WO2020111648A1 - 열간성형 부재 및 그 제조방법 - Google Patents

열간성형 부재 및 그 제조방법 Download PDF

Info

Publication number
WO2020111648A1
WO2020111648A1 PCT/KR2019/015951 KR2019015951W WO2020111648A1 WO 2020111648 A1 WO2020111648 A1 WO 2020111648A1 KR 2019015951 W KR2019015951 W KR 2019015951W WO 2020111648 A1 WO2020111648 A1 WO 2020111648A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
layer
aluminum
alloying
alloying layer
Prior art date
Application number
PCT/KR2019/015951
Other languages
English (en)
French (fr)
Inventor
김성우
오진근
김상헌
전효식
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to MX2021005583A priority Critical patent/MX2021005583A/es
Priority to EP23169014.0A priority patent/EP4234732A3/en
Priority to US17/296,458 priority patent/US11578397B2/en
Priority to JP2021530074A priority patent/JP7402232B2/ja
Priority to PL19888634.3T priority patent/PL3889311T3/pl
Priority to CN201980078903.2A priority patent/CN113166910B/zh
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to CN202310904806.2A priority patent/CN116926544A/zh
Priority to EP19888634.3A priority patent/EP3889311B1/en
Publication of WO2020111648A1 publication Critical patent/WO2020111648A1/ko
Priority to US18/096,260 priority patent/US11897014B2/en
Priority to US18/123,460 priority patent/US20230227956A1/en
Priority to JP2023180559A priority patent/JP2024010039A/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/261After-treatment in a gas atmosphere, e.g. inert or reducing atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D35/00Combined processes according to or processes combined with methods covered by groups B21D1/00 - B21D31/00
    • B21D35/002Processes combined with methods covered by groups B21D1/00 - B21D31/00
    • B21D35/005Processes combined with methods covered by groups B21D1/00 - B21D31/00 characterized by the material of the blank or the workpiece
    • B21D35/007Layered blanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/012Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of aluminium or an aluminium alloy
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/78Combined heat-treatments not provided for above
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0252Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment with application of tension
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0068Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for particular articles not mentioned below
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • B21D22/022Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D35/00Combined processes according to or processes combined with methods covered by groups B21D1/00 - B21D31/00
    • B21D35/002Processes combined with methods covered by groups B21D1/00 - B21D31/00
    • B21D35/005Processes combined with methods covered by groups B21D1/00 - B21D31/00 characterized by the material of the blank or the workpiece

