slag after water quenching can be sold to the cement plant after the slag water is separated; when the poor slag is discharged, the sampling rod is used to detect the depth of the melting pool in the subsidence electric furnace at all times, and when the remaining poor slag in the melting pool is 500mm, that is, It can block the poor slag outlet, stop the poor slag discharge, and the remaining poor slag is used for heat preservation of the subsidence electric furnace, so that the subsidence electric furnace can be connected to the next high-temperature melt of the fuming furnace;
  • step (c) adds tin-containing mineral material composition in fuming furnace and is Sn3wt.%, Cu0wt.%, S0wt.%, Sb0wt.%, Bi0wt.%, As0wt.%, Au0g/t, Ag0g/t, Low-copper-tin material components are Sn35wt.%, Cu1.5wt.%, S0wt.%, Sb16wt.%, Bi16wt.%, As7.0wt.%, Au26.8g/t, Ag600g/t, high-sulfur copper concentrate
  • the composition is Sn0wt.%, Cu18wt.%, S30wt.%, Sb0wt.%, Bi0wt.%, As2wt.%, Au0g/t, Ag150g/t, three kinds of mix; and the main element composition of hot solder slag is Sn5wt.% , Fe18wt.%, Si13wt.
  • Step (c) adds mixed tin-containing mineral material, copper-tin-containing material, and high-sulfur copper concentrate ratio control in the fuming furnace, according to the weight of the hot tin slag weighed and measured by the hook scale in step (b), according to the heat Tin slag: tin-containing mineral material: copper-tin-containing material, high-sulfur copper concentrate weight ratio is 47%: 27%: 20%: 6% for batching, the batching principle is to comprehensively put the above-mentioned mixture into the furnace with a Sn grade of 10wt .% as the benchmark, the Cu grade is up to 1.30wt.%; the mass of lump coal accounts for 4% of the intermediate materials of tin smelting;
  • the antimony-bismuth crude tin is sent to the vacuum furnace for refining, and the by-products are antimony-bismuth alloy and vacuum tin products, which can be sold directly;
  • Step (f) After the matte wrap is connected to the high-temperature matte melt in the subsidence electric furnace, the matte wrap is naturally cooled for 96 hours, and the matte is completely solidified, and the solidified matte inside the matte wrap is turned over, and the upper part of the matte wrap is layered
  • the material is slag, and the material of the lower layer is qualified matte; the slag is sampled and analyzed, if the slag contains copper ⁇ 0.7wt.%, it will be merged into the water-quenched poor slag and sold to the cement plant; the qualified matte can be sold outside after crushing .
  • Example 4 the direct recovery rate of Sn contained in the comprehensive material into the furnace can reach 96.5%, the matte copper of 15wt.% grade is obtained, the direct recovery rate of Cu is 96%, and the direct recovery rate of Au and Ag deposited by matte copper is 96.5%. %, without any generation of hazardous waste residues.
  • Furnace top belt feeding After the hot tin slag in the fuming furnace is received, start the furnace top belt feeding system, and feed mixed tin-containing mineral materials, copper-tin-containing materials, and high-sulfur copper concentrate into the fuming furnace , Lump coal, evenly added within 120min;
  • (d) Heating up smelting: After the top belt feeding of the fuming furnace is completed, stop the top belt feeding, increase the oxygen-enriched concentration of the secondary air supply system, increase the pulverized coal supply of the pulverized coal injection system, and speed up the fuming furnace Heat up and melt the internally cooled material, keep the temperature of the flue gas in the furnace at 1150°C, control the Fe/SiO 2 1.4 in the melting pool of the fuming furnace, and keep it for 60 minutes;
  • the poor slag in the sinking electric furnace is discharged into the water quenching pool through the poor slag port on the upper part of the sinking electric furnace After water quenching, the poor slag after water quenching can be sold to the cement plant after being separated from the slag water; when the poor slag is discharged, the sampling rod is always used to detect the depth of the molten pool in the subsidence electric furnace, and when the remaining poor slag in the molten pool is 500mm, that is It can block the poor slag outlet, stop the poor slag discharge, and the remaining poor slag is used for heat preservation of the subsidence electric furnace, so that the subsidence electric furnace can be connected to the next high-temperature melt of the fuming furnace;
  • step (c) adds tin-containing mineral material composition in fuming furnace and is Sn3wt.%, Cu0wt.%, S0wt.%, Sb0wt.%, Bi0wt.%, As0wt.%, Au0g/t, Ag0g/t
  • the composition of the low-copper-tin material is Sn35wt.%, Cu1.5wt.%, S0wt.%, Sb20wt.%, Bi20wt.%, As7.0wt.%, Au30g/t, Ag800g/t
  • the composition of high-sulfur copper concentrate is Sn0wt.%, Cu24wt.%, S30wt.%, Sb0 wt.%, Bi0wt.%, As2wt.%, Au0g/t, Ag150g/t, 3 kinds of mix
  • hot solder dross main element components are Sn3wt.%, Fe25wt.%, Si25w
  • Step (c) adds mixed tin-containing mineral material, copper-tin-containing material, and high-sulfur copper concentrate ratio control in the fuming furnace, according to the weight of the hot tin slag weighed and measured by the hook scale in step (b), according to the heat Tin slag: tin-containing mineral material: copper-tin-containing material, high-sulfur copper concentrate weight ratio is 33.5%: 33.5%: 3%: 30% for batching, the batching principle is to comprehensively put the above mixture into the furnace, and the Sn grade is 3wt .% as the benchmark, the Cu grade reaches 7.35wt.%; the mass of lump coal accounts for 4% of the intermediate materials of tin smelting;
  • Step (f) After the matte wrap is connected to the high-temperature matte melt in the subsidence electric furnace, the matte wrap is naturally cooled for 96 hours, and the matte is completely solidified, and the solidified matte inside the matte wrap is turned over, and the upper part of the matte wrap is layered
  • the material is slag, and the material of the lower layer is qualified matte; the slag is sampled and analyzed, if the slag contains copper ⁇ 0.7wt.%, it will be merged into the water-quenched poor slag and sold to the cement plant; the qualified matte can be sold outside after crushing .
  • Example 5 the direct recovery rate of Sn contained in the comprehensive material into the furnace can reach 97%, and the matte of 28wt.% grade is obtained. 97.5%, without any generation of hazardous waste materials.
  • Furnace top belt feeding After receiving the hot tin slag in the fuming furnace, start the furnace top belt feeding system, and add mixed tin-containing mineral materials, copper-tin-containing materials, and high-sulfur copper concentrate to the fuming furnace , Lump coal, evenly added within 120min;
  • (d) Heating up smelting: After the top belt feeding of the fuming furnace is completed, stop the top belt feeding, increase the oxygen-enriched concentration of the secondary air supply system, increase the pulverized coal supply of the pulverized coal injection system, and speed up the fuming furnace Heat up and melt the internally cooled material, keep the temperature of the flue gas in the furnace at 1150°C, control the Fe/SiO 2 1.4 in the melting pool of the fuming furnace, and keep it for 60 minutes;
  • Fuming volatilized tin heat up and smelt until the cold material in the fuming furnace is completely melted, then insert the sample rod into the melting pool of the fuming furnace to take a melt sample for rapid elemental analysis, and start the process based on the results of the rapid elemental analysis.
  • step of vulcanizing and volatilizing tin in the fuming furnace add vulcanizing agent volatile tin to the fuming furnace through the belt feeding system on the top of the furnace, and simultaneously close the oxygen enrichment of the secondary air supply system.
