WO2023055164A1 - 탄소피복강재 및 그 제조방법 - Google Patents

탄소피복강재 및 그 제조방법 Download PDF

Info

Publication number
WO2023055164A1
WO2023055164A1 PCT/KR2022/014741 KR2022014741W WO2023055164A1 WO 2023055164 A1 WO2023055164 A1 WO 2023055164A1 KR 2022014741 W KR2022014741 W KR 2022014741W WO 2023055164 A1 WO2023055164 A1 WO 2023055164A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel material
carbon
steel
coating layer
manufacturing
Prior art date
Application number
PCT/KR2022/014741
Other languages
English (en)
French (fr)
Inventor
천승환
박민호
이재현
현상화
Original Assignee
현대제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220124451A external-priority patent/KR20230047025A/ko
Application filed by 현대제철 주식회사 filed Critical 현대제철 주식회사
Publication of WO2023055164A1 publication Critical patent/WO2023055164A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/56After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/60Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes
    • C23C8/62Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using solids, e.g. powders, pastes only one element being applied
    • C23C8/64Carburising
    • C23C8/66Carburising of ferrous surfaces

Definitions

  • the technical idea of the present invention relates to a steel material, and more particularly, to a self-assembled carbon-coated steel material having oxidation resistance, sour resistance, and hydrogen induced cracking resistance, and a manufacturing method thereof.
  • a post-treatment process such as forming a protective coating such as ceramic coating, polymer coating, nanomaterial deposition, and self-assembled nanocoating is performed.
  • a post-treatment process such as forming a protective coating such as ceramic coating, polymer coating, nanomaterial deposition, and self-assembled nanocoating is performed.
  • steel products manufactured using the above process have disadvantages of limited productivity and high manufacturing cost despite excellent performance.
  • 2D nanomaterials for protective coatings are in the limelight due to their excellent mechanical and chemical properties.
  • Materials for protective films that are currently mainly used include graphite, WSe, MoS 2 , hexagonal boron nitride (hBN), and are generally formed to a thickness of hundreds of nanometers on the surface of a base material using chemical vapor deposition. .
  • Such a nano-sized protective film is very difficult to secure uniformity and coverage, so optimization of related processes must be accompanied.
  • the technical problem to be achieved by the technical idea of the present invention is to provide a carbon coated steel material having oxidation resistance, sour resistance, and hydrogen induced crack resistance, which can be manufactured by utilizing the existing tempering heat treatment process of steel material, and a manufacturing method thereof .
  • these tasks are exemplary, and the technical spirit of the present invention is not limited thereto.
  • a method for manufacturing a carbon-coated steel material according to the spirit of the present invention for solving the above problems includes the steps of heating and tempering the steel material; and injecting gasified benzene while the steel is heated, and combining carbon rings of the gasified benzene to form a carbon coating layer on the surface of the steel.
  • the tempering heat treatment may be performed at a temperature of 400 ° C to 650 ° C.
  • the forming of the carbon coating layer may be performed at a temperature of 400°C to 650°C.
  • hot-rolling the steel material before performing the step of heating and tempering the steel material, hot-rolling the steel material; And a step of primary cooling the hot-rolled steel material; may further include.
  • the step of secondary cooling the steel material may further include.
  • the thickness of the carbon coating layer may be increased.
  • the carbon coating layer may include graphite.
  • the gasified benzene is injected by a carrier gas, and the concentration ratio of the gasified benzene and the carrier gas may be in the range of 1:400 to 1:200.
  • the carbon-coated steel according to the spirit of the present invention for solving the above problems is formed by the above-described manufacturing method, the steel; and a carbon coating layer located on the steel material and formed from gasified benzene by tempering heat treatment.
  • a self-assembled carbon coating layer is formed by forming a graphite layer in the form of a film by generating a selective interfacial diffusion reaction on the surface of a steel material by utilizing an existing tempering heat treatment process.
  • the formed carbon-coated steel can be manufactured.
  • the steel material having the self-assembled carbon coating layer formed by the manufacturing method may minimize physical property change and have excellent oxidation resistance, sour resistance, and hydrogen induced cracking resistance.
  • the manufacturing method of such carbon-coated steel is not limited to a specific steel material, and can be performed for all steel types to which the tempering heat treatment process is applied, and therefore, regardless of the type of steel type, oxidation resistance, sour resistance, and hydrogen induced cracking resistance can provide Of course, the scope of the present invention is not limited by these effects.
  • FIG. 1 is a schematic view showing a manufacturing apparatus for performing a manufacturing method of a carbon coated steel material according to an embodiment of the present invention.
  • FIG. 2 is a process flow chart showing a method for manufacturing a carbon coated steel material according to an embodiment of the present invention.
  • FIG 3 is a cross-sectional view showing a method for manufacturing a carbon coated steel material according to an embodiment of the present invention.
  • Figure 4 is a graph showing the temperature profile in the manufacturing method of carbon coated steel according to an embodiment of the present invention.
  • 5 and 6 are graphs showing the Raman spectrum and electrical resistance of the carbon coating layer according to the concentration ratio of gasified benzene and carrier gas at a heat treatment temperature of 400° C. according to an embodiment of the present invention.
  • FIG. 7 and 8 are graphs showing the Raman spectrum and electrical resistance of the carbon coating layer according to the concentration ratio of gasified benzene and carrier gas at a heat treatment temperature of 650° C. according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram showing a method of forming a carbon coating layer with gasified benzene in a method for manufacturing a carbon-coated steel material according to an embodiment of the present invention.
  • the technical concept of the present invention relates to a carbon-coated steel material having oxidation resistance, sour resistance, and hydrogen-induced crack resistance and a method for manufacturing the same, to form a self-assembled carbon coating layer based on heat treatment.
  • the normalizing functions to improve processability by recovering crystal grains processed by rolling, homogenizing the structure, and removing internal stress without changing the properties of the material. Since the normalizing temperature is generally in the range of about 800° C. to 950° C., it is possible to form a coating layer by chemical vapor deposition at this temperature. That is, in the process of performing the normalizing heat treatment process, the process of forming a coating layer on the surface of the steel material may be simultaneously performed.
  • the tempering functions to lower the hardness and increase the viscosity by performing quenching and the like to reheat the steel material having high hardness to a temperature below the A1 transformation point, to a temperature of about 400 ° C to 650 ° C. Similar to the normalizing case described above, the process of forming a coating layer on the surface of the steel material may be simultaneously performed even in the process of performing the tempering heat treatment process. Therefore, it is possible to form a coating layer on steel materials subjected to normalization, and since tempering is performed at a lower temperature than the normalization, energy can be saved.
  • FIG. 1 is a schematic view showing a manufacturing apparatus for performing a manufacturing method of a carbon coated steel material according to an embodiment of the present invention.
  • the manufacturing apparatus includes a chamber 20 in which a steel material 10 is accommodated to form a carbon coating layer, and a heating unit 30 for heating the steel material 10 accommodated in the chamber 20. .
  • the heating unit 30 may heat the received steel material 10 by transferring heat to the chamber 20 to form heat.
  • the heating unit 30 may be disposed on the upper and lower sides of the chamber 20 or may be formed surrounding the chamber 20 .
  • the heating unit 30 may be composed of various heaters, and may be composed of, for example, an optical heater such as a halogen lamp or the like or a resistive heater such as a ceramic heater.
  • gasified benzene and a carrier gas may be introduced into the chamber 20 .
  • a conventional gas injection device may be used for the injection of the gas.
  • FIG. 2 is a process flow chart showing a method for manufacturing a carbon coated steel material according to an embodiment of the present invention.
  • the manufacturing method of the carbon-coated steel includes: hot-rolling the steel (S110); Step of primary cooling the hot-rolled steel material (S120); Heating and tempering the steel material (S130); Injecting gasified benzene while the steel is heated, and combining the carbon rings of the gasified benzene to form a carbon coating layer on the surface of the steel (S140); and secondary cooling of the steel material (S150).
  • the steel material such as a slab formed in the continuous casting process may be hot-rolled at a high temperature, for example, at a temperature of 800 ° C to 1000 ° C.
  • the step of hot rolling the steel material (S110) may include, for example, width rolling, rough rolling, and finishing rolling.
  • the steel material may include various steel materials and may have various shapes such as a steel plate, a round bar, and a section.
  • the steel material may be a plate material or a thick plate that may be composed of a hot-rolled coil.
  • the step of firstly cooling the hot-rolled steel material (S120) is a step of cooling the steel material to room temperature, for example, to a temperature of 0 ° C to 40 ° C, after performing hot rolling, Air cooling, compressed air cooling, water cooling, and the like can be achieved in various ways.
  • the step of hot-rolling the steel material (S110) and the step of primary cooling the hot-rolled steel material (S120) are optional and may be omitted.
  • FIG 3 is a cross-sectional view showing a method for manufacturing a carbon coated steel material according to an embodiment of the present invention.
  • tempering heat treatment may be performed by heating the steel material 10 to a temperature of 400° C. to 650° C. The heat treatment may be performed for 10 minutes to 180 minutes.
  • the steel material 10 can improve workability by recovering crystal grains processed by rolling, homogenizing the structure, and removing internal stress without changing the properties of the material.
  • the toughness of the base material of the steel material may be deteriorated due to red heat brittleness. may deteriorate.
  • tempering heat treatment time is less than 10 minutes, it may be difficult to reduce internal stress in the steel material. If the tempering heat treatment time exceeds 180 minutes, only the production cost may be increased without any further synergistic effect.
  • the carrier gas may include an inert gas, and may include, for example, argon gas or nitrogen gas.
  • gasified benzene is injected while the steel material 10 is heated, and carbon rings of the gasified benzene are combined to form the steel material 10.
  • a carbon coating layer 12 is formed on the surface.
  • gasified benzene may be injected into the space where the steel material 10 is accommodated.
  • the gasified benzene may be moved and injected by a carrier gas. Accordingly, the step of forming the carbon coating layer (S140) may be performed in a gaseous benzene atmosphere.
  • the step of forming the carbon coating layer (S140) may be performed at a temperature of 400° C. to 650° C., for example, at a pressure of 1 atm or less, for example, 0.1 atm to 1 atm.
  • the gaseous benzene which is a carbon source
  • the formation of the carbon coating layer 12 from the gasified benzene will be described in detail below with reference to FIG. 10 .
  • the carbon coating layer 12 may include various types of carbon, and may include, for example, graphite.
  • the thickness of the carbon coating layer 12 may vary depending on the desired purpose, and may be, for example, in the range of 1 nm to 1 mm, or less than 10 nm.
  • the steel material 10 is heated at room temperature, for example, 0 ° C. to 40 ° C. It is a step of cooling to a temperature of ° C, and may be performed in various ways such as air cooling, compressed air cooling, and water cooling.
  • the carbon coating layer 12 may be continuously formed, and thus the thickness of the carbon coating layer 12 may increase.
  • the step of forming the carbon coating layer (S140) may include forming the carbon coating layer 12 on the surface of the steel material 10.
  • the carbon coated steel material according to the technical idea of the present invention, the steel material 10; and a carbon coating layer 12 located on the steel material 10 and formed from gasified benzene by tempering heat treatment.
  • Figure 4 is a graph showing the temperature profile in the manufacturing method of carbon coated steel according to an embodiment of the present invention.
  • gasified benzene is supplied together with the carrier gas to pass through a carbon coating layer formation section in which a carbon coating layer is formed on the surface of the steel material.
  • the carbon coating layer forming section may be started at the same temperature as the temperature of the heat treatment section, for example, in a temperature range of 400 °C to 650 °C. Then, even while the steel material is being cooled, the carbon coating layer may continue to be formed. The formation of the carbon coating layer may be determined depending on the temperature and the supply of the gasified benzene.
  • Benzene exists as a liquid at 1 atmospheric pressure and room temperature, and has a boiling point of 80.1°C. Therefore, the gasified benzene can be obtained by vaporizing by raising the temperature.
  • the gasified benzene can be obtained using a bubbling method. Specifically, bubbles are formed by passing the inert gas used as the carrier gas through liquid benzene, and when the bubbles rise to the surface of the liquid benzene and are discharged to the outside of the liquid benzene, a part of the liquid benzene is gasified benzene. is formed to be adsorbed to the bubble and discharged to the outside. This gasified benzene moves together with the carrier gas.
  • the gasified benzene is injected by a carrier gas, and the concentration ratio of the gasified benzene and the carrier gas may be, for example, in the range of 1:400 to 1:200.
  • the concentration ratio is lower than 1:400, for example, when the concentration of the carrier gas is higher, for example, when the concentration of the carrier gas is 1:500, etc.
  • the concentration of gasified benzene is low so that a carbon coating layer cannot be formed or a dense It may not be configured as a layer.
  • the concentration ratio is higher than 1:200, for example, 1:10, etc., the concentration of gasified benzene is high, making it difficult to decompose and release hydrogen. It may not be adsorbed or may not be configured to the desired density.
  • the Raman spectrum of the carbon coating layer when gasified benzene and carrier gas were injected at a concentration ratio of (a) 1:500, (b) 1:400, and (c) 1.8:400, respectively, at a heat treatment temperature of 400 ° C. appear
  • Raman spectroscopy of carbon (or graphite) constituting the carbon coating layer is performed, a D-band peak at about 1350 cm ⁇ 1 due to sp 3 bonding and a G-band peak at 1580 cm ⁇ 1 due to sp 2 bonding appear.
  • the ratio of the D-band peak size to the G-band peak size R value (ie, D-band intensity/G-band intensity) was calculated.
  • R value of the carbon coating layer is 1 or less.
  • a lower R value means that when carbon is deposited, the bonding structure of the carbon atoms does not change from the sp 2 structure to the sp 3 structure and is laminated in a two-dimensional structure of graphite.
  • the Raman spectrum of the carbon coating layer when gasified benzene and a carrier gas were injected at a concentration ratio of (a) 1:500, (b) 1:400, and (c) 1.8:400, respectively, at a heat treatment temperature of 650 ° C. appear
  • the ratio of the D-band peak size to the G-band peak size R value ie, D-band intensity/G-band intensity
  • the concentration ratio of gasified benzene and carrier gas was 1:400 at a heat treatment temperature of 650° C.
  • the R value of the carbon coating layer was less than 1, indicating excellent crystallinity.
  • the concentration ratio is 1.8:400
  • the R value is greater than 1, but the crystallinity of the graphite of the carbon coating layer formed directly on the surface of the steel material is excellent, and a graphite layer with excellent crystallinity can be synthesized from the surface of the steel material to a region of several tens of nm. there is.
  • the electrical resistance of the carbon coating layer when gasified benzene and carrier gas were injected at a concentration ratio of (a) 1:500, (b) 1:400, and (c) 1.8:400, respectively, at a heat treatment temperature of 650 ° C. indicate In FIG. 8 , when the concentration ratio was 1:400, the electrical resistance was the highest, indicating that corrosion resistance was excellent, and when the concentration ratio was 1:500, the electrical resistance was the lowest, indicating that the corrosion resistance was poor.
  • FIG. 9 is a schematic diagram showing a method of forming a carbon coating layer with gasified benzene in a method for manufacturing a carbon-coated steel material according to an embodiment of the present invention.
  • gasified benzene formed from liquid benzene is provided to steel.
  • the gasified benzene is adsorbed on the surface of the steel material heated to a temperature of 400 ° C to 650 ° C by tempering heat treatment.
  • some hydrogen (H) may be decomposed and released from the gasified benzene, and the benzene ring (hexagonal carbon) removed by the branching of hydrogen is adsorbed on the surface of the steel material.
  • the gaseous benzene and benzene rings adsorbed on the surface are diffused on the surface of the steel and gathered together.
  • hydrogen (H) is decomposed and released from the remaining gasified benzene, and the gasified benzene may have only carbon rings excluding hydrogen. Accordingly, in the gasified benzene, carbon rings adjacent to each other are chemically bonded to each other, thereby causing physical and chemical aggregation to form a two-dimensional carbon network similar to graphene.
  • another carbon mesh layer is formed on the upper side of the two-dimensional carbon mesh, and thus a graphite-shaped carbon coating layer may be formed.
  • the carbon-coated steel material according to the technical concept of the present invention has a carbon coating layer formed on the surface of the steel material, thereby minimizing the physical properties of the steel material, and having oxidation resistance, sour resistance, and hydrogen induced cracking resistance.
  • the carbon coating layer can be formed in the tempering heat treatment process, there is an advantage in that a separate additional process is not required.
  • the steel material is not limited to a specific steel material, and may include all types of steel to which heat treatment such as tempering heat treatment is applied.
  • a self-assembled carbon coating layer is formed by forming a graphite layer in the form of a film by generating a selective interfacial diffusion reaction on the surface of a steel material by utilizing an existing tempering heat treatment process.
  • the formed carbon-coated steel can be manufactured.
  • the steel material having the self-assembled carbon coating layer formed by the manufacturing method may minimize physical property change and have excellent oxidation resistance, sour resistance, and hydrogen induced cracking resistance.
  • the manufacturing method of such carbon-coated steel is not limited to a specific steel material, and can be performed for all steel types to which the tempering heat treatment process is applied, and therefore, regardless of the type of steel type, oxidation resistance, sour resistance, and hydrogen induced cracking resistance can provide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

본 발명은 강재의 기존 템퍼링 열처리 공정을 활용하여 형성할 수 있는, 내산화성, 내사워성, 및 수소유도균열 저항성을 가지는 탄소피복강재 및 그 제조방법을 제공한다. 본 발명의 일 실시예에 의하면, 상기 탄소피복강재의 제조방법은, 강재를 가열하여 템퍼링 열처리하는 단계; 및 상기 강재가 가열된 상태에서 가스화 벤젠을 주입하여, 상기 강재의 표면에 탄소 피복층을 형성하는 단계;를 포함할 수 있다.

Description

탄소피복강재 및 그 제조방법
본 발명의 기술적 사상은 철강 재료에 관한 것으로서, 보다 상세하게는 내산화성, 내사워성, 및 수소유도균열 저항성을 가지는 자기조립형 탄소 피복 강재 및 그 제조방법에 관한 것이다.
최근 압력용기용 강재 또는 라인 파이프용 강재는 설비가 대형화되고 고온, 고압, 극저온 및 사워(Sour) 환경 등 극한 환경에서의 사용이 증가되고 있다. 따라서, 강재는 기본적인 물성 이외에도 수소유도균열(HIC) 저항성, 고온물성, 저온인성 등 요구되는 기능이나 품질이 더욱 엄격해지고 있다. 이와 같은 고기능성 및 내구성과 관련된 복합 물성을 동시에 확보하기 위하여, 합금성분조정, 불순물원소 저감, 및 NACT (Normalizing and Accelerated Cooling 및 Tempering) 등과 같은 새로운 강재의 제조공정이 도입되고 있다. 특히, 내부식성을 향상하기 위하여, 세라믹 코팅, 고분자 코팅, 나노 물질 증착, 자기조립형 나노 코팅 등과 같은 보호 피복을 형성하는 등의 후처리 공정을 수행하고 있다. 그러나 상술한 공정을 이용하여 제조된 강재들은 우수한 성능에도 불구하고 제한된 생산성과 제조 원가가 높다는 단점을 갖는다.
최근 다양한 종류의 보호피막용 2차원 나노 재료가 우수한 기계적 특성 및 화학적 특성으로 인해 각광받고 있다. 현재 주로 사용되고 있는 보호 필름용 재료들은 그라파이트(Graphite), WSe, MoS2, 육방정 질화붕소(hBN) 등이 있으며, 일반적으로 화학기상증착법을 이용하여 모재 표면에 수백 나노미터 크기의 두께로 형성된다. 이러한 나노 사이즈의 보호 필름은 균일성 및 커버리지 확보가 매우 까다로워, 관련 공정의 최적화가 반드시 수반되어야 한다.
본 발명의 기술적 사상이 이루고자 하는 기술적 과제는 강재의 기존 템퍼링 열처리 공정을 활용하여 제조할 수 있는, 내산화성, 내사워성, 및 수소유도균열 저항성을 가지는 탄소피복강재 및 그 제조방법을 제공하는 것이다. 그러나 이러한 과제는 예시적인 것으로, 본 발명의 기술적 사상은 이에 한정되는 것은 아니다.
상기 과제를 해결하기 위한 본 발명의 사상에 따른 탄소피복강재의 제조방법은, 강재를 가열하여 템퍼링 열처리하는 단계; 및 상기 강재가 가열된 상태에서 가스화 벤젠을 주입하여, 상기 가스화 벤젠의 탄소 고리들이 결합하여 상기 강재의 표면에 탄소 피복층을 형성하는 단계;를 포함할 수 있다.
또한, 본 발명에 따르면, 상기 템퍼링 열처리하는 단계는, 400℃ ~ 650℃ 의 온도에서 수행될 수 있다.
또한, 본 발명에 따르면, 상기 탄소 피복층을 형성하는 단계는, 400℃ ~ 650℃ 의 온도에서 수행될 수 있다.
또한, 본 발명에 따르면, 상기 강재를 가열하여 템퍼링 열처리하는 단계를 수행하기 전에, 상기 강재를 열간압연하는 단계; 및 상기 열간압연한 강재를 1차 냉각하는 단계;를 더 포함할 수 있다.
또한, 본 발명에 따르면, 상기 탄소 피복층을 형성하는 단계를 수행한 후에, 상기 강재를 2차 냉각하는 단계;를 더 포함할 수 있다.
또한, 본 발명에 따르면, 상기 강재를 2차 냉각하는 단계에서, 상기 탄소 피복층의 두께가 증가될 수 있다.
또한, 본 발명에 따르면, 상기 탄소 피복층은, 그라파이트를 포함할 수 있다.
또한, 본 발명에 따르면, 상기 가스화 벤젠은 캐리어 가스에 의하여 주입되고, 상기 가스화 벤젠과 상기 캐리어 가스의 농도비는 1:400 내지 1:200 범위일 수 있다.
한편, 상기 과제를 해결하기 위한 본 발명의 사상에 따른 탄소피복강재는, 상술한 제조방법에 의하여 형성되고, 강재; 및 상기 강재 상에 위치하고, 템퍼링 열처리에 의하여 가스화 벤젠으로부터 형성된 탄소 피복층;을 포함할 수 있다.
상기한 바와 같이 이루어진 본 발명의 일 실시예에 따르면, 기존의 템퍼링 열처리 공정을 활용하여 강재의 표면 상에 선택적 계면확산반응을 발생시켜 필름 형태의 그라파이트 층을 형성하는 방식으로 자기조립형 탄소 피복층이 형성된 탄소피복강재를 제조할 수 있다. 상기 재조방법에 의하여 형성된 상기 자기조립형 탄소 피복층이 형성된 강재는 물리적 특성 변화를 최소화되고, 우수한 내산화성, 내사워성, 및 수소유도균열 저항성을 가질 수 있다. 이러한 탄소피복강재의 제조방법은 특정한 강재에 국한되지 않으며, 템퍼링 열처리 공정이 적용되는 강종 전체에 대하여 수행될 수 있고, 따라서 강종의 종류에 무관하게 내산화성, 내사워성, 및 수소유도균열 저항성을 제공할 수 있다. 물론 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.
도 1은 본 발명의 일실시예에 따른 탄소피복강재의 제조방법을 수행하는 제조장치를 도시하는 개략도이다.
도 2는 본 발명의 일실시예에 따른 탄소피복강재의 제조방법을 도시하는 공정순서도이다.
도 3은 본 발명의 일실시예에 따른 탄소피복강재의 제조방법을 도시하는 단면도이다.
도 4는 본 발명의 일실시예에 따른 탄소피복강재의 제조방법에서의 온도 프로파일 나타내는 그래프이다.
도 5 및 도 6은 본 발명의 일실시예에 따라 400℃ 열처리 온도에서 가스화 벤젠과 캐리어 가스의 농도비에 따른 탄소 피복층의 라만 스펙트럼 및 전기저항을 나타내는 그래프이다.
도 7 및 도 8은 본 발명의 일실시예에 따라 650℃ 열처리 온도에서 가스화 벤젠과 캐리어 가스의 농도비에 따른 탄소 피복층의 라만 스펙트럼 및 전기저항을 나타내는 그래프이다.
도 9는 본 발명의 일실시예에 따른 탄소피복강재의 제조방법에서의 가스화 벤젠이 탄소 피복층을 형성하는 방법을 도시하는 모식도이다.
이하, 첨부된 도면들을 참조하여 본 발명의 실시예를 상세히 설명하면 다음과 같다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있는 것으로, 이하의 실시예는 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 또한 설명의 편의를 위하여 도면에서는 구성 요소들이 그 크기가 과장 또는 축소될 수 있다.
일반적으로, 강재가 내부식성 및 수소유도균열(hydrogen induced crack, HIC) 저항성을 확보하기 위하여, 강재의 청정도 확보 방식이나 미세 조직 또는 석출물 제어방식 등이 적용되어 왔다. 이러한 방식은 합금 설계의 최적화, 제강/연주/압연/열처리 등, 전공정의 엄격한 관리가 필요하므로, 일반재 조업 대비 생산량이 낮고, 생산 원가가 증가될 수 있다. 다른 방법으로서, 도장 및 보호피막 형성을 통한 방식으로는, 별도의 후처리 생산 공정이 추가되어야 하는 한계가 있다.
본 발명의 기술적 사상은 내산화성, 내사워성, 및 수소유도균열 저항성을 가지는 탄소피복강재 및 그 제조방법에 관한 것으로서, 열처리를 기반하여 자기조립형 탄소 피복층을 형성하는 것이다.
종래의 내부식성, 내사워성 및 수소유도균열 저항성을 확보하기 위한 방법은 강재의 미세구조 제어 또는 석출물 제어를 통하여 수행되었으며, 이는 첨가 원소의 제한, 압연 및 냉각 조건의 최적화 등을 통해 구현되었다. 그러나, 첨가원소의 제한, 압연 및 냉각조건 개선 등은 재질확보 및 기본 물성을 확보하는 데 있어 한계가 있다.
다른 방법으로서, 강재의 표면에 도료를 도포하거나, 또는 보호 피막을 형성하여 내부식성, 내사워성 및 수소유도균열 저항성을 확보하는 경우에는, 도료 도포 또는 보호 피막 형성의 추가 공정이 요구되며, 이는 제조사에게, 특히 판재를 생산하는 밀(Mill) 사의 경우에는 접근성이 어려울 수 있다.
후판 강재의 경우에는, 압력용기용 강재 또는 일부 라인파이프 강재 등과 같이 860℃ 내지 950℃에서 노말라이징(Normalizing) 을 하거나, 이 보다 낮은 온도인 400℃ 내지 650℃에서 템퍼링(tempering)하여 생산되는 열처리 강재가 있다. 이러한 강재에 적용되고 있는 열처리 공정에서, 열적 활성화를 통한 계면 반응을 촉진하여 자발적으로 내부식성 보호 필름을 표면에 형성시킬 수 있다. 이러한 보호 필름은 수소의 강재 침투를 차단하여 수소에 의해 유기 되는 결함 발생을 억제할 수 있다. 이는 종래, HIC 저항성 확보를 위해 적용했던 합금성분 및 제강/연주/압연조건 등의 제한이 수반되지 않고 포스트 코팅 처리를 포함한 별도의 추가 생산을 위한 공정을 생략할 수 있다. 따라서, 열처리 공정을 개선함으로써, 강재의 기본 물성을 확보함과 동시에 내부식성 및 HIC 저항성이 우수한 강재의 제조가 가능하다.
강재에서, 특히 후판의 경우 노말라이징(Normalizing) 또는 템퍼링(tempering)과 같은 후열처리를 필수적으로 요구하는 경우가 있다. 상기 노말라이징은 재료의 성질을 변화시키지 않고 압연에 가공 변화된 결정립의 회복, 조직의 균일화, 내부 응력을 제거하여 가공성을 향상시키는 기능을 한다. 이러한 노말라이징의 온도는 일반적으로 약 800℃ 내지 950℃ 범위이므로, 상기 온도에서는 화학기상증착에 의한 피복층의 형성이 가능할 수 있다. 즉, 노말라이징 열처리 공정을 수행하는 과정에서 강재 표면에 피복층을 형성하는 공정을 동시에 수행할 수 있다. 또한, 상기 템퍼링은 담금질 등을 수행하여 높은 경도를 가지는 강재를 A1 변태점 이하의 온도로, 약 400℃ 내지 650℃의 온도로 재가열하여, 경도를 낮추고, 점성을 증가시키는 기능을 한다. 상술한 노말라이징 경우와 유사하게, 템퍼링 열처리 공정을 수행하는 과정에서도 강재 표면에 피복층을 형성하는 공정을 동시에 수행될 수 있다. 따라서, 노말라이징을 수행하는 강재에도 피복층 형성이 가능하고, 또한 상기 노말라이징에 비하여 낮은 온도에서 템퍼링이 수행되므로 에너지 절감의 효과를 가질 수 있다.
이와 같이 열처리 공정에서 피복층을 형성하면, 강재의 합금성분의 변화 또는 압연조건의 변화가 수반되지 않으므로 기본 재질 및 물성 확보에 용이한 장점이 있다. 즉, 열처리 공정 개선만을 통해 기존 재질 및 물성 확보는 물론 내산화성, 내사워성, 및 수소유도균열 저항성이 우수한 강재를 형성할 수 있다.
도 1은 본 발명의 일실시예에 따른 탄소피복강재의 제조방법을 수행하는 제조장치를 도시하는 개략도이다.
도 1을 참조하면, 상기 제조장치는, 강재(10)가 수용되어 탄소 피복층이 형성되는 챔버(20), 상기 챔버(20)에 수용된 강재(10)를 가열하는 가열부(30)를 포함한다.
가열부(30)는 열을 형성하여 챔버(20)로 전달하여 수용된 강재(10)를 가열할 수 있다. 가열부(30)는 챔버(20)의 상측과 하측에 배치되거나 또는 챔버(20)를 둘러싸서 형성될 수 있다. 가열부(30)는 다양한 히터로 구성될 수 있고, 예를 들어 할로겐 램프 등과 같은 광학적 히터로 구성되거나, 세라믹 히터 등과 같은 저항발열 히터로 구성될 수 있다.
챔버(20)에 수용된 강재(10)가 가열부(30)에 의하여 가열되고 또한 상승한 온도가 유지되는 동안에, 챔버(20) 내로 가스화 벤젠과 캐리어 가스가 투입될 수 있다. 상기 가스의 투입에 대하여는 통상적인 가스 주입 장치를 사용할 수 있다.
도 2는 본 발명의 일실시예에 따른 탄소피복강재의 제조방법을 도시하는 공정순서도이다.
도 2를 참조하면, 상기 탄소피복강재의 제조방법은, 강재를 열간압연하는 단계(S110); 상기 열간압연한 강재를 1차 냉각하는 단계(S120); 상기 강재를 가열하여 템퍼링 열처리하는 단계(S130); 상기 강재가 가열된 상태에서 가스화 벤젠을 주입하여, 상기 가스화 벤젠의 탄소 고리들이 결합하여 상기 강재의 표면에 탄소 피복층을 형성하는 단계(S140); 및 상기 강재를 2차 냉각하는 단계(S150);를 포함할 수 있다.
상기 강재를 열간압연하는 단계(S110)는, 연속주조공정에서 형성된 슬라브 등의 강재를 고온에서, 예를 들어 800℃ ~ 1000℃의 온도에서 열간압연을 수행할 수 있다. 상기 강재를 열간압연하는 단계(S110)는, 예를 들어 폭압연, 조압연, 및 사상압연으로 구성될 수 있다.
상기 강재는 다양한 강재를 포함할 수 있고, 강판, 환봉, 형강 등 다양한 형상을 가질 수 있다. 또한, 상기 강재는 열연코일로 구성될 수 있는 판재이거나 후판일 수 있다.
이어서, 상기 열간압연한 강재를 1차 냉각하는 단계(S120)는, 열간압연을 수행한 후, 상기 강재를, 예를 들어 상온, 예를 들어 0℃ ~ 40℃ 의 온도까지 냉각하는 단계이며, 공냉, 압축공기 냉각, 수냉, 등 다양한 방식으로 이루어질 수 있다.
상기 강재를 열간압연하는 단계(S110) 및 상기 열간압연한 강재를 1차 냉각하는 단계(S120)는 선택적이며, 생략될 수 있다.
도 3은 본 발명의 일실시예에 따른 탄소피복강재의 제조방법을 도시하는 단면도이다.
도 2 및 도 3을 참조하면, 상기 강재를 가열하여 템퍼링 열처리하는 단계(S130)는, 강재(10)를 400℃ ~ 650℃ 의 온도로 가열하여 템퍼링 열처리를 수행할 수 있다. 상기 열처리는 10분 ~ 180분 동안 수행될 수 있다.
상기 템퍼링 열처리에 의하여 강재(10)는 재료의 성질을 변화시키지 않고 압연에 가공 변화된 결정립의 회복, 조직의 균일화, 내부 응력을 제거하게 되어, 가공성을 향상시킬 수 있다.
상기 템퍼링 열처리 온도가 400℃ 미만인 경우에는, 적열 취성에 의해 상기 강재의 모재 인성이 열화될 수 있다, 상기 템퍼링 열처리 온도가 650℃를 초과하는 경우에는, 고온 연화에 의해 상기 강재의 모재 강도가 급격히 열화될 수 있다.
상기 템퍼링 열처리 시간이 10분 미만인 경우에는, 상기 강재에 내부 응력을 감소시키기 어려울 수 있다. 상기 템퍼링 열처리 시간이 180분을 초과하는 경우에는 더 이상의 상승 효과 없이 생산 비용만을 상승시킬 수 있다.
상기 캐리어 가스는 불활성 가스를 포함할 수 있고, 예를 들어 아르곤 가스 또는 질소 가스를 포함할 수 있다.
도 2 및 도 3을 참조하면, 상기 탄소 피복층을 형성하는 단계(S140)는, 강재(10)가 가열된 상태에서 가스화 벤젠을 주입하여, 상기 가스화 벤젠의 탄소 고리들이 결합하여 강재(10)의 표면에 탄소 피복층(12)을 형성한다.
상기 탄소 피복층을 형성하는 단계(S140)에서, 강재(10)가 수용된 공간에 가스화 벤젠을 주입할 수 있다. 상기 가스화 벤젠은 캐리어 가스에 의하여 이동되어 주입될 수 있다. 이에 따라, 상기 탄소 피복층을 형성하는 단계(S140)는 가스화 벤젠 분위기에서 수행될 수 있다.
상기 탄소 피복층을 형성하는 단계(S140)는, 400℃ ~ 650℃ 의 온도에서 수행될 수 있고, 예를 들어 1 기압 이하의 압력, 예를 들어 0.1 기압 ~ 1 기압에서 수행될 수 있다. 상기 온도 범위에서 탄소 공급원인 상기 가스화 벤젠은 열적 활성화 과정을 통하여 강재(10)의 표면에 선택적 계면 확산반응이 발생한다. 이러한 선택적 계면 확산반응을 위한 임계 활성화 에너지는 전이금속인 철을 포함하는 강재의 자기촉매 반응에 의해 감소되므로, 강재 표면에 예를 들어 그라파이트로 구성된 탄소 피복층(12)이 자발적 반응, 즉 자기조립(self-assembled)에 의하여 형성될 수 있다. 상기 가스화 벤젠으로부터 탄소 피복층(12)이 형성되는 것에 대하여는 도 10을 참조하여 하기에 상세하게 설명하기로 한다.
탄소 피복층(12)은 다양한 형태의 탄소를 포함할 수 있고, 예를 들어 그라파이트(graphite)를 포함할 수 있다. 탄소 피복층(12)의 두께는 원하는 목적에 따라 다양할 수 있으며, 예를 들어 1 nm ~ 1 mm 의 범위이거나, 또는 10 nm 미만일 수 있다.
이어서, 상기 강재를 2차 냉각하는 단계(S150)를 수행한다.
상기 열간압연한 강재를 2차 냉각하는 단계(S150)는, 강재(10)의 표면에 탄소 피복층(12)을 형성한 후, 강재(10)를 예를 들어 상온, 예를 들어 0℃ ~ 40℃ 의 온도까지 냉각하는 단계이며, 공냉, 압축공기 냉각, 수냉, 등 다양한 방식으로 이루어질 수 있다.
또한, 상기 2차 냉각하는 단계에서, 상기 탄소 피복층(12)은 계속 형성될 수 있고, 이에 따라 탄소 피복층(12)의 두께가 증가될 수 있다.
도 2 를 참조하면, 상기 탄소 피복층을 형성하는 단계(S140)는, 강재(10)의 표면에 탄소 피복층(12)을 형성하는 단계를 포함할 수 있다.
따라서, 본 발명의 기술적 사상에 따른 탄소피복강재는, 강재(10); 및 강재(10) 상에 위치하고, 템퍼링 열처리에 의하여 가스화 벤젠으로부터 형성된 탄소 피복층(12);을 포함한다.
도 4는 본 발명의 일실시예에 따른 탄소피복강재의 제조방법에서의 온도 프로파일 나타내는 그래프이다.
도 4를 참조하면, 강재의 템퍼링 열처리를 위하여 온도를 상승시키면, 온도가 안정화되는 온도 안정 구간을 거친 후에, 예를 들어 400℃ ~ 650℃의 온도 범위의 템퍼링 열처리 구간을 지나게 된다.
이어서, 상기 캐리어 가스와 함께 가스화 벤젠이 공급되어 상기 강재의 표면에 탄소 피복층을 형성하는 탄소 피복층 형성 구간을 거치게 된다. 상기 탄소 피복층 형성 구간은 상기 열처리 구간의 온도와 동일한 온도에서 시작될 수 있고, 예를 들어 400℃ ~ 650℃의 온도 범위에서 시작될 수 있다. 이어서, 상기 강재가 냉각되는 동안에도, 상기 탄소 피복층이 계속 형성될 수 있다. 상기 탄소 피복층의 형성은 상기 온도와 상기 가스화 벤젠이 공급에 따라 진행여부가 결정될 수 있다.
벤젠은 1기압 및 상온에서 액체로 존재하고, 끓는점이 80.1℃이다. 따라서, 상기 가스화 벤젠은 온도를 상승시켜 기화함으로써 얻을 수 있다. 또한, 상기 가스화 벤젠은 버블링(bubbling) 방식을 이용하여 얻을 수 있다. 구체적으로, 액상 벤젠에 상기 캐리어 가스로 사용되는 상기 불활성 기체를 통과시켜 버블을 형성시키고, 상기 버블이 액상 벤젠의 표면으로 부상하면서 상기 액상 벤젠의 외부로 배출되면, 상기 액상 벤젠의 일부가 가스화 벤젠을 형성하여 상기 버블에 흡착되어 외부로 배출되게 된다. 이러한 가스화 벤젠은 상기 캐리어 가스와 함께 이동하게 된다.
상기 가스화 벤젠은 캐리어 가스에 의하여 주입되고, 상기 가스화 벤젠과 상기 캐리어 가스의 농도비는, 예를 들어 1:400 내지 1:200 범위일 수 있다. 상기 농도비가 1:400에 비하여 낮은 경우, 예를 들어 상기 캐리어 가스의 농도가 더 높은 경우로서, 예를 들어 1:500 등인 경우에는, 상기 가스화 벤젠의 농도가 낮아서 탄소 피복층을 형성하지 못하거나 치밀한 층으로서 구성되지 않을 수 있다. 상기 농도비가 1:200에 비하여 높은 경우, 예를 들어 1:10 등인 경우에는, 상기 가스화 벤젠의 농도가 높아서 수소의 분해 이탈이 어려워지고 이에 따라 수소가 분회되어 제거된 벤젠 고리가 강재의 표면에 흡착되지 못하거나 원하는 밀도로서 구성되지 못할 수 있다.
도 5 내지 도 8은 아래 표 1과 같은 열처리 온도에서 가스화 벤젠과 캐리어 가스(Ar)를 주입했을 때 탄소 피복층의 라만 스펙트럼 및 전기저항을 나타낸다.
열처리 온도 가스화 벤젠(Torr) 캐리어 가스(Torr) 농도비
(가스화 벤젠:캐리어 가스)
400℃ 1 30 1:500
20 1:400
40 1.8:400
650℃ 1 1:500
20 1:400
40 1.8:400
도 5를 참조하면, 400℃ 열처리 온도에서 가스화 벤젠과 캐리어 가스를 각각 (a) 1 : 500, (b) 1 : 400, (c) 1.8 : 400 농도비로 주입했을 때의 탄소 피복층의 라만 스펙트럼이 나타나 있다. 상기 탄소 피복층을 구성하는 탄소(또는 그라파이트)의 라만 분광분석을 진행하는 경우, 약 1350 cm-1에서 sp3 결합에 의한 D-밴드, 1580 cm-1에서 sp2 결합에 의한 G-밴드 피크가 나타난다. 상기 탄소 피복층의 결정화도(또는 결함도)를 측정하기 위해 D-밴드의 피크 크기와 G-밴드의 피크 크기의 비율인 R값 (즉, D-밴드의 강도/G-밴드의 강도)을 계산한 결과, (a) 5.1, (b) 0.53, (c) 0.61 로 나타났다. 400℃ 열처리 온도에서 가스화 벤젠과 캐리어 가스의 농도비가 1 : 400 내지 1.8 : 400 일 때, 탄소 피복층의 R값이 1 이하로 나타난다. R값이 낮을수록 탄소를 증착할 때 탄소 원자 결합 구조가 sp2 구조에서 sp3 구조로 변경되지 아니하고 그라파이트의 2차원적인 구조로 적층되는 것을 의미한다.도 6을 참조하면, 400℃ 열처리 온도에서 가스화 벤젠과 캐리어 가스를 각각 (a) 1 : 500, (b) 1 : 400, (c) 1.8 : 400 농도비로 주입했을 때의 탄소 피복층의 전기저항이 나타나 있다. 도 6에서, 상기 농도비가 1 : 400일 때 전기 저항이 가장 높게 나타나 내부식성이 우수함을 확인하였고, 농도비가 1: 500 일 때 전기 저항이 가장 낮게 나타나 내부식성이 떨어짐을 알 수 있다.
도 7을 참조하면, 650℃ 열처리 온도에서 가스화 벤젠과 캐리어 가스를 각각 (a) 1 : 500, (b) 1 : 400, (c) 1.8 : 400 농도비로 주입했을 때의 탄소 피복층의 라만 스펙트럼이 나타나 있다. 상기 탄소 피복층의 결정화도(또는 결함도)를 측정하기 위해 D-밴드의 피크 크기와 G-밴드의 피크 크기의 비율인 R값 (즉, D-밴드의 강도/G-밴드의 강도)을 계산한 결과, (a) 2.3, (b) 0.53, (c) 1.9 로 나타났다. 650℃ 열처리 온도에서 가스화 벤젠과 캐리어 가스의 농도비가 1 : 400 일 때, 탄소 피복층의 R값이 1 이하로 나타나 결정성이 우수함을 알 수 있다. 상기 농도비가 1.8 :400일 때 R값이 1보다 크나, 강재 표면의 바로 위에 형성된 탄소 피복층의 그라파이트의 결정성은 우수하고, 상기 강재 표면으로부터 수십 nm의 영역까지 결정성이 우수한 그라파이트 층이 합성될 수 있다.
도 8을 참조하면, 650℃ 열처리 온도에서 가스화 벤젠과 캐리어 가스를 각각 (a) 1 : 500, (b) 1 : 400, (c) 1.8 : 400 농도비로 주입했을 때의 탄소 피복층의 전기저항을 나타낸다. 도 8에서, 농도비가 1 : 400일 때 전기 저항이 가장 높게 나타나 내부식성이 우수함을 확인하였고, 농도비가 1: 500 일 때 전기 저항이 가장 낮게 나타나 내부식성이 떨어짐을 확인하였다.
도 9는 본 발명의 일실시예에 따른 탄소피복강재의 제조방법에서의 가스화 벤젠이 탄소 피복층을 형성하는 방법을 도시하는 모식도이다.
도 9를 참조하면, 액상 벤젠으로부터 형성된 가스화 벤젠(benzene)이 강재에 제공된다. 상기 가스화 벤젠은 템퍼링 열처리에 의하여 400℃ ~ 650℃ 의 온도로 가열된 강재에 표면 흡착한다. 이때 상기 가스화 벤젠으로부터 일부 수소(H)가 분해 이탈될 수 있으며, 수소가 분회되어 제거된 벤젠 고리(6각형 탄소)가 강재 표면에 흡착한다. 표면 흡착된 가스화 벤젠과 벤젠고리는 강재의 표면에서 표면 확산되어 서로 모이게 된다. 이때에, 잔존 가스화 벤젠으로부터 수소(H)가 분해되어 이탈되고, 상기 가스화 벤젠은 수소가 배제된 탄소 고리만을 가질 수 있다. 따라서, 상기 가스화 벤젠은 서로 인접한 탄소 고리들이 서로 화학적으로 결합하여, 이에 따라 물리적 응집 및 화학적 응집이 발생하고, 그래핀(graphene)과 유사한 2차원 탄소 그물망을 형성할 수 있다. 상기 탄소 피복층 형성이 계속 진행되면, 상기 2차원 탄소 그물망의 상측에 다른 탄소 그물망 층이 형성되고, 이에 따라 그라파이트 형상의 탄소 피복층이 형성될 수 있다.
따라서, 본 발명의 기술적 사상에 따른 탄소피복강재는 강재의 표면에 탄소 피복층이 형성되어, 강재의 물리적 특성이 최소화되고, 내산화성, 내사워성, 및 수소유도균열 저항성을 가짐을 알 수 있다. 또한, 템퍼링 열처리 공정에서 상기 탄소 피복층을 형성할 수 있으므로, 별도의 추가 공정을 요구하지 않는 장점이 있다. 상기 강재는 특정한 강재에 국한되지 않으며, 템퍼링 열처리와 등과 같은 열처리가 적용되는 모든 강종을 포함할 수 있다.
본 발명은 도면에 도시된 일 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.
상기한 바와 같이 이루어진 본 발명의 일 실시예에 따르면, 기존의 템퍼링 열처리 공정을 활용하여 강재의 표면 상에 선택적 계면확산반응을 발생시켜 필름 형태의 그라파이트 층을 형성하는 방식으로 자기조립형 탄소 피복층이 형성된 탄소피복강재를 제조할 수 있다. 상기 재조방법에 의하여 형성된 상기 자기조립형 탄소 피복층이 형성된 강재는 물리적 특성 변화를 최소화되고, 우수한 내산화성, 내사워성, 및 수소유도균열 저항성을 가질 수 있다. 이러한 탄소피복강재의 제조방법은 특정한 강재에 국한되지 않으며, 템퍼링 열처리 공정이 적용되는 강종 전체에 대하여 수행될 수 있고, 따라서 강종의 종류에 무관하게 내산화성, 내사워성, 및 수소유도균열 저항성을 제공할 수 있다.

Claims (9)

  1. 강재를 가열하여 템퍼링 열처리하는 단계; 및
    상기 강재가 가열된 상태에서 가스화 벤젠을 주입하여, 상기 가스화 벤젠의 탄소 고리들이 결합하여 상기 강재의 표면에 탄소 피복층을 형성하는 단계;를 포함하는,
    탄소피복강재의 제조방법.
  2. 제 1 항에 있어서,
    상기 템퍼링 열처리하는 단계는, 400℃ ~ 650℃ 의 온도에서 수행되는,
    탄소피복강재의 제조방법.
  3. 제 1 항에 있어서,
    상기 탄소 피복층을 형성하는 단계는, 400℃ ~ 650℃ 의 온도에서 수행되는,
    탄소피복강재의 제조방법.
  4. 제 1 항에 있어서,
    상기 강재를 가열하여 템퍼링 열처리하는 단계를 수행하기 전에,
    상기 강재를 열간압연하는 단계; 및
    상기 열간압연한 강재를 1차 냉각하는 단계;를 더 포함하는,
    탄소피복강재의 제조방법.
  5. 제 1 항에 있어서,
    상기 탄소 피복층을 형성하는 단계를 수행한 후에,
    상기 강재를 2차 냉각하는 단계;를 더 포함하는,
    탄소피복강재의 제조방법.
  6. 제 5 항에 있어서,
    상기 강재를 2차 냉각하는 단계에서,
    상기 탄소 피복층의 두께가 증가되는,
    탄소피복강재의 제조방법.
  7. 제 1 항에 있어서,
    상기 탄소 피복층은, 그라파이트를 포함하는,
    탄소피복강재의 제조방법.
  8. 제 1 항에 있어서,
    상기 가스화 벤젠은 캐리어 가스에 의하여 주입되고,
    상기 가스화 벤젠과 상기 캐리어 가스의 농도비는 1 : 400 내지 1 : 200 범위인,
    탄소피복강재의 제조방법.
  9. 제 1 항 내지 제 8 항 중 어느 한 항의 제조방법에 의하여 형성되고,
    강재; 및
    상기 강재 상에 위치하고, 템퍼링 열처리에 의하여 가스화 벤젠으로부터 형성된 탄소 피복층;을 포함하는,
    탄소피복강재.
PCT/KR2022/014741 2021-09-30 2022-09-30 탄소피복강재 및 그 제조방법 WO2023055164A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2021-0130063 2021-09-30
KR20210130063 2021-09-30
KR10-2022-0124451 2022-09-29
KR1020220124451A KR20230047025A (ko) 2021-09-30 2022-09-29 탄소피복강재 및 그 제조방법

Publications (1)

Publication Number Publication Date
WO2023055164A1 true WO2023055164A1 (ko) 2023-04-06

Family

ID=85783279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/014741 WO2023055164A1 (ko) 2021-09-30 2022-09-30 탄소피복강재 및 그 제조방법

Country Status (1)

Country Link
WO (1) WO2023055164A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007321188A (ja) * 2006-05-31 2007-12-13 Nippon Parkerizing Co Ltd 鉄を主成分として含む金属材料の表面改質方法
KR20110060449A (ko) * 2009-11-30 2011-06-08 주식회사 포스코 저온인성 및 수소유기균열 저항성이 우수한 압력용기용 강판 및 그 제조방법
KR20120055619A (ko) * 2009-08-07 2012-05-31 스와겔로크 컴패니 저진공 하에서의 저온 침탄
US20140366993A1 (en) * 2013-06-12 2014-12-18 George E. Barbour Method of carburizing
KR20160063556A (ko) * 2014-11-26 2016-06-07 현대제철 주식회사 강재 및 그 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007321188A (ja) * 2006-05-31 2007-12-13 Nippon Parkerizing Co Ltd 鉄を主成分として含む金属材料の表面改質方法
KR20120055619A (ko) * 2009-08-07 2012-05-31 스와겔로크 컴패니 저진공 하에서의 저온 침탄
KR20110060449A (ko) * 2009-11-30 2011-06-08 주식회사 포스코 저온인성 및 수소유기균열 저항성이 우수한 압력용기용 강판 및 그 제조방법
US20140366993A1 (en) * 2013-06-12 2014-12-18 George E. Barbour Method of carburizing
KR20160063556A (ko) * 2014-11-26 2016-06-07 현대제철 주식회사 강재 및 그 제조 방법

Similar Documents

Publication Publication Date Title
DE10241964B4 (de) Beschichtungsgaserzeuger und Verfahren
WO2010074435A2 (ko) 강판의 소둔장치, 이를 포함한 도금강판의 제조장치 및 이를 이용한 도금강판의 제조방법
WO2016111388A1 (ko) 인장강도 1300MPa 이상의 초고강도 도금강판 및 이의 제조방법
EP3102717B1 (de) Schutzschicht für pecvd-boote aus graphit
JP4876668B2 (ja) 鋼部材の熱処理方法
WO2023055164A1 (ko) 탄소피복강재 및 그 제조방법
WO2021125864A1 (ko) 방향성 전기강판 및 그의 제조방법
WO2017052005A1 (ko) 페라이트계 스테인리스강 및 이의 제조 방법
KR20230047025A (ko) 탄소피복강재 및 그 제조방법
WO2020111879A1 (ko) 내식성 및 내열성이 우수한 열간성형용 알루미늄-철 합금 도금 강판, 열간 프레스 성형 부재 및 이들의 제조방법
WO2015099214A1 (ko) 강도와 연성이 우수한 열처리 경화형 강판 및 그 제조방법
WO2023229112A1 (ko) 탄소피복강재 및 그 제조방법
CN112410672B (zh) 一种高硅梯度硅钢薄带及其制备方法
WO2020111648A1 (ko) 열간성형 부재 및 그 제조방법
WO2020111884A1 (ko) 수소지연파괴특성 및 점용접성이 우수한 열간 프레스용 알루미늄계 도금 강판 및 그 제조방법
KR100444247B1 (ko) 간접가열방식에 의한 용융알루미늄 도금 스텐레스강판의제조방법
WO2023075033A1 (ko) 핫 스탬핑 부품
WO2019132295A1 (ko) 초저철손 방향성 전기강판 제조방법
WO2023075035A1 (ko) 핫 스탬핑 부품
WO2020111740A2 (ko) 전기강판 및 그 제조 방법
KR102467854B1 (ko) 자기 조립 내산화층 형성 방법
WO2019124794A1 (ko) 폭방향을 따라 강도가 차등화된 강판 및 그 제조방법
WO2021125525A1 (ko) 인산염 처리성이 우수한 고강도 냉연강판 및 그 제조방법
WO2022139277A1 (ko) 공구용 강재 및 그 제조방법
WO2022131848A1 (ko) 열간 프레스 성형용 도금강판 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876936

Country of ref document: EP

Kind code of ref document: A1