Definitions

  • the present invention relates to a hot forming member and a method for manufacturing the same.
  • the hot press forming method is a method of forming a low-temperature structure such as martensite in a steel sheet by processing the steel sheet at a high temperature, which is good for processing, and then rapidly cooling the steel sheet to increase the strength of the final product. In this case, when manufacturing a member having high strength, there is an advantage of minimizing the problem of processability.
  • An object of the present invention is to provide a hot forming member having less wear of a hot forming mold and a method for manufacturing the same during hot forming.
  • One aspect of the present invention is a hot forming member comprising a plated steel plate and an aluminum alloy plating layer formed on the plated steel plate, wherein the aluminum alloy plated layer is formed on the plated steel plate, and Al: 5-30% by weight.
  • An alloying layer (I) comprising; An alloying layer (II) formed on the alloying layer (I) and containing 30-60% by weight of Al;
  • An alloying layer (III) formed on the alloying layer (II) and comprising Al: 20-50% and Si: 5-20% by weight;
  • an alloying layer (IV) formed continuously or discontinuously on at least a part of the surface of the alloying layer (III), and containing Al: 30 to 60%; including, alloying exposed on the outermost surface of the aluminum alloy plating layer
  • a plurality of pores are formed in the alloying layer III, and the porosity of the alloying layer III may be 5 to 50%.
  • the steel sheet is weight%, C: 0.04 ⁇ 0.5%, Si: 0.01 ⁇ 2%, Mn: 0.1 ⁇ 5%, P: 0.001 ⁇ 0.05%, S: 0.0001 ⁇ 0.02%, Al: 0.001 ⁇ 1%, N: 0.001 to 0.02%, the balance may include Fe and other impurities.
  • the steel sheet is a weight%, B: 0.001 ⁇ 0.01%, Cr: 0.01 ⁇ 1%, Ti: 0.001 ⁇ 0.2% may further include one or more of the.
  • Another aspect of the present invention is a step of obtaining an aluminum-plated steel sheet by aluminum plating and winding the surface of the steel sheet; Annealing the aluminum plated steel sheet to obtain an aluminum-iron alloy plated steel sheet; And hot press-molding the aluminum-iron alloy plated steel sheet, wherein the aluminum plating amount is 30 to 200 g/m 2 based on one side of the steel sheet, and after aluminum plating to 250° C.
  • the cooling rate of 20 °C / sec or less, the winding tension when winding up to 0.5 ⁇ 5kg / mm 2 , the annealing is carried out for 30 minutes to 50 hours in the heating temperature range of 550 ⁇ 750 °C in the upper annealing furnace,
  • the average heating rate is set to 10 to 100°C/h, but the average heating rate in the section of 400 to 500°C is set to 1 to 15°C/h, and the atmosphere in the normal annealing furnace
  • the difference between the temperature and the temperature of the steel sheet is 5 to 80°C, and during hot press forming, heat treatment is performed in the temperature range of Ac3 to 950°C, but heated at a heating rate of 3 to 18°C from 200°C to the temperature range of Ac3 to 950°C.
  • the average wear depth of 10 points of the hot forming mold may be 15 ⁇ m or less.
  • the surface hardness of the plating layer is lower than that of the hot forming mold, thereby reducing the wear of the mold, thereby increasing the grinding or replacement cycle of the hot forming mold, and thus the manufacturing cost and production efficiency of the hot forming member. There is an effect that can be improved.
  • Example 1 is a scanning electron microscope photograph of a cross section of a plated layer of a hot forming member prepared according to Inventive Example 1;
  • FIG. 2 is a scanning electron microscope photograph of a cross section of a plating layer of a hot forming member prepared according to Comparative Example 1.
  • the content of each element means weight%, unless otherwise specified.
  • the ratio of crystals or tissues is based on area unless otherwise indicated.
  • the hot forming member includes a plated steel plate and an aluminum alloy plating layer formed on the plated steel plate, and the aluminum alloy plated layer is formed on the plated steel plate and is Al: 5 to 30 by weight.
  • an alloying layer (IV) formed continuously or discontinuously on at least a part of the surface of the alloying layer (III), and containing Al: 30 to 60%.
  • each alloy layer may have the following component range.
  • the alloying layer (I) may contain Al: 5 to 30%, Si: 0 to 10%, residual Fe, and other unavoidable impurities due to other alloying in weight %, and the alloying layer (II) is weight% Furnace Al: 30-60%, Si: 0-5%, may contain residual Fe and other unavoidable impurities due to alloying, and the alloying layer (III) is Al: 20-50% by weight, Si: 5-20%, may contain residual Fe and other unavoidable impurities due to alloying, and the alloying layer (IV), by weight, Al: 30-60%, Si: 0-5%, residual Fe and other May contain unavoidable impurities from alloying
  • the hot forming member of the present invention alloying between Al and Fe is performed in the plating layer through annealing for alloying and heat treatment during hot press forming, and a layer consisting of alloying layers (I) to (IV) depending on the degree of alloying of Fe. A structure is formed.
  • the alloying layer (IV) may be formed continuously or discontinuously on at least a portion of the surface of the alloying layer (III). That is, the alloying layer (IV) may be formed on some surfaces rather than being formed on the entire surface of the alloying layer (III).
  • the alloying layer IV is formed on at least a portion of the surface of the alloying layer III, some surfaces of the alloying layer III may be exposed on the outermost surface of the aluminum alloy plating layer.
  • the outermost surface refers to the outermost surface of the aluminum alloy plating layer on the other side of the steel plate. If an oxide layer is formed on the surface of the aluminum alloy plating layer, it means the uppermost surface of the remaining layers except the oxide layer.
  • the ratio of the alloying layer (III) exposed on the outermost surface of the aluminum alloy plating layer is preferably 10% or more.
  • the ratio of the alloying layer (III) exposed on the outermost surface may be defined as a ratio of the length of the region where the alloying layer (III) is exposed to the total outermost surface length when sectional observation of the alloy plating layer is observed.
  • the hardness of the alloying layer (II) and the alloying layer (IV) is very high at the level of about 900 Hv, while the hardness of the alloying layer (I) and the alloying layer (III) is about 300 to 700 Hv at the level of the alloying layer (II) ) And alloying layer (IV). Therefore, when the exposed area of the alloying layer (III) having a relatively low hardness at the outermost surface of the aluminum alloy plating layer contacting the mold during hot press forming is increased, the average hardness of the outermost surface is lowered overall, thereby reducing wear of the mold.
  • the proportion of the alloying layer (III) exposed on the outermost surface is less than 10%, the difference between the outermost surface average hardness and the mold hardness becomes small, so that mold wear cannot be effectively suppressed.
  • the ratio may be 15% or more, and in some cases, 20% or more.
  • a plurality of pores may be formed in the alloying layer III.
  • the aluminum plated steel sheet is alloyed and heat-treated in a predetermined annealing furnace under predetermined conditions to produce an aluminum alloy plated steel sheet, a plurality of alloy layers are formed on the aluminum alloy plated steel sheet, and Fe, Al, and Si are formed between alloy layers having different components from each other. Due to the difference in the mutual diffusion coefficient of the back, a plurality of voids are formed in the upper alloy layer. At this time, a plurality of pores are formed toward the upper end of the alloy layer, and thus the porosity is high.
  • the porosity may be defined as a ratio of the area of the pores to the area of each alloy layer (or the alloyed layer) when the cross section of the alloy layer (or the alloyed layer) is observed.
  • the porosity of the alloying layer (III) of the hot forming member may be 5 to 50%.
  • the porosity is less than 5%, it is difficult to expect a lubrication effect due to rolling friction effect during hot press forming.
  • the porosity exceeds 50%, the structure of the alloying layer (III) of the hot forming member becomes too fragile, and thus, during continuous hot forming, there may be a problem in that mold contamination due to grains dropped from the plating layer in the mold increases. Therefore, in the present invention, the porosity is preferably 5 to 50%, and in some cases, may be 7 to 50%.
  • the steel sheet of the present invention is a steel sheet for hot press forming, and if used in hot press forming, its composition is not particularly limited.
  • C 0.04 ⁇ 0.5%
  • Si 0.01 ⁇ 2%
  • Mn 0.1 ⁇ 5%
  • P 0.001 ⁇ 0.05%
  • S 0.0001 ⁇ 0.02%
  • Al 0.001 to 1%
  • N 0.001 to 0.02%
  • Fe and other impurities each component system will be described in detail.
  • the C may be added in an appropriate amount as an essential element to increase the strength of the heat treatment member. That is, the C may be added 0.04% or more in order to ensure sufficient strength of the heat treatment member.
  • the lower limit of the C content may be 0.1% or more.
  • the content is too high, in the case of producing a cold rolled material, when the hot rolled material is cold rolled, the strength of the hot rolled material is too high, which greatly deteriorates the cold rolling property, and significantly reduces the spot weldability. It can be added to 0.5% or less to ensure weldability.
  • the C content may be 0.45% or less, and more preferably, the content may be limited to 0.4% or less.
  • the Si not only has to be added as a deoxidizing agent in steelmaking, but also serves to suppress the formation of carbides that most affect the strength of the hot press-formed member.
  • carbon may be added to the martensite lath grain boundary to be added in an amount of 0.01% or more to secure residual austenite.
  • the upper limit of the Si content can be set to 2% in order to secure sufficient plating properties when aluminum is plated on the steel sheet after rolling.
  • the Si content may be limited to 1.5% or less.
  • the Mn can be added in an amount of 0.1% or more to lower the critical cooling rate for securing martensite in the hot press-formed member as well as securing the solid solution strengthening effect.
  • the Mn content may be limited to 5% or less in that the strength of the steel sheet is properly maintained to secure workability in a hot press forming process, reduce manufacturing cost, and improve spot weldability.
  • the P is present as an impurity in the steel, and the smaller the content, the better. Therefore, in the present invention, the P content may be limited to 0.05% or less, and preferably may be limited to 0.03% or less.
  • the smaller the P the more advantageous the impurity element, so there is no need to specifically set an upper limit for its content.
  • the lower limit may be set to 0.001%.
  • the maximum content is limited to 0.02%, preferably 0.01% or less.
  • the lower limit of the content may be set to 0.0001%.
  • the Al may be deoxidized in steel making together with Si to increase the cleanliness of the steel, and may be added in an amount of 0.001% or more to obtain the effect.
  • the content of Al may be limited to 1% or less in order to prevent the Ac3 temperature from becoming too high so that heating required during hot press forming can be performed within an appropriate temperature range.
  • the N is an element included as an impurity in the steel.
  • the lower the content the more advantageous. Therefore, it can be included in 0.02% or less. It is necessary to set a lower limit in particular, but considering the increase in manufacturing cost, the N content may be set to 0.001% or more.
  • Aluminum-iron alloy plated steel sheet according to an aspect of the present invention in addition to the above-described alloy composition, B: 0.001 ⁇ 0.01%, Cr: 0.01 ⁇ 1%, Ti: 0.001 ⁇ 0.2% of at least one of the further included Can be.
  • B is an element capable of suppressing the brittleness of the hot press-formed member due to segregation of grains of P and/or S by segregation at the grain boundaries of old austenite, as well as improving the hardenability by adding a small amount. Therefore, B can be added more than 0.0001%. However, if it exceeds 0.01%, the effect is not only saturated, but also causes brittleness in hot rolling, so the upper limit can be made 0.01%, and preferably, the B content can be made 0.005% or less.
  • the Cr is an element added to improve the solid solution strengthening effect and hardenability during hot forming similar to Mn, and may be added in an amount of 0.01% or more to obtain the effect.
  • the content can be limited to 1% or less, and if it exceeds 1%, the effect of improving the hardenability compared to the added amount is also weak, which is disadvantageous in terms of cost.
  • the Ti is not only effective in increasing the strength of the heat-treated member and improving the collision performance of the member due to grain refinement by forming fine precipitates, but also when B is added, it has an effect of maximizing the effect of adding B by first reflecting with N .
  • Ti can be added in an amount of 0.001% or more.
  • coarse TiN formation caused by an increase in Ti content degrades the collision performance of the member, so the content can be limited to 0.2% or less.
  • Residues other than the above-mentioned components include iron (Fe) and unavoidable impurities, and additional addition is not particularly limited as long as they are components that can be included in the hot press forming steel sheet.
  • the ratio of the alloying layer (III) having a low hardness on the surface of the aluminum alloy plated steel sheet increases during hot press forming, thereby lowering the average hardness of the surface. It is possible to effectively reduce wear of the mold due to the difference. In particular, even if the hot forming member is produced 500 times or more, the 10 point average wear depth of the hot forming mold may be 15 ⁇ m or less.
  • a plurality of voids are formed in the alloying layers (III) and (IV), which are upper layers of the aluminum alloy plating layer during hot press forming, and the alloying layer (IV) breaks during press molding due to the voids, resulting in rolling friction. It is possible to obtain a lubricating effect due to the effect that the damage to the mold can be suppressed more.
  • the hot forming member of the present invention prepares a hot-rolled or cold-rolled steel sheet, performs aluminum plating on the surface of the steel sheet and heat-treats the alloy in an annealing furnace to obtain an aluminum alloy plated steel sheet, and then heats it under predetermined conditions. It can be obtained by press molding.
  • an aluminum plating treatment may be performed on the surface of the rolled steel sheet with a plating amount of 30 to 200 g/m 2 on one side.
  • Aluminum plating usually requires AlSi plating called type I (80% or more of Al and 5 to 20% of Si, and additional elements may be included if necessary), or Al of 90% or more called type II. Depending on the type, all platings containing additional elements can be used.
  • Hot-dip aluminum plating may be performed to form a plating layer, and annealing treatment may be performed on the steel sheet before plating.
  • the appropriate plating amount for plating is 30 to 200 g/m 2 on one side. When the amount of plating is too large, it may take excessive time to alloy to the surface, and when the amount of plating is too small, it is difficult to obtain sufficient corrosion resistance.
  • the cooling rate up to 250°C can be cooled to 20°C/sec or less.
  • the cooling rate after aluminum plating affects the formation of a diffusion suppressing layer between the plating layer and the base iron. If the cooling rate after aluminum plating is too fast, the diffusion suppressing layer cannot be formed uniformly, and the alloying behavior of the coil during annealing treatment performed later It can become uneven. Therefore, the cooling rate to 250°C after aluminum plating can be 20°C/sec or less.
  • the winding tension of the coil can be adjusted to 0.5 to 5 kg/mm 2 .
  • the alloying behavior and surface quality of the coil may vary during the annealing process.
  • an annealing treatment is performed on the aluminum plated steel sheet under the following conditions to obtain an aluminum-iron alloy plated steel sheet.
  • the aluminum plated steel sheet (coil) is heated in a batch annealing furnace (BAF).
  • BAF batch annealing furnace
  • the heat treatment target temperature and the holding time are in the range of 550 to 750°C based on the steel sheet temperature (in the present invention, the highest temperature that the material reaches in this temperature range is called heating temperature) from 30 minutes to 50 minutes. It is desirable to maintain time.
  • the holding time is the time from when the coil temperature reaches the target temperature to the start of cooling.
  • the plating layer may peel off during roll leveling, so the heating temperature may be set to 550°C or higher for sufficient alloying.
  • the heating temperature may be 750°C or less.
  • the holding time may be set to 30 minutes to 50 hours in order to sufficiently secure the plating layer and to prevent a decrease in productivity.
  • the temperature of the steel sheet may have a heating pattern in which the temperature continues to rise without a cooling process until the heating temperature is reached, or a heating pattern in which a temperature is maintained at a temperature below the target temperature and heated up is applied. You may.
  • the steel sheet (coil) temperature standard for the entire temperature section (section from room temperature to heating temperature)
  • the average heating rate can be set to 10 to 100°C/h.
  • the overall average temperature increase rate can be controlled in the above numerical range, but in one embodiment of the present invention, sufficient productivity is obtained while preventing rolling oil from remaining in the temperature section in which the mixed rolling oil is vaporized during rolling to prevent surface stains and the like.
  • the average heating rate in the section of 400 to 500°C can be heated to 1 to 15°C/h.
  • the difference between the ambient temperature in the upper annealing furnace and the temperature of the steel sheet may be 5 to 80°C.
  • the heating of the upper annealing furnace takes a method of heating the steel sheet (coil) through an increase in the ambient temperature in the annealing furnace, rather than directly heating the steel sheet (coil).
  • the difference between the ambient temperature and the coil temperature is unavoidable, but in order to minimize the difference in material and plating quality by location in the steel sheet, the difference between the ambient temperature and the steel sheet temperature can be 80°C or less based on the time point of reaching the target heat treatment temperature. have.
  • the temperature of the steel sheet means that the temperature of the bottom of the charged steel sheet (coil) (meaning the lowest part of the coil) is measured, and the atmosphere temperature means the temperature measured at the center of the interior space of the heating furnace. .
  • hot press forming may be performed on the aluminum alloy plated steel sheet to produce a hot formed member.
  • hot press molding may use a method commonly used in the art, and as a non-limiting example, heat treatment is performed in a temperature range of Ac3 ⁇ 950°C, but from 200°C to a temperature range of Ac3 ⁇ 950°C 3
  • the total heating time may be defined as a heating time including both heating time in an elevated temperature section and heating time in a temperature range of Ac3 to 950°C.
  • a cold rolled steel sheet for hot press molding having the composition shown in Table 1 below was prepared as a holding steel sheet, and the surface of the steel sheet was plated with a type I plating bath having an Al-9%Si-1.5%Fe composition on the surface of the steel sheet.
  • the plating amount was adjusted to 75 g/m 2 per side, and after cooling the aluminum plate to a cooling rate of up to 250° C. at 10° C./second, the winding tension was adjusted to 3 kg/mm 2 to obtain an aluminum plated steel sheet.
  • the plated steel sheet was subjected to an alloying heat treatment in an annealing furnace under the conditions shown in Table 2 below, followed by hot press molding 500 times each to obtain a hot forming member.
  • the above-described aluminum plated steel sheet was not subjected to an alloying heat treatment, and hot press molding was performed under the conditions shown in Table 2 below to obtain a hot forming member.
  • the wear depth was measured at 10 random points after 500 times of production, and the average values thereof are shown in Table 3 below.
  • 10 randomly out of 500 products for each Example After taking a sample and observing the cross section with a scanning electron microscope to check the occupancy of the outermost layer of the alloying layer (III), the average value of the occupancy is shown in Table 3 below.
  • the porosity of the alloying layer (III) was measured, and the results are shown in Table 3 below. In the same example (inventive example or comparative example), it was confirmed that the deviation of the outermost layer occupancy and porosity of the alloying layer (III) was not large.

Abstract

본 발명은 소지강판 및 상기 소지강판 상에 형성된 알루미늄 합금 도금층을 포함하는 열간성형 부재로서, 상기 알루미늄 합금 도금층은, 상기 소지강판 상에 형성되고, 중량%로 Al: 5~30% 을 포함하는 합금화 층(I); 상기 합금화 층(I) 상에 형성되고, 중량%로 Al: 30~60% 을 포함하는 합금화 층(II); 상기 합금화 층(II) 상에 형성되고, 중량%로 Al: 20~50% 및 Si: 5~20% 를 포함하는 합금화 층(III); 및 상기 합금화 층(III) 표면의 적어도 일부에 연속적 또는 불연속적으로 형성되고, Al: 30~60% 을 포함하는 합금화 층(IV);를 포함하고, 상기 알루미늄 합금 도금층의 최표면에 노출된 합금화 층(III)의 비율이 10% 이상인 열간성형 부재를 제공한다.

Description

열간성형 부재 및 그 제조방법
본 발명은 열간성형 부재 및 그 제조방법에 관한 것이다.
최근 석유 에너지 자원의 고갈과 환경에 관한 높은 관심으로 인하여 자동차의 연비 향상에 대한 규제는 날로 강력해지고 있다. 재료적인 측면에서 보면 자동차의 연비를 향상시키기 위한 하나의 방법으로서, 자동차에 사용되는 강판의 두께를 감소시키는 것을 들 수 있으나, 두께를 감소시킬 경우 자동차의 안전성에 문제가 발생할 수 있으므로, 반드시 강판의 강도 향상이 뒷받침되어야 한다.
이와 같은 이유로 고강도 강판에 대한 수요가 지속적으로 발생하였으며, 다양한 종류의 강판이 개발된 바 있다. 그런데 이들 강판은 그 자체로 높은 강도를 가지고 있기 때문에 가공성이 불량하다는 문제가 있다. 즉, 강판의 등급별로 강도와 연신율의 곱은 항상 일정한 값을 가지려는 경향을 가지고 있기 때문에, 강판의 강도가 높아질 경우에는 가공성의 지표가 되는 연신율이 감소하게 된다는 문제가 있었다.
이러한 문제를 해결하기 위하여 열간 프레스 성형법이 제안된 바 있다. 열간 프레스 성형법은 강판을 가공하기 좋은 고온에서 가공한 후 이를 낮은 온도로 급냉함으로써 강판 내에 마르텐사이트 등의 저온 조직을 형성시켜, 최종 제품의 강도를 높이는 방법이다. 이와 같이 할 경우에는 높은 강도를 가지는 부재를 제조할 때 가공성의 문제를 최소화 할 수 있다는 장점이 있다.
그런데 상기 열간 프레스 성형법에 의할 경우에는 강판을 고온으로 가열하기 때문에 강판 표면이 산화되고 따라서 프레스 성형 이후에 강판 표면의 산화물을 제거하는 과정이 추가되어야 한다는 문제가 있었다. 이러한 문제점을 해결하기 위한 방법으로 미국 특허공보 제6,296,805호의 기술이 제안된 바 있다. 상기 미국 특허공보 제6,296,805호에서는 알루미늄 도금을 실시한 강판을 열간 프레스 성형 또는 상온 성형 후 가열하고 급냉하는 과정(간략히 '후 열처리')에 이용하고 있고, 알루미늄 도금층이 강판 표면에 존재하기 때문에 가열 시에 강판이 산화되지는 않는다.
하지만, 알루미늄 도금을 실시한 강판을 열간 프레스 성형하는 경우, 열간성형 시 소재의 강도가 고온으로서 매우 낮음에도 불구하고 금형 마모가 심하게 발생하는 문제가 발생하고 있다. 이는 열간 성형을 위해 도금된 강판을 가열하는 과정에서 알루미늄 도금층으로 소지철이 확산하여 강판의 표면에는 경질의 Fe 및 Al 의 합금층이 형성되는데, 상기 합금층의 경도가 통상 공구강으로 이루어지는 금형 소재의 경도보다 높기 때문에 프레스 성형에 의해 금형 마모가 심하게 발생하게 되는 것으로 판단된다. 이로 인해 알루미늄 도금을 실시한 강판을 열간 프레스 성형하는 경우, 짧은 주기로 금형을 연삭하거나 교체할 수 밖에 없어 열간성형 부재의 제조비용이 큰 폭으로 증가하는 문제가 있다.
본 발명은 열간성형 시 열간성형 금형의 마모가 적은 열간성형 부재 및 그 제조방법을 제공하는 것을 목적으로 한다.
본 발명의 과제는 상술한 내용에 한정되지 아니한다. 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 본 발명 명세서의 전반적인 사항으로부터 본 발명의 추가적인 과제를 이해하는데 아무런 어려움이 없을 것이다.
본 발명의 일 측면은 소지강판 및 상기 소지강판 상에 형성된 알루미늄 합금 도금층을 포함하는 열간성형 부재로서, 상기 알루미늄 합금 도금층은, 상기 소지강판 상에 형성되고, 중량%로 Al: 5~30% 을 포함하는 합금화 층(I); 상기 합금화 층(I) 상에 형성되고, 중량%로 Al: 30~60% 을 포함하는 합금화 층(II); 상기 합금화 층(II) 상에 형성되고, 중량%로 Al: 20~50% 및 Si: 5~20% 를 포함하는 합금화 층(III); 및 상기 합금화 층(III) 표면의 적어도 일부에 연속적 또는 불연속적으로 형성되고, Al: 30~60% 을 포함하는 합금화 층(IV);를 포함하고, 상기 알루미늄 합금 도금층의 최표면에 노출된 합금화 층(III)의 비율이 10% 이상인 열간성형 부재이다.
상기 합금화 층(III)에 복수의 공극(pore)이 형성되어 있고, 상기 합금화 층(III)의 공극률이 5~50% 일 수 있다.
상기 소지강판은 중량%로, C : 0.04~0.5%, Si : 0.01~2%, Mn : 0.1~5%, P : 0.001~0.05%, S : 0.0001~0.02%, Al : 0.001~1%, N : 0.001~0.02%, 잔부 Fe 및 기타 불순물을 포함할 수 있다.
상기 소지강판은 중량%로, B : 0.001~0.01%, Cr : 0.01~1%, Ti : 0.001~0.2% 중 1종 이상을 더 포함할 수 있다.
본 발명의 다른 일 측면은 소지강판 표면을 알루미늄 도금하고 권취하여 알루미늄 도금 강판을 얻는 단계; 알루미늄 도금 강판을 소둔하여 알루미늄-철 합금 도금 강판을 얻는 단계; 및 상기 알루미늄-철 합금 도금 강판을 열간 프레스 성형하는 단계;를 포함하는 열간성형 부재의 제조방법으로서, 상기 알루미늄 도금량은 강판의 한쪽면 기준으로 30~200g/m 2이고, 알루미늄 도금 후 250℃까지의 냉각속도를 20℃/초 이하로 하고, 권취 시 권취 장력을 0.5~5kg/mm 2으로 하며, 상기 소둔은 상소둔 로에서 550~750℃의 가열 온도 범위에서 30분~50시간 실시되며, 상기 소둔 시 상온에서 상기 가열 온도까지 가열할 때, 평균 승온 속도를 10~100℃/h로 하되, 400~500℃ 구간의 평균 승온 속도를 1~15℃/h로 하고, 상기 상소둔 로내 분위기 온도와 강판 온도간 차이를 5~80℃로 하며, 열간 프레스 성형 시 Ac3~950℃ 의 온도범위에서 열처리하되, 200℃에서 Ac3~950℃ 의 온도범위까지 3~18℃의 승온 속도로 가열하고, 총 가열시간으로 1~15분간 열처리한 후 열간 프레스 성형하는 열간성형 부재의 제조방법이다.
상기 열간성형 부재의 제조방법으로 500회 열간성형 부재를 생산하였을 때, 열간성형 금형의 10점 평균 마모 깊이가 15㎛ 이하일 수 있다.
본 발명에 의하면, 열간성형 부재를 제조하는 경우, 도금층의 표면 경도가 열간성형 금형 보다 낮아 금형의 마모가 줄어듦으로써 열간성형 금형의 연삭 또는 교체주기를 늘릴 수 있어 열간성형 부재의 제조비용 및 생산효율이 향상될 수 있는 효과가 있다.
본 발명의 다양하면서도 유익한 장점과 효과는 상술한 내용에 한정되지 않으며, 본 발명의 구체적인 실시 형태를 설명하는 과정에서 보다 쉽게 이해될 수 있을 것이다.
도 1 은 발명예 1 에 의하여 제조된 열간성형 부재의 도금층의 단면을 관찰한 주사전자현미경 사진이다.
도 2 는 비교예 1 에 의하여 제조된 열간성형 부재의 도금층의 단면을 관찰한 주사전자현미경 사진이다.
이하 본 발명의 일 측면에 따른 열간성형 부재에 대하여 자세히 설명한다. 본 발명에서 각 원소의 함량을 나타낼 때 특별히 달리 정하지 아니하는 한, 중량%를 의미한다는 것에 유의할 필요가 있다. 또한, 결정이나 조직의 비율은 특별히 달리 표현하지 아니하는 한 면적을 기준으로 한다.
[열간성형 부재]
먼저 본 발명의 일 측면에 따른 열간성형 부재는 소지강판 및 상기 소지강판 상에 형성된 알루미늄 합금 도금층을 포함하며, 상기 알루미늄 합금 도금층은, 상기 소지강판 상에 형성되고, 중량%로 Al: 5~30% 을 포함하는 합금화 층(I); 상기 합금화 층(I) 상에 형성되고, 중량%로 Al: 30~60% 을 포함하는 합금화 층(II); 상기 합금화 층(II) 상에 형성되고, 중량%로 Al: 20~50% 및 Si: 5~20% 를 포함하는 합금화 층(III); 및 상기 합금화 층(III) 표면의 적어도 일부에 연속적 또는 불연속적으로 형성되고, Al: 30~60% 을 포함하는 합금화 층(IV);를 포함한다.
바람직하게는, 상기 각 합금층은 아래와 같은 성분 범위를 가질 수 있다. 상기 합금화 층 (I)은, 중량%로 Al: 5~30%, Si: 0~10%, 잔여 Fe 및 기타 합금화로 인한 불가피한 불순물을 포함할 수 있으며, 상기 합금화 층 (II)는, 중량%로 Al: 30~60%, Si: 0~5%, 잔여 Fe 및 기타 합금화로 인한 불가피한 불순물을 포함할 수 있으며, 상기 합금화 층 (III)은, 중량%로 Al: 20~50%, Si: 5~20%, 잔여 Fe 및 기타 합금화로 인한 불가피한 불순물을 포함할 수 있으며, 그리고 상기 합금화 층 (IV)는, 중량%로 Al: 30~60%, Si: 0~5%, 잔여 Fe 및 기타 합금화로 인한 불가피한 불순물을 포함할 수 있다
소지강판에 알루미늄을 도금한 후 열처리를 실시하면, 소지강판의 Fe 가 Al 함량이 높은 알루미늄 도금층으로 확산된다. 본 발명의 열간성형 부재에서는 합금화를 위한 소둔 처리 및 열간 프레스 성형 시의 열처리를 통해 도금층에서 Al 및 Fe 간의 합금화가 이루어지며, Fe 의 합금화 정도에 따라 합금화 층(I)~(IV)로 이루어진 층 구조가 형성되게 된다.
상기 합금화 층(IV)는 합금화 층(III) 표면의 적어도 일부에 연속적 또는 불연속적으로 형성될 수 있다. 즉 상기 합금화 층(IV)는 합금화 층(III) 전표면에 형성되어 있는 것이 아닌 일부 표면에 형성되어 있을 수 있다.
또한 상기 합금화 층(IV)이 합금화 층(III) 표면의 적어도 일부에 형성됨에 따라 상기 합금화 층(III)의 일부 표면은 상기 알루미늄 합금 도금층의 최표면에 노출될 수 있다. 여기서 최표면은 소지강판 반대편의 상기 알루미늄 합금 도금층의 가장 바깥쪽 표면을 말한다. 만일, 상기 알루미늄 합금 도금층의 표면에 산화물층이 형성되어 있을 경우, 상기 산화물층을 제외한 나머지 층 중 최상단 표면을 의미한다.
이때 상기 알루미늄 합금 도금층의 최표면에 노출된 합금화 층(III)의 비율은 10% 이상인 것이 바람직하다. 여기서 상기 최표면에 노출된 합금화 층(III)의 비율은 합금 도금층의 단면 관찰 시 총 최표면부 길이에 대한 합금화 층(III)이 노출된 영역의 길이의 비율로 정의할 수 있으며, 경우에 따라서는 상기 알루미늄 합금 도금층의 최표면의 표면적에 대한 상기 최표면에 노출된 합금화 층(III) 의 표면적의 면적비율로 정의할 수도 있다. 상기 합금화 층 중 합금화 층(II) 및 합금화 층(IV)의 경도는 약 900Hv 수준으로 매우 높으며, 반면 합금화 층(I) 및 합금화 층(III)의 경도는 약 300~700Hv 수준으로 합금화 층(II) 및 합금화 층(IV)에 비해 비교적 낮다. 따라서 열간 프레스 성형 시 금형과 맞닿는 알루미늄 합금 도금층의 최표면에서 경도가 비교적 낮은 합금화 층(III)의 노출 면적이 높아지면, 전체적으로 최표면 평균 경도가 낮아지게 되어 금형의 마모가 줄어들게 된다.
최표면에 노출된 합금화 층(III)의 비율이 10% 미만이면, 최표면 평균 경도와 금형 경도의 차이가 작아져 금형 마모를 효과적으로 억제할 수 없게 된다. 금형 마모 억제의 관점에서 알루미늄 합금 도금층의 최표면 경도는 낮을수록 바람직하므로, 상기 비율의 상한은 별도로 한정할 필요가 없다. 바람직하게 상기 비율은 15% 이상일 수 있으며, 경우에 따라서는 20% 이상일 수 있다.
한편, 합금화 층(III)에는 복수의 공극(pore)이 형성되어 있을 수 있다. 알루미늄 도금 강판을 상소둔로에서 소정의 조건으로 합금화 열처리하여 알루미늄 합금 도금 강판을 제조하면, 상기 알루미늄 합금 도금 강판에는 복수의 합금층이 형성되고, 서로 성분이 상이한 합금층 사이에 Fe, Al, Si 등의 상호 확산계수의 차이로 인해 상단부 합금층에는 복수의 공극이 형성되게 된다. 이때 합금층의 상단부로 갈수록 복수의 공극이 형성되어 있어 공극률이 높으며, 상기 알루미늄 합금 도금 강판을 가열한 뒤 열간 프레스 성형하면 높은 밀도의 공극을 가지는 최상단 합금층이 프레스 성형에 의해 부서져 작은 알갱이가 형성되고, 이러한 작은 알갱이가 굴러가면서 발생하는 구름 마찰(rolling friction)이 강판과 금형 간의 미끄럼 마찰(sliding friction)보다 작기 때문에 금형 및 강판 사이의 윤활성이 높아지게 된다. 여기서 상기 공극률은 합금층(또는 합금화층)의 단면을 관찰하였을 때 각 합금층(또는 합금화층)의 면적에 대한 공극 면적의 비율로 정의할 수 있다.
다만 도 1 에서 볼 수 있는 바와 같이, 열간 프레스 성형 시에 합금화 층(IV)의 대부분의 영역이 프레스 성형에 의해 부서지기 때문에, 열간성형 부재에서는 합금화 층(IV)의 공극율을 측정하기 어려우므로, 프레스 성형에 영향을 작게 받고 프레스 성형 전 합금화 층(IV)의 공극률과 긴밀한 연관성을 보이는 합금화 층(III)의 공극율을 통해 본 발명의 특성을 나타내었다.
이에 따라 본 발명의 일 측면에 따른 열간성형 부재의 상기 합금화 층(III)의 공극률이 5~50% 일 수 있다. 상기 공극률이 5% 미만이면 열간 프레스 성형 시에 구름 마찰(rolling friction) 효과에 의한 윤활 효과를 기대하기 어렵다. 반면 공극률이 50%를 초과하면 열간성형 부재의 합금화 층(III)의 구조가 너무 취약해 져서 연속적인 열간성형 시 금형 내 도금층으로부터 탈락한 알갱이들로 인한 금형 오염이 심해지는 문제가 발생할 수 있다. 따라서 본 발명에서 상기 공극률은 5~50% 인 것이 바람직하며, 경우에 따라서는 7~50%일 수 있다.
한편 본 발명의 소지강판은 열간 프레스 성형용 강판으로서, 열간 프레스 성형에 사용된다면 그 조성을 특별히 제한하지 않는다. 다만, 본 발명의 일 측면에 따를 경우 중량%로 C : 0.04~0.5%, Si : 0.01~2%, Mn : 0.1~5%, P : 0.001~0.05%, S : 0.0001~0.02%, Al : 0.001~1%, N : 0.001~0.02%, 잔부 Fe 및 기타 불순물을 포함한다. 이하 각 성분계에 대해 상세히 설명한다.
C : 0.04~0.5%
상기 C 는 열처리 부재의 강도를 상향시키기 위해 필수적인 원소로서 적정한 양으로 첨가될 수 있다. 즉, 열처리 부재의 강도를 충분하기 확보하기 위해서 상기 C는 0.04% 이상 첨가될 수 있다. 바람직하게는 상기 C 함량의 하한은 0.1%이상일 수 있다. 다만, 그 함량이 너무 높으면 냉연재를 생산하는 경우 열연재를 냉간압연할 때 열연재 강도가 너무 높아 냉간압연성이 크게 열위하게 될 뿐만 아니라, 점용접성을 크게 저하시키기 때문에, 충분한 냉간압연성과 점용접성을 확보하기 위해 0.5% 이하로 첨가될 수 있다. 또한, 상기 C 함량은 0.45% 이하일 수 있으며, 보다 바람직하게는 0.4% 이하로 그 함량을 제한할 수도 있다.
Si : 0.01~2%
상기 Si 는 제강에서 탈산제로 첨가되어야 할 뿐만 아니라, 열간 프레스 성형 부재의 강도에 가장 크게 영향을 미치는 탄화물 생성을 억제하는 역할을 한다. 본 발명에서는 열간 프레스 성형에 있어서 마르텐사이트 생성 후 마르텐사이트 라스(lath) 입계로 탄소를 농화시켜 잔류오스테나이트를 확보하기 위하여 0.01% 이상의 함량으로 첨가될 수 있다. 또한, 압연 후 강판에 알루미늄 도금을 행할 때 충분한 도금성을 확보하기 위해서 상기 Si 함량의 상한을 2%로 정할 수 있다. 바람직하게는 상기 Si 함량을 1.5% 이하로 제한할 수도 있다.
Mn : 0.1~5%
상기 Mn 은 고용강화 효과를 확보할 수 있을 뿐만 아니라 열간 프레스 성형 부재에 있어서 마르텐사이트를 확보하기 위한 임계냉각속도를 낮추기 위하여 0.1% 이상의 함량으로 첨가될 수 있다. 또한, 강판의 강도를 적절하게 유지함으로써 열간 프레스 성형 공정 작업성을 확보하고, 제조원가를 절감하며, 점용접성을 향상시킨다는 점에서 상기 Mn 함량은 5% 이하로 제한 할 수 있다.
P : 0.001~0.05%
상기 P 는 강 내에 불순물로서 존재하며, 가급적 그 함량이 적을수록 유리하다. 따라서, 본 발명에서 P 함량을 0.05% 이하로 제한할 수 있으며, 바람직하게는 0.03% 이하로 제한될 수도 있다. P는 적으면 적을수록 유리한 불순물 원소이기 때문에 그 함량의 상한을 특별히 정할 필요는 없다. 다만, P 함량을 과도하게 낮추기 위해서는 제조비용이 상승할 우려가 있으므로, 이를 고려할 경우에는 그 하한을 0.001%로 할 수 있다.
S : 0.0001~0.02%
상기 S 는 강 중에 불순물로서, 부재의 연성, 충격특성 및 용접성을 저해하는 원소이기 때문에 최대함량을 0.02%로 제한하며, 바람직하게는 0.01% 이하로 제한할 수 있다. 또한 그 최소함량이 0.0001% 미만에서는 제조비용이 상승될 수 있으므로, 그 함량의 하한을 0.0001%로 할 수 있다.
Al : 0.001~1%
상기 Al 은 Si 과 더불어 제강에서 탈산 작용을 하여 강의 청정도를 높일 수 있으며, 상기 효과를 얻기 위해 0.001% 이상의 함량으로 첨가될 수 있다. 또한, Ac3 온도가 너무 높아지지 않도록 하여 열간 프레스 성형시 필요한 가열을 적절한 온도범위에서 할 수 있도록 하기 위하여 상기 Al의 함량은 1% 이하로 제한할 수 있다.
N : 0.001~0.02%
상기 N은 강 중에 불순물로 포함되는 원소로서, 슬라브 연속주조 시에 크랙 발생에 대한 민감도를 감소시키고, 충격특성을 확보하기 위해서는 그 함량이 낮을 수록 유리하며, 따라서 0.02% 이하로 포함할 수 있다. 하한을 특별히 정할 필요가 있으나, 제조비용의 상승 등을 고려하면 N 함량을 0.001% 이상으로 정할 수도 있다.
본 발명의 일 측면에 따른 알루미늄-철 합금 도금 강판은 상술한 합금조성 이외에 추가로, B : 0.001~0.01%, Cr : 0.01~1%, Ti : 0.001~0.2% 중 1종 이상을 더 포함할 수 있다.
B : 0.001~0.01%
상기 B 은 소량의 첨가로도 경화능을 향상시킬 수 있을 뿐만 아니라, 구오스테나이트 결정립계에 편석되어 P 및/또는 S 의 입계 편석에 의한 열간 프레스 성형 부재의 취성을 억제할 수 있는 원소이다. 따라서 B는 0.0001% 이상 첨가될 수 있다. 다만, 0.01%를 초과하면 그 효과가 포화될 뿐만 아니라, 열간압연에서 취성을 초래하므로 그 상한을 0.01%로 할 수 있으며, 바람직하게는 상기 B 함량을 0.005% 이하로 할 수 있다.
Cr : 0.01~1%
상기 Cr 은 Mn 과 유사하게 고용강화 효과와 열간성형 시의 경화능을 향상시키기 위하여 첨가하는 원소로서, 상기 효과를 얻기 위해 0.01% 이상 첨가할 수 있다. 다만, 부재의 용접성을 확보하기 위해서 그 함량을 1% 이하로 제한할 수 있으며, 또한 1%를 초과하면 첨가량 대비 경화능 향상 효과도 미약하기 때문에 원가 측면에서도 불리하다.
Ti : 0.001~0.2%
상기 Ti 는 미세 석출물 형성으로 열처리 부재의 강도 상승과 결정립 미세화에 따른 부재의 충돌성능 향상에 효과가 있을 뿐만 아니라, B 이 첨가되는 경우에는 N 와 우선 반영하여 B 의 첨가 효과를 극대화 시키는 효과가 있다. 상기 효과를 얻기 위해 Ti 는 0.001%이상 첨가할 수 있다. 다만, Ti 함량이 증가함에 따라 야기되는 조대한 TiN 형성은 부재의 충돌성능을 열위하게 하기 때문에 그 함량을 0.2% 이하로 제한할 수 있다.
상술한 성분 이외의 잔부로서는 철(Fe) 및 불가피한 불순물을 들 수 있으며, 또한 열간 프레스 성형용 강판에 포함될 수 있는 성분이라면 특별히 추가적인 첨가를 제한하지 않는다.
상술한 합금조성 및 층 구조를 가지는 열간성형 부재를 제조하는 경우, 열간 프레스 성형 시에 알루미늄 합금 도금 강판의 표면에 경도가 낮은 합금화 층(III)의 비율이 높아져 표면의 평균 경도가 낮아지므로, 경도 차이에 기인하는 금형의 마모를 효과적으로 저감할 수 있다. 특히 열간성형 부재를 500회 이상 생산하더라도 열간성형 금형의 10점 평균 마모 깊이가 15㎛ 이하일 수 있다.
또한 열간 프레스 성형 시 알루미늄 합금 도금층의 상단층인 합금화 층(III) 및 (IV)에 복수의 공극이 형성되어 있고, 상기 공극으로 인해 프레스 성형 시 합금화 층(IV)이 부서져 구름마찰(rolling friction)에 의한 윤활 효과를 얻을 수 있어 금형의 손상이 보다 억제될 수 있는 효과를 얻을 수 있다.
이하, 본 발명의 다른 일 측면에 따른 열간성형 부재의 제조방법에 대해 자세히 설명한다. 다만, 하기의 열간성형 부재의 제조방법은 일 예시일 뿐이며, 본 발명의 열간성형 부재가 반드시 본 제조방법에 의해 제조되어야 한다는 것은 아니며, 어떠한 제조방법이라도 본 발명의 청구범위를 충족하는 방법이라면 본 발명의 각 구현례를 구현하는데 아무런 문제가 없다는 것에 유의할 필요가 있다.
[열간성형 부재의 제조방법]
본 발명의 열간성형 부재는 열간압연 또는 냉간압연된 소지강판을 준비하고, 상기 소지강판의 표면에 알루미늄 도금을 실시하고 상소둔로에서 합금화 열처리하여 알루미늄 합금 도금 강판을 얻은 후, 소정의 조건으로 열간 프레스 성형함으로써 얻을 수 있다.
먼저, 상술한 합금조성을 가지는 소지강판을 준비하고, 상기 소지강판의 표면에 적절한 조건으로 알루미늄 도금하고, 이를 권취하여 알루미늄 도금 강판(코일)을 얻는 과정이 수행된다.
먼저 압연된 강판의 표면에 편면기준 30~200g/m 2의 도금량으로 알루미늄 도금 처리를 할 수 있다. 알루미늄 도금은 통상 type I 이라고 명명되는 AlSi 도금(80% 이상의 Al과 5~20%의 Si를 포함, 필요에 따라 추가적인 원소도 포함 가능)이나, type II라고 명명되는 Al을 90% 이상 포함하고 필요에 따라 추가적인 원소를 포함하는 도금 모두 사용할 수 있다. 도금층을 형성하기 위해 용융 알루미늄 도금을 행할 수 있으며, 도금 전에 강판에 대한 소둔 처리를 실시할 수도 있다. 도금 시 적절한 도금량은 한쪽면 기준으로 30~200g/m 2 이다. 도금량이 너무 많을 경우에는 표면까지 합금화하는데 시간이 과다하게 소요될 수 있으며, 반대로 도금량이 너무 적을 경우에는 충분한 내식성을 얻기 어렵다.
다음으로 알루미늄 도금 후 250℃까지의 냉각속도를 20℃/초 이하로 하여 냉각할 수 있다. 알루미늄 도금 후 냉각속도는 도금층과 소지철 사이에 확산 억제층 형성에 영향을 주며, 알루미늄 도금 후 냉각속도가 너무 빠르면, 확산 억제층이 균일하게 형성되지 못하여 이후 행해지는 소둔 처리 시 코일의 합금화 거동이 불균일해 질 수 있다. 따라서, 알루미늄 도금 후 250℃까지의 냉각속도는 20℃/초 이하로 할 수 있다.
도금 후 강판을 권취하여 코일을 얻을 때, 코일의 권취 장력을 0.5~5 kg/mm 2 로 조절할 수 있다. 코일의 권취 장력의 조절에 따라 이후 행해지는 소둔 처리 시 코일의 합금화 거동과 표면 품질이 달라질 수 있다.
이후, 알루미늄 도금된 강판에 대하여 다음과 같은 조건으로 소둔 처리를 실시하여 알루미늄-철 합금 도금 강판을 얻을 수 있다.
알루미늄 도금 강판(코일)은 상소둔로(BAF, Batch annealing furnace)에서 가열된다. 강판을 가열할 때, 열처리 목표 온도와 유지 시간은 강판 온도를 기준으로 550~750℃인 범위 내(본 발명에서는 이 온도 범위에서 소재가 도달하는 최고 온도를 가열 온도라고 함)에서 30분~50시간 유지하는 것이 바람직하다. 여기서 유지시간이라 함은 코일온도가 목표 온도에 도달한 후 냉각개시까지의 시간이다. 합금화가 충분하게 이루어지지 않을 경우에는 롤 레벨링 시 도금층이 박리될 수 있으므로 충분한 합금화를 위해서 가열 온도를 550℃ 이상으로 할 수 있다. 또한, 표층에 산화물이 과다하게 생성되는 것을 방지하고 점 용접성을 확보하기 위해서 상기 가열 온도는 750℃ 이하로 할 수 있다. 또한, 도금층을 충분하게 확보하는 동시에 생산성의 저하를 방지하기 위하여 상기 유지 시간은 30분~50시간으로 정할 수 있다. 경우에 따라서는 강판의 온도는 가열 온도에 도달할 때까지 냉각 과정 없이 온도가 계속 상승하는 형태의 가열 패턴을 가질 수도 있고, 목표온도 이하의 온도에서 일정시간 유지 후 승온하는 형태의 가열 패턴을 적용할 수도 있다.
상술한 가열 온도로 강판을 가열할 때, 충분한 생산성을 확보하고 전 강판(코일)에서 도금층을 균일하게 합금화시키기 위해서는 전체 온도 구간(상온부터 가열 온도까지의 구간)에 대한 강판(코일) 온도 기준으로 평균 승온 속도가 10~100℃/h로 되도록 할 수 있다. 전체적인 평균 승온 속도는 위와 같은 수치 범위에서 제어할 수 있지만, 본 발명의 일 구현례에서는 압연 시 혼입된 압연유가 기화되는 상기 온도구간에서 압연유가 잔존하여 표면 얼룩 등을 야기하는 것을 방지하면서 충분한 생산성을 확보하기 위하여 승온 시 400~500℃ 구간의 평균 승온 속도를 1~15℃/h로 하여 가열할 수 있다.
또한 상소둔로 내 분위기 온도와 강판 온도간 차이를 5~80℃로 할 수 있다. 일반적인 상소둔로의 가열은 강판(코일)을 직접 가열하는 방식보다는 소둔로 내 분위기 온도 상승을 통하여 강판(코일)을 가열하는 방식을 취한다. 이런 경우에 분위기 온도와 코일 온도 간의 차이는 피할 수 없으나, 강판 내 위치별 재질 및 도금 품질 편차를 최소화 하기 위해서는 열처리 목표 온도 도달시점을 기준으로 분위기 온도와 강판 온도간 차이를 80℃ 이하로 할 수 있다. 온도차이는 가능한 작게 하는 것이 이상적이나 이는 승온속도를 느리게 하여 전체 평균 승온 속도 조건을 충족하기 어려울 수도 있으므로 이를 고려한다면 5℃ 이상으로 할 수 있다. 여기서, 강판의 온도는 장입된 강판(코일) 바닥부(코일 중에서 가장 낮은 부분을 의미한다)의 온도를 측정한 것을 의미하며, 분위기 온도는 가열로의 내부 공간의 중심에서 측정한 온도를 의미한다.
상술한 제조방법에 의해 알루미늄 합금 도금 강판을 제조한 후, 상기 알루미늄 합금 도금 강판에 대해 열간 프레스 성형을 행하여 열간 성형 부재를 제조할 수 있다. 이때, 열간 프레스 성형은 당해 기술분야에 일반적으로 이용되는 방법을 이용할 수 있으며, 비제한적인 일 구현례로서 Ac3~950℃ 의 온도범위에서 열처리하되, 200℃에서 Ac3~950℃ 의 온도범위까지 3~18℃/s의 승온 속도로 가열하고, 총 가열시간으로 1~15분간 열처리한 후 열간 프레스 성형할 수 있다. 여기서 총 가열시간은 승온 온도 구간에서의 가열시간 및 Ac3~950℃ 의 온도범위에서의 가열시간을 모두 포함하는 가열시간으로 정의할 수 있다.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다. 다만, 하기 실시예는 본 발명을 예시하여 구체화하기 위한 것일 뿐, 본 발명의 권리범위를 제한하기 위한 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의하여 결정되는 것이기 때문이다.
(실시예)
먼저 소지강판으로 하기 표 1 의 조성을 가지는 열간 프레스 성형용 냉간압연 강판을 준비하고, 강판의 표면에 Al-9%Si-1.5%Fe 조성을 가지는 type I 도금욕으로 강판 표면을 도금하였다. 도금 시 도금량은 한쪽 면당 75g/m 2으로 조절하였고, 알루미늄 도금 후 250℃까지의 냉각속도를 10℃/초로 냉각한 후, 권취장력을 3kg/mm 2으로 조절하여 권취하여 알루미늄 도금 강판을 얻었다.
원소 C Si Mn Al P S N Cr Ti B Ac3
함량(%) 0.23 0.2 1.25 0.03 0.01 0.002 0.005 0.21 0.034 0.0022 822℃
이후 도금된 강판에 대하여 하기 표 2 의 조건으로 상소둔로에서 합금화 열처리를 실시한 후, 각각 500회씩 열간 프레스 성형을 실시하여 열간성형 부재를 얻었다. 다만, 비교예 1 에서는 상술한 알루미늄 도금 강판에 대하여 합금화 열처리를 실시하지 않고, 하기 표 2 의 조건으로 열간 프레스 성형을 실시하여 열간성형 부재를 얻었다.
구 분 합금화 열처리 조건 열간 프레스 성형 조건
온도(℃) 평균 승온속도(℃/h) 400~500℃ 온도 구간의 평균 승온 속도(℃/h) 가열 온도에서 분위기와 강판 사이의 온도 차이(℃) 시간(h) 승온속도(℃/s) 온도(℃) 총가열시간(min)
발명예1 630 21 6 25 14 5.8 930 5
발명예2 590 25 10 30 30 8.5 900 6
발명예3 680 27 12 25 8 6.2 930 5
비교예1 - - - - - 3.4 930 5
비교예2 500 35 20 25 8 4.7 900 6
이후 각 발명예 및 비교예에서 사용된 금형에 대하여, 500회 생산 후 무작위 10점에서 마모 깊이를 측정하여 그 평균값을 하기 표 3 에 나타내었다.한편 각 실시예별로 500개의 생산품 중 무작위로 10개의 샘플을 채취하고, 그 단면을 주사전자현미경으로 관찰하여 합금화 층(III)의 최표층 점유율을 확인한 후, 그 점유율의 평균값을 하기 표 3 에 함께 나타내었다. 또한 합금화 층(III)의 공극률(porosity)를 측정하여 그 결과를 하기 표 3 에 나타내었다. 동일한 실시예(발명예 또는 비교예)에서 합금화 층(III)의 최표층 점유율과 공극률의 편차가 크지 않음을 확인할 수 있었다.
구 분 최표면에 노출된 합금화 층(III)의 비율 (%) 500회 생산 후 금형 평균 마모 깊이 (㎛) 합금화층(III)공극률 (%)
발명예1 35 7 7.2
발명예2 12 9 5.7
발명예3 47 4 13.1
비교예1 7 39 1.7
비교예2 9 23 3.2
상기 표 3 에서 볼 수 있는 바와 같이, 최표면에 노출된 합금화 층(III)의 면적비율이 10% 이상이고, 공극률이 5% 이상인 발명예 1 내지 3 의 경우, 발명예 1 내지 3 에 따른 열간성형 부재를 500회 생산하더라도 금형의 평균 마모 깊이가 15㎛ 이하인 것으로 확인되어, 열간성형 금형의 마모가 효과적으로 억제된 것을 확인할 수 있었다. 반면 비교예 1 의 경우, 통상의 Al-Si 도금 강판을 열간 프레스 성형한 것으로서, 최표면에 노출된 합금화 층(III)의 면적비율이 10% 미만이었고, 공극률이 낮아 발명예에 비해 금형의 마모가 월등히 증가한 것을 확인할 수 있다.
또한 비교예 2 의 경우 알루미늄 도금층의 합금화 열처리는 실시하였으나, 합금화 열처리 온도가 낮아 충분한 합금화가 이루어지지 못하였다. 이에 따라 최표면에 노출된 합금화 층(III)의 면적비율이 10% 미만이었고, 공극률이 낮아 비교예 1 과 마찬가지로 금형의 마모가 크게 증가한 것을 확인할 수 있다.
이상 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 통상의기술자는 하기의 청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (6)

  1. 소지강판 및 상기 소지강판 상에 형성된 알루미늄 합금 도금층을 포함하는 열간성형 부재로서,
    상기 알루미늄 합금 도금층은,
    상기 소지강판 상에 형성되고, 중량%로 Al: 5~30% 을 포함하는 합금화 층(I);
    상기 합금화 층(I) 상에 형성되고, 중량%로 Al: 30~60% 을 포함하는 합금화 층(II);
    상기 합금화 층(II) 상에 형성되고, 중량%로 Al: 20~50% 및 Si: 5~20% 를 포함하는 합금화 층(III); 및
    상기 합금화 층(III) 표면의 적어도 일부에 연속적 또는 불연속적으로 형성되고, Al: 30~60% 을 포함하는 합금화 층(IV);를 포함하고,
    상기 알루미늄 합금 도금층의 최표면에 노출된 합금화 층(III)의 비율이 10% 이상인 열간성형 부재.
  2. 제 1 항에 있어서,
    상기 합금화 층(III)에 복수의 공극(pore)이 형성되어 있고,
    상기 합금화 층(III)의 공극률이 5~50% 인 것을 특징으로 하는 열간성형 부재.
  3. 제 1 항에 있어서,
    상기 소지강판은 중량%로, C : 0.04~0.5%, Si : 0.01~2%, Mn : 0.1~5%, P : 0.001~0.05%, S : 0.0001~0.02%, Al : 0.001~1%, N : 0.001~0.02%, 잔부 Fe 및 기타 불순물을 포함하는 것을 특징으로 하는 열간성형 부재.
  4. 제 3 항에 있어서,
    상기 소지강판은 중량%로, B : 0.001~0.01%, Cr : 0.01~1%, Ti : 0.001~0.2% 중 1종 이상을 더 포함하는 것을 특징으로 하는 열간성형 부재.
  5. 소지강판 표면을 알루미늄 도금하고 권취하여 알루미늄 도금 강판을 얻는 단계;
    알루미늄 도금 강판을 소둔하여 알루미늄-철 합금 도금 강판을 얻는 단계; 및
    상기 알루미늄-철 합금 도금 강판을 열간 프레스 성형하는 단계;를 포함하는 열간성형 부재의 제조방법으로서,
    상기 알루미늄 도금량은 강판의 한쪽면 기준으로 30~200g/m 2이고,
    알루미늄 도금 후 250℃까지의 냉각속도를 20℃/초 이하로 하고,
    권취 시 권취 장력을 0.5~5kg/mm 2으로 하며,
    상기 소둔은 상소둔 로에서 550~750℃의 가열 온도 범위에서 30분~50시간 실시되며,
    상기 소둔 시 상온에서 상기 가열 온도까지 가열할 때, 평균 승온 속도를 10~100℃/h로 하되, 400~500℃ 구간의 평균 승온 속도를 1~15℃/h로 하고,
    상기 상소둔 로내 분위기 온도와 강판 온도간 차이를 5~80℃로 하며,
    열간 프레스 성형 시 Ac3~950℃ 의 온도범위에서 열처리하되, 200℃에서 Ac3~950℃ 의 온도범위까지 3~18℃/s의 승온 속도로 가열하고, 총 가열시간으로 1~15분간 열처리한 후 열간 프레스 성형하는 열간성형 부재의 제조방법.
  6. 제 5 항의 열간성형 부재의 제조방법으로 500회 열간성형 부재를 생산하였을 때, 열간성형 금형의 10점 평균 마모 깊이가 15㎛ 이하인 것을 특징으로 하는 열간성형 부재의 제조방법.
PCT/KR2019/015951 2018-11-30 2019-11-20 열간성형 부재 및 그 제조방법 WO2020111648A1 (ko)