  • the poor slag in the sinking electric furnace is discharged into the water quenching pool through the poor slag port on the upper part of the sinking electric furnace After water quenching, the poor slag after water quenching can be sold to the cement plant after the slag water is separated; when the poor slag is discharged, the sampling rod is used to detect the depth of the melting pool in the subsidence electric furnace at all times, and when the remaining poor slag in the melting pool is 500mm, that is, It can block the poor slag outlet, stop the poor slag discharge, and the remaining poor slag is used for heat preservation of the subsidence electric furnace, so that the subsidence electric furnace can be connected to the next high-temperature melt of the fuming furnace;
  • step (c) adds tin-containing mineral material composition in fuming furnace and is Sn3wt.%, Cu0wt.%, S0wt.%, Sb0wt.%, Bi0wt.%, As0wt.%, Au0g/t, Ag0g/t
  • the composition of high copper and tin-containing materials is Sn65wt.%, Cu18wt.%, S10wt.%, Sb0wt.%, Bi0wt.%, As0wt.%, Au5g/t, Ag350g/t
  • the composition of high-sulfur copper concentrate is Sn0wt.%, Cu24wt.%, S28wt.%, Sb0wt.%, Bi0wt.%, As2wt.%, Au0g/t, Ag150g/t, three kinds of mix
  • the main element composition of hot solder slag is Sn3.5wt.%, Fe26wt.% , Si24
  • Step (c) adds mixed tin-containing mineral material, copper-tin-containing material, and high-sulfur copper concentrate ratio control in the fuming furnace, according to the weight of the hot tin slag weighed and measured by the hook scale in step (b), according to the heat Tin slag: Tin-containing mineral materials: copper-tin-containing materials, high-sulfur copper concentrate weight ratio is 48.3%: 27.6%: 11.5%: 12.6% for batching, the batching principle is to comprehensively put the above mixture into the furnace, and the Sn grade is 9.99% wt.% as the benchmark, the Cu grade is up to 5.10wt.%; the mass of lump coal accounts for 3% of the intermediate materials of tin smelting;
  • Step (e) fume and volatilize the tin fume obtained by fuming and volatilization, the tin fume contains less than 5wt.% of antimony + bismuth, and the low-antimony bismuth tin fume is directly returned to the main production process for reduction smelting in the top-blowing furnace;
  • Step (f) After the matte wrap is connected to the high-temperature matte melt in the subsidence electric furnace, the matte wrap is naturally cooled for 96 hours, and the matte is completely solidified, and the solidified matte inside the matte wrap is turned over, and the upper part of the matte wrap is layered
  • the material is slag, and the lower layer material is qualified matte; the slag is sampled and analyzed, and the slag contains copper ⁇ 0.7wt.%.
  • Example 6 the direct recovery rate of Sn contained in the comprehensive material into the furnace can reach 97%, and the matte copper of 24wt.% grade is obtained, the direct recovery rate of Cu is 98.5%, and the direct recovery rate of Au and Ag deposited by matte copper are both> 97%, without any generation of hazardous waste residue materials.
