WO2023054225A1 - Triazine peroxide derivative and production method thereof, polymerizable composition, and cured product and production method thereof - Google Patents

Triazine peroxide derivative and production method thereof, polymerizable composition, and cured product and production method thereof Download PDF

Info

Publication number
WO2023054225A1
WO2023054225A1 PCT/JP2022/035588 JP2022035588W WO2023054225A1 WO 2023054225 A1 WO2023054225 A1 WO 2023054225A1 JP 2022035588 W JP2022035588 W JP 2022035588W WO 2023054225 A1 WO2023054225 A1 WO 2023054225A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
optionally substituted
group
compound
meth
Prior art date
Application number
PCT/JP2022/035588
Other languages
French (fr)
Japanese (ja)
Inventor
奨 今井
真琴 龍官
章世 矢野
Original Assignee
日油株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日油株式会社 filed Critical 日油株式会社
Priority to CN202280029010.0A priority Critical patent/CN117177962A/en
Publication of WO2023054225A1 publication Critical patent/WO2023054225A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/14Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom
    • C07D251/16Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom to only one ring carbon atom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents

Definitions

  • the present invention relates to a triazine peroxide derivative and its production method, a polymerizable composition, a cured product and its production method.
  • Patent Document 1 a triazine peroxide derivative that can be used as a photopolymerization initiator and a thermal polymerization initiator is known (Patent Document 1).
  • the triazine peroxide derivative disclosed in Patent Document 1 has a specific aryl group and two peroxide bonds in the molecule, and efficiently absorbs light with a wavelength of 365 nm or the like emitted from lamps such as high-pressure mercury lamps and LEDs. and can generate radicals, so it has excellent sensitivity.
  • a polymerizable composition obtained by blending the compound with a radically polymerizable compound may have insufficient long-term storage stability at high temperatures.
  • an object of the present invention is to provide a novel polymerization initiator that has excellent long-term storage stability even at high temperatures while having excellent sensitivity.
  • the present invention provides general formula (1): ((In general formula (1), R 1 and R 2 are independently a methyl group or an ethyl group, R 3 is an aliphatic hydrocarbon group having 1 to 5 carbon atoms, or the number of carbon atoms that may have an alkyl group represents an aromatic hydrocarbon group of 6 to 9, R 4 is an optionally substituted aliphatic hydrocarbon group of 1 to 20 carbon atoms, an optionally substituted aromatic hydrocarbon group of 6 to 20 carbon atoms , an optionally substituted heterocyclic ring-containing group having 2 to 20 carbon atoms, an optionally substituted acyl group having 1 to 20 carbon atoms, —Y—R, or —N—RR′, wherein Y is represents an oxygen atom or a sulfur atom, R and R' are independently a hydrogen atom, an optionally substituted aliphatic hydrocarbon group having 1 to 20 carbon atoms, or an optionally substituted aromatic having 6 to 20 carbon atoms represents an optionally substituted heterocycl
  • the present invention also relates to a polymerizable composition containing (a) a polymerization initiator containing the triazine peroxide derivative and (b) a radically polymerizable compound.
  • the present invention relates to a cured product formed from the polymerizable composition, and a method for producing a cured product comprising a step of irradiating the polymerizable composition with active energy rays.
  • the triazine peroxide derivative of the present invention Since the triazine peroxide derivative of the present invention has only one peroxide bond in its molecule, the number of radicals generated per molecule due to decomposition of the compound is 2 in the molecule disclosed in Patent Document 1 above. It has the unique effect of having sensitivity similar to that of the compound disclosed in US Pat. On the other hand, since the triazine peroxide derivative of the present invention has only one peroxide bond in its molecule, it is superior to the triazine peroxide derivative disclosed in Patent Document 1 above in long-term storage stability at high temperatures.
  • the triazine peroxide derivative of the present invention since the triazine peroxide derivative of the present invention has excellent sensitivity, it is also useful as a polymerization initiator for polymerizable compositions such as black resists containing light-shielding pigments such as carbon black.
  • the triazine peroxide derivative of the present invention is represented by the following general formula (1).
  • R 1 and R 2 are independently a methyl group or an ethyl group
  • R 3 is an aliphatic hydrocarbon group having 1 to 5 carbon atoms, or the number of carbon atoms that may have an alkyl group represents an aromatic hydrocarbon group of 6 to 9
  • R 4 is an optionally substituted aliphatic hydrocarbon group of 1 to 20 carbon atoms, an optionally substituted aromatic hydrocarbon group of 6 to 20 carbon atoms , an optionally substituted heterocyclic ring-containing group having 2 to 20 carbon atoms, an optionally substituted acyl group having 1 to 20 carbon atoms, —Y—R, or —N—RR′, wherein Y is represents an oxygen atom or a sulfur atom, R and R' are independently a hydrogen atom, an optionally substituted aliphatic hydrocarbon group having 1 to 20 carbon atoms, or an optionally substituted aromatic having 6 to 20 carbon
  • R 1 and R 2 independently represent a methyl group or an ethyl group, and a methyl group is preferred from the viewpoint of high decomposition temperature and high storage stability of the polymerizable composition.
  • R 3 represents an aliphatic hydrocarbon group having 1 to 5 carbon atoms or an aromatic hydrocarbon group having 6 to 9 carbon atoms which may have an alkyl group.
  • the alkyl group may be linear or branched.
  • Specific examples of R 3 include methyl group, ethyl group, propyl group, 2,2-dimethylpropyl group, phenyl group, isopropylphenyl group and the like.
  • a methyl group, an ethyl group, a propyl group, a 2,2-dimethylpropyl group, and a phenyl group are preferable from the viewpoint of facilitating the synthesis of the triazine peroxide derivative.
  • a methyl group and an ethyl group are more preferable because the decomposition temperature of the triazine peroxide derivative is high, so that the storage stability of the polymerizable composition is high, and the sensitivity to light is high.
  • R 4 is an optionally substituted aliphatic hydrocarbon group having 1 to 20 carbon atoms, an optionally substituted aromatic hydrocarbon group having 6 to 20 carbon atoms, a substituted a heterocyclic ring-containing group having 2 to 20 carbon atoms which may be substituted, an optionally substituted acyl group having 1 to 20 carbon atoms, -YR, or -N-RR', wherein Y is an oxygen atom or a sulfur atom represents, R and R ' are independently a hydrogen atom, an optionally substituted aliphatic hydrocarbon group having 1 to 20 carbon atoms, an optionally substituted aromatic hydrocarbon group having 6 to 20 carbon atoms, It represents an optionally substituted heterocyclic ring-containing group having 2 to 20 carbon atoms.
  • the "substituent" in the above “optionally substituted” includes a halogen atom, an aliphatic hydrocarbon group which may have an ether bond or a thioether bond in the carbon skeleton, an aromatic hydrocarbon group, Heterocyclic-containing groups, acyl groups, cyano groups, nitro groups, carboxyl groups, epoxy groups, hydroxyl groups and the like are included.
  • R 4 is preferably an optionally substituted aliphatic hydrocarbon group having 1 to 20 carbon atoms or an optionally substituted aromatic hydrocarbon group having 6 to 20 carbon atoms. group, an optionally substituted heterocyclic ring-containing group having 2 to 20 carbon atoms, an optionally substituted acyl group having 1 to 20 carbon atoms, or -YR, and from the viewpoint of ease of synthesis, More preferably, -OR, where R is an optionally substituted aliphatic hydrocarbon group having 1 to 20 carbon atoms, an optionally substituted aromatic hydrocarbon group having 6 to 20 carbon atoms, It is an optionally substituted heterocyclic ring-containing group having 2 to 20 carbon atoms.
  • m represents an integer of 0 to 3, preferably m is 0 to 2 from the viewpoint of ease of synthesis, and m is 1 from the viewpoint of efficiently absorbing light. It is more preferable to have
  • R 11 is an optionally substituted aliphatic hydrocarbon group having 1 to 20 carbon atoms, an optionally substituted aromatic hydrocarbon group having 6 to 20 carbon atoms, a substituted a heterocyclic ring-containing group having 2 to 20 carbon atoms which may be substituted, an optionally substituted acyl group having 1 to 20 carbon atoms, -YR, or -N-RR', wherein Y is an oxygen atom or a sulfur atom represents, R and R ' are independently a hydrogen atom, an optionally substituted aliphatic hydrocarbon group having 1 to 20 carbon atoms, an optionally substituted aromatic hydrocarbon group having 6 to 20 carbon atoms, It represents an optionally substituted heterocyclic ring-containing group having 2 to 20 carbon atoms.
  • the "substituent" in the above “optionally substituted” includes a halogen atom, an aliphatic hydrocarbon group which may have an ether bond or a thioether bond in the carbon skeleton, an aromatic hydrocarbon group, Heterocyclic-containing groups, acyl groups, cyano groups, nitro groups, carboxyl groups, epoxy groups, hydroxyl groups and the like are included.
  • R 11 above is an independent substituent and represents an alkyl group having 1 to 20 carbon atoms, a substituent represented by general formula (3): R 12 -Y-, a nitro group, or a cyano group;
  • the Y represents an oxygen atom or a sulfur atom
  • the R 12 may have one or more of an ether bond, a thioether bond, and a terminal hydroxyl group in the carbon skeleton, and may have 1 to 1 carbon atoms.
  • R 12 -Y- may form a 5- to 6-membered ring.
  • the triazine peroxide derivatives of the present invention include compound 19, compound 23, compound 25, compound 26, compound 27, compound 31, compound 32, compound 33, compound 35, compound 37, compound 38, compound 39, compound 43, compound 44. , compound 45, compound 46, compound 47, compound 48, compound 49, compound 50, compound 51, compound 52, compound 53, compound 54, compound 55, compound 56, compound 57, compound 60, compound 61, compound 73, compound 77, compound 78, compound 79, compound 81 are preferred.
  • the method for producing the triazine peroxide derivative represented by the general formula (1) includes a step of reacting cyanuric chloride and/or a derivative thereof with hydroperoxide as raw materials.
  • a step of obtaining a cyanuric chloride derivative hereinafter also referred to as steps (A) and (B)
  • steps (A) and (B) a step of obtaining a cyanuric chloride derivative
  • a method including a step of reacting a hydroperoxide in the presence of an alkali hereinafter also referred to as step (C)
  • the order of the above steps is not limited.
  • reaction product of cyanuric chloride and hydroperoxide may be reacted with the following Ar—X or R 4 —X, and the steps may be performed simultaneously. you can go Before and after each step, a step of distilling off (removing) excess raw materials or the like under reduced pressure, or a purification step may be included.
  • Ar—X Ar—X
  • R 4 —X Ar—X
  • R 1 , R 2 , R 3 , R 4 and Ar are the same as in general formula (1) above.
  • a commercially available product can be used as the cyanuric chloride derivative in the step (C). If there is no commercially available product, in the steps (A) and (B), known reactions such as Grignard reaction, lithiation reaction, Suzuki coupling reaction, Friedel-Crafts reaction, nucleophilic substitution reaction in the presence of alkali, etc. It can be synthesized according to the synthesis method of.
  • magnesium is preferably used in an amount of 0.8 to 2.0 mol, more preferably 1 to 1.5 mol, per 1 mol of the halogen compound.
  • a reaction initiator iodine, bromoethane, dibromoethane, or the like may be used, and it is preferable to use 0.0001 to 0.01 mol per 1 mol of the halogen compound.
  • the reaction temperature is preferably 0 to 70°C, more preferably 10 to 60°C.
  • the reaction time is preferably 30 minutes to 20 hours, more preferably 1 hour to 10 hours.
  • cyanuric chloride is preferably used in an amount of 0.7 to 1.5 mol, more preferably 0.8 to 1.2 mol, per 1 mol of the halogen compound. preferable.
  • the reaction temperature is preferably -30 to 70°C, more preferably -10 to 40°C.
  • the reaction time is preferably 10 minutes to 20 hours, more preferably 30 minutes to 15 hours.
  • Cyanuric chloride may be added to the prepared Grignard reagent, or the Grignard reagent may be added to a solution of cyanuric chloride.
  • a solvent such as ethers such as tetrahydrofuran can be used.
  • ⁇ Synthesis of cyanuric chloride derivative by lithiation reaction When synthesizing a cyanuric chloride derivative by a lithiation reaction in steps (A) and (B), it can be synthesized according to a known synthesis method described in WO2012/096263 and the like.
  • a halogen compound in which X of Ar—X in the step (A) and R 4 —X in the step (B) is a chlorine atom, a bromine atom, or an iodine atom can be used.
  • a cyanuric chloride derivative can be synthesized by reacting a halogen compound with a lithiating agent to prepare a lithio compound, and then reacting the obtained lithio compound with cyanuric chloride.
  • Examples of the lithiation agent include alkyllithiums such as methyllithium, n-butyllithium, s-butyllithium and t-butyllithium; aryllithiums such as phenyllithium; lithium diisopropylamide and lithium bis(trimethylsilyl)amide. Examples include lithium amides, and n-butyllithium, s-butyllithium, t-butyllithium and phenyllithium are preferred.
  • the reaction temperature is preferably -100 to 50°C, more preferably -80 to 0°C.
  • the reaction time is preferably 0.2 to 20 hours, more preferably 0.5 to 10 hours.
  • solvents such as ethers such as tetrahydrofuran can be used.
  • the reaction temperature is preferably -30 to 70°C, more preferably -10 to 40°C.
  • the reaction time is preferably 10 minutes to 10 hours, more preferably 30 minutes to 5 hours.
  • Cyanuric chloride may be added to the prepared lithio compound, or the lithio compound may be added to a solution of cyanuric chloride.
  • a solvent such as ethers such as tetrahydrofuran can be used.
  • boron reagent examples include trimethyl borate, triisopropyl borate, 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane, and the like.
  • the reaction temperature is preferably -100 to 50°C, more preferably -80 to 20°C.
  • the reaction time is preferably 10 minutes to 20 hours, more preferably 30 minutes to 10 hours.
  • solvents such as ethers such as tetrahydrofuran can be used.
  • cyanuric chloride is preferably used in an amount of 0.7 to 1.5 mol, more preferably 0.8 to 1.2 mol, per 1 mol of the boron compound. preferable.
  • the reaction temperature is preferably -30 to 70°C, more preferably -10 to 40°C.
  • the reaction time is preferably 10 minutes to 10 hours, more preferably 30 minutes to 5 hours.
  • Cyanuric chloride may be added to the boron compound, or the boron compound may be added to a solution of cyanuric chloride.
  • a palladium catalyst and an alkali are preferably used in the above reaction between the boron compound and cyanuric chloride, and a ligand may be added as necessary.
  • the palladium catalyst examples include palladium acetate, tetrakistriphenylphosphine palladium, bis(triphenylphosphine)palladium dichloride, (bis(diphenylphosphino)ferrocene)palladium dichloride-methylene chloride complex, and the like.
  • alkali examples include inorganic bases such as alkali metal salts such as sodium carbonate, sodium hydrogencarbonate, sodium acetate, potassium acetate and potassium phosphate; and organic bases such as triethylamine.
  • inorganic bases such as alkali metal salts such as sodium carbonate, sodium hydrogencarbonate, sodium acetate, potassium acetate and potassium phosphate
  • organic bases such as triethylamine.
  • organic Phosphorus-based ligands and the like can be mentioned.
  • ethers such as tetrahydrofuran and 1,4-dioxane
  • alcohols such as methanol and 2-propanol
  • aromatic hydrocarbons such as toluene and xylene
  • Organic solvents such as amides such as formamide
  • the organic solvent may be used alone or in combination of two or more. Furthermore, a mixed solvent of the organic solvent and water can be used.
  • Lewis acid examples include aluminum chloride, aluminum bromide, iron (III) chloride, titanium (IV) chloride, tin (IV) chloride, zinc chloride, bismuth (III) triflate, hafnium (IV) triflate, and boron trifluoride.
  • a diethyl ether complex or the like can be used.
  • cyanuric chloride is preferably used in an amount of 0.7 to 2.5 mol, more preferably 0.8 to 1.5 mol, per 1 mol of the aromatic compound.
  • Aluminum chloride is preferably used in an amount of 1.0 to 3.0 mol, more preferably 1.0 to 2.0 mol, per 1 mol of the aromatic compound.
  • the reaction temperature is preferably -50 to 60°C, more preferably 0 to 40°C.
  • the reaction time is preferably 10 minutes to 10 hours, more preferably 30 minutes to 5 hours.
  • Aluminum chloride may be added to a solution of an aromatic compound and cyanuric chloride, an aromatic compound may be added to a solution of cyanuric chloride and aluminum chloride, or cyanuric chloride may be added to a solution of an aromatic compound and aluminum chloride. good too.
  • solvents such as dichloromethane, 1,2-dichloroethane, and xylene can be used.
  • the method for producing the triazine peroxide derivative represented by the general formula (1) is not particularly limited. Can be synthesized.
  • a triazine peroxide derivative is obtained by the step (C) of reacting the cyanuric chloride derivative obtained in the above steps (A) and (B) with a hydroperoxide in the presence of an alkali.
  • step (C) 0.9 mol or more, preferably 1.0 mol or more of hydroperoxide is reacted with respect to 1 mol of the cyanuric chloride derivative from the viewpoint of increasing the yield of the target product. is more preferable, and 3.0 mol or less is preferable, and 2.0 mol or less is more preferable.
  • the hydroperoxide can be used as a commercially available product, and if there is no commercially available product, it can be synthesized according to the known synthetic method described in JP-A-58-72557.
  • the reaction temperature is preferably ⁇ 10° C. or higher, more preferably 0° C. or higher, and 50° C. or lower, from the viewpoint of increasing the yield of the target product. is preferred, and 40° C. or lower is more preferred.
  • the reaction time varies depending on the raw materials, the reaction temperature, etc., and cannot be determined unconditionally. Generally, 10 minutes to 6 hours is preferable from the viewpoint of increasing the yield of the target product.
  • the alkali used in the step (C) is not particularly limited, but sodium hydroxide, potassium hydroxide, lithium hydroxide, potassium carbonate, sodium carbonate, sodium hydrogen carbonate, pyridine, ⁇ -picoline, ⁇ -picoline, dimethylaminopyridine, triethylamine, tributylamine, N,N-diisopropylethylamine, 1,5-diazabicyclo[4.3.0]-5-nonene and the like. 3.
  • the alkali is preferably used in an amount of 0.8 mol or more, more preferably 1.0 mol or more, relative to 1 mol of the cyanuric chloride derivative, from the viewpoint of increasing the yield of the target product. It is preferable to use 0 mol or less, more preferably 2.0 mol or less.
  • the reaction when the cyanuric chloride derivative is liquid, the reaction can be carried out without using an organic solvent. Moreover, when the cyanuric chloride derivative is solid, it is preferable to use an organic solvent.
  • the organic solvent is not particularly limited because the solubility varies depending on the type of cyanuric chloride derivative. Examples include aromatic hydrocarbons such as toluene, xylene, and ethylbenzene; , ethers such as dioxane, esters such as ethyl acetate and butyl acetate, and halogenated hydrocarbons such as methylene chloride and chloroform.
  • the organic solvent may be used alone or in combination of two or more.
  • the amount of the organic solvent used is usually about 30 to 1000 parts by mass with respect to 100 parts by mass of the total amount of raw materials.
  • the triazine peroxide derivative may be taken out by distilling off the organic solvent after the step (C). may be used.
  • the step (C) can be carried out under normal pressure in air, but may also be carried out in a nitrogen stream or nitrogen atmosphere.
  • the polymerizable composition of the present invention contains (a) a polymerization initiator and (b) a radically polymerizable compound. Furthermore, the polymerizable composition can be imparted with developability by containing (c) an alkali-soluble resin. In addition, the polymerizable composition can contain other components in appropriate combination.
  • the (a) polymerization initiator of the present invention contains the triazine peroxide derivative represented by the general formula (1).
  • the polymerization initiator is decomposed by active energy rays or heat, and the generated radicals act to initiate polymerization (curing) of the (b) radically polymerizable compound.
  • Triazine peroxide derivatives may be used alone or in combination of two or more.
  • the (a) polymerization initiator can contain a polymerization initiator other than the triazine peroxide derivative (hereinafter also referred to as another polymerization initiator).
  • a polymerization initiator other than the triazine peroxide derivative hereinafter also referred to as another polymerization initiator.
  • the polymerizable composition has high sensitivity to lamps that emit light of multiple wavelengths, such as high-pressure mercury lamps. can be improved.
  • the polymerizability of the (b) radical polymerizable compound contained in the polymerizable composition the type of pigments that absorb or scatter light contained in the polymerizable composition, the film thickness of the cured product, etc.
  • the polymerization initiator the surface curability, deep part curability, transparency, etc. of the polymerizable composition can be improved.
  • - ⁇ -hydroxyacetophenone derivatives such as 2-methylpropiophenone, 2-hydroxy-1-(4-(4-(2-hydroxy-2-methylpropionyl)benzyl)phenyl)-2-methylpropan-1-one 2-methyl-4′-methylthio-2-morpholinopropiophenone, 2-benzyl-2-(N,N-dimethylamino)-1-(4-morpholinophenyl)butan-1-one, 2-(dimethyl ⁇ -aminoacetophenone derivatives such as amino)-2-(4-methylbenzyl)-1-(4-morpholinophenyl)butan-1-one; diphenyl-2,4,6-trimethylbenzoylphosphine oxide, phenylbis(2 ,4,6-trimethylbenzoyl)phosphine oxide, ethyl(mesitylcarbonyl)phenylphosphinate and other acylphosphine oxide derivatives
  • the content of the (a) polymerization initiator is preferably 0.1 to 40 parts by mass, more preferably 0.5 to 20 parts by mass, relative to 100 parts by mass of the radically polymerizable compound (b). More preferably, it is 1 to 15 parts by mass. If the content of the polymerization initiator (a) is less than 0.1 parts by mass with respect to 100 parts by mass of the radically polymerizable compound (b), the curing reaction does not proceed, which is not preferable.
  • the solubility in the (b) radically polymerizable compound reaches saturation and polymerization
  • the polymerization initiator crystals are precipitated during the film formation of the composition, causing a problem of roughening of the film surface, or (a) the increase in the decomposition residue of the polymerization initiator may reduce the strength of the cured product coating film. is not preferred because it may decrease
  • the proportion of the other polymerization initiator in the polymerization initiator (a) is preferably 80% by mass or less, and is preferably 50% by mass. % or less.
  • (b) radically polymerizable compound of the present invention a compound having an ethylenically unsaturated group can be preferably used.
  • Radically polymerizable compounds include, for example, (meth)acrylic acid esters, styrenes, maleic acid esters, fumaric acid esters, itaconic acid esters, cinnamic acid esters, crotonic acid esters, and vinyl ethers. , vinyl esters, vinyl ketones, allyl ethers, allyl esters, N-substituted maleimides, N-vinyl compounds, unsaturated nitriles, olefins and the like. Among these, it is preferable to contain highly reactive (meth)acrylic acid esters.
  • Radically polymerizable compounds may be used alone or in combination of two or more.
  • Monofunctional compounds and polyfunctional compounds can be used for the (meth)acrylic acid esters.
  • Monofunctional compounds include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, tert-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) Alkyl (meth)acrylates such as acrylates; cyclohexyl (meth)acrylate, isobornyl (meth)acrylate, dicyclopentanyl (meth)acrylate, dicyclopentenyl (meth)acrylate, dicyclopentenyloxyethyl (meth) Ester compounds of (meth)acrylic acid and alicyclic alcohol such as acrylate and 2-ethyl-2-adamantyl (meth)acrylate; Aryl (meth)acrylates such as phenyl (meth
  • polyfunctional compound examples include ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, glycerin di(meth)acrylate, glycerin tri(meth)acrylate, glycerin propoxy tri(meth)acrylate, trimethylolethane tri (meth)acrylates, trimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, pentaerythritol di(meth)acrylate monostearate, dipentaerythritol penta(meth
  • ester compounds of the polyhydric alcohol and (meth)acrylic acid are preferable, and in particular, trimethylolethane triacrylate, trimethylolpropane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol pentaacrylate, di Pentaerythritol hexaacrylate is preferred.
  • a copolymer obtained from the (b) radically polymerizable compound can be added to the polymerizable composition.
  • the polymerizable composition can be suitably used as a negative resist by further blending (c) an alkali-soluble resin.
  • an alkali-soluble resin those commonly used in negative resists can be used, and there are no particular limitations as long as the resin is soluble in an alkaline aqueous solution, but a resin containing a carboxyl group is preferred. preferable.
  • the alkali-soluble resin may be used alone or in combination of two or more.
  • (c) alkali-soluble resin of the present invention for example, a carboxyl group-containing (meth)acrylic acid ester copolymer, a carboxyl group-containing epoxy acrylate resin, etc. are preferably used.
  • the carboxyl group-containing (meth)acrylic acid ester copolymer includes at least one selected from the monofunctional compounds of the (meth)acrylic acid esters described above (excluding the monomer having the carboxyl group), ) acrylic acid, dimer of (meth)acrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid, vinylbenzoic acid, cinnamic acid, monosuccinate (2-(meth)acryloyloxyethyl), monophthalate Ethylenically unsaturated groups such as (2-(meth)acryloyloxyethyl), maleate mono(2-(meth)acryloyloxyethyl), ⁇ -carboxy-polycaprolactone mono(meth)acrylate, and their anhydrides It is a copolymer containing at least one selected from carboxylic acids.
  • carboxyl group-containing (meth)acrylic acid ester copolymer examples include copolymers of methyl methacrylate, cyclohexyl methacrylate, and methacrylic acid. Furthermore, styrene, ⁇ -methylstyrene, N-vinyl-2-pyrrolidone, N-methylmaleimide, N-phenylmaleimide, N-cyclohexylmaleimide, diethyl fumarate, diethyl itaconate and the like may be copolymerized.
  • carboxyl group-containing (meth)acrylic acid ester copolymer reacts with an ethylenically unsaturated group, etc., from the viewpoint of achieving both developability of a negative resist and film properties such as heat resistance, hardness, and chemical resistance.
  • a carboxyl group-containing (meth)acrylic acid ester copolymer having a side chain introduced with a functional group is also preferably used.
  • an ethylenically unsaturated group to the side chain for example, a part of the carboxyl group of the carboxyl group-containing (meth)acrylic acid ester copolymer, an epoxy group in the molecule such as glycidyl (meth)acrylate
  • a method of adding a compound having an ethylenically unsaturated group a method of adding an ethylenically unsaturated group-containing monocarboxylic acid such as methacrylic acid to an epoxy group and a carboxyl group-containing (meth) acrylic acid ester copolymer, and , a method of adding a compound having an isocyanate group and an ethylenically unsaturated group in the molecule such as 2-(meth)acryloyloxyethyl isocyanate to a hydroxyl group- and carboxyl group-containing (meth)acrylic acid ester copolymer, and the like.
  • the carboxyl group-containing epoxy acrylate resin a compound obtained by further reacting an epoxy acrylate resin, which is a reaction product of an epoxy compound and the ethylenically unsaturated group-containing carboxylic acid, with an acid anhydride is suitable.
  • epoxy resin examples include (o, m, p-) cresol novolak type epoxy resin, phenol novolak type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, trisphenolmethane type epoxy resin, bisphenylfluorene. type epoxy resin and the like. Epoxy resins may be used alone or in combination of two or more.
  • Examples of the acid anhydride include maleic anhydride, succinic anhydride, phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, 4-methylhexahydrophthalic anhydride, endomethylenetetrahydrophthalic anhydride, and chlorinic anhydride. , trimellitic anhydride, pyromellitic anhydride, benzophenonetetracarboxylic dianhydride, biphenyltetracarboxylic dianhydride, and itaconic anhydride.
  • the carboxyl group-containing epoxy acrylate resin when synthesizing the carboxyl group-containing epoxy acrylate resin, if necessary, using a tricarboxylic acid anhydride such as trimellitic anhydride, by hydrolyzing the acid anhydride group remaining after the reaction, the carboxyl group can be increased. Also, ethylenically unsaturated group-containing maleic anhydride can be used to further increase the number of ethylenic double bonds.
  • a tricarboxylic acid anhydride such as trimellitic anhydride
  • the acid value of the (c) alkali-soluble resin is preferably 20 to 300 mgKOH/g, more preferably 40 to 180 mg/KOH. If the acid value is less than 20 mgKOH/g, the solubility in an alkaline aqueous solution is poor, making it difficult to develop unexposed areas, which is not preferred. Moreover, when the acid value is more than 300 mgKOH/g, the exposed portion tends to be easily detached from the substrate during development, which is not preferable.
  • the weight average molecular weight of the (c) alkali-soluble resin is preferably from 1,000 to 100,000, more preferably from 1,500 to 30,000. If the weight-average molecular weight is less than 1,000, the heat resistance and hardness of the exposed portion are poor, which is not preferable. If the weight-average molecular weight is more than 100,000, it may be difficult to develop the unexposed areas, which is not preferred.
  • the weight average molecular weight can be measured by gel permeation chromatography (GPC).
  • HLC-8220GPC manufactured by Tosoh Corporation
  • TSKgelHZM-M manufactured by Tosoh Corporation
  • tetrahydrofuran as a developing solvent
  • column temperature 40 ° C. flow rate 0.3 ml / min.
  • RI detector RI detector
  • sample injection concentration 0.5% by mass
  • an injection amount of 10 microliters as an example, using HLC-8220GPC (manufactured by Tosoh Corporation) as a GPC apparatus, three TSKgelHZM-M (manufactured by Tosoh Corporation) as columns, tetrahydrofuran as a developing solvent, column temperature 40 ° C., flow rate 0.3 ml / min. , RI detector, a sample injection concentration of 0.5% by mass, and an injection amount of 10 microliters.
  • the ratio of (c) the alkali-soluble resin is preferably 10 to 70% by mass, more preferably 15 to 60% by mass, in the total solid content of the polymerizable composition. If the ratio is less than 10% by mass, the developability is poor, which is not preferred. If the proportion is more than 70% by mass, the pattern shape reproducibility and heat resistance are lowered, which is not preferable.
  • the alkali-soluble resin (c) As the alkali-soluble resin (c), the alkali-soluble resin, which is an active ingredient, can be isolated and purified after the synthesis reaction. can also
  • the polymerizable composition can be cured by heating at a low temperature.
  • curing accelerators that can be used include amine compounds, thiourea compounds, 2-mercaptobenzimidazole compounds, orthobenzoic sulphimides, and fourth period transition metal compound compounds.
  • the curing accelerator may be used alone or in combination of two or more.
  • the amine compound is preferably a tertiary amine, such as N,N-dimethylaniline, N,N-dimethyltoluidine, N,N-diethylaniline, N,N-bis(2-hydroxyethyl)-p- toluidine, 4-(dimethylamino)ethyl benzoate, (2-methacryloyloxy)ethyl 4-dimethylaminobenzoate and the like.
  • a tertiary amine such as N,N-dimethylaniline, N,N-dimethyltoluidine, N,N-diethylaniline, N,N-bis(2-hydroxyethyl)-p- toluidine, 4-(dimethylamino)ethyl benzoate, (2-methacryloyloxy)ethyl 4-dimethylaminobenzoate and the like.
  • thiourea examples include acetylthiourea and N,N'dibutylthiourea.
  • Examples of the 2-mercaptobenzimidazole compounds include 2-mercaptobenzimidazole, 2-mercaptomethylbenzimidazole, and 2-mercaptomethoxybenzimidazole.
  • the fourth period transition metal compound compound can be selected from organic acid salts or metal chelate compounds of vanadium, cobalt, copper, etc.
  • organic acid salts or metal chelate compounds of vanadium, cobalt, copper, etc. for example, cobalt octylate, cobalt naphthenate, copper naphthenate, vanadium naphthenate , copper acetylacetonate, manganese acetylacetonate, vanadyl acetylacetonate and the like.
  • the curing accelerator is preferably added immediately before using the polymerizable composition.
  • the content of the curing accelerator is preferably 0.1 to 20 parts by mass, more preferably 0.2 to 10 parts by mass, based on 100 parts by mass of the radically polymerizable compound (b).
  • the polymerizable composition is generally used for applications such as coating agents, paints, printing inks, photosensitive printing plates, adhesives, and various photoresists such as color resists and black resists.
  • Additives can be added.
  • additives include sensitizers (isopropylthioxanthone, diethylthioxanthone, 4,4′-bis(diethylamino)benzophenone, 9,10-dibutoxyanthracene, coumarin, ketocoumarin, acridine orange, camphorquinone, etc.), polymerization inhibition agents (p-methoxyphenol, hydroquinone, 2,6-di-t-butyl-4-methylphenol, phenothiazine, etc.), ultraviolet absorbers, infrared absorbers, chain transfer agents, light stabilizers, antioxidants, leveling agents , surface modifiers, surfactants, thickeners, defoamers, adhesion promoters, plasticizers, epoxy compounds,
  • the content of the additive is appropriately selected according to the purpose of use, and is not particularly limited, but is usually 500 parts by mass or less with respect to 100 parts by mass of the radically polymerizable compound (b). It is preferably 100 parts by mass or less, and more preferably 100 parts by mass or less.
  • a solvent may be further added to the polymerizable composition in order to improve the viscosity, paintability, and smoothness of the cured film.
  • the solvent is capable of dissolving or dispersing the (a) polymerization initiator, the (b) radically polymerizable compound, the (c) alkali-soluble resin, and the other components, and volatilizes at the drying temperature. There are no particular restrictions as long as it is a solvent.
  • the solvent examples include water, alcohol solvents, carbitol solvents, ester solvents, ketone solvents, ether solvents, lactone solvents, unsaturated hydrocarbon solvents, cellosolve acetate solvents, carbitol acetate solvents, Examples include solvents, propylene glycol monomethyl ether acetate, and diethylene glycol dimethyl ether.
  • the solvent may be used alone or in combination of two or more.
  • the amount of the solvent used is preferably 10 to 1000 parts by mass, more preferably 20 to 500 parts by mass, based on 100 parts by mass of the solid content of the polymerizable composition.
  • ⁇ Method for preparing polymerizable composition When preparing the polymerizable composition, the (a) polymerization initiator, the (b) radically polymerizable compound, and, if necessary, the (c) alkali-soluble resin and other components are placed in a storage container. and dissolved or dispersed according to a conventional method using a paint shaker, a bead mill, a sand grind mill, a ball mill, an attritor mill, a two-roll mill, a three-roll mill, or the like. In addition, if necessary, it may be filtered through a mesh or membrane filter or the like.
  • the (a) polymerization initiator may be added to the polymerizable composition from the beginning. It is preferable to dissolve or disperse (a) the polymerization initiator in (b) the radically polymerizable composition immediately before use.
  • the cured product of the present invention is formed from the polymerizable composition.
  • the method for producing a cured product comprises any one of a step of applying a polymerizable composition on a substrate, irradiating the polymerizable composition with an active energy ray, and a step of heating the polymerizable composition.
  • the method. A process including both the step of irradiating with active energy rays and the step of heating is also referred to as a dual cure step.
  • Examples of the coating method include spin coating, bar coating, spray coating, dip coating, flow coating, slit coating, doctor blade coating, gravure coating, screen printing, offset printing, and inkjet.
  • Various methods such as a printing method and a dispenser printing method can be used.
  • Examples of the substrate include films and sheets of glass, silicon wafers, metals, plastics, etc., and three-dimensional molded products, and the shape of the substrate is not limited.
  • the step of irradiating the polymerizable composition with an active energy ray includes, by irradiating with an active energy ray such as an electron beam, ultraviolet light, visible light, or radiation, (a) decomposing the polymerization initiator, and (b) radical polymerization.
  • an active energy ray such as an electron beam, ultraviolet light, visible light, or radiation
  • decomposing the polymerization initiator and (b) radical polymerization.
  • a cured product can be obtained by polymerizing the curable compound.
  • the active energy ray is preferably light with a wavelength of 250 to 450 nm, and more preferably light with a wavelength of 350 to 410 nm from the viewpoint of rapid curing.
  • Light sources for the light irradiation include low-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, metal halide lamps, ultraviolet electrodeless lamps, light-emitting diodes (LEDs), xenon arc lamps, carbon arc lamps, sunlight, YAG lasers, and the like.
  • solid-state lasers, semiconductor lasers, gas lasers such as argon lasers, and the like can be used.
  • curing in the case of using light from visible light to infrared light that is less absorbed by the polymerization initiator, curing can be performed by using a sensitizer that absorbs the light as the additive. .
  • the exposure amount of the active energy ray should be appropriately set according to the wavelength and intensity of the active energy ray and the composition of the polymerizable composition.
  • the exposure dose in the UV-A region is preferably 10 to 5,000 mJ/cm 2 and more preferably 30 to 1,000 mJ/cm 2 .
  • a dual curing step is applied as the method for producing the cured product, and a step of heating is performed after the step of irradiating with the active energy ray, (a) the polymerization initiator is completely cured by the active energy ray.
  • the amount of exposure should be appropriately set so as not to decompose into two.
  • a cured product in the step of heating the polymerizable composition, can be obtained by (a) decomposing the polymerization initiator and (b) polymerizing the radically polymerizable compound.
  • heating methods include heating and ventilation heating.
  • the heating method is not particularly limited, and examples thereof include an oven, a hot plate, infrared irradiation, electromagnetic wave irradiation and the like.
  • a ventilation heating method for example, a ventilation drying oven or the like can be used.
  • the heating temperature and the heating time should be appropriately set according to the composition of the polymerizable composition.
  • the heating temperature is preferably 50 to 230°C, more preferably 100 to 160°C.
  • the heating temperature can be arbitrarily adjusted from room temperature to 160° C. depending on the type and amount of the curing accelerator.
  • the heating time is preferably 1 to 180 minutes, more preferably 5 to 120 minutes.
  • a heating step may be performed to absorb or scatter light. It is preferable because it is possible to efficiently cure the deep part of the coating film of the polymer composition containing at a high concentration and the part where the light is blocked and the light does not reach.
  • the method for producing the cured product can include a drying step.
  • a drying step when applying the step of irradiating with the active energy ray after coating the polymerizable composition on the substrate, it is preferable to provide a drying step before the step of irradiating with the active energy ray.
  • methods for drying the solvent include, for example, drying by heating, drying by ventilation by heating, and drying under reduced pressure.
  • the method of drying by heating is not particularly limited, and examples thereof include an oven, a hot plate, infrared irradiation, electromagnetic wave irradiation and the like.
  • a ventilation-type drying oven etc. are mentioned, for example.
  • the temperature of the polymerizable composition becomes lower than the set temperature for drying due to the latent heat of evaporation of the solvent, so it is possible to ensure a long time until the polymerizable composition gels. Since the time until this gelation is affected by the drying method, the film thickness, etc., the drying temperature and time including the selection of the solvent should be appropriately set. As an example, the drying temperature is preferably 20 to 120°C, more preferably 40 to 100°C. The drying time is preferably 1 to 60 minutes, more preferably 1 to 30 minutes. In addition, by using the polymerization inhibitor, it is possible to secure a long time until gelation. Although the triazine peroxide derivative decomposes by heat, the decomposition rate of the compound when heated at 80° C. for 5 minutes is about 0.1%. Not much thickening or gelling.
  • the dry film thickness (film thickness of the cured product) of the polymerizable composition is appropriately set according to the application, but is preferably 0.05 to 300 ⁇ m, more preferably 0.1 to 100 ⁇ m. .
  • a pattern can be formed by photolithography.
  • the polymerizable composition is applied to the substrate in the same manner as described above, and if necessary, dried to form a dry film.
  • the radically polymerizable compound (b) is polymerized in the exposed portion to form a cured film.
  • the unexposed areas are developed and removed with an alkaline developer such as a 0.3 to 3% by mass sodium carbonate aqueous solution, for example, to obtain a patterned cured film.
  • an alkaline developer such as a 0.3 to 3% by mass sodium carbonate aqueous solution, for example, to obtain a patterned cured film.
  • post-baking at 180 to 250° C. for 20 to 90 minutes is performed as post-drying for the purpose of enhancing adhesion between the cured film and the substrate.
  • a desired pattern based on the cured film is formed.
  • the polymerizable composition of the present invention includes hard coating agents, optical disc coating agents, optical fiber coating agents, mobile terminal coatings, home appliance coatings, cosmetic container coatings, internal antireflection coatings for optical elements, and high/low refractive index coatings.
  • Photosensitive printing plates nanoimprint materials; resins for 3D printers; holography recording materials; dental materials; waveguide materials; black stripes for lens sheets; HDD adhesives, optical pickup adhesives, image sensor adhesives, organic EL sealants, touch panel OCA, touch panel OCR adhesives and sealants; color resists, black resists, protective films for color filters, FPD resists such as photo spacers, black column spacers, frame resists,
  • reaction solution was poured into 50 mL of ice-cold 1 M hydrochloric acid and stirred to separate the aqueous phase.
  • the oil phase was washed with 50 mL of saturated saline and dehydrated with anhydrous sodium sulfate. After filtration, it was concentrated under reduced pressure to obtain a crude product.
  • Synthesis Example 4 Synthesis of Compound 48
  • Compound 48 of the present invention is described in Synthesis Example 3, except that the methanol described in Synthesis Example 3 is replaced with ethanol, and the 69% by mass tert-butyl hydroperoxide aqueous solution is replaced with an 85% by mass tert-amyl hydroperoxide solution.
  • Synthesized according to the method of Table 1 shows the analysis results of the obtained compound 48 by EI-MS and 1 H-NMR.
  • Synthesis Example 5 Synthesis of compound 53
  • Compound 53 of the present invention is the same as in Synthesis Example 3, except that the methanol described in Synthesis Example 3 is changed to isopropyl alcohol, and the 69% by mass tert-butyl hydroperoxide aqueous solution is changed to a 90% by mass tert-hexyl hydroperoxide solution. Synthesized according to the described method. Table 1 shows the analysis results of the obtained compound 53 by EI-MS and 1 H-NMR.
  • Comparative Example 1 ⁇ Preparation of polymerizable composition (A)> Radical polymerizable compound in the amount shown in Table 2, alkali-soluble resin, and other components were mixed and stirred, a polymerization initiator was added and well stirred, and polymerizable compositions of Examples 1 to 8 and Comparative Example 1 (A ) was prepared.
  • a compound R1 represented by the following formula was used as a polymerization initiator.
  • DPHA dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate
  • Aronix M-402 manufactured by Toagosei Co., Ltd.
  • RD200 is a methyl methacrylate/methacrylic acid/cyclohexylmaleimide (mass%: 61/14/25) copolymer, weight average molecular weight: 17,000, acid value: 90 (synthetic product)
  • F-477 is a fluorine-based leveling agent (trade name: Megafac F-477, manufactured by DIC Corporation);
  • PGMEA indicates propylene glycol monomethyl ether acetate;
  • the polymerizable composition (A) prepared above was applied onto an aluminum substrate using a spin coater. After coating, the solvent was dried by drying the aluminum substrate in a clean oven at 90° C. for 2.5 minutes to form a uniform coating film with a thickness of 1.5 ⁇ m. Then, using a proximity exposure machine using an ultra-high pressure mercury lamp as a light source, stepwise exposure was performed through a mask pattern in the range of 10 to 1000 mJ/cm 2 . The exposed aluminum substrate was immersed in a 1.0% by mass sodium carbonate aqueous solution at 23° C. for 60 seconds to remove the unexposed portion by development. Subsequently, washing was performed with pure water for 30 seconds to obtain a resist pattern.
  • the minimum exposure dose at which a resist pattern was formed was evaluated as "sensitivity". A smaller value of the minimum exposure amount indicates that a pattern can be formed with a smaller amount of light, and a value of 200 mJ/cm 2 or less indicates high sensitivity. Table 3 shows the results.
  • TSG-BK133 indicates a carbon black dispersion (manufactured by Taisei Kako Co., Ltd.).
  • the polymerizable composition (B) prepared above was applied onto a glass substrate using a spin coater. After coating, the solvent was dried by drying the glass substrate in a clean oven at 90° C. for 2.5 minutes to form a uniform coating film with a thickness of 1.5 ⁇ m. Then, exposure was performed at 200 mJ/cm 2 through a mask pattern using a proximity exposure machine using an ultra-high pressure mercury lamp as a light source. The exposed glass substrate was immersed in a 1.0% by mass sodium carbonate aqueous solution at 23° C. for 60 seconds to remove the unexposed portion by development. Subsequently, washing was performed with pure water for 30 seconds to obtain a resist pattern.
  • the obtained patterns were observed with a microscope, and the minimum pattern size was evaluated as ⁇ when the minimum pattern size was 10 ⁇ m or less, ⁇ when over 10 ⁇ m and 20 ⁇ m or less, ⁇ when over 20 ⁇ m and 30 ⁇ m or less, and x when over 30 ⁇ m. Table 5 shows the results.
  • SG036 indicates a green pigment dispersion (manufactured by Taisei Kako Co., Ltd.).
  • the polymerizable composition (C) prepared above was applied onto a glass substrate using a spin coater. After coating, the solvent was dried by drying the glass substrate in a clean oven at 90° C. for 2.5 minutes to form a uniform coating film with a thickness of 1.5 ⁇ m. Then, exposure was performed at 150 mJ/cm 2 through a mask pattern using a proximity exposure machine using an ultra-high pressure mercury lamp as a light source. The exposed glass substrate was immersed in a 1.0% by mass sodium carbonate aqueous solution at 23° C. for 60 seconds to remove the unexposed portion by development. Subsequently, washing was performed with pure water for 30 seconds to obtain a resist pattern.
  • the cross section of the pattern corresponding to the line-shaped opening with an opening width of 15 ⁇ m was observed with a microscope, and the underlining of the line-shaped pattern was determined by the difference between the maximum width and the minimum width of the pattern width parallel to the substrate surface. Evaluate the cut. The smaller the difference between the maximum width and the minimum width, the more the undercut is suppressed. x. Table 7 shows the results.
  • the polymerizable composition (D) prepared above was applied to a glass substrate to a thickness of 100 ⁇ m using a bar coater. After the coating was dried in an oven at 90° C. for 2.5 minutes, it was irradiated with 30 mJ/cm 2 using a conveyor-type UV irradiation device equipped with a high-pressure mercury lamp. Then, it was heated in an oven at 150° C. for 30 minutes to obtain a cured film. The polymerization conversion rate of the resulting cured film was measured, and the curability was evaluated according to the following criteria. The polymerization conversion rate was measured by attenuated total reflection infrared spectroscopy (ATR - IR).
  • Polymerization conversion (1-(A/B after curing)/(A/B before curing)) x 100 ⁇ : Polymerization conversion rate is 80% or more ⁇ : Polymerization conversion rate is 60% or more and less than 80% ⁇ : Polymerization conversion rate is less than 60%
  • TMPTA is trimethylolpropane triacrylate (manufactured by Shin-Nakamura Chemical Industry); PE4A indicates pentaerythritol tetraacrylate (Fuji Film Wako Pure Chemical Reagent);

Abstract

A triazine peroxide derivative represented by general formula (1). [In general formula (1), R1 and R2 independently represent a methyl group or an ethyl group, R3 represents a C1-5 aliphatic hydrocarbon group, etc., R4 represents an optionally substituted C1-20 aliphatic hydrocarbon group, etc., and Ar represents an aryl group represented by general formula (2): Ar1, Ar2 or Ar3.] This triazine peroxide derivative is a novel polymerization initiator that shows high sensitivity and yet has good long-term storage stability even at high temperatures.

Description

トリアジンペルオキシド誘導体及びその製造方法、重合性組成物、並びに硬化物及びその製造方法Triazine peroxide derivative and method for producing the same, polymerizable composition, and cured product and method for producing the same
 本発明は、トリアジンペルオキシド誘導体及びその製造方法、重合性組成物、並びに硬化物及びその製造方法に関する。 The present invention relates to a triazine peroxide derivative and its production method, a polymerizable composition, a cured product and its production method.
 重合開始剤として、光および熱重合開始剤として利用できる、トリアジンペルオキシド誘導体が知られている(特許文献1)。 As a polymerization initiator, a triazine peroxide derivative that can be used as a photopolymerization initiator and a thermal polymerization initiator is known (Patent Document 1).
国際公開第2018/221177号WO2018/221177
 特許文献1で開示されたトリアジンペルオキシド誘導体は、分子内に特定のアリール基と2つの過酸化結合を有し、高圧水銀ランプやLED等のランプから放出される波長365nm等の光を効率よく吸収してラジカルを発生できるため、感度に優れる。しかしながら、ラジカル重合性化合物に当該化合物を配合した重合性組成物では、高温下における長期保存安定性が不十分になる場合があった。 The triazine peroxide derivative disclosed in Patent Document 1 has a specific aryl group and two peroxide bonds in the molecule, and efficiently absorbs light with a wavelength of 365 nm or the like emitted from lamps such as high-pressure mercury lamps and LEDs. and can generate radicals, so it has excellent sensitivity. However, a polymerizable composition obtained by blending the compound with a radically polymerizable compound may have insufficient long-term storage stability at high temperatures.
 以上のような事情に鑑み、本発明は、感度に優れながらも、高温下でも良好な長期保存安定性を有する新規の重合開始剤を提供することを目的とする。 In view of the above circumstances, an object of the present invention is to provide a novel polymerization initiator that has excellent long-term storage stability even at high temperatures while having excellent sensitivity.
 すなわち、本発明は、一般式(1):
Figure JPOXMLDOC01-appb-C000003
((一般式(1)中、RおよびRは独立してメチル基またはエチル基、Rは炭素数1~5の脂肪族炭化水素基、またはアルキル基を有してもよい炭素数6~9の芳香族炭化水素基を表し、Rは置換されていてもよい炭素数1~20の脂肪族炭化水素基、置換されていてもよい炭素数6~20の芳香族炭化水素基、置換されていてもよい炭素数2~20の複素環含有基、置換されていてもよい炭素数1~20のアシル基、-Y-R、または-N-RR’であって、Yは酸素原子または硫黄原子を表し、RおよびR’は独立して水素原子、置換されていてもよい炭素数1~20の脂肪族炭化水素基、置換されていてもよい炭素数6~20の芳香族炭化水素基、置換されていてもよい炭素数2~20の複素環含有基を表す。Arは下記一般式(2):Ar、Ar、またはArで表されるアリール基である。)
Figure JPOXMLDOC01-appb-C000004
(一般式(2)中、mは0から3の整数を表し、R11は独立した置換基であって、置換されていてもよい炭素数1~20の脂肪族炭化水素基、置換されていてもよい炭素数6~20の芳香族炭化水素基、置換されていてもよい炭素数2~20の複素環含有基、置換されていてもよい炭素数1~20のアシル基、-Y-R、または-N-RR’であって、Yは酸素原子または硫黄原子を表し、RおよびR’は独立して水素原子、置換されていてもよい炭素数1~20の脂肪族炭化水素基、置換されていてもよい炭素数6~20の芳香族炭化水素基、置換されていてもよい炭素数2~20の複素環含有基を表す。))で表されるトリアジンペルオキシド誘導体に関する。
That is, the present invention provides general formula (1):
Figure JPOXMLDOC01-appb-C000003
((In general formula (1), R 1 and R 2 are independently a methyl group or an ethyl group, R 3 is an aliphatic hydrocarbon group having 1 to 5 carbon atoms, or the number of carbon atoms that may have an alkyl group represents an aromatic hydrocarbon group of 6 to 9, R 4 is an optionally substituted aliphatic hydrocarbon group of 1 to 20 carbon atoms, an optionally substituted aromatic hydrocarbon group of 6 to 20 carbon atoms , an optionally substituted heterocyclic ring-containing group having 2 to 20 carbon atoms, an optionally substituted acyl group having 1 to 20 carbon atoms, —Y—R, or —N—RR′, wherein Y is represents an oxygen atom or a sulfur atom, R and R' are independently a hydrogen atom, an optionally substituted aliphatic hydrocarbon group having 1 to 20 carbon atoms, or an optionally substituted aromatic having 6 to 20 carbon atoms represents an optionally substituted heterocyclic ring-containing group having 2 to 20 carbon atoms, Ar is an aryl group represented by the following general formula (2): Ar 1 , Ar 2 or Ar 3 .)
Figure JPOXMLDOC01-appb-C000004
(In the general formula (2), m represents an integer of 0 to 3, R 11 is an independent substituent, an optionally substituted aliphatic hydrocarbon group having 1 to 20 carbon atoms, a substituted an optionally substituted aromatic hydrocarbon group having 6 to 20 carbon atoms, an optionally substituted heterocyclic ring-containing group having 2 to 20 carbon atoms, an optionally substituted acyl group having 1 to 20 carbon atoms, -Y- R or -N-RR', Y represents an oxygen atom or a sulfur atom, R and R' are independently a hydrogen atom, and an optionally substituted aliphatic hydrocarbon group having 1 to 20 carbon atoms , represents an optionally substituted aromatic hydrocarbon group having 6 to 20 carbon atoms, or an optionally substituted heterocyclic ring-containing group having 2 to 20 carbon atoms.)).
 また、本発明は、前記トリアジンペルオキシド誘導体を含む(a)重合開始剤、および(b)ラジカル重合性化合物を含有する重合性組成物に関する。 The present invention also relates to a polymerizable composition containing (a) a polymerization initiator containing the triazine peroxide derivative and (b) a radically polymerizable compound.
 さらに、本発明は、前記重合性組成物から形成される硬化物、及び前記重合性組成物を活性エネルギー線で照射する工程を含む硬化物の製造方法に関する。 Furthermore, the present invention relates to a cured product formed from the polymerizable composition, and a method for producing a cured product comprising a step of irradiating the polymerizable composition with active energy rays.
 本発明のトリアジンペルオキシド誘導体は、その分子内に1つの過酸化結合しか有さないため、当該化合物の分解による1分子当たりの発生ラジカル数が、上記の特許文献1で開示された分子内に2つの過酸化結合を有するトリアジンペルオキシド誘導体よりも少ないが、特許文献1で開示された化合物と同程度の感度を有するといった特異な効果を有する。一方、本発明のトリアジンペルオキシド誘導体は、その分子内に1つの過酸化結合しか有さないため、上記の特許文献1で開示されたトリアジンペルオキシド誘導体よりも高温下での長期保存安定性に優れる。 Since the triazine peroxide derivative of the present invention has only one peroxide bond in its molecule, the number of radicals generated per molecule due to decomposition of the compound is 2 in the molecule disclosed in Patent Document 1 above. It has the unique effect of having sensitivity similar to that of the compound disclosed in US Pat. On the other hand, since the triazine peroxide derivative of the present invention has only one peroxide bond in its molecule, it is superior to the triazine peroxide derivative disclosed in Patent Document 1 above in long-term storage stability at high temperatures.
 また、本発明のトリアジンペルオキシド誘導体は、感度に優れるため、カーボンブラック等の遮光性顔料を含むブラックレジスト等の重合性組成物の重合開始剤としても有用である。 In addition, since the triazine peroxide derivative of the present invention has excellent sensitivity, it is also useful as a polymerization initiator for polymerizable compositions such as black resists containing light-shielding pigments such as carbon black.
 本発明のトリアジンペルオキシド誘導体は、下記一般式(1)で表される。
Figure JPOXMLDOC01-appb-C000005
((一般式(1)中、RおよびRは独立してメチル基またはエチル基、Rは炭素数1~5の脂肪族炭化水素基、またはアルキル基を有してもよい炭素数6~9の芳香族炭化水素基を表し、Rは置換されていてもよい炭素数1~20の脂肪族炭化水素基、置換されていてもよい炭素数6~20の芳香族炭化水素基、置換されていてもよい炭素数2~20の複素環含有基、置換されていてもよい炭素数1~20のアシル基、-Y-R、または-N-RR’であって、Yは酸素原子または硫黄原子を表し、RおよびR’は独立して水素原子、置換されていてもよい炭素数1~20の脂肪族炭化水素基、置換されていてもよい炭素数6~20の芳香族炭化水素基、置換されていてもよい炭素数2~20の複素環含有基を表す。Arは下記一般式(2):Ar、Ar、またはArで表されるアリール基である。)
Figure JPOXMLDOC01-appb-C000006
(一般式(2)中、mは0から3の整数を表し、R11は独立した置換基であって、置換されていてもよい炭素数1~20の脂肪族炭化水素基、置換されていてもよい炭素数6~20の芳香族炭化水素基、置換されていてもよい炭素数2~20の複素環含有基、置換されていてもよい炭素数1~20のアシル基、-Y-R、または-N-RR’であって、Yは酸素原子または硫黄原子を表し、RおよびR’は独立して水素原子、置換されていてもよい炭素数1~20の脂肪族炭化水素基、置換されていてもよい炭素数6~20の芳香族炭化水素基、置換されていてもよい炭素数2~20の複素環含有基を表す。))
The triazine peroxide derivative of the present invention is represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000005
((In general formula (1), R 1 and R 2 are independently a methyl group or an ethyl group, R 3 is an aliphatic hydrocarbon group having 1 to 5 carbon atoms, or the number of carbon atoms that may have an alkyl group represents an aromatic hydrocarbon group of 6 to 9, R 4 is an optionally substituted aliphatic hydrocarbon group of 1 to 20 carbon atoms, an optionally substituted aromatic hydrocarbon group of 6 to 20 carbon atoms , an optionally substituted heterocyclic ring-containing group having 2 to 20 carbon atoms, an optionally substituted acyl group having 1 to 20 carbon atoms, —Y—R, or —N—RR′, wherein Y is represents an oxygen atom or a sulfur atom, R and R' are independently a hydrogen atom, an optionally substituted aliphatic hydrocarbon group having 1 to 20 carbon atoms, or an optionally substituted aromatic having 6 to 20 carbon atoms represents an optionally substituted heterocyclic ring-containing group having 2 to 20 carbon atoms, Ar is an aryl group represented by the following general formula (2): Ar 1 , Ar 2 or Ar 3 .)
Figure JPOXMLDOC01-appb-C000006
(In the general formula (2), m represents an integer of 0 to 3, R 11 is an independent substituent, an optionally substituted aliphatic hydrocarbon group having 1 to 20 carbon atoms, a substituted an optionally substituted aromatic hydrocarbon group having 6 to 20 carbon atoms, an optionally substituted heterocyclic ring-containing group having 2 to 20 carbon atoms, an optionally substituted acyl group having 1 to 20 carbon atoms, -Y- R or -N-RR', Y represents an oxygen atom or a sulfur atom, R and R' are independently a hydrogen atom, and an optionally substituted aliphatic hydrocarbon group having 1 to 20 carbon atoms , an optionally substituted aromatic hydrocarbon group having 6 to 20 carbon atoms, or an optionally substituted heterocyclic ring-containing group having 2 to 20 carbon atoms.))
 一般式(1)中、RおよびRは独立してメチル基またはエチル基を表し、分解温度が高く、重合性組成物の貯蔵安定性が高くなる観点から、メチル基が好ましい。 In general formula (1), R 1 and R 2 independently represent a methyl group or an ethyl group, and a methyl group is preferred from the viewpoint of high decomposition temperature and high storage stability of the polymerizable composition.
 一般式(1)中、Rは炭素数1~5の脂肪族炭化水素基、またはアルキル基を有してもよい炭素数6~9の芳香族炭化水素基を表す。前記アルキル基は、直鎖であってもよく、分岐鎖であってもよい。Rの具体例としては、メチル基、エチル基、プロピル基、2,2-ジメチルプロピル基、フェニル基、イソプロピルフェニル基等が挙げられる。これらの中でも、前記トリアジンペルオキシド誘導体の合成が容易である観点から、メチル基、エチル基、プロピル基、2,2-ジメチルプロピル基、フェニル基であることが好ましい。前記トリアジンペルオキシド誘導体の分解温度が高いため重合性組成物の貯蔵安定性が高くなり、光に対する感度が高い点から、メチル基、エチル基であることがより好ましい。 In general formula (1), R 3 represents an aliphatic hydrocarbon group having 1 to 5 carbon atoms or an aromatic hydrocarbon group having 6 to 9 carbon atoms which may have an alkyl group. The alkyl group may be linear or branched. Specific examples of R 3 include methyl group, ethyl group, propyl group, 2,2-dimethylpropyl group, phenyl group, isopropylphenyl group and the like. Among these, a methyl group, an ethyl group, a propyl group, a 2,2-dimethylpropyl group, and a phenyl group are preferable from the viewpoint of facilitating the synthesis of the triazine peroxide derivative. A methyl group and an ethyl group are more preferable because the decomposition temperature of the triazine peroxide derivative is high, so that the storage stability of the polymerizable composition is high, and the sensitivity to light is high.
 一般式(1)中、Rは置換されていてもよい炭素数1~20の脂肪族炭化水素基、置換されていてもよい炭素数6~20の芳香族炭化水素基、置換されていてもよい炭素数2~20の複素環含有基、置換されていてもよい炭素数1~20のアシル基、-Y-R、または-N-RR’であって、Yは酸素原子または硫黄原子を表し、RおよびR’は独立して水素原子、置換されていてもよい炭素数1~20の脂肪族炭化水素基、置換されていてもよい炭素数6~20の芳香族炭化水素基、置換されていてもよい炭素数2~20の複素環含有基を表す。上記のRはトリアジンペルオキシド誘導体の吸収波長への影響が小さいため、Rが上記の広範囲であっても、良好な感度を発現する。また、上記の「置換されていてもよい」における「置換基」には、ハロゲン原子、炭素骨格中にエーテル結合やチオエーテル結合を有してもよい脂肪族炭化水素基、芳香族炭化水素基、複素環含有基、アシル基、シアノ基、ニトロ基、カルボキシル基、エポキシ基、水酸基などが包含される。上記のRは、安定性が高い観点から、好ましくは、置換されていてもよい炭素数1~20の脂肪族炭化水素基、置換されていてもよい炭素数6~20の芳香族炭化水素基、置換されていてもよい炭素数2~20の複素環含有基、置換されていてもよい炭素数1~20のアシル基、または-Y-Rであり、合成が容易である観点から、より好ましくは、-O-Rであって、Rは置換されていてもよい炭素数1~20の脂肪族炭化水素基、置換されていてもよい炭素数6~20の芳香族炭化水素基、置換されていてもよい炭素数2~20の複素環含有基である。 In general formula (1), R 4 is an optionally substituted aliphatic hydrocarbon group having 1 to 20 carbon atoms, an optionally substituted aromatic hydrocarbon group having 6 to 20 carbon atoms, a substituted a heterocyclic ring-containing group having 2 to 20 carbon atoms which may be substituted, an optionally substituted acyl group having 1 to 20 carbon atoms, -YR, or -N-RR', wherein Y is an oxygen atom or a sulfur atom represents, R and R ' are independently a hydrogen atom, an optionally substituted aliphatic hydrocarbon group having 1 to 20 carbon atoms, an optionally substituted aromatic hydrocarbon group having 6 to 20 carbon atoms, It represents an optionally substituted heterocyclic ring-containing group having 2 to 20 carbon atoms. Since R 4 has little effect on the absorption wavelength of the triazine peroxide derivative, good sensitivity is exhibited even if R 4 is in the above wide range. In addition, the "substituent" in the above "optionally substituted" includes a halogen atom, an aliphatic hydrocarbon group which may have an ether bond or a thioether bond in the carbon skeleton, an aromatic hydrocarbon group, Heterocyclic-containing groups, acyl groups, cyano groups, nitro groups, carboxyl groups, epoxy groups, hydroxyl groups and the like are included. From the viewpoint of high stability, R 4 is preferably an optionally substituted aliphatic hydrocarbon group having 1 to 20 carbon atoms or an optionally substituted aromatic hydrocarbon group having 6 to 20 carbon atoms. group, an optionally substituted heterocyclic ring-containing group having 2 to 20 carbon atoms, an optionally substituted acyl group having 1 to 20 carbon atoms, or -YR, and from the viewpoint of ease of synthesis, More preferably, -OR, where R is an optionally substituted aliphatic hydrocarbon group having 1 to 20 carbon atoms, an optionally substituted aromatic hydrocarbon group having 6 to 20 carbon atoms, It is an optionally substituted heterocyclic ring-containing group having 2 to 20 carbon atoms.
 一般式(2)中、mは0から3の整数を表され、合成が容易である観点から、mが0から2であることが好ましく、光を効率よく吸収する観点から、mが1であることがより好ましい。 In general formula (2), m represents an integer of 0 to 3, preferably m is 0 to 2 from the viewpoint of ease of synthesis, and m is 1 from the viewpoint of efficiently absorbing light. It is more preferable to have
 一般式(2)中、R11は置換されていてもよい炭素数1~20の脂肪族炭化水素基、置換されていてもよい炭素数6~20の芳香族炭化水素基、置換されていてもよい炭素数2~20の複素環含有基、置換されていてもよい炭素数1~20のアシル基、-Y-R、または-N-RR’であって、Yは酸素原子または硫黄原子を表し、RおよびR’は独立して水素原子、置換されていてもよい炭素数1~20の脂肪族炭化水素基、置換されていてもよい炭素数6~20の芳香族炭化水素基、置換されていてもよい炭素数2~20の複素環含有基を表す。上記のR11はトリアジンペルオキシド誘導体の吸収波長への影響が小さいため、R11が上記の広範囲であっても、良好な感度を発現する。また、上記の「置換されていてもよい」における「置換基」には、ハロゲン原子、炭素骨格中にエーテル結合やチオエーテル結合を有してもよい脂肪族炭化水素基、芳香族炭化水素基、複素環含有基、アシル基、シアノ基、ニトロ基、カルボキシル基、エポキシ基、水酸基などが包含される。上記のR11は、独立した置換基であって、炭素数1から20のアルキル基、一般式(3):R12-Y-で表される置換基、ニトロ基、またはシアノ基を表し、前記Yは、酸素原子または硫黄原子を表し、前記R12は、炭素骨格中に、エーテル結合、チオエーテル結合、および、末端に水酸基のいずれか1つ以上を有していてもよい炭素数1~20の炭化水素基、アルキル基を有してもよい炭素数6~20の芳香族炭化水素基、または炭素数1~20のアシル基であってもよく、またR11は隣接する2つの前記一般式(3):R12-Y-により5~6員環を形成していてもよい。 In general formula (2), R 11 is an optionally substituted aliphatic hydrocarbon group having 1 to 20 carbon atoms, an optionally substituted aromatic hydrocarbon group having 6 to 20 carbon atoms, a substituted a heterocyclic ring-containing group having 2 to 20 carbon atoms which may be substituted, an optionally substituted acyl group having 1 to 20 carbon atoms, -YR, or -N-RR', wherein Y is an oxygen atom or a sulfur atom represents, R and R ' are independently a hydrogen atom, an optionally substituted aliphatic hydrocarbon group having 1 to 20 carbon atoms, an optionally substituted aromatic hydrocarbon group having 6 to 20 carbon atoms, It represents an optionally substituted heterocyclic ring-containing group having 2 to 20 carbon atoms. Since the above R 11 has little effect on the absorption wavelength of the triazine peroxide derivative, good sensitivity is exhibited even if the R 11 is in the above wide range. In addition, the "substituent" in the above "optionally substituted" includes a halogen atom, an aliphatic hydrocarbon group which may have an ether bond or a thioether bond in the carbon skeleton, an aromatic hydrocarbon group, Heterocyclic-containing groups, acyl groups, cyano groups, nitro groups, carboxyl groups, epoxy groups, hydroxyl groups and the like are included. R 11 above is an independent substituent and represents an alkyl group having 1 to 20 carbon atoms, a substituent represented by general formula (3): R 12 -Y-, a nitro group, or a cyano group; The Y represents an oxygen atom or a sulfur atom, and the R 12 may have one or more of an ether bond, a thioether bond, and a terminal hydroxyl group in the carbon skeleton, and may have 1 to 1 carbon atoms. 20 hydrocarbon groups, aromatic hydrocarbon groups having 6 to 20 carbon atoms which may have an alkyl group, or acyl groups having 1 to 20 carbon atoms, and R 11 may be two adjacent General formula (3): R 12 -Y- may form a 5- to 6-membered ring.
 本発明のトリアジンペルオキシド誘導体の具体例を以下に示すが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-I000010
Figure JPOXMLDOC01-appb-I000011
Specific examples of the triazine peroxide derivative of the present invention are shown below, but are not limited thereto.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-I000010
Figure JPOXMLDOC01-appb-I000011
 本発明のトリアジンペルオキシド誘導体としては、化合物19、化合物23、化合物25、化合物26、化合物27、化合物31、化合物32、化合物33、化合物35、化合物37、化合物38、化合物39、化合物43、化合物44、化合物45、化合物46、化合物47、化合物48、化合物49、化合物50、化合物51、化合物52、化合物53、化合物54、化合物55、化合物56、化合物57、化合物60、化合物61、化合物73、化合物77、化合物78、化合物79、化合物81が好ましい。 The triazine peroxide derivatives of the present invention include compound 19, compound 23, compound 25, compound 26, compound 27, compound 31, compound 32, compound 33, compound 35, compound 37, compound 38, compound 39, compound 43, compound 44. , compound 45, compound 46, compound 47, compound 48, compound 49, compound 50, compound 51, compound 52, compound 53, compound 54, compound 55, compound 56, compound 57, compound 60, compound 61, compound 73, compound 77, compound 78, compound 79, compound 81 are preferred.
<トリアジンペルオキシド誘導体の製造方法>
 前記一般式(1)で表されるトリアジンペルオキシド誘導体の製造方法は、塩化シアヌル及び/又はその誘導体と、ヒドロペルオキシドとを原料として反応させる工程を含む。このような製造方法としては、例えば、下記反応式のように、塩化シアヌル誘導体を得る工程(以下、工程(A)および(B)とも称す)と、続いて、得られた塩化シアヌル誘導体と、ヒドロペルオキシドを、アルカリの存在下で、反応させる工程(以下、工程(C)とも称す)を含む方法が挙げられる。なお、上記の各工程は、順番が限定されず、例えば、塩化シアヌル及びヒドロペルオキシドとの反応物に、下記のAr-XやR-Xを反応させてもよく、また、各工程は同時に行ってもよい。各工程の前後には、余剰の原料等を減圧留去(除去)する工程や、精製工程を含んでもよい。
Figure JPOXMLDOC01-appb-C000012
(上記反応式において、R、R、R、RおよびArは前記一般式(1)と同じである。)
<Method for producing triazine peroxide derivative>
The method for producing the triazine peroxide derivative represented by the general formula (1) includes a step of reacting cyanuric chloride and/or a derivative thereof with hydroperoxide as raw materials. As such a production method, for example, as shown in the following reaction formula, a step of obtaining a cyanuric chloride derivative (hereinafter also referred to as steps (A) and (B)), followed by the obtained cyanuric chloride derivative, A method including a step of reacting a hydroperoxide in the presence of an alkali (hereinafter also referred to as step (C)) may be mentioned. The order of the above steps is not limited. For example, the reaction product of cyanuric chloride and hydroperoxide may be reacted with the following Ar—X or R 4 —X, and the steps may be performed simultaneously. you can go Before and after each step, a step of distilling off (removing) excess raw materials or the like under reduced pressure, or a purification step may be included.
Figure JPOXMLDOC01-appb-C000012
(In the reaction formula above, R 1 , R 2 , R 3 , R 4 and Ar are the same as in general formula (1) above.)
 前記工程(C)において、前記塩化シアヌル誘導体は、市販品を利用できる。なお、市販品がない場合、前記工程(A)および(B)において、グリニャール反応、リチオ化反応、鈴木カップリング反応、またはフリーデル・クラフツ反応、アルカリ存在下での求核置換反応等の公知の合成法に準じて合成することができる。 A commercially available product can be used as the cyanuric chloride derivative in the step (C). If there is no commercially available product, in the steps (A) and (B), known reactions such as Grignard reaction, lithiation reaction, Suzuki coupling reaction, Friedel-Crafts reaction, nucleophilic substitution reaction in the presence of alkali, etc. It can be synthesized according to the synthesis method of.
<グリニャール反応による塩化シアヌル誘導体の合成>
 前記工程(A)および(B)において、グリニャール反応により、塩化シアヌル誘導体を合成する場合、特開平6-179661号公報等に記載の公知の合成法に準じて合成することができる。前記工程(A)におけるAr-Xおよび前記工程(B)におけるR-XのXが塩素原子、臭素原子、またはヨウ素原子で表されるハロゲン化合物を使用することができる。ハロゲン化合物とマグネシウムを反応させることでグリニャール試薬を調製し、次いで得られたグリニャール試薬を塩化シアヌルと反応させることにより塩化シアヌル誘導体を合成することができる。
<Synthesis of cyanuric chloride derivative by Grignard reaction>
When synthesizing a cyanuric chloride derivative by a Grignard reaction in steps (A) and (B), it can be synthesized according to a known synthetic method described in JP-A-6-179661 and the like. A halogen compound in which X of Ar—X in the step (A) and R 4 —X in the step (B) is a chlorine atom, a bromine atom, or an iodine atom can be used. A cyanuric chloride derivative can be synthesized by reacting a halogen compound with magnesium to prepare a Grignard reagent and then reacting the obtained Grignard reagent with cyanuric chloride.
 上記のグリニャール試薬の調製において、マグネシウムは、ハロゲン化合物1モルに対して、0.8から2.0モル用いることが好ましく、1から1.5モル用いることがより好ましい。反応開始剤として、ヨウ素、ブロモエタン、ジブロモエタン等を用いてもよく、ハロゲン化合物1モルに対して、0.0001から0.01モル用いることが好ましい。反応温度は0から70℃が好ましく、10から60℃がより好ましい。反応時間は30分から20時間が好ましく、1時間から10時間がより好ましい。 In the preparation of the above Grignard reagent, magnesium is preferably used in an amount of 0.8 to 2.0 mol, more preferably 1 to 1.5 mol, per 1 mol of the halogen compound. As a reaction initiator, iodine, bromoethane, dibromoethane, or the like may be used, and it is preferable to use 0.0001 to 0.01 mol per 1 mol of the halogen compound. The reaction temperature is preferably 0 to 70°C, more preferably 10 to 60°C. The reaction time is preferably 30 minutes to 20 hours, more preferably 1 hour to 10 hours.
 上記のグリニャール試薬の調製において、例えば、テトラヒドロフラン等のエーテル類等の溶媒を用いることができる。 In the preparation of the above Grignard reagent, for example, solvents such as ethers such as tetrahydrofuran can be used.
 また、上記のグリニャール試薬と塩化シアヌルの反応において、塩化シアヌルは、ハロゲン化合物1モルに対して、0.7から1.5モル用いることが好ましく、0.8から1.2モル用いることがより好ましい。反応温度は-30から70℃が好ましく、-10から40℃がより好ましい。反応時間は10分から20時間が好ましく、30分から15時間であることがより好ましい。なお、調製したグリニャール試薬に塩化シアヌルを投入してもよく、塩化シアヌルの溶液にグリニャール試薬を投入してもよい。 In the above reaction between the Grignard reagent and cyanuric chloride, cyanuric chloride is preferably used in an amount of 0.7 to 1.5 mol, more preferably 0.8 to 1.2 mol, per 1 mol of the halogen compound. preferable. The reaction temperature is preferably -30 to 70°C, more preferably -10 to 40°C. The reaction time is preferably 10 minutes to 20 hours, more preferably 30 minutes to 15 hours. Cyanuric chloride may be added to the prepared Grignard reagent, or the Grignard reagent may be added to a solution of cyanuric chloride.
 上記のグリニャール試薬と塩化シアヌルの反応において、例えば、テトラヒドロフラン等のエーテル類等の溶媒を用いることができる。 In the above reaction between the Grignard reagent and cyanuric chloride, for example, a solvent such as ethers such as tetrahydrofuran can be used.
<リチオ化反応による塩化シアヌル誘導体の合成>
 前記工程(A)および(B)において、リチオ化反応により、塩化シアヌル誘導体を合成する場合、WO2012/096263公報等に記載の公知の合成法に準じて合成することができる。前記工程(A)におけるAr-Xおよび前記工程(B)におけるR-XのXが塩素原子、臭素原子、またはヨウ素原子で表されるハロゲン化合物を使用することができる。ハロゲン化合物とリチオ化剤を反応させることでリチオ化合物を調製し、次いで得られたリチオ化合物と塩化シアヌルを反応させることにより塩化シアヌル誘導体を合成することができる。
<Synthesis of cyanuric chloride derivative by lithiation reaction>
When synthesizing a cyanuric chloride derivative by a lithiation reaction in steps (A) and (B), it can be synthesized according to a known synthesis method described in WO2012/096263 and the like. A halogen compound in which X of Ar—X in the step (A) and R 4 —X in the step (B) is a chlorine atom, a bromine atom, or an iodine atom can be used. A cyanuric chloride derivative can be synthesized by reacting a halogen compound with a lithiating agent to prepare a lithio compound, and then reacting the obtained lithio compound with cyanuric chloride.
 前記リチオ化剤としては、メチルリチウム、n-ブチルリチウム、s-ブチルリチウム、t-ブチルリチウム等のアルキルリチウム類;フェニルリチウム等のアリールリチウム類;リチウムジイソプロピルアミド、リチウムビス(トリメチルシリル)アミド等のリチウムアミド類を挙げることができ、n-ブチルリチウム、s-ブチルリチウム、t-ブチルリチウム、フェニルリチウムであることが好ましい。 Examples of the lithiation agent include alkyllithiums such as methyllithium, n-butyllithium, s-butyllithium and t-butyllithium; aryllithiums such as phenyllithium; lithium diisopropylamide and lithium bis(trimethylsilyl)amide. Examples include lithium amides, and n-butyllithium, s-butyllithium, t-butyllithium and phenyllithium are preferred.
 上記のリチオ化合物の調製において、リチオ化剤は、ハロゲン化合物1モルに対して、0.8から3.0モル用いることが好ましく、1.0から2.2モル用いることがより好ましい。反応温度は-100から50℃が好ましく、-80から0℃がより好ましい。反応時間は0.2から20時間が好ましく、0.5から10時間がより好ましい。 In the preparation of the above lithiation compound, it is preferable to use 0.8 to 3.0 mol, more preferably 1.0 to 2.2 mol, of the lithiation agent per 1 mol of the halogen compound. The reaction temperature is preferably -100 to 50°C, more preferably -80 to 0°C. The reaction time is preferably 0.2 to 20 hours, more preferably 0.5 to 10 hours.
 上記のリチオ化合物の調製において、例えば、テトラヒドロフラン等のエーテル類等の溶媒を用いることができる。 In the preparation of the above lithio compounds, for example, solvents such as ethers such as tetrahydrofuran can be used.
 また、上記のリチオ化合物と塩化シアヌルの反応において、塩化シアヌルは、ハロゲン化合物1モルに対して、0.7から1.5モル用いることが好ましく、0.8から1.2モル用いることがより好ましい。反応温度は-30から70℃が好ましく、-10から40℃がより好ましい。反応時間は10分から10時間が好ましく、30分から5時間であることがより好ましい。なお、調製したリチオ化合物に塩化シアヌルを投入してもよく、塩化シアヌルの溶液にリチオ化合物を投入してもよい。 In the above reaction of the lithio compound and cyanuric chloride, it is preferable to use 0.7 to 1.5 mol, more preferably 0.8 to 1.2 mol, of cyanuric chloride with respect to 1 mol of the halogen compound. preferable. The reaction temperature is preferably -30 to 70°C, more preferably -10 to 40°C. The reaction time is preferably 10 minutes to 10 hours, more preferably 30 minutes to 5 hours. Cyanuric chloride may be added to the prepared lithio compound, or the lithio compound may be added to a solution of cyanuric chloride.
 上記のリチオ化合物と塩化シアヌルの反応において、例えば、テトラヒドロフラン等のエーテル類等の溶媒を用いることができる。 In the above reaction between the lithio compound and cyanuric chloride, for example, a solvent such as ethers such as tetrahydrofuran can be used.
<鈴木カップリングによる塩化シアヌル誘導体の合成>
 前記工程(A)および(B)において、鈴木カップリング反応により、塩化シアヌル誘導体を合成する場合、WO2012/096263公報等に記載の公知の合成法に準じて合成することができる。例えば、前述のリチオ化合物をホウ素試薬と反応させることによって、前記工程(A)におけるAr-Xおよび前記工程(B)におけるR-XのXがボロニル基またはボロン酸に変換されたホウ素化合物を合成することができる。次いで得られたホウ素化合物を塩化シアヌルと反応させることにより塩化シアヌル誘導体を合成することができる。なお、ホウ素化合物の市販品が販売されている場合、そのまま使用することができる。
<Synthesis of Cyanuric Chloride Derivatives by Suzuki Coupling>
When synthesizing a cyanuric chloride derivative by Suzuki coupling reaction in steps (A) and (B), it can be synthesized according to a known synthesis method described in WO2012/096263 and the like. For example, a boron compound in which X of Ar—X in the step (A) and R 4 —X in the step (B) is converted to a boronyl group or boronic acid is obtained by reacting the aforementioned lithio compound with a boron reagent. Can be synthesized. Then, a cyanuric chloride derivative can be synthesized by reacting the obtained boron compound with cyanuric chloride. In addition, when the commercial item of a boron compound is sold, it can be used as it is.
 前記ホウ素試薬としては、ホウ酸トリメチル、ホウ酸トリイソプロピル、2-イソプロポキシ-4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン等が挙げられる。 Examples of the boron reagent include trimethyl borate, triisopropyl borate, 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane, and the like.
 上記のホウ素化合物の合成において、ホウ素試薬は、リチオ化合物1モルに対して、0.8から3.0モル用いることが好ましく、1.0から2.0モル用いることがより好ましい。反応温度は-100から50℃が好ましく、-80から20℃がより好ましい。反応時間は10分から20時間が好ましく、30分から10時間がより好ましい。 In the above synthesis of the boron compound, it is preferable to use 0.8 to 3.0 mol, more preferably 1.0 to 2.0 mol, of the boron reagent per 1 mol of the lithio compound. The reaction temperature is preferably -100 to 50°C, more preferably -80 to 20°C. The reaction time is preferably 10 minutes to 20 hours, more preferably 30 minutes to 10 hours.
 上記のホウ素化合物の合成において、例えば、テトラヒドロフラン等のエーテル類等の溶媒を用いることができる。 In the synthesis of the above boron compounds, for example, solvents such as ethers such as tetrahydrofuran can be used.
 また、上記のホウ素化合物と塩化シアヌルの反応において、塩化シアヌルは、ホウ素化合物1モルに対して、0.7から1.5モル用いることが好ましく、0.8から1.2モル用いることがより好ましい。反応温度は-30から70℃が好ましく、-10から40℃がより好ましい。反応時間は10分から10時間が好ましく、30分から5時間であることがより好ましい。なお、ホウ素化合物に塩化シアヌルを投入してもよく、塩化シアヌルの溶液にホウ素化合物を投入してもよい。 In the above reaction of the boron compound and cyanuric chloride, cyanuric chloride is preferably used in an amount of 0.7 to 1.5 mol, more preferably 0.8 to 1.2 mol, per 1 mol of the boron compound. preferable. The reaction temperature is preferably -30 to 70°C, more preferably -10 to 40°C. The reaction time is preferably 10 minutes to 10 hours, more preferably 30 minutes to 5 hours. Cyanuric chloride may be added to the boron compound, or the boron compound may be added to a solution of cyanuric chloride.
 上記のホウ素化合物と塩化シアヌルの反応において、パラジウム触媒およびアルカリを用いることが好ましく、必要に応じて配位子を添加しても良い。 A palladium catalyst and an alkali are preferably used in the above reaction between the boron compound and cyanuric chloride, and a ligand may be added as necessary.
 前記パラジウム触媒としては、酢酸パラジウム、テトラキストリフェニルホスフィンパラジウム、ビス(トリフェニルホスフィン)パラジウムジクロリド、(ビス(ジフェニルホスフィノ)フェロセン)パラジウムジクロリド-塩化メチレン錯体等が挙げられる。 Examples of the palladium catalyst include palladium acetate, tetrakistriphenylphosphine palladium, bis(triphenylphosphine)palladium dichloride, (bis(diphenylphosphino)ferrocene)palladium dichloride-methylene chloride complex, and the like.
 前記アルカリとしては、炭酸ナトリウム、炭酸水素ナトリウム、酢酸ナトリウム、酢酸カリウム、リン酸カリウム等のアルカリ金属塩等の無機塩基;トリエチルアミン等の有機塩基が挙げられる。 Examples of the alkali include inorganic bases such as alkali metal salts such as sodium carbonate, sodium hydrogencarbonate, sodium acetate, potassium acetate and potassium phosphate; and organic bases such as triethylamine.
 前記配位子としては、トリフェニルホスフィン、トリシクロヘキシルホスフィン、2,2’-ビス(ジフェニルホスフィノ)-1,1’-ビナフタレン、2-ジシクロヘキシルホスフィノ-2,6’-ジメトキシビフェニル等の有機リン系配位子等が挙げられる。 As the ligand, organic Phosphorus-based ligands and the like can be mentioned.
 上記のホウ素化合物と塩化シアヌルの反応において、テトラヒドロフラン、1,4-ジオキサン等のエーテル類;メタノール、2-プロパノール等のアルコール類;トルエン、キシレン等の芳香族系炭化水素類;N,N-ジメチルホルムアミド等のアミド類等の有機溶媒を用いることができる。前記有機溶媒は、単独で用いてもよく2種類以上を併用してもよい。さらに、前記有機溶媒と水との混合溶媒を用いることができる。 In the reaction of the above boron compound and cyanuric chloride, ethers such as tetrahydrofuran and 1,4-dioxane; alcohols such as methanol and 2-propanol; aromatic hydrocarbons such as toluene and xylene; Organic solvents such as amides such as formamide can be used. The organic solvent may be used alone or in combination of two or more. Furthermore, a mixed solvent of the organic solvent and water can be used.
<フリーデル・クラフツ反応による塩化シアヌル誘導体の合成>
 前記工程(A)および(B)において、フリーデル・クラフツ反応により、塩化シアヌル誘導体を合成する場合、US5322941公報等に記載の公知の合成法に準じて合成することができる。前記工程(A)におけるAr-Xおよび前記工程(B)におけるR-XのXが水素原子で表される芳香族化合物を使用することができる。塩化アルミニウム等のルイス酸の存在下、芳香族化合物と塩化シアヌルを反応させることにより塩化シアヌル誘導体を合成することができる。
<Synthesis of Cyanuric Chloride Derivatives by Friedel-Crafts Reaction>
In the steps (A) and (B), when the cyanuric chloride derivative is synthesized by the Friedel-Crafts reaction, it can be synthesized according to the known synthetic method described in US Pat. No. 5,322,941 and the like. An aromatic compound in which X of Ar—X in the step (A) and R 4 —X in the step (B) is a hydrogen atom can be used. A cyanuric chloride derivative can be synthesized by reacting an aromatic compound with cyanuric chloride in the presence of a Lewis acid such as aluminum chloride.
 前記ルイス酸としては、塩化アルミニウム、臭化アルミニウム、塩化鉄(III)、塩化チタン(IV)、塩化スズ(IV)、塩化亜鉛、ビスマス(III)トリフラート、ハフニウム(IV)トリフラート、三フッ化ホウ素ジエチルエーテル錯体等を用いることができる。 Examples of the Lewis acid include aluminum chloride, aluminum bromide, iron (III) chloride, titanium (IV) chloride, tin (IV) chloride, zinc chloride, bismuth (III) triflate, hafnium (IV) triflate, and boron trifluoride. A diethyl ether complex or the like can be used.
 上記の芳香族化合物と塩化シアヌルの反応において、塩化シアヌルは、芳香族化合物1モルに対して、0.7から2.5モル用いることが好ましく、0.8から1.5モル用いることがより好ましい。塩化アルミニウムは、芳香族化合物1モルに対して、1.0から3.0モル用いることが好ましく、1.0から2.0モル用いることがより好ましい。反応温度は-50から60℃が好ましく、0から40℃がより好ましい。反応時間は10分から10時間が好ましく、30分から5時間であることがより好ましい。なお、芳香族化合物と塩化シアヌルの溶液に塩化アルミニウムを加えてもよく、塩化シアヌルと塩化アルミニウムの溶液に芳香族化合物を加えてもよく、芳香族化合物と塩化アルミニウムの溶液に塩化シアヌルを加えてもよい。 In the above reaction between the aromatic compound and cyanuric chloride, cyanuric chloride is preferably used in an amount of 0.7 to 2.5 mol, more preferably 0.8 to 1.5 mol, per 1 mol of the aromatic compound. preferable. Aluminum chloride is preferably used in an amount of 1.0 to 3.0 mol, more preferably 1.0 to 2.0 mol, per 1 mol of the aromatic compound. The reaction temperature is preferably -50 to 60°C, more preferably 0 to 40°C. The reaction time is preferably 10 minutes to 10 hours, more preferably 30 minutes to 5 hours. Aluminum chloride may be added to a solution of an aromatic compound and cyanuric chloride, an aromatic compound may be added to a solution of cyanuric chloride and aluminum chloride, or cyanuric chloride may be added to a solution of an aromatic compound and aluminum chloride. good too.
 上記の芳香族化合物と塩化シアヌルの反応において、例えば、ジクロロメタン、1,2-ジクロロエタン、キシレン等の溶媒を用いることができる。 In the above reaction between the aromatic compound and cyanuric chloride, solvents such as dichloromethane, 1,2-dichloroethane, and xylene can be used.
<トリアジンペルオキシド誘導体の合成>
 前記工程(C)において、一般式(1)で表されるトリアジンペルオキシド誘導体の製造方法は、特に限定されないが、特公昭45-39468号公報等に記載の公知のトリアジンペルオキシドの合成法に準じて合成することができる。
<Synthesis of triazine peroxide derivative>
In the step (C), the method for producing the triazine peroxide derivative represented by the general formula (1) is not particularly limited. Can be synthesized.
 上記の工程(A)および(B)で得られた塩化シアヌル誘導体と、ヒドロペルオキシドを、アルカリの存在下で、反応させる工程(C)により、トリアジンペルオキシド誘導体が得られる。 A triazine peroxide derivative is obtained by the step (C) of reacting the cyanuric chloride derivative obtained in the above steps (A) and (B) with a hydroperoxide in the presence of an alkali.
 前記工程(C)において、ヒドロペルオキシドは、塩化シアヌル誘導体1モルに対して、目的物の収率性を高める観点から、0.9モル以上反応させることが好ましく、1.0モル以上反応させることがより好ましく、そして、3.0モル以下反応させることが好ましく、2.0モル以下反応させることがより好ましい。なお、ヒドロペルオキシドは、市販品を利用でき、市販品がない場合、特開昭58-72557号公報等に記載の公知の合成法に準じて合成することができる。 In the step (C), 0.9 mol or more, preferably 1.0 mol or more of hydroperoxide is reacted with respect to 1 mol of the cyanuric chloride derivative from the viewpoint of increasing the yield of the target product. is more preferable, and 3.0 mol or less is preferable, and 2.0 mol or less is more preferable. The hydroperoxide can be used as a commercially available product, and if there is no commercially available product, it can be synthesized according to the known synthetic method described in JP-A-58-72557.
 前記工程(C)において、反応温度は、目的物の収率性を高める観点から、-10℃以上であることが好ましく、0℃以上であることがより好ましく、そして、50℃以下であることが好ましく、40℃以下であることがより好ましい。 In the step (C), the reaction temperature is preferably −10° C. or higher, more preferably 0° C. or higher, and 50° C. or lower, from the viewpoint of increasing the yield of the target product. is preferred, and 40° C. or lower is more preferred.
 前記工程(C)において、反応時間は、原料や反応温度等によって異なるので一概には決定できないが、通常、目的物の収率性を高める観点から、10分から6時間が好ましい。 In the step (C), the reaction time varies depending on the raw materials, the reaction temperature, etc., and cannot be determined unconditionally. Generally, 10 minutes to 6 hours is preferable from the viewpoint of increasing the yield of the target product.
 前記工程(C)において、使用するアルカリは、特に制限はないが、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、炭酸カリウム、炭酸ナトリウム、炭酸水素ナトリウム、ピリジン、α―ピコリン、γ―ピコリン、ジメチルアミノピリジン、トリエチルアミン、トリブチルアミン、N,N-ジイソプロピルエチルアミン、1,5-ジアザビシクロ[4.3.0]-5-ノネン等が挙げられる。アルカリは、塩化シアヌル誘導体1モルに対して、目的物の収率性を高める観点から、0.8モル以上使用することが好ましく、1.0モル以上使用することがより好ましく、そして、3.0モル以下使用することが好ましく、2.0モル以下使用することがより好ましい。 The alkali used in the step (C) is not particularly limited, but sodium hydroxide, potassium hydroxide, lithium hydroxide, potassium carbonate, sodium carbonate, sodium hydrogen carbonate, pyridine, α-picoline, γ-picoline, dimethylaminopyridine, triethylamine, tributylamine, N,N-diisopropylethylamine, 1,5-diazabicyclo[4.3.0]-5-nonene and the like. 3. The alkali is preferably used in an amount of 0.8 mol or more, more preferably 1.0 mol or more, relative to 1 mol of the cyanuric chloride derivative, from the viewpoint of increasing the yield of the target product. It is preferable to use 0 mol or less, more preferably 2.0 mol or less.
 前記工程(C)では、塩化シアヌル誘導体が液状である場合は、有機溶媒を用いずに反応を行うことができる。また、塩化シアヌル誘導体が固体である場合は、有機溶媒を用いることが好ましい。有機溶媒としては、塩化シアヌル誘導体の種類により溶解度が異なるため、特に限定されないが、例えば、トルエン、キシレン、エチルベンゼン等の芳香族系炭化水素類、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、テトラヒドロフラン、ジオキサン等のエーテル類、酢酸エチル、酢酸ブチル等のエステル類、塩化メチレン、クロロホルム等のハロゲン化炭化水素類等が挙げられる。前記有機溶媒は、単独で用いてもよく2種類以上を併用してもよい。 In the step (C), when the cyanuric chloride derivative is liquid, the reaction can be carried out without using an organic solvent. Moreover, when the cyanuric chloride derivative is solid, it is preferable to use an organic solvent. The organic solvent is not particularly limited because the solubility varies depending on the type of cyanuric chloride derivative. Examples include aromatic hydrocarbons such as toluene, xylene, and ethylbenzene; , ethers such as dioxane, esters such as ethyl acetate and butyl acetate, and halogenated hydrocarbons such as methylene chloride and chloroform. The organic solvent may be used alone or in combination of two or more.
 前記有機溶媒の使用量は、通常、原料の合計量100質量部に対して30~1000質量部程度である。有機溶媒は工程(C)の後に留去することで、トリアジンペルオキシド誘導体を取り出してもよく、取り扱い性の向上や熱分解時の危険性を低減させるため、トリアジンペルオキシド誘導体を有機溶媒の希釈品として使用してもよい。 The amount of the organic solvent used is usually about 30 to 1000 parts by mass with respect to 100 parts by mass of the total amount of raw materials. The triazine peroxide derivative may be taken out by distilling off the organic solvent after the step (C). may be used.
 前記工程(C)は、常圧下で、空気下で行うことができるが、窒素気流下または窒素雰囲気下で行ってもよい。 The step (C) can be carried out under normal pressure in air, but may also be carried out in a nitrogen stream or nitrogen atmosphere.
 前記精製工程としては、余剰の原料や副生物を除去するために、例えば、炭酸水素ナトリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸カリウム、水酸化ナトリウム、水酸化カリウム、亜硫酸ナトリウム、塩化水素、硫酸、塩化ナトリウム等の電解質水溶液や、イオン交換水を用いて洗浄し、目的物を精製する工程が挙げられる。 In the purification step, for example, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium carbonate, potassium carbonate, sodium hydroxide, potassium hydroxide, sodium sulfite, hydrogen chloride, sulfuric acid, A step of purifying the target product by washing with an electrolyte aqueous solution such as sodium chloride or ion-exchanged water can be mentioned.
<重合性組成物>
 本発明の重合性組成物は、(a)重合開始剤および(b)ラジカル重合性化合物を含有する。さらに、重合性組成物は、(c)アルカリ可溶性樹脂を含有することで現像性を付与することができる。また、重合性組成物は、その他の成分を適宜組み合わせて含有させることができる。
<Polymerizable composition>
The polymerizable composition of the present invention contains (a) a polymerization initiator and (b) a radically polymerizable compound. Furthermore, the polymerizable composition can be imparted with developability by containing (c) an alkali-soluble resin. In addition, the polymerizable composition can contain other components in appropriate combination.
<(a)重合開始剤>
 本発明の(a)重合開始剤は、前記一般式(1)で表されるトリアジンペルオキシド誘導体を含有する。(a)重合開始剤は、活性エネルギー線または熱により分解し、発生したラジカルが(b)ラジカル重合性化合物の重合(硬化)を開始する働きを有する。トリアジンペルオキシド誘導体は、単独で用いてもよく2種類以上を併用してもよい。
<(a) polymerization initiator>
The (a) polymerization initiator of the present invention contains the triazine peroxide derivative represented by the general formula (1). (a) The polymerization initiator is decomposed by active energy rays or heat, and the generated radicals act to initiate polymerization (curing) of the (b) radically polymerizable compound. Triazine peroxide derivatives may be used alone or in combination of two or more.
 また、前記(a)重合開始剤は、トリアジンペルオキシド誘導体以外の重合開始剤(以下、他の重合開始剤とも称す)を含有することができる。吸収帯の異なる2種類以上のトリアジンペルオキシド誘導体や他の重合開始剤を使用することで、例えば、高圧水銀ランプ等の複数の波長の光が放射されるランプに対し、重合性組成物の高感度化を図ることができる。また、重合性組成物に含まれる(b)ラジカル重合性化合物の重合性、重合性組成物に含まれる光を吸収や散乱する顔料等の種類、硬化物の膜厚等を考慮して、他の重合開始剤を用いることで、重合性組成物の表面硬化性や深部硬化性、透明性等を改良することができる。 In addition, the (a) polymerization initiator can contain a polymerization initiator other than the triazine peroxide derivative (hereinafter also referred to as another polymerization initiator). By using two or more types of triazine peroxide derivatives with different absorption bands and other polymerization initiators, the polymerizable composition has high sensitivity to lamps that emit light of multiple wavelengths, such as high-pressure mercury lamps. can be improved. In addition, considering the polymerizability of the (b) radical polymerizable compound contained in the polymerizable composition, the type of pigments that absorb or scatter light contained in the polymerizable composition, the film thickness of the cured product, etc. By using the polymerization initiator, the surface curability, deep part curability, transparency, etc. of the polymerizable composition can be improved.
 前記他の重合開始剤としては、公知のものが使用でき、例えば、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-プロピオフェノン、4’-(2-ヒドロキシエトキシ)-2-ヒドロキシ-2-メチルプロピオフェノン、2-ヒロドキシ-1-(4-(4-(2-ヒドロキシ-2-メチルプロピオニル)ベンジル)フェニル)-2-メチルプロパン-1-オン等のα―ヒドロキシアセトフェノン誘導体;2-メチル-4’-メチルチオ-2-モルホリノプロピオフェノン、2-ベンジル-2-(N,N-ジメチルアミノ)-1-(4-モルホリノフェニル)ブタン-1-オン、2-(ジメチルアミノ)-2-(4-メチルベンジル)-1-(4-モルホリノフェニル)ブタン-1-オン等のα―アミノアセトフェノン誘導体;ジフェニル-2,4,6-トリメチルベンゾイルホスフィンオキシド、フェニルビス(2,4,6-トリメチルベンゾイル)ホスフィンオキシド、エチル(メシチルカルボニル)フェニルホスフィナート等のアシルホスフィンオキサイド誘導体;1-[4-(フェニルチオ)フェニル]オクタン-1,2-ジオン-2-(O-ベンゾイルオキシム)、1-[({1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]エチリデン}アミノ)オキシ]エタノン、〕、[8-[5-(2,4,6-トリメチルフェニル)-11-(2-エチルヘキシル)-11H-ベンゾ[a]カルバゾイル]][2-(2,2,3,3-テトラフルオロプロポキシ)フェニル]メタノン-(O-アセチルオキシム)、1-[4-[4-(2-ベンゾフラニルカルボニル)フェニル]チオ]フェニル-4-メチル-1-ペンタノン-1-(O-アセチルオキシム)等のオキシムエステル誘導体;2-(4-メトキシフェニル)-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-(3,4-ジメトキシスチリル)-4,6-ビス(トリクロロメチル)1,3,5-トリアジン、2-(4-エトキシナフチル)-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン等のハロメチルトリアジン誘導体;2,2-ジメトキシ-2-フエニルアセトフエノン等のベンジルケタール誘導体;イソプロピルチオキサントン等のチオキサントン誘導体、4-(4-メチルフェニルチオ)ベンゾフェノン等のベンゾフェノン誘導体;3-ベンゾイルー7-ジエチルアミノクマリン、3,3’-カルボニルビス(7-ジエチルアミノクマリン)等のクマリン誘導体;2-(2-クロロフェニル)-1-[2-(2-クロロフェニル)-4,5-ジフェニル-1,3-ジアゾール-2-イル]-4,5-ジフェニルイミダゾール等のイミダゾール誘導体;3,3’、4,4’-テトラキス(tert-ブチルペルオキシカルボニル)ベンゾフェノン、2-(1-tert-ブチルパーオキシ-1-メチルエチル)-9H-チオキサンテン-9-オン、ジベンゾイルペルオキシド等の有機過酸化物;アゾビスイソブチロニトリル等のアゾ化合物;カンファーキノン等が挙げられる。他の重合開始剤は、単独で用いてもよく2種類以上を併用してもよい。 As the other polymerization initiator, known ones can be used. -α-hydroxyacetophenone derivatives such as 2-methylpropiophenone, 2-hydroxy-1-(4-(4-(2-hydroxy-2-methylpropionyl)benzyl)phenyl)-2-methylpropan-1-one 2-methyl-4′-methylthio-2-morpholinopropiophenone, 2-benzyl-2-(N,N-dimethylamino)-1-(4-morpholinophenyl)butan-1-one, 2-(dimethyl α-aminoacetophenone derivatives such as amino)-2-(4-methylbenzyl)-1-(4-morpholinophenyl)butan-1-one; diphenyl-2,4,6-trimethylbenzoylphosphine oxide, phenylbis(2 ,4,6-trimethylbenzoyl)phosphine oxide, ethyl(mesitylcarbonyl)phenylphosphinate and other acylphosphine oxide derivatives; 1-[4-(phenylthio)phenyl]octane-1,2-dione-2-(O -benzoyloxime), 1-[({1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]ethylidene}amino)oxy]ethanone, ], [8-[5- (2,4,6-trimethylphenyl)-11-(2-ethylhexyl)-11H-benzo[a]carbazolyl]][2-(2,2,3,3-tetrafluoropropoxy)phenyl]methanone-(O -acetyloxime), 1-[4-[4-(2-benzofuranylcarbonyl)phenyl]thio]phenyl-4-methyl-1-pentanone-1-(O-acetyloxime) and other oxime ester derivatives;2 -(4-methoxyphenyl)-4,6-bis(trichloromethyl)-1,3,5-triazine, 2-(3,4-dimethoxystyryl)-4,6-bis(trichloromethyl)1,3, Halomethyltriazine derivatives such as 5-triazine, 2-(4-ethoxynaphthyl)-4,6-bis(trichloromethyl)-1,3,5-triazine; 2,2-dimethoxy-2-phenylacetophenone benzyl ketal derivatives such as; thioxanthone derivatives such as isopropylthioxanthone; benzophenone derivatives such as 4-(4-methylphenylthio)benzophenone; 3-benzoyl-7-diethylaminocoumarin, 3,3′-carbonylbis(7-diethylaminocoumarin) coumarin derivatives of; imidazole derivatives such as 2-(2-chlorophenyl)-1-[2-(2-chlorophenyl)-4,5-diphenyl-1,3-diazol-2-yl]-4,5-diphenylimidazole 3,3′,4,4′-tetrakis(tert-butylperoxycarbonyl)benzophenone, 2-(1-tert-butylperoxy-1-methylethyl)-9H-thioxanthen-9-one, dibenzoyl peroxide organic peroxides such as; azo compounds such as azobisisobutyronitrile; and camphorquinone. Other polymerization initiators may be used alone or in combination of two or more.
 前記(a)重合開始剤の含有量は、(b)ラジカル重合性化合物100質量部に対して、0.1から40質量部であることが好ましく、0.5から20質量部であることがより好ましく、1から15質量部であることがさらに好ましい。(a)重合開始剤の含有量は、(b)ラジカル重合性化合物100質量部に対して、0.1質量部未満では硬化反応が進行しないため好ましくない。また、(a)重合開始剤の含有量は、(b)ラジカル重合性化合物100質量部に対して、40質量部より多い場合、(b)ラジカル重合性化合物への溶解度が飽和に達し、重合性組成物の成膜時に(a)重合開始剤の結晶が析出し、皮膜表面の荒れが問題になる場合や、(a)重合開始剤の分解残渣の増加により、硬化物の塗膜の強度が低下する場合があるため、好ましくない。 The content of the (a) polymerization initiator is preferably 0.1 to 40 parts by mass, more preferably 0.5 to 20 parts by mass, relative to 100 parts by mass of the radically polymerizable compound (b). More preferably, it is 1 to 15 parts by mass. If the content of the polymerization initiator (a) is less than 0.1 parts by mass with respect to 100 parts by mass of the radically polymerizable compound (b), the curing reaction does not proceed, which is not preferable. Further, when the content of (a) the polymerization initiator is more than 40 parts by mass with respect to 100 parts by mass of the (b) radically polymerizable compound, the solubility in the (b) radically polymerizable compound reaches saturation and polymerization (a) When the polymerization initiator crystals are precipitated during the film formation of the composition, causing a problem of roughening of the film surface, or (a) the increase in the decomposition residue of the polymerization initiator may reduce the strength of the cured product coating film. is not preferred because it may decrease
 なお、前記(a)重合開始剤に、前記他の重合開始剤を含む場合、他の重合開始剤の割合は、(a)重合開始剤中、80質量%以下であることが好ましく、50質量%以下であることがさらに好ましい。 When the polymerization initiator (a) contains the other polymerization initiator, the proportion of the other polymerization initiator in the polymerization initiator (a) is preferably 80% by mass or less, and is preferably 50% by mass. % or less.
<(b)ラジカル重合性化合物>
 本発明の(b)ラジカル重合性化合物としては、エチレン性不飽和基を有する化合物を好ましく用いることができる。(b)ラジカル重合性化合物としては、例えば、(メタ)アクリル酸エステル類、スチレン類、マレイン酸エステル類、フマル酸エステル類、イタコン酸エステル類、桂皮酸エステル類、クロトン酸エステル類、ビニルエーテル類、ビニルエステル類、ビニルケトン類、アリルエーテル類、アリルエステル類、N-置換マレイミド類、N-ビニル化合物類、不飽和ニトリル類、オレフィン類等が挙げられる。これらの中でも、反応性が高い(メタ)アクリル酸エステル類を含むことが好ましい。(b)ラジカル重合性化合物は、単独で用いてもよく2種類以上を併用してもよい。
<(b) radically polymerizable compound>
As the (b) radically polymerizable compound of the present invention, a compound having an ethylenically unsaturated group can be preferably used. (b) Radically polymerizable compounds include, for example, (meth)acrylic acid esters, styrenes, maleic acid esters, fumaric acid esters, itaconic acid esters, cinnamic acid esters, crotonic acid esters, and vinyl ethers. , vinyl esters, vinyl ketones, allyl ethers, allyl esters, N-substituted maleimides, N-vinyl compounds, unsaturated nitriles, olefins and the like. Among these, it is preferable to contain highly reactive (meth)acrylic acid esters. (b) Radically polymerizable compounds may be used alone or in combination of two or more.
 前記(メタ)アクリル酸エステル類は、単官能化合物および多官能化合物を使用することができる。単官能化合物としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート等のアルキル(メタ)アクリレート;シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレ-ト、ジシクロペンテニル(メタ)アクリレ-ト、ジシクロペンテニルオキシエチル(メタ)アクリレ-ト、2―エチル-2-アダマンチル(メタ)アクリレート等の(メタ)アクリル酸と脂環族アルコールとのエステル化合物;フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート等のアリール(メタ)アクリレート;2-ヒドロキシエチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、3-ヒドロキシ-1-アダマンチル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート等のヒドロキシ基を有するモノマー;メトキシエチル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、2-フェニルフェノキシエチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、(2-メチル-2-エチル-1,3-ジオキソラン-4-イル)メチル(メタ)アクリレート、(3-エチルオキセタン-3-イル)メチル(メタ)アクリレート、環状トリメチロールプロパンホルマール(メタ)アクリレート等の鎖状または環状のエーテル結合を有するモノマー等;N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジメチル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N,N-ジメチルアミノプロピル(メタ)アクリルアミド、ジアセトン(メタ)アクリルアミド、(メタ)アクリロイルモルホリン、N-(メタ)アクリロイルオキシエチルヘキサヒドロフタルイミド等の窒素原子を有するモノマー;2-(メタ)アクリロイルオキシエチルイソシアネート等のイソシアネート基を有するモノマー;グリシジル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートグリシジルエーテル等のエポキシ基を有するモノマー;リン酸2-((メタ)アクリロイルオキシ)エチル等のリン原子を有するモノマー;3-(メタ)アクリロキシプロピルトリメトキシシラン等のケイ素原子を有するモノマー;2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3,3-ペンタフルオロプロピル(メタ)アクリレート、2-(パーフルオロヘキシル)エチル(メタ)アクリレート等のフッ素原子を有するモノマー;(メタ)アクリル酸、コハク酸モノ(2-(メタ)アクリロイルオキシエチル)、フタル酸モノ(2-(メタ)アクリロイルオキシエチル)、マレイン酸モノ(2-(メタ)アクリロイルオキシエチル)、ω-カルボキシ-ポリカプロラクトンモノ(メタ)アクリレート等のカルボキシル基を有するモノマー等が挙げられる。 Monofunctional compounds and polyfunctional compounds can be used for the (meth)acrylic acid esters. Monofunctional compounds include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, tert-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) Alkyl (meth)acrylates such as acrylates; cyclohexyl (meth)acrylate, isobornyl (meth)acrylate, dicyclopentanyl (meth)acrylate, dicyclopentenyl (meth)acrylate, dicyclopentenyloxyethyl (meth) Ester compounds of (meth)acrylic acid and alicyclic alcohol such as acrylate and 2-ethyl-2-adamantyl (meth)acrylate; Aryl (meth)acrylates such as phenyl (meth)acrylate and benzyl (meth)acrylate ; 2-hydroxyethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, 3-hydroxy-1-adamantyl (meth) acrylate, polyethylene glycol mono (meth) Monomers having a hydroxy group such as acrylates and polypropylene glycol mono(meth)acrylates; Tetrahydrofurfuryl (meth)acrylate, (2-methyl-2-ethyl-1,3-dioxolan-4-yl)methyl (meth)acrylate, (3-ethyloxetan-3-yl)methyl (meth)acrylate, cyclic Monomers having a chain or cyclic ether bond such as trimethylolpropane formal (meth)acrylate; N,N-dimethylaminoethyl (meth)acrylate, N,N-dimethyl (meth)acrylamide, N-methylol (meth) Nitrogen atoms such as acrylamide, N-isopropyl (meth)acrylamide, N,N-dimethylaminopropyl (meth)acrylamide, diacetone (meth)acrylamide, (meth)acryloylmorpholine, N-(meth)acryloyloxyethylhexahydrophthalimide Monomers having; 2-(meth) acryloyloxyethyl isocyanate and other isocyanate group-containing monomers; glycidyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate glycidyl ether and other epoxy group-containing monomers; phosphoric acid 2-(( Phosphorus atom-containing monomers such as meth)acryloyloxy)ethyl; Silicon atom-containing monomers such as 3-(meth)acryloxypropyltrimethoxysilane; 2,2,2-trifluoroethyl (meth)acrylate, 2,2 , 3,3,3-Pentafluoropropyl (meth)acrylate, 2-(perfluorohexyl)ethyl (meth)acrylate and other fluorine atom-containing monomers; (meth)acrylic acid, monosuccinic acid (2-(meth) acryloyloxyethyl), phthalate mono(2-(meth)acryloyloxyethyl), maleate mono(2-(meth)acryloyloxyethyl), ω-carboxy-polycaprolactone mono(meth)acrylate, etc. A monomer etc. are mentioned.
 前記多官能化合物としては、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、グリセリンプロポキシトリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレートモノステアレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、2,2-ビス(4-(メタ)アクリロキシエトキシフェニル)プロパン、2,2-ビス(4-(メタ)アクリロキシポリエトキシフェニル)プロパン、9,9-ビス(4-(2-(メタ)アクリロイルオキシエトキシ)フェニル)フルオレン、9,9-ビス(4-(2-(2-(メタ)アクリロイルオキシエトキシ)エトキシ)フェニル)フルオレン、等の多価アルコールと(メタ)アクリル酸とのエステル化合物;ビス(4-(メタ)アクリロキシフェニル)スルフィド、ビス(4-(メタ)アクリロイルチオフェニル)スルフィド、トリス(2-(メタ)アクリロイルオキシエチル)イソシアヌレート、エチレンビス(メタ)アクリルアミド、(メタ)アクリル酸亜鉛、(メタ)アクリル酸ジルコニウム、脂肪族ウレタンアクリレート、芳香族ウレタンアクリレート、エポキシアクリレート、ポリエステルアクリレート等が挙げられる。 Examples of the polyfunctional compound include ethylene glycol di(meth)acrylate, diethylene glycol di(meth)acrylate, polyethylene glycol di(meth)acrylate, polypropylene glycol di(meth)acrylate, 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, glycerin di(meth)acrylate, glycerin tri(meth)acrylate, glycerin propoxy tri(meth)acrylate, trimethylolethane tri (meth)acrylates, trimethylolpropane tri(meth)acrylate, pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, pentaerythritol di(meth)acrylate monostearate, dipentaerythritol penta(meth)acrylate, dipentaerythritol hexa(meth)acrylate, neopentylglycol hydroxypivalate di(meth)acrylate, tricyclodecanedimethanol di(meth)acrylate, 2,2-bis(4-(meth)acryloxyethoxyphenyl)propane, 2,2-bis(4-(meth)acryloxypolyethoxyphenyl)propane, 9,9-bis(4-(2-(meth)acryloyloxyethoxy)phenyl)fluorene, 9,9-bis(4-( 2-(2-(meth)acryloyloxyethoxy)ethoxy)phenyl)fluorene, ester compound of polyhydric alcohol and (meth)acrylic acid; bis(4-(meth)acryloxyphenyl)sulfide, bis(4 - (meth) acryloylthiophenyl) sulfide, tris (2-(meth) acryloyloxyethyl) isocyanurate, ethylene bis (meth) acrylamide, zinc (meth) acrylate, zirconium (meth) acrylate, aliphatic urethane acrylate, Aromatic urethane acrylates, epoxy acrylates, polyester acrylates and the like can be mentioned.
 前記(メタ)アクリル酸エステル類は、重合性組成物の感度の向上、酸素阻害の低減や、硬化物の塗膜の機械的強度や硬度、耐熱性、耐久性、耐薬品性の向上の観点から、前記多価アルコールと(メタ)アクリル酸とのエステル化合物が好ましく、特に、トリメチロールエタントリアクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレートが好ましい。 The (meth) acrylic esters improve the sensitivity of the polymerizable composition, reduce oxygen inhibition, and improve the mechanical strength and hardness of the coating film of the cured product, heat resistance, durability, and chemical resistance. Therefore, ester compounds of the polyhydric alcohol and (meth)acrylic acid are preferable, and in particular, trimethylolethane triacrylate, trimethylolpropane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol pentaacrylate, di Pentaerythritol hexaacrylate is preferred.
 なお、前記重合性組成物は、前記(b)ラジカル重合性化合物から得られた共重合体を加えることができる。 A copolymer obtained from the (b) radically polymerizable compound can be added to the polymerizable composition.
<(c)アルカリ可溶性樹脂>
 前記重合性組成物は、さらに(c)アルカリ可溶性樹脂を配合することにより、ネガ型レジストとして好適に使用することができる。(c)アルカリ可溶性樹脂としては、ネガ型レジストに一般的に使用されるものを用いることができ、アルカリ水溶液に可溶な樹脂であれば特に限定されないが、カルボキシル基を含む樹脂であることが好ましい。(c)アルカリ可溶性樹脂は、単独で用いてもよく2種類以上を併用してもよい。
<(c) Alkali-soluble resin>
The polymerizable composition can be suitably used as a negative resist by further blending (c) an alkali-soluble resin. As the alkali-soluble resin (c), those commonly used in negative resists can be used, and there are no particular limitations as long as the resin is soluble in an alkaline aqueous solution, but a resin containing a carboxyl group is preferred. preferable. (c) The alkali-soluble resin may be used alone or in combination of two or more.
 本発明の(c)アルカリ可溶性樹脂には、例えば、カルボキシル基含有(メタ)アクリル酸エステル共重合物、カルボキシル基含有エポキシアクリレート樹脂等が好ましく使用される。 For the (c) alkali-soluble resin of the present invention, for example, a carboxyl group-containing (meth)acrylic acid ester copolymer, a carboxyl group-containing epoxy acrylate resin, etc. are preferably used.
 前記カルボキシル基含有(メタ)アクリル酸エステル共重合物は、前述の(メタ)アクリル酸エステル類の単官能化合物から選ばれる少なくとも1種(但し、前記カルボキシル基を有するモノマーを除く)と、(メタ)アクリル酸、(メタ)アクリル酸の二量体、イタコン酸、クロトン酸、マレイン酸、フマル酸、ビニル安息香酸、桂皮酸、コハク酸モノ(2-(メタ)アクリロイルオキシエチル)、フタル酸モノ(2-(メタ)アクリロイルオキシエチル)、マレイン酸モノ(2-(メタ)アクリロイルオキシエチル)、ω-カルボキシ-ポリカプロラクトンモノ(メタ)アクリレート、およびそれらの酸無水物等のエチレン性不飽和基含有カルボン酸から選ばれる少なくとも1種を含む共重合物である。 The carboxyl group-containing (meth)acrylic acid ester copolymer includes at least one selected from the monofunctional compounds of the (meth)acrylic acid esters described above (excluding the monomer having the carboxyl group), ) acrylic acid, dimer of (meth)acrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid, vinylbenzoic acid, cinnamic acid, monosuccinate (2-(meth)acryloyloxyethyl), monophthalate Ethylenically unsaturated groups such as (2-(meth)acryloyloxyethyl), maleate mono(2-(meth)acryloyloxyethyl), ω-carboxy-polycaprolactone mono(meth)acrylate, and their anhydrides It is a copolymer containing at least one selected from carboxylic acids.
 前記カルボキシル基含有(メタ)アクリル酸エステル共重合物としては、例えば、メチルメタクリレートと、シクロヘキシルメタクリレートと、メタクリル酸の共重合物等が挙げられる。さらに、スチレン、α-メチルスチレン、N-ビニル-2-ピロリドン、N-メチルマレイミド、N-フェニルマレイミド、N-シクロヘキシルマレイミド、フマル酸ジエチル、イタコン酸ジエチル等が共重合されても良い。 Examples of the carboxyl group-containing (meth)acrylic acid ester copolymer include copolymers of methyl methacrylate, cyclohexyl methacrylate, and methacrylic acid. Furthermore, styrene, α-methylstyrene, N-vinyl-2-pyrrolidone, N-methylmaleimide, N-phenylmaleimide, N-cyclohexylmaleimide, diethyl fumarate, diethyl itaconate and the like may be copolymerized.
 また、前記カルボキシル基含有(メタ)アクリル酸エステル共重合物は、ネガ型レジストの現像性と耐熱性、硬度、耐薬品性等の被膜特性を両立させる観点から、エチレン性不飽和基等の反応性基が側鎖に導入されたカルボキシル基含有(メタ)アクリル酸エステル共重合物も好ましく使用される。上記の側鎖にエチレン性不飽和基を導入する方法として、例えば、カルボキシル基含有(メタ)アクリル酸エステル共重合物のカルボキシル基の一部に、グリシジル(メタ)アクリレート等の分子内にエポキシ基とエチレン性不飽和基を有する化合物を付加させる方法や、エポキシ基およびカルボキシル基含有(メタ)アクリル酸エステル共重合物に、メタクリル酸等のエチレン性不飽和基含有モノカルボン酸を付加させる方法や、水酸基およびカルボキシル基含有(メタ)アクリル酸エステル共重合物に、2-(メタ)アクリロイルオキシエチルイソシアネート等の分子内にイソシアネート基とエチレン性不飽和基を有する化合物を付加させる方法等が挙げられる。 In addition, the carboxyl group-containing (meth)acrylic acid ester copolymer reacts with an ethylenically unsaturated group, etc., from the viewpoint of achieving both developability of a negative resist and film properties such as heat resistance, hardness, and chemical resistance. A carboxyl group-containing (meth)acrylic acid ester copolymer having a side chain introduced with a functional group is also preferably used. As a method for introducing an ethylenically unsaturated group to the side chain, for example, a part of the carboxyl group of the carboxyl group-containing (meth)acrylic acid ester copolymer, an epoxy group in the molecule such as glycidyl (meth)acrylate And a method of adding a compound having an ethylenically unsaturated group, a method of adding an ethylenically unsaturated group-containing monocarboxylic acid such as methacrylic acid to an epoxy group and a carboxyl group-containing (meth) acrylic acid ester copolymer, and , a method of adding a compound having an isocyanate group and an ethylenically unsaturated group in the molecule such as 2-(meth)acryloyloxyethyl isocyanate to a hydroxyl group- and carboxyl group-containing (meth)acrylic acid ester copolymer, and the like. .
 前記カルボキシル基含有エポキシアクリレート樹脂としては、エポキシ化合物と前記エチレン性不飽和基含有カルボン酸との反応物であるエポキシアクリレート樹脂に、更に酸無水物を反応させた化合物が好適である。 As the carboxyl group-containing epoxy acrylate resin, a compound obtained by further reacting an epoxy acrylate resin, which is a reaction product of an epoxy compound and the ethylenically unsaturated group-containing carboxylic acid, with an acid anhydride is suitable.
 前記エポキシ樹脂としては、例えば、(o,m,p-)クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、トリスフェノールメタン型エポキシ樹脂、ビスフェニルフルオレン型エポキシ樹脂等が挙げられる。エポキシ樹脂は、単独で用いてもよく2種類以上を併用してもよい。 Examples of the epoxy resin include (o, m, p-) cresol novolak type epoxy resin, phenol novolak type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, trisphenolmethane type epoxy resin, bisphenylfluorene. type epoxy resin and the like. Epoxy resins may be used alone or in combination of two or more.
 前記酸無水物としては、例えば、無水マレイン酸、無水コハク酸、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、4-メチルヘキサヒドロ無水フタル酸、エンドメチレンテトラヒドロ無水フタル酸、無水クロレインド酸、無水トリメリット酸、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸ニ無水物、ビフェニルテトラカルボン酸ニ無水物、無水イタコン酸等が挙げられる。 Examples of the acid anhydride include maleic anhydride, succinic anhydride, phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, 4-methylhexahydrophthalic anhydride, endomethylenetetrahydrophthalic anhydride, and chlorinic anhydride. , trimellitic anhydride, pyromellitic anhydride, benzophenonetetracarboxylic dianhydride, biphenyltetracarboxylic dianhydride, and itaconic anhydride.
 さらに、カルボキシル基含有エポキシアクリレート樹脂の合成の際に、必要に応じて、無水トリメリット酸等のトリカルボン酸無水物を用いて、反応後に残った酸無水物基を加水分解することにより、カルボキシル基を増やすことができる。また、エチレン性不飽和基含有の無水マレイン酸を用いて、更にエチレン性二重結合を増やすこともできる。 Furthermore, when synthesizing the carboxyl group-containing epoxy acrylate resin, if necessary, using a tricarboxylic acid anhydride such as trimellitic anhydride, by hydrolyzing the acid anhydride group remaining after the reaction, the carboxyl group can be increased. Also, ethylenically unsaturated group-containing maleic anhydride can be used to further increase the number of ethylenic double bonds.
 前記(c)アルカリ可溶性樹脂の酸価は、20から300mgKOH/gであることが好ましく、40から180mg/KOHであることがさらに好ましい。酸価が20mgKOH/gよりも少ない場合、アルカリ水溶液への溶解性が乏しいため、未露光部の現像が困難となるため好ましくない。また、酸価が300mgKOH/gよりも多い場合、現像時に露光部も基材から脱離しやすい傾向にあるため、好ましくない。 The acid value of the (c) alkali-soluble resin is preferably 20 to 300 mgKOH/g, more preferably 40 to 180 mg/KOH. If the acid value is less than 20 mgKOH/g, the solubility in an alkaline aqueous solution is poor, making it difficult to develop unexposed areas, which is not preferred. Moreover, when the acid value is more than 300 mgKOH/g, the exposed portion tends to be easily detached from the substrate during development, which is not preferable.
 前記(c)アルカリ可溶性樹脂の重量平均分子量は、1,000から100,000であることが好ましく、1,500から30,000であることが好ましい。重量平均分子量が1,000よりも小さい場合、露光部の耐熱性や硬度等が乏しいため、好ましくない。重量平均分子量が100,000よりも大きい場合は、未露光部の現像が困難となる場合があるため、好ましくない。尚、前記重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)法によって測定することができる。一例として、GPC装置としてHLC-8220GPC(東ソー社製)、カラムとして3本のTSKgelHZM-M(東ソー社製)を使用して、展開溶媒としてテトラヒドロフラン、カラム温度40℃、流速0.3ミリリットル/分、RI検出器、試料注入濃度0.5質量%、注入量10マイクロリットルの条件下、クロマトグラフィーを行ない、ポリスチレン換算の重量平均分子量として求めることができる。 The weight average molecular weight of the (c) alkali-soluble resin is preferably from 1,000 to 100,000, more preferably from 1,500 to 30,000. If the weight-average molecular weight is less than 1,000, the heat resistance and hardness of the exposed portion are poor, which is not preferable. If the weight-average molecular weight is more than 100,000, it may be difficult to develop the unexposed areas, which is not preferred. The weight average molecular weight can be measured by gel permeation chromatography (GPC). As an example, using HLC-8220GPC (manufactured by Tosoh Corporation) as a GPC apparatus, three TSKgelHZM-M (manufactured by Tosoh Corporation) as columns, tetrahydrofuran as a developing solvent, column temperature 40 ° C., flow rate 0.3 ml / min. , RI detector, a sample injection concentration of 0.5% by mass, and an injection amount of 10 microliters.
 また、(c)アルカリ可溶性樹脂の割合は、重合性組成物の全固形分中、10から70質量%であることが好ましく、15から60質量%であることがより好ましい。前記割合が10質量%よりも少ない場合、現像性が乏しいため、好ましくない。前記割合が70質量%よりも多い場合、パターン形状の再現性や耐熱性が低下するため、好ましくない。 In addition, the ratio of (c) the alkali-soluble resin is preferably 10 to 70% by mass, more preferably 15 to 60% by mass, in the total solid content of the polymerizable composition. If the ratio is less than 10% by mass, the developability is poor, which is not preferred. If the proportion is more than 70% by mass, the pattern shape reproducibility and heat resistance are lowered, which is not preferable.
 なお、前記(c)アルカリ可溶性樹脂は、合成反応後に有効成分であるアルカリ可溶性樹脂を単離精製したものを用いることができる他、合成反応により得られた反応溶液、その乾燥物等をそのまま用いることもできる。 As the alkali-soluble resin (c), the alkali-soluble resin, which is an active ingredient, can be isolated and purified after the synthesis reaction. can also
<その他の成分>
 前記その他の成分として、硬化促進剤を用いることで、重合性組成物の加熱による硬化を低温で行なうこともできる。硬化促進剤としては、例えば、アミン化合物、チオ尿素化合物、2-メルカプトベンズイミダゾール系化合物、オルトベンゾイックスルフィミド、第4周期遷移金属化合物合物等を使用することができる。硬化促進剤は、単独で用いてもよく2種類以上を併用してもよい。
<Other ingredients>
By using a curing accelerator as the other component, the polymerizable composition can be cured by heating at a low temperature. Examples of curing accelerators that can be used include amine compounds, thiourea compounds, 2-mercaptobenzimidazole compounds, orthobenzoic sulphimides, and fourth period transition metal compound compounds. The curing accelerator may be used alone or in combination of two or more.
 前記アミン化合物としては、第三級アミンが好ましく、例えば、N,N-ジメチルアニリン、N,N-ジメチルトルイジン、N,N-ジエチルアニリン、N,N-ビス(2-ヒドロキシエチル)-p-トルイジン、4-(ジメチルアミノ)安息香酸エチル、4-ジメチルアミノ安息香酸(2-メタクリロイルオキシ)エチル等が挙げられる。 The amine compound is preferably a tertiary amine, such as N,N-dimethylaniline, N,N-dimethyltoluidine, N,N-diethylaniline, N,N-bis(2-hydroxyethyl)-p- toluidine, 4-(dimethylamino)ethyl benzoate, (2-methacryloyloxy)ethyl 4-dimethylaminobenzoate and the like.
 前記チオ尿素としては、例えば、アセチルチオ尿素、N,N‘ジブチルチオ尿素等が挙げられる。 Examples of the thiourea include acetylthiourea and N,N'dibutylthiourea.
 前記2-メルカプトベンズイミダゾール系化合物としては、例えば、2-メルカプトベンズイミダゾール、2-メルカプトメチルベンズイミダゾール、2-メルカプトメトキシベンズイミダゾール等が挙げられる。 Examples of the 2-mercaptobenzimidazole compounds include 2-mercaptobenzimidazole, 2-mercaptomethylbenzimidazole, and 2-mercaptomethoxybenzimidazole.
 前記第4周期遷移金属化合物合物としては、バナジウム、コバルト、銅等の有機酸塩または金属キレート化合物から選択することができ、例えば、オクチル酸コバルト、ナフテン酸コバルト、ナフテン酸銅、ナフテン酸バナジウム、銅アセチルアセトネート、マンガンアセチルアセトネート、バナジルアセチルアセトネート等が挙げられる。 The fourth period transition metal compound compound can be selected from organic acid salts or metal chelate compounds of vanadium, cobalt, copper, etc. For example, cobalt octylate, cobalt naphthenate, copper naphthenate, vanadium naphthenate , copper acetylacetonate, manganese acetylacetonate, vanadyl acetylacetonate and the like.
 前記硬化促進剤は、重合性組成物を使用する直前に配合することが好ましい。硬化促進剤の含有量は、(b)ラジカル重合性化合物100質量部に対して、0.1から20質量部であることが好ましく、0.2から10質量部であることがより好ましい。 The curing accelerator is preferably added immediately before using the polymerizable composition. The content of the curing accelerator is preferably 0.1 to 20 parts by mass, more preferably 0.2 to 10 parts by mass, based on 100 parts by mass of the radically polymerizable compound (b).
 前記その他の成分として、重合性組成物には、コーティング剤や塗料、印刷インキ、感光性印刷版、接着剤、カラーレジストやブラックレジスト等の各種フォトレジスト等の用途で一般的に使用されている添加剤を配合できる。添加剤としては、例えば、増感剤(イソプロピルチオキサントン、ジエチルチオキサントン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、9,10-ジブトキシアントラセン、クマリン、ケトクマリン、アクリジンオレンジ、カンファーキノン等)、重合禁止剤(p-メトキシフェノール、ヒドロキノン、2,6-ジ-t-ブチル-4-メチルフェノール、フェノチアジン等)、紫外線吸収剤、赤外線吸収剤、連鎖移動剤、光安定剤、酸化防止剤、レベリング剤、表面調整剤、界面活性剤、増粘剤、消泡剤、接着促進剤、可塑剤、エポキシ化合物、チオール化合物、エチレン性不飽和結合を有する樹脂、飽和樹脂、着色染料、蛍光染料、顔料(有機顔料、無機顔料)、炭素系材料(炭素繊維、カーボンブラック、黒鉛、黒鉛化カーボンブラック、活性炭、カーボンナノチューブ、フラーレン、グラフェン、カーボンマイクロコイル、カーボンナノホーン、カーボンエアロゲル等)、金属酸化物(酸化チタン、酸化イリジウム、酸化亜鉛、アルミナ、シリカ等)、金属(銀、銅等)、無機化合物(ガラス粉末、層状粘度鉱物、マイカ、タルク、炭酸カルシウム等)、分散剤、難燃剤等が挙げられる。添加剤は、単独で用いてもよく2種類以上を併用してもよい。 As the other components, the polymerizable composition is generally used for applications such as coating agents, paints, printing inks, photosensitive printing plates, adhesives, and various photoresists such as color resists and black resists. Additives can be added. Examples of additives include sensitizers (isopropylthioxanthone, diethylthioxanthone, 4,4′-bis(diethylamino)benzophenone, 9,10-dibutoxyanthracene, coumarin, ketocoumarin, acridine orange, camphorquinone, etc.), polymerization inhibition agents (p-methoxyphenol, hydroquinone, 2,6-di-t-butyl-4-methylphenol, phenothiazine, etc.), ultraviolet absorbers, infrared absorbers, chain transfer agents, light stabilizers, antioxidants, leveling agents , surface modifiers, surfactants, thickeners, defoamers, adhesion promoters, plasticizers, epoxy compounds, thiol compounds, resins with ethylenically unsaturated bonds, saturated resins, colored dyes, fluorescent dyes, pigments ( organic pigments, inorganic pigments), carbon-based materials (carbon fibers, carbon black, graphite, graphitized carbon black, activated carbon, carbon nanotubes, fullerenes, graphene, carbon microcoils, carbon nanohorns, carbon aerogels, etc.), metal oxides (oxidation titanium, iridium oxide, zinc oxide, alumina, silica, etc.), metals (silver, copper, etc.), inorganic compounds (glass powder, lamellar clay minerals, mica, talc, calcium carbonate, etc.), dispersants, flame retardants, etc. . Additives may be used alone or in combination of two or more.
 前記添加剤の含有量は、使用目的に応じて適宜選択され、特に制限されるものではないが、通常、(b)ラジカル重合性化合物100質量部に対して、500質量部以下でありことが好ましく、100質量部以下であることより好ましい。 The content of the additive is appropriately selected according to the purpose of use, and is not particularly limited, but is usually 500 parts by mass or less with respect to 100 parts by mass of the radically polymerizable compound (b). It is preferably 100 parts by mass or less, and more preferably 100 parts by mass or less.
 前記重合性組成物には、粘度や塗装性、硬化膜の平滑性の改良のため、更に溶媒を加えることもできる。溶媒は、前記(a)重合開始剤、前記(b)ラジカル重合性化合物、前記(c)アルカリ可溶性樹脂、前記その他の成分を、溶解または分散することができるものであり、乾燥温度において揮発する溶媒であれば、特に制限されるものではない。 A solvent may be further added to the polymerizable composition in order to improve the viscosity, paintability, and smoothness of the cured film. The solvent is capable of dissolving or dispersing the (a) polymerization initiator, the (b) radically polymerizable compound, the (c) alkali-soluble resin, and the other components, and volatilizes at the drying temperature. There are no particular restrictions as long as it is a solvent.
 前記溶媒としては、例えば、水、アルコール系溶媒、カルビトール系溶媒、エステル系溶媒、ケトン系溶媒、エーテル系溶媒、ラクトン系溶媒、不飽和炭化水素系溶媒、セロソルブアセテート系溶媒、カルビトールアセテート系溶媒やプロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールジメチルエーテル等が挙げられる。溶媒は、単独で用いてもよく2種類以上を併用してもよい。 Examples of the solvent include water, alcohol solvents, carbitol solvents, ester solvents, ketone solvents, ether solvents, lactone solvents, unsaturated hydrocarbon solvents, cellosolve acetate solvents, carbitol acetate solvents, Examples include solvents, propylene glycol monomethyl ether acetate, and diethylene glycol dimethyl ether. The solvent may be used alone or in combination of two or more.
 前記溶媒の使用量は、重合性組成物の固形分100質量部に対して、10から1000質量部であることが好ましく、20から500質量部であることがより好ましい。 The amount of the solvent used is preferably 10 to 1000 parts by mass, more preferably 20 to 500 parts by mass, based on 100 parts by mass of the solid content of the polymerizable composition.
<重合性組成物の調製方法>
 前記重合性組成物を調整する場合には、収納容器内に前記(a)重合開始剤、前記(b)ラジカル重合性化合物、必要に応じて、前記(c)アルカリ可溶性樹脂や前記その他の成分を投入し、ペイントシェーカー、ビーズミル、サンドグラインドミル、ボールミル、アトライターミル、2本ロールミル、3本ロールミル等を用いて、常法に従って溶解または分散させればよい。また、必要に応じて、メッシュまたはメンブレンフィルター等を通してもろ過してもよい。
<Method for preparing polymerizable composition>
When preparing the polymerizable composition, the (a) polymerization initiator, the (b) radically polymerizable compound, and, if necessary, the (c) alkali-soluble resin and other components are placed in a storage container. and dissolved or dispersed according to a conventional method using a paint shaker, a bead mill, a sand grind mill, a ball mill, an attritor mill, a two-roll mill, a three-roll mill, or the like. In addition, if necessary, it may be filtered through a mesh or membrane filter or the like.
 なお、前記重合性組成物の調整において、前記(a)重合開始剤は、重合性組成物に最初から添加しておいてもよいが、重合性組成物を比較的長時間保存する場合には、使用直前に(a)重合開始剤を(b)ラジカル重合性を含む組成物中に溶解または分散させることが好ましい。 In the preparation of the polymerizable composition, the (a) polymerization initiator may be added to the polymerizable composition from the beginning. It is preferable to dissolve or disperse (a) the polymerization initiator in (b) the radically polymerizable composition immediately before use.
<硬化物の製造方法>
 本発明の硬化物は、前記重合性組成物から形成されるものである。硬化物の製造方法は、重合性組成物を基板上に塗布後、当該重合性組成物を活性エネルギー線で照射する工程、および当該重合性組成物を加熱する工程のいずれかの工程を含む製造方法である。また、前記活性エネルギー線で照射する工程と前記加熱する工程の両方を含む工程を、デュアルキュア工程ともいう。
<Method for producing cured product>
The cured product of the present invention is formed from the polymerizable composition. The method for producing a cured product comprises any one of a step of applying a polymerizable composition on a substrate, irradiating the polymerizable composition with an active energy ray, and a step of heating the polymerizable composition. The method. A process including both the step of irradiating with active energy rays and the step of heating is also referred to as a dual cure step.
 前記塗布方法としては、例えば、スピンコート法、バーコート法、スプレーコート法、ディップコート法、フローコート法、スリットコート法、ドクターブレードコート法、グラビアコート法、スクリーン印刷法、オフセット印刷法、インクジェット印刷法、ディスペンサー印刷法等の種々の方法が挙げられる。また、前記基板は、例えば、ガラス、シリコンウエハ、金属、プラスチック等のフィルムやシート、および立体形状の成形品等が挙げられ、基板の形状が制限されることは無い。 Examples of the coating method include spin coating, bar coating, spray coating, dip coating, flow coating, slit coating, doctor blade coating, gravure coating, screen printing, offset printing, and inkjet. Various methods such as a printing method and a dispenser printing method can be used. Examples of the substrate include films and sheets of glass, silicon wafers, metals, plastics, etc., and three-dimensional molded products, and the shape of the substrate is not limited.
 上記の重合性組成物を活性エネルギー線で照射する工程は、電子線、紫外線、可視光線、放射線等の活性エネルギー線の照射により、(a)重合開始剤を分解させて、(b)ラジカル重合性化合物を重合させることで、硬化物を得ることができるものである。 The step of irradiating the polymerizable composition with an active energy ray includes, by irradiating with an active energy ray such as an electron beam, ultraviolet light, visible light, or radiation, (a) decomposing the polymerization initiator, and (b) radical polymerization. A cured product can be obtained by polymerizing the curable compound.
 活性エネルギー線は、活性エネルギー線の波長が250から450nmの光であることが好ましく、硬化を迅速に行うことができる観点から、350から410nmの光であることがより好ましい。 The active energy ray is preferably light with a wavelength of 250 to 450 nm, and more preferably light with a wavelength of 350 to 410 nm from the viewpoint of rapid curing.
 前記光の照射の光源としては、低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、メタルハライドランプ、紫外線無電極ランプ、発光ダイオード(LED)、キセノンアークランプ、カーボンアークランプ、太陽光、YAGレーザー等の固体レーザー、半導体レーザー、アルゴンレーザー等のガスレーザー等を使用することができる。なお、(a)重合開始剤の吸収が少ない可視光から赤外光の光を用いる場合には、前記添加剤として、その光を吸収する増感剤を使用することにより硬化を行なうことができる。 Light sources for the light irradiation include low-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, metal halide lamps, ultraviolet electrodeless lamps, light-emitting diodes (LEDs), xenon arc lamps, carbon arc lamps, sunlight, YAG lasers, and the like. solid-state lasers, semiconductor lasers, gas lasers such as argon lasers, and the like can be used. In addition, (a) in the case of using light from visible light to infrared light that is less absorbed by the polymerization initiator, curing can be performed by using a sensitizer that absorbs the light as the additive. .
 前記活性エネルギー線の露光量は、活性エネルギー線の波長や強度、重合性組成物の組成に応じて適宜設定すべきである。一例として、UV-A領域での露光量は、10から5,000mJ/cmであることが好ましく、30から1,000mJ/cmであることがより好ましい。なお、上記の硬化物の製造方法として、デュアルキュア工程を適用し、かつ前記活性エネルギー線で照射する工程の後に、加熱する工程を行う場合、(a)重合開始剤が、活性エネルギー線により完全に分解してしまわないように、露光量を適宜設定すべきである。 The exposure amount of the active energy ray should be appropriately set according to the wavelength and intensity of the active energy ray and the composition of the polymerizable composition. As an example, the exposure dose in the UV-A region is preferably 10 to 5,000 mJ/cm 2 and more preferably 30 to 1,000 mJ/cm 2 . In addition, when a dual curing step is applied as the method for producing the cured product, and a step of heating is performed after the step of irradiating with the active energy ray, (a) the polymerization initiator is completely cured by the active energy ray. The amount of exposure should be appropriately set so as not to decompose into two.
 上記の重合性組成物を加熱する工程は、熱により(a)重合開始剤を分解させて、(b)ラジカル重合性化合物を重合させることで、硬化物を得ることができるものである。 In the step of heating the polymerizable composition, a cured product can be obtained by (a) decomposing the polymerization initiator and (b) polymerizing the radically polymerizable compound.
 前記重合性組成物を加熱する工程において、加熱する手法は、例えば、加熱、通風加熱等が挙げられる。加熱の方式としては、特に制限されることはないが、例えば、オーブン、ホットプレート、赤外線照射、電磁波照射等が挙げられる。また、通風加熱の方式としては、例えば、送風式乾燥オーブン等が挙げられる。 In the step of heating the polymerizable composition, examples of heating methods include heating and ventilation heating. The heating method is not particularly limited, and examples thereof include an oven, a hot plate, infrared irradiation, electromagnetic wave irradiation and the like. Moreover, as a ventilation heating method, for example, a ventilation drying oven or the like can be used.
 前記重合性組成物を加熱する工程において、加熱温度は高いほど、(a)重合開始剤の分解速度は加速される。しかし、分解速度が速すぎると、(b)ラジカル重合性化合物の分解残渣が多くなる場合を有する。一方、加熱温度は低いほど、(a)重合開始剤の分解速度は遅いため、硬化に長時間を必要とする。よって、加熱温度と加熱時間は、前記重合性組成物の組成により適宜設定すべきである。一例として、加熱温度は、50から230℃であることが好ましく、100から160℃であることがより好ましい。また、前記重合性組成物に、前記硬化促進剤を配合する場合には、その種類や配合量により、加熱温度は室温から160℃で任意に調整することができる。一方、加熱時間は1から180分であることが好ましく、5から120分であることがさらに好ましい。 In the step of heating the polymerizable composition, the higher the heating temperature, the faster the decomposition rate of (a) the polymerization initiator. However, if the decomposition rate is too fast, the (b) decomposition residue of the radically polymerizable compound may increase. On the other hand, the lower the heating temperature, the slower the decomposition rate of (a) the polymerization initiator, and the longer the curing time is required. Therefore, the heating temperature and the heating time should be appropriately set according to the composition of the polymerizable composition. As an example, the heating temperature is preferably 50 to 230°C, more preferably 100 to 160°C. When the curing accelerator is added to the polymerizable composition, the heating temperature can be arbitrarily adjusted from room temperature to 160° C. depending on the type and amount of the curing accelerator. On the other hand, the heating time is preferably 1 to 180 minutes, more preferably 5 to 120 minutes.
 前記硬化物の製造方法として、前記デュアルキュア工程を適用する場合、特に、重合性組成物を活性エネルギー線で照射する工程の後に、加熱する工程を行うことが、光を吸収や散乱する着色顔料を高濃度に含む重合組成物の塗膜の深部や、光が遮光されて光が届いていない箇所の硬化を効率よく行なうことができるため、好ましい。 When the dual curing step is applied as the method for producing the cured product, in particular, after the step of irradiating the polymerizable composition with an active energy ray, a heating step may be performed to absorb or scatter light. It is preferable because it is possible to efficiently cure the deep part of the coating film of the polymer composition containing at a high concentration and the part where the light is blocked and the light does not reach.
 また、前記重合組成物に前記溶媒を含む場合、前記硬化物の製造方法は、乾燥工程を含むことができる。特に、重合性組成物を基板上に塗布後に、続いて、前記活性エネルギー線で照射する工程を適用する場合、当該活性エネルギー線で照射する工程の前に、乾燥工程を設けることが好ましい。 Further, when the solvent is included in the polymerization composition, the method for producing the cured product can include a drying step. In particular, when applying the step of irradiating with the active energy ray after coating the polymerizable composition on the substrate, it is preferable to provide a drying step before the step of irradiating with the active energy ray.
 前記乾燥工程において、溶媒を乾燥させる手法は、例えば、加熱乾燥、通風加熱乾燥、減圧乾燥等が挙げられる。加熱乾燥の方式としては、特に制限されることはないが、例えば、オーブン、ホットプレート、赤外線照射、電磁波照射等が挙げられる。また、通風加熱乾燥の方式としては、例えば、送風式乾燥オーブン等が挙げられる。 In the drying step, methods for drying the solvent include, for example, drying by heating, drying by ventilation by heating, and drying under reduced pressure. The method of drying by heating is not particularly limited, and examples thereof include an oven, a hot plate, infrared irradiation, electromagnetic wave irradiation and the like. Moreover, as a system of ventilation heat-drying, a ventilation-type drying oven etc. are mentioned, for example.
 また、前記乾燥工程において、重合性組成物の温度は、溶媒の蒸発潜熱によって、乾燥の設定温度よりも低くなるため、重合性組成物のゲル化するまでの時間を長く確保することができる。このゲル化するまでの時間は、乾燥手法や膜厚等にも影響されるため、溶媒の選定を含めて乾燥温度と時間は適宜設定すべきである。一例として、乾燥温度は、20から120℃であることが好ましく、40から100℃であることがより好ましい。乾燥時間は1から60分であることが好ましく、1から30分であることがより好ましい。また、前記重合禁止剤を使用することで、ゲル化までの時間を長く確保することもできる。なお、前記トリアジンペルオキシド誘導体は熱により分解するが、80℃で5分の加熱した際の当該化合物の分解率は0.1%程度であるため、この程度の条件であれば重合性組成物が増粘やゲル化することはあまりない。 In addition, in the drying step, the temperature of the polymerizable composition becomes lower than the set temperature for drying due to the latent heat of evaporation of the solvent, so it is possible to ensure a long time until the polymerizable composition gels. Since the time until this gelation is affected by the drying method, the film thickness, etc., the drying temperature and time including the selection of the solvent should be appropriately set. As an example, the drying temperature is preferably 20 to 120°C, more preferably 40 to 100°C. The drying time is preferably 1 to 60 minutes, more preferably 1 to 30 minutes. In addition, by using the polymerization inhibitor, it is possible to secure a long time until gelation. Although the triazine peroxide derivative decomposes by heat, the decomposition rate of the compound when heated at 80° C. for 5 minutes is about 0.1%. Not much thickening or gelling.
 前記重合性組成物の乾燥膜厚(硬化物の膜厚)は、用途に応じて適宜設定されるが、0.05から300μmであることが好ましく、0.1から100μmであることがより好ましい。 The dry film thickness (film thickness of the cured product) of the polymerizable composition is appropriately set according to the application, but is preferably 0.05 to 300 μm, more preferably 0.1 to 100 μm. .
<パターン形成方法>
 前記重合性組成物が(c)アルカリ可溶性樹脂を含む場合、フォトリソグラフィー法によりパターンを形成することができる。前述と同様にして重合性組成物を基材に塗布し、必要に応じて、乾燥して乾燥被膜を形成する。そして、乾燥被膜にマスクを介して活性エネルギー線を照射することにより、露光部では(b)ラジカル重合性化合物が重合することで硬化膜となる。一方、レーザーを用いた直接描画により、マスクを介さずに高精度なパターン形状を作製することもできる。
<Pattern formation method>
When the polymerizable composition contains (c) an alkali-soluble resin, a pattern can be formed by photolithography. The polymerizable composition is applied to the substrate in the same manner as described above, and if necessary, dried to form a dry film. By irradiating the dry film with an active energy ray through a mask, the radically polymerizable compound (b) is polymerized in the exposed portion to form a cured film. On the other hand, it is also possible to produce a pattern shape with high precision without using a mask by direct drawing using a laser.
 上記の露光後、未露光部は、例えば、0.3から3質量%の炭酸ナトリウム水溶液等のアルカリ現像液により現像除去され、パターン化した硬化膜が得られる。さらに、硬化膜と基材との密着性を高めること等を目的に、後乾燥として180から250℃、20から90分でのポストベークが行われる。このようにして、硬化膜に基づく所望のパターンが形成される。 After the above exposure, the unexposed areas are developed and removed with an alkaline developer such as a 0.3 to 3% by mass sodium carbonate aqueous solution, for example, to obtain a patterned cured film. Further, post-baking at 180 to 250° C. for 20 to 90 minutes is performed as post-drying for the purpose of enhancing adhesion between the cured film and the substrate. Thus, a desired pattern based on the cured film is formed.
 本発明の重合性組成物は、ハードコート剤、光ディスク用コート剤、光ファイバー用コート剤、モバイル端末用塗料、家電用塗料、化粧品容器用塗料、光学素子用内面反射防止塗料、高・低屈折率コート剤、遮熱コート剤、放熱コート剤、防曇剤等の塗料・コーティング剤;オフセット印刷インキ、グラビア印刷インキ、スクリーン印刷インキ、インクジェット印刷インキ、導電性インキ、絶縁性インキ、導光板用インキ等の印刷インキ;感光性印刷版;ナノインプリント材料;3Dプリンター用樹脂;ホログラフィー記録材料;歯科用材料;導波路用材料;レンズシート用ブラックストライプ;コンデンサ用グリーンシートおよび電極材料;FPD用接着剤、HDD用接着剤、光ピックアップ用接着剤、イメージセンサー用接着剤、有機EL用シール剤、タッチパネル用OCA、タッチパネル用OCR等の接着剤・シール剤;カラーレジスト、ブラックレジスト、カラーフィルター用保護膜、フォトスペーサー、ブラックカラムスペーサー、額縁レジスト、TFT配線用フォトレジスト、層間絶縁膜等のFPD用レジスト;液状ソルダーレジスト、ドライフィルムレジスト等のプリント基板用レジスト;半導体レジスト、バッファーコート膜等の半導体用材料等の各種用途に使用でき、その用途に特に制限は無い。 The polymerizable composition of the present invention includes hard coating agents, optical disc coating agents, optical fiber coating agents, mobile terminal coatings, home appliance coatings, cosmetic container coatings, internal antireflection coatings for optical elements, and high/low refractive index coatings. Coating agents, heat-shielding coating agents, heat-dissipating coating agents, anti-fogging agents, etc.; offset printing inks, gravure printing inks, screen printing inks, inkjet printing inks, conductive inks, insulating inks, inks for light guide plates Photosensitive printing plates; nanoimprint materials; resins for 3D printers; holography recording materials; dental materials; waveguide materials; black stripes for lens sheets; HDD adhesives, optical pickup adhesives, image sensor adhesives, organic EL sealants, touch panel OCA, touch panel OCR adhesives and sealants; color resists, black resists, protective films for color filters, FPD resists such as photo spacers, black column spacers, frame resists, photoresists for TFT wiring, and interlayer insulating films; printed circuit board resists such as liquid solder resists and dry film resists; semiconductor materials such as semiconductor resists and buffer coat films It can be used for various purposes such as, and there is no particular limitation on its use.
<合成例1-8>
(1)トリアジンペルオキシド誘導体の合成
[合成例1:化合物19の合成]
 100mLナスフラスコに、ジフェニルスルフィド3.03g(16.3mmol)、脱水ジクロロメタン30mLを加え、0℃まで冷却した。ここに、塩化シアヌル3.00g(16.3mmol)を加えた後、塩化アルミニウム2.39g(17.9mmol)を10分かけて加え、0℃にて3時間反応させた。反応終了後、反応液を氷冷1M塩酸50mLに注いで撹拌し、水相を分液した。油相を飽和食塩水50mLで洗浄し、無水硫酸ナトリウムにて脱水した。ろ過後、減圧濃縮し、粗体を得た。粗体をシリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル=4/1から2/1)で精製し、5.03g(収率92.6%)の2,4-ジクロロ-6-(4-フェニルチオ-1-フェニル)-1,3,5-トリアジンを得た。
<Synthesis Example 1-8>
(1) Synthesis of Triazine Peroxide Derivative [Synthesis Example 1: Synthesis of Compound 19]
3.03 g (16.3 mmol) of diphenyl sulfide and 30 mL of dehydrated dichloromethane were added to a 100 mL eggplant flask and cooled to 0°C. After 3.00 g (16.3 mmol) of cyanuric chloride was added thereto, 2.39 g (17.9 mmol) of aluminum chloride was added over 10 minutes and reacted at 0° C. for 3 hours. After completion of the reaction, the reaction solution was poured into 50 mL of ice-cold 1 M hydrochloric acid and stirred to separate the aqueous phase. The oil phase was washed with 50 mL of saturated saline and dehydrated with anhydrous sodium sulfate. After filtration, it was concentrated under reduced pressure to obtain a crude product. The crude product was purified by silica gel column chromatography (n-hexane/ethyl acetate = 4/1 to 2/1) to give 5.03 g (yield 92.6%) of 2,4-dichloro-6-(4- Phenylthio-1-phenyl)-1,3,5-triazine was obtained.
 100mLナスフラスコに2,4-ジクロロ-6-(4-フェニルチオ-1-フェニル)-1,3,5-トリアジン3.00g(8.98mmol)、メチルエチルケトン30mLを加え、40℃に加温した。イオン交換水4.67g、25質量%水酸化ナトリウム水溶液4.31g(26.9mmol)を加えた後、メタノール0.32g(9.87mmol)を10分かけて滴下し、40℃で2時間反応させた。40℃以下で69質量%tert-ブチルヒドロペルオキシド水溶液1.29g(9.87mmol)を10分かけて滴下し、40℃で1時間反応させた。反応終了後、水相を分液し、油相を氷水50mLに投入した。析出した結晶をろ過し、イオン交換水で洗浄し、減圧下で乾燥させ、2.60g(収率75.5%)で本発明の化合物19を得た。得られた化合物19のEI-MSおよびH-NMRによる分析結果を表1に示す。 3.00 g (8.98 mmol) of 2,4-dichloro-6-(4-phenylthio-1-phenyl)-1,3,5-triazine and 30 mL of methyl ethyl ketone were added to a 100 mL eggplant flask and heated to 40°C. After adding 4.67 g of ion-exchanged water and 4.31 g (26.9 mmol) of a 25% by mass sodium hydroxide aqueous solution, 0.32 g (9.87 mmol) of methanol was added dropwise over 10 minutes, and the mixture was reacted at 40° C. for 2 hours. let me At 40° C. or lower, 1.29 g (9.87 mmol) of a 69% by mass tert-butyl hydroperoxide aqueous solution was added dropwise over 10 minutes, and reacted at 40° C. for 1 hour. After completion of the reaction, the aqueous phase was separated, and the oil phase was poured into 50 mL of ice water. Precipitated crystals were filtered, washed with ion-exchanged water, and dried under reduced pressure to obtain 2.60 g of compound 19 of the present invention (yield: 75.5%). Table 1 shows the analysis results of the obtained compound 19 by EI-MS and 1 H-NMR.
[合成例2:化合物25の合成]
 本発明の化合物25は、合成例1に記載のジフェニルスルフィドを1-メトキシナフタレンに変更したこと以外は、合成例1に記載の方法に準じて合成した。得られた化合物25のEI-MSおよびH-NMRによる分析結果を表1に示す。
[Synthesis Example 2: Synthesis of compound 25]
Compound 25 of the present invention was synthesized according to the method described in Synthesis Example 1, except that diphenyl sulfide described in Synthesis Example 1 was changed to 1-methoxynaphthalene. Table 1 shows the analysis results of the obtained compound 25 by EI-MS and 1 H-NMR.
[合成例3:化合物35の合成]
 ヒートドライ乾燥した100mL三つ口フラスコに、マグネシウム0.44g(17.1mmol)、脱水テトラヒドロフラン15mL、触媒量のヨウ素を入れ、室温下で撹拌した。4-ブロモ-4’-メトキシビフェニル4.29g(16.3mmol)と脱水テトラヒドロフラン15mLの混合溶液を滴下した後、1時間還流撹拌させた。別の100mL三つ口フラスコに、塩化シアヌル3.00g(16.3mmol)、脱水テトラヒドロフラン15mLを加え、0℃まで冷却した。ここに、先に調製した混合溶液を、30分かけて滴下し、室温にあげ、15時間撹拌した。反応液を氷浴で冷却し、1M塩酸を加えて撹拌し、飽和炭酸水素ナトリウム水溶液でpHを8に調整した。次いで、酢酸エチルで抽出した。油相を飽和食塩水で1回洗浄した後、硫酸マグネシウムで脱水した。ろ過後、油相を減圧下で濃縮し、粗体を得た。粗体をシリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル=3/1から1/1)で精製し、2.07g(収率38.2%)の2,4-ジクロロ-6-[4-(4’-メトキシビフェニル)]-1,3,5-トリアジンを得た。
[Synthesis Example 3: Synthesis of compound 35]
0.44 g (17.1 mmol) of magnesium, 15 mL of dehydrated tetrahydrofuran, and a catalytic amount of iodine were placed in a heat-dried 100 mL three-necked flask and stirred at room temperature. A mixed solution of 4.29 g (16.3 mmol) of 4-bromo-4'-methoxybiphenyl and 15 mL of dehydrated tetrahydrofuran was added dropwise, followed by refluxing and stirring for 1 hour. 3.00 g (16.3 mmol) of cyanuric chloride and 15 mL of dehydrated tetrahydrofuran were added to another 100 mL three-necked flask and cooled to 0°C. The previously prepared mixed solution was added dropwise thereto over 30 minutes, the temperature was raised to room temperature, and the mixture was stirred for 15 hours. The reaction solution was cooled in an ice bath, 1M hydrochloric acid was added, the mixture was stirred, and the pH was adjusted to 8 with a saturated sodium bicarbonate aqueous solution. It was then extracted with ethyl acetate. The oil phase was washed once with saturated saline and then dehydrated with magnesium sulfate. After filtration, the oil phase was concentrated under reduced pressure to obtain a crude product. The crude product was purified by silica gel column chromatography (n-hexane/ethyl acetate = 3/1 to 1/1) to give 2.07 g (yield 38.2%) of 2,4-dichloro-6-[4- (4′-Methoxybiphenyl)]-1,3,5-triazine was obtained.
 50mLナスフラスコに2,4-ジクロロ-6-[4-(4’-メトキシビフェニル)]-1,3,5-トリアジン1.20g(3.62mmol)、メチルエチルケトン10mLを加え、40℃に加温した。イオン交換水1.88g、25質量%水酸化ナトリウム水溶液1.74g(10.9mmol)を加えた後、メタノール0.13g(3.98mmol)を5分かけて滴下し、40℃で2時間反応させた。40℃以下で69質量%tert-ブチルヒドロペルオキシド水溶液0.52g(3.98mmol)を5分かけて滴下し、40℃で1時間反応させた。反応終了後、水相を分液し、油相を氷水50mLに投入した。析出した結晶をろ過し、イオン交換水で洗浄し、減圧下で乾燥させ、1.04g(収率75.0%)で本発明の化合物35を得た。得られた化合物35のEI-MSおよびH-NMRによる分析結果を表1に示す。 Add 1.20 g (3.62 mmol) of 2,4-dichloro-6-[4-(4′-methoxybiphenyl)]-1,3,5-triazine and 10 mL of methyl ethyl ketone to a 50 mL eggplant flask and heat to 40°C. bottom. After adding 1.88 g of ion-exchanged water and 1.74 g (10.9 mmol) of a 25% by mass sodium hydroxide aqueous solution, 0.13 g (3.98 mmol) of methanol was added dropwise over 5 minutes, and the mixture was reacted at 40° C. for 2 hours. let me At 40° C. or lower, 0.52 g (3.98 mmol) of a 69 mass % aqueous tert-butyl hydroperoxide solution was added dropwise over 5 minutes, and reacted at 40° C. for 1 hour. After completion of the reaction, the aqueous phase was separated, and the oil phase was poured into 50 mL of ice water. Precipitated crystals were filtered, washed with ion-exchanged water, and dried under reduced pressure to obtain 1.04 g of Compound 35 of the present invention (yield: 75.0%). Table 1 shows the analysis results of the obtained compound 35 by EI-MS and 1 H-NMR.
[合成例4:化合物48の合成]
 本発明の化合物48は、合成例3に記載のメタノールをエタノールに、及び69質量%tert-ブチルヒドロペルオキシド水溶液を85質量%tert-アミルヒドロペルオキシド溶液に変更したこと以外は、合成例3に記載の方法に準じて合成した。得られた化合物48のEI-MSおよびH-NMRによる分析結果を表1に示す。
[Synthesis Example 4: Synthesis of Compound 48]
Compound 48 of the present invention is described in Synthesis Example 3, except that the methanol described in Synthesis Example 3 is replaced with ethanol, and the 69% by mass tert-butyl hydroperoxide aqueous solution is replaced with an 85% by mass tert-amyl hydroperoxide solution. Synthesized according to the method of Table 1 shows the analysis results of the obtained compound 48 by EI-MS and 1 H-NMR.
[合成例5:化合物53の合成]
 本発明の化合物53は、合成例3に記載のメタノールをイソプロピルアルコールに、及び69質量%tert-ブチルヒドロペルオキシド水溶液を90質量%tert-ヘキシルヒドロペルオキシド溶液に変更したこと以外は、合成例3に記載の方法に準じて合成した。得られた化合物53のEI-MSおよびH-NMRによる分析結果を表1に示す。
[Synthesis Example 5: Synthesis of compound 53]
Compound 53 of the present invention is the same as in Synthesis Example 3, except that the methanol described in Synthesis Example 3 is changed to isopropyl alcohol, and the 69% by mass tert-butyl hydroperoxide aqueous solution is changed to a 90% by mass tert-hexyl hydroperoxide solution. Synthesized according to the described method. Table 1 shows the analysis results of the obtained compound 53 by EI-MS and 1 H-NMR.
[合成例6:化合物56の合成]
 本発明の化合物6は、合成例3に記載のメタノールをtert-ブチルアルコールに、及び69質量%tert-ブチルヒドロペルオキシド水溶液を80質量%クメンヒドロペルオキシド溶液に変更したこと以外は、合成例3に記載の方法に準じて合成した。得られた化合物56のEI-MSおよびH-NMRによる分析結果を表1に示す。
[Synthesis Example 6: Synthesis of compound 56]
Compound 6 of the present invention is the same as in Synthesis Example 3, except that the methanol described in Synthesis Example 3 is changed to tert-butyl alcohol, and the 69% by mass tert-butyl hydroperoxide aqueous solution is changed to an 80% by mass cumene hydroperoxide solution. Synthesized according to the described method. Table 1 shows the analysis results of the obtained compound 56 by EI-MS and 1 H-NMR.
[合成例7:化合物77の合成]
 ヒートドライ乾燥した100mL三つ口フラスコに、マグネシウム0.44g(17.1mmol)、脱水テトラヒドロフラン15mL、触媒量のヨウ素を入れ、室温下で撹拌した。4-ブロモ-4’-メトキシビフェニル4.29g(16.3mmol)と脱水テトラヒドロフラン15mLの混合溶液を滴下した後、1時間還流撹拌させた。別の100mL三つ口フラスコに、塩化シアヌル3.00g(16.3mmol)、脱水テトラヒドロフラン15mLを加え、0℃まで冷却した。ここに、先に調製した混合溶液を、30分かけて滴下し、室温にあげ、15時間撹拌した。反応液を氷浴で冷却し、1M塩酸を加えて撹拌し、飽和炭酸水素ナトリウム水溶液でpHを8に調整した。次いで、酢酸エチルで抽出した。油相を飽和食塩水で1回洗浄した後、硫酸マグネシウムで脱水した。ろ過後、油相を減圧下で濃縮し、粗体を得た。粗体をシリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル=3/1から1/1)で精製し、2.07g(収率38.2%)の2,4-ジクロロ-6-[4-(4’-メトキシビフェニル)]-1,3,5-トリアジンを得た。
[Synthesis Example 7: Synthesis of compound 77]
0.44 g (17.1 mmol) of magnesium, 15 mL of dehydrated tetrahydrofuran, and a catalytic amount of iodine were placed in a heat-dried 100 mL three-necked flask and stirred at room temperature. A mixed solution of 4.29 g (16.3 mmol) of 4-bromo-4'-methoxybiphenyl and 15 mL of dehydrated tetrahydrofuran was added dropwise, followed by refluxing and stirring for 1 hour. 3.00 g (16.3 mmol) of cyanuric chloride and 15 mL of dehydrated tetrahydrofuran were added to another 100 mL three-necked flask and cooled to 0°C. The previously prepared mixed solution was added dropwise thereto over 30 minutes, the temperature was raised to room temperature, and the mixture was stirred for 15 hours. The reaction solution was cooled in an ice bath, 1M hydrochloric acid was added, the mixture was stirred, and the pH was adjusted to 8 with a saturated sodium bicarbonate aqueous solution. It was then extracted with ethyl acetate. The oil phase was washed once with saturated saline and then dehydrated with magnesium sulfate. After filtration, the oil phase was concentrated under reduced pressure to obtain a crude product. The crude product was purified by silica gel column chromatography (n-hexane/ethyl acetate = 3/1 to 1/1) to give 2.07 g (yield 38.2%) of 2,4-dichloro-6-[4- (4′-Methoxybiphenyl)]-1,3,5-triazine was obtained.
 100mLナスフラスコに、アニソール3.03g(16.3mmol)、脱水ジクロロメタン30mLを加え、0℃まで冷却した。ここに、2,4-ジクロロ-6-[4-(4’-メトキシビフェニル)]-1,3,5-トリアジン3.00g(16.3mmol)を加えた後、塩化アルミニウム2.39g(17.9mmol)を10分かけて加え、0℃にて3時間反応させた。反応終了後、反応液を氷冷1M塩酸50mLに注いで撹拌し、水相を分液した。油相を飽和食塩水50mLで洗浄し、無水硫酸ナトリウムにて脱水した。ろ過後、減圧濃縮し、粗体を得た。粗体をシリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル=4/1から2/1)で精製し、5.03g(収率92.6%)の2-クロロ-4-(4-メトキシフェニル)-6-[4-(4’-メトキシビフェニル)]-1,3,5-トリアジンを得た。 3.03 g (16.3 mmol) of anisole and 30 mL of dehydrated dichloromethane were added to a 100 mL eggplant flask and cooled to 0°C. After adding 3.00 g (16.3 mmol) of 2,4-dichloro-6-[4-(4′-methoxybiphenyl)]-1,3,5-triazine, 2.39 g (17 .9 mmol) was added over 10 minutes and reacted at 0° C. for 3 hours. After completion of the reaction, the reaction solution was poured into 50 mL of ice-cold 1 M hydrochloric acid and stirred to separate the aqueous phase. The oil phase was washed with 50 mL of saturated saline and dehydrated with anhydrous sodium sulfate. After filtration, it was concentrated under reduced pressure to obtain a crude product. The crude product was purified by silica gel column chromatography (n-hexane/ethyl acetate = 4/1 to 2/1) to give 5.03 g (yield 92.6%) of 2-chloro-4-(4-methoxyphenyl )-6-[4-(4′-methoxybiphenyl)]-1,3,5-triazine.
 50mLナスフラスコにイオン交換水1.88g、25質量%水酸化ナトリウム水溶液1.74g(10.9mmol)を加え、30℃以下で69質量%tert-ブチルヒドロペルオキシド水溶液0.52g(3.98mmol)を徐々に加えた。ここに、2-クロロ-4-(4-メトキシフェニル)-6-[4-(4’-メトキシビフェニル)]-1,3,5-トリアジン1.20g(3.62mmol)とテトラヒドロフラン10mLの混合溶液を、10℃で10分かけて滴下し、20℃で3時間反応させた。反応終了後、ジクロロメタン10mLを加え、水相を分液した。油相をイオン交換水で洗浄し、0℃にて無水硫酸マグネシウムで乾燥した。ろ過後、油相を減圧下で濃縮し、1.04g(収率75.0%)で本発明の化合物77を得た。得られた化合物77のEI-MSおよびH-NMRによる分析結果を表1に示す。 1.88 g of ion-exchanged water and 1.74 g (10.9 mmol) of 25% by mass sodium hydroxide aqueous solution were added to a 50 mL eggplant flask, and 0.52 g (3.98 mmol) of 69% by mass tert-butyl hydroperoxide aqueous solution was added at 30° C. or lower. was added gradually. Here, 1.20 g (3.62 mmol) of 2-chloro-4-(4-methoxyphenyl)-6-[4-(4'-methoxybiphenyl)]-1,3,5-triazine and 10 mL of tetrahydrofuran were mixed. The solution was added dropwise at 10°C over 10 minutes and reacted at 20°C for 3 hours. After completion of the reaction, 10 mL of dichloromethane was added and the aqueous phase was separated. The oil phase was washed with deionized water and dried over anhydrous magnesium sulfate at 0°C. After filtration, the oil phase was concentrated under reduced pressure to give 1.04 g (75.0% yield) of compound 77 of the present invention. Table 1 shows the analysis results of the obtained compound 77 by EI-MS and 1 H-NMR.
[合成例8:化合物81の合成]
 100mLナスフラスコに、塩化シアヌル3.00g(16.3mmol)、脱水ジクロロメタン30mL、塩化アルミニウム4.35g(32.6mmol)を加え、20℃まで冷却した。ここに、1-メトキシナフタレン5.16g(32.6mmol)を15分かけて加え、20℃にて3時間反応させた。反応終了後、反応液を0℃まで冷却し、氷冷1M塩酸50mLを加えて撹拌し、水相を分液した。油相を飽和食塩水50mLで洗浄し、無水硫酸ナトリウムにて脱水した。ろ過後、減圧濃縮し、5.48g(収率78.6%)の2-クロロ-4,6-ビス(4-メトキシ-1-ナフタレニル)-1,3,5-トリアジンの粗体を得た。
[Synthesis Example 8: Synthesis of Compound 81]
3.00 g (16.3 mmol) of cyanuric chloride, 30 mL of dehydrated dichloromethane, and 4.35 g (32.6 mmol) of aluminum chloride were added to a 100 mL eggplant flask and cooled to 20°C. 5.16 g (32.6 mmol) of 1-methoxynaphthalene was added thereto over 15 minutes and reacted at 20° C. for 3 hours. After completion of the reaction, the reaction solution was cooled to 0° C., 50 mL of ice-cold 1 M hydrochloric acid was added, and the mixture was stirred to separate the aqueous phase. The oil phase was washed with 50 mL of saturated saline and dehydrated with anhydrous sodium sulfate. After filtration, it was concentrated under reduced pressure to obtain 5.48 g (78.6% yield) of crude 2-chloro-4,6-bis(4-methoxy-1-naphthalenyl)-1,3,5-triazine. rice field.
 100mLナスフラスコに2-クロロ-4,6-ビス(4-メトキシ-1-ナフタレニル)-1,3,5-トリアジンの粗体3.00g(5.45mmol)、テトラヒドロフラン30mLを加え、40℃に加温した。ここに、20質量%水酸化ナトリウム水溶液2.18g(10.9mmol)と69質量%tert-ブチルヒドロペルオキシド水溶液1.42g(10.9mmol)の混合液を10分かけて滴下し、40℃で4時間反応させた。反応終了後、ジクロロメタン50mLを加え、水相を分液した。油相をイオン交換水で洗浄し、0℃にて無水硫酸マグネシウムで乾燥した。ろ過後、減圧下で濃縮し、粗体を得た。粗体をシリカゲルカラムクロマトグラフィー(ジクロロメタン使用)で精製し、1.63g(収率62.3%)で本発明の化合物81を得た。得られた化合物81のEI-MSおよびH-NMRによる分析結果を表1に示す。 3.00 g (5.45 mmol) of crude 2-chloro-4,6-bis(4-methoxy-1-naphthalenyl)-1,3,5-triazine and 30 mL of tetrahydrofuran were added to a 100 mL eggplant flask, and the mixture was heated to 40°C. warmed up. A mixed liquid of 2.18 g (10.9 mmol) of 20% by mass sodium hydroxide aqueous solution and 1.42 g (10.9 mmol) of 69% by mass tert-butyl hydroperoxide aqueous solution was added dropwise thereto over 10 minutes, and the temperature was maintained at 40°C. It was reacted for 4 hours. After completion of the reaction, 50 mL of dichloromethane was added and the aqueous phase was separated. The oil phase was washed with deionized water and dried over anhydrous magnesium sulfate at 0°C. After filtration, it was concentrated under reduced pressure to obtain a crude product. The crude product was purified by silica gel column chromatography (using dichloromethane) to obtain 1.63 g (yield 62.3%) of compound 81 of the present invention. Table 1 shows the analysis results of the obtained compound 81 by EI-MS and 1 H-NMR.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
<実施例1~8、比較例1>
<重合性組成物(A)の調製>
 表2に示す量のラジカル重合性化合物、アルカリ可溶性樹脂、その他の成分を混合撹拌し、重合開始剤を添加してよく撹拌し、実施例1~8および比較例1の重合性組成物(A)を調製した。なお、比較例1には重合開始剤として、下記式で表される化合物R1を使用した。
Figure JPOXMLDOC01-appb-C000014
<Examples 1 to 8, Comparative Example 1>
<Preparation of polymerizable composition (A)>
Radical polymerizable compound in the amount shown in Table 2, alkali-soluble resin, and other components were mixed and stirred, a polymerization initiator was added and well stirred, and polymerizable compositions of Examples 1 to 8 and Comparative Example 1 (A ) was prepared. In addition, in Comparative Example 1, a compound R1 represented by the following formula was used as a polymerization initiator.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 上記表2及び下記表4、表6中、DPHAは、ジペンタエリスリトールペンタアクリレートおよびジペンタエリスリトールヘキサアクリレートの混合物(商品名:アロニックスM-402、東亞合成社製);
 RD200は、メタクリル酸メチル/メタクリル酸/シクロヘキシルマレイミド(質量%:61/14/25)共重合物、重量平均分子量:17,000、酸価:90(合成品);
 F-477は、フッ素系レベリング剤(商品名:メガファックF-477、DIC社製);
 PGMEAは、プロピレングリコールモノメチルエーテルアセテート;を示す。
In Table 2 above and Tables 4 and 6 below, DPHA is a mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate (trade name: Aronix M-402, manufactured by Toagosei Co., Ltd.);
RD200 is a methyl methacrylate/methacrylic acid/cyclohexylmaleimide (mass%: 61/14/25) copolymer, weight average molecular weight: 17,000, acid value: 90 (synthetic product);
F-477 is a fluorine-based leveling agent (trade name: Megafac F-477, manufactured by DIC Corporation);
PGMEA indicates propylene glycol monomethyl ether acetate;
(1)感度の評価
 上記で調製した重合性組成物(A)を、スピンコーターを用いて、アルミニウム基板上に塗布した。塗布後、アルミニウム基板を90℃のクリーンオーブン中で2.5分間乾燥処理により溶媒を乾燥させ、厚さ1.5μmの均一な塗布膜を作製した。次いで、超高圧水銀灯を光源とするプロキシミティー露光機を用い、マスクパターンを介して10から1000mJ/cmの範囲で、段階露光を行った。露光後のアルミニウム基板を1.0質量%の炭酸ナトリウム水溶液に23℃で60秒間浸漬して、現像による未露光部の除去を行った。続いて純水にて30秒間洗浄を行い、レジストパターンを得た。レジストパターンが形成される最低露光量を「感度」として評価した。最低露光量の値が小さいほど、少量の光でパターンが形成可能であり、200mJ/cm以下は高感度であることを示す。結果を表3に示す。
(1) Evaluation of Sensitivity The polymerizable composition (A) prepared above was applied onto an aluminum substrate using a spin coater. After coating, the solvent was dried by drying the aluminum substrate in a clean oven at 90° C. for 2.5 minutes to form a uniform coating film with a thickness of 1.5 μm. Then, using a proximity exposure machine using an ultra-high pressure mercury lamp as a light source, stepwise exposure was performed through a mask pattern in the range of 10 to 1000 mJ/cm 2 . The exposed aluminum substrate was immersed in a 1.0% by mass sodium carbonate aqueous solution at 23° C. for 60 seconds to remove the unexposed portion by development. Subsequently, washing was performed with pure water for 30 seconds to obtain a resist pattern. The minimum exposure dose at which a resist pattern was formed was evaluated as "sensitivity". A smaller value of the minimum exposure amount indicates that a pattern can be formed with a smaller amount of light, and a value of 200 mJ/cm 2 or less indicates high sensitivity. Table 3 shows the results.
(2)長期保存安定性の評価
 上記で調製した重合性組成物(A)を、褐色のガラス瓶中に入れ、アルミホイルで遮光した後に、50℃に設定した定温恒温機内に静置した。ゲル化に要した日数が60日以上を〇、60日未満を×とした。結果を表3に示す。
(2) Evaluation of long-term storage stability The polymerizable composition (A) prepared above was placed in a brown glass bottle, shielded from light with aluminum foil, and then placed in a constant temperature thermostat set at 50 ° C. It was allowed to stand. When the number of days required for gelation was 60 days or more, it was evaluated as O, and when it was less than 60 days, it was evaluated as X. Table 3 shows the results.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
<実施例9~16、比較例2>
<重合性組成物(B)の調製>
 表4に示す量のラジカル重合性化合物、アルカリ可溶性樹脂、黒色顔料、その他の成分を混合撹拌し、重合開始剤を添加してよく撹拌し、実施例9~16および比較例2の重合性組成物(B)を調製した。なお、比較例2には重合開始剤として、上記式で表される化合物R1を使用した。
<Examples 9 to 16, Comparative Example 2>
<Preparation of polymerizable composition (B)>
Radical polymerizable compound in the amount shown in Table 4, alkali-soluble resin, black pigment, and other components were mixed and stirred, a polymerization initiator was added and well stirred, and polymerizable compositions of Examples 9 to 16 and Comparative Example 2. Item (B) was prepared. In Comparative Example 2, the compound R1 represented by the above formula was used as the polymerization initiator.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 上記表4中、TSG-BK133は、カーボンブラック分散液(大成化工社製)を示す。 In Table 4 above, TSG-BK133 indicates a carbon black dispersion (manufactured by Taisei Kako Co., Ltd.).
(3)解像度の評価
 上記で調製した重合性組成物(B)を、スピンコーターを用いてガラス基板上に塗布した。塗布後、ガラス基板を90℃のクリーンオーブン中で2.5分間乾燥処理により溶媒を乾燥させ、厚さ1.5μmの均一な塗布膜を作成した。次いで、超高圧水銀灯を光源とするプロキシミティー露光機を用い、マスクパターンを介して200mJ/cm露光を行った。露光後のガラス基板を1.0質量%の炭酸ナトリウム水溶液に23℃で60秒間浸漬して、現像による未露光部の除去を行った。続いて純水にて30秒間洗浄を行い、レジストパターンを得た。得られたパターンを顕微鏡で観察し、最小パターン寸法が10μm以下のものを◎、10μmを超え20μm以下のものを〇、20μmを超え30μm以下のものを△、30μmを超えるものを×とした。結果を表5に示す。
(3) Evaluation of Resolution The polymerizable composition (B) prepared above was applied onto a glass substrate using a spin coater. After coating, the solvent was dried by drying the glass substrate in a clean oven at 90° C. for 2.5 minutes to form a uniform coating film with a thickness of 1.5 μm. Then, exposure was performed at 200 mJ/cm 2 through a mask pattern using a proximity exposure machine using an ultra-high pressure mercury lamp as a light source. The exposed glass substrate was immersed in a 1.0% by mass sodium carbonate aqueous solution at 23° C. for 60 seconds to remove the unexposed portion by development. Subsequently, washing was performed with pure water for 30 seconds to obtain a resist pattern. The obtained patterns were observed with a microscope, and the minimum pattern size was evaluated as ⊚ when the minimum pattern size was 10 μm or less, ∘ when over 10 μm and 20 μm or less, Δ when over 20 μm and 30 μm or less, and x when over 30 μm. Table 5 shows the results.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
<実施例17~24、比較例3>
<重合性組成物(C)の調製>
 表6に示す量のラジカル重合性化合物、アルカリ可溶性樹脂、緑色顔料、その他の成分を混合撹拌し、重合開始剤を添加してよく撹拌し、実施例17~24および比較例3の重合性組成物(C)を調製した。なお、比較例3には重合開始剤として、上記式で表される化合物R1を使用した。
<Examples 17 to 24, Comparative Example 3>
<Preparation of polymerizable composition (C)>
The amounts shown in Table 6 of the radically polymerizable compound, the alkali-soluble resin, the green pigment, and other components were mixed and stirred, the polymerization initiator was added and stirred well, and the polymerizable compositions of Examples 17 to 24 and Comparative Example 3 Item (C) was prepared. In Comparative Example 3, the compound R1 represented by the above formula was used as the polymerization initiator.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 上記表6中、SG036は、緑色顔料分散液(大成化工社製)を示す。 In Table 6 above, SG036 indicates a green pigment dispersion (manufactured by Taisei Kako Co., Ltd.).
(4)アンダーカットの評価
 上記で調製した重合性組成物(C)を、スピンコーターを用いてガラス基板上に塗布した。塗布後、ガラス基板を90℃のクリーンオーブン中で2.5分間乾燥処理により溶媒を乾燥させ、厚さ1.5μmの均一な塗布膜を作成した。次いで、超高圧水銀灯を光源とするプロキシミティー露光機を用い、マスクパターンを介して150mJ/cm露光を行った。露光後のガラス基板を1.0質量%の炭酸ナトリウム水溶液に23℃で60秒間浸漬して、現像による未露光部の除去を行った。続いて純水にて30秒間洗浄を行い、レジストパターンを得た。得られたパターンのうち、開口幅が15μmのライン状開口部に対応するパターンの断面を顕微鏡で観察し、基板表面に平行なパターン幅のうち最大幅と最小幅の差によってライン状パターンのアンダーカットを評価した。最大幅と最小幅の差が小さいほどアンダーカットが抑制されることを示し、1.5μm以下のものを〇、1.5μmを超え2.5μm以下のものを△、2.5μmを超えるものを×とした。結果を表7に示す。
(4) Evaluation of Undercut The polymerizable composition (C) prepared above was applied onto a glass substrate using a spin coater. After coating, the solvent was dried by drying the glass substrate in a clean oven at 90° C. for 2.5 minutes to form a uniform coating film with a thickness of 1.5 μm. Then, exposure was performed at 150 mJ/cm 2 through a mask pattern using a proximity exposure machine using an ultra-high pressure mercury lamp as a light source. The exposed glass substrate was immersed in a 1.0% by mass sodium carbonate aqueous solution at 23° C. for 60 seconds to remove the unexposed portion by development. Subsequently, washing was performed with pure water for 30 seconds to obtain a resist pattern. Among the obtained patterns, the cross section of the pattern corresponding to the line-shaped opening with an opening width of 15 μm was observed with a microscope, and the underlining of the line-shaped pattern was determined by the difference between the maximum width and the minimum width of the pattern width parallel to the substrate surface. Evaluate the cut. The smaller the difference between the maximum width and the minimum width, the more the undercut is suppressed. x. Table 7 shows the results.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
<実施例25~32、比較例4>
<重合性組成物(D)の調製>
 表8に示す量のラジカル重合性化合物、重合開始剤、硬化促進剤、溶媒を添加してよく撹拌し、実施例25~32および比較例4の重合性組成物(D)を調製した。なお、比較例4には重合開始剤として、上記式で表される化合物R1を使用した。
<Examples 25 to 32, Comparative Example 4>
<Preparation of polymerizable composition (D)>
The amounts shown in Table 8 of the radically polymerizable compound, the polymerization initiator, the curing accelerator, and the solvent were added and thoroughly stirred to prepare polymerizable compositions (D) of Examples 25 to 32 and Comparative Example 4. In Comparative Example 4, the compound R1 represented by the above formula was used as the polymerization initiator.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
(5)硬化性の評価
 上記で調製した重合性組成物(D)を、ガラス基板上にバーコーターを用いて厚さ100μmに塗布した。塗布後90℃のオーブンで2.5分間乾燥させた後、高圧水銀ランプが設置されたコンベア式UV照射装置を使用して30mJ/cmの照射を行った。次いで、150℃のオーブン中で30分間加熱し、硬化膜を得た。得られた硬化膜の重合転化率を測定し、硬化性を以下の基準で評価した。なお、重合転化率は、減衰全反射赤外分光法(ATR-IR)にて測定し、その際、二重結合基由来の吸収スペクトル(810cm-1)のピーク面積Aおよび露光前後で変化のないカルボニル基由来の吸収スペクトル(1740cm-1)のピーク面積Bを用いて、以下の式に基づいて重合転化率を算出した。結果を表9に示す。
 重合転化率=(1-(硬化後のA/B)/(硬化前のA/B))×100
 〇:重合転化率が80%以上
 △:重合転化率が60%以上80%未満
 ×:重合転化率が60%未満
(5) Curability Evaluation The polymerizable composition (D) prepared above was applied to a glass substrate to a thickness of 100 μm using a bar coater. After the coating was dried in an oven at 90° C. for 2.5 minutes, it was irradiated with 30 mJ/cm 2 using a conveyor-type UV irradiation device equipped with a high-pressure mercury lamp. Then, it was heated in an oven at 150° C. for 30 minutes to obtain a cured film. The polymerization conversion rate of the resulting cured film was measured, and the curability was evaluated according to the following criteria. The polymerization conversion rate was measured by attenuated total reflection infrared spectroscopy (ATR - IR). Using the peak area B of the absorption spectrum (1740 cm −1 ) derived from the carbonyl group that does not exist, the polymerization conversion was calculated based on the following formula. Table 9 shows the results.
Polymerization conversion = (1-(A/B after curing)/(A/B before curing)) x 100
○: Polymerization conversion rate is 80% or more △: Polymerization conversion rate is 60% or more and less than 80% ×: Polymerization conversion rate is less than 60%
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 上記表8中、TMPTAは、トリメチロールプロパントリアクリレート(新中村化学工業製);
 PE4Aは、ペンタエリスリトールテトラアクリレート(富士フイルム和光純薬試薬);を示す。
In Table 8 above, TMPTA is trimethylolpropane triacrylate (manufactured by Shin-Nakamura Chemical Industry);
PE4A indicates pentaerythritol tetraacrylate (Fuji Film Wako Pure Chemical Reagent);

Claims (6)

  1. 一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    ((一般式(1)中、RおよびRは独立してメチル基またはエチル基、Rは炭素数1~5の脂肪族炭化水素基、またはアルキル基を有してもよい炭素数6~9の芳香族炭化水素基を表し、Rは置換されていてもよい炭素数1~20の脂肪族炭化水素基、置換されていてもよい炭素数6~20の芳香族炭化水素基、置換されていてもよい炭素数2~20の複素環含有基、置換されていてもよい炭素数1~20のアシル基、-Y-R、または-N-RR’であって、Yは酸素原子または硫黄原子を表し、RおよびR’は独立して水素原子、置換されていてもよい炭素数1~20の脂肪族炭化水素基、置換されていてもよい炭素数6~20の芳香族炭化水素基、置換されていてもよい炭素数2~20の複素環含有基を表す。Arは下記一般式(2):Ar、Ar、またはArで表されるアリール基である。)
    Figure JPOXMLDOC01-appb-C000002
    (一般式(2)中、mは0から3の整数を表し、R11は独立した置換基であって、置換されていてもよい炭素数1~20の脂肪族炭化水素基、置換されていてもよい炭素数6~20の芳香族炭化水素基、置換されていてもよい炭素数2~20の複素環含有基、置換されていてもよい炭素数1~20のアシル基、-Y-R、または-N-RR’であって、Yは酸素原子または硫黄原子を表し、RおよびR’は独立して水素原子、置換されていてもよい炭素数1~20の脂肪族炭化水素基、置換されていてもよい炭素数6~20の芳香族炭化水素基、置換されていてもよい炭素数2~20の複素環含有基を表す。))で表されることを特徴とするトリアジンペルオキシド誘導体。
    General formula (1):
    Figure JPOXMLDOC01-appb-C000001
    ((In general formula (1), R 1 and R 2 are independently a methyl group or an ethyl group, R 3 is an aliphatic hydrocarbon group having 1 to 5 carbon atoms, or the number of carbon atoms that may have an alkyl group represents an aromatic hydrocarbon group of 6 to 9, R 4 is an optionally substituted aliphatic hydrocarbon group of 1 to 20 carbon atoms, an optionally substituted aromatic hydrocarbon group of 6 to 20 carbon atoms , an optionally substituted heterocyclic ring-containing group having 2 to 20 carbon atoms, an optionally substituted acyl group having 1 to 20 carbon atoms, —Y—R, or —N—RR′, wherein Y is represents an oxygen atom or a sulfur atom, R and R' are independently a hydrogen atom, an optionally substituted aliphatic hydrocarbon group having 1 to 20 carbon atoms, or an optionally substituted aromatic having 6 to 20 carbon atoms represents an optionally substituted heterocyclic ring-containing group having 2 to 20 carbon atoms, Ar is an aryl group represented by the following general formula (2): Ar 1 , Ar 2 or Ar 3 .)
    Figure JPOXMLDOC01-appb-C000002
    (In the general formula (2), m represents an integer of 0 to 3, R 11 is an independent substituent, an optionally substituted aliphatic hydrocarbon group having 1 to 20 carbon atoms, a substituted an optionally substituted aromatic hydrocarbon group having 6 to 20 carbon atoms, an optionally substituted heterocyclic ring-containing group having 2 to 20 carbon atoms, an optionally substituted acyl group having 1 to 20 carbon atoms, -Y- R or -N-RR', Y represents an oxygen atom or a sulfur atom, R and R' are independently a hydrogen atom, and an optionally substituted aliphatic hydrocarbon group having 1 to 20 carbon atoms , an optionally substituted aromatic hydrocarbon group having 6 to 20 carbon atoms, or an optionally substituted heterocyclic ring-containing group having 2 to 20 carbon atoms.))). Peroxide derivative.
  2.  請求項1に記載のトリアジンペルオキシド誘導体を含む(a)重合開始剤、および(b)ラジカル重合性化合物を含有することを特徴とする重合性組成物。 A polymerizable composition comprising (a) a polymerization initiator containing the triazine peroxide derivative according to claim 1, and (b) a radically polymerizable compound.
  3.  さらに(c)アルカリ可溶性樹脂を含有することを特徴とする請求項2に記載の重合性組成物。 The polymerizable composition according to claim 2, further comprising (c) an alkali-soluble resin.
  4.  請求項2または請求項3に記載の重合性組成物から形成されることを特徴とする硬化物。 A cured product characterized by being formed from the polymerizable composition according to claim 2 or claim 3.
  5.  前記重合性組成物を活性エネルギー線で照射する工程を含むことを特徴とする請求項4に記載の硬化物の製造方法。 The method for producing a cured product according to claim 4, comprising a step of irradiating the polymerizable composition with an active energy ray.
  6.  請求項1に記載のトリアジンペルオキシド誘導体の製造方法であって、
     塩化シアヌル及び/又はその誘導体と、ヒドロペルオキシドとを原料として反応させる工程を含むことを特徴とするトリアジンペルオキシド誘導体の製造方法。
     
    A method for producing the triazine peroxide derivative according to claim 1,
    A method for producing a triazine peroxide derivative, comprising a step of reacting cyanuric chloride and/or a derivative thereof with a hydroperoxide as raw materials.
PCT/JP2022/035588 2021-09-28 2022-09-26 Triazine peroxide derivative and production method thereof, polymerizable composition, and cured product and production method thereof WO2023054225A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280029010.0A CN117177962A (en) 2021-09-28 2022-09-26 Triazine peroxide derivative and method for producing same, polymerizable composition, cured product, and method for producing cured product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-157496 2021-09-28
JP2021157496 2021-09-28

Publications (1)

Publication Number Publication Date
WO2023054225A1 true WO2023054225A1 (en) 2023-04-06

Family

ID=85782604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035588 WO2023054225A1 (en) 2021-09-28 2022-09-26 Triazine peroxide derivative and production method thereof, polymerizable composition, and cured product and production method thereof

Country Status (3)

Country Link
CN (1) CN117177962A (en)
TW (1) TW202313576A (en)
WO (1) WO2023054225A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018221177A1 (en) * 2017-06-01 2018-12-06 日油株式会社 Triazine peroxide derivative and polymerizable composition containing said compound
JP2019043864A (en) * 2017-08-31 2019-03-22 学校法人東京理科大学 Benzophenone derivative having peroxyester group, polymerizable composition containing the same and cured product thereof, and method for producing cured product
JP2019167313A (en) * 2018-03-26 2019-10-03 日油株式会社 Peroxycinnamate derivative, polymerizable composition containing compound, cured product thereof, and production method of cured product
JP2019172919A (en) * 2018-03-29 2019-10-10 日油株式会社 Adhesive composition and pressure sensitive adhesive sheet
JP2020094196A (en) * 2018-11-29 2020-06-18 日油株式会社 Method of producing cured product

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018221177A1 (en) * 2017-06-01 2018-12-06 日油株式会社 Triazine peroxide derivative and polymerizable composition containing said compound
JP2019043864A (en) * 2017-08-31 2019-03-22 学校法人東京理科大学 Benzophenone derivative having peroxyester group, polymerizable composition containing the same and cured product thereof, and method for producing cured product
JP2019167313A (en) * 2018-03-26 2019-10-03 日油株式会社 Peroxycinnamate derivative, polymerizable composition containing compound, cured product thereof, and production method of cured product
JP2019172919A (en) * 2018-03-29 2019-10-10 日油株式会社 Adhesive composition and pressure sensitive adhesive sheet
JP2020094196A (en) * 2018-11-29 2020-06-18 日油株式会社 Method of producing cured product

Also Published As

Publication number Publication date
TW202313576A (en) 2023-04-01
CN117177962A (en) 2023-12-05

Similar Documents

Publication Publication Date Title
JP7021668B2 (en) Triazine peroxide derivative, a polymerizable composition containing the compound
JP6923130B2 (en) A benzophenone derivative having a peroxyester group, a polymerizable composition containing the compound, a cured product thereof, and a method for producing the cured product.
JP6995309B2 (en) A polymerizable composition containing a thioxanthone derivative having a peroxyester group, a cured product thereof, and a method for producing the cured product.
JP6970922B2 (en) A peroxycinnamate derivative, a polymerizable composition containing the compound and a cured product thereof, and a method for producing the cured product.
JP6833171B2 (en) Fluorene photoinitiators, methods for producing them, photocurable compositions having them, and use of fluorene photoinitiators in the field of photocuring.
JP7031605B2 (en) Peroxycinnamate derivative, polymerizable composition containing the compound
CN112236420B (en) Dialkyl peroxide having thioxanthone skeleton and polymerizable composition containing same
KR101831358B1 (en) Photoactive compound, photopolymerization initiator and photoresist composition containing the same
JP7382010B2 (en) Polymerization initiator mixture, polymerizable composition, cured product, and method for producing cured product
JP7371554B2 (en) Bisoxime ester photopolymerization initiator, polymerizable composition, cured product and method for producing the same
JP7385830B2 (en) Method for manufacturing cured product
WO2023054225A1 (en) Triazine peroxide derivative and production method thereof, polymerizable composition, and cured product and production method thereof
JP7300108B2 (en) Cured product manufacturing method
JP2022069041A (en) Polymerization initiator mixture, polymerizable composition, cured object and production method of cured object
TW202344502A (en) Polymerization initiator, polymerizable composition, cured product and hydroperoxide having thioxanthone skeleton
KR101991838B1 (en) Novel 1,3-benzodiazole beta-oxime ester compound and composition comprising the same
JP2023119202A (en) Oxygen inhibition reducing agent, polymerizable composition, cured product, and method of producing cured product
KR20170050618A (en) Novel quinolinyl beta oxime ester derivative compound, photopolymerization initiator, and photoresist composition containing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876092

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023551452

Country of ref document: JP