Priority Applications (11)

Application Number Priority Date Filing Date Title
EP23169014.0A EP4234732A3 (en) 2018-11-30 2019-11-20 Hot press-formed part, and manufacturing method thereof
US17/296,458 US11578397B2 (en) 2018-11-30 2019-11-20 Hot press-formed part, and manufacturing method thereof
JP2021530074A JP7402232B2 (ja) 2018-11-30 2019-11-20 熱間成形部材及びその製造方法
PL19888634.3T PL3889311T3 (pl) 2018-11-30 2019-11-20 Część formowana w prasie na gorąco i sposób jej wytwarzania
CN201980078903.2A CN113166910B (zh) 2018-11-30 2019-11-20 热成型部件及其制造方法
MX2021005583A MX2021005583A (es) 2018-11-30 2019-11-20 Parte formada en prensa caliente, y metodo de manufactura de la misma.
CN202310904806.2A CN116926544A (zh) 2018-11-30 2019-11-20 热成型部件及其制造方法
EP19888634.3A EP3889311B1 (en) 2018-11-30 2019-11-20 Hot press-formed part, and manufacturing method thereof
US18/096,260 US11897014B2 (en) 2018-11-30 2023-01-12 Hot press-formed part, and manufacturing method thereof
US18/123,460 US20230227956A1 (en) 2018-11-30 2023-03-20 Hot press-formed part, and manufacturing method thereof
JP2023180559A JP2024010039A (ja) 2018-11-30 2023-10-19 熱間成形部材及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180153165A KR102227111B1 (ko) 2018-11-30 2018-11-30 열간성형 부재 및 그 제조방법
KR10-2018-0153165 2018-11-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/296,458 A-371-Of-International US11578397B2 (en) 2018-11-30 2019-11-20 Hot press-formed part, and manufacturing method thereof
US18/096,260 Division US11897014B2 (en) 2018-11-30 2023-01-12 Hot press-formed part, and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2020111648A1 true WO2020111648A1 (ko) 2020-06-04

Family

ID=70851991

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/015951 WO2020111648A1 (ko) 2018-11-30 2019-11-20 열간성형 부재 및 그 제조방법

Country Status (8)

Country Link
US (3) US11578397B2 (ko)
EP (2) EP3889311B1 (ko)
JP (2) JP7402232B2 (ko)
KR (1) KR102227111B1 (ko)
CN (2) CN113166910B (ko)
MX (1) MX2021005583A (ko)
PL (1) PL3889311T3 (ko)
WO (1) WO2020111648A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102310966B1 (ko) * 2020-09-29 2021-10-08 현대제철 주식회사 핫 스탬핑 부품 및 이의 제조 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0128970B2 (ko) * 1983-11-10 1989-06-07 Oki Electric Ind Co Ltd
US6296805B1 (en) 1998-07-09 2001-10-02 Sollac Coated hot- and cold-rolled steel sheet comprising a very high resistance after thermal treatment
KR100723157B1 (ko) * 2005-12-23 2007-05-30 주식회사 포스코 도장후 내식성이 우수한 초고강도 열간성형용 강판과열간성형 부재 및 그 제조방법
JP2012112010A (ja) * 2010-11-26 2012-06-14 Jfe Steel Corp 熱間プレス用めっき鋼板、それを用いた熱間プレス部材の製造方法および熱間プレス部材
KR101696121B1 (ko) * 2015-12-23 2017-01-13 주식회사 포스코 내수소지연파괴특성, 내박리성 및 용접성이 우수한 열간성형용 알루미늄-철 합금 도금강판 및 이를 이용한 열간성형 부재
KR20180074292A (ko) * 2016-12-23 2018-07-03 주식회사 포스코 TWB 용접 특성이 우수한 열간성형용 Al-Fe 합금화 도금강판, 열간성형 부재 및 그들의 제조방법
KR20180131943A (ko) * 2017-06-01 2018-12-11 주식회사 포스코 도금 밀착성이 우수한 열간 프레스 성형 부재용 강판 및 그 제조방법

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5130017B1 (ko) * 1968-07-29 1976-08-28
FR2775297B1 (fr) 1998-02-25 2000-04-28 Lorraine Laminage Tole dotee d'un revetement d'aluminium resistant a la fissuration
JP3581862B2 (ja) 2000-12-22 2004-10-27 Jfeスチール株式会社 溶融Al−Zn系めっき鋼板の製造方法
US6586117B2 (en) * 2001-10-19 2003-07-01 Sumitomo Metal Industries, Ltd. Steel sheet having excellent workability and shape accuracy and a method for its manufacture
JP3738754B2 (ja) 2002-07-11 2006-01-25 日産自動車株式会社 電着塗装用アルミニウムめっき構造部材及びその製造方法
JP4446428B2 (ja) 2003-02-17 2010-04-07 新日本製鐵株式会社 塗装後耐食性に優れた高強度自動車部品
JP4087800B2 (ja) * 2004-02-02 2008-05-21 Jfeスチール株式会社 溶融Al−Zn系めっき鋼板の製造方法
JP2005264188A (ja) 2004-03-16 2005-09-29 Nippon Steel Corp 曲げ加工性に優れる溶融Zn−Al系合金めっき鋼材及びその製造方法
JP4171002B2 (ja) 2005-03-28 2008-10-22 Jfeケミカル株式会社 圧粉磁芯用マグネタイト−鉄複合粉末およびこれを用いた圧粉磁芯
JP2006274330A (ja) 2005-03-29 2006-10-12 Jfe Steel Kk バッチ式焼鈍炉用インナーカバー
CA2729942C (en) 2008-07-11 2013-08-06 Nippon Steel Corporation Aluminum plated steel sheet for rapid heating hot-stamping, production method of the same and rapid heating hot-stamping method by using this steel sheet
JP5444650B2 (ja) 2008-07-11 2014-03-19 新日鐵住金株式会社 ホットプレス用めっき鋼板及びその製造方法
CN102851629B (zh) * 2011-06-28 2015-09-02 鞍钢股份有限公司 一种热压成型用镀铝硅钢板及其制造方法
ES2891582T3 (es) * 2013-04-10 2022-01-28 Tata Steel Ijmuiden Bv Producto conformado mediante conformado en caliente de chapa de acero con revestimiento metálico, método para conformar el producto y fleje de acero
KR101528067B1 (ko) 2013-12-20 2015-06-10 주식회사 포스코 용접성 및 내식성이 우수한 열간 프레스 성형용 도금강판 및 그 제조방법
JP6296805B2 (ja) 2014-01-23 2018-03-20 Ai Technology株式会社 検知装置
KR101569509B1 (ko) 2014-12-24 2015-11-17 주식회사 포스코 프레스성형시 내파우더링성이 우수한 hpf 성형부재 및 이의 제조방법
KR101569505B1 (ko) 2014-12-24 2015-11-30 주식회사 포스코 내박리성이 우수한 hpf 성형부재 및 그 제조방법
KR102297297B1 (ko) 2016-12-23 2021-09-03 주식회사 포스코 내식성이 우수한 알루미늄계 도금 강재, 이를 이용한 알루미늄계 합금화 도금 강재 및 이들의 제조방법
MX2019007700A (es) 2016-12-28 2019-09-13 Nippon Steel Corp Lámina de acero enchapada para estampación en caliente, método de fabricación de lámina de acero enchapada para estampación en caliente, método de fabricación de componente estampado en caliente, y método de fabricación de vehículo.
JP6822491B2 (ja) 2017-02-02 2021-01-27 日本製鉄株式会社 ホットスタンプ用合金化Alめっき鋼板およびホットスタンプ部材
EP3589772B1 (en) 2017-02-28 2023-04-05 Tata Steel IJmuiden B.V. Method for producing a hot-formed coated steel product
WO2018179839A1 (ja) 2017-03-30 2018-10-04 Jfeスチール株式会社 ホットプレス部材およびその製造方法
CN108588612B (zh) 2018-04-28 2019-09-20 育材堂(苏州)材料科技有限公司 热冲压成形构件、热冲压成形用预涂镀钢板及热冲压成形工艺
EP3889314A4 (en) 2018-11-30 2021-11-10 Posco STEEL SHEET PLATED WITH AN AL-FE ALLOY FOR HOT FORMING WITH EXCELLENT CORROSION RESISTANCE AND HEAT RESISTANCE, SHAPED PART FROM A HOT PRESSING AND PROCESS FOR ITS MANUFACTURING
WO2020111879A1 (ko) 2018-11-30 2020-06-04 주식회사 포스코 내식성 및 내열성이 우수한 열간성형용 알루미늄-철 합금 도금 강판, 열간 프레스 성형 부재 및 이들의 제조방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0128970B2 (ko) * 1983-11-10 1989-06-07 Oki Electric Ind Co Ltd
US6296805B1 (en) 1998-07-09 2001-10-02 Sollac Coated hot- and cold-rolled steel sheet comprising a very high resistance after thermal treatment
KR100723157B1 (ko) * 2005-12-23 2007-05-30 주식회사 포스코 도장후 내식성이 우수한 초고강도 열간성형용 강판과열간성형 부재 및 그 제조방법
JP2012112010A (ja) * 2010-11-26 2012-06-14 Jfe Steel Corp 熱間プレス用めっき鋼板、それを用いた熱間プレス部材の製造方法および熱間プレス部材
KR101696121B1 (ko) * 2015-12-23 2017-01-13 주식회사 포스코 내수소지연파괴특성, 내박리성 및 용접성이 우수한 열간성형용 알루미늄-철 합금 도금강판 및 이를 이용한 열간성형 부재
KR20180074292A (ko) * 2016-12-23 2018-07-03 주식회사 포스코 TWB 용접 특성이 우수한 열간성형용 Al-Fe 합금화 도금강판, 열간성형 부재 및 그들의 제조방법
KR20180131943A (ko) * 2017-06-01 2018-12-11 주식회사 포스코 도금 밀착성이 우수한 열간 프레스 성형 부재용 강판 및 그 제조방법

Also Published As

Publication number Publication date
PL3889311T3 (pl) 2024-03-04
US11578397B2 (en) 2023-02-14
MX2021005583A (es) 2021-06-30
US20230167531A1 (en) 2023-06-01
EP3889311A1 (en) 2021-10-06
EP3889311B1 (en) 2023-11-01
KR20200066087A (ko) 2020-06-09
JP7402232B2 (ja) 2023-12-20
EP3889311A4 (en) 2022-01-26
JP2024010039A (ja) 2024-01-23
JP2022513651A (ja) 2022-02-09
CN113166910B (zh) 2023-08-15
CN113166910A (zh) 2021-07-23
EP4234732A3 (en) 2023-09-06
EP4234732A2 (en) 2023-08-30
US20230227956A1 (en) 2023-07-20
US11897014B2 (en) 2024-02-13
CN116926544A (zh) 2023-10-24
US20210395872A1 (en) 2021-12-23
KR102227111B1 (ko) 2021-03-12

Similar Documents

Publication Publication Date Title
KR101988724B1 (ko) 도금 밀착성이 우수한 열간 프레스 성형 부재용 강판 및 그 제조방법
WO2010079995A2 (ko) 내식성이 우수한 알루미늄 도금강판, 이를 이용한 열간 프레스 성형 제품 및 그 제조방법
WO2020222394A1 (ko) 핫 스탬핑 부품 및 그 제조방법
JP7216358B2 (ja) 水素脆性に対する抵抗性に優れた熱間プレス成形部材及びその製造方法
US20230039057A1 (en) Steel sheet plated with al-fe alloy for hot press forming having excellent corrosion resistance and heat resistance, hot press formed part, and manufacturing method therefor
KR102450998B1 (ko) 내식성 및 내열성이 우수한 열간성형용 알루미늄-철 합금 도금 강판, 열간 프레스 성형 부재 및 이들의 제조방법
WO2015099223A1 (ko) 강도와 연성이 우수한 경량강판 및 그 제조방법
WO2020111648A1 (ko) 열간성형 부재 및 그 제조방법
WO2022004969A1 (ko) 열간 프레스용 강판 및 이의 제조 방법
KR20190077176A (ko) 상온내시효성 및 소부경화성이 우수한 아연계 도금강판 및 그 제조방법
KR20190077928A (ko) 내식성이 향상된 고내식 철-알루미늄계 합금도금강판, 그 제조방법 및 그로부터 제조된 열간 프레스 성형 부재
KR102378275B1 (ko) 열간성형용 알루미늄 철 합금 도금강판 및 그 제조방법
WO2020130666A1 (ko) 열간성형 후 충격특성이 우수한 열간성형용 도금강판, 열간성형 부재 및 이들의 제조방법
WO2020111883A1 (ko) 수소지연파괴특성 및 점용접성이 우수한 열간 프레스용 철-알루미늄계 도금 강판 및 그 제조방법
KR102326111B1 (ko) 금형 내마모성이 우수한 열간 프레스용 알루미늄-철계 도금강판 및 그 제조방법
WO2023058827A1 (ko) 열간 프레스용 강판 및 이를 이용하여 제조된 핫 스탬핑 부품
WO2021045476A1 (ko) 열간 성형용 강판, 열간 성형 부재 및 그 제조방법
WO2011068328A2 (ko) 내열성이 우수한 가공용 냉연강판 및 그 제조방법
KR20230028618A (ko) 열간성형용 강재, 열간성형 부재 및 이들의 제조방법
WO2017082628A1 (ko) 표면 품질이 우수한 페라이트계 스테인리스강 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19888634

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021530074

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019888634

Country of ref document: EP

Effective date: 20210630