  • each embodiment in this specification is described in a progressive manner, each embodiment focuses on the difference from other embodiments, and the same and similar parts of each embodiment can be referred to each other.
  • the description is relatively simple, and for the related information, please refer to the description of the method part.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明公开了一种锡冶炼中间物料处理系统及其处理方法,该处理系统包括:烟化炉、沉降电炉、贫渣水淬池、冰铜包、粉煤喷吹系统、烟气处理系统和二次给风系统;所述烟化炉分别与所述沉降电炉、粉煤喷吹系统、烟气处理系统以及二次给风系统连接;所述沉降电炉还分别与所述贫渣水淬池、冰铜包连接。本发明公开的处理系统及方法能够高效的将锡与其他物料分类分离回收,解决复杂含锡冶炼中间物料销售运输难、折价销售的经济损失,将危废转变为增值有价物料进行综合回收。

Description

一种锡冶炼中间物料处理系统及其处理方法 技术领域
本发明涉及锡铜回收技术领域,更具体的说是涉及一种锡冶炼中间物料处理系统及其处理方法。
背景技术
在锡冶炼生产过程中,一些有价或有害杂质元素随着伴生锡精矿进入冶炼流程,而带入后续脱杂工序,因而产出各类复杂含锡危废物料。
目前,国内外锡精矿冶炼主生产流程设备有奥斯迈特顶吹炉、粗锡脱杂锅、锡电炉、沸腾炉、烟化炉、电热式连续结晶机、真空炉、锡电解槽系统等,锡精矿经奥斯迈特顶吹炉熔炼后,产出的粗锡送至脱杂锅,经多次脱杂后产出各种含锡物料,其中有脱铜所产出的含锡硫铜渣,该含锡硫铜渣属危废物料,按照当前国家环保管理办法,该物料的销售运输较为严格而规范,且必须折价销售给下家,这也将给锡冶炼生产企业带来经营利润的损失;此外,随着后续粗锡的深度脱杂,还将在锡电解过程产生一定量的含锡阳极泥,而该含锡阳极泥是富集了杂质元素锑、铋,以及贵金属金、银,还含一定量的铜,同时含锡品位也高,同样属于危废物料,该物料类同上述含锡硫铜渣相同,如果直接销售,也将面临计价系数低所导致的利润损失等。
为实现对上述复杂含锡冶炼中间物料的“吃干榨尽”,解决危废物料销售运输难、计价系数低的经济损失问题等,结合锡冶炼生产技术与装备实际情况,研发一种低成本、高效率、环保的综合回收技术,是当前锡冶炼技术人员面对的、亟需解决的技术问题。
发明内容
有鉴于此,本发明提供了一种锡冶炼中间物料处理系统及其处理方法,使之能够高效的将锡与其他物料分类分离回收,解决复杂含锡冶炼中间物料销售运输难、折价销售的经济损失,将危废转变为增值有价物料进行综合回收。
为了达到上述目的,本发明采用如下技术方案:
一种锡冶炼中间物料处理系统,包括:烟化炉、沉降电炉、贫渣水淬池、冰铜包、粉煤喷吹系统、烟气处理系统和二次给风系统;
所述烟化炉分别与所述沉降电炉、粉煤喷吹系统、烟气处理系统以及二次给风系统连通;
所述沉降电炉还分别与所述贫渣水淬池、冰铜包连通。
优选的,还包括:炉顶皮带进料系统和吊钩秤系统;所述锡冶炼中间物料包括热锡渣、含锡铜矿物料和块煤;所述热锡渣通过吊钩秤系统加入烟化炉内,所述含锡铜矿物料和块煤通过炉顶皮带进料系统加入烟化炉内。
优选的,所述烟化炉上设有热锡渣进料溜槽、炉顶进料口和高温熔体溜槽;所述沉降电炉上设有冰铜排放溜槽、贫渣排放溜槽;
所述吊钩秤系统与所述热锡渣进料溜槽配合作业;所述炉顶皮带进料系统与所述炉顶进料口配合作业;所述高温熔体溜槽与所述沉降电炉内部熔池连通;
所述冰铜排放溜槽与所述冰铜包内部连通;所述贫渣排放溜槽与所述贫渣水淬池内部连通。
优选的,所述烟气处理系统包括:收尘装置、锡电炉、真空炉、顶吹炉、真空锡溜槽、真空锡模、锑铋合金溜槽、锑铋合金模、高锑铋粗锡溜槽;
所述收尘装置分别与锡电炉、顶吹炉连通;
所述锡电炉还通过所述高锑铋粗锡溜槽与所述真空炉连通;所述真空锡 模位于所述真空锡溜槽的末端,用于盛接真空锡;所述锑铋合金模位于所述锑铋合金溜槽的末端,用于盛接锑铋合金;
所述顶吹炉设有顶吹炉渣口和顶吹炉粗锡口;热锡渣转运渣包位于所述顶吹炉渣口下方,用于盛接热锡渣。
本发明还公开了采用上述处理系统处理锡冶炼中间物料的方法,包括以下步骤:
(a)烟化炉待料准备:烟化炉待料前,保持炉膛烟气温度在600~800℃;
(b)接收热锡渣:通过吊钩秤系统,吊运热锡渣转运渣包,通过热锡渣进料溜槽将热锡渣导入烟化炉内,吊钩秤系统称重计量热锡渣重量;
(c)炉顶皮带进料:待烟化炉内热锡渣接收后,启动炉顶皮带进料系统,向烟化炉内投加含锡铜矿物料和块煤,在60~120min内均匀投加完毕;
(d)升温熔炼:待烟化炉炉顶皮带系统进料完毕后,停止炉顶皮带进料系统,提高二次给风系统富氧浓度,提高粉煤喷吹系统给粉煤量,加快烟化炉内冷态物料的升温熔化,保持炉膛烟气温度在1050~1150℃,控制烟化炉熔池Fe/SiO 2=1.0~1.4,保温30~60min;
(e)烟化挥发锡:升温熔炼保温至烟化炉内冷态物料完全熔化后,通过样杆插入烟化炉内部熔池内取熔体样进行元素快速化验分析,依据元素快速化验分析结果,启动烟化炉硫化挥发熔体锡步骤,通过炉顶皮带进料系统,向烟化炉内投加硫化剂挥发锡,同步关闭二次给风系统的富氧,硫化剂投加量按照S/(Sn+Cu)摩尔比1:3计算,过剩系数在1.2~1.3,在90~120min内硫化剂投加完毕,取样化验分析,待烟化炉内高温熔体含锡≤0.3wt.%则挥发锡作业已达终点,否则,根据化验锡高于0.3wt.%的计算差,继续补加硫化剂挥发锡至高温熔体含锡≤0.3wt.%止;
(f)沉降电炉分离铜与贫渣:沉降电炉初期待料时,使用Fe/SiO 2在0.9~1.3的炉渣造熔池,保持沉降电炉内熔池温度在1200~1230℃;步骤(e)烟化挥 发锡达标后的烟化炉高温熔体通过高温熔体溜槽排放进沉降电炉内,沉降电炉连续保温至上层贫渣含铜≤0.7wt.%后,则先烧开沉降电炉下部的冰铜口,通过冰铜排放溜槽排放沉降电炉内冰铜至冰铜包,待冰铜口出贫渣时,立即堵塞冰铜口,停止冰铜排放;沉降电炉内贫渣通过沉降电炉上部的贫渣排放溜槽排放进贫渣水淬池内进行水淬,水淬后的贫渣经渣水分离后,即可外售;贫渣排放时,时刻使用取样杆探测沉降电炉内熔池深度,待熔池内贫渣剩余300~500mm,堵塞贫渣口,停止贫渣排放,剩余贫渣用于沉降电炉保温,以便沉降电炉接烟化炉下一炉高温熔体。
优选的,所述步骤(c)向烟化炉内投加含锡铜矿物料成分为Sn 0~65wt.%、Cu 0~24wt.%、S 0~30wt.%、Sb 0~20wt.%、Bi 0~20wt.%、As 0~7wt.%、Au 0~30g/t、Ag 0~800g/t,所述含锡铜矿物料为含锡矿物料、含铜锡物料、高硫铜精矿中的一种或多种;所述热锡渣中主元素成分为Sn 2~6wt.%、Fe 18~25wt.%、Si 13~25wt.%;所述含锡矿物料是指物料只含锡不含铜,所述含铜锡物料是指物料同时含锡含铜,所述高硫铜精矿是指物料只含铜不含锡。
优选的,按照热锡渣:含锡矿物料:含铜锡物料、高硫铜精矿重量配比为(30~70):(0~35):(0~20):(0~30)进行配料,配料原则以上述混合料综合入炉含Sn品位在3~10wt.%为基准,含Cu品位不作控制要求。
优选的,所述块煤质量占锡冶炼中间物料的3-5%。
优选的,步骤(e)中所述硫化剂为是硫磺、黄铁矿或高硫铜精矿中的一种或多种;步骤(e)烟化挥发得到的锡烟尘,根据锡烟尘成分差别,当锡烟尘含锑+铋高于5wt.%时,则该高锑铋锡烟尘送至锡电炉进行还原熔炼,产出高锑铋粗锡,高锑铋粗锡送真空炉精炼,产出副产品锑铋合金与真空锡产品,可直接外售;当锡烟尘含锑+铋低于5wt.%时,该低锑铋锡烟尘直接返主生产流程顶吹炉内还原熔炼。
优选的,步骤(f)冰铜包接沉降电炉高温冰铜熔体后,冰铜包经自然降 温冷却72~96h后,完全凝固冰铜,将冰铜包内凝固冰铜翻包,冰铜包内上部分层料为炉渣,下部分层料为合格冰铜;炉渣取样分析,若炉渣含铜≤0.7wt.%,则并入水淬后的贫渣外售,若炉渣含铜>0.7wt.%,则破碎返回沉降电炉熔化回收铜;合格冰铜经破碎后,即可外售。
与现有技术相比,本发明的有益效果在于:采用现有成熟硫化烟化技术与装备,实现复杂含锡物料中的锡与其他有价元素的高效率、低成本的分离回收,锡以锡烟尘的形式进行收集,根据锡烟尘含杂质量的差异,又进一步分不同主生产流程装置进行处理;此外,结合各复杂含锡物料的特性,锡烟化需要硫,又利用了造冰铜捕集贵金属的特性,在烟化挥发过程,向烟化炉内配入高硫铜精矿,高硫铜精矿起到上述双重作用,不仅充分利用了铜精矿中的硫,还节约了硫化剂的采购成本;高温熔体中的锡经充分烟化挥发后,剩余含铜及其他贵金属的高温熔体,经排放进沉降电炉后,在含铜熔体与上层炉渣的自然沉降后,分层出上层低锡、低铜的硅铁渣,下层为富含贵金属的冰铜层,上层低锡、低铜的硅铁渣经水淬后,外售给水泥厂回收利用,而冰铜经排放进专用包子冷却、破碎后外售创效。因此,本发明全流程不产生任何固废或危废,锡物料返回主生产流程而不产生任何经济损失,技术过程简单高效、有价金属的回收率高,可实现高价值充分回收。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1是本实用新型公开的锡冶炼中间物料处理系统示意图;
图2是采用本实用新型公开的锡冶炼中间物料处理系统的工艺流程图。
在图1中:
1为烟化炉、2为炉顶皮带进料系统、3为吊钩秤系统、4为热锡渣进料溜槽、5为热锡渣转运渣包、6为炉顶进料口、7为沉降电炉、8为贫渣水淬池、9为冰铜包、10为冰铜排放溜槽、11为贫渣排放溜槽、12为高温熔体溜槽、13为粉煤喷吹系统、14为收尘装置、15为锡电炉、16为真空炉、17为顶吹炉、18为真空锡溜槽、19为真空锡模、20为锑铋合金溜槽、21为锑铋合金模、22为高锑铋粗锡溜槽、23为顶吹炉渣口、24为顶吹炉粗锡口。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
如图1所示,本实施例提供一种锡冶炼中间物料处理系统,包括:烟化炉1、沉降电炉7、贫渣水淬池8、冰铜包9、粉煤喷吹系统13、烟气处理系统和二次给风系统;
烟化炉1分别与沉降电炉7、粉煤喷吹系统13、烟气处理系统以及二次给风系统连接;
沉降电炉7还分别与贫渣水淬池8、冰铜包9连接。
炉顶皮带进料系统2和吊钩秤系统3;锡冶炼中间物料包括热锡渣、含锡铜矿物料和块煤;热锡渣通过吊钩秤系统3加入烟化炉1内,含锡铜矿物料和块煤通过炉顶皮带进料系统2加入烟化炉1内。
烟化炉1上设有热锡渣进料溜槽4、炉顶进料口6和高温熔体溜槽12; 沉降电炉7上设有冰铜排放溜槽10、贫渣排放溜槽11;
吊钩秤系统3与热锡渣进料溜槽4配合作业;炉顶皮带进料系统2与炉顶进料口6配合作业;高温熔体溜槽12与沉降电炉1内部熔池连通;
冰铜排放溜槽10与冰铜包9内部连通;贫渣排放溜槽11与贫渣水淬池8内部连通。
烟气处理系统包括:收尘装置14、锡电炉15、真空炉16、顶吹炉17、真空锡溜槽18、真空锡模19、锑铋合金溜槽20、锑铋合金模21、高锑铋粗锡溜槽22;
收尘装置14分别与锡电炉15、顶吹炉17连通;
锡电炉15还通过高锑铋粗锡溜槽22与真空炉16连通;真空锡模19位于真空锡溜槽18的末端,用于盛接真空锡;锑铋合金模21位于锑铋合金溜槽20的末端,用于盛接锑铋合金;
顶吹炉17设有顶吹炉渣口23和顶吹炉粗锡口24;热锡渣转运渣包5位于顶吹炉渣口23下方,用于盛接热锡渣。
实施例2
利用实施例1提供的处理系统,以烟化炉按照处理100吨的高温熔体量为例,处理方法为:
(a)烟化炉待料准备:烟化炉待料前,保持炉膛烟气温度在600℃;
(b)接收热锡渣:通过吊钩秤系统,吊运热锡渣转运渣包,将热锡渣进料溜槽将热锡渣导入烟化炉内,吊钩秤称重计量热锡渣重量;
(c)炉顶皮带进料:待烟化炉内热锡渣接收后,启动炉顶皮带进料系统,向烟化炉内投加混合含锡矿物料、含铜锡物料、高硫铜精矿、块煤,在60min内均匀投加完毕;
(d)升温熔炼:待烟化炉炉顶皮带进料完毕后,停止炉顶皮带进料,提 高二次给风系统富氧浓度,提高粉煤喷吹系统给粉煤量,加快烟化炉内冷态物料的升温熔化,保持炉膛烟气温度在1050℃,控制烟化炉熔池Fe/SiO 2=1.0,保温30min;
(e)烟化挥发锡:升温熔炼保温至烟化炉内冷态物料完全熔化后,通过样杆插入烟化炉熔池内取熔体样进行元素快速化验分析,依据元素快速化验分析结果,启动烟化炉硫化挥发熔体锡步骤,通过炉顶皮带进料系统,向烟化炉内投加硫化剂挥发锡,同步关闭二次给风系统的富氧,分析结果显示熔体含Sn1.5wt.%、Cu0.75wt.%,硫化剂投加量按照S/(Sn+Cu)摩尔比1:3计算,过剩系数在1.2,即还需要S质量为100吨×0.0097=0.97吨,以含S为99%的工业硫磺作硫化剂,即需要投加工业硫磺量为0.97吨/99%=0.98吨,在90min内将0.98吨黄铁矿全部在90min内投加完毕,取样化验分析,待炉内高温熔体含锡≤0.3wt.%则挥发锡作业已达终点;
(f)沉降电炉分离铜与贫渣:沉降电炉初期待料时,使用Fe/SiO 2在0.9的炉渣造熔池,保持沉降电炉内熔池温度在1200℃即可;步骤(e)烟化挥发锡达标后的烟化炉高温熔体通过高温熔体溜槽排放进沉降电炉内,沉降电炉连续保温至上层贫渣含铜≤0.7wt.%后,则优先烧开沉降电炉下部的冰铜口,排放沉降电炉内冰铜至冰铜包,待冰铜口出贫渣时,立即堵塞冰铜口,停止冰铜排放;沉降电炉内贫渣通过沉降电炉上部的贫渣口排放进水淬池内进行水淬,水淬后的贫渣经渣水分离后,即可外售给水泥厂;贫渣排放时,时刻使用取样杆探测沉降电炉内熔池深度,待熔池内贫渣剩余300mm,即可堵塞贫渣口,停止贫渣排放,剩余贫渣用于沉降电炉保温,以便沉降电炉接烟化炉下一炉高温熔体;
上述步骤(c)向烟化炉内投加含锡矿物料成分为Sn 3wt.%、Cu 0wt.%、S 7wt.%、Sb 0wt.%、Bi 0wt.%、As 0wt.%、Au 0g/t、Ag 0g/t、含铜锡物料成分为Sn 65wt.%、Cu18wt.%、S10wt.%、Sb 0wt.%、Bi 0wt.%、As 1.0wt.%、 Au 0g/t、Ag 8g/t、高硫铜精矿成分为Sn 0wt.%、Cu 15wt.%、S 28wt.%、Sb 0wt.%、Bi 0wt.%、As 0wt.%、Au 2g/t、Ag 150g/t,3种搭配混合;而热锡渣主元素成分为Sn 2wt.%、Fe 18wt.%、Si 13wt.%;
上述步骤(c)向烟化炉内投加混合含锡矿物料、含铜锡物料、高硫铜精矿配比控制,根据步骤(b)吊钩秤称重计量的热锡渣重量,按照热锡渣:含锡矿物料:含铜锡物料、高硫铜精矿重量配比为48%:27%:12%:13%进行配料,配料原则以上述混合料综合入炉含Sn品位在10wt.%为基准,含Cu品位达3.97wt.%;块煤质量占锡冶炼中间物料的3%;
步骤(e)烟化挥发得到的锡烟尘,收到锡烟尘含锑+铋低于5wt.%时,该低锑铋锡烟尘直接返主生产流程顶吹炉内还原熔炼;
步骤(f)冰铜包接沉降电炉高温冰铜熔体后,冰铜包经自然降温冷却72h后,完全凝固冰铜,将冰铜包内凝固冰铜翻包,冰铜包内上部分层料为炉渣,下部分层料为合格冰铜;炉渣取样分析,若炉渣含铜≤0.7wt.%,则并入水淬后贫渣外售给水泥厂;合格冰铜经破碎后,即可外售。
在实施例2中,入炉综合物料含Sn直收率可达95%,获得22wt.%品位的冰铜,Cu直收率在94%,冰铜铺集Au、Ag的直收率在96%,无任何危废渣物料的产生。
实施例3
利用实施例1提供的处理系统,以烟化炉按照处理120吨的高温熔体量为例:
(a)烟化炉待料准备:烟化炉待料前,保持炉膛烟气温度在700℃;
(b)接收热锡渣:通过吊钩秤系统,吊运热锡渣转运渣包,将热锡渣进料溜槽将热锡渣导入烟化炉内,吊钩秤称重计量热锡渣重量;
(c)炉顶皮带进料:待烟化炉内热锡渣接收后,启动炉顶皮带进料系统,向烟化炉内投加混合含锡矿物料、含铜锡物料、高硫铜精矿、块煤,在70min 内均匀投加完毕;
(d)升温熔炼:待烟化炉炉顶皮带进料完毕后,停止炉顶皮带进料,提高二次给风系统富氧浓度,提高粉煤喷吹系统给粉煤量,加快烟化炉内冷态物料的升温熔化,保持炉膛烟气温度在1100℃,控制烟化炉熔池Fe/SiO 2=1.1,保温40min;
(e)烟化挥发锡:升温熔炼保温至烟化炉内冷态物料完全熔化后,通过样杆插入烟化炉熔池内取熔体样进行元素快速化验分析,依据元素快速化验分析结果,启动烟化炉硫化挥发熔体锡步骤,通过炉顶皮带进料系统,向烟化炉内投加硫化剂挥发锡,同步关闭二次给风系统的富氧,分析结果显示熔体含Sn1wt.%、Cu0.85wt.%,硫化剂投加量按照S/(Sn+Cu)摩尔比1:3计算,过剩系数在1.2,即还需要S质量为120吨×0.0087=1.044吨,以含S为35%的黄铁矿作硫化剂,即需要投加黄铁矿量为1.044吨/35%=2.98吨,在90min内将2.98吨黄铁矿全部投加完毕,取样化验分析,待炉内高温熔体含锡≤0.3wt.%则挥发锡作业已达终点;
(f)沉降电炉分离铜与贫渣:沉降电炉初期待料时,使用Fe/SiO 2在1.0的炉渣造熔池,保持沉降电炉内熔池温度在1210℃即可;步骤(e)烟化挥发锡达标后的烟化炉高温熔体通过高温熔体溜槽排放进沉降电炉内,沉降电炉连续保温至上层贫渣含铜≤0.7wt.%后,则优先烧开沉降电炉下部的冰铜口,排放沉降电炉内冰铜至冰铜包,待冰铜口出贫渣时,立即堵塞冰铜口,停止冰铜排放;沉降电炉内贫渣通过沉降电炉上部的贫渣口排放进水淬池内进行水淬,水淬后的贫渣经渣水分离后,即可外售给水泥厂;贫渣排放时,时刻使用取样杆探测沉降电炉内熔池深度,待熔池内贫渣剩余400mm,即可堵塞贫渣口,停止贫渣排放,剩余贫渣用于沉降电炉保温,以便沉降电炉接烟化炉下一炉高温熔体;
上述步骤(c)向烟化炉内投加含锡矿物料成分为Sn5wt.%、Cu0wt.%、 S0wt.%、Sb0wt.%、Bi0wt.%、As0wt.%、Au0g/t、Ag0g/t、含铜锡物料成分为Sn60wt.%、Cu15wt.%、S8wt.%、Sb0wt.%、Bi0wt.%、As1.5wt.%、Au0g/t、Ag10g/t、高硫铜精矿成分为Sn0wt.%、Cu12wt.%、S30wt.%、Sb0wt.%、Bi0wt.%、As2wt.%、Au1g/t、Ag180g/t,3种搭配混合;而热锡渣主元素成分为Sn3wt.%、Fe25wt.%、Si25wt.%;
步骤(c)向烟化炉内投加混合含锡矿物料、含铜锡物料、高硫铜精矿配比控制,根据步骤(b)吊钩秤称重计量的热锡渣重量,按照热锡渣:含锡矿物料:含铜锡物料、高硫铜精矿重量配比为70%:10%:10%:10%进行配料,配料原则以上述混合料综合入炉含Sn品位在8.6wt.%为基准,含Cu品位达2.70wt.%;块煤质量占锡冶炼中间物料的5%;
步骤(e)烟化挥发得到的锡烟尘,收到锡烟尘含锑+铋低于5wt.%时,该低锑铋锡烟尘直接返主生产流程顶吹炉内还原熔炼;
步骤(f)冰铜包接沉降电炉高温冰铜熔体后,冰铜包经自然降温冷却72h后,完全凝固冰铜,将冰铜包内凝固冰铜翻包,冰铜包内上部分层料为炉渣,下部分层料为合格冰铜;炉渣取样分析,若炉渣含铜≤0.7wt.%,则并入水淬贫渣外售给水泥厂;合格冰铜经破碎后,即可外售。
在实施例3中,入炉综合物料含Sn直收率可达96%,获得18wt.%品位的冰铜,Cu直收率在92%,冰铜铺集Au、Ag的直收率在95%,无任何危废渣物料的产生。
实施例4
利用实施例1提供的处理系统,以烟化炉按照处理80吨的高温熔体量为例:
(a)烟化炉待料准备:烟化炉待料前,保持炉膛烟气温度在800℃;
(b)接收热锡渣:通过吊钩秤系统,吊运热锡渣转运渣包,将热锡渣进料溜槽将热锡渣导入烟化炉内,吊钩秤称重计量热锡渣重量;
(c)炉顶皮带进料:待烟化炉内热锡渣接收后,启动炉顶皮带进料系统,向烟化炉内投加混合含锡矿物料、含铜锡物料、高硫铜精矿、块煤,在90min内均匀投加完毕;
(d)升温熔炼:待烟化炉炉顶皮带进料完毕后,停止炉顶皮带进料,提高二次给风系统富氧浓度,提高粉煤喷吹系统给粉煤量,加快烟化炉内冷态物料的升温熔化,保持炉膛烟气温度在1150℃,控制烟化炉熔池Fe/SiO 2=1.3,保温50min;
(e)烟化挥发锡:升温熔炼保温至烟化炉内冷态物料完全熔化后,通过样杆插入烟化炉熔池内取熔体样进行元素快速化验分析,依据元素快速化验分析结果,由于高温熔体含S/(Sn+Cu)摩尔比>1:3,分析结果显示高温熔体含锡为0.24wt.%,即本烟化炉内高温熔体挥发锡作业已达终点,不再需要投加硫化剂作业;
(f)沉降电炉分离铜与贫渣:沉降电炉初期待料时,使用Fe/SiO 2在1.2的炉渣造熔池,保持沉降电炉内熔池温度在1220℃即可;步骤(e)烟化挥发锡达标后的烟化炉高温熔体通过高温熔体溜槽排放进沉降电炉内,沉降电炉连续保温至上层贫渣含铜≤0.7wt.%后,则优先烧开沉降电炉下部的冰铜口,排放沉降电炉内冰铜至冰铜包,待冰铜口出贫渣时,立即堵塞冰铜口,停止冰铜排放;沉降电炉内贫渣通过沉降电炉上部的贫渣口排放进水淬池内进行水淬,水淬后的贫渣经渣水分离后,即可外售给水泥厂;贫渣排放时,时刻使用取样杆探测沉降电炉内熔池深度,待熔池内贫渣剩余500mm,即可堵塞贫渣口,停止贫渣排放,剩余贫渣用于沉降电炉保温,以便沉降电炉接烟化炉下一炉高温熔体;
上述步骤(c)向烟化炉内投加含锡矿物料成分为Sn3wt.%、Cu0wt.%、S0wt.%、Sb0wt.%、Bi0wt.%、As0wt.%、Au0g/t、Ag0g/t、低含铜锡物料成分为Sn35wt.%、Cu1.5wt.%、S0wt.%、Sb16wt.%、Bi16wt.%、As7.0wt.%、 Au26.8g/t、Ag600g/t、高硫铜精矿成分为Sn0wt.%、Cu18wt.%、S30wt.%、Sb0wt.%、Bi0wt.%、As2wt.%、Au0g/t、Ag150g/t,3种搭配混合;而热锡渣主元素成分为Sn5wt.%、Fe18wt.%、Si13wt.%;
步骤(c)向烟化炉内投加混合含锡矿物料、含铜锡物料、高硫铜精矿配比控制,根据步骤(b)吊钩秤称重计量的热锡渣重量,按照热锡渣:含锡矿物料:含铜锡物料、高硫铜精矿重量配比为47%:27%:20%:6%进行配料,配料原则以上述混合料综合入炉含Sn品位在10wt.%为基准,含Cu品位达1.30wt.%;块煤质量占锡冶炼中间物料的4%;
步骤(e)烟化挥发得到的锡烟尘,该锡烟尘含锑+铋高于5wt.%时,因此该高锑铋锡烟尘送至锡电炉进行还原熔炼,产出高锑铋粗锡,高锑铋粗锡送真空炉精炼,产出副产品锑铋合金与真空锡产品,可直接外售;
步骤(f)冰铜包接沉降电炉高温冰铜熔体后,冰铜包经自然降温冷却96h后,完全凝固冰铜,将冰铜包内凝固冰铜翻包,冰铜包内上部分层料为炉渣,下部分层料为合格冰铜;炉渣取样分析,若炉渣含铜≤0.7wt.%,则并入水淬贫渣外售给水泥厂;合格冰铜经破碎后,即可外售。
在实施例4中,入炉综合物料含Sn直收率可达96.5%,获得15wt.%品位的冰铜,Cu直收率在96%,冰铜铺集Au、Ag的直收率在96.5%,无任何危废渣物料的产生。
实施例5
利用实施例1提供的处理系统,以烟化炉按照处理100吨的高温熔体量为例:
(a)烟化炉待料准备:烟化炉待料前,保持炉膛烟气温度在800℃;
(b)接收热锡渣:通过吊钩秤系统,吊运热锡渣转运渣包,将热锡渣进料溜槽将热锡渣导入烟化炉内,吊钩秤称重计量热锡渣重量;
(c)炉顶皮带进料:待烟化炉内热锡渣接收后,启动炉顶皮带进料系统, 向烟化炉内投加混合含锡矿物料、含铜锡物料、高硫铜精矿、块煤,在120min内均匀投加完毕;
(d)升温熔炼:待烟化炉炉顶皮带进料完毕后,停止炉顶皮带进料,提高二次给风系统富氧浓度,提高粉煤喷吹系统给粉煤量,加快烟化炉内冷态物料的升温熔化,保持炉膛烟气温度在1150℃,控制烟化炉熔池Fe/SiO 2=1.4,保温60min;
(e)烟化挥发锡:升温熔炼保温至烟化炉内冷态物料完全熔化后,通过样杆插入烟化炉熔池内取熔体样进行元素快速化验分析,依据元素快速化验分析结果,由于高温熔体含S/(Sn+Cu)摩尔比>1:3,分析结果显示高温熔体含锡为0.22wt.%,即本烟化炉内高温熔体挥发锡作业已达终点,不再需要投加硫化剂作业;
(f)沉降电炉分离铜与贫渣:沉降电炉初期待料时,使用Fe/SiO 2在1.3的炉渣造熔池,保持沉降电炉内熔池温度在1230℃即可;步骤(e)烟化挥发锡达标后的烟化炉高温熔体通过高温熔体溜槽排放进沉降电炉内,沉降电炉连续保温至上层贫渣含铜≤0.7wt.%后,则优先烧开沉降电炉下部的冰铜口,排放沉降电炉内冰铜至冰铜包,待冰铜口出贫渣时,立即堵塞冰铜口,停止冰铜排放;沉降电炉内贫渣通过沉降电炉上部的贫渣口排放进水淬池内进行水淬,水淬后的贫渣经渣水分离后,即可外售给水泥厂;贫渣排放时,时刻使用取样杆探测沉降电炉内熔池深度,待熔池内贫渣剩余500mm,即可堵塞贫渣口,停止贫渣排放,剩余贫渣用于沉降电炉保温,以便沉降电炉接烟化炉下一炉高温熔体;
上述步骤(c)向烟化炉内投加含锡矿物料成分为Sn3wt.%、Cu0wt.%、S0wt.%、Sb0wt.%、Bi0wt.%、As0wt.%、Au0g/t、Ag0g/t、低含铜锡物料成分为Sn35wt.%、Cu1.5wt.%、S0wt.%、Sb20wt.%、Bi20wt.%、As7.0wt.%、Au30g/t、Ag800g/t、高硫铜精矿成分为Sn0wt.%、Cu24wt.%、S30wt.%、Sb0 wt.%、Bi0wt.%、As2wt.%、Au0g/t、Ag150g/t,3种搭配混合;而热锡渣主元素成分为Sn3wt.%、Fe25wt.%、Si25wt.%;
步骤(c)向烟化炉内投加混合含锡矿物料、含铜锡物料、高硫铜精矿配比控制,根据步骤(b)吊钩秤称重计量的热锡渣重量,按照热锡渣:含锡矿物料:含铜锡物料、高硫铜精矿重量配比为33.5%:33.5%:3%:30%进行配料,配料原则以上述混合料综合入炉含Sn品位在3wt.%为基准,含Cu品位达7.35wt.%;块煤质量占锡冶炼中间物料的4%;
步骤(e)烟化挥发得到的锡烟尘,该锡烟尘含锑+铋高于5wt.%,因此该高锑铋锡烟尘送至锡电炉进行还原熔炼,产出高锑铋粗锡,高锑铋粗锡送真空炉精炼,产出副产品锑铋合金与真空锡产品,可直接外售;
步骤(f)冰铜包接沉降电炉高温冰铜熔体后,冰铜包经自然降温冷却96h后,完全凝固冰铜,将冰铜包内凝固冰铜翻包,冰铜包内上部分层料为炉渣,下部分层料为合格冰铜;炉渣取样分析,若炉渣含铜≤0.7wt.%,则并入水淬贫渣外售给水泥厂;合格冰铜经破碎后,即可外售。
在实施例5中,入炉综合物料含Sn直收率可达97%,获得28wt.%品位的冰铜,Cu直收率在98%,冰铜铺集Au、Ag的直收率均在97.5%,无任何危废渣物料的产生。
实施例6
利用实施例1提供的处理系统,以烟化炉按照处理120吨的高温熔体量为例:
(a)烟化炉待料准备:烟化炉待料前,保持炉膛烟气温度在800℃;
(b)接收热锡渣:通过吊钩秤系统,吊运热锡渣转运渣包,将热锡渣进料溜槽将热锡渣导入烟化炉内,吊钩秤称重计量热锡渣重量;
(c)炉顶皮带进料:待烟化炉内热锡渣接收后,启动炉顶皮带进料系统,向烟化炉内投加混合含锡矿物料、含铜锡物料、高硫铜精矿、块煤,在120min 内均匀投加完毕;
(d)升温熔炼:待烟化炉炉顶皮带进料完毕后,停止炉顶皮带进料,提高二次给风系统富氧浓度,提高粉煤喷吹系统给粉煤量,加快烟化炉内冷态物料的升温熔化,保持炉膛烟气温度在1150℃,控制烟化炉熔池Fe/SiO 2=1.4,保温60min;
(e)烟化挥发锡:升温熔炼保温至烟化炉内冷态物料完全熔化后,通过样杆插入烟化炉熔池内取熔体样进行元素快速化验分析,依据元素快速化验分析结果,启动烟化炉硫化挥发熔体锡步骤,通过炉顶皮带进料系统,向烟化炉内投加硫化剂挥发锡,同步关闭二次给风系统的富氧,分析结果显示熔体含Sn2.5wt.%、Cu0.65wt.%,硫化剂投加量按照S/(Sn+Cu)摩尔比1:3计算,过剩系数在1.2,即还需要S质量为120吨×0.0125=1.5吨,以含S为35%的黄铁矿作硫化剂,即需要投加黄铁矿量为1.5吨/35%=4.28吨,在90min内将4.28吨黄铁矿全部投加完毕,取样化验分析,待炉内高温熔体含锡≤0.3wt.%则挥发锡作业已达终点;
(f)沉降电炉分离铜与贫渣:沉降电炉初期待料时,使用Fe/SiO 2在1.3的炉渣造熔池,保持沉降电炉内熔池温度在1230℃即可;步骤(e)烟化挥发锡达标后的烟化炉高温熔体通过高温熔体溜槽排放进沉降电炉内,沉降电炉连续保温至上层贫渣含铜≤0.7wt.%后,则优先烧开沉降电炉下部的冰铜口,排放沉降电炉内冰铜至冰铜包,待冰铜口出贫渣时,立即堵塞冰铜口,停止冰铜排放;沉降电炉内贫渣通过沉降电炉上部的贫渣口排放进水淬池内进行水淬,水淬后的贫渣经渣水分离后,即可外售给水泥厂;贫渣排放时,时刻使用取样杆探测沉降电炉内熔池深度,待熔池内贫渣剩余500mm,即可堵塞贫渣口,停止贫渣排放,剩余贫渣用于沉降电炉保温,以便沉降电炉接烟化炉下一炉高温熔体;
上述步骤(c)向烟化炉内投加含锡矿物料成分为Sn3wt.%、Cu0wt.%、 S0wt.%、Sb0wt.%、Bi0wt.%、As0wt.%、Au0g/t、Ag0g/t、高含铜锡物料成分为Sn65wt.%、Cu18wt.%、S10wt.%、Sb0wt.%、Bi0wt.%、As0wt.%、Au5g/t、Ag350g/t、高硫铜精矿成分为Sn0wt.%、Cu24wt.%、S28wt.%、Sb0wt.%、Bi0wt.%、As2wt.%、Au0g/t、Ag150g/t,3种搭配混合;而热锡渣主元素成分为Sn3.5wt.%、Fe26wt.%、Si24wt.%;
步骤(c)向烟化炉内投加混合含锡矿物料、含铜锡物料、高硫铜精矿配比控制,根据步骤(b)吊钩秤称重计量的热锡渣重量,按照热锡渣:含锡矿物料:含铜锡物料、高硫铜精矿重量配比为48.3%:27.6%:11.5%:12.6%进行配料,配料原则以上述混合料综合入炉含Sn品位在9.99wt.%为基准,含Cu品位达5.10wt.%;块煤质量占锡冶炼中间物料的3%;
步骤(e)烟化挥发得到的锡烟尘,该锡烟尘含锑+铋低于5wt.%,该低锑铋锡烟尘直接返主生产流程顶吹炉内还原熔炼;
步骤(f)冰铜包接沉降电炉高温冰铜熔体后,冰铜包经自然降温冷却96h后,完全凝固冰铜,将冰铜包内凝固冰铜翻包,冰铜包内上部分层料为炉渣,下部分层料为合格冰铜;炉渣取样分析,炉渣含铜≤0.7wt.%,则并入水淬贫渣外售给水泥厂;合格冰铜经破碎后,即可外售。
在实施例6中,入炉综合物料含Sn直收率可达97%,获得24wt.%品位的冰铜,Cu直收率在98.5%,冰铜铺集Au、Ag的直收率均>97%,无任何危废渣物料的产生。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易 见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种锡冶炼中间物料处理系统,其特征在于,包括:烟化炉、沉降电炉、贫渣水淬池、冰铜包、粉煤喷吹系统、烟气处理系统和二次给风系统;
    所述烟化炉分别与所述沉降电炉、粉煤喷吹系统、烟气处理系统以及二次给风系统连接;
    所述沉降电炉还分别与所述贫渣水淬池、冰铜包连接。
  2. 根据权利要求1所述的处理系统,其特征在于,还包括:炉顶皮带进料系统和吊钩秤系统;所述锡冶炼中间物料包括热锡渣、含锡铜矿物料和块煤;所述热锡渣通过吊钩秤系统加入烟化炉内,所述含锡铜矿物料和块煤通过炉顶皮带进料系统加入烟化炉内。
  3. 根据权利要求2所述的处理系统,其特征在于,所述烟化炉上设有热锡渣进料溜槽、炉顶进料口和高温熔体溜槽;所述沉降电炉上设有冰铜排放溜槽、贫渣排放溜槽;
    所述吊钩秤系统与所述热锡渣进料溜槽配合作业;所述炉顶皮带进料系统与所述炉顶进料口配合作业;所述高温熔体溜槽与所述沉降电炉内部熔池连通;
    所述冰铜排放溜槽与所述冰铜包内部连通;所述贫渣排放溜槽与所述贫渣水淬池内部连通。
  4. 根据权利要求2所述的处理系统,其特征在于,所述烟气处理系统包括:收尘装置、锡电炉、真空炉、顶吹炉、真空锡溜槽、真空锡模、锑铋合金溜槽、锑铋合金模、高锑铋粗锡溜槽;
    所述收尘装置分别与锡电炉、顶吹炉连通;
    所述锡电炉还通过所述高锑铋粗锡溜槽与所述真空炉连通;所述真空锡模位于所述真空锡溜槽的末端,用于盛接真空锡;所述锑铋合金模位于所述锑铋合金溜槽的末端,用于盛接锑铋合金;
    所述顶吹炉设有顶吹炉渣口和顶吹炉粗锡口;热锡渣转运渣包位于所述 顶吹炉渣口下方,用于盛接热锡渣。
  5. 采用权利要求4所述的处理系统处理锡冶炼中间物料的方法,其特征在于,包括以下步骤:
    (a)烟化炉待料准备:烟化炉待料前,保持炉膛烟气温度在600~800℃;
    (b)接收热锡渣:通过吊钩秤系统,吊运热锡渣转运渣包,通过热锡渣进料溜槽将热锡渣导入烟化炉内,吊钩秤系统称重计量热锡渣重量;
    (c)炉顶皮带进料:待烟化炉内热锡渣接收后,启动炉顶皮带进料系统,向烟化炉内投加含锡铜矿物料和块煤,在60~120min内均匀投加完毕;
    (d)升温熔炼:待烟化炉炉顶皮带系统进料完毕后,停止炉顶皮带进料系统,提高二次给风系统富氧浓度,提高粉煤喷吹系统给粉煤量,加快烟化炉内冷态物料的升温熔化,保持炉膛烟气温度在1050~1150℃,控制烟化炉熔池Fe/SiO 2=1.0~1.4,保温30~60min;
    (e)烟化挥发锡:升温熔炼保温至烟化炉内冷态物料完全熔化后,通过样杆插入烟化炉内部熔池内取熔体样进行元素快速化验分析,依据元素快速化验分析结果,启动烟化炉硫化挥发熔体锡步骤,通过炉顶皮带进料系统,向烟化炉内投加硫化剂挥发锡,同步关闭二次给风系统的富氧,硫化剂投加量按照S/(Sn+Cu)摩尔比1:3计算,过剩系数在1.2~1.3,在90~120min内硫化剂投加完毕,取样化验分析,待烟化炉内高温熔体含锡≤0.3wt.%则挥发锡作业已达终点,否则,根据化验锡高于0.3wt.%的计算差,继续补加硫化剂挥发锡至高温熔体含锡≤0.3wt.%止;
    (f)沉降电炉分离铜与贫渣:沉降电炉初期待料时,使用Fe/SiO 2在0.9~1.3的炉渣造熔池,保持沉降电炉内熔池温度在1200~1230℃;步骤(e)烟化挥发锡达标后的烟化炉高温熔体通过高温熔体溜槽排放进沉降电炉内,沉降电炉连续保温至上层贫渣含铜≤0.7wt.%后,则先烧开沉降电炉下部的冰铜口,通过冰铜排放溜槽排放沉降电炉内冰铜至冰铜包,待冰铜口出贫渣时,立即堵 塞冰铜口,停止冰铜排放;沉降电炉内贫渣通过沉降电炉上部的贫渣排放溜槽排放进贫渣水淬池内进行水淬,水淬后的贫渣经渣水分离后,即可外售;贫渣排放时,时刻使用取样杆探测沉降电炉内熔池深度,待熔池内贫渣剩余300~500mm,堵塞贫渣口,停止贫渣排放,剩余贫渣用于沉降电炉保温,以便沉降电炉接烟化炉下一炉高温熔体。
  6. 根据权利要求5所述的处理方法,其特征在于,所述步骤(c)向烟化炉内投加含锡铜矿物料成分为Sn 0~65wt.%、Cu 0~24wt.%、S 0~30wt.%、Sb 0~20wt.%、Bi 0~20wt.%、As 0~7wt.%、Au 0~30g/t、Ag 0~800g/t,所述含锡铜矿物料为含锡矿物料、含铜锡物料、高硫铜精矿中的一种或多种;所述热锡渣中主元素成分为Sn 2~6wt.%、Fe 18~25wt.%、Si 13~25wt.%。
  7. 根据权利要求6所述的处理方法,其特征在于,按照热锡渣:含锡矿物料:含铜锡物料、高硫铜精矿重量配比为(30~70):(0~35):(0~20):(0~30)进行配料,配料原则以上述混合料综合入炉含Sn品位在3~10wt.%为基准,含Cu品位不作控制要求。
  8. 根据权利要求5所述的处理方法,其特征在于,所述块煤质量占锡冶炼中间物料的3-5%。
  9. 根据权利要求5所述的处理方法,其特征在于,步骤(e)中所述硫化剂为是硫磺、黄铁矿或高硫铜精矿中的一种或多种;步骤(e)烟化挥发得到的锡烟尘,根据锡烟尘成分差别,当锡烟尘含锑+铋高于5wt.%时,则该高锑铋锡烟尘送至锡电炉进行还原熔炼,产出高锑铋粗锡,高锑铋粗锡送真空炉精炼,产出副产品锑铋合金与真空锡产品,可直接外售;当锡烟尘含锑+铋低于5wt.%时,该低锑铋锡烟尘直接返主生产流程顶吹炉内还原熔炼。
  10. 根据权利要求5所述的处理方法,其特征在于,步骤(f)冰铜包接沉降电炉高温冰铜熔体后,冰铜包经自然降温冷却72~96h后,完全凝固冰铜,将冰铜包内凝固冰铜翻包,冰铜包内上部分层料为炉渣,下部分层料为合格冰 铜;炉渣取样分析,若炉渣含铜≤0.7wt.%,则并入水淬后的贫渣外售,若炉渣含铜>0.7wt.%,则破碎返回沉降电炉熔化回收铜;合格冰铜经破碎后,即可外售。
PCT/CN2022/075956 2021-10-09 2022-02-11 一种锡冶炼中间物料处理系统及其处理方法 WO2023056724A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/693,324 US20230111491A1 (en) 2021-10-09 2022-03-12 System for treating tin smelting intermediate materials and method for treating same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111177102.7 2021-10-09
CN202111177102.7A CN113774233A (zh) 2021-10-09 2021-10-09 一种锡冶炼中间物料处理系统及其处理方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/693,324 Continuation US20230111491A1 (en) 2021-10-09 2022-03-12 System for treating tin smelting intermediate materials and method for treating same

Publications (1)

Publication Number Publication Date
WO2023056724A1 true WO2023056724A1 (zh) 2023-04-13

Family

ID=78855254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/075956 WO2023056724A1 (zh) 2021-10-09 2022-02-11 一种锡冶炼中间物料处理系统及其处理方法

Country Status (2)

Country Link
CN (1) CN113774233A (zh)
WO (1) WO2023056724A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113774233A (zh) * 2021-10-09 2021-12-10 昆明理工大学 一种锡冶炼中间物料处理系统及其处理方法
CN114317992B (zh) * 2021-12-30 2022-09-16 耒阳市焱鑫有色金属有限公司 一种从烟化炉弃渣中回收铜银的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101736161A (zh) * 2010-01-13 2010-06-16 云南锡业集团(控股)有限责任公司 直流电炉熔炼综合回收锡冶炼二次原料的方法
CN204625747U (zh) * 2014-12-27 2015-09-09 深圳市兴世博环保工程有限公司 超高温锡渣再生一体化设备
GB202108783D0 (en) * 2020-04-15 2021-08-04 Copper Branch Company Of Yunnan Tin Company Ltd Not yet published
CN113481382A (zh) * 2021-07-16 2021-10-08 云南锡业股份有限公司锡业分公司 一种含锡物料熔炼的系统及方法
CN113774233A (zh) * 2021-10-09 2021-12-10 昆明理工大学 一种锡冶炼中间物料处理系统及其处理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101736161A (zh) * 2010-01-13 2010-06-16 云南锡业集团(控股)有限责任公司 直流电炉熔炼综合回收锡冶炼二次原料的方法
CN204625747U (zh) * 2014-12-27 2015-09-09 深圳市兴世博环保工程有限公司 超高温锡渣再生一体化设备
GB202108783D0 (en) * 2020-04-15 2021-08-04 Copper Branch Company Of Yunnan Tin Company Ltd Not yet published
CN113481382A (zh) * 2021-07-16 2021-10-08 云南锡业股份有限公司锡业分公司 一种含锡物料熔炼的系统及方法
CN113774233A (zh) * 2021-10-09 2021-12-10 昆明理工大学 一种锡冶炼中间物料处理系统及其处理方法

Also Published As

Publication number Publication date
CN113774233A (zh) 2021-12-10

Similar Documents

Publication Publication Date Title
WO2023056724A1 (zh) 一种锡冶炼中间物料处理系统及其处理方法
CN100569968C (zh) 一种高纯铜及低氧光亮铜杆的生产方法
CN108456789B (zh) 锑金属的提取方法
CN109321755A (zh) 一种铜冶炼烟尘脱砷的方法
CN101845554A (zh) 以废杂铜和硫化铜精矿为原料熔炼铜的方法
CN111542623B (zh) 铜/锡/铅生产中的改进
CN101157994A (zh) 铅锑矿氧气熔池熔炼方法
CN111321301A (zh) 一种高效回收锡二次原料中有价金属的系统及方法
CN103334014A (zh) 铜冶炼熔融炉渣贫化的方法及用于铜冶炼熔融炉渣贫化的贫化装置
CN105063363A (zh) 一种阳极泥制备粗银合金的方法和装置
CN111566234A (zh) 改进的火法冶金方法
CN111270080A (zh) 一种高效回收焊锡电解阳极泥中有价金属的系统及方法
CN105671315B (zh) 一种阳极泥一步制备金银合金的方法
CN111566235B (zh) 改进的焊料生产方法
CN108456775B (zh) 一种侧吹化料-烟化吹炼联合处理含锌物料的方法
CN100497682C (zh) 综合回收氯氧锑渣中有价金属的工艺
CN107385237A (zh) 锑精矿的熔炼方法
CN212199376U (zh) 一种高效回收锡二次原料中有价金属的系统
AU571127B2 (en) A method for working-up waste products containing valuable metals
CN110462071A (zh) 改进的生产粗焊料的方法
CN101768672A (zh) 顶吹熔池熔炼炼锑方法及其熔池熔炼炉
CN111020206A (zh) 一种综合回收卡尔多炉熔炼渣等含铅锑铋物料的方法
CN215668158U (zh) 一种锡冶炼中间物料处理系统
CN114525410B (zh) 一种从金属冶炼的烟灰中回收低品位有价金属的工艺
US20230111491A1 (en) System for treating tin smelting intermediate materials and method for treating same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22877752

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE