WO2023054464A1 - 成膜装置 - Google Patents

成膜装置 Download PDF

Info

Publication number
WO2023054464A1
WO2023054464A1 PCT/JP2022/036150 JP2022036150W WO2023054464A1 WO 2023054464 A1 WO2023054464 A1 WO 2023054464A1 JP 2022036150 W JP2022036150 W JP 2022036150W WO 2023054464 A1 WO2023054464 A1 WO 2023054464A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
nozzle
film
ceramic
working gas
Prior art date
Application number
PCT/JP2022/036150
Other languages
English (en)
French (fr)
Inventor
正樹 平野
Original Assignee
タツタ電線株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タツタ電線株式会社 filed Critical タツタ電線株式会社
Priority to CN202280059873.2A priority Critical patent/CN117940609A/zh
Priority to JP2023509783A priority patent/JP7330415B1/ja
Publication of WO2023054464A1 publication Critical patent/WO2023054464A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/02Spray pistols; Apparatus for discharge
    • B05B7/04Spray pistols; Apparatus for discharge with arrangements for mixing liquids or other fluent materials before discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles

Definitions

  • the present disclosure relates to a film forming apparatus.
  • the cold spray method which is one of the thermal spraying methods
  • a film is formed on the substrate by injecting the film-forming raw material together with a carrier gas from the tip of the nozzle of a spray gun.
  • the cold spray method it is possible to suppress the oxidation and thermal deterioration of the film-forming raw material in the atmosphere, and form a dense and highly adhesive film on the substrate.
  • Clogging may occur on the inner wall surface of the passage through which the carrier gas and film-forming raw material flow. Clogging occurs when powder adheres to the inner wall surface of the passage during the film forming process, narrowing the passage.
  • Patent Document 1 Japanese Patent No. 6404532 (Patent Document 1) and Japanese Patent No. 5877590 (Patent Document 2) disclose a cold spray apparatus having a nozzle capable of preventing adhesion of film-forming raw material powder to the inner wall surface of the nozzle.
  • the inner wall surface of the nozzle passage may be "scraped". Scraping occurs when the powder of the film-forming raw material collides with the inner wall surface of the passage in the film-forming process. If the erosion of the inner wall surface of the passage increases, the flow of the working gas passing through the passage changes from the normal flow. This causes an unintended change in the state of film formation on the substrate.
  • Japanese Patent No. 6404532 nor Japanese Patent No. 5877590 discloses any countermeasure from the viewpoint of suppressing abrasion.
  • An object of the present disclosure is to provide a film forming apparatus including a nozzle capable of suppressing scraping of the inner wall surface of the passage and having improved durability at a low cost.
  • a film forming apparatus is a film forming apparatus used in thermal spraying.
  • the film forming apparatus includes a nozzle, a powder supply section for supplying powder as a film forming material to the nozzle, and a gas supply section for supplying working gas to the nozzle.
  • the nozzle has a nozzle pipe, a ceramic pipe connected to the upstream side of the nozzle pipe through which the working gas flows, and a nozzle holder into which the ceramic pipe is inserted.
  • the nozzle holder includes a first portion extending in a first direction in which working gas flows through the nozzle holder.
  • a pipe connecting the powder feeder and the first portion is further provided. A portion of the pipe where the pipe is connected to the first portion extends in a second direction that intersects the first direction.
  • FIG. 1 is a schematic diagram showing the configuration of a film forming apparatus according to an embodiment
  • FIG. FIG. 2 is a perspective view showing a state in which each member constituting the nozzle of FIG. 1 is disassembled
  • FIG. 2 is a schematic diagram showing a first example of the configuration of a nozzle that constitutes the film forming apparatus of FIG. 1
  • 2 is a schematic diagram showing a second example of the configuration of nozzles that constitute the film forming apparatus of FIG. 1.
  • FIG. 3 is a schematic diagram showing a third example of the configuration of nozzles that constitute the film forming apparatus of FIG. 1.
  • FIG. 1 is a schematic diagram showing a first example of a cross-sectional aspect of a ceramic pipe and a stainless steel pipe adjacent thereto;
  • FIG. 4 is a schematic diagram showing a second example of a cross-sectional aspect of a ceramic pipe and a stainless steel pipe adjacent thereto; 4 is a flow chart showing a film forming method according to this embodiment.
  • 5 is a graph showing the relationship between the elapsed time during which the operating gas and the film-forming raw material are continuously injected from the film-forming apparatus, and the thickness of the film formed by the film-forming apparatus after each elapsed time.
  • FIG. 4 is a schematic diagram showing a portion of the ceramic pipe of FIG. 3 where scraping is likely to occur;
  • FIG. 10 is a photograph showing the result of observing the interior of the stainless steel pipe from the entrance end face of the stainless steel pipe after the working gas and the film-forming raw material were continuously injected from the film forming apparatus for 12 hours.
  • FIG. 1 is a schematic diagram showing the configuration of a film forming apparatus according to this embodiment.
  • a film forming apparatus 100 shown in FIG. 1 mainly includes a spray gun 2 including a nozzle 2 b , a powder supply section 3 , a gas supply section 4 and a mask jig 1 .
  • the spray gun 2 mainly includes a spray gun body 2a, a nozzle 2b, a heater 2c, and a temperature sensor 9.
  • a nozzle 2b is connected to the first end, which is the tip side of the spray gun main body 2a.
  • a pipe 6 is connected to the second end, which is the rear end side of the spray gun main body 2a.
  • the pipe 6 is connected to the gas supply section 4 via a valve 7 .
  • a gas supply unit 4 supplies working gas to the spray gun 2 through a pipe 6 . By opening and closing the valve 7, it is possible to control the state of supply of the working gas from the gas supply section 4 to the spray gun 2.
  • a pressure sensor 8 is installed in the pipe 6 .
  • a pressure sensor 8 measures the pressure of the working gas supplied from the gas supply unit 4 to the pipe 6 .
  • the working gas supplied from the second end of the spray gun main body 2a to the interior of the spray gun main body 2a is heated by the heater 2c.
  • the heater 2c is arranged on the second end side of the spray gun body 2a.
  • the working gas flows along the arrow 31 inside the spray gun main body 2a.
  • a temperature sensor 9 is connected to the connecting portion between the nozzle 2b and the spray gun body portion 2a.
  • a temperature sensor 9 measures the temperature of the working gas flowing inside the spray gun body 2a.
  • a pipe 5 is connected to the nozzle 2b.
  • a pipe 5 is connected to the powder supply section 3 .
  • the powder supply unit 3 supplies the powder, which is a film-forming raw material, to the nozzle 2 b of the spray gun 2 through the pipe 5 .
  • the mask jig 1 is arranged between the substrate 20 and the spray gun 2.
  • a through hole 13 is formed in the mask jig 1 .
  • the through hole 13 defines a film formation region on the surface of the substrate 20 .
  • the working gas is supplied from the gas supply section 4 to the spray gun 2 through the pipe 6 as indicated by arrow 30 .
  • the working gas is thereby supplied to the nozzle 2b.
  • Nitrogen, helium, dry air or mixtures thereof can be used as the working gas, for example.
  • the working gas pressure is, for example, about 1 MPa.
  • the flow rate of the working gas is, for example, 300 L/min or more and 500 L/min or less.
  • the working gas supplied to the second end of the spray gun body 2a is heated by the heater 2c.
  • the heating temperature of the working gas is appropriately set according to the composition of the film-forming raw material, and can be, for example, 100° C.
  • the working gas flows from the spray gun body 2a to the nozzle 2b.
  • the nozzle 2b is supplied with powder 10 as a film-forming raw material from the powder supply unit 3 through the pipe 5 as indicated by an arrow 32.
  • powder 10 for example, nickel powder, tin powder, or a mixed material of tin powder and zinc powder can be used.
  • the particle size of powder 10 is, for example, 1 ⁇ m or more and 50 ⁇ m or less.
  • the powder 10 supplied to the nozzle 2b is jetted from the tip of the nozzle 2b toward the substrate 20 together with the working gas.
  • a mask jig 1 is arranged on the surface of the base material 20 .
  • the sprayed powder 10 reaches the surface of the substrate 20 through the through holes 13 of the mask jig 1 .
  • a film is formed on the surface of the substrate 20 using the injected powder 10 as a raw material.
  • FIG. 2 is a perspective view showing a disassembled state of each member constituting the nozzle of FIG. 1.
  • FIG. FIG. 3 is a schematic diagram showing a first example of the configuration of nozzles that constitute the film forming apparatus of FIG.
  • FIG. 4 is a schematic diagram showing a second example of the configuration of the nozzles that constitute the film forming apparatus of FIG.
  • the nozzle 2b has a nozzle holder 21, a ceramic pipe 22 and a stainless steel pipe .
  • the spray gun main body 2a of FIG. 1 is connected to the right side of the nozzle 2b of FIGS.
  • the working gas flows through the nozzle 2b from right to left (similar to FIG. 1) as indicated by arrows 31 in FIGS.
  • the nozzle holder 21 has a first portion 21A extending in the left-right direction through which the working gas flows in the spray gun 2, and a second portion 21B extending in the vertical direction and intersecting (perpendicular to) the first portion 21A. ing.
  • the second portion 21B is not limited to extending perpendicularly to the first portion 21A, and may extend in a direction having some error with respect to the vertical direction.
  • the 1st part 21A and the 2nd part 21B are united.
  • the first portion 21A is a region into which the operating gas from the spray gun main body 2a flows and flows toward the ceramic pipe 22 side.
  • the second portion 21B is a region into which the powder 10 from the powder supply portion 3 and the pipe 5 flows and flows toward the first portion 21A.
  • the pipe 5 is connected to the second portion 21B of the nozzle holder 21 and extends vertically inside the second portion 21B.
  • the pipe 5A is a cavity extending vertically in the second portion 21B.
  • the pipe 5A extends in the vertical direction intersecting the left-right direction (first direction) in which the working gas flows within the spray gun 2 .
  • the pipe 5A is connected to a hollow portion, which will be described later, inside the first portion 21A.
  • the cavity is formed as a passageway for working gas and powder 10 .
  • the hollow portion may extend so as to be inclined with respect to the laterally extending outer edge of the first portion 21A.
  • the inner diameter of the hollow portion may gradually increase and decrease.
  • the cavity has a throat portion 21D, an extension portion 21E, and an extension portion 21F.
  • a portion having the smallest inner diameter in the hollow portion in the first portion 21A is called a throat portion 21D.
  • the throat portion 21D is formed in the first portion 21A on the upstream side of the working gas (on the right side in FIGS. 3 and 4) of the intersecting portion 21C with the second portion 21B described below.
  • a portion other than the throat portion 21D that is, a portion extending obliquely so that the inner diameter of the hollow portion gradually increases with distance from the throat portion 21D is called an expanded portion.
  • a passage on the downstream side (left side in FIGS. 3 and 4) of the throat portion 21D is the expanded portion 21E, and a passage on the upstream side of the throat portion 21D is the expanded portion 21F.
  • a ceramic pipe 22 is inserted into the nozzle holder 21 downstream of the intersecting portion 21C in the first portion 21A.
  • a stainless steel pipe 23 is connected to the downstream side of the ceramic pipe 22 .
  • the ceramic pipe 22 and the stainless steel pipe 23 may be connected by a joint (not shown).
  • the connecting portion 23CT between the ceramic pipe 22 and the stainless steel pipe 23 is accommodated in the nozzle holder 21.
  • the entire ceramic pipe 22 and part of the stainless steel pipe 23 are accommodated in the nozzle holder 21.
  • the connecting portion 23CT between the ceramic pipe 22 and the stainless steel pipe 23 is provided outside the nozzle holder 21. As shown in FIG.
  • FIG. 4 only a portion of the ceramic pipe 22 is accommodated within the nozzle holder 21, and the stainless steel pipe 23 is entirely provided outside the nozzle holder 21.
  • FIG. 3 and 4 are structurally different in this point. Either of the modes shown in FIGS. 3 and 4 may be employed in this embodiment.
  • FIG. 5 is a schematic diagram showing a third example of the configuration of the nozzles that constitute the film forming apparatus of FIG.
  • the nozzle holder 21 does not have the second portion 21B, but consists only of the first portion 21A extending in the left-right direction. Therefore, the pipe 5A in FIG. 5 is arranged outside the nozzle holder 21 although it is adjacent to the intersection 21C.
  • the pipe 5A in FIG. 5 extends in the vertical direction intersecting the horizontal direction (first direction) in which the working gas flows in the spray gun 2, as in FIGS.
  • the pipe 5A is connected to a hollow portion, which will be described later, inside the first portion 21A.
  • a guide part 24 may be provided on the radially outer side of the ceramic pipe 22 and the stainless steel pipe 23 .
  • the guide part 24 has a tubular shape and is arranged so as to surround the connecting portion 23CT between the ceramic pipe 22 and the stainless steel pipe 23 from the outside in the radial direction.
  • the guide part 24 is arranged so as to straddle the ceramic pipe 22 and the stainless steel pipe 23 .
  • the guide part 24 radially surrounds curved surfaces (side surfaces) extending from the outer edges of the ceramic pipe 22 and the stainless steel pipe 23 and comes into contact with both the ceramic pipe 22 and the stainless steel pipe 23 .
  • the guide part 24 particularly contacts the connecting portion 23CT between the ceramic pipe 22 and the stainless steel pipe 23, and all the regions of the ceramic pipe 22 and the stainless steel pipe 23 adjacent to the connecting portion 23CT in the extending direction.
  • the guide part 24 can be adjusted so that the central axis of the ceramic pipe 22 and the central axis of the stainless steel pipe 23 are aligned and the two central axes extend in a straight line.
  • the working gas and the film-forming raw material merged at the intersection 21C then flow through the ceramic pipe 22 and the stainless steel pipe 23 from the right side to the left side in FIGS.
  • the guide component 24 can be fixed to the ceramic pipe 22 and the stainless steel pipe 23.
  • the threaded portion 25 is arranged, for example, on the radially outer side of the guide component 24 .
  • the threaded portion 25 has a male thread and a female thread, which can be fastened.
  • the male thread of threaded portion 25 may be fixed, for example, as an annular member on a curved surface extending along the outer edge of guide component 24 , or may be formed directly on the outer edge of guide component 24 .
  • the male threads may be fixed on the curved surfaces of the outer edges of the ceramic pipe 22 and the stainless steel pipe 23, or the male threads may be formed directly on the curved surfaces.
  • the female thread may be formed on the inner wall of the hole in the first portion 21A of the nozzle holder 21 into which the ceramic pipe 22 is inserted, or may be a nut fixed to the nozzle holder 21 .
  • the ceramic pipe 22 and the stainless steel pipe 23 are fixed to the nozzle 2b (nozzle holder 21) by the screw portion 25. As shown in FIG.
  • the extension part 21E is connected to the ceramic pipe 22, and in FIGS. 3 to 5, the inner diameter (diameter of the inner wall surface) of the downstream end of the extension part 21E is smaller than the outer diameter (diameter of the outer wall surface) of the ceramic pipe 22. ing. More specifically, the inner diameter of the downstream end of the expanded portion 21E is substantially equal to the inner diameter of the inlet end face 22EG, which is the upstream end of the ceramic pipe 22.
  • FIG. FIG. 6 is a schematic diagram showing a first example of a cross-sectional aspect of a ceramic pipe and a stainless steel pipe adjacent thereto.
  • ceramic pipe 22 may be cylindrical with an inner wall surface extending substantially parallel to its extending direction (horizontal direction in FIG. 6).
  • the ceramic pipe 22 has a length L1 in its extending direction.
  • a cross section intersecting the extending direction of the ceramic pipe 22 has a circular outer wall surface with a diameter of ⁇ A and an inner wall surface with a circular diameter of ⁇ B.
  • L1 is 15 mm
  • ⁇ A is 6 mm
  • ⁇ B is 4 mm.
  • the dimensions of each part are not limited to the above.
  • the stainless steel pipe 23 adjacent to the ceramic pipe 22 may have an inner wall surface extending so as to be slightly inclined with respect to the extending direction (horizontal direction in FIG. 6).
  • the stainless steel pipe 23 has a length L2 in its extending direction.
  • a cross section intersecting the extending direction of the stainless steel pipe 23 has a circular outer wall surface with a diameter of ⁇ A, which is the same as the ceramic pipe 22, and a circular inner wall surface with a diameter that gradually changes from ⁇ B to ⁇ C, which is the same as the ceramic pipe 22.
  • An inlet end face 23E, which is an end face on the upstream side of the stainless steel pipe 23, has an inner wall diameter of ⁇ B.
  • L2 is 120 mm and ⁇ C is 5 mm.
  • FIG. 7 is a schematic diagram showing a second example of cross-sectional aspects of a ceramic pipe and a stainless steel pipe adjacent thereto.
  • ceramic pipe 22 may have an inner wall surface extending so as to be slightly inclined with respect to its extending direction (horizontal direction in FIG. 6).
  • the cross section intersecting the extending direction of the ceramic pipe 22 has a circular inner wall surface whose diameter gradually changes from ⁇ D to ⁇ E.
  • ⁇ D is 3 mm
  • ⁇ E is 3.5 mm, but they are not limited to these.
  • the angle at which the inner wall surface of the ceramic pipe 22 is inclined with respect to the side surface of the outer edge is, for example, 5° or less, more preferably 3° or less.
  • the stainless steel pipe 23 has a circular outer wall surface with a diameter ⁇ A as in FIG. 1, and a circular inner wall surface with a diameter gradually changing from ⁇ E to ⁇ C.
  • the inner wall surfaces of the downstream end of the ceramic pipe 22 and the upstream end (inlet end surface 23E) of the stainless steel pipe 23 have the same diameter ⁇ E.
  • the inclination angles of the inner wall surfaces may be equal. In this case, by connecting the ceramic pipe 22 and the stainless steel pipe 23, the inner wall surface extends at the same inclination angle from the upstream inlet end face 22EG of the ceramic pipe 22 to the downstream outlet end face 23EG of the stainless pipe 23. You may
  • the cross-sectional shape of the outer wall surface and/or the inner wall surface of the ceramic pipe 22 in FIGS. 6 and 7 may be circular as described above, or may be elliptical.
  • the nozzle holder 21 is made of brass.
  • the nozzle holder 21 is a member to which the powder 10 as a film forming material is supplied from the powder supply section 3 and the pipe 5 .
  • the ceramic pipe 22 is fitted in the nozzle holder 21 downstream of the intersecting portion 21C.
  • the flow direction of the working gas and the powder 10 changes from the up-down direction to the left-right direction at the intersection 21C.
  • the powder 10 collides with the inner wall surface of the ceramic pipe 22 rather than the inner wall surface of the cavity of the nozzle holder 21 .
  • the material of the nozzle holder 21 need not be particularly hard. Further, on the upstream side of the powder 10 and the working gas from the intersecting portion 21C, there is little possibility of collision of the powder 10 in the first place, and it is not necessary to increase the hardness of the nozzle holder 21 in particular. From this point of view, brass is used for the nozzle holder 21 .
  • the ceramic pipe 22 is made of a ceramic material.
  • the ceramic pipe 22 is particularly made of a material whose main component is one selected from the group consisting of zirconia, silicon nitride and alumina.
  • the hardness of the ceramic pipe 22 is preferably higher than, for example, the ceramic powder before molding. Specifically, the hardness of the ceramic pipe 22 is 1000 HV or more, preferably 1200 HV or more.
  • the stainless pipe 23 is made of a stainless material such as SUS304, SUS410, SUS430.
  • the guide part 24 is made of copper.
  • a film forming apparatus 100 is used in a thermal spraying method.
  • the film forming apparatus 100 includes a nozzle 2b, a powder supply unit 3 that supplies powder 10 as a film forming material to the nozzle 2b, and a gas supply unit 4 that supplies a working gas to the nozzle 2b.
  • the nozzle 2b has a stainless steel pipe 23 as a nozzle pipe, a ceramic pipe 22 connected to the upstream side of the stainless steel pipe 23 through which the operating gas flows, and a nozzle holder 21 into which the ceramic pipe 22 is inserted.
  • Nozzle holder 21 includes a first portion 21A extending in a first direction in which working gas flows through nozzle holder 21 .
  • a pipe 5 connecting the powder supply unit 3 and the first portion 21A is further provided.
  • a pipe 5A which is the portion of the pipe 5 where the pipe 5 is connected to the first portion 21A, extends in a second direction that intersects the first direction.
  • the apparatus is a so-called radial injection film forming apparatus 100 for low pressure (the working gas pressure is 1 MPa or less).
  • the film forming apparatus 100 of the present invention is different from a so-called axial injection film forming apparatus for high pressure (the pressure of the working gas exceeds 1 MPa) in which the working gas and the powder are supplied from the same direction.
  • the ceramic pipe 22 having a hardness higher than that of the stainless steel pipe 23 is provided in a limited area of the inner wall surface of the passage of the nozzle 2b where "scraping" is most likely to occur.
  • a hard material at a lower cost than when the entire nozzle 2b is formed of a ceramic pipe, for example. This is because a material with high hardness is less likely to be scraped than a material with low hardness.
  • variations (deviations) in the thickness of the film formed on the base material 20 can be reduced, so durability can be improved. In other words, it is possible to extend the time during which the film can be formed so that the deviation of the film thickness is within the allowable range.
  • Ceramic materials are harder than stainless steel, but they are expensive and have low heat dissipation. Therefore, in the above configuration, the range of use of the ceramic material in the nozzle 2b is minimized, and the stainless steel pipe 23 is used for the portions other than the ceramic pipe 22. As shown in FIG. As a result, the manufacturing cost can be reduced and the influence of heat accumulation in the pipe can be reduced compared to the case where the ceramic pipe 22 is arranged in the area where the stainless steel pipe 23 is arranged.
  • the place where the influence of scraping is large is the region immediately downstream of the working gas from the portion where the pipe 5 is connected to the nozzle 2b. Therefore, by providing the ceramic pipe 22 upstream of the working gas from the region, that is, the stainless steel pipe 23, the effect of suppressing abrasion in the region can be obtained.
  • the powder 10 which is the raw material for the film formation, reacts with the heat, and the powder 10 adheres to each other and tends to swell. In such a situation, the enlarged powder 10 clogs the passage, making it difficult to stably form a film on the substrate 20 . Therefore, by narrowing the arrangement area of the ceramic pipe 22, heat accumulation can be suppressed by utilizing the higher heat dissipation property of the stainless steel pipe 23 than the ceramic pipe 22, and enlargement of the powder 10 can be suppressed. Thereby, blockage of the passage can be suppressed.
  • the ceramic pipe 22 is preferably arranged in a region adjacent to the intersection 21C between the flow path of the working gas and the flow path of the powder 10 in the nozzle holder 21 and the downstream side of the adjacent region where the working gas flows. .
  • the above region is a region of the inner wall surface of the passage of the nozzle 2b that is particularly affected by "scraping". Therefore, by providing the ceramic pipe 22 in the above region, the effect of suppressing scraping is enhanced.
  • the length L1 along the first direction of the ceramic pipe 22 may be 10 mm or more and 20 mm or less.
  • the length L1 may be 10 mm or more and 18 mm or less, more preferably 10 mm or more and 15 mm or less. If the length L1 of the ceramic pipe 22 is shorter than the above, it will not be possible to cover the entire area that is greatly affected by abrasion, and the effect of suppressing abrasion by the ceramic pipe 22 will be reduced. If the length L1 of the ceramic pipe 22 is longer than the above, the flow of heat and working gas will be reduced in the portion of the ceramic pipe 22, and heat build-up can occur in the pipe.
  • the ceramic pipe 22 may be made of any material selected from the group consisting of zirconia, silicon nitride and alumina. In this way, the high hardness of the ceramic pipe 22 can suppress the shaving of the ceramic pipe 22 .
  • the film forming apparatus 100 further includes a guide part 24 that surrounds the stainless steel pipe 23 and the ceramic pipe 22 (in the radial direction) and contacts the stainless steel pipe 23 and the ceramic pipe 22 .
  • the guide part 24 is made of copper.
  • the guide part 24 is made of copper with high thermal conductivity and is in contact with the pipe, thereby suppressing heat accumulation in the pipe. Therefore, clogging of the passage of the pipe can be suppressed.
  • FIG. 8 is a flow chart showing a film forming method according to this embodiment.
  • the film forming method shown here is a film forming method performed using film forming apparatus 100 shown in FIGS. (S20) and a post-processing step (S30).
  • the preparation step (S10) includes a step of arranging the mask jig 1 so as to face the surface of the base material 20 as shown in FIG.
  • the mask jig 1 is arranged such that the first surface of the mask jig 1 faces the surface of the base material 20 .
  • the film forming apparatus 100 is used to spray the film forming raw material powder onto the surface of the base material 20 through the through holes 13 of the mask jig 1 by the cold spray method. As a result, a film made of the film-forming raw material is formed on the surface of the substrate 20 .
  • the mask jig 1 is removed from the surface of the base material 20. Thereafter, necessary processing such as processing of the base material 20 is performed. In this manner, a film can be formed on the surface of the substrate 20 .
  • a nozzle 2b having a ceramic pipe 22 made of zirconia and a stainless steel pipe 23 having the structure of the present embodiment shown in FIG. 3 was prepared. This is hereinafter referred to as the "improved product”.
  • a nozzle 2b having only a stainless steel pipe 23 and not having a ceramic pipe was prepared, which had a structure different from that of the present embodiment shown in FIG. Below, this is called a "conventional product.”
  • films were formed on the surface of the substrate 20 placed behind the mask jig 1 in the same manner as in FIG.
  • the mask jig 1 had a rectangular planar shape and was made of stainless steel SUS304.
  • the size was 42 mm wide ⁇ 30 mm long ⁇ 3 mm thick.
  • the diameter of the through hole 13 was set to 3 mm.
  • a film was formed on the surface of the substrate by a cold spray method using the improved nozzle 2b and the conventional nozzle 2b.
  • a powder made of aluminum containing an additive was used as a film-forming raw material.
  • the aluminum powder had a spherical shape and a diameter of 10 ⁇ m.
  • Alumina (Al 2 O 3 ) was used as the base material.
  • the shape of the substrate was a plate with a square planar shape.
  • the size of the substrate was 42 mm wide ⁇ 30 mm long ⁇ 1 mm thick.
  • the film formation conditions were as follows: dry air was used as the working gas, the temperature of the working gas was 270°C, the flow rate of the working gas was 400 liters/minute, and the pressure of the working gas was about 0.8 MPa.
  • the width of the region where the film-forming raw material is sprayed from the film-forming apparatus to the surface of the mask jig was set to 5 mm.
  • the speed (sweep speed) for moving the region where the film-forming raw material is sprayed so as to include the region where the through holes are formed on the surface of the mask jig was set to 10 mm/sec.
  • the size of the film formation range (region where the film formation material is sprayed) on the surface of the mask jig was 5 mm wide ⁇ 30 mm long.
  • the film forming apparatus 100 continued to inject the working gas and the film forming material from the nozzle 2b for 12 hours.
  • FIG. 9 is a graph showing the relationship between the elapsed time during which the working gas and the film-forming raw material are continuously injected from the film-forming apparatus and the thickness of the film formed by the film-forming apparatus after each elapsed time.
  • the horizontal axis of the graph indicates the elapsed time during which the operating gas and the film-forming raw material are continuously injected from the film forming apparatus 100
  • the vertical axis indicates the thickness of the film formed after each elapsed time.
  • the plot for each elapsed time indicates the average value of the film thickness measured at the above 1000 locations on the substrate 20 on which the film was formed after the injection for that time.
  • the bars at each elapsed time indicate the maximum and minimum thickness values measured at 1000 locations.
  • FIG. 10 is a schematic diagram showing a portion of the ceramic pipe of FIG. 3 where scraping is likely to occur.
  • the present embodiment is characterized in that the ceramic pipe 22 is arranged at a position including a chipped portion 26 where chipping of the nozzle is most likely to occur.
  • the shaved portion 26 is made of a ceramic material in which the flow of the powder changed from the second direction to the first direction as indicated by the arrow 33 collides with the flow of the working gas indicated by the arrow 34 at the intersecting portion 21C or a region adjacent thereto. It is the portion on the inner wall surface of the pipe 22 .
  • the ceramic pipe 22 and the stainless steel pipe 23 are connected at the connecting portion 23CT.
  • the end face of the stainless steel pipe 23 at the connecting portion 23CT corresponds to the inlet end face 23E as the end face of the stainless steel pipe 23 on the upstream side.
  • FIG. 11 is a photograph showing the result of observing the inside of the stainless steel pipe from the entrance end face of the stainless steel pipe after the working gas and the film forming material were continuously injected from the film forming apparatus for 12 hours.
  • the conventional product has only the stainless steel pipe 23 without the ceramic pipe as described above. Therefore, in the conventional product, the inlet end surface 23E of the stainless steel pipe 23 is arranged at the position where the inlet end surface 22EG in FIG. 10 is arranged.
  • the inlet end face 23E of the stainless steel pipe 23 in the conventional product is a region close to the shaved portion 26 in FIG. More specifically, the inlet end face 23E is the right end face indicated by the diameter ⁇ B of the stainless steel pipe 23 shown in FIG. 6, and ⁇ B is 4 mm.
  • the inlet end face 22EG of the improved product is close to the chipped portion 26 in FIG. 10 and is the right end face indicated by the diameter ⁇ B of the ceramic pipe 22 shown in FIG. 6, where ⁇ B is 4 mm.
  • the stainless steel pipe 23 has an outer diameter ⁇ A of 6 mm and a length L2 of 120 mm (see FIG. 6). The interior of these stainless steel pipes 23 from the inlet end face 23E was observed by X-ray CT.
  • the photographs in FIG. 11 show the inside of the stainless steel pipe 23 from the entrance end face 23E to the exit end face 23EG of both the conventional product and the improved product.
  • the inlet end face 23E of the improved product is equal to the connecting portion 23CT.
  • the inner wall surface of the stainless steel pipe 23 is scraped in the conventional product. This scraping had a depth of 0.5 mm.
  • the improved product the inner wall surface of the stainless steel pipe 23 was not scraped.
  • the stainless steel pipe 23, which is easily scraped, is arranged at the location of the scraped portion 26 in FIG. is arranged.
  • the improved ceramic pipe 22 was not scraped. This was confirmed by the fact that the weight of the ceramic pipe 22 did not change before and after the injection process of the film-forming raw material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Nozzles (AREA)

Abstract

溶射法において用いる成膜装置は、ノズル(2b)を含むスプレーガンと、上記スプレーガンに成膜原料となる粉末を供給する粉末供給部と、スプレーガンに動作ガスを供給するガス供給部とを備える。ノズル(2b)は、ノズルパイプとしてのステンレスパイプ(23)と、ステンレスパイプ(23)の動作ガスが流れる上流側に接続されるセラミックパイプ(22)と、セラミックパイプ(22)が嵌挿されるノズルホルダー(21)とを有する。ノズルホルダー(21)は、動作ガスがノズルホルダー(21)内を流れる第1方向に延びる第1部分(21A)を含む。粉末供給部と第1部分(21A)とを結ぶ配管(5)をさらに備える。配管(5)が第1部分(21A)に接続される配管(5)の部分である配管(5A)は、第1方向に交差する第2方向に延びる。

Description

成膜装置
 本開示は成膜装置に関する。
 従来、溶射法の1つであるコールドスプレー法が知られている。コールドスプレー法では、スプレーガンのノズル先端から、キャリアガスと共に成膜原料を基材に噴射することで、当該基材上に成膜する。コールドスプレー法を用いれば、大気中での成膜原料の酸化および熱変質を抑制でき、基材上に緻密で密着性の高い皮膜を形成できる。
 コールドスプレー法に用いられるノズルは、キャリアガスおよび成膜原料が流れる通路の内壁面の「閉塞」が生じることがある。閉塞は、成膜工程において、通路の内壁面に粉末が付着し通路が狭くなることにより生じる。
 通路の内壁面の閉塞が大きくなれば、通路を成膜原料および動作ガスが流れなくなり、基材への成膜ができなくなる。そこで、特許第6404532号(特許文献1)および特許5877590号(特許文献2)には、ノズルの内壁面への成膜原料の粉末の付着を防止可能なノズルを有するコールドスプレー装置が開示されている。
特許第6404532号 特許第5877590号
 ノズルの通路の内壁面は、閉塞の他に、「削れ」が生じることがある。削れは、成膜工程において、通路の内壁面に成膜原料の粉末が衝突することにより生じる。通路の内壁面の削れが大きくなれば、通路を通過する動作ガスの流れが通常の流れに対して変化する。これにより基材への成膜状態にも意図せぬ変化が生じる。しかし特許第6404532号および特許第5877590号のいずれも、削れを抑制する観点からの対策については何ら開示されていない。
 削れを抑制し、耐久性を改善する観点から、ノズルに硬度の高い材質を用いることが考えられる。しかし特許第6404532号において閉塞を抑制するために採用される金属材料は、ノズルの全体に用いられている。ノズルの全体を硬度の高いたとえばセラミック材料で形成した場合、ノズルの製造コストが高騰する。硬度の高い材料を用いる場合には高精度な加工および研磨が必要となるためである。
 本開示の目的は、安価に、通路の内壁面の削れを抑制可能で耐久性が改善されたノズルを含む成膜装置を提供することである。
 本開示に係る成膜装置は、溶射法において用いる成膜装置である。成膜装置は、ノズルと、上記ノズルに成膜原料となる粉末を供給する粉末供給部と、ノズルに動作ガスを供給するガス供給部とを備える。ノズルは、ノズルパイプと、ノズルパイプの動作ガスが流れる上流側に接続されるセラミックパイプと、セラミックパイプが嵌挿されるノズルホルダーとを有する。ノズルホルダーは、動作ガスがノズルホルダー内を流れる第1方向に延びる第1部分を含む。粉末供給部と第1部分とを結ぶ配管をさらに備える。当該配管が第1部分に接続される配管の部分は、第1方向に交差する第2方向に延びる。
 上記によれば、安価に、通路の内壁面の削れを抑制可能で耐久性が改善されたノズルを含む成膜装置を提供できる。
本実施の形態に係る成膜装置の構成を示す模式図である。 図1のノズルを構成する各部材が分解された状態を示す斜視図である。 図1の成膜装置を構成するノズルの構成の第1例を示す概略図である。 図1の成膜装置を構成するノズルの構成の第2例を示す概略図である。 図1の成膜装置を構成するノズルの構成の第3例を示す概略図である。 セラミックパイプおよびこれに隣接するステンレスパイプとの断面態様の第1例を示す概略図である。 セラミックパイプおよびこれに隣接するステンレスパイプとの断面態様の第2例を示す概略図である。 本実施の形態に係る成膜方法を示すフローチャートである。 成膜装置から動作ガスおよび成膜原料を噴射し続けた経過時間と、各経過時間後に当該成膜装置により形成された膜の厚みとの関係を示すグラフである。 図3のセラミックパイプにおける削れが起こりやすい箇所を示す概略図である。 成膜装置から動作ガスおよび成膜原料を12時間噴射し続けた後の、ステンレスパイプの入口端面からステンレスパイプ内を観察した結果を示す写真である。
 以下、本開示の実施の形態を説明する。なお、同一の構成には同一の参照番号を付し、その説明は繰り返さない。
 <成膜装置の構成>
 図1は、本実施の形態に係る成膜装置の構成を示す模式図である。図1に示す成膜装置100は、ノズル2bを含むスプレーガン2と、粉末供給部3と、ガス供給部4と、マスク治具1とを主に備える。
 スプレーガン2は、スプレーガン本体部2aと、ノズル2bと、ヒータ2cと、温度センサ9とを主に含む。スプレーガン本体部2aの先端側である第1端にはノズル2bが接続されている。スプレーガン本体部2aの後端側である第2端には配管6が接続されている。当該配管6はバルブ7を介してガス供給部4に接続されている。ガス供給部4は、配管6を介してスプレーガン2に動作ガスを供給する。バルブ7を開閉することで、ガス供給部4からスプレーガン2に対する動作ガスの供給状態を制御できる。配管6には圧力センサ8が設置されている。圧力センサ8はガス供給部4から配管6に供給される動作ガスの圧力を測定する。
 スプレーガン本体部2aの第2端からスプレーガン本体部2aの内部に供給される動作ガスは、ヒータ2cにより加熱される。ヒータ2cはスプレーガン本体部2aの第2端側に配置されている。スプレーガン本体部2aの内部を矢印31に沿って動作ガスが流れる。ノズル2bとスプレーガン本体部2aとの接続部に温度センサ9が接続されている。温度センサ9はスプレーガン本体部2aの内部を流れる動作ガスの温度を測定する。
 ノズル2bには配管5が接続されている。配管5は粉末供給部3に接続されている。粉末供給部3は、配管5を介してスプレーガン2のノズル2bに成膜原料となる粉末を供給する。
 マスク治具1は、基材20とスプレーガン2との間に配置される。マスク治具1には貫通穴13が形成されている。当該貫通穴13は基材20の表面における成膜領域を規定する。
 <成膜装置の動作>
 図1に示した成膜装置100では、矢印30に示すようにガス供給部4から配管6を介して動作ガスがスプレーガン2に供給される。これにより動作ガスはノズル2bに供給される。動作ガスとしては、たとえば窒素、ヘリウム、ドライエアまたはそれらの混合物を用いることができる。動作ガスの圧力はたとえば1MPa程度である。動作ガスの流量はたとえば300L/分以上500L/分以下である。スプレーガン本体部2aの第2端に供給された動作ガスは、ヒータ2cによって加熱される。動作ガスの加熱温度は、成膜原料の組成に応じて適宜設定されるが、たとえば100℃以上500℃以下とすることができる。スプレーガン本体部2aからノズル2bに動作ガスは流れる。ノズル2bには、配管5を介して粉末供給部3から矢印32に示すように成膜原料となる粉末10が供給される。粉末10としては、たとえばニッケル粉末、錫粉末、または錫粉末と亜鉛粉末との混合材料を用いることができる。粉末10の粒径は、たとえば1μm以上50μm以下である。
 ノズル2bに供給された粉末10は、動作ガスとともにノズル2bの先端から基材20に向けて噴射される。基材20の表面にはマスク治具1が配置されている。噴射された粉末10はマスク治具1の貫通穴13を介して基材20の表面に到達する。基材20の表面では、噴射された粉末10を原料とする膜が形成される。
 <ノズル2bの構成>
 図2は、図1のノズルを構成する各部材が分解された状態を示す斜視図である。図3は、図1の成膜装置を構成するノズルの構成の第1例を示す概略図である。図4は、図1の成膜装置を構成するノズルの構成の第2例を示す概略図である。なお図3および図4において、部材の内部に隠れて外側から見えない部分は点線で示される。図2、図3および図4を参照して、ノズル2bは、ノズルホルダー21と、セラミックパイプ22と、ステンレスパイプ23とを有している。図3および図4のノズル2bの右側には、図1のスプレーガン本体部2aが繋がっている。ノズル2bには図3および図4の矢印31に示すように、右側から左側へ(図1と同様)動作ガスが流れる。
 ノズルホルダー21は、スプレーガン2内にて動作ガスが流れる左右方向に沿って延びる第1部分21Aと、第1部分21Aに交差(たとえば直交)する上下方向に延びる第2部分21Bとを有している。ここで第2部分21Bは第1部分21Aに垂直に延びる場合に限らず、垂直方向に対して多少の誤差を有する方向に延びる場合を含む。ノズルホルダー21は、第1部分21Aと第2部分21Bとが一体となっている。第1部分21Aは、スプレーガン本体部2aからの動作ガスが流入し、セラミックパイプ22側へ流れる領域である。第2部分21Bは、粉末供給部3および配管5からの粉末10が流入し、第1部分21A側へ流れる領域である。
 配管5はノズルホルダー21の第2部分21Bに接続され、さらに第2部分21B内を上下方向に延びている。配管5のうち第1部分21A内の空洞部(後述)との交差部21Cに隣接し、特に図3および図4ではノズルホルダー21内に存在する部分を以下では配管5Aと呼称する。配管5Aは、第2部分21B内を上下方向に沿って延びる空洞部である。配管5Aは、スプレーガン2内にて動作ガスが流れる左右方向(第1方向)に交差する上下方向に延びている。配管5Aは、第1部分21A内の後述の空洞部に繋がる。
 第1部分21Aの内部には、図3の左右方向に沿って延びる空洞部が延びている。空洞部は動作ガスおよび粉末10の通路として形成されている。空洞部は第1部分21Aの左右方向に延びる外縁に対して傾斜するように延びてもよい。つまり空洞部の内径は漸次増加および減少する態様であってもよい。具体的には、空洞部は、スロート部21Dと、拡張部21Eと、拡張部21Fとを有している。第1部分21A内の空洞部のうち最も内径が小さくなる部分をスロート部21Dと呼ぶ。スロート部21Dは、第1部分21Aのうち、特に次に述べる第2部分21Bとの交差部21Cよりも動作ガスの上流側(図3および図4での右側)に形成されている。またスロート部21D以外の部分すなわちスロート部21Dから離れるにつれて空洞部の内径が漸次大きくなるよう傾斜して延びる部分を拡張部と呼ぶ。スロート部21Dの下流側(図3および図4での左側)の通路が拡張部21Eであり、スロート部21Dの上流側の通路が拡張部21Fである。
 第1部分21A内の空洞部(スロート部21Dおよび拡張部21E,21F)と、第2部分21B内の空洞部(配管5A)とが、ノズルホルダー21内の交差部21Cで交差する。第1部分21Aの空洞部を流れる動作ガスと、第2部分21Bの空洞部を流れる粉末10とが、交差部21Cで合流する。第1部分21A内における交差部21Cの下流側では、成膜原料を含む動作ガスが流通する。
 ノズルホルダー21のうち、第1部分21A内における交差部21Cの下流側には、セラミックパイプ22が嵌挿される。またセラミックパイプ22の下流側には、ステンレスパイプ23が接続される。セラミックパイプ22とステンレスパイプ23とは、図示されないジョイントにより接続されてもよい。図3の第1例においては、セラミックパイプ22とステンレスパイプ23との接続部23CTがノズルホルダー21内に収納されている。つまり図3においてはセラミックパイプ22の全体とステンレスパイプ23の一部とがノズルホルダー21内に収納されている。一方、図4の第2例においては、セラミックパイプ22とステンレスパイプ23との接続部23CTがノズルホルダー21の外に設けられる。つまり図4においてはセラミックパイプ22の一部のみがノズルホルダー21内に収納されており、ステンレスパイプ23は全体がノズルホルダー21の外に設けられる。この点において図3と図4とは構成上異なっている。本実施の形態においては図3および図4のいずれの態様が採用されてもよい。
 図5は、図1の成膜装置を構成するノズルの構成の第3例を示す概略図である。図5を参照して、第3例においては、ノズルホルダー21が第2部分21Bを有さず、左右方向に延びる第1部分21Aのみからなっている。このため図5の配管5Aは交差部21Cに隣接するが、ノズルホルダー21の外側に配置される。図5の配管5Aは図3および図4と同様に、スプレーガン2内にて動作ガスが流れる左右方向(第1方向)に交差する上下方向に延びている。配管5Aは第1部分21A内の後述の空洞部に繋がる。
 セラミックパイプ22およびステンレスパイプ23の径方向の外側には、ガイド部品24が設けられてもよい。ガイド部品24は、筒形状を有しており、セラミックパイプ22とステンレスパイプ23との接続部23CTを径方向の外側から囲むように配置される。ガイド部品24は、セラミックパイプ22とステンレスパイプ23とを跨ぐように配置される。ガイド部品24は、セラミックパイプ22とステンレスパイプ23との外縁を延在する曲面(側面)の周囲を径方向外側から囲み、セラミックパイプ22およびステンレスパイプ23の双方と接触する。ガイド部品24は、特にセラミックパイプ22とステンレスパイプ23との接続部23CT、および延在方向について接続部23CTに隣接するセラミックパイプ22の領域、ステンレスパイプ23の領域のすべてに接触する。ガイド部品24は、セラミックパイプ22の中心軸とステンレスパイプ23の中心軸との位置が一致し、それら2つの中心軸が一直線上に延びるように調整可能である。
 交差部21Cにて合流した動作ガスおよび成膜原料は、その後、セラミックパイプ22およびステンレスパイプ23内を図3および図4の右側から左側へ流通する。
 ガイド部品24は、セラミックパイプ22およびステンレスパイプ23に固定可能である。この状態で、たとえばガイド部品24の径方向の外側にネジ部25が配置されることが好ましい。ネジ部25は、雄ネジと雌ネジとを有し、これらが締結可能となっている。ネジ部25の雄ネジは、たとえばガイド部品24の外縁を延在する曲面上に円環状の部材として固定されてもよいし、ガイド部品24の外縁に直接形成されてもよい。あるいはガイド部品24が配置されない場合には、セラミックパイプ22およびステンレスパイプ23の外縁の曲面上に雄ネジが固定されてもよいし、曲面上に雄ネジが直接形成されてもよい。また雌ネジは、ノズルホルダー21の第1部分21Aの、セラミックパイプ22が嵌挿される孔部の内壁に形成されてもよいし、ノズルホルダー21に固定されるナットであってもよい。ネジ部25により、セラミックパイプ22およびステンレスパイプ23は、ノズル2b(ノズルホルダー21)に固定される。
 拡張部21Eはセラミックパイプ22に繋がっており、図3~図5では拡張部21Eの下流側端部の内径(内壁面の直径)がセラミックパイプ22の外径(外壁面の直径)より小さくなっている。より具体的には、拡張部21Eの下流側端部の内径がセラミックパイプ22の上流側の端部である入口端面22EGの内径とほぼ等しくなっている。図6は、セラミックパイプおよびこれに隣接するステンレスパイプとの断面態様の第1例を示す概略図である。図6を参照して、セラミックパイプ22は、その延びる方向(図6の左右方向)にほぼ平行となるように内壁面が延びた円筒形であってもよい。セラミックパイプ22は、その延びる方向についての長さがL1である。セラミックパイプ22の延びる方向に交差する断面は、外壁面が直径φAの円形であり、内壁面が直径φBの円形である。一例として、L1は15mm、φAは6mm、φBは4mmである。ただし各部の寸法は上記に限られない。
 これに対し、セラミックパイプ22に隣接するステンレスパイプ23は、その延びる方向(図6の左右方向)に対してやや傾斜するように内壁面が延びていてもよい。具体的には、ステンレスパイプ23は、その延びる方向についての長さがL2である。ステンレスパイプ23の延びる方向に交差する断面は、外壁面がセラミックパイプ22と同じく直径φAの円形であり、内壁面がセラミックパイプ22と同じ直径φBからφCまで漸次変化する円形である。ステンレスパイプ23の上流側の端面である入口端面23Eは内壁面の直径がφBである。一例として、L2は120mm、φCは5mmである。
 図7は、セラミックパイプおよびこれに隣接するステンレスパイプとの断面態様の第2例を示す概略図である。図7を参照して、セラミックパイプ22は、その延びる方向(図6の左右方向)に対してやや傾斜するように内壁面が延びていてもよい。具体的には、セラミックパイプ22の延びる方向に交差する断面は、内壁面が直径φDからφEまで漸次変化する円形である。一例として、φDは3mm、φEは3.5mmであるがこれに限られない。セラミックパイプ22の内壁面が外縁の側面に対して傾斜する角度は、たとえば5°以下であり、3°以下であることがより好ましい。ステンレスパイプ23は、外壁面が図1と同じく直径φAの円形であり、内壁面が直径φEからφCまで漸次変化する円形である。図7に示すように、セラミックパイプ22の下流側端部と、ステンレスパイプ23の上流側端部(入口端面23E)との内壁面は直径がφEで等しく、セラミックパイプ22とステンレスパイプ23との内壁面の傾斜角度は等しくてもよい。この場合、セラミックパイプ22とステンレスパイプ23とが繋がることにより、内壁面は、セラミックパイプ22の上流側の入口端面22EGからステンレスパイプ23の下流側の出口端面23EGまで、同一の傾斜角度で延在してもよい。
 なお図6および図7のセラミックパイプ22の外壁面および/または内壁面の断面形状は、上記のように円形であってもよいが、楕円形であってもよい。
 <ノズル2bの各部材の材質>
 ノズルホルダー21は、真鍮により形成される。ノズルホルダー21は、成膜原料となる粉末10が粉末供給部3および配管5より供給される部材である。ただし上記(図3および図4)のように、ノズルホルダー21内の交差部21Cの下流側にはセラミックパイプ22が嵌挿されている。動作ガスおよび粉末10は、交差部21Cにて流通方向が上下方向から左右方向に変更する。粉末10の流通方向の変更部に隣接する領域においては、粉末10はノズルホルダー21の空洞部の内壁面よりもむしろ、セラミックパイプ22の内壁面に衝突する。ノズルホルダー21の空洞部の内壁面にダメージが生じることは少ないため、ノズルホルダー21の材質は硬度を特に高くする必要はない。また交差部21Cよりも粉末10および動作ガスの上流側においては、そもそも粉末10の衝突の可能性が少なく、ノズルホルダー21の硬度を特に高くする必要はない。この観点から、ノズルホルダー21には真鍮が用いられる。
 セラミックパイプ22は、セラミックス材料により形成される。セラミックパイプ22は特に、ジルコニア、窒化珪素およびアルミナからなる群から選択されるいずれかを主成分とする材料により形成される。セラミックパイプ22の硬度は、たとえば成形前のセラミック粉体よりも高いことが好ましい。具体的には、セラミックパイプ22の硬度は1000HV以上であり、より好ましくは1200HV以上である。ステンレスパイプ23は、SUS304、SUS410、SUS430などのステンレス材料により形成される。ガイド部品24は銅により形成される。
 <作用効果>
 本開示に係る成膜装置100は、溶射法において用いられる。成膜装置100は、ノズル2bと、ノズル2bに成膜原料となる粉末10を供給する粉末供給部3と、ノズル2bに動作ガスを供給するガス供給部4とを備える。ノズル2bは、ノズルパイプとしてのステンレスパイプ23と、ステンレスパイプ23の上記動作ガスが流れる上流側に接続されるセラミックパイプ22と、セラミックパイプ22が嵌挿されるノズルホルダー21とを有する。ノズルホルダー21は、動作ガスがノズルホルダー21内を流れる第1方向に延びる第1部分21Aを含む。粉末供給部3と第1部分21Aとを結ぶ配管5をさらに備える。配管5が第1部分21Aに接続される配管5の部分である配管5Aは、第1方向に交差する第2方向に延びる。
 上記の成膜装置100は、粉末10の供給される配管5がノズル2b(空洞部である拡張部21E)と接続される部分である配管5Aが、動作ガスの流れる第1方向に交差する第2方向に延びる。このため当該装置は、低圧用(動作ガスの圧力が1MPa以下)のいわゆるラジアルインジェクション用の成膜装置100である。つまり本件の成膜装置100は、動作ガスと粉末とが同一方向から供給される、高圧用(動作ガスの圧力が1MPaを超える)のいわゆるアキシャルインジェクション用の成膜装置とは異なる。
 上記の成膜装置100は、ノズル2bの通路の内壁面のうち「削れ」が最も起こりやすい領域に限定して、ステンレスパイプ23よりも硬度の高いセラミックパイプ22が設けられる。これにより、たとえばノズル2bの全体がセラミックパイプにより形成される場合に比べて安価に、硬い材料を用いて、ノズル2bの通路の内壁面の削れを抑制できる。硬度の高い材料は、硬度の低い材料よりも削れが起こりにくいためである。また上記構成によれば、基材20上に形成される膜の厚みのばらつき(偏差)を小さくできるため、耐久性を改善できる。言い換えれば、膜厚の偏差が許容範囲内となるように成膜することが可能な時間を延長できる。
 セラミック材料はステンレスに比べて硬度が高いが、高価でかつ放熱性が低い。このため上記構成では、ノズル2bにおいてセラミック材料の使用範囲が最小限に留められ、セラミックパイプ22以外の部分はステンレスパイプ23が用いられる。これにより、ステンレスパイプ23が配置されている領域にセラミックパイプ22が配置される場合よりも、製造コストを低減できるとともに、パイプでの蓄熱の影響を小さくできる。ここで削れの影響が大きい場所は、配管5がノズル2bに接続される部分のすぐ動作ガスの下流側の領域である。このため当該領域すなわちステンレスパイプ23よりも動作ガスの上流側にセラミックパイプ22が設けられることにより、当該領域での削れを抑制する効果が得られる。
 仮にノズル2bのパイプが蓄熱すれば、熱により成膜原料である粉末10が反応し、粉末10同士が密着し肥大化しやすくなる。このような状況になれば肥大化した粉末10が通路を閉塞するため、基材20へ安定に成膜することが困難となる。このためセラミックパイプ22の配置領域を狭くすることにより、ステンレスパイプ23によるセラミックパイプ22よりも高い放熱性を利用して、蓄熱を抑制し、粉末10の肥大化を抑制できる。これにより通路の閉塞を抑制できる。
 上記セラミックパイプ22は、ノズルホルダー21内における動作ガスの流路と粉末10の流路との交差部21Cに隣接する領域および上記隣接する領域の動作ガスが流れる下流側に配置されることが好ましい。上記領域がノズル2bの通路の内壁面のうち特に「削れ」の影響が大きい領域である。このため上記領域にセラミックパイプ22を設けることにより、削れの抑制効果が高められる。
 上記成膜装置100において、セラミックパイプ22の第1方向に沿う長さL1は10mm以上20mm以下であってもよい。なお長さL1は10mm以上18mm以下であってもよく、10mm以上15mm以下であることがより好ましい。セラミックパイプ22の長さL1が上記より短ければ、削れの影響が大きい領域を全てカバーできなくなり、セラミックパイプ22が削れを抑制する効果が小さくなる。セラミックパイプ22の長さL1が上記より長ければ熱および動作ガスの流れがセラミックパイプ22の部分にて低下し、パイプに蓄熱が起こる可能性がある。セラミックはステンレスよりも放熱性が低く、パイプでの十分な放熱ができないためである。その結果、粉末10が熱の影響を受けて肥大化する(パイプの通路が閉塞する)可能性がある。セラミックパイプ22の長さL1を上記範囲とすれば、削れを抑制する効果と放熱効果との双方を高められる。
 上記成膜装置100において、セラミックパイプ22は、ジルコニア、窒化珪素およびアルミナからなる群から選択されるいずれかにより形成されてもよい。このようにすれば、セラミックパイプ22の高い硬度によりセラミックパイプ22の削れを抑制できる。
 上記成膜装置100において、ステンレスパイプ23とセラミックパイプ22との(径方向の)周囲を囲みステンレスパイプ23およびセラミックパイプ22と接触するガイド部品24をさらに備える。ガイド部品24は銅により形成される。ガイド部品24が熱伝導性の高い銅で形成され、パイプと接触されることにより、パイプの蓄熱を抑制できる。このためパイプの通路の閉塞を抑制できる。
 <成膜方法>
 図8は、本実施の形態に係る成膜方法を示すフローチャートである。図8を参照して、ここに示す成膜方法は、図1~図7に示した成膜装置100を用いて実施される成膜方法であって、準備工程(S10)と、成膜工程(S20)と、後処理工程(S30)とを主に備える。
 準備工程(S10)では、図1に示すように基材20の表面に対向するように、上記マスク治具1を配置する工程を含む。当該配置する工程では、マスク治具1の第1面が基材20の表面に対向するように、マスク治具1が配置される。
 成膜工程(S20)では、マスク治具1の貫通穴13を介して、成膜装置100を用いてコールドスプレー法により成膜原料となる粉末を基材20の表面に吹き付ける。この結果、基材20の表面に成膜原料からなる膜が形成される。
 後処理工程(S30)では、基材20の表面上からマスク治具1が除去される。その後、基材20に対する加工など必要な処理を実施する。このようにして、基材20の表面に膜を形成することができる。
 以下、本開示に係る成膜装置100のノズル2bの効果を確認するための実施例を説明する。具体的には、本開示に係るノズル2bを有する成膜装置100の成膜時間と成膜厚みとの関係を調査した。
 <試料>
 図3に示す本実施の形態の構成の、ジルコニア製のセラミックパイプ22およびステンレスパイプ23を有するノズル2bを準備した。以下ではこれを「改良品」と呼称する。また図3に示す本実施の形態とは異なる構成の、ステンレスパイプ23のみを有しセラミックパイプを有さないノズル2bを準備した。以下ではこれを「従来品」と呼称する。改良品および従来品のそれぞれを用いて、図1と同様にマスク治具1の後方に設置された基材20の表面に成膜された。マスク治具1は、平面形状が四角形状であり、材質がステンレス鋼SUS304であった。そのサイズは、横42mm×縦30mm×厚さ3mmとした。貫通穴13の直径は3mmとした。
 <成膜プロセス>
 上述したノズル2bの改良品および従来品を用いて、コールドスプレー法により基材表面に膜を形成した。成膜原料としては添加物を含むアルミニウムからなる粉末を用いた。当該アルミニウム粉末の形状は球状であり、直径は10μmとした。基材の材料はアルミナ(Al)とした。基材の形状は平面形状が四角形状の板状とした。基材のサイズは、横42mm×縦30mm×厚さ1mmとした。
 成膜条件としては、動作ガスとして乾燥空気を用い、動作ガスの温度を270℃、動作ガスの流量を400リットル/分、動作ガスの圧力を約0.8MPaとした。成膜装置からマスク治具の表面に対して成膜原料が噴射される領域の幅は5mmとした。また、マスク治具の表面において、貫通穴が形成された領域を含むように成膜原料が噴射される領域を移動させる速度(掃引速度)を10mm/秒とした。マスク治具の表面における成膜範囲(成膜原料が噴射される領域)のサイズは幅5mm×長さ30mmとした。
 上述の条件により、成膜装置100はノズル2bから動作ガスおよび成膜原料を12時間に亘り噴射させ続けた。そのうち噴射の始まる時間(経過時間=0min)から、1時間ごとに、12時間後(経過時間=720min)まで、合計13回、設置された基材20の表面上に成膜され、その膜厚が測定された。
 1時間ごとに成膜された合計13枚の基材20のそれぞれについて、3D形状測定機を用い、形成された膜上の1000か所が抽出され、その膜厚が測定された。それら1000か所の膜厚の最大値、最小値および平均値が求められ、それらから基材20での膜厚の偏差が求められた。その結果を図9のグラフに示す。
 図9は、成膜装置から動作ガスおよび成膜原料を噴射し続けた経過時間と、各経過時間後に当該成膜装置により形成された膜の厚みとの関係を示すグラフである。図9を参照して、グラフの横軸は成膜装置100から動作ガスおよび成膜原料を噴射し続けた経過時間を示し、縦軸は各経過時間後に形成された膜の厚みを示している。各経過時間におけるプロットは、当該時間噴射後に成膜された基材20における上記1000か所にて測定された膜厚の平均値を示している。各経過時間におけるバーは1000か所で測定された厚みのうちの最大値および最小値を示している。
 図9により、従来品を用いた場合には、噴射の経過時間が8時間(480min)以内において、そこまでの各時間に測定された1000か所ずつの膜厚の偏差が10%以下であった。しかし噴射の経過時間が8時間を超えると、そこまでの各時間に測定された1000か所ずつの膜厚の偏差が10%を超えた。そして12時間(720min)経過時にそれまでの各経過時間(0minから720minまで60分毎)に1000か所ずつ測定された膜厚の平均値が116.4μm、膜厚の偏差が13.5%となった。ここでの116.4μmは、図9での従来品の各経過時間におけるプロットされた値の平均値である。一方、改良品を用いた場合には、12時間(720min)を経過しても、それまでの各時間に1000か所ずつ測定された膜厚の平均値が92.7μm、膜厚の偏差が7.4%となった。ここでの92.7μmは、図9での改良品の各経過時間におけるプロットされた値の平均値である。膜厚の偏差の目標値すなわち許容範囲は10%以下である。このため従来品での耐久時間は8時間、改良品での耐久時間は12時間となり、改良品を用いたほうが耐久性を改善できることが確認できた。
 図10は、図3のセラミックパイプにおける削れが起こりやすい箇所を示す概略図である。図10を参照して、ここに示すのは改良品の構成である。図10の改良品において、セラミックパイプ22は、ノズルの削れが最も起こりやすい削れ部26を含む位置に配置されていることが本実施の形態の特徴である。削れ部26は、交差部21Cまたはこれに隣接する領域にて矢印33のように第2方向から第1方向へ転換した粉末の流れと、矢印34で示す動作ガスの流れとが衝突する、セラミックパイプ22の内壁面上の部分である。
 図10では、セラミックパイプ22とステンレスパイプ23とは、接続部23CTにて接続される。接続部23CTにおけるステンレスパイプ23の端面は、ステンレスパイプ23の上流側の端面としての入口端面23Eに相当する。
 図11は、成膜装置から動作ガスおよび成膜原料を12時間噴射し続けた後の、ステンレスパイプの入口端面からステンレスパイプ内を観察した結果を示す写真である。図11を参照して、従来品は上記のようにセラミックパイプを有さずステンレスパイプ23のみを有する。このため従来品は、図10における入口端面22EGが配置される位置にステンレスパイプ23の入口端面23Eが配置される。
 従来品におけるステンレスパイプ23の入口端面23Eは、図10の削れ部26に近い領域である。より具体的には、入口端面23Eは図6に示すステンレスパイプ23の直径φBで示す右側の端面であり、φBは4mmである。改良品における入口端面22EGは、図10の削れ部26に近く、図6に示すセラミックパイプ22の直径φBで示す右側の端面であり、φBは4mmである。なお従来品、改良品ともに、ステンレスパイプ23の外径φAは6mm、長さL2は120mm(図6参照)である。これらのステンレスパイプ23の入口端面23Eからその内部が、X線CTにより観察された。
 図11の写真は、従来品、改良品ともに、ステンレスパイプ23の内部を入口端面23Eから出口端面23EGまで観察したものである。なお改良品の入口端面23Eは接続部23CTに等しい。図11に示すように、従来品においてはステンレスパイプ23の内壁面に削れが発生している。この削れは深さが0.5mmであった。一方、改良品においてはステンレスパイプ23の内壁面に削れが発生しなかった。従来品においては図10の削れ部26の位置に削れが生じ易いステンレスパイプ23が配置されるのに対し、改良品では図10の削れ部26の位置にステンレスよりも削れが生じにくいセラミックパイプ22が配置されるためである。
 なお写真が掲載されないが、改良品におけるセラミックパイプ22の削れは発生しなかった。このことは、成膜原料の噴射工程の前後においてセラミックパイプ22の重量が変化しなかったことにより確認できた。
 このことから、本開示に従ったセラミックパイプ22を有するノズル2bを用いることにより、動作ガスの流れを不安定にし、削れを発生させ成膜を不安定にさせる不具合が抑制されることがわかった。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。矛盾のない限り、今回開示された実施の形態の少なくとも2つを組み合わせてもよい。本開示の基本的な範囲は、上記した説明ではなく請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることを意図される。
 1 マスク治具、2 スプレーガン、2a スプレーガン本体部、2b ノズル、2c ヒータ、 3 粉末供給部、4 ガス供給部、5,5A,6 配管、7 バルブ、8 圧力センサ、9 温度センサ、10 粉末、13 貫通穴、20 基材、21 ノズルホルダー、21A 第1部分、21B 第2部分、21C 交差部、21D スロート部、21E,21F 拡張部、22 セラミックパイプ、22EG,23E 入口端面、23 ステンレスパイプ、23CT 接続部、23EG 出口端面、24 ガイド部品、25 ネジ部、26 削れ部、30,31,32,33,34 矢印。

Claims (5)

  1.  溶射法において用いる成膜装置であって、
     ノズルと、
     前記ノズルに成膜原料となる粉末を供給する粉末供給部と、
     前記ノズルに動作ガスを供給するガス供給部とを備え、
     前記ノズルは、ノズルパイプと、前記ノズルパイプの前記動作ガスが流れる上流側に接続されるセラミックパイプと、前記セラミックパイプが嵌挿されるノズルホルダーとを有し、
     前記ノズルホルダーは、前記動作ガスが前記ノズルホルダー内を流れる第1方向に延びる第1部分を含み、
     前記粉末供給部と前記第1部分とを結ぶ配管をさらに備え、
     前記配管が前記第1部分に接続される前記配管の部分は、前記第1方向に交差する第2方向に延びる、成膜装置。
  2.  前記セラミックパイプは、前記ノズルホルダー内における前記動作ガスの流路と前記粉末の流路との交差部に隣接する領域および前記隣接する領域の前記動作ガスが流れる下流側に配置される、請求項1に記載の成膜装置。
  3.  前記セラミックパイプの前記第1方向に沿う長さは10mm以上20mm以下である、請求項1または2に記載の成膜装置。
  4.  前記セラミックパイプは、ジルコニア、窒化珪素およびアルミナからなる群から選択されるいずれかにより形成される、請求項1~3のいずれか1項に記載の成膜装置。
  5.  前記ノズルパイプと前記セラミックパイプとの周囲を囲み前記ノズルパイプおよび前記セラミックパイプと接触するガイド部品をさらに備え、
     前記ガイド部品は銅により形成される、請求項1~4のいずれか1項に記載の成膜装置。
PCT/JP2022/036150 2021-10-01 2022-09-28 成膜装置 WO2023054464A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280059873.2A CN117940609A (zh) 2021-10-01 2022-09-28 成膜装置
JP2023509783A JP7330415B1 (ja) 2021-10-01 2022-09-28 成膜装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-162947 2021-10-01
JP2021162947 2021-10-01

Publications (1)

Publication Number Publication Date
WO2023054464A1 true WO2023054464A1 (ja) 2023-04-06

Family

ID=85782835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/036150 WO2023054464A1 (ja) 2021-10-01 2022-09-28 成膜装置

Country Status (3)

Country Link
JP (1) JP7330415B1 (ja)
CN (1) CN117940609A (ja)
WO (1) WO2023054464A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006068736A (ja) * 2004-08-23 2006-03-16 Delphi Technologies Inc 動的噴霧ノズルのための取り替え可能なスロート挿入体
WO2008120799A1 (ja) * 2007-04-02 2008-10-09 Plasma Giken Co., Ltd. コールドスプレー用ノズル及びコールドスプレー装置
EP2014795A1 (de) * 2007-07-10 2009-01-14 Linde Aktiengesellschaft Kaltgasspritzdüse
WO2012086037A1 (ja) * 2010-12-22 2012-06-28 プラズマ技研工業株式会社 コールドスプレー用ノズル及びそのコールドスプレー用ノズルを用いたコールドスプレー装置
WO2019009206A1 (ja) * 2017-07-05 2019-01-10 プラズマ技研工業株式会社 コールドスプレーガン及びそれを備えたコールドスプレー装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS547262U (ja) * 1977-06-17 1979-01-18

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006068736A (ja) * 2004-08-23 2006-03-16 Delphi Technologies Inc 動的噴霧ノズルのための取り替え可能なスロート挿入体
WO2008120799A1 (ja) * 2007-04-02 2008-10-09 Plasma Giken Co., Ltd. コールドスプレー用ノズル及びコールドスプレー装置
EP2014795A1 (de) * 2007-07-10 2009-01-14 Linde Aktiengesellschaft Kaltgasspritzdüse
WO2012086037A1 (ja) * 2010-12-22 2012-06-28 プラズマ技研工業株式会社 コールドスプレー用ノズル及びそのコールドスプレー用ノズルを用いたコールドスプレー装置
WO2019009206A1 (ja) * 2017-07-05 2019-01-10 プラズマ技研工業株式会社 コールドスプレーガン及びそれを備えたコールドスプレー装置

Also Published As

Publication number Publication date
JP7330415B1 (ja) 2023-08-21
JPWO2023054464A1 (ja) 2023-04-06
CN117940609A (zh) 2024-04-26

Similar Documents

Publication Publication Date Title
KR100592833B1 (ko) 냉 분사 노즐 설계
US9095858B2 (en) Cold-spray nozzle and cold-spray device using cold-spray nozzle
KR101442294B1 (ko) 폴리우레탄층을 포함하는 몰딩 부품을 생성하기 위한 방법 및 장치
KR101770576B1 (ko) 동축 레이저 보조형 콜드 스프레이 노즐
US12091754B2 (en) Internally cooled aerodynamically centralizing nozzle (ICCN)
US10808323B2 (en) Cold spray nozzles
CN109926215B (zh) 经由涡轮发动机的壳中的孔输送修复涂层的喷射喷嘴装置
JP2006068736A (ja) 動的噴霧ノズルのための取り替え可能なスロート挿入体
JP2006247639A (ja) コールドスプレー用ノズルならびにこれを利用したコールドスプレー装置及び方法
KR100776194B1 (ko) 콜드 스프레이용 노즐 및 이를 이용한 콜드 스프레이 장치
US20160375451A1 (en) Directional cold spray nozzle
CA2874687C (en) Cold gas spraying gun with powder injector
WO2023054464A1 (ja) 成膜装置
WO2009124839A3 (de) Kaltgasspritzanlage
WO2015133338A1 (ja) 成膜装置
WO2023188873A1 (ja) ノズルおよび成膜方法
US8887662B2 (en) Pressure masking systems and methods for using the same
WO2021177437A1 (ja) スプレーノズル、ノズル先端部、及び溶射装置
JP5944434B2 (ja) 酸素液体燃料高速溶射ガン
KR101110680B1 (ko) 초음속 슬릿 분사노즐 및 그 제작방법
JP2005046696A (ja) 複合構造物作製用ノズル
US7717358B2 (en) Nozzle for use with thermal spray apparatus
CN112439606A (zh) 经由涡轮发动机的壳中的孔输送修复涂层的喷射喷嘴装置
JP6338515B2 (ja) ドライアイススノー洗浄装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023509783

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876330

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280059873.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE