WO2023056714A1 - 一种含氮杂环化合物的芳香化方法 - Google Patents

一种含氮杂环化合物的芳香化方法 Download PDF

Info

Publication number
WO2023056714A1
WO2023056714A1 PCT/CN2021/141348 CN2021141348W WO2023056714A1 WO 2023056714 A1 WO2023056714 A1 WO 2023056714A1 CN 2021141348 W CN2021141348 W CN 2021141348W WO 2023056714 A1 WO2023056714 A1 WO 2023056714A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitrogen
containing heterocyclic
reaction
heterocyclic compounds
heterocyclic compound
Prior art date
Application number
PCT/CN2021/141348
Other languages
English (en)
French (fr)
Inventor
赵娜
张耀林
李志峰
赵建芹
贾成国
Original Assignee
河北威远生物化工有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河北威远生物化工有限公司 filed Critical 河北威远生物化工有限公司
Publication of WO2023056714A1 publication Critical patent/WO2023056714A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/08Indoles; Hydrogenated indoles with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to carbon atoms of the hetero ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B35/00Reactions without formation or introduction of functional groups containing hetero atoms, involving a change in the type of bonding between two carbon atoms already directly linked
    • C07B35/04Dehydrogenation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/04Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to the ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/02Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D249/081,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
    • C07D249/101,2,4-Triazoles; Hydrogenated 1,2,4-triazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D249/12Oxygen or sulfur atoms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present application relates to the technical field of organic synthesis, in particular to a method for aromatizing nitrogen-containing heterocyclic compounds.
  • Nitrogen-containing heterocyclic compounds and their derivatives have good biological activity, and are an important class of raw materials for pesticides, medicines, and fine chemicals.
  • indole and its derivatives quinoline and its derivatives, triazole and its derivatives.
  • the present application provides a method for aromatizing nitrogen-containing heterocyclic compounds.
  • a method for aromatizing a nitrogen-containing heterocyclic compound In a solvent, the nitrogen-containing heterocyclic compound is used as a reaction substrate, a transition metal salt or a complex formed by a transition metal salt and an organic compound is used as a catalyst, and a peroxide is used as a catalyst.
  • An oxidizing agent reacts to obtain a reaction liquid containing an aromatized product of a nitrogen-containing heterocyclic compound.
  • the solvent is toluene, water, methanol, ethanol, 2-propanol, 2-methyl-2-propanol, tert-butanol, acetonitrile, dichloromethane and dichloroethane at least one of .
  • the above-mentioned solvent can not only further increase the conversion rate of the reaction substrate, but is also relatively easy to evaporate and remove, which further simplifies the post-treatment process of the product.
  • the amount of the solvent used is equivalent to 3 to 5 times the mass of the reaction substrate.
  • the nitrogen-containing heterocyclic compound is a nitrogen-containing benzoheterocyclic compound or a triazolidinyl compound.
  • the above-mentioned nitrogen-containing benzoheterocyclic compound or triazolidinyl compound can further increase the yield of the product through the above-mentioned aromatization method.
  • the structural formula of the nitrogen-containing heterocyclic compound is:
  • R is hydrogen, alkyl, alkoxy, hydroxyl, cycloalkyl, heterocyclyl, aryl, halogenated aryl, heteroaryl, halogenated C6-C10 aryl or C1-C9 heteroaryl
  • R is hydrogen, alkyl, alkoxy, hydroxyl, cycloalkyl, heterocyclyl, aryl, halogenated aryl, heteroaryl, halogenated C6-C10 aryl or C1-C9 heteroaryl
  • X is oxygen or sulfur
  • R 2 , R 3 , R 4 , R 5 , and R 6 are hydrogen, chlorine, hydroxyl, C1-C6 alkyl, C1-C6 haloalkyl, C1-C6 cycloalkyl and C1-C6 alkoxy any of the bases.
  • the transition metal salt is at least one of iron salt and copper salt.
  • the complex formed by the transition metal salt and the organic compound is obtained by mixing the transition metal salt and the organic compound in a molar ratio of 0.8-1.2:1;
  • An organic compound with a diamine structure, the structural formula of the organic compound containing an ethylenediamine structure is:
  • R 7 , R 8 , R 9 , and R 10 are any one of —H, —CH 3 , —CH 2 CH 3 , —OCH 3 , —CH 2 COOH, and —CH 2 COONa, respectively.
  • the anion in the iron salt or copper salt is one of Cl - , NO 3 - , OAc - and SO 4 2- .
  • the iron salt can be selected from one of FeCl 2 , FeCl 3 , Fe(NO 3 ) 2 , Fe(NO 3 ) 3 , FeSO 4 and Fe 2 (SO 4 ) 3 ;
  • the copper salt can be specifically selected from CuCl , CuCl 2 , CuSO 4 and Cu(OAc) 2 .
  • the amount of the catalyst used is equivalent to 0.01%-20% of the molar amount of the reaction substrate.
  • the amount of the catalyst used is equivalent to 0.1%-5% of the molar amount of the reaction substrate.
  • the oxidizing agent is hydrogen peroxide, peracetic acid, tert-butyl hydroperoxide, di-tert-butyl peroxide, tert-butyl peroxyacetate, tert-butyl peroxybenzoate, At least one of peroxybenzoic acid and m-chloroperoxybenzoic acid.
  • the selected peroxide can further improve the selectivity of the reaction, so that the reaction substrate only undergoes oxidative dehydrogenation of carbon-nitrogen bonds, avoiding the generation of other impurities, and further reducing the amount of oxidizing agent.
  • the amount of the oxidizing agent used is equivalent to 0.9-1.0 times the molar amount of the reaction substrate.
  • the temperature of the reaction is -10°C ⁇ 70°C.
  • reaction temperature is 10°C to 40°C.
  • the reaction time is 0.5-2.5h.
  • a precipitation product is obtained, and a re-dissolution solvent is added to the precipitation product for re-dissolution, cooling and crystallization to obtain an aromatized product of a nitrogen-containing heterocyclic compound.
  • the method for removing the solvent is: heating the reaction solution, evaporating and removing the solvent to obtain the precipitation product; the method for re-dissolving is: adding an amount equivalent to the mass of the precipitation product 3 to 5 times of the redissolving solvent to obtain a redissolving mixed solution, and heat the redissolving mixed solution to the reflux temperature to obtain a solution; the method of cooling crystallization is: cooling the solution to -4°C ⁇ - Carry out crystallization at 6° C., precipitate crystals, filter the crystals, collect the crystals and dry them to obtain an aromatized product of a nitrogen-containing heterocyclic compound; the redissolving solvent is one of water, toluene and xylene.
  • the aromatization method of nitrogen-containing heterocyclic compounds uses transition metal salts or complexes formed by transition metal salts and organic compounds as catalysts, and uses peroxides as oxidants to carry out nitrogen-containing heterocyclic compounds.
  • the dehydrogenation and oxidation of compounds can realize the aromatization of nitrogen-containing heterocyclic compounds at lower temperatures, and in the synthesis process of aromatized products, the amount of catalysts and oxidants required is small, the conversion rate and selection of reaction substrates High performance, less impurity production, high yield of aromatized products, and can significantly improve the biological activity of aromatized products of nitrogen-containing heterocyclic compounds.
  • the catalyst and the oxidant are cheap and easy to obtain, and the dosage is small, the post-treatment process of the reaction product is simple, and the whole process hardly produces waste gas, waste water and waste residue, and the method It is easy to operate and has high application value.
  • reaction formula is as follows:
  • a 2 the average value of the peak area of 3-indoline in the sample solution
  • a 1 the average value of the peak area of 3-indoline in the standard sample solution
  • m 1 the mass of the 3-hydroindoline working standard, in g;
  • reaction solution was obtained.
  • the reaction solution was heated and evaporated to remove the solvent to obtain the precipitated product.
  • 100 g of water to the precipitated product to obtain a redissolved mixture.
  • a solution is obtained.
  • the solution was cooled to -6°C for crystallization, and kept at -6°C for 1 hour to precipitate crystals. Filter the crystals, collect the crystals and dry them to obtain 19.63 g of the crystalline product 3-methyl-3,4-dihydroquinoline.
  • the product can be obtained by precipitating and crystallizing after the reaction, and the post-treatment is simple, without any complicated extraction and separation operations, and no waste water is generated.
  • Example 1 Replace m-chloroperoxybenzoic acid in Example 1 with an equal amount of potassium permanganate, other raw material components and preparation method are the same as Example 1, obtain product 3-indoline 15g after solvent removal, 3-indoline The content of indole is 63.5%, and the yield is 48.4%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本申请是一种含氮杂环化合物的芳香化方法。所述含氮杂环化合物的芳香化方法为:在溶剂中,以含氮杂环化合物为反应底物,以过渡金属盐或过渡金属盐与有机化合物形成的配合物为催化剂,以过氧化物为氧化剂,反应得到含有含氮杂环化合物的芳香化产物的反应液。本申请提供的含氮杂环化合物的芳香化方法反应条件温和、催化剂用量小、后处理过程简单、反应产物的收率和纯度高,且操作简单。

Description

一种含氮杂环化合物的芳香化方法
本专利申请要求于2021年10月9日提交的中国专利申请No.CN202111179477.7的优先权。在先申请的公开内容通过整体引用并入本申请。
技术领域
本申请涉及有机合成技术领域,尤其涉及一种含氮杂环化合物的芳香化方法。
背景技术
含氮杂环化合物及其衍生物(芳香化产物)具有很好的生物活性,并且是一类重要的农药、医药、精细化工品的原材料。例如吲哚及其衍生物、喹啉及其衍生物、三唑及其衍生物。
现有公开的含氮杂环化合物芳香化的方法中,反应过程多存在反应温度高、反应时间长、操作复杂、原料的转化率和选择性低、易产生杂质、催化剂用量大、稳定性差以及产物收率低等问题,极大地影响了含氮杂环化合物及其衍生物的生物活性。例如,现有以类水滑石为催化剂,在氧气气氛下进行的含氮杂环化合物芳香化的方法中,反应温度高达80℃以上,且反应过程为非均相体系(固液气三相),原料的转化率和选择性较低且极不稳定。还有在高沸点溶剂DMF作用下,用硫进行碳氮键的脱氢氧化,制备三唑类化合物的方法,该过程需要在DMF回流条件下进行,并不断鼓入空气,反应时间较长,收率低,且易过度氧化产生杂质。也有报道在甲苯-乙醇混合液或乙醇溶液中,用盐酸酸化的三氯化铁作为三唑类化合物芳香化的氧化试剂,但三氯化铁的用量需远远过量,后处理时会产生大量的酸性氯化亚铁水溶液,造成环境污染。
技术问题
针对现有含氮杂环化合物芳香化的方法存在的上述问题,本申请提供一种含氮杂环化合物的芳香化方法,该方法具有反应条件温和、催化剂用量小、后处理过程简单、反应产物的收率和纯度高的优势。
技术解决方案
为达到上述申请目的,本申请实施例采用了如下的技术方案:
一种含氮杂环化合物的芳香化方法,在溶剂中,以含氮杂环化合物为反应底物,以过渡金属盐或过渡金属盐与有机化合物形成的配合物为催化剂,以过氧化物为氧化剂,反应得到包含含氮杂环化合物的芳香化产物的反应液。
作为本申请的一个实施例,所述溶剂为甲苯、水、甲醇、乙醇、2-丙醇、2-甲基-2-丙醇、叔丁醇、乙腈、二氯甲烷和二氯乙烷中的至少一种。
上述溶剂不仅可以进一步提高反应底物的转化率,还比较容易蒸发脱除,进一步简化了产物的后处理过程。
作为本申请的一个实施例,所述溶剂的用量相当于所述反应底物的质量的3~5倍。
作为本申请的一个实施例,所述含氮杂环化合物为含氮苯并杂环化合物或三唑烷基化合物。
上述含氮苯并杂环化合物或三唑烷基化合物通过上述芳香化方法,可进一步提高产物的收率。
作为本申请的一个实施例,所述含氮杂环化合物的结构式为:
Figure dest_path_image001
其中,R 1为氢、烷基、烷氧基、羟基、环烷基、杂环基、芳基、卤代芳基、杂芳基、卤代C6-C10芳基或C1-C9杂芳基、卤代环烷基、酯基、羰基中的一种;
X为氧或硫;
R 2、R 3、R 4、R 5、R 6分别为氢、氯、羟基、C1-C6的烷基、C1-C6的卤代烷基、C1-C6的环烷基和C1-C6的烷氧基中的任一种。
作为本申请的一个实施例,所述过渡金属盐为铁盐和铜盐中的至少一种。
作为本申请的一个实施例,所述过渡金属盐与有机化合物形成的配合物由所述过渡金属盐与所述有机化合物按照0.8-1.2:1的摩尔比混合得到;所述有机化合物为含有乙二胺基结构的有机物,所述含有乙二胺基结构的有机物的结构式为:
Figure dest_path_image002
其中,R 7、R 8、R 9、R 10分别为-H、-CH 3、-CH 2CH 3、-OCH 3、-CH 2COOH和-CH 2COONa中的任一种。
作为本申请的一个实施例,所述铁盐或铜盐中的阴离子为Cl -、NO 3 -、OAc -和SO 4 2-中的一种。
所述铁盐具体可选用FeCl 2、FeCl 3、Fe(NO 3) 2、Fe(NO 3) 3、FeSO 4和Fe 2(SO 4) 3中的一种;所述铜盐具体可选用CuCl、CuCl 2、CuSO 4和Cu(OAc) 2中的一种。
作为本申请的一个实施例,所述催化剂的用量相当于所述反应底物的摩尔量的0.01%~20%。
进一步的,所述催化剂的用量相当于所述反应底物的摩尔量的0.1%~5%。
作为本申请的一个实施例,所述氧化剂为过氧化氢、过氧乙酸、叔丁基过氧化氢、二叔丁基过氧化物、过氧乙酸叔丁酯、过氧苯甲酸叔丁酯、过氧苯甲酸和间氯过氧苯甲酸中的至少一种。
上述选择的过氧化物可以进一步提高反应的选择性,使反应底物只进行碳氮键的氧化脱氢,避免了其它杂质的产生,同时进一步降低了氧化剂的用量。
作为本申请的一个实施例,所述氧化剂的用量相当于所述反应底物的摩尔量的0.9~1.0倍。
作为本申请的一个实施例,所述反应的温度为-10℃~70℃。
进一步的,所述反应的温度为10℃~40℃。
作为本申请的一个实施例,所述反应的时间为0.5-2.5h。
作为本申请的一个实施例,将所述反应液脱除溶剂后,得到脱溶产物,向脱溶产物中加入重溶溶剂进行重溶、降温结晶,得到含氮杂环化合物的芳香化产物。
所述脱除溶剂的方法为:将所述反应液加热,蒸发脱除所述溶剂,得到脱溶产物;所述重溶的方法为:向脱溶产物中加入相当于所述脱溶产物质量的3~5倍的重溶溶剂,得到重溶混合液,加热该重溶混合液至回流温度,得到溶解液;所述降温结晶的方法为:将所述溶解液降温至-4℃~-6℃进行结晶,析出晶体,对晶体进行过滤,收集晶体并进行干燥,得到含氮杂环化合物的芳香化产物;所述重溶溶剂为水、甲苯和二甲苯中的一种。
有益效果
相对于现有技术,本申请提供的含氮杂环化合物的芳香化方法,以过渡金属盐或过渡金属盐与有机化合物形成的配合物作为催化剂,以过氧化物作为氧化剂,进行含氮杂环化合物的脱氢氧化,可在较低温度下实现含氮杂环化合物的芳香化,且芳香化产物的合成过程中,所需的催化剂和氧化剂的用量少、反应底物的转化率和选择性高、杂质产生量少,得到的芳香化产物的收率高,并可显著提高含氮杂环化合物的芳香化产物的生物活性。
此外,本申请提供的含氮杂环化合物芳香化的方法中,催化剂和氧化剂均廉价易得、用量小,反应产物的后处理过程简单,整个过程几乎不产生废气、废水和废渣,且该方法操作简单,具有极高的应用价值。
本申请的实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
实施例1
3-氢吲哚的合成
常温条件下,向250mL的四口瓶中加入80g乙腈、催化剂(2.13mg,0.0168mmol氯化亚铁和6.25mg、0.0168mmol的EDTA-2Na.2H 2O),搅拌均匀后,得到混合液。向混合液中加入20g(0.1678mol)2,3-二氢吲哚,搅拌,得到反应混合液。然后降温至10℃,向反应混合液中分5批次加入间氯过氧苯甲酸,间氯过氧苯甲酸的总加入量为30.7g(0.1510mol,质量含量85%)。间氯过氧苯甲酸加入完毕后10℃保温2h。利用液相色谱跟踪并监测反应进程。反应完成后,得到反应液。将反应液加热蒸发脱除溶剂,得到脱溶产物。然后向脱溶产物中加入60g水,得到重溶混合液。加热该重溶混合液至回流温度后,得到溶解液。将溶解液降温至-5℃进行结晶,并在-5℃保温1h,析出晶体。对晶体进行过滤,收集结晶并干燥,得到结晶产品3-氢吲哚19.58g,经过液相色谱检测,3-氢吲哚的含量为98.2%,收率为97.8%。具体反应式如下:
Figure dest_path_image003
其中,通过液相色谱检测,按外标法计算3-氢吲哚的含量x 1,公式如下:
3-氢吲哚的含量x 1的计算方法为:
Figure dest_path_image004
式中:
A 2:试样溶液中3-氢吲哚峰面积的平均值;
A 1:标样溶液中3-氢吲哚峰面积的平均值;
m 1:3-氢吲哚工作标准品的质量,单位为g;
m 2:3-氢吲哚试样的质量,单位为g;
P:3-氢吲哚工作标准品的含量,单位为%;
3-氢吲哚的收率=
Figure dest_path_image005
对产品3-氢吲哚进行核磁共振氢谱( 1HNMR)和液相色谱质谱联用(LC-MS)分析,得到的表征数据如下:
1HNMR(400MHz,CDCl 3)δppm:8.51(1H),7.32(m,1H),7.29(m,1H),7.27(m,1H),7.05(m,1H),3.38(d,J=6.8,2H)
LC-MS[M+H] +:118.1513,3-氢吲哚计算的[M+H] +为118.1510。
实施例2
2-甲基-3-氢吲哚的合成
常温条件下,向250mL的四口瓶中加入80g无水甲醇、催化剂(1.87g、7.51mmol五水硫酸铜和0.87g、7.51mmol的1,2-双(二甲基氨基)乙烷),搅拌均匀后,得到混合液。向混合液中加入20g(0.1501mol)2-甲基吲哚啉,搅拌,得到反应混合液。在25℃下,向反应混合液中滴加二叔丁基过氧化物,二叔丁基过氧化物的滴加量为21.08g。二叔丁基过氧化物滴加完毕后25℃保温1h。利用液相色谱跟踪并监测反应进程。反应完成后,得到反应液。然后向反应液中加入80g水,加热至回流温度后,再降温至-4℃进行结晶,并在-4℃保温0.5h,析出晶体。对晶体进行过滤,收集结晶并干燥,得到结晶产品2-甲基-3-氢吲哚19.60g,经过液相色谱检测,2-甲基-3-氢吲哚的含量为97.8%,收率为97.3%(其中,收率和含量的计算方法同实施例1)。具体反应式如下:
Figure dest_path_image006
对产品2-甲基-3-氢吲哚进行 1HNMR和LC-MS分析,得到的表征数据如下:
1HNMR(400MHz,CDCl 3)δppm:7.31(m,1H),7.29(m,1H),7.27(m,1H),7.07(m,1H),3.38(s,2H),1.93(s,3H)
LC-MS[M+H] +:132.1791,2-甲基-3-氢吲哚计算的[M+H] +为132.1780。
实施例3
3-甲基-3,4-二氢喹啉的合成
常温条件下,向250mL的四口瓶中加入80g 2-丙醇、1.02g(5.44mmol)硝酸铜,搅拌均匀后,得到混合液。向混合液中加入20g(0.1359mol)3-甲基-1,2,3,4-四氢喹啉,搅拌,得到反应混合液。然后升温至40℃,向反应混合液中滴加过氧苯甲酸叔丁酯,过氧苯甲酸叔丁酯的滴加量为25.86g。过氧苯甲酸叔丁酯滴加完毕后40℃保温0.5h。利用液相色谱跟踪并监测反应进程。反应完成后,得到反应液。将反应液加热蒸发脱除溶剂,得到脱溶产物。然后向脱溶产物中加入100g水,得到重溶混合液。加热该重溶混合液至回流温度后,得到溶解液。将溶解液降温至-6℃进行结晶,并在-6℃保温1h,析出晶体。对晶体进行过滤,收集结晶并干燥,得到结晶产品3-甲基-3,4-二氢喹啉19.63g,经过液相色谱检测,3-甲基-3,4-二氢喹啉的含量为97.8%,收率为97.3%(其中,收率和含量的计算方法同实施例1)。具体反应式如下:
Figure dest_path_image007
对产品3-甲基-3,4-二氢喹啉进行 1HNMR和LC-MS分析,得到的表征数据如下:
1HNMR(400MHz,CDCl 3)δppm:8.51(d,J=5,1H),7.25(m,1H),7.22(m,1H),7.20(m,1H),7.06(m,1H),2.93(m,1H),2.90(m,1H),2.65(m,1H),0.89(d,J=5.8,3H)
LC-MS[M+H] +:146.2056,3-甲基-3,4-二氢喹啉计算的[M+H] +为146.2050。
实施例4
3,4-二氢喹啉的合成
常温条件下,向250mL的四口瓶中加入100g 2-甲基-2-丙醇、催化剂(1.70g、6.79mmol五水硫酸铜和1.17g、6.79mmol的1,2-双(二乙基氨基)乙烷),搅拌均匀后,得到混合液。向混合液中加入20g(0.1501mol)1,2,3,4-四氢喹啉,搅拌,得到反应混合液。然后降温至-10℃,向反应混合液中滴加二叔丁基过氧化氢,二叔丁基过氧化氢的滴加量为21.30g。二叔丁基过氧化氢滴加完毕后-10℃保温2.5h。利用液相色谱跟踪并监测反应进程,反应完成后,得到反应液。将反应液加热蒸发脱除溶剂,得到脱溶产物。然后向脱溶产物中加入60g水,得到重溶混合液。加热该重溶混合液至回流温度后,得到溶解液。将溶解液降温至-5℃进行结晶,并在-5℃保温1h,析出晶体。对晶体进行过滤,收集结晶并干燥,得到结晶产品3,4-二氢喹啉19.52g,经过液相色谱检测,3,4-二氢喹啉的含量为97.9%,收率为97.0%(其中,收率和纯度的计算方法同实施例1)。具体反应式如下:
Figure dest_path_image008
对产品3,4-二氢喹啉进行 1HNMR和LC-MS分析,得到的表征数据如下:
1HNMR(400MHz,CDCl 3)δppm:8.51(m,1H),7.25(m,1H),7.21(m,1H),7.20(m,1H),7.06(m,1H),3.20(m,2H),2.45(m,2H)
LC-MS[M+H] +:132.1796,3,4-二氢喹啉计算的[M+H] +为132.1780。
实施例5
1-(1-氯环丙基)-2-(5-硫基-1,2,4-三唑基)-乙酮的合成
常温条件下,向250mL的四口瓶中加入80g 乙腈、催化剂(0.295g、1.82mmol氯化铁和0.21g、1.82mmol的1,2-双(二乙基氨基)乙烷),搅拌均匀后,得到混合液。向混合液中加入20g(0.091mol)1-(1-氯环丙基)-2-(5-硫基-1,2,4-三唑烷基)-乙酮,搅拌,得到反应混合液。然后升温至70℃,向反应混合液中分5批次加入间氯过氧苯甲酸,间氯过氧苯甲酸的总加入量为14.92g。间氯过氧苯甲酸加入完毕后70℃保温2.5h。利用液相色谱跟踪并监测反应进程。反应完成后,得到反应液。将反应液加热蒸发脱除溶剂,得到脱溶产物。然后向脱溶产物中加入60g甲苯,得到重溶混合液。加热该重溶混合液至回流温度后,得到溶解液。将溶解液降温至-5℃结晶,并在-5℃保温1h,析出晶体。对晶体进行过滤,收集结晶并干燥,得到结晶产品1-(1-氯环丙基)-2-(5-硫基-1,2,4-三唑基)-乙酮19.33g,经过液相色谱检测,1-(1-氯环丙基)-2-(5-硫基-1,2,4-三唑基)-乙酮的含量为98.5%,收率为96.1%(其中,收率和含量的计算方法同实施例1)。具体反应式如下:
Figure dest_path_image009
对产品1-(1-氯环丙基)-2-(5-硫基-1,2,4-三唑基)-乙酮进行 1HNMR和LC-MS分析,得到的表征数据如下:
1HNMR(400MHz,CDCl 3)δppm:11.23(m,1H)7.92(d,J=4.5,1H),4.61(s,2H),1.61(m,2H),1.35(m,2H)
LC-MS[M+H] +:218.6725,1-(1-氯环丙基)-2-(5-硫基-1,2,4-三唑基)-乙酮计算的[M+H] +为218.6710。
实施例6
2-(1-氯环丙基)-1-(2-氯苯基)-2-羟基-3-(1,2,4-三唑基-5-硫-1-基)-丙烷的合成
常温条件下,向250mL的四口瓶中加入50g甲苯和30g甲醇、催化剂(2.89g、0.012mmol蓝矾(五水硫酸铜)),搅拌均匀后,得到混合液。向混合液中加入20g(0.0578mol)2-(1-氯环丙基)-1-(2-氯苯基)-2-羟基-3-(1,2,4-三唑烷基-5-硫-1-基)-丙烷,搅拌,得到反应混合液。然后升温至40℃,向反应混合液中缓慢滴加6.87g过氧乙酸叔丁酯,过氧乙酸叔丁酯滴加完毕后40℃保温0.5h。利用液相色谱跟踪并监测反应进程。反应完成后,得到反应液。将反应液加热蒸发脱除溶剂,得到脱溶产物。然后向脱溶产物中加入60g二甲苯,得到重溶混合液。加热该重溶混合液至回流温度后,得到溶解液。将溶解液降温至-5℃进行结晶,并在-5℃保温1h,析出晶体。对晶体进行过滤,收集结晶并干燥,得到结晶产品2-(1-氯环丙基)-1-(2-氯苯基)-2-羟基-3-(1,2,4-三唑基-5-硫-1-基)-丙烷19.54g,经过液相色谱检测,2-(1-氯环丙基)-1-(2-氯苯基)-2-羟基-3-(1,2,4-三唑基-5-硫-1-基)-丙烷的含量为98.5%,收率为96.8%(其中,收率和纯度的计算方法同实施例1)。具体反应式如下:
Figure dest_path_image010
对产品2-(1-氯环丙基)-1-(2-氯苯基)-2-羟基-3-(1,2,4-三唑基-5-硫-1-基)-丙烷进行 1HNMR和LC-MS分析,得到的表征数据如下:
1HNMR(400MHz,CDCl 3)δppm:11.23(m,1H),8.46(s,1H),7.58(d,J=8.6,1H),7.40(t,J=2.5,3H),5.08(s,1H),3.36(m,2H),2.92(m,2H),0.88(m,2H),0.73(m,2H),
LC-MS[M+H] +:345.2561,计算的[M+H] +为345.2540。
实施例7
2-(1-氯环丙基)-1-(2-氯苯基)-2-羟基-3-(1,2,4-三唑基-5-硫-1-基)-丙烷的合成
常温条件下,向250mL的四口瓶中加入50g甲苯和30g水、催化剂(5.70mg、0.0578mmol氯化亚铜和6.71mg、0.0578mmol的1,2-双(二甲基氨基)乙烷),搅拌均匀后,得到混合液。向混合液中加入20g(0.0578mol)2-(1-氯环丙基)-1-(2-氯苯基)-2-羟基-3-(1,2,4-三唑烷基-5-硫-1-基)-丙烷,搅拌,得到反应混合液。然后降温至15℃,向反应混合液中分5批次加入过氧苯甲酸,过氧苯甲酸的总加入量为7.82g。过氧苯甲酸加入完毕后15℃保温1h。利用液相色谱跟踪并监测反应进程。反应完成后,得到反应液。将反应液进行分液处理,收集有机相,将有机相加热蒸发脱除溶剂,得到脱溶产物。然后向脱溶产物中加入60g二甲苯,得到重溶混合液。加热该重溶混合液至回流温度后,得到溶解液。将溶解液降温至-5℃进行结晶,并在-5℃保温1h,析出晶体。对晶体进行过滤,收集结晶并干燥,得到结晶产品2-(1-氯环丙基)-1-(2-氯苯基)-2-羟基-3-(1,2,4-三唑基-5-硫-1-基)-丙烷19.60g,经过液相色谱检测,2-(1-氯环丙基)-1-(2-氯苯基)-2-羟基-3-(1,2,4-三唑基-5-硫-1-基)-丙烷的含量为98.9%,收率为97.5%(其中,收率和含量的计算方法同实施例1)。具体反应式如下:
Figure dest_path_image011
对产品2-(1-氯环丙基)-1-(2-氯苯基)-2-羟基-3-(1,2,4-三唑基-5-硫-1-基)-丙烷进行 1HNMR和LC-MS分析,核磁共振氢谱数据和LC-MS数据同实施例6。
实施例8
2-(1-氯环丙基)-1-(2-氯苯基)-2-羟基-3-(1,2,4-三唑基-5-硫-1-基)-丙烷的合成
常温条件下,向250mL的四口瓶中加入80g乙腈、催化剂(0.144g、0.578mmol五水硫酸铜和0.22g、0.578mmol的EDTA-2Na.2H 2O),搅拌均匀后,得到混合液。向混合液中加入20g(0.0578mol)2-(1-氯环丙基)-1-(2-氯苯基)-2-羟基-3-(1,2,4-三唑烷基-5-硫-1-基)-丙烷,搅拌,得到反应混合液。然后降温至-10℃,向反应混合液中滴加质量分数为30%的双氧水,双氧水的滴加量为6.02g。双氧水滴加完毕后保温1h。利用液相色谱跟踪并监测反应进程。反应完成后,得到反应液。将反应液加热蒸发脱除溶剂,得到脱溶产物。然后向脱溶产物中加入60g甲苯,得到重溶混合液。加热该重溶混合液至回流温度后,得到溶解液。将溶解液降温至-5℃进行结晶,并在-5℃保温1h,析出晶体。对晶体进行过滤,收集结晶并干燥,得到结晶产品2-(1-氯环丙基)-1-(2-氯苯基)-2-羟基-3-(1,2,4-三唑基-5-硫-1-基)-丙烷19.68g,经过液相色谱检测,2-(1-氯环丙基)-1-(2-氯苯基)-2-羟基-3-(1,2,4-三唑基-5-硫-1-基)-丙烷的含量为98.2%,收率为97.2%(其中,收率和含量的计算方法同实施例1)。具体反应式如下:
Figure dest_path_image012
对结晶产品2-(1-氯环丙基)-1-(2-氯苯基)-2-羟基-3-(1,2,4-三唑基-5-硫-1-基)-丙烷进行 1HNMR和LC-MS分析,核磁共振氢谱数据和LC-MS数据同实施例6。
实施例1-8中,反应结束后通过脱溶、结晶就可得到产品,后处理简单,不需要任何繁琐的萃取分离操作,不产生废水。
对比例1
用等摩尔量的Pd(OAc) 2代替实施例1中的催化剂,其它原料成分及制备方法与实施例1相同,脱除溶剂后得到产品3-氢吲哚32g,3-氢吲哚的含量为48.5%,收率为52.63%。
对比例2
用等量的高锰酸钾代替实施例1中的间氯过氧苯甲酸,其它原料成分及制备方法与实施例1相同,脱除溶剂后得到产品3-氢吲哚15g,3-氢吲哚的含量为63.5%,收率为48.4%。
以上所述仅为本申请的较佳实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换或改进等,均应包含在本申请的保护范围之内。

Claims (11)

  1. 一种含氮杂环化合物的芳香化方法,其特征在于:在溶剂中,以含氮杂环化合物为反应底物,以过渡金属盐或过渡金属盐与有机化合物形成的配合物为催化剂,以过氧化物为氧化剂,反应得到含有含氮杂环化合物的芳香化产物的反应液。
  2. 如权利要求1所述的含氮杂环化合物的芳香化方法,其特征在于:所述溶剂为甲苯、水、甲醇、乙醇、2-丙醇、2-甲基-2-丙醇、叔丁醇、乙腈、二氯甲烷和二氯乙烷中的至少一种;
    和/或所述溶剂的用量相当于所述反应底物的质量的3~5倍。
  3. 如权利要求1所述的含氮杂环化合物的芳香化方法,其特征在于:所述含氮杂环化合物为含氮苯并杂环化合物或三唑烷基化合物。
  4. 如权利要求3所述的含氮杂环化合物的芳香化方法,其特征在于:所述含氮杂环化合物的结构式为:
    Figure dest_path_image001
    其中,R 1为氢、烷基、烷氧基、羟基、环烷基、杂环基、芳基、卤代芳基、杂芳基、卤代环烷基、酯基、羰基中的一种;
    X为氧或硫;
    R 2、R 3、R 4、R 5、R 6分别为氢、氯、羟基、C1-C6的烷基、C1-C6的卤代烷基、C1-C6的环烷基和C1-C6的烷氧基中的任一种。
  5. 如权利要求1所述的含氮杂环化合物的芳香化方法,其特征在于:所述过渡金属盐为铁盐和铜盐中的至少一种;
    和/或所述过渡金属盐与有机化合物形成的配合物由所述过渡金属盐与所述有机化合物按照0.8-1.2:1的摩尔比混合得到;所述有机化合物为含有乙二胺基结构的有机物,所述含有乙二胺基结构的有机物的结构式为:
    Figure dest_path_image002
    其中,R 7、R 8、R 9、R 10分别为-H、-CH 3、-CH 2CH 3、-OCH 3、-CH 2COOH和-CH 2COONa中的任一种。
  6. 如权利要求5所述的含氮杂环化合物的芳香化方法,其特征在于:所述铁盐或铜盐中的阴离子为Cl -、NO 3 -、OAc -和SO 4 2-中的一种。
  7. 如权利要求1所述的含氮杂环化合物的芳香化方法,其特征在于:所述催化剂的用量相当于所述反应底物的摩尔量的0.01%~20%。
  8. 如权利要求7所述的含氮杂环化合物的芳香化方法,其特征在于:所述催化剂的用量相当于所述反应底物的摩尔量的0.1%~5%。
  9. 如权利要求1所述的含氮杂环化合物的芳香化方法,其特征在于:所述氧化剂为过氧化氢、过氧乙酸、叔丁基过氧化氢、二叔丁基过氧化物、过氧乙酸叔丁酯、过氧苯甲酸叔丁酯、过氧苯甲酸、间氯过氧苯甲酸中的至少一种;
    和/或所述氧化剂的用量相当于所述反应底物的摩尔量的0.9~1.0倍;
    和/或所述反应的温度为-10℃~70℃;
    和/或所述反应的时间为0.5~2.5h。
  10. 如权利要求1所述的含氮杂环化合物的芳香化方法,其特征在于:所述方法还包括:将所述反应液脱除溶剂后,得到脱溶产物,向脱溶产物中加入重溶溶剂进行重溶、降温结晶,得到含氮杂环化合物的芳香化产物。
  11. 如权利要求3所述的含氮杂环化合物的芳香化方法,其特征在于:所述含氮杂环化合物的结构式为:
    Figure dest_path_image003
    其中,R 1为卤代C6-C10芳基或C1-C9杂芳基;
    X为氧或硫;
    R 2、R 3、R 4、R 5、R 6分别为氢、氯、羟基、C1-C6的烷基、C1-C6的卤代烷基、C1-C6的环烷基和C1-C6的烷氧基中的任一种。
PCT/CN2021/141348 2021-10-09 2021-12-24 一种含氮杂环化合物的芳香化方法 WO2023056714A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111179477.7A CN113788778B (zh) 2021-10-09 2021-10-09 一种含氮杂环化合物的芳香化方法
CN202111179477.7 2021-10-09

Publications (1)

Publication Number Publication Date
WO2023056714A1 true WO2023056714A1 (zh) 2023-04-13

Family

ID=79184796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/141348 WO2023056714A1 (zh) 2021-10-09 2021-12-24 一种含氮杂环化合物的芳香化方法

Country Status (2)

Country Link
CN (1) CN113788778B (zh)
WO (1) WO2023056714A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113788778B (zh) * 2021-10-09 2023-11-17 河北威远生物化工有限公司 一种含氮杂环化合物的芳香化方法
CN115448889A (zh) * 2022-10-13 2022-12-09 上海农帆生物科技有限公司 一种高含量的丙硫菌唑的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103012238A (zh) * 2013-01-11 2013-04-03 华东理工大学 一种n-取代-1h-吡咯的制备方法
CN108912062A (zh) * 2018-06-21 2018-11-30 南通泰禾化工股份有限公司 一种三唑硫酮衍生物的制备方法
CN110467569A (zh) * 2018-05-10 2019-11-19 上海特化医药科技有限公司 取代喹啉-2(1h)-酮化合物的制备方法和用途
CN111303059A (zh) * 2020-04-29 2020-06-19 江苏苏利精细化工股份有限公司 一种丙硫菌唑的合成方法
CN113788778A (zh) * 2021-10-09 2021-12-14 河北威远生物化工有限公司 一种含氮杂环化合物的芳香化方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112295608B (zh) * 2020-11-19 2023-05-19 河北威远生物化工有限公司 一种用于三唑类化合物芳香化的三氯化铁再生循环套用方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103012238A (zh) * 2013-01-11 2013-04-03 华东理工大学 一种n-取代-1h-吡咯的制备方法
CN110467569A (zh) * 2018-05-10 2019-11-19 上海特化医药科技有限公司 取代喹啉-2(1h)-酮化合物的制备方法和用途
CN108912062A (zh) * 2018-06-21 2018-11-30 南通泰禾化工股份有限公司 一种三唑硫酮衍生物的制备方法
CN111303059A (zh) * 2020-04-29 2020-06-19 江苏苏利精细化工股份有限公司 一种丙硫菌唑的合成方法
CN113788778A (zh) * 2021-10-09 2021-12-14 河北威远生物化工有限公司 一种含氮杂环化合物的芳香化方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
ANANTHNAG GUDDEKOPPA S., ADHIKARI ADITHYA, BALAKRISHNA MARAVANJI S.: "Iron-catalyzed aerobic oxidative aromatization of 1,3,5-trisubstituted pyrazolines", CATALYSIS COMMUNICATIONS, ELSEVIER, AMSTERDAM, NL, vol. 43, 1 January 2014 (2014-01-01), AMSTERDAM, NL , pages 240 - 243, XP093055687, ISSN: 1566-7367, DOI: 10.1016/j.catcom.2013.09.002 *
BO YU: "Synthesis Process Optimization on Prothioconazole", AGROCHEMICALS, vol. 56, no. 2, 1 February 2017 (2017-02-01), pages 105 - 107, XP093055686 *
SATORU MURATA, MASAHIRO MIURA, MASAKATSU NOMURA: "Oxidation of N-acyl-pyrrolidines and -piperidines with lron(II)-hydrogen peroxide and an iron complex-molecular oxygen", JOURNAL OF THE CHEMICAL SOCIETY, PERKIN TRANSACTIONS 1, ROYAL SOCIETY OF CHEMISTRY, CAMBRIDGE, UK, 1 January 1987 (1987-01-01), Cambridge, UK , pages 1259, XP055297105, ISSN: 0300-922X, DOI: 10.1039/p19870001259 *
SUMIT CHAKRABORTY, WILLIAM W. BRENNESSEL, WILLIAM D. JONES: "A Molecular Iron Catalyst for the Acceptorless Dehydrogenation and Hydrogenation of N-Heterocycles", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, AMERICAN CHEMICAL SOCIETY, vol. 136, no. 24, 18 June 2014 (2014-06-18), pages 8564 - 8567, XP055510803, ISSN: 0002-7863, DOI: 10.1021/ja504523b *

Also Published As

Publication number Publication date
CN113788778A (zh) 2021-12-14
CN113788778B (zh) 2023-11-17

Similar Documents

Publication Publication Date Title
WO2023056714A1 (zh) 一种含氮杂环化合物的芳香化方法
EP2185510B1 (en) New salts of bazedoxifene
TWI685486B (zh) 製備pde4抑制劑之方法
US20060094757A1 (en) Substantially pure cilostazol and processes for making same
EP2409967A1 (en) Polymorphs of n-hydroxy-3-[4-[[[2-(2-methyl-1h-indol-3-yl)ethyl]amino]methyl]phenyl]-2e-2-propenamide
JP2005350474A (ja) シロスタゾールの製造方法
WO2024017170A1 (zh) S-(-)-尼古丁(-)-二苯甲酚-l-酒石酸盐晶型、制备方法及应用
CN111072633A (zh) 一种埃索美拉唑镁三水合物的制备方法
US6515128B2 (en) Processes for preparing cilostazol
BR112014014604B1 (pt) processo para a preparação de um composto, e, composto isolado e purificado
WO2022143715A1 (zh) 氧杂螺环取代的吡咯并吡唑衍生物及其中间体和制备方法
KR20230026411A (ko) 방향족 에터 화합물의 제조 방법
CN110759870B (zh) 噁拉戈利中间体的合成方法
EP3741746A1 (en) Crystal form of oxopicolinamide derivative and preparation method therefor
CN111732586B (zh) 含炔基化合物盐的晶型、制备方法及应用
CN107652247A (zh) 一种2‑甲基‑3‑[4,5‑二氢异噁唑]‑4‑甲磺酰基苯甲酸乙酯的制备方法
WO2021238965A1 (zh) (s)-2-氨基-3-(4-(2,3-二甲基吡啶-4-基)苯基丙酸甲酯及其盐的制备方法
CN109678706B (zh) 一种菊苣酸的合成方法和l-菊苣酸晶型制备
CN114369085A (zh) 盐酸Asciminib的制备方法
WO2018228476A1 (zh) 苯并咪唑类化合物及其应用
JP2000239253A (ja) 2−オキシインドールの製造方法
JP4564135B2 (ja) 高純度フェノチアジン化合物とその製造方法、およびその中間体の製造方法、並びにその中間体の原料の水和物と新規結晶
CN115215877A (zh) 一种安纳拉唑的制备方法
CN114591236A (zh) 一种茚达特罗的改进制备方法
CN118125928A (zh) 一种2-氨基-3,5-二溴苯甲醛的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21959800

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21959800

Country of ref document: EP

Kind code of ref document: A1