WO2018221177A1 - Triazine peroxide derivative and polymerizable composition containing said compound - Google Patents

Triazine peroxide derivative and polymerizable composition containing said compound Download PDF

Info

Publication number
WO2018221177A1
WO2018221177A1 PCT/JP2018/018484 JP2018018484W WO2018221177A1 WO 2018221177 A1 WO2018221177 A1 WO 2018221177A1 JP 2018018484 W JP2018018484 W JP 2018018484W WO 2018221177 A1 WO2018221177 A1 WO 2018221177A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
meth
carbon atoms
hydrocarbon group
Prior art date
Application number
PCT/JP2018/018484
Other languages
French (fr)
Japanese (ja)
Inventor
昌樹 林
諒介 糸山
章世 矢野
Original Assignee
日油株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日油株式会社 filed Critical 日油株式会社
Priority to KR1020197034707A priority Critical patent/KR102542689B1/en
Priority to JP2019522081A priority patent/JP7021668B2/en
Priority to CN201880033759.6A priority patent/CN110662738B/en
Publication of WO2018221177A1 publication Critical patent/WO2018221177A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/14Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom
    • C07D251/16Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom to only one ring carbon atom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/28Oxygen or compounds releasing free oxygen
    • C08F4/32Organic compounds
    • C08F4/36Per-compounds with more than one peroxy radical

Definitions

  • the present invention relates to a triazine peroxide derivative, a polymerizable composition containing a polymerization initiator containing the compound and a radical polymerizable compound, a cured product thereof, and a method for producing the cured product.
  • radical polymerization initiators that generate radicals by heat, light or oxidation-reduction are widely used as polymerization initiators.
  • the photopolymerization initiator can generate a radical by bond cleavage or hydrogen abstraction reaction by absorbing active energy rays such as light, and is used as a polymerization initiator for a radical polymerizable compound.
  • ⁇ -hydroxyacetophenone derivatives, ⁇ -aminoacetophenone derivatives, acylphosphine oxide derivatives, halomethyltriazine derivatives, benzyl ketal derivatives, thioxanthone derivatives, and the like are used.
  • the photopolymerizable composition comprising the photopolymerization initiator and the radical polymerizable compound as described above is quickly cured by light irradiation, from the viewpoint of fast curability and low VOC, a coating agent, paint, printing ink, It is applied to applications such as photosensitive printing plates, adhesives, and various photoresists.
  • Patent Document 1 discloses a polymerization initiator containing, as an active ingredient, a benzophenone group-containing peroxyester having a peroxide bond (—O—O—) in a molecule that generates radicals by light or heat.
  • Patent Document 2 discloses an adhesive composition comprising the polymerization initiator and a radical polymerizable compound, and by dual cure that performs curing by irradiation with light at room temperature and subsequent curing by heating, The adhesive exhibits strong adhesive strength and high durability.
  • Dual cure type polymerizable compositions include, for example, curing of polymerizable compositions containing light-absorbing and scattering pigments and fillers at high concentrations, and black frames and touch panels around protective covers in flat panel display manufacturing processes. It is also effective for curing areas where light does not reach, such as the bottom of electrodes.
  • Patent Document 3 discloses a halomethyltriazine derivative having a specific structure as a photopolymerization initiator having a triazine skeleton, and is known to be effective for photopolymerization.
  • the benzophenone group-containing peroxyesters described in Patent Document 1 and Patent Document 2 do not sufficiently absorb light having a wavelength of 365 nm or the like emitted from a high-pressure mercury lamp or LED, and are therefore the most important photopolymerization initiator. Sensitivity, which is a basic characteristic, is not sufficient, and improvement of sensitivity is a problem.
  • halomethyltriazine derivatives described in Patent Document 3 and the like cannot be used for thermal polymerization, and a cured film obtained using the compound as a photopolymerization initiator has high yellowness. Therefore, the said compound cannot be used as a polymerization initiator of the use as which high transparency is requested
  • the present invention is capable of generating radicals by efficiently absorbing light having a wavelength of 365 nm emitted from a lamp such as a high-pressure mercury lamp or LED, and generating radicals by heat. Further, the present invention provides a triazine peroxide derivative that has both heat-polymerizable properties and that can reduce the yellowness of a cured product.
  • the present invention provides a polymerizable composition containing a polymerization initiator containing the triazine peroxide derivative and a radical polymerizable compound, a cured product thereof, and a method for producing the cured product.
  • the present invention relates to the general formula (1):
  • R 1 and R 2 are each independently a methyl group or an ethyl group
  • R 3 is an aliphatic hydrocarbon group having 1 to 5 carbon atoms, or an optionally substituted alkyl group having 6 to 6 carbon atoms.
  • 9 represents an aromatic hydrocarbon group of 9
  • n represents an integer of 0 to 2
  • X is an aryl group represented by the general formula (2): Ar 1 , Ar 2 , Ar 3 , or Ar 4 .
  • R 4 is an independent substituent, an alkyl group having 1 to 18 carbon atoms, represented by the general formula (3):
  • R 5 —Y— represents a substituent, a nitro group, or a cyano group, and Y represents an oxygen atom or a sulfur atom, and R 5 represents any of an ether bond, a thioether bond, and a hydroxyl group at the terminal in the carbon skeleton.
  • R 4 represents a triazine peroxide derivative represented by two adjacent general formulas (3): a hydrocarbon group that forms a 5- to 6-membered ring by R 5 —Y—.
  • the present invention also includes a polymerizable composition containing (a) a polymerization initiator and (b) a radical polymerizable compound containing the triazine peroxide derivative, a cured product formed from the polymerizable composition, and the curing
  • a polymerizable composition containing (a) a polymerization initiator and (b) a radical polymerizable compound containing the triazine peroxide derivative, a cured product formed from the polymerizable composition, and the curing
  • the present invention relates to a method for manufacturing a product.
  • the triazine peroxide derivative of the present invention can efficiently generate radicals by efficiently absorbing light having a wavelength of 365 nm or the like emitted from a lamp such as a high-pressure mercury lamp or LED, and has a peroxide bond in the molecule. And useful as a thermal polymerization initiator. Therefore, the polymerizable composition containing the triazine peroxide derivative and the radical polymerizable compound can be cured well by light irradiation and can be cured well by heat even in a dark part where light does not reach.
  • halomethyltriazine derivatives release chloro radicals by photolysis, and aromatic chlorides as a by-product are presumed to be the cause of coloration, but the triazine peroxide derivatives of the present invention do not contain chlorine atoms, so The yellowness of the product can be reduced.
  • the triazine peroxide derivative of the present invention can be represented by the following general formula (1).
  • R 1 and R 2 are each independently a methyl group or an ethyl group
  • R 3 is an aliphatic hydrocarbon group having 1 to 5 carbon atoms, or an optionally substituted alkyl group having 6 to 6 carbon atoms.
  • 9 represents an aromatic hydrocarbon group of 9, n represents an integer of 0 to 2
  • X is an aryl group represented by the general formula (2): Ar 1 , Ar 2 , Ar 3 , or Ar 4 .
  • R 4 is an independent substituent, an alkyl group having 1 to 18 carbon atoms, represented by the general formula (3):
  • R 5 —Y— represents a substituent, a nitro group, or a cyano group, and Y represents an oxygen atom or a sulfur atom, and R 5 represents any of an ether bond, a thioether bond, and a hydroxyl group at the terminal in the carbon skeleton.
  • R 4 represents a hydrocarbon group forming a 5- to 6-membered ring by the two adjacent general formulas (3): R 5 —Y—.
  • R 1 and R 2 independently represent a methyl group or an ethyl group.
  • R 1 and R 2 are preferably methyl groups from the viewpoint of increasing the storage stability of the polymerizable composition because the decomposition temperature of the triazine peroxide derivative is high.
  • R 3 is an aliphatic hydrocarbon group having 1 to 5 carbon atoms or an aromatic hydrocarbon group having 6 to 9 carbon atoms which may have an alkyl group.
  • the alkyl group may be linear or branched.
  • Specific examples of R 3 include a methyl group, an ethyl group, a propyl group, a 2,2-dimethylpropyl group, a phenyl group, and an isopropylphenyl group.
  • a methyl group, an ethyl group, a propyl group, a 2,2-dimethylpropyl group, and a phenyl group are preferable from the viewpoint of easy synthesis of the triazine peroxide derivative. Since the decomposition temperature of the triazine peroxide derivative is high, the storage stability of the polymerizable composition is increased, and the methyl group and the ethyl group are more preferable from the viewpoint of high sensitivity to light of the lamp.
  • n is represented by an integer of 0 to 2. From the viewpoint of easy synthesis of the triazine peroxide derivative, n is preferably 0 or 1. When n is 0, X is Ar 2 , Ar 3 , or Ar 4 , and when n is 1, X is Ar 1 to efficiently absorb the light of the lamp and to obtain a cured product From the viewpoint that the yellowness of can be reduced, it is more preferable.
  • m is represented by an integer from 0 to 3.
  • M is preferably 0 to 2 from the viewpoint of easy synthesis of the triazine peroxide derivative, and m is more preferably 1 from the viewpoint of efficiently absorbing the light of the lamp.
  • R 4 is an independent substituent, an alkyl group having 1 to 18 carbon atoms, a general formula (3): a substituent represented by R 5 —Y—, a nitro group Or Y represents an oxygen atom or a sulfur atom, and R 5 has one or more of an ether bond, a thioether bond, and a hydroxyl group at the terminal in the carbon skeleton. It represents an optionally substituted hydrocarbon group having 1 to 18 carbon atoms, an aromatic hydrocarbon group having 6 to 9 carbon atoms which may have an alkyl group, or an acyl group having 1 to 8 carbon atoms. Alternatively, R 4 represents a hydrocarbon group that forms a 5- to 6-membered ring by two adjacent general formulas (3): R 5 —Y—.
  • R 4 is an independent substituent from the viewpoint of efficiently absorbing the light of the lamp, and is an alkyl group having 1 to 8 carbon atoms, or a substituent represented by the general formula (3):
  • R 5 —Y— Y represents an oxygen atom
  • R 5 has 1 to 8 carbon atoms which may have any one or more of an ether bond and a hydroxyl group at the terminal in the carbon skeleton.
  • a hydrocarbon group or an aromatic hydrocarbon group having 6 to 9 carbon atoms which may have an alkyl group, or R 4 is represented by two adjacent general formulas (3):
  • R 5 —X— A hydrocarbon group forming a 5- to 6-membered ring is preferable.
  • R 4 include, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, n-hexyl, octyl, 2- Alkyl groups such as ethylhexyl group, dodecyl group, octadecyl group; methoxy group, ethoxy group, n-propyloxy group, isopropyloxy group, n-butyloxy group, sec-butyloxy group, tert-butyloxy group, n-pentyloxy group, Cyclopentyloxy group, n-hexyloxy group, cyclohexyloxy group, octyloxy group, 2-ethylhexyloxy group, dodecyloxy group, octadecyloxy group, 2-hydroxyethoxy group, 2-methoxyethoxy group,
  • R 1 represents a methoxy group, an ethoxy group, 2- A hydroxyethoxy group is more preferred.
  • substitution position of R 4 is not particularly limited, but when X is Ar 1 , it is preferable that at least one of R 4 is substituted at the 4-position of the benzene ring substituted with the triazine group, and X is Ar. In the case of 2 , at least one of R 4 is preferably substituted at the 4-position of a benzene ring different from the benzene ring substituted with the triazine group.
  • R 4 When X is Ar 3 , at least one of R 4 is it is preferable substituted in the 4-position of the substituted triazine group in the 1-position when X is Ar 4, at least one R 4 is another benzene ring with the benzene ring to which a triazine group substituted
  • the substitution at the 4-position is preferable in order to efficiently absorb the light of the lamp.
  • the triazine peroxide derivative of the present invention is preferably compound 19, compound 23, compound 25, compound 26, compound 27, compound 28, compound 31, compound 32, compound 33, compound 35, compound 37, compound 38, compound 39, Compound 40, Compound 41, Compound 42, Compound 43, Compound 44, Compound 46, Compound 47, Compound 48 are mentioned, More preferably, Compound 25, Compound 26, Compound 31, Compound 32, Compound 35, Compound 37, Compound 38 are mentioned. , Compound 41, Compound 44, Compound 47, and Compound 48.
  • the method for producing the triazine peroxide derivative represented by the general formula (1) is obtained, for example, by a step of obtaining a cyanuric chloride derivative (hereinafter also referred to as step (A)) as in the following reaction formula. And a method comprising reacting a cyanuric chloride derivative with hydroperoxide in the presence of an alkali (hereinafter also referred to as step (B)).
  • step (A) and / or (B) the process of distilling off excess raw materials etc. (removal), and the refinement
  • n, R 1 , R 2 , R 3 and X are the same as in the general formula (1).
  • a commercially available product can be used as the cyanuric chloride derivative.
  • it can synthesize
  • a cyanuric chloride derivative when synthesized by a Grignard reaction, it can be synthesized according to a known synthesis method described in JP-A-6-179661.
  • the aromatic compound Z in the step (A) an aromatic compound represented by a chlorine atom, a bromine atom, or an iodine atom can be used.
  • a cyanuric chloride derivative can be synthesized by preparing a Grignard reagent by reacting an aromatic compound with magnesium and then reacting the obtained Grignard reagent with cyanuric chloride.
  • magnesium is preferably used in an amount of 0.8 to 2.0 mol, more preferably 1 to 1.5 mol, relative to 1 mol of the aromatic compound.
  • the reaction initiator iodine, bromoethane, dibromoethane or the like may be used, and 0.0001 to 0.01 mol is preferably used with respect to 1 mol of the aromatic compound.
  • the reaction temperature is preferably 0 to 70 ° C, more preferably 10 to 60 ° C.
  • the reaction time is preferably 30 minutes to 20 hours, more preferably 1 hour to 10 hours.
  • a solvent such as ethers such as tetrahydrofuran can be used.
  • cyanuric chloride In the reaction between the Grignard reagent and cyanuric chloride, 0.7 to 1.5 mol of cyanuric chloride is preferably used relative to 1 mol of the aromatic compound, and 0.8 to 1.2 mol is preferably used. More preferred.
  • the reaction temperature is preferably ⁇ 30 to 70 ° C., more preferably ⁇ 10 to 40 ° C.
  • the reaction time is preferably 10 minutes to 10 hours, more preferably 30 minutes to 5 hours.
  • the prepared Grignard reagent may be charged with cyanuric chloride, or the cyanuric chloride solution may be charged with Grignard reagent.
  • a solvent such as ether such as tetrahydrofuran can be used.
  • step (A) when a cyanuric chloride derivative is synthesized by a lithiation reaction, it can be synthesized according to a known synthesis method described in WO2012 / 096263.
  • aromatic compound Z in the step (A) an aromatic compound represented by a chlorine atom, a bromine atom, or an iodine atom can be used.
  • a cyanuric chloride derivative can be synthesized by adjusting a lithio compound by reacting an aromatic compound and a lithiating agent, and then reacting the obtained lithio compound with cyanuric chloride.
  • Examples of the lithiating agent include alkyl lithiums such as methyl lithium, n-butyl lithium, s-butyl lithium, and t-butyl lithium; aryl lithiums such as phenyl lithium; lithium diisopropylamide, lithium bis (trimethylsilyl) amide, and the like.
  • Examples include lithium amides, and n-butyllithium, s-butyllithium, t-butyllithium, and phenyllithium are preferable.
  • the lithiating agent is preferably used in an amount of 0.8 to 3.0 mol, more preferably 1.0 to 2.2 mol, relative to 1 mol of the aromatic compound.
  • the reaction temperature is preferably ⁇ 100 to 50 ° C., more preferably ⁇ 80 to 0 ° C.
  • the reaction time is preferably 0.2 to 20 hours, more preferably 0.5 to 10 hours.
  • a solvent such as ethers such as tetrahydrofuran can be used.
  • lithio compound and cyanuric chloride In the reaction of the above-mentioned lithio compound and cyanuric chloride, it is preferable to use 0.7 to 1.5 mol, and 0.8 to 1.2 mol of cyanuric chloride to 1 mol of the aromatic compound. More preferred.
  • the reaction temperature is preferably ⁇ 30 to 70 ° C., more preferably ⁇ 10 to 40 ° C.
  • the reaction time is preferably 10 minutes to 10 hours, more preferably 30 minutes to 5 hours. It should be noted that cyanuric chloride may be added to the prepared lithio compound, or the lithium compound may be added to the cyanuric chloride solution.
  • a solvent such as ethers such as tetrahydrofuran can be used.
  • a cyanuric chloride derivative when synthesized by a Suzuki coupling reaction, it can be synthesized according to a known synthesis method described in WO2012 / 096263. For example, by reacting the above-mentioned lithio compound with a boron reagent, a boron compound in which Z of the aromatic compound is converted into a boronyl group or a boronic acid can be synthesized. Next, a cyanuric chloride derivative can be synthesized by reacting the obtained boron compound with cyanuric chloride. In addition, when the commercial item of a boron compound is sold, it can be used as it is.
  • boron reagent examples include trimethyl borate, triisopropyl borate, 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane, and the like.
  • the boron reagent is preferably used in an amount of 0.8 to 3.0 mol, more preferably 1.0 to 2.0 mol, per 1 mol of the lithio compound.
  • the reaction temperature is preferably ⁇ 100 to 50 ° C., more preferably ⁇ 80 to 20 ° C.
  • the reaction time is preferably 10 minutes to 20 hours, more preferably 30 minutes to 10 hours.
  • a solvent such as ethers such as tetrahydrofuran can be used.
  • the cyanuric chloride is preferably used in an amount of 0.7 to 1.5 mol, more preferably 0.8 to 1.2 mol, relative to 1 mol of the boron compound. preferable.
  • the reaction temperature is preferably ⁇ 30 to 70 ° C., more preferably ⁇ 10 to 40 ° C.
  • the reaction time is preferably 10 minutes to 10 hours, more preferably 30 minutes to 5 hours. Note that cyanuric chloride may be added to the boron compound, or the boron compound may be added to the cyanuric chloride solution.
  • a palladium catalyst and an alkali are preferably used, and a ligand may be added as necessary.
  • the palladium catalyst examples include palladium acetate, tetrakistriphenylphosphine palladium, bis (triphenylphosphine) palladium dichloride, (bis (diphenylphosphino) ferrocene) palladium dichloride-methylene chloride complex, and the like.
  • alkali examples include inorganic bases such as alkali metal salts such as sodium carbonate, sodium bicarbonate, sodium acetate, potassium acetate and potassium phosphate; organic bases such as triethylamine.
  • inorganic bases such as alkali metal salts such as sodium carbonate, sodium bicarbonate, sodium acetate, potassium acetate and potassium phosphate
  • organic bases such as triethylamine.
  • Examples of the ligand include organic compounds such as triphenylphosphine, tricyclohexylphosphine, 2,2′-bis (diphenylphosphino) -1,1′-binaphthalene, and 2-dicyclohexylphosphino-2,6′-dimethoxybiphenyl. Examples thereof include phosphorus-based ligands.
  • ethers such as tetrahydrofuran and 1,4-dioxane; alcohols such as methanol and 2-propanol; aromatic hydrocarbons such as toluene and xylene; N, N-dimethyl Organic solvents such as amides such as formamide can be used.
  • the said organic solvent may be used independently and may use 2 or more types together. Furthermore, a mixed solvent of the organic solvent and water can be used.
  • step (A) when a cyanuric chloride derivative is synthesized by Friedel-Crafts reaction, it can be synthesized according to a known synthesis method described in US Pat.
  • a cyanuric chloride derivative can be synthesized by reacting an aromatic compound with cyanuric chloride in the presence of a Lewis acid such as aluminum chloride.
  • Lewis acid examples include aluminum chloride, aluminum bromide, iron chloride (III), titanium chloride (IV), tin chloride (IV), zinc chloride, bismuth (III) triflate, hafnium (IV) triflate, boron trifluoride.
  • a diethyl ether complex or the like can be used.
  • the cyanuric chloride is preferably used in an amount of 0.7 to 1.5 mol, more preferably 0.8 to 1.2 mol, per mol of the aromatic compound.
  • Aluminum chloride is preferably used in an amount of 1.0 to 3.0 mol, more preferably 1.0 to 2.0 mol, per 1 mol of the aromatic compound.
  • the reaction temperature is preferably ⁇ 50 to 60 ° C., more preferably 0 to 40 ° C.
  • the reaction time is preferably 10 minutes to 10 hours, more preferably 30 minutes to 5 hours.
  • Aluminum chloride may be added to the solution of the aromatic compound and cyanuric chloride, or the aromatic compound may be added to the solution of cyanuric chloride and aluminum chloride.
  • a solvent such as dichloromethane, 1,2-dichloroethane, xylene can be used.
  • the method for producing the triazine peroxide derivative represented by the general formula (1) is not particularly limited, but according to the known method for synthesizing triazine peroxide described in Japanese Patent Publication No. 45-39468. Can be synthesized.
  • the triazine peroxide derivative is obtained by the step (B) of reacting the cyanuric chloride derivative obtained in the above step (A) with hydroperoxide in the presence of an alkali.
  • the hydroperoxide is preferably reacted in an amount of 1.8 mol or more, and 2.0 mol or more with respect to 1 mol of the cyanuric chloride derivative from the viewpoint of increasing the yield of the target product. And more preferably 5.0 mol or less, and more preferably 3.8 mol or less.
  • Hydroperoxide is commercially available, and when there is no commercial product, it can be synthesized according to a known synthesis method described in JP-A No. 58-72557.
  • the reaction temperature is preferably ⁇ 10 ° C. or higher, more preferably 0 ° C. or higher, and 40 ° C. or lower from the viewpoint of increasing the yield of the target product. Is preferable, and it is more preferable that it is 30 degrees C or less.
  • the reaction time varies depending on the raw materials, reaction temperature, etc., and thus cannot be determined unconditionally.
  • 10 minutes to 6 hours is preferable.
  • the alkali used is not particularly limited, but sodium hydroxide, potassium hydroxide, lithium hydroxide, potassium carbonate, sodium carbonate, sodium bicarbonate, pyridine, ⁇ -picoline, ⁇ -picoline, Examples thereof include dimethylaminopyridine, triethylamine, tributylamine, N, N-diisopropylethylamine, 1,5-diazabicyclo [4.3.0] -5-nonene.
  • the alkali is preferably used in an amount of 1.8 mol or more, more preferably 2.0 mol or more, with respect to 1 mol of the cyanuric chloride derivative, from the viewpoint of increasing the yield of the target product. It is preferable to use 0 mol or less, and it is more preferable to use 3.8 mol or less.
  • the reaction when the cyanuric chloride derivative is liquid, the reaction can be performed without using an organic solvent. Moreover, when the cyanuric chloride derivative is solid, it is preferable to use an organic solvent.
  • the organic solvent is not particularly limited because the solubility varies depending on the type of cyanuric chloride derivative.
  • aromatic hydrocarbons such as toluene, xylene, and ethylbenzene, ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, tetrahydrofuran And ethers such as dioxane, esters such as ethyl acetate and butyl acetate, and halogenated hydrocarbons such as methylene chloride and chloroform.
  • the said organic solvent may be used independently and may use 2 or more types together.
  • the amount of the organic solvent used is usually about 30 to 500 parts by mass with respect to 100 parts by mass of the total amount of raw materials.
  • the organic solvent may be removed after the step (B) to take out the triazine peroxide derivative, and the triazine peroxide derivative is used as a diluted product of the organic solvent in order to improve handling and reduce the risk of thermal decomposition. May be used.
  • the step (B) can be performed under normal pressure and air, but may be performed under a nitrogen stream or a nitrogen atmosphere.
  • the purification step in order to remove surplus raw materials and by-products, for example, ion-exchanged water or basic such as sodium hydrogen carbonate, potassium hydrogen carbonate, sodium carbonate, potassium carbonate, sodium hydroxide, potassium hydroxide, etc.
  • a step of purifying the target product by washing with an aqueous solution, an aqueous sodium sulfite solution or the like can be mentioned.
  • the polymerizable composition of the present invention contains (a) a polymerization initiator and (b) a radical polymerizable compound. Furthermore, the polymerizable composition can impart developability by containing (c) an alkali-soluble resin. Moreover, the polymerizable composition can contain other components in appropriate combination.
  • the polymerization initiator (a) of the present invention contains a triazine peroxide derivative represented by the general formula (1).
  • the (a) polymerization initiator has a function of decomposing by active energy rays or heat, and the generated radicals start polymerization (curing) of the (b) radical polymerizable compound.
  • a triazine peroxide derivative may be used independently and may use 2 or more types together.
  • the (a) polymerization initiator may contain a polymerization initiator other than the triazine peroxide derivative (hereinafter also referred to as other polymerization initiator).
  • a polymerization initiator other than the triazine peroxide derivative hereinafter also referred to as other polymerization initiator.
  • the high sensitivity of the polymerizable composition for example, for a lamp that emits light of multiple wavelengths such as a high-pressure mercury lamp can be achieved.
  • the types of pigments that absorb or scatter light contained in the polymerizable composition the film thickness of the cured product, etc.
  • the surface curability, deep part curability, transparency, etc. of the polymerizable composition can be improved.
  • ⁇ -Hydroxyacetophenone derivatives such as -2-methylpropiophenone, 2-hydroxy-1- (4- (4- (2-hydroxy-2-methylpropionyl) benzyl) phenyl) -2-methylpropan-1-one 2-methyl-4′-methylthio-2-morpholinopropiophenone, 2-benzyl-2- (N, N-dimethylamino) -1- (4-morpholinophenyl) butan-1-one, 2- (dimethyl ⁇ -aminoacetoph such as amino) -2- (4-methylbenzyl) -1- (4-morpholinophenyl) butan-1-one Enone derivatives; acyl phosphine oxide derivatives such as diphenyl-2,4,6-trimethylbenz
  • the content of the (a) polymerization initiator is preferably 0.1 to 40 parts by mass, and 0.5 to 20 parts by mass with respect to 100 parts by mass of the (b) radical polymerizable compound. More preferably, it is 1 to 15 parts by mass. If the content of the (a) polymerization initiator is less than 0.1 parts by mass with respect to 100 parts by mass of the (b) radical polymerizable compound, the curing reaction does not proceed, which is not preferable.
  • the solubility in (b) radical polymerizable compound reaches saturation, and
  • the crystal of the polymerization initiator is precipitated during film formation of the adhesive composition and the surface of the film becomes rough, or (a) the strength of the coating film of the cured product increases due to an increase in the decomposition residue of the polymerization initiator. Is not preferred because it may decrease.
  • the ratio of another polymerization initiator is 80 mass% or less in (a) polymerization initiator, and is 50 masses. More preferably, it is% or less.
  • radically polymerizable compound (b) of the present invention a compound having an ethylenically unsaturated group can be preferably used.
  • radical polymerizable compounds include (meth) acrylic acid esters, styrenes, maleic acid esters, fumaric acid esters, itaconic acid esters, cinnamic acid esters, crotonic acid esters, and vinyl ethers. Vinyl esters, vinyl ketones, allyl ethers, allyl esters, N-substituted maleimides, N-vinyl compounds, unsaturated nitriles, olefins and the like. Among these, it is preferable to contain (meth) acrylic acid esters having high reactivity.
  • a radically polymerizable compound may be used independently and may use 2 or more types together.
  • monofunctional compounds and polyfunctional compounds can be used as the (meth) acrylic acid esters.
  • Monofunctional compounds include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, tert-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) Alkyl (meth) acrylates such as acrylate; cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) Ester compounds of (meth) acrylic acid and alicyclic alcohols such as acrylate, 2-ethyl-2-adamantyl (meth) acrylate; aryl (meth) such as pheny
  • Monomers having fluorine atoms (meth) acrylic acid, succinic acid mono (2- (meth) acryloyloxyethyl), phthalic acid mono (2- (meth) acryloyloxyethyl), maleic acid mono (2- (meth) acryloyl) Oxyethyl), ⁇ -carboxy-polycaprolactone mono (me A) Monomers having a carboxyl group such as acrylate.
  • polyfunctional compound examples include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, glycerin di (meth) acrylate, glycerin tri (meth) acrylate, glycerin propoxytri (meth) acrylate, trimethylol ethanetri (Meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol Di (meth) acrylate monoste
  • the (meth) acrylic acid esters are used to improve the sensitivity of the polymerizable composition, reduce oxygen inhibition, and improve the mechanical strength and hardness, heat resistance, durability, and chemical resistance of the cured coating film.
  • an ester compound of the polyhydric alcohol and (meth) acrylic acid is preferable, and in particular, trimethylolethane triacrylate, trimethylolpropane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol pentaacrylate, di Pentaerythritol hexaacrylate is preferred.
  • copolymer obtained from the said (b) radically polymerizable compound can be added to the said polymeric composition.
  • the polymerizable composition can be suitably used as a negative resist by further blending (c) an alkali-soluble resin.
  • an alkali-soluble resin As alkali-soluble resin, what is generally used for a negative resist can be used, and it will not be specifically limited if it is resin soluble in alkaline aqueous solution, However, It should be resin containing a carboxyl group. preferable.
  • Alkali-soluble resin may be used independently and may use 2 or more types together.
  • (c) alkali-soluble resin of the present invention for example, a carboxyl group-containing (meth) acrylic acid ester copolymer, a carboxyl group-containing epoxy acrylate resin, and the like are preferably used.
  • the carboxyl group-containing (meth) acrylic acid ester copolymer is at least one selected from the above-mentioned monofunctional compounds of (meth) acrylic acid esters (excluding the monomer having a carboxyl group), ) Acrylic acid, dimer of (meth) acrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid, vinyl benzoic acid, cinnamic acid, succinic acid mono (2- (meth) acryloyloxyethyl), phthalic acid mono Ethylenically unsaturated groups such as (2- (meth) acryloyloxyethyl), mono (2- (meth) acryloyloxyethyl) maleate, ⁇ -carboxy-polycaprolactone mono (meth) acrylate, and acid anhydrides thereof It is a copolymer containing at least one selected from the containing carboxylic acids.
  • carboxyl group-containing (meth) acrylic acid ester copolymer examples include a copolymer of methyl methacrylate, cyclohexyl methacrylate, and methacrylic acid. Further, styrene, ⁇ -methylstyrene, N-vinyl-2-pyrrolidone, N-methylmaleimide, N-phenylmaleimide, N-cyclohexylmaleimide, diethyl fumarate, diethyl itaconate and the like may be copolymerized.
  • the carboxyl group-containing (meth) acrylic acid ester copolymer is a reaction of ethylenically unsaturated groups, etc., from the viewpoint of achieving both the developability of the negative resist and the film properties such as heat resistance, hardness, and chemical resistance.
  • a carboxyl group-containing (meth) acrylic acid ester copolymer in which a functional group is introduced into the side chain is also preferably used.
  • an ethylenically unsaturated group into the above side chain for example, a part of the carboxyl group of the carboxyl group-containing (meth) acrylic ester copolymer, an epoxy group in the molecule such as glycidyl (meth) acrylate
  • a method of adding a compound having an ethylenically unsaturated group a method of adding an ethylenically unsaturated group-containing monocarboxylic acid such as methacrylic acid to an epoxy group- and carboxyl group-containing (meth) acrylic acid ester copolymer
  • a method of adding a compound having an isocyanate group and an ethylenically unsaturated group in a molecule such as 2- (meth) acryloyloxyethyl isocyanate to a hydroxyl group- and carboxyl group-containing (meth) acrylic acid ester copolymer.
  • carboxyl group-containing epoxy acrylate resin a compound obtained by further reacting an acid anhydride with an epoxy acrylate resin which is a reaction product of an epoxy compound and the ethylenically unsaturated group-containing carboxylic acid is preferable.
  • epoxy resin examples include (o, m, p-) cresol novolak type epoxy resin, phenol novolak type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, trisphenol methane type epoxy resin, and bisphenyl fluorene.
  • Examples of the acid anhydride include maleic anhydride, succinic anhydride, phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, 4-methylhexahydrophthalic anhydride, endomethylenetetrahydrophthalic anhydride, and chloredinic anhydride. , Trimellitic anhydride, pyromellitic anhydride, benzophenonetetracarboxylic dianhydride, biphenyltetracarboxylic dianhydride, itaconic anhydride and the like.
  • the acid anhydride group remaining after the reaction is hydrolyzed to obtain a carboxyl group.
  • ethylenic double bonds can be increased by using maleic anhydride containing an ethylenically unsaturated group.
  • the acid value of the (c) alkali-soluble resin is preferably 20 to 300 mgKOH / g, and more preferably 40 to 180 mg / KOH.
  • the acid value is less than 20 mgKOH / g, the solubility in an alkaline aqueous solution is poor, and it becomes difficult to develop the unexposed area, which is not preferable.
  • the acid value is more than 300 mgKOH / g, the exposed part tends to be detached from the substrate during development, which is not preferable.
  • the weight average molecular weight of the (c) alkali-soluble resin is preferably 1,000 to 100,000, more preferably 1,500 to 30,000.
  • a weight average molecular weight of less than 1,000 is not preferred because the heat resistance and hardness of the exposed area are poor.
  • the weight average molecular weight can be measured by a gel permeation chromatography (GPC) method.
  • HLC-8220GPC manufactured by Tosoh Corporation
  • TSKgelHZM-M manufactured by Tosoh Corporation
  • tetrahydrofuran is used as a developing solvent
  • column temperature is 40 ° C.
  • flow rate is 0.3 ml / min.
  • the chromatography can be performed under the conditions of RI detector, sample injection concentration 0.5 mass%, injection amount 10 microliters, and the weight average molecular weight in terms of polystyrene can be obtained.
  • the ratio of (c) alkali-soluble resin is preferably 10 to 70% by mass, and more preferably 15 to 60% by mass in the total solid content of the polymerizable composition.
  • the ratio is less than 10% by mass, the developability is poor, which is not preferable.
  • the ratio is more than 70% by mass, the pattern shape reproducibility and heat resistance are lowered, which is not preferable.
  • the (c) alkali-soluble resin may be a product obtained by isolating and purifying an alkali-soluble resin which is an active ingredient after the synthesis reaction, or a reaction solution obtained by the synthesis reaction, a dried product thereof, or the like. You can also.
  • the polymerizable composition can be cured by heating at a low temperature.
  • a curing accelerator for example, an amine compound, a thiourea compound, a 2-mercaptobenzimidazole compound, an orthobenzoixsulfimide, a fourth-period transition metal compound compound, or the like can be used.
  • a hardening accelerator may be used independently and may use 2 or more types together.
  • the amine compound is preferably a tertiary amine, for example, N, N-dimethylaniline, N, N-dimethyltoluidine, N, N-diethylaniline, N, N-bis (2-hydroxyethyl) -p- Toluidine, ethyl 4- (dimethylamino) benzoate, (2-methacryloyloxy) ethyl 4-dimethylaminobenzoate and the like.
  • a tertiary amine for example, N, N-dimethylaniline, N, N-dimethyltoluidine, N, N-diethylaniline, N, N-bis (2-hydroxyethyl) -p- Toluidine, ethyl 4- (dimethylamino) benzoate, (2-methacryloyloxy) ethyl 4-dimethylaminobenzoate and the like.
  • thiourea examples include acetylthiourea, N, N′dibutylthiourea, and the like.
  • Examples of the 2-mercaptobenzimidazole compound include 2-mercaptobenzimidazole, 2-mercaptomethylbenzimidazole, 2-mercaptomethoxybenzimidazole, and the like.
  • the compound of the fourth period transition metal compound can be selected from organic acid salts such as vanadium, cobalt, copper, or metal chelate compounds, for example, cobalt octylate, cobalt naphthenate, copper naphthenate, vanadium naphthenate. , Copper acetylacetonate, manganese acetylacetonate, vanadyl acetylacetonate and the like.
  • organic acid salts such as vanadium, cobalt, copper, or metal chelate compounds, for example, cobalt octylate, cobalt naphthenate, copper naphthenate, vanadium naphthenate.
  • the curing accelerator is preferably blended immediately before using the polymerizable composition.
  • the content of the curing accelerator is preferably 0.1 to 20 parts by mass and more preferably 0.2 to 10 parts by mass with respect to 100 parts by mass of the (b) radical polymerizable compound.
  • the polymerizable composition is generally used in applications such as coating agents, paints, printing inks, photosensitive printing plates, adhesives, various photoresists such as color resists and black resists.
  • Additives can be blended.
  • additives include sensitizers (isopropylthioxanthone, diethylthioxanthone, 4,4′-bis (diethylamino) benzophenone, 9,10-dibutoxyanthracene, coumarin, ketocoumarin, acridine orange, camphorquinone, etc.), polymerization inhibition Agents (p-methoxyphenol, hydroquinone, 2,6-di-t-butyl-4-methylphenol, phenothiazine, etc.), ultraviolet absorbers, infrared absorbers, light stabilizers, antioxidants, leveling agents, surface conditioners , Surfactant, thickener, antifoaming agent, adhesion promoter, plasticizer, epoxy compound, thiol compound,
  • the content of the additive is appropriately selected according to the purpose of use and is not particularly limited, but is usually 500 parts by mass or less with respect to 100 parts by mass of the (b) radical polymerizable compound.
  • the amount is preferably 100 parts by mass or less.
  • the solvent may be further added to the polymerizable composition in order to improve the viscosity, paintability, and smoothness of the cured film.
  • the solvent is capable of dissolving or dispersing the (a) polymerization initiator, the (b) radical polymerizable compound, the (c) alkali-soluble resin, and the other components, and is volatilized at a drying temperature. If it is a solvent, it will not restrict
  • Examples of the solvent include water, alcohol solvents, carbitol solvents, ester solvents, ketone solvents, ether solvents, lactone solvents, unsaturated hydrocarbon solvents, cellosolve acetate solvents, carbitol acetate solvents.
  • Examples include solvents, propylene glycol monomethyl ether acetate, and diethylene glycol dimethyl ether.
  • a solvent may be used independently and may use 2 or more types together.
  • the amount of the solvent used is preferably 10 to 1000 parts by mass and more preferably 20 to 500 parts by mass with respect to 100 parts by mass of the solid content of the polymerizable composition.
  • ⁇ Method for Preparing Polymerizable Composition When adjusting the polymerizable composition, the (a) polymerization initiator, the (b) radical polymerizable compound, and, if necessary, the (c) alkali-soluble resin and the other components in a storage container. And then dissolved or dispersed in accordance with a conventional method using a paint shaker, bead mill, sand grind mill, ball mill, attritor mill, 2-roll mill, 3-roll mill or the like. Moreover, you may filter through a mesh or a membrane filter etc. as needed.
  • the (a) polymerization initiator may be added to the polymerizable composition from the beginning, but when the polymerizable composition is stored for a relatively long time.
  • the (a) polymerization initiator is preferably dissolved or dispersed in the composition containing (b) radical polymerizability immediately before use.
  • the cured product of the present invention is formed from the polymerizable composition.
  • cured material is a manufacturing which includes any process of the process of irradiating the said polymeric composition with an active energy ray, and heating the said polymeric composition after apply
  • Examples of the coating method include spin coating, bar coating, spray coating, dip coating, flow coating, slit coating, doctor blade coating, gravure coating, screen printing, offset printing, and inkjet.
  • Various methods, such as a printing method and a dispenser printing method, are mentioned.
  • Examples of the substrate include glass, silicon wafer, metal and plastic films and sheets, and three-dimensional molded products, and the shape of the substrate is not limited.
  • the step of irradiating the polymerizable composition with active energy rays comprises (a) decomposing a polymerization initiator by irradiating active energy rays such as electron beam, ultraviolet ray, visible light, and radiation, and (b) radical polymerization.
  • active energy rays such as electron beam, ultraviolet ray, visible light, and radiation
  • radical polymerization irradiating active energy rays such as electron beam, ultraviolet ray, visible light, and radiation.
  • a cured product can be obtained by polymerizing the active compound.
  • the active energy ray is preferably light having an active energy ray wavelength of 250 to 450 nm, and more preferably light having a wavelength of 350 to 410 nm from the viewpoint of allowing rapid curing.
  • a low pressure mercury lamp As the light source for the light irradiation, a low pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a metal halide lamp, an ultraviolet electrodeless lamp, a light emitting diode (LED), a xenon arc lamp, a carbon arc lamp, sunlight, a YAG laser, etc.
  • a gas laser such as a solid-state laser, a semiconductor laser, or an argon laser can be used.
  • curing can be performed by using a sensitizer that absorbs the light as the additive. .
  • the exposure amount of the active energy ray should be appropriately set according to the wavelength and intensity of the active energy ray and the composition of the polymerizable composition.
  • the exposure dose in the UV-A region is preferably 10 to 5,000 mJ / cm 2 , and more preferably 30 to 1,000 mJ / cm 2 .
  • (a) polymerization initiator is completely by an active energy ray.
  • the exposure amount should be set as appropriate so that it is not decomposed.
  • a cured product in the step of heating the polymerizable composition, can be obtained by (a) decomposing the polymerization initiator with heat and (b) polymerizing the radical polymerizable compound.
  • examples of the heating method include heating and ventilation heating.
  • the heating method is not particularly limited, and examples thereof include an oven, a hot plate, infrared irradiation, electromagnetic wave irradiation, and the like.
  • a ventilation drying oven etc. are mentioned, for example.
  • the higher the heating temperature the faster the decomposition rate of (a) the polymerization initiator.
  • the decomposition rate is too high, there are cases where the decomposition residue of (b) radical polymerizable compound increases.
  • the lower the heating temperature the slower the decomposition rate of (a) the polymerization initiator, and thus a longer time is required for curing. Therefore, the heating temperature and the heating time should be appropriately set depending on the composition of the polymerizable composition.
  • the heating temperature is preferably 50 to 230 ° C, and more preferably 100 to 160 ° C.
  • heating temperature can be arbitrarily adjusted at 160 degreeC from room temperature with the kind and compounding quantity.
  • the heating time is preferably 1 to 180 minutes, and more preferably 5 to 120 minutes.
  • a colored pigment that absorbs or scatters light by performing a heating process after a process of irradiating the polymerizable composition with active energy rays. This is preferable because it can efficiently cure the deep part of the coating film of the polymerization composition containing a high concentration of light and a portion where light is blocked and light does not reach.
  • the method for producing the cured product may include a drying step.
  • a drying step when applying the step of irradiating with the active energy ray after applying the polymerizable composition on the substrate, it is preferable to provide a drying step before the step of irradiating with the active energy ray.
  • examples of the method for drying the solvent include heat drying, ventilation heat drying, and reduced pressure drying.
  • the method of heat drying is not particularly limited, and examples thereof include an oven, a hot plate, infrared irradiation, electromagnetic wave irradiation, and the like.
  • a ventilation drying oven etc. are mentioned, for example.
  • the temperature of the polymerizable composition is lower than the preset drying temperature due to the latent heat of vaporization of the solvent, so that it is possible to ensure a long time until the polymerizable composition is gelled. Since the time until gelation is affected by the drying method, film thickness, and the like, the drying temperature and time should be appropriately set including the selection of the solvent. As an example, the drying temperature is preferably 20 to 120 ° C., and more preferably 40 to 100 ° C. The drying time is preferably 1 to 60 minutes, and more preferably 1 to 30 minutes. Further, by using the polymerization inhibitor, it is possible to ensure a long time until gelation. The triazine peroxide derivative is decomposed by heat, but the decomposition rate of the compound when heated at 80 ° C. for 5 minutes is about 0.1%. There is not much thickening or gelation.
  • the dry film thickness (film thickness of the cured product) of the polymerizable composition is appropriately set depending on the application, but is preferably 0.05 to 300 ⁇ m, more preferably 0.1 to 100 ⁇ m. .
  • a pattern can be formed by a photolithography method.
  • the polymerizable composition is applied to a substrate and dried as necessary to form a dry film. Then, by irradiating the dry film with active energy rays through a mask, the radical polymerizable compound (b) is polymerized in the exposed portion to form a cured film.
  • a highly accurate pattern shape can be produced without using a mask by direct writing using a laser.
  • the unexposed portion is developed and removed with an alkaline developer such as an aqueous solution of 0.3 to 3% by mass of sodium carbonate to obtain a patterned cured film.
  • an alkaline developer such as an aqueous solution of 0.3 to 3% by mass of sodium carbonate
  • post-baking is performed as post-drying at 180 to 250 ° C. for 20 to 90 minutes for the purpose of improving the adhesion between the cured film and the substrate. In this way, a desired pattern based on the cured film is formed.
  • the polymerizable composition of the present invention includes a hard coating agent, a coating agent for optical disks, a coating agent for optical fibers, a coating material for mobile terminals, a coating material for home appliances, a coating material for cosmetic containers, an inner surface antireflection coating material for optical elements, and a high / low refractive index.
  • Coating agents thermal barrier coating agents, heat dissipation coating agents, anti-fogging agents, and other paints and coating agents; offset printing ink, gravure printing ink, screen printing ink, inkjet printing ink, conductive ink, insulating ink, light guide plate ink Photosensitive printing plates; nanoimprint materials; 3D printer resins; holographic recording materials; dental materials; waveguide materials; black stripes for lens sheets; green sheets and electrode materials for capacitors; adhesives for FPDs; HDD adhesive, optical pickup adhesive, image sensor adhesive, organic Adhesives and sealants such as L sealant, OCA for touch panel, OCR for touch panel; color resist, black resist, color filter protective film, photo spacer, black column spacer, frame resist, TFT wiring photoresist, interlayer insulation Resist for FPD such as film; Resist for printed circuit board such as liquid solder resist, dry film resist; Semiconductor materials such as semiconductor resist, buffer coat film, etc.
  • Table 3 shows the results of Compound R1 and Compound R2.
  • Compound R1 was synthesized according to the production method described in JP-A-59-197401 and identified by EI-MS and 1 H-NMR.
  • compound R2 Irgacure 184 (manufactured by BASF) was used.
  • ⁇ max is the maximum absorption wavelength (nm)
  • ⁇ max is the molar extinction coefficient at the maximum absorption wavelength (L ⁇ mol ⁇ 1 ⁇ cm ⁇ 1 )
  • ⁇ 313 is the molar extinction coefficient at the wavelength of 313 nm (L ⁇ mol).
  • ⁇ 1 ⁇ cm ⁇ 1 ) and ⁇ 365 indicate the molar extinction coefficient (L ⁇ mol ⁇ 1 ⁇ cm ⁇ 1 ) at a wavelength of 365 nm.
  • an ultra-high pressure mercury lamp or a high-pressure mercury lamp has a wavelength of 365 nm (i-line) as a main wavelength and efficiently emits light having a wavelength of 313 nm (j-line).
  • the triazine peroxide derivative of the present invention has a large molar extinction coefficient at a wavelength of 365 nm and a wavelength of 313 nm emitted from a high-pressure mercury lamp or the like with respect to the compound R1 having a benzophenone skeleton. Furthermore, a single light having a wavelength of 365 nm or the like is emitted from the LED, but compound 25, compound 26, compound 31, compound 32, compound 35, compound 37, compound 38, compound 40, compound 41, compound 44, compound 19 and Compound 48 are found to have a large molar extinction coefficient at a wavelength of 365 nm.
  • DPHA is a mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate (trade name: Aronix M-402, manufactured by Toagosei Co., Ltd.); RD200 is a methyl methacrylate / methacrylic acid / cyclohexyl maleimide (mass%: 61/14/25) copolymer, weight average molecular weight: 17,000, acid value: 90 (synthetic product); EMK: 4,4'-bis (diethylamino) benzophenone (Tokyo Chemical Industry Reagent) F-477 is a fluorine-based leveling agent (trade name: Megafax F-477, manufactured by DIC Corporation); PGMEA indicates propylene glycol monomethyl ether acetate (Wako Pure Chemical Industries, Ltd.).
  • UV-3700B is urethane acrylate (trade name: Purple light UV-3700B, manufactured by Nippon Synthetic Chemical Industry); IBOA is isobornyl acrylate (Tokyo Chemical Industry Reagent); THFA is tetrahydrofurfuryl acrylate (Tokyo Chemical Industry Reagent); TMPTA is trimethylolpropane triacrylate (Tokyo Chemical Industry Reagent); DMT indicates N, N-dimethyltoluidine (Tokyo Chemical Industry Reagent).
  • the polymerizable composition (D) prepared as described above was applied to a PET film (trade name: Cosmo Shine A4300, manufactured by Toyobo Co., Ltd.) having a thickness of 100 ⁇ m by an applicator.
  • a PET film (having a wavelength of 365 nm having a transmittance of less than 0.1%) applied to 50 ⁇ m and having a black coating on the surface was placed in a half region of the coating.
  • irradiation of 100 mJ / cm ⁇ 2 > was performed using the conveyor type
  • the black film-coated PET film was removed to expose the cured film, and the cured film portion was measured for degree of cure (%) by attenuated total reflection infrared spectroscopy (ATR-IR). .
  • ATR-IR attenuated total reflection infrared spectroscopy
  • the triazine peroxide derivative of the present invention and the polymerizable composition containing the compound have excellent sensitivity to light, and are characterized by having photocurability and thermosetting properties. it is obvious.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Materials For Photolithography (AREA)
  • Polymerization Catalysts (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

A triazine peroxide derivative represented by general formula (1) (in formula (1), R1 and R2 independently represent a methyl group or ethyl group, R3 represents a C1-5 aliphatic hydrocarbon group or a C6-9 aromatic hydrocarbon group optionally having an alkyl group, n represents an integer of 0-2, and X represents an aryl group represented by Ar1, Ar2, Ar3, or Ar4 in general formula (2)) (in formula (2), m represents an integer of 0-3, R4 is an independent substituent and is a C1-18 alkyl group, a substituent represented by R5-Y- in general formula (3), a nitro group, or a cyano group, Y represents an oxygen atom or sulfur atom, and R5 represents a C1-18 hydrocarbon group optionally having one or more of an ether bond, thioether bond, and end hydroxyl group in the carbon backbone, a C6-9 aromatic hydrocarbon group optionally having an alkyl group, or a C1-8 acyl group. Alternatively, R4 represents a hydrocarbon group that forms a 5- or 6-membered ring with two adjacent R5-Y- in general formula (3).)). This triazine peroxide derivative has both photopolymerizability capable of efficiently absorbing light emitted from a lamp of a wavelength of 365 nm or the like and generating radicals, and thermal polymerizability capable of generating radicals by heat, and can also lower the yellowness of a cured product.

Description

トリアジンペルオキシド誘導体、該化合物を含有する重合性組成物Triazine peroxide derivative, polymerizable composition containing the compound
 本発明は、トリアジンペルオキシド誘導体、該化合物を含有する重合開始剤とラジカル重合性化合物を含有する重合性組成物およびその硬化物と、当該硬化物の製造方法に関する。 The present invention relates to a triazine peroxide derivative, a polymerizable composition containing a polymerization initiator containing the compound and a radical polymerizable compound, a cured product thereof, and a method for producing the cured product.
 高分子等を合成するために、重合開始剤として、熱または光、酸化-還元によりラジカルを発生させるラジカル重合開始剤が広く用いられている。特に、光重合開始剤は、光等の活性エネルギー線を吸収することで、結合開裂や水素引き抜き反応によりラジカルを発生させることができ、ラジカル重合性化合物の重合開始剤として利用される。例えば、α―ヒドロキシアセトフェノン誘導体やα―アミノアセトフェノン誘導体、アシルホスフィンオキサイド誘導体、ハロメチルトリアジン誘導体、ベンジルケタール誘導体、チオキサントン誘導体等が利用されている。 In order to synthesize polymers and the like, radical polymerization initiators that generate radicals by heat, light or oxidation-reduction are widely used as polymerization initiators. In particular, the photopolymerization initiator can generate a radical by bond cleavage or hydrogen abstraction reaction by absorbing active energy rays such as light, and is used as a polymerization initiator for a radical polymerizable compound. For example, α-hydroxyacetophenone derivatives, α-aminoacetophenone derivatives, acylphosphine oxide derivatives, halomethyltriazine derivatives, benzyl ketal derivatives, thioxanthone derivatives, and the like are used.
 上記のような光重合開始剤とラジカル重合性化合物からなる光重合性組成物は、光照射により速やかに硬化するため、速硬化性や低VOC等の観点から、コーティング剤や塗料、印刷インキ、感光性印刷版、接着剤、各種フォトレジスト等の用途に適用されている。 Since the photopolymerizable composition comprising the photopolymerization initiator and the radical polymerizable compound as described above is quickly cured by light irradiation, from the viewpoint of fast curability and low VOC, a coating agent, paint, printing ink, It is applied to applications such as photosensitive printing plates, adhesives, and various photoresists.
 一方、特許文献1には、光または熱によりラジカルを発生する分子内に過酸化結合(-O-O-)を有するベンゾフェノン基含有ペルオキシエステルを有効成分とする重合開始剤が開示されている。また、特許文献2には、その重合開始剤とラジカル重合性化合物からなる接着剤組成物が開示されており、常温での光の照射による硬化と、その後の加熱による硬化を行なうデュアルキュアにより、接着剤が強固な接着強度と高耐久性を発揮している。 On the other hand, Patent Document 1 discloses a polymerization initiator containing, as an active ingredient, a benzophenone group-containing peroxyester having a peroxide bond (—O—O—) in a molecule that generates radicals by light or heat. Further, Patent Document 2 discloses an adhesive composition comprising the polymerization initiator and a radical polymerizable compound, and by dual cure that performs curing by irradiation with light at room temperature and subsequent curing by heating, The adhesive exhibits strong adhesive strength and high durability.
 このように光重合性と熱重合性を併せ持つデュアルキュアタイプの重合性組成物は、暗部硬化性の向上においても活用することができる。デュアルキュアタイプの重合性組成物は、例えば、光を吸収や散乱する顔料やフィラーが高濃度に配合された重合性組成物の硬化や、フラットパネルディスプレイの製造工程における保護カバー周辺の黒枠やタッチパネル電極の下部等の光が届かない箇所の硬化にも有効である。 Thus, the dual cure type polymerizable composition having both photopolymerizability and thermal polymerizability can also be used for improving dark part curability. Dual cure type polymerizable compositions include, for example, curing of polymerizable compositions containing light-absorbing and scattering pigments and fillers at high concentrations, and black frames and touch panels around protective covers in flat panel display manufacturing processes. It is also effective for curing areas where light does not reach, such as the bottom of electrodes.
 また、例えば、特許文献3には、トリアジン骨格を有する光重合開始剤として、特定構造のハロメチルトリアジン誘導体が開示されており、光重合に有効であることが知られている。 For example, Patent Document 3 discloses a halomethyltriazine derivative having a specific structure as a photopolymerization initiator having a triazine skeleton, and is known to be effective for photopolymerization.
特開昭59-197401号公報JP 59-197401 A 特開2000-96002号公報JP 2000-96002 A 特開昭54-074887号公報Japanese Patent Laid-Open No. 54-074887
 しかしながら、特許文献1や特許文献2に記載されているベンゾフェノン基含有ペルオキシエステルは、高圧水銀ランプやLEDから放射される波長365nm等の光を十分に吸収しないため、光重合開始剤の最も重要な基本特性である感度が十分ではなく、感度の向上が課題として挙げられる。 However, the benzophenone group-containing peroxyesters described in Patent Document 1 and Patent Document 2 do not sufficiently absorb light having a wavelength of 365 nm or the like emitted from a high-pressure mercury lamp or LED, and are therefore the most important photopolymerization initiator. Sensitivity, which is a basic characteristic, is not sufficient, and improvement of sensitivity is a problem.
 一方、特許文献3等に記載されているハロメチルトリアジン誘導体は熱重合には使用することができず、当該化合物を光重合開始剤として用いて得られる硬化膜は黄色度が高くなる。よって、当該化合物は、例えば、ディスプレイの表面保護シート等の高い透明性が要求される用途の重合開始剤として使用することができず、黄色度の低減が課題として挙げられる。 On the other hand, halomethyltriazine derivatives described in Patent Document 3 and the like cannot be used for thermal polymerization, and a cured film obtained using the compound as a photopolymerization initiator has high yellowness. Therefore, the said compound cannot be used as a polymerization initiator of the use as which high transparency is requested | required, such as a surface protection sheet of a display, for example, The reduction of yellowness is mentioned as a subject.
 従って、上記課題を解決すべく、本発明は、高圧水銀ランプやLED等のランプから放出される波長365nm等の光を効率よく吸収してラジカルを発生できる光重合性と、熱によりラジカルを発生できる熱重合性を併せ持ち、さらに、硬化物の黄色度が低減できるトリアジンペルオキシド誘導体を提供するものである。 Therefore, in order to solve the above problems, the present invention is capable of generating radicals by efficiently absorbing light having a wavelength of 365 nm emitted from a lamp such as a high-pressure mercury lamp or LED, and generating radicals by heat. Further, the present invention provides a triazine peroxide derivative that has both heat-polymerizable properties and that can reduce the yellowness of a cured product.
 さらに、本発明は、上記のトリアジンペルオキシド誘導体を含む重合開始剤とラジカル重合性化合物を含有する重合性組成物およびその硬化物と、当該硬化物の製造方法を提供するものである。 Furthermore, the present invention provides a polymerizable composition containing a polymerization initiator containing the triazine peroxide derivative and a radical polymerizable compound, a cured product thereof, and a method for producing the cured product.
 即ち、本発明は、一般式(1):
Figure JPOXMLDOC01-appb-C000003
(式(1)中、RおよびRは独立してメチル基またはエチル基、Rは炭素数1~5の脂肪族炭化水素基、またはアルキル基を有してもよい炭素数6~9の芳香族炭化水素基を表し、nは0から2の整数を表し、Xは一般式(2):Ar、Ar、Ar、またはArで表されるアリール基である。)
Figure JPOXMLDOC01-appb-C000004
(式(2)中、mは0から3の整数を表し、Rは、独立した置換基であって、炭素数1~18のアルキル基、一般式(3):R-Y-で表される置換基、ニトロ基、またはシアノ基を表し、前記Yは、酸素原子または硫黄原子を表し、前記Rは、炭素骨格中に、エーテル結合、チオエーテル結合、および、末端に水酸基のいずれか1つ以上を有していてもよい炭素数1~18の炭化水素基、アルキル基を有してもよい炭素数6~9の芳香族炭化水素基、または炭素数1~8のアシル基を表す。あるいは、Rは隣接する2つの前記一般式(3):R-Y-により5~6員環を形成する炭化水素基を表す。)で表されるトリアジンペルオキシド誘導体、に関する。
That is, the present invention relates to the general formula (1):
Figure JPOXMLDOC01-appb-C000003
(In the formula (1), R 1 and R 2 are each independently a methyl group or an ethyl group, R 3 is an aliphatic hydrocarbon group having 1 to 5 carbon atoms, or an optionally substituted alkyl group having 6 to 6 carbon atoms. 9 represents an aromatic hydrocarbon group of 9, n represents an integer of 0 to 2, and X is an aryl group represented by the general formula (2): Ar 1 , Ar 2 , Ar 3 , or Ar 4 .
Figure JPOXMLDOC01-appb-C000004
(In the formula (2), m represents an integer of 0 to 3, R 4 is an independent substituent, an alkyl group having 1 to 18 carbon atoms, represented by the general formula (3): R 5 —Y— Represents a substituent, a nitro group, or a cyano group, and Y represents an oxygen atom or a sulfur atom, and R 5 represents any of an ether bond, a thioether bond, and a hydroxyl group at the terminal in the carbon skeleton. Or a hydrocarbon group having 1 to 18 carbon atoms which may have one or more, an aromatic hydrocarbon group having 6 to 9 carbon atoms which may have an alkyl group, or an acyl group having 1 to 8 carbon atoms Or R 4 represents a triazine peroxide derivative represented by two adjacent general formulas (3): a hydrocarbon group that forms a 5- to 6-membered ring by R 5 —Y—.
 また、本発明は、前記トリアジンペルオキシド誘導体を含む(a)重合開始剤および(b)ラジカル重合性化合物を含有する重合性組成物、および該重合性組成物から形成される硬化物と、当該硬化物の製造方法、に関する。 The present invention also includes a polymerizable composition containing (a) a polymerization initiator and (b) a radical polymerizable compound containing the triazine peroxide derivative, a cured product formed from the polymerizable composition, and the curing The present invention relates to a method for manufacturing a product.
 本発明のトリアジンペルオキシド誘導体は、高圧水銀ランプやLED等のランプから放出される波長365nm等の光を効率よく吸収して効率よくラジカルを発生でき、かつ分子内に過酸化結合を有するので、光および熱重合開始剤として有用なものである。よって、当該トリアジンペルオキシド誘導体とラジカル重合性化合物を含む重合性組成物は、光の照射により良好に硬化でき、かつ光の届かない暗部でも熱により良好に硬化することができる。 The triazine peroxide derivative of the present invention can efficiently generate radicals by efficiently absorbing light having a wavelength of 365 nm or the like emitted from a lamp such as a high-pressure mercury lamp or LED, and has a peroxide bond in the molecule. And useful as a thermal polymerization initiator. Therefore, the polymerizable composition containing the triazine peroxide derivative and the radical polymerizable compound can be cured well by light irradiation and can be cured well by heat even in a dark part where light does not reach.
 また、ハロメチルトリアジン誘導体は光分解によりクロルラジカルを放出し、副生する芳香族塩化物等が着色の原因と推定されるが、本発明のトリアジンペルオキシド誘導体は、塩素原子を含まないため、硬化物の黄色度を低減できる。 In addition, halomethyltriazine derivatives release chloro radicals by photolysis, and aromatic chlorides as a by-product are presumed to be the cause of coloration, but the triazine peroxide derivatives of the present invention do not contain chlorine atoms, so The yellowness of the product can be reduced.
<トリアジンペルオキシド誘導体>
 本発明のトリアジンペルオキシド誘導体は、下記一般式(1)で表すことができる。
Figure JPOXMLDOC01-appb-C000005
(式(1)中、RおよびRは独立してメチル基またはエチル基、Rは炭素数1~5の脂肪族炭化水素基、またはアルキル基を有してもよい炭素数6~9の芳香族炭化水素基を表し、nは0から2の整数を表し、Xは一般式(2):Ar、Ar、Ar、またはArで表されるアリール基である。)
Figure JPOXMLDOC01-appb-C000006
                              
(式(2)中、mは0から3の整数を表し、Rは、独立した置換基であって、炭素数1~18のアルキル基、一般式(3):R-Y-で表される置換基、ニトロ基、またはシアノ基を表し、前記Yは、酸素原子または硫黄原子を表し、前記Rは、炭素骨格中に、エーテル結合、チオエーテル結合、および、末端に水酸基のいずれか1つ以上を有していてもよい炭素数1~18の炭化水素基、アルキル基を有してもよい炭素数6~9の芳香族炭化水素基、または炭素数1~8のアシル基を表す。あるいは、Rは隣接する2つの前記一般式(3):R-Y-により5~6員環を形成する炭化水素基を表す。)
<Triazine peroxide derivative>
The triazine peroxide derivative of the present invention can be represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000005
(In the formula (1), R 1 and R 2 are each independently a methyl group or an ethyl group, R 3 is an aliphatic hydrocarbon group having 1 to 5 carbon atoms, or an optionally substituted alkyl group having 6 to 6 carbon atoms. 9 represents an aromatic hydrocarbon group of 9, n represents an integer of 0 to 2, and X is an aryl group represented by the general formula (2): Ar 1 , Ar 2 , Ar 3 , or Ar 4 .
Figure JPOXMLDOC01-appb-C000006

(In the formula (2), m represents an integer of 0 to 3, R 4 is an independent substituent, an alkyl group having 1 to 18 carbon atoms, represented by the general formula (3): R 5 —Y— Represents a substituent, a nitro group, or a cyano group, and Y represents an oxygen atom or a sulfur atom, and R 5 represents any of an ether bond, a thioether bond, and a hydroxyl group at the terminal in the carbon skeleton. Or a hydrocarbon group having 1 to 18 carbon atoms which may have one or more, an aromatic hydrocarbon group having 6 to 9 carbon atoms which may have an alkyl group, or an acyl group having 1 to 8 carbon atoms Alternatively, R 4 represents a hydrocarbon group forming a 5- to 6-membered ring by the two adjacent general formulas (3): R 5 —Y—.
 前記一般式(1)中、RおよびRは独立してメチル基またはエチル基を表す。RおよびRは、前記トリアジンペルオキシド誘導体の分解温度が高いため重合性組成物の貯蔵安定性が高くなる観点から、メチル基が好ましい。 In the general formula (1), R 1 and R 2 independently represent a methyl group or an ethyl group. R 1 and R 2 are preferably methyl groups from the viewpoint of increasing the storage stability of the polymerizable composition because the decomposition temperature of the triazine peroxide derivative is high.
 前記一般式(1)中、Rは、炭素数が1~5の脂肪族炭化水素基、またはアルキル基を有してもよい炭素数6~9の芳香族炭化水素基である。前記アルキル基は、直鎖であってもよく、分岐鎖であってもよい。Rの具体例としては、メチル基、エチル基、プロピル基、2,2-ジメチルプロピル基、フェニル基、イソプロピルフェニル基が挙げられる。これらの中でも、前記トリアジンペルオキシド誘導体の合成が容易である観点から、メチル基、エチル基、プロピル基、2,2-ジメチルプロピル基、フェニル基であることが好ましい。前記トリアジンペルオキシド誘導体の分解温度が高いため重合性組成物の貯蔵安定性が高くなり、ランプの光に対する感度が高い点から、メチル基、エチル基であることがより好ましい。 In the general formula (1), R 3 is an aliphatic hydrocarbon group having 1 to 5 carbon atoms or an aromatic hydrocarbon group having 6 to 9 carbon atoms which may have an alkyl group. The alkyl group may be linear or branched. Specific examples of R 3 include a methyl group, an ethyl group, a propyl group, a 2,2-dimethylpropyl group, a phenyl group, and an isopropylphenyl group. Among these, a methyl group, an ethyl group, a propyl group, a 2,2-dimethylpropyl group, and a phenyl group are preferable from the viewpoint of easy synthesis of the triazine peroxide derivative. Since the decomposition temperature of the triazine peroxide derivative is high, the storage stability of the polymerizable composition is increased, and the methyl group and the ethyl group are more preferable from the viewpoint of high sensitivity to light of the lamp.
 前記一般式(1)中の、nは、0から2の整数で表される。前記トリアジンペルオキシド誘導体の合成が容易である観点から、nが0または1であることが好ましい。nが0の場合においては、XがAr、Ar、またはArであり、nが1の場合においては、XがArであることが、ランプの光を効率よく吸収し、硬化物の黄色度が低減できる観点から、より好ましい。 In the general formula (1), n is represented by an integer of 0 to 2. From the viewpoint of easy synthesis of the triazine peroxide derivative, n is preferably 0 or 1. When n is 0, X is Ar 2 , Ar 3 , or Ar 4 , and when n is 1, X is Ar 1 to efficiently absorb the light of the lamp and to obtain a cured product From the viewpoint that the yellowness of can be reduced, it is more preferable.
 前記一般式(2)中の、mは、0から3の整数で表される。前記トリアジンペルオキシド誘導体の合成が容易である観点から、mが0から2であることが好ましく、ランプの光を効率よく吸収する観点から、mが1であることがより好ましい。 In the general formula (2), m is represented by an integer from 0 to 3. M is preferably 0 to 2 from the viewpoint of easy synthesis of the triazine peroxide derivative, and m is more preferably 1 from the viewpoint of efficiently absorbing the light of the lamp.
 前記一般式(2)中の、Rは、独立した置換基であって、炭素数1から18のアルキル基、一般式(3):R-Y-で表される置換基、ニトロ基、またはシアノ基を表し、前記Yは、酸素原子または硫黄原子を表し、前記Rは、炭素骨格中に、エーテル結合、チオエーテル結合、および、末端に水酸基のいずれか1つ以上を有していてもよい炭素数1~18の炭化水素基、アルキル基を有してもよい炭素数6~9の芳香族炭化水素基、または炭素数1~8のアシル基を表す。あるいは、Rは隣接する2つの前記一般式(3):R-Y-により5~6員環を形成する炭化水素基を表す。 In the general formula (2), R 4 is an independent substituent, an alkyl group having 1 to 18 carbon atoms, a general formula (3): a substituent represented by R 5 —Y—, a nitro group Or Y represents an oxygen atom or a sulfur atom, and R 5 has one or more of an ether bond, a thioether bond, and a hydroxyl group at the terminal in the carbon skeleton. It represents an optionally substituted hydrocarbon group having 1 to 18 carbon atoms, an aromatic hydrocarbon group having 6 to 9 carbon atoms which may have an alkyl group, or an acyl group having 1 to 8 carbon atoms. Alternatively, R 4 represents a hydrocarbon group that forms a 5- to 6-membered ring by two adjacent general formulas (3): R 5 —Y—.
 前記Rは、ランプの光を効率よく吸収する観点から、独立した置換基であって、炭素数1から8のアルキル基、または一般式(3):R-Y-で表される置換基を表し、前記Yは、酸素原子を表し、前記Rは、炭素骨格中に、エーテル結合、および、末端に水酸基のいずれか1つ以上を有していてもよい炭素数1~8の炭化水素基、またはアルキル基を有してもよい炭素数6~9の芳香族炭化水素基であるか、あるいは、Rは隣接する2つの前記一般式(3):R-X-により5~6員環を形成する炭化水素基であることが好ましい。 R 4 is an independent substituent from the viewpoint of efficiently absorbing the light of the lamp, and is an alkyl group having 1 to 8 carbon atoms, or a substituent represented by the general formula (3): R 5 —Y— Y represents an oxygen atom, and R 5 has 1 to 8 carbon atoms which may have any one or more of an ether bond and a hydroxyl group at the terminal in the carbon skeleton. A hydrocarbon group or an aromatic hydrocarbon group having 6 to 9 carbon atoms which may have an alkyl group, or R 4 is represented by two adjacent general formulas (3): R 5 —X— A hydrocarbon group forming a 5- to 6-membered ring is preferable.
 前記Rの具体例としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ヘキシル基、オクチル基、2-エチルヘキシル基、ドデシル基、オクタデシル基等のアルキル基;メトキシ基、エトキシ基、n-プロピルオキシ基、イソプロピルオキシ基、n-ブチルオキシ基、sec-ブチルオキシ基、tert-ブチルオキシ基、n-ペンチルオキシ基、シクロペンチルオキシ基、n-ヘキシルオキシ基、シクロヘキシルオキシ基、オクチルオキシ基、2-エチルヘキシルオキシ基、ドデシルオキシ基、オクタデシルオキシ基、2-ヒドロキシエトキシ基、2-メトキシエトキシ基、2-エトキシエトキシ基、2-ブトキシエトキシ基、2-(2-ヒドロキシエトキシ)エトキシ基、2-(2-エトキシエトキシ)エトキシ基、3-ヒドロキシ-n-プロピルオキシ基、3-メトキシ-n-プロピルオキシ基、1,2-ジヒドロキシプロピルオキシ基、メチレンジオキシ基、ジメチルメチレンジオキシ基、エチレンジオキシ基等のアルコキシ基;フェニルオキシ基、4-イソプロピルフェニルオキシ基等のアリールオキシ基;メチルスルファニル基、エチルスルファニル基、ヘキシルスルファニル基、2-メトキシエチルスルファニル基、2-(2-メトキシエトキシ)エチルスルファニル基等のアルキルスルファニル基;フェニルスルファニル基、2-メチルフェニルスルファニル基、4-メチルフェニルスルファニル基等のアリールスルファニル基、アセチル基、n-ブタノイル基、2-エチルヘキサノイル基、ベンゾイル基、2-メチルベンゾイル基等のアシル基等が挙げられる。これら官能基を有する一般式(1)で表される化合物は、波長365nmの吸光度が高く、ランプの光を効率よく吸収するため好ましい。 Specific examples of R 4 include, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, n-hexyl, octyl, 2- Alkyl groups such as ethylhexyl group, dodecyl group, octadecyl group; methoxy group, ethoxy group, n-propyloxy group, isopropyloxy group, n-butyloxy group, sec-butyloxy group, tert-butyloxy group, n-pentyloxy group, Cyclopentyloxy group, n-hexyloxy group, cyclohexyloxy group, octyloxy group, 2-ethylhexyloxy group, dodecyloxy group, octadecyloxy group, 2-hydroxyethoxy group, 2-methoxyethoxy group, 2-ethoxyethoxy group, 2-butoxyethoxy group, 2- (2-hydroxyethyl) Toxi) ethoxy group, 2- (2-ethoxyethoxy) ethoxy group, 3-hydroxy-n-propyloxy group, 3-methoxy-n-propyloxy group, 1,2-dihydroxypropyloxy group, methylenedioxy group, Alkoxy groups such as dimethylmethylenedioxy group and ethylenedioxy group; aryloxy groups such as phenyloxy group and 4-isopropylphenyloxy group; methylsulfanyl group, ethylsulfanyl group, hexylsulfanyl group, 2-methoxyethylsulfanyl group, Alkylsulfanyl groups such as 2- (2-methoxyethoxy) ethylsulfanyl group; arylsulfanyl groups such as phenylsulfanyl group, 2-methylphenylsulfanyl group, 4-methylphenylsulfanyl group, acetyl group, n-butanoyl group, 2- Ethylhe Sanoiru group, a benzoyl group, etc. acyl group such as a 2-methylbenzoyl group. The compound represented by the general formula (1) having these functional groups is preferable because it has high absorbance at a wavelength of 365 nm and efficiently absorbs light from the lamp.
 さらに、これらの中でも、前記トリアジン誘導体の重合性組成物への溶解性が高く、合成が容易であり、ランプの光に対する感度が高い観点から、前記Rは、メトキシ基、エトキシ基、2-ヒドロキシエトキシ基がより好ましい。 Further, among these, from the viewpoint of high solubility of the triazine derivative in the polymerizable composition, easy synthesis, and high sensitivity to light of the lamp, R 1 represents a methoxy group, an ethoxy group, 2- A hydroxyethoxy group is more preferred.
 前記Rの置換位置は、特に限定されないが、XがArの場合、Rの少なくとも一つが、トリアジン基が置換されたベンゼン環の4位に置換されていることが好ましく、XがArの場合、Rの少なくとも一つが、トリアジン基が置換されたベンゼン環とは別のベンゼン環の4位に置換されていることが好ましく、XがArの場合、Rの少なくとも一つが、1位に置換されたトリアジン基の4位に置換されていることが好ましく、XがArの場合、Rの少なくとも一つが、トリアジン基が置換されたベンゼン環とは別のベンゼン環の4位に置換されていることがランプの光を効率よく吸収するため好ましい。 The substitution position of R 4 is not particularly limited, but when X is Ar 1 , it is preferable that at least one of R 4 is substituted at the 4-position of the benzene ring substituted with the triazine group, and X is Ar. In the case of 2 , at least one of R 4 is preferably substituted at the 4-position of a benzene ring different from the benzene ring substituted with the triazine group. When X is Ar 3 , at least one of R 4 is it is preferable substituted in the 4-position of the substituted triazine group in the 1-position when X is Ar 4, at least one R 4 is another benzene ring with the benzene ring to which a triazine group substituted The substitution at the 4-position is preferable in order to efficiently absorb the light of the lamp.
 以下に本発明のトリアジンペルオキシド誘導体の具体例を以下に示すが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-I000010
Specific examples of the triazine peroxide derivative of the present invention are shown below, but are not limited thereto.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-I000010
 本発明のトリアジンペルオキシド誘導体としては、好ましくは化合物19、化合物23、化合物25、化合物26、化合物27、化合物28、化合物31、化合物32、化合物33、化合物35、化合物37、化合物38、化合物39、化合物40、化合物41、化合物42、化合物43、化合物44、化合物46、化合物47、化合物48が挙げられ、より好ましくは化合物25、化合物26、化合物31、化合物32、化合物35、化合物37、化合物38、化合物41、化合物44、化合物47、化合物48が挙げられる。 The triazine peroxide derivative of the present invention is preferably compound 19, compound 23, compound 25, compound 26, compound 27, compound 28, compound 31, compound 32, compound 33, compound 35, compound 37, compound 38, compound 39, Compound 40, Compound 41, Compound 42, Compound 43, Compound 44, Compound 46, Compound 47, Compound 48 are mentioned, More preferably, Compound 25, Compound 26, Compound 31, Compound 32, Compound 35, Compound 37, Compound 38 are mentioned. , Compound 41, Compound 44, Compound 47, and Compound 48.
<トリアジンペルオキシド誘導体の製造方法>
 前記一般式(1)で表されるトリアジンペルオキシド誘導体の製造方法は、例えば、下記反応式のように、塩化シアヌル誘導体を得る工程(以下、工程(A)とも称す)と、続いて、得られた塩化シアヌル誘導体と、ヒドロペルオキシドを、アルカリの存在下で、反応させる工程(以下、工程(B)とも称す)を含む方法が挙げられる。なお、上記の工程(A)および/または(B)の後には、余剰の原料等を減圧留去(除去)する工程や、精製工程を含んでもよい。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-I000012
(上記反応式において、n、R、R、RおよびXは前記一般式(1)と同じである。)
<Method for producing triazine peroxide derivative>
The method for producing the triazine peroxide derivative represented by the general formula (1) is obtained, for example, by a step of obtaining a cyanuric chloride derivative (hereinafter also referred to as step (A)) as in the following reaction formula. And a method comprising reacting a cyanuric chloride derivative with hydroperoxide in the presence of an alkali (hereinafter also referred to as step (B)). In addition, after said process (A) and / or (B), the process of distilling off excess raw materials etc. (removal), and the refinement | purification process may be included.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-I000012
(In the above reaction formula, n, R 1 , R 2 , R 3 and X are the same as in the general formula (1).)
 前記工程(B)において、前記塩化シアヌル誘導体は、市販品を利用できる。なお、市販品がない場合、前記工程(A)において、グリニャール反応、リチオ化反応、鈴木カップリング反応、またはフリーデル・クラフツ反応等の公知の合成法に準じて合成することができる。 In the step (B), a commercially available product can be used as the cyanuric chloride derivative. In addition, when there is no commercial item, in the said process (A), it can synthesize | combine according to well-known synthesis methods, such as a Grignard reaction, a lithiation reaction, a Suzuki coupling reaction, or Friedel-Crafts reaction.
<グリニャール反応による塩化シアヌル誘導体の合成>
 前記工程(A)において、グリニャール反応により、塩化シアヌル誘導体を合成する場合、特開平6-179661号公報等に記載の公知の合成法に準じて合成することができる。前記工程(A)における芳香族化合物のZは塩素原子、臭素原子、またはヨウ素原子で表される芳香族化合物を使用することができる。芳香族化合物とマグネシウムを反応させることでグリニャール試薬を調整し、次いで得られたグリニャール試薬を塩化シアヌルと反応させることにより塩化シアヌル誘導体を合成することができる。
<Synthesis of cyanuric chloride derivatives by Grignard reaction>
In the step (A), when a cyanuric chloride derivative is synthesized by a Grignard reaction, it can be synthesized according to a known synthesis method described in JP-A-6-179661. As the aromatic compound Z in the step (A), an aromatic compound represented by a chlorine atom, a bromine atom, or an iodine atom can be used. A cyanuric chloride derivative can be synthesized by preparing a Grignard reagent by reacting an aromatic compound with magnesium and then reacting the obtained Grignard reagent with cyanuric chloride.
 上記のグリニャール試薬の調整において、マグネシウムは、芳香族化合物1モルに対して、0.8から2.0モル用いることが好ましく、1から1.5モル用いることがより好ましい。反応開始剤として、ヨウ素、ブロモエタン、ジブロモエタン等を用いてもよく、芳香族化合物1モルに対して、0.0001から0.01モル用いることが好ましい。反応温度は0から70℃が好ましく、10から60℃がより好ましい。反応時間は30分から20時間が好ましく、1時間から10時間がより好ましい。 In the preparation of the Grignard reagent, magnesium is preferably used in an amount of 0.8 to 2.0 mol, more preferably 1 to 1.5 mol, relative to 1 mol of the aromatic compound. As the reaction initiator, iodine, bromoethane, dibromoethane or the like may be used, and 0.0001 to 0.01 mol is preferably used with respect to 1 mol of the aromatic compound. The reaction temperature is preferably 0 to 70 ° C, more preferably 10 to 60 ° C. The reaction time is preferably 30 minutes to 20 hours, more preferably 1 hour to 10 hours.
 上記のグリニャール試薬の調整において、例えば、テトラヒドロフラン等のエーテル類等の溶媒を用いることができる。 In the preparation of the above Grignard reagent, for example, a solvent such as ethers such as tetrahydrofuran can be used.
 また、上記のグリニャール試薬と塩化シアヌルと反応において、塩化シアヌルは、芳香族化合物1モルに対して、0.7から1.5モル用いることが好ましく、0.8から1.2モル用いることがより好ましい。反応温度は-30から70℃が好ましく、-10から40℃がより好ましい。反応時間は10分から10時間が好ましく、30分から5時間であることがより好ましい。なお、調整したグリニャール試薬に塩化シアヌルを投入してもよく、塩化シアヌルの溶液にグリニャール試薬を投入してもよい。 In the reaction between the Grignard reagent and cyanuric chloride, 0.7 to 1.5 mol of cyanuric chloride is preferably used relative to 1 mol of the aromatic compound, and 0.8 to 1.2 mol is preferably used. More preferred. The reaction temperature is preferably −30 to 70 ° C., more preferably −10 to 40 ° C. The reaction time is preferably 10 minutes to 10 hours, more preferably 30 minutes to 5 hours. The prepared Grignard reagent may be charged with cyanuric chloride, or the cyanuric chloride solution may be charged with Grignard reagent.
 上記のグリニャール試薬と塩化シアヌルと反応において、例えば、テトラヒドロフラン等のエーテル類等の溶媒を用いることができる。 In the reaction of the Grignard reagent and cyanuric chloride, for example, a solvent such as ether such as tetrahydrofuran can be used.
<リチオ化反応による塩化シアヌル誘導体の合成>
 前記工程(A)において、リチオ化反応により、塩化シアヌル誘導体を合成する場合、WO2012/096263公報等に記載の公知の合成法に準じて合成することができる。前記工程(A)における芳香族化合物のZは塩素原子、臭素原子、またはヨウ素原子で表される芳香族化合物を使用することができる。芳香族化合物とリチオ化剤を反応させることでリチオ化合物を調整し、次いで得られたリチオ化合物と塩化シアヌルを反応させることにより塩化シアヌル誘導体を合成することができる。
<Synthesis of cyanuric chloride derivatives by lithiation reaction>
In the step (A), when a cyanuric chloride derivative is synthesized by a lithiation reaction, it can be synthesized according to a known synthesis method described in WO2012 / 096263. As the aromatic compound Z in the step (A), an aromatic compound represented by a chlorine atom, a bromine atom, or an iodine atom can be used. A cyanuric chloride derivative can be synthesized by adjusting a lithio compound by reacting an aromatic compound and a lithiating agent, and then reacting the obtained lithio compound with cyanuric chloride.
 前記リチオ化剤としては、メチルリチウム、n-ブチルリチウム、s-ブチルリチウム、t-ブチルリチウム等のアルキルリチウム類;フェニルリチウム等のアリールリチウム類;リチウムジイソプロピルアミド、リチウムビス(トリメチルシリル)アミド等のリチウムアミド類を挙げることができ、n-ブチルリチウム、s-ブチルリチウム、t-ブチルリチウム、フェニルリチウムであることが好ましい。 Examples of the lithiating agent include alkyl lithiums such as methyl lithium, n-butyl lithium, s-butyl lithium, and t-butyl lithium; aryl lithiums such as phenyl lithium; lithium diisopropylamide, lithium bis (trimethylsilyl) amide, and the like. Examples include lithium amides, and n-butyllithium, s-butyllithium, t-butyllithium, and phenyllithium are preferable.
 上記のリチオ化合物の調整において、リチオ化剤は、芳香族化合物1モルに対して、0.8から3.0モル用いることが好ましく、1.0から2.2モル用いることがより好ましい。反応温度は-100から50℃が好ましく、-80から0℃がより好ましい。反応時間は0.2から20時間が好ましく、0.5から10時間がより好ましい。 In the preparation of the above-mentioned lithio compound, the lithiating agent is preferably used in an amount of 0.8 to 3.0 mol, more preferably 1.0 to 2.2 mol, relative to 1 mol of the aromatic compound. The reaction temperature is preferably −100 to 50 ° C., more preferably −80 to 0 ° C. The reaction time is preferably 0.2 to 20 hours, more preferably 0.5 to 10 hours.
 上記のリチオ化合物の調整において、例えば、テトラヒドロフラン等のエーテル類等の溶媒を用いることができる。 In the preparation of the above-mentioned lithio compound, for example, a solvent such as ethers such as tetrahydrofuran can be used.
 また、上記のリチオ化合物と塩化シアヌルと反応において、塩化シアヌルは、芳香族化合物1モルに対して、0.7から1.5モル用いることが好ましく、0.8から1.2モル用いることがより好ましい。反応温度は-30から70℃が好ましく、-10から40℃がより好ましい。反応時間は10分から10時間が好ましく、30分から5時間であることがより好ましい。なお、調整したリチオ化合物に塩化シアヌルを投入してもよく、塩化シアヌルの溶液にリチオ化合物を投入してもよい。 In the reaction of the above-mentioned lithio compound and cyanuric chloride, it is preferable to use 0.7 to 1.5 mol, and 0.8 to 1.2 mol of cyanuric chloride to 1 mol of the aromatic compound. More preferred. The reaction temperature is preferably −30 to 70 ° C., more preferably −10 to 40 ° C. The reaction time is preferably 10 minutes to 10 hours, more preferably 30 minutes to 5 hours. It should be noted that cyanuric chloride may be added to the prepared lithio compound, or the lithium compound may be added to the cyanuric chloride solution.
 上記のリチオ化合物と塩化シアヌルと反応において、例えば、テトラヒドロフラン等のエーテル類等の溶媒を用いることができる。 In the reaction between the above-mentioned lithio compound and cyanuric chloride, for example, a solvent such as ethers such as tetrahydrofuran can be used.
<鈴木カップリングによる塩化シアヌル誘導体の合成>
 前記工程(A)において、鈴木カップリング反応により、塩化シアヌル誘導体を合成する場合、WO2012/096263公報等に記載の公知の合成法に準じて合成することができる。例えば、前述のリチオ化合物をホウ素試薬と反応させることによって、芳香族化合物のZがボロニル基またはボロン酸に変換されたホウ素化合物を合成することができる。次いで得られたホウ素化合物を塩化シアヌルと反応させることにより塩化シアヌル誘導体を合成することができる。なお、ホウ素化合物の市販品が販売されている場合、そのまま使用することができる。
<Synthesis of cyanuric chloride derivatives by Suzuki coupling>
In the step (A), when a cyanuric chloride derivative is synthesized by a Suzuki coupling reaction, it can be synthesized according to a known synthesis method described in WO2012 / 096263. For example, by reacting the above-mentioned lithio compound with a boron reagent, a boron compound in which Z of the aromatic compound is converted into a boronyl group or a boronic acid can be synthesized. Next, a cyanuric chloride derivative can be synthesized by reacting the obtained boron compound with cyanuric chloride. In addition, when the commercial item of a boron compound is sold, it can be used as it is.
 前記ホウ素試薬としては、ホウ酸トリメチル、ホウ酸トリイソプロピル、2-イソプロポキシ-4,4,5,5-テトラメチル-1,3,2-ジオキサボロラン等が挙げられる。 Examples of the boron reagent include trimethyl borate, triisopropyl borate, 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane, and the like.
 上記のホウ素化合物の合成において、ホウ素試薬は、リチオ化合物1モルに対して、0.8から3.0モル用いることが好ましく、1.0から2.0モル用いることがより好ましい。反応温度は-100から50℃が好ましく、-80から20℃がより好ましい。反応時間は10分から20時間が好ましく、30分から10時間がより好ましい。 In the synthesis of the above boron compound, the boron reagent is preferably used in an amount of 0.8 to 3.0 mol, more preferably 1.0 to 2.0 mol, per 1 mol of the lithio compound. The reaction temperature is preferably −100 to 50 ° C., more preferably −80 to 20 ° C. The reaction time is preferably 10 minutes to 20 hours, more preferably 30 minutes to 10 hours.
 上記のホウ素化合物の合成において、例えば、テトラヒドロフラン等のエーテル類等の溶媒を用いることができる。 In the synthesis of the boron compound, for example, a solvent such as ethers such as tetrahydrofuran can be used.
 また、上記のホウ素化合物と塩化シアヌルと反応において、塩化シアヌルは、ホウ素化合物1モルに対して、0.7から1.5モル用いることが好ましく、0.8から1.2モル用いることがより好ましい。反応温度は-30から70℃が好ましく、-10から40℃がより好ましい。反応時間は10分から10時間が好ましく、30分から5時間であることがより好ましい。なお、ホウ素化合物に塩化シアヌルを投入してもよく、塩化シアヌルの溶液にホウ素化合物を投入してもよい。 In the reaction between the boron compound and cyanuric chloride, the cyanuric chloride is preferably used in an amount of 0.7 to 1.5 mol, more preferably 0.8 to 1.2 mol, relative to 1 mol of the boron compound. preferable. The reaction temperature is preferably −30 to 70 ° C., more preferably −10 to 40 ° C. The reaction time is preferably 10 minutes to 10 hours, more preferably 30 minutes to 5 hours. Note that cyanuric chloride may be added to the boron compound, or the boron compound may be added to the cyanuric chloride solution.
 上記のホウ素化合物と塩化シアヌルの反応において、パラジウム触媒およびアルカリを用いることが好ましく、必要に応じて配位子を添加しても良い。 In the reaction between the boron compound and cyanuric chloride, a palladium catalyst and an alkali are preferably used, and a ligand may be added as necessary.
 前記パラジウム触媒としては、酢酸パラジウム、テトラキストリフェニルホスフィンパラジウム、ビス(トリフェニルホスフィン)パラジウムジクロリド、(ビス(ジフェニルホスフィノ)フェロセン)パラジウムジクロリド-塩化メチレン錯体等が挙げられる。 Examples of the palladium catalyst include palladium acetate, tetrakistriphenylphosphine palladium, bis (triphenylphosphine) palladium dichloride, (bis (diphenylphosphino) ferrocene) palladium dichloride-methylene chloride complex, and the like.
 前記アルカリとしては、炭酸ナトリウム、炭酸水素ナトリウム、酢酸ナトリウム、酢酸カリウム、リン酸カリウム等のアルカリ金属塩等の無機塩基;トリエチルアミン等の有機塩基が挙げられる。 Examples of the alkali include inorganic bases such as alkali metal salts such as sodium carbonate, sodium bicarbonate, sodium acetate, potassium acetate and potassium phosphate; organic bases such as triethylamine.
 前記配位子としては、トリフェニルホスフィン、トリシクロヘキシルホスフィン、2,2‘-ビス(ジフェニルホスフィノ)-1,1’-ビナフタレン、2-ジシクロヘキシルホスフィノ-2,6‘-ジメトキシビフェニル等の有機リン系配位子等が挙げられる。 Examples of the ligand include organic compounds such as triphenylphosphine, tricyclohexylphosphine, 2,2′-bis (diphenylphosphino) -1,1′-binaphthalene, and 2-dicyclohexylphosphino-2,6′-dimethoxybiphenyl. Examples thereof include phosphorus-based ligands.
 上記のホウ素化合物と塩化シアヌルの反応において、テトラヒドロフラン、1,4-ジオキサン等のエーテル類;メタノール、2-プロパノール等のアルコール類;トルエン、キシレン等の芳香族系炭化水素類;N,N-ジメチルホルムアミド等のアミド類等の有機溶媒を用いることができる。前記有機溶媒は、単独で用いてもよく2種類以上を併用してもよい。さらに、前記有機溶媒と水との混合溶媒を用いることができる。 In the reaction of the above boron compound with cyanuric chloride, ethers such as tetrahydrofuran and 1,4-dioxane; alcohols such as methanol and 2-propanol; aromatic hydrocarbons such as toluene and xylene; N, N-dimethyl Organic solvents such as amides such as formamide can be used. The said organic solvent may be used independently and may use 2 or more types together. Furthermore, a mixed solvent of the organic solvent and water can be used.
<フリーデル・クラフツ反応による塩化シアヌル誘導体の合成>
 前記工程(A)において、フリーデル・クラフツ反応により、塩化シアヌル誘導体を合成する場合、US5322941公報等に記載の公知の合成法に準じて合成することができる。前記工程(A)における芳香族化合物のZは水素原子、n=0で表される芳香族化合物を使用することができる。塩化アルミニウム等のルイス酸の存在下、芳香族化合物と塩化シアヌルを反応させることにより塩化シアヌル誘導体を合成することができる。
<Synthesis of cyanuric chloride derivatives by Friedel-Crafts reaction>
In the step (A), when a cyanuric chloride derivative is synthesized by Friedel-Crafts reaction, it can be synthesized according to a known synthesis method described in US Pat. The aromatic compound Z in the step (A) can be a hydrogen atom, and an aromatic compound represented by n = 0 can be used. A cyanuric chloride derivative can be synthesized by reacting an aromatic compound with cyanuric chloride in the presence of a Lewis acid such as aluminum chloride.
 前記ルイス酸としては、塩化アルミニウム、臭化アルミニウム、塩化鉄(III)、塩化チタン(IV)、塩化スズ(IV)、塩化亜鉛、ビスマス(III)トリフラート、ハフニウム(IV)トリフラート、三フッ化ホウ素ジエチルエーテル錯体等を用いることができる。 Examples of the Lewis acid include aluminum chloride, aluminum bromide, iron chloride (III), titanium chloride (IV), tin chloride (IV), zinc chloride, bismuth (III) triflate, hafnium (IV) triflate, boron trifluoride. A diethyl ether complex or the like can be used.
 上記の芳香族化合物と塩化シアヌルの反応において、塩化シアヌルは、芳香族化合物1モルに対して、0.7から1.5モル用いることが好ましく、0.8から1.2モル用いることがより好ましい。塩化アルミニウムは、芳香族化合物1モルに対して、1.0から3.0モル用いることが好ましく、1.0から2.0モル用いることがより好ましい。反応温度は-50から60℃が好ましく、0から40℃がより好ましい。反応時間は10分から10時間が好ましく、30分から5時間であることがより好ましい。なお、芳香族化合物と塩化シアヌルの溶液に塩化アルミニウムを加えてもよく、塩化シアヌルと塩化アルミニウムの溶液に芳香族化合物を加えてもよい。 In the reaction of the aromatic compound and cyanuric chloride, the cyanuric chloride is preferably used in an amount of 0.7 to 1.5 mol, more preferably 0.8 to 1.2 mol, per mol of the aromatic compound. preferable. Aluminum chloride is preferably used in an amount of 1.0 to 3.0 mol, more preferably 1.0 to 2.0 mol, per 1 mol of the aromatic compound. The reaction temperature is preferably −50 to 60 ° C., more preferably 0 to 40 ° C. The reaction time is preferably 10 minutes to 10 hours, more preferably 30 minutes to 5 hours. Aluminum chloride may be added to the solution of the aromatic compound and cyanuric chloride, or the aromatic compound may be added to the solution of cyanuric chloride and aluminum chloride.
 上記の芳香族化合物と塩化シアヌルの反応において、例えば、ジクロロメタン、1,2-ジクロロエタン、キシレン等の溶媒を用いることができる。 In the reaction of the aromatic compound and cyanuric chloride, for example, a solvent such as dichloromethane, 1,2-dichloroethane, xylene can be used.
<トリアジンペルオキシド誘導体の合成>
 前記工程(B)において、一般式(1)で表されるトリアジンペルオキシド誘導体の製造方法は、特に限定されないが、特公昭45-39468号公報等に記載の公知のトリアジンペルオキシドの合成法に準じて合成することができる。
<Synthesis of triazine peroxide derivative>
In the step (B), the method for producing the triazine peroxide derivative represented by the general formula (1) is not particularly limited, but according to the known method for synthesizing triazine peroxide described in Japanese Patent Publication No. 45-39468. Can be synthesized.
 上記の工程(A)で得られた塩化シアヌル誘導体と、ヒドロペルオキシドを、アルカリの存在下で、反応させる工程(B)により、トリアジンペルオキシド誘導体が得られる。 The triazine peroxide derivative is obtained by the step (B) of reacting the cyanuric chloride derivative obtained in the above step (A) with hydroperoxide in the presence of an alkali.
 前記工程(B)において、ヒドロペルオキシドは、塩化シアヌル誘導体1モルに対して、目的物の収率性を高める観点から、1.8モル以上反応させることが好ましく、2.0モル以上反応させることがより好ましく、そして、5.0モル以下反応させることが好ましく、3.8モル以下反応させることがより好ましい。なお、ヒドロペルオキシドは、市販品を利用でき、市販品がない場合、特開昭58-72557号公報等に記載の公知の合成法に準じて合成することができる。 In the step (B), the hydroperoxide is preferably reacted in an amount of 1.8 mol or more, and 2.0 mol or more with respect to 1 mol of the cyanuric chloride derivative from the viewpoint of increasing the yield of the target product. And more preferably 5.0 mol or less, and more preferably 3.8 mol or less. Hydroperoxide is commercially available, and when there is no commercial product, it can be synthesized according to a known synthesis method described in JP-A No. 58-72557.
 前記工程(B)において、反応温度は、目的物の収率性を高める観点から、-10℃以上であることが好ましく、0℃以上であることがより好ましく、そして、40℃以下であることが好ましく、30℃以下であることがより好ましい。 In the step (B), the reaction temperature is preferably −10 ° C. or higher, more preferably 0 ° C. or higher, and 40 ° C. or lower from the viewpoint of increasing the yield of the target product. Is preferable, and it is more preferable that it is 30 degrees C or less.
 前記工程(B)において、反応時間は、原料や反応温度等によって異なるので一概には決定できないが、通常、目的物の収率性を高める観点から、10分から6時間が好ましい。 In the step (B), the reaction time varies depending on the raw materials, reaction temperature, etc., and thus cannot be determined unconditionally. However, from the viewpoint of increasing the yield of the target product, usually 10 minutes to 6 hours is preferable.
 前記工程(B)において、使用するアルカリは、特に制限はないが、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、炭酸カリウム、炭酸ナトリウム、炭酸水素ナトリウム、ピリジン、α―ピコリン、γ―ピコリン、ジメチルアミノピリジン、トリエチルアミン、トリブチルアミン、N,N-ジイソプロピルエチルアミン、1,5-ジアザビシクロ[4.3.0]-5-ノネン等が挙げられる。アルカリは、塩化シアヌル誘導体1モルに対して、目的物の収率性を高める観点から、1.8モル以上使用することが好ましく、2.0モル以上使用することがより好ましく、そして、5.0モル以下使用することが好ましく、3.8モル以下使用することがより好ましい。 In the step (B), the alkali used is not particularly limited, but sodium hydroxide, potassium hydroxide, lithium hydroxide, potassium carbonate, sodium carbonate, sodium bicarbonate, pyridine, α-picoline, γ-picoline, Examples thereof include dimethylaminopyridine, triethylamine, tributylamine, N, N-diisopropylethylamine, 1,5-diazabicyclo [4.3.0] -5-nonene. The alkali is preferably used in an amount of 1.8 mol or more, more preferably 2.0 mol or more, with respect to 1 mol of the cyanuric chloride derivative, from the viewpoint of increasing the yield of the target product. It is preferable to use 0 mol or less, and it is more preferable to use 3.8 mol or less.
 前記工程(B)では、塩化シアヌル誘導体が液状である場合は、有機溶媒を用いずに反応を行うことができる。また、塩化シアヌル誘導体が固体である場合は、有機溶媒を用いることが好ましい。有機溶媒としては、塩化シアヌル誘導体の種類により溶解度が異なるため、特に限定されないが、例えば、トルエン、キシレン、エチルベンゼン等の芳香族系炭化水素類、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、テトラヒドロフラン、ジオキサン等のエーテル類、酢酸エチル、酢酸ブチル等のエステル類、塩化メチレン、クロロホルム等のハロゲン化炭化水素類等が挙げられる。前記有機溶媒は、単独で用いてもよく2種類以上を併用してもよい。 In the step (B), when the cyanuric chloride derivative is liquid, the reaction can be performed without using an organic solvent. Moreover, when the cyanuric chloride derivative is solid, it is preferable to use an organic solvent. The organic solvent is not particularly limited because the solubility varies depending on the type of cyanuric chloride derivative. For example, aromatic hydrocarbons such as toluene, xylene, and ethylbenzene, ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, tetrahydrofuran And ethers such as dioxane, esters such as ethyl acetate and butyl acetate, and halogenated hydrocarbons such as methylene chloride and chloroform. The said organic solvent may be used independently and may use 2 or more types together.
 前記有機溶媒の使用量は、通常、原料の合計量100質量部に対して30~500質量部程度である。有機溶媒は工程(B)の後に留去することで、トリアジンペルオキシド誘導体を取り出してもよく、取り扱い性の向上や熱分解時の危険性を低減させるため、トリアジンペルオキシド誘導体を有機溶媒の希釈品として使用してもよい。 The amount of the organic solvent used is usually about 30 to 500 parts by mass with respect to 100 parts by mass of the total amount of raw materials. The organic solvent may be removed after the step (B) to take out the triazine peroxide derivative, and the triazine peroxide derivative is used as a diluted product of the organic solvent in order to improve handling and reduce the risk of thermal decomposition. May be used.
 前記工程(B)は、常圧下で、空気下で行うことができるが、窒素気流下または窒素雰囲気下で行ってもよい。 The step (B) can be performed under normal pressure and air, but may be performed under a nitrogen stream or a nitrogen atmosphere.
 前記精製工程としては、余剰の原料や副生物を除去するために、例えば、イオン交換水や、炭酸水素ナトリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸カリウム、水酸化ナトリウム、水酸化カリウム等の塩基性水溶液、亜硫酸ナトリウム水溶液等を用いて洗浄し、目的物を精製する工程が挙げられる。 As the purification step, in order to remove surplus raw materials and by-products, for example, ion-exchanged water or basic such as sodium hydrogen carbonate, potassium hydrogen carbonate, sodium carbonate, potassium carbonate, sodium hydroxide, potassium hydroxide, etc. A step of purifying the target product by washing with an aqueous solution, an aqueous sodium sulfite solution or the like can be mentioned.
<重合性組成物>
 本発明の重合性組成物は、(a)重合開始剤および(b)ラジカル重合性化合物を含有する。さらに、重合性組成物は、(c)アルカリ可溶性樹脂を含有することで現像性を付与することができる。また、重合性組成物は、その他の成分を適宜組み合わせて含有させることができる。
<Polymerizable composition>
The polymerizable composition of the present invention contains (a) a polymerization initiator and (b) a radical polymerizable compound. Furthermore, the polymerizable composition can impart developability by containing (c) an alkali-soluble resin. Moreover, the polymerizable composition can contain other components in appropriate combination.
<(a)重合開始剤>
 本発明の(a)重合開始剤は、前記一般式(1)で表されるトリアジンペルオキシド誘導体を含有する。(a)重合開始剤は、活性エネルギー線または熱により分解し、発生したラジカルが(b)ラジカル重合性化合物の重合(硬化)を開始する働きを有する。トリアジンペルオキシド誘導体は、単独で用いてもよく2種類以上を併用してもよい。
<(A) Polymerization initiator>
The polymerization initiator (a) of the present invention contains a triazine peroxide derivative represented by the general formula (1). The (a) polymerization initiator has a function of decomposing by active energy rays or heat, and the generated radicals start polymerization (curing) of the (b) radical polymerizable compound. A triazine peroxide derivative may be used independently and may use 2 or more types together.
 また、前記(a)重合開始剤は、トリアジンペルオキシド誘導体以外の重合開始剤(以下、他の重合開始剤とも称す)を含有することができる。吸収帯の異なる2種類以上のトリアジンペルオキシド誘導体や他の重合開始剤を使用することで、例えば、高圧水銀ランプ等の複数の波長の光が放射されるランプに対し、重合性組成物の高感度化を図ることができる。また、重合性組成物に含まれる(b)ラジカル重合性化合物の重合性、重合性組成物に含まれる光を吸収や散乱する顔料等の種類、硬化物の膜厚等を考慮して、他の重合開始剤を用いることで、重合性組成物の表面硬化性や深部硬化性、透明性等を改良することができる。 The (a) polymerization initiator may contain a polymerization initiator other than the triazine peroxide derivative (hereinafter also referred to as other polymerization initiator). By using two or more types of triazine peroxide derivatives and other polymerization initiators having different absorption bands, the high sensitivity of the polymerizable composition, for example, for a lamp that emits light of multiple wavelengths such as a high-pressure mercury lamp Can be achieved. In addition, in consideration of the polymerizability of the (b) radical polymerizable compound contained in the polymerizable composition, the types of pigments that absorb or scatter light contained in the polymerizable composition, the film thickness of the cured product, etc. By using this polymerization initiator, the surface curability, deep part curability, transparency, etc. of the polymerizable composition can be improved.
 前記他の重合開始剤としては、公知のものが使用でき、例えば、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-プロピオフェノン、4’-(2-ヒドロキシエトキシ)-2-ヒドロキシ-2-メチルプロピオフェノン、2-ヒロドキシ-1-(4-(4-(2-ヒドロキシ-2-メチルプロピオニル)ベンジル)フェニル)-2-メチルプロパン-1-オン等のα―ヒドロキシアセトフェノン誘導体;2-メチル-4’-メチルチオ-2-モルホリノプロピオフェノン、2-ベンジル-2-(N,N-ジメチルアミノ)-1-(4-モルホリノフェニル)ブタン-1-オン、2-(ジメチルアミノ)-2-(4-メチルベンジル)-1-(4-モルホリノフェニル)ブタン-1-オン等のα―アミノアセトフェノン誘導体;ジフェニル-2,4,6-トリメチルベンゾイルホスフィンオキシド、フェニルビス(2,4,6-トリメチルベンゾイル)ホスフィンオキシド、エチル(メシチルカルボニル)フェニルホスフィナート等のアシルホスフィンオキサイド誘導体;1-[4-(フェニルチオ)フェニル]オクタン-1,2-ジオン-2-(O-ベンゾイルオキシム)、1-[({1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]エチリデン}アミノ)オキシ]エタノン、等のオキシムエステル誘導体;2-(4-メトキシフェニル)-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン、2-(3,4-ジメトキシスチリル)-4,6-ビス(トリクロロメチル)1,3,5-トリアジン、2-(4-エトキシナフチル)-4,6-ビス(トリクロロメチル)-1,3,5-トリアジン等のハロメチルトリアジン誘導体;2,2-ジメトキシ-2-フエニルアセトフエノン等のベンジルケタール誘導体;イソプロピルチオキサントン等のチオキサントン誘導体、4-(4-メチルフェニルチオ)ベンゾフェノン等のベンゾフェノン誘導体;3-ベンゾイルー7-ジエチルアミノクマリン、3,3‘-カルボニルビス(7-ジエチルアミノクマリン)等のクマリン誘導体;2-(2-クロロフェニル)-1-[2-(2-クロロフェニル)-4,5-ジフェニル-1,3-ジアゾール-2-イル]-4,5-ジフェニルイミダゾール等のイミダゾール誘導体;3,3‘、4,4’-テトラキス(tert-ブチルペルオキシカルボニル)ベンゾフェノン、ジベンゾイルペルオキシド等の有機過酸化物;アゾビスイソブチロニトリル等のアゾ化合物;カンファーキノン等が挙げられる。他の重合開始剤は、単独で用いてもよく2種類以上を併用してもよい。 As the other polymerization initiators, known ones can be used, such as 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-propiophenone, 4 ′-(2-hydroxyethoxy) -2-hydroxy. Α-Hydroxyacetophenone derivatives such as -2-methylpropiophenone, 2-hydroxy-1- (4- (4- (2-hydroxy-2-methylpropionyl) benzyl) phenyl) -2-methylpropan-1-one 2-methyl-4′-methylthio-2-morpholinopropiophenone, 2-benzyl-2- (N, N-dimethylamino) -1- (4-morpholinophenyl) butan-1-one, 2- (dimethyl Α-aminoacetoph such as amino) -2- (4-methylbenzyl) -1- (4-morpholinophenyl) butan-1-one Enone derivatives; acyl phosphine oxide derivatives such as diphenyl-2,4,6-trimethylbenzoylphosphine oxide, phenylbis (2,4,6-trimethylbenzoyl) phosphine oxide, ethyl (mesitylcarbonyl) phenylphosphinate; [4- (Phenylthio) phenyl] octane-1,2-dione-2- (O-benzoyloxime), 1-[({1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazole- Oxime ester derivatives such as 3-yl] ethylidene} amino) oxy] ethanone; 2- (4-methoxyphenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (3 4-dimethoxystyryl) -4,6-bis (trichloromethyl) 1,3,5-triazine, 2- Halomethyltriazine derivatives such as 4-ethoxynaphthyl) -4,6-bis (trichloromethyl) -1,3,5-triazine; benzyl ketal derivatives such as 2,2-dimethoxy-2-phenylacetophenone; isopropyl Thioxanthone derivatives such as thioxanthone, benzophenone derivatives such as 4- (4-methylphenylthio) benzophenone; coumarin derivatives such as 3-benzoyl-7-diethylaminocoumarin, 3,3′-carbonylbis (7-diethylaminocoumarin); 2- ( Imidazole derivatives such as 2-chlorophenyl) -1- [2- (2-chlorophenyl) -4,5-diphenyl-1,3-diazol-2-yl] -4,5-diphenylimidazole; , 4'-Tetrakis (tert-butylperoxycarbonyl) Zofenon, organic peroxides such as dibenzoyl peroxide; azo compounds such as azobisisobutyronitrile; camphor quinone and the like. Another polymerization initiator may be used independently and may use 2 or more types together.
 前記(a)重合開始剤の含有量は、(b)ラジカル重合性化合物100質量部に対して、0.1から40質量部であることが好ましく、0.5から20質量部であることがより好ましく、1から15質量部であることがさらに好ましい。(a)重合開始剤の含有量は、(b)ラジカル重合性化合物100質量部に対して、0.1質量部未満では硬化反応が進行しないため好ましくない。また、(a)重合開始剤の含有量は、(b)ラジカル重合性化合物100質量部に対して、40質量部より多い場合、(b)ラジカル重合性化合物への溶解度が飽和に達し、重合性組成物の成膜時に(a)重合開始剤の結晶が析出し、皮膜表面の荒れが問題になる場合や、(a)重合開始剤の分解残渣の増加により、硬化物の塗膜の強度が低下する場合があるため、好ましくない。 The content of the (a) polymerization initiator is preferably 0.1 to 40 parts by mass, and 0.5 to 20 parts by mass with respect to 100 parts by mass of the (b) radical polymerizable compound. More preferably, it is 1 to 15 parts by mass. If the content of the (a) polymerization initiator is less than 0.1 parts by mass with respect to 100 parts by mass of the (b) radical polymerizable compound, the curing reaction does not proceed, which is not preferable. Further, when the content of (a) the polymerization initiator is more than 40 parts by mass with respect to 100 parts by mass of (b) radical polymerizable compound, the solubility in (b) radical polymerizable compound reaches saturation, and When (a) the crystal of the polymerization initiator is precipitated during film formation of the adhesive composition and the surface of the film becomes rough, or (a) the strength of the coating film of the cured product increases due to an increase in the decomposition residue of the polymerization initiator. Is not preferred because it may decrease.
 なお、前記(a)重合開始剤に、前記他の重合開始剤を含む場合、他の重合開始剤の割合は、(a)重合開始剤中、80質量%以下であることが好ましく、50質量%以下であることがさらに好ましい。 In addition, when the said (a) polymerization initiator contains the said other polymerization initiator, it is preferable that the ratio of another polymerization initiator is 80 mass% or less in (a) polymerization initiator, and is 50 masses. More preferably, it is% or less.
<(b)ラジカル重合性化合物>
 本発明の(b)ラジカル重合性化合物としては、エチレン性不飽和基を有する化合物を好ましく用いることができる。(b)ラジカル重合性化合物としては、例えば、(メタ)アクリル酸エステル類、スチレン類、マレイン酸エステル類、フマル酸エステル類、イタコン酸エステル類、桂皮酸エステル類、クロトン酸エステル類、ビニルエーテル類、ビニルエステル類、ビニルケトン類、アリルエーテル類、アリルエステル類、N-置換マレイミド類、N-ビニル化合物類、不飽和ニトリル類、オレフィン類等が挙げられる。これらの中でも、反応性が高い(メタ)アクリル酸エステル類を含むことが好ましい。(b)ラジカル重合性化合物は、単独で用いてもよく2種類以上を併用してもよい。
<(B) Radical polymerizable compound>
As the radically polymerizable compound (b) of the present invention, a compound having an ethylenically unsaturated group can be preferably used. Examples of (b) radical polymerizable compounds include (meth) acrylic acid esters, styrenes, maleic acid esters, fumaric acid esters, itaconic acid esters, cinnamic acid esters, crotonic acid esters, and vinyl ethers. Vinyl esters, vinyl ketones, allyl ethers, allyl esters, N-substituted maleimides, N-vinyl compounds, unsaturated nitriles, olefins and the like. Among these, it is preferable to contain (meth) acrylic acid esters having high reactivity. (B) A radically polymerizable compound may be used independently and may use 2 or more types together.
 前記(メタ)アクリル酸エステル類は、単官能化合物および多官能化合物を使用することができる。単官能化合物としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート等のアルキル(メタ)アクリレート;シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレ-ト、ジシクロペンテニル(メタ)アクリレ-ト、ジシクロペンテニルオキシエチル(メタ)アクリレ-ト、2―エチル-2-アダマンチル(メタ)アクリレート等の(メタ)アクリル酸と脂環族アルコールとのエステル化合物;フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート等のアリール(メタ)アクリレート;2-ヒドロキシエチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、3-ヒドロキシ-1-アダマンチル(メタ)アクリレート、ポリエチレングリコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート等のヒドロキシ基を有するモノマー;メトキシエチル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、2-フェニルフェノキシエチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、(2-メチル-2-エチル-1,3-ジオキソラン-4-イル)メチル(メタ)アクリレート、(3-エチルオキセタン-3-イル)メチル(メタ)アクリレート、環状トリメチロールプロパンホルマール(メタ)アクリレート等の鎖状または環状のエーテル結合を有するモノマー等;N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジメチル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N,N-ジメチルアミノプロピル(メタ)アクリルアミド、ジアセトン(メタ)アクリルアミド、(メタ)アクリロイルモルホリン、N-(メタ)アクリロイルオキシエチルヘキサヒドロフタルイミド等の窒素原子を有するモノマー;2-(メタ)アクリロイルオキシエチルイソシアネート等のイソシアネート基を有するモノマー;グリシジル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートグリシジルエーテル等のエポキシ基を有するモノマー;リン酸2-((メタ)アクリロイルオキシ)エチル等のリン原子を有するモノマー;3-(メタ)アクリロキシプロピルトリメトキシシラン等のケイ素原子を有するモノマー;2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3,3-ペンタフルオロプロピル(メタ)アクリレート、2-(パーフルオロヘキシル)エチル(メタ)アクリレート等のフッ素原子を有するモノマー;(メタ)アクリル酸、コハク酸モノ(2-(メタ)アクリロイルオキシエチル)、フタル酸モノ(2-(メタ)アクリロイルオキシエチル)、マレイン酸モノ(2-(メタ)アクリロイルオキシエチル)、ω-カルボキシ-ポリカプロラクトンモノ(メタ)アクリレート等のカルボキシル基を有するモノマー等が挙げられる。 As the (meth) acrylic acid esters, monofunctional compounds and polyfunctional compounds can be used. Monofunctional compounds include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, tert-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) Alkyl (meth) acrylates such as acrylate; cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) Ester compounds of (meth) acrylic acid and alicyclic alcohols such as acrylate, 2-ethyl-2-adamantyl (meth) acrylate; aryl (meth) such as phenyl (meth) acrylate and benzyl (meth) acrylate Chryrate; 2-hydroxyethyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, 3-hydroxy-1-adamantyl (meth) acrylate, polyethylene glycol mono (meth) ) Monomers having a hydroxy group such as acrylate and polypropylene glycol mono (meth) acrylate; methoxyethyl (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, 2-phenylphenoxyethyl (meth) acrylate Tetrahydrofurfuryl (meth) acrylate, (2-methyl-2-ethyl-1,3-dioxolan-4-yl) methyl (meth) acrylate, (3 Monomers having a chain or cyclic ether bond such as ethyl oxetane-3-yl) methyl (meth) acrylate, cyclic trimethylolpropane formal (meth) acrylate, etc .; N, N-dimethylaminoethyl (meth) acrylate, N, N-dimethyl (meth) acrylamide, N-methylol (meth) acrylamide, N-isopropyl (meth) acrylamide, N, N-dimethylaminopropyl (meth) acrylamide, diacetone (meth) acrylamide, (meth) acryloylmorpholine, N- Monomers having a nitrogen atom such as (meth) acryloyloxyethyl hexahydrophthalimide; monomers having an isocyanate group such as 2- (meth) acryloyloxyethyl isocyanate; glycidyl (meth) acrylate, 4- Monomers having an epoxy group such as droxybutyl (meth) acrylate glycidyl ether; Monomers having a phosphorus atom such as 2-((meth) acryloyloxy) ethyl phosphate; Silicon atoms such as 3- (meth) acryloxypropyltrimethoxysilane Monomers having 2,5,2,2-trifluoroethyl (meth) acrylate, 2,2,3,3,3-pentafluoropropyl (meth) acrylate, 2- (perfluorohexyl) ethyl (meth) acrylate, etc. Monomers having fluorine atoms; (meth) acrylic acid, succinic acid mono (2- (meth) acryloyloxyethyl), phthalic acid mono (2- (meth) acryloyloxyethyl), maleic acid mono (2- (meth) acryloyl) Oxyethyl), ω-carboxy-polycaprolactone mono (me A) Monomers having a carboxyl group such as acrylate.
 前記多官能化合物としては、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、グリセリンプロポキシトリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレートモノステアレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、2,2-ビス(4-(メタ)アクリロキシエトキシフェニル)プロパン、2,2-ビス(4-(メタ)アクリロキシポリエトキシフェニル)プロパン、9,9-ビス(4-(2-(メタ)アクリロイルオキシエトキシ)フェニル)フルオレン、9,9-ビス(4-(2-(2-(メタ)アクリロイルオキシエトキシ)エトキシ)フェニル)フルオレン、等の多価アルコールと(メタ)アクリル酸とのエステル化合物;ビス(4-(メタ)アクリロキシフェニル)スルフィド、ビス(4-(メタ)アクリロイルチオフェニル)スルフィド、トリス(2-(メタ)アクリロイルオキシエチル)イソシアヌレート、エチレンビス(メタ)アクリルアミド、(メタ)アクリル酸亜鉛、(メタ)アクリル酸ジルコニウム、脂肪族ウレタンアクリレート、芳香族ウレタンアクリレート、エポキシアクリレート、ポリエステルアクリレート等が挙げられる。 Examples of the polyfunctional compound include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, glycerin di (meth) acrylate, glycerin tri (meth) acrylate, glycerin propoxytri (meth) acrylate, trimethylol ethanetri (Meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, pentaerythritol Di (meth) acrylate monostearate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, hydroxypivalic acid neopentyl glycol di (meth) acrylate, tricyclodecane dimethanol di (meth) acrylate, 2,2-bis (4- (meth) acryloxyethoxyphenyl) propane, 2,2-bis (4- (meth) acryloxypolyethoxyphenyl) propane, 9,9-bis (4- (2- (meta Esters of polyhydric alcohols such as) acryloyloxyethoxy) phenyl) fluorene, 9,9-bis (4- (2- (2- (meth) acryloyloxyethoxy) ethoxy) phenyl) fluorene, and (meth) acrylic acid Compound; Bis (4- (meth) acryloxy Phenyl) sulfide, bis (4- (meth) acryloylthiophenyl) sulfide, tris (2- (meth) acryloyloxyethyl) isocyanurate, ethylene bis (meth) acrylamide, zinc (meth) acrylate, (meth) acrylic acid Zirconium, aliphatic urethane acrylate, aromatic urethane acrylate, epoxy acrylate, polyester acrylate and the like can be mentioned.
 前記(メタ)アクリル酸エステル類は、重合性組成物の感度の向上、酸素阻害の低減や、硬化物の塗膜の機械的強度や硬度、耐熱性、耐久性、耐薬品性の向上の観点から、前記多価アルコールと(メタ)アクリル酸とのエステル化合物が好ましく、特に、トリメチロールエタントリアクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレートが好ましい。 The (meth) acrylic acid esters are used to improve the sensitivity of the polymerizable composition, reduce oxygen inhibition, and improve the mechanical strength and hardness, heat resistance, durability, and chemical resistance of the cured coating film. From the above, an ester compound of the polyhydric alcohol and (meth) acrylic acid is preferable, and in particular, trimethylolethane triacrylate, trimethylolpropane triacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol pentaacrylate, di Pentaerythritol hexaacrylate is preferred.
 なお、前記重合性組成物は、前記(b)ラジカル重合性化合物から得られた共重合体を加えることができる。 In addition, the copolymer obtained from the said (b) radically polymerizable compound can be added to the said polymeric composition.
<(c)アルカリ可溶性樹脂>
 前記重合性組成物は、さらに(c)アルカリ可溶性樹脂を配合することにより、ネガ型レジストとして好適に使用することができる。(c)アルカリ可溶性樹脂としては、ネガ型レジストに一般的に使用されるものを用いることができ、アルカリ水溶液に可溶な樹脂であれば特に限定されないが、カルボキシル基を含む樹脂であることが好ましい。(c)アルカリ可溶性樹脂は、単独で用いてもよく2種類以上を併用してもよい。
<(C) Alkali-soluble resin>
The polymerizable composition can be suitably used as a negative resist by further blending (c) an alkali-soluble resin. (C) As alkali-soluble resin, what is generally used for a negative resist can be used, and it will not be specifically limited if it is resin soluble in alkaline aqueous solution, However, It should be resin containing a carboxyl group. preferable. (C) Alkali-soluble resin may be used independently and may use 2 or more types together.
 本発明の(c)アルカリ可溶性樹脂には、例えば、カルボキシル基含有(メタ)アクリル酸エステル共重合物、カルボキシル基含有エポキシアクリレート樹脂等が好ましく使用される。 For the (c) alkali-soluble resin of the present invention, for example, a carboxyl group-containing (meth) acrylic acid ester copolymer, a carboxyl group-containing epoxy acrylate resin, and the like are preferably used.
 前記カルボキシル基含有(メタ)アクリル酸エステル共重合物は、前述の(メタ)アクリル酸エステル類の単官能化合物から選ばれる少なくとも1種(但し、前記カルボキシル基を有するモノマーを除く)と、(メタ)アクリル酸、(メタ)アクリル酸の二量体、イタコン酸、クロトン酸、マレイン酸、フマル酸、ビニル安息香酸、桂皮酸、コハク酸モノ(2-(メタ)アクリロイルオキシエチル)、フタル酸モノ(2-(メタ)アクリロイルオキシエチル)、マレイン酸モノ(2-(メタ)アクリロイルオキシエチル)、ω-カルボキシ-ポリカプロラクトンモノ(メタ)アクリレート、およびそれらの酸無水物等のエチレン性不飽和基含有カルボン酸から選ばれる少なくとも1種を含む共重合物である。 The carboxyl group-containing (meth) acrylic acid ester copolymer is at least one selected from the above-mentioned monofunctional compounds of (meth) acrylic acid esters (excluding the monomer having a carboxyl group), ) Acrylic acid, dimer of (meth) acrylic acid, itaconic acid, crotonic acid, maleic acid, fumaric acid, vinyl benzoic acid, cinnamic acid, succinic acid mono (2- (meth) acryloyloxyethyl), phthalic acid mono Ethylenically unsaturated groups such as (2- (meth) acryloyloxyethyl), mono (2- (meth) acryloyloxyethyl) maleate, ω-carboxy-polycaprolactone mono (meth) acrylate, and acid anhydrides thereof It is a copolymer containing at least one selected from the containing carboxylic acids.
 前記カルボキシル基含有(メタ)アクリル酸エステル共重合物としては、例えば、メチルメタクリレートと、シクロヘキシルメタクリレートと、メタクリル酸の共重合物等が挙げられる。さらに、スチレン、α-メチルスチレン、N-ビニル-2-ピロリドン、N-メチルマレイミド、N-フェニルマレイミド、N-シクロヘキシルマレイミド、フマル酸ジエチル、イタコン酸ジエチル等が共重合されても良い。 Examples of the carboxyl group-containing (meth) acrylic acid ester copolymer include a copolymer of methyl methacrylate, cyclohexyl methacrylate, and methacrylic acid. Further, styrene, α-methylstyrene, N-vinyl-2-pyrrolidone, N-methylmaleimide, N-phenylmaleimide, N-cyclohexylmaleimide, diethyl fumarate, diethyl itaconate and the like may be copolymerized.
 また、前記カルボキシル基含有(メタ)アクリル酸エステル共重合物は、ネガ型レジストの現像性と耐熱性、硬度、耐薬品性等の被膜特性を両立させる観点から、エチレン性不飽和基等の反応性基が側鎖に導入されたカルボキシル基含有(メタ)アクリル酸エステル共重合物も好ましく使用される。上記の側鎖にエチレン性不飽和基を導入する方法として、例えば、カルボキシル基含有(メタ)アクリル酸エステル共重合物のカルボキシル基の一部に、グリシジル(メタ)アクリレート等の分子内にエポキシ基とエチレン性不飽和基を有する化合物を付加させる方法や、エポキシ基およびカルボキシル基含有(メタ)アクリル酸エステル共重合物に、メタクリル酸等のエチレン性不飽和基含有モノカルボン酸を付加させる方法や、水酸基およびカルボキシル基含有(メタ)アクリル酸エステル共重合物に、2-(メタ)アクリロイルオキシエチルイソシアネート等の分子内にイソシアネート基とエチレン性不飽和基を有する化合物を付加させる方法等が挙げられる。 In addition, the carboxyl group-containing (meth) acrylic acid ester copolymer is a reaction of ethylenically unsaturated groups, etc., from the viewpoint of achieving both the developability of the negative resist and the film properties such as heat resistance, hardness, and chemical resistance. A carboxyl group-containing (meth) acrylic acid ester copolymer in which a functional group is introduced into the side chain is also preferably used. As a method for introducing an ethylenically unsaturated group into the above side chain, for example, a part of the carboxyl group of the carboxyl group-containing (meth) acrylic ester copolymer, an epoxy group in the molecule such as glycidyl (meth) acrylate And a method of adding a compound having an ethylenically unsaturated group, a method of adding an ethylenically unsaturated group-containing monocarboxylic acid such as methacrylic acid to an epoxy group- and carboxyl group-containing (meth) acrylic acid ester copolymer, And a method of adding a compound having an isocyanate group and an ethylenically unsaturated group in a molecule such as 2- (meth) acryloyloxyethyl isocyanate to a hydroxyl group- and carboxyl group-containing (meth) acrylic acid ester copolymer. .
 前記カルボキシル基含有エポキシアクリレート樹脂としては、エポキシ化合物と前記エチレン性不飽和基含有カルボン酸との反応物であるエポキシアクリレート樹脂に、更に酸無水物を反応させた化合物が好適である。 As the carboxyl group-containing epoxy acrylate resin, a compound obtained by further reacting an acid anhydride with an epoxy acrylate resin which is a reaction product of an epoxy compound and the ethylenically unsaturated group-containing carboxylic acid is preferable.
 前記エポキシ樹脂としては、例えば、(o,m,p-)クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、トリスフェノールメタン型エポキシ樹脂、ビスフェニルフルオレン型エポキシ樹脂等が挙げられる。エポキシ樹脂は、単独で用いてもよく2種類以上を併用してもよい。 Examples of the epoxy resin include (o, m, p-) cresol novolak type epoxy resin, phenol novolak type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, trisphenol methane type epoxy resin, and bisphenyl fluorene. Type epoxy resin and the like. An epoxy resin may be used independently and may use 2 or more types together.
 前記酸無水物としては、例えば、無水マレイン酸、無水コハク酸、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、4-メチルヘキサヒドロ無水フタル酸、エンドメチレンテトラヒドロ無水フタル酸、無水クロレインド酸、無水トリメリット酸、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸ニ無水物、ビフェニルテトラカルボン酸ニ無水物、無水イタコン酸等が挙げられる。 Examples of the acid anhydride include maleic anhydride, succinic anhydride, phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, 4-methylhexahydrophthalic anhydride, endomethylenetetrahydrophthalic anhydride, and chloredinic anhydride. , Trimellitic anhydride, pyromellitic anhydride, benzophenonetetracarboxylic dianhydride, biphenyltetracarboxylic dianhydride, itaconic anhydride and the like.
 さらに、カルボキシル基含有エポキシアクリレート樹脂の合成の際に、必要に応じて、無水トリメリット酸等のトリカルボン酸無水物を用いて、反応後に残った酸無水物基を加水分解することにより、カルボキシル基を増やすことができる。また、エチレン性不飽和基含有の無水マレイン酸を用いて、更にエチレン性二重結合を増やすこともできる。 Furthermore, when synthesizing the carboxyl group-containing epoxy acrylate resin, if necessary, by using a tricarboxylic acid anhydride such as trimellitic anhydride, the acid anhydride group remaining after the reaction is hydrolyzed to obtain a carboxyl group. Can be increased. In addition, ethylenic double bonds can be increased by using maleic anhydride containing an ethylenically unsaturated group.
 前記(c)アルカリ可溶性樹脂の酸価は、20から300mgKOH/gであることが好ましく、40から180mg/KOHであることがさらに好ましい。酸価が20mgKOH/gよりも少ない場合、アルカリ水溶液への溶解性が乏しいため、未露光部の現像が困難となるため好ましくない。また、酸価が300mgKOH/gよりも多い場合、現像時に露光部も基材から脱離しやすい傾向にあるため、好ましくない。 The acid value of the (c) alkali-soluble resin is preferably 20 to 300 mgKOH / g, and more preferably 40 to 180 mg / KOH. When the acid value is less than 20 mgKOH / g, the solubility in an alkaline aqueous solution is poor, and it becomes difficult to develop the unexposed area, which is not preferable. Further, when the acid value is more than 300 mgKOH / g, the exposed part tends to be detached from the substrate during development, which is not preferable.
 前記(c)アルカリ可溶性樹脂の重量平均分子量は、1,000から100,000であることが好ましく、1,500から30,000であることが好ましい。重量平均分子量が1,000よりも小さい場合、露光部の耐熱性や硬度等が乏しいため、好ましくない。重量平均分子量が100,000よりも大きい場合は、未露光部の現像が困難となる場合があるため、好ましくない。尚、前記重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)法によって測定することができる。一例として、GPC装置としてHLC-8220GPC(東ソー社製)、カラムとして3本のTSKgelHZM-M(東ソー社製)を使用して、展開溶媒としてテトラヒドロフラン、カラム温度40℃、流速0.3ミリリットル/分、RI検出器、試料注入濃度0.5質量%、注入量10マイクロリットルの条件下、クロマトグラフィーを行ない、ポリスチレン換算の重量平均分子量として求めることができる。 The weight average molecular weight of the (c) alkali-soluble resin is preferably 1,000 to 100,000, more preferably 1,500 to 30,000. A weight average molecular weight of less than 1,000 is not preferred because the heat resistance and hardness of the exposed area are poor. When the weight average molecular weight is larger than 100,000, it may be difficult to develop an unexposed portion, which is not preferable. The weight average molecular weight can be measured by a gel permeation chromatography (GPC) method. As an example, HLC-8220GPC (manufactured by Tosoh Corporation) is used as a GPC apparatus, three TSKgelHZM-M (manufactured by Tosoh Corporation) are used as columns, tetrahydrofuran is used as a developing solvent, column temperature is 40 ° C., flow rate is 0.3 ml / min. The chromatography can be performed under the conditions of RI detector, sample injection concentration 0.5 mass%, injection amount 10 microliters, and the weight average molecular weight in terms of polystyrene can be obtained.
 また、(c)アルカリ可溶性樹脂の割合は、重合性組成物の全固形分中、10から70質量%であることが好ましく、15から60質量%であることがより好ましい。前記割合が10質量%よりも少ない場合、現像性が乏しいため、好ましくない。前記割合が70質量%よりも多い場合、パターン形状の再現性や耐熱性が低下するため、好ましくない。 In addition, the ratio of (c) alkali-soluble resin is preferably 10 to 70% by mass, and more preferably 15 to 60% by mass in the total solid content of the polymerizable composition. When the ratio is less than 10% by mass, the developability is poor, which is not preferable. When the ratio is more than 70% by mass, the pattern shape reproducibility and heat resistance are lowered, which is not preferable.
 なお、前記(c)アルカリ可溶性樹脂は、合成反応後に有効成分であるアルカリ可溶性樹脂を単離精製したものを用いることができる他、合成反応により得られた反応溶液、その乾燥物等をそのまま用いることもできる。 The (c) alkali-soluble resin may be a product obtained by isolating and purifying an alkali-soluble resin which is an active ingredient after the synthesis reaction, or a reaction solution obtained by the synthesis reaction, a dried product thereof, or the like. You can also.
<その他の成分>
 前記その他の成分として、硬化促進剤を用いることで、重合性組成物の加熱による硬化を低温で行なうこともできる。硬化促進剤としては、例えば、アミン化合物、チオ尿素化合物、2-メルカプトベンズイミダゾール系化合物、オルトベンゾイックスルフィミド、第4周期遷移金属化合物合物等を使用することができる。硬化促進剤は、単独で用いてもよく2種類以上を併用してもよい。
<Other ingredients>
By using a curing accelerator as the other component, the polymerizable composition can be cured by heating at a low temperature. As the curing accelerator, for example, an amine compound, a thiourea compound, a 2-mercaptobenzimidazole compound, an orthobenzoixsulfimide, a fourth-period transition metal compound compound, or the like can be used. A hardening accelerator may be used independently and may use 2 or more types together.
 前記アミン化合物としては、第三級アミンが好ましく、例えば、N,N-ジメチルアニリン、N,N-ジメチルトルイジン、N,N-ジエチルアニリン、N,N-ビス(2-ヒドロキシエチル)-p-トルイジン、4-(ジメチルアミノ)安息香酸エチル、4-ジメチルアミノ安息香酸(2-メタクリロイルオキシ)エチル等が挙げられる。 The amine compound is preferably a tertiary amine, for example, N, N-dimethylaniline, N, N-dimethyltoluidine, N, N-diethylaniline, N, N-bis (2-hydroxyethyl) -p- Toluidine, ethyl 4- (dimethylamino) benzoate, (2-methacryloyloxy) ethyl 4-dimethylaminobenzoate and the like.
 前記チオ尿素としては、例えば、アセチルチオ尿素、N,N‘ジブチルチオ尿素等が挙げられる。 Examples of the thiourea include acetylthiourea, N, N′dibutylthiourea, and the like.
 前記2-メルカプトベンズイミダゾール系化合物としては、例えば、2-メルカプトベンズイミダゾール、2-メルカプトメチルベンズイミダゾール、2-メルカプトメトキシベンズイミダゾール等が挙げられる。 Examples of the 2-mercaptobenzimidazole compound include 2-mercaptobenzimidazole, 2-mercaptomethylbenzimidazole, 2-mercaptomethoxybenzimidazole, and the like.
 前記第4周期遷移金属化合物合物としては、バナジウム、コバルト、銅等の有機酸塩または金属キレート化合物から選択することができ、例えば、オクチル酸コバルト、ナフテン酸コバルト、ナフテン酸銅、ナフテン酸バナジウム、銅アセチルアセトネート、マンガンアセチルアセトネート、バナジルアセチルアセトネート等が挙げられる。 The compound of the fourth period transition metal compound can be selected from organic acid salts such as vanadium, cobalt, copper, or metal chelate compounds, for example, cobalt octylate, cobalt naphthenate, copper naphthenate, vanadium naphthenate. , Copper acetylacetonate, manganese acetylacetonate, vanadyl acetylacetonate and the like.
 前記硬化促進剤は、重合性組成物を使用する直前に配合することが好ましい。硬化促進剤の含有量は、(b)ラジカル重合性化合物100質量部に対して、0.1から20質量部であることが好ましく、0.2から10質量部であることがより好ましい。 The curing accelerator is preferably blended immediately before using the polymerizable composition. The content of the curing accelerator is preferably 0.1 to 20 parts by mass and more preferably 0.2 to 10 parts by mass with respect to 100 parts by mass of the (b) radical polymerizable compound.
 前記その他の成分として、重合性組成物には、コーティング剤や塗料、印刷インキ、感光性印刷版、接着剤、カラーレジストやブラックレジスト等の各種フォトレジスト等の用途で一般的に使用されている添加剤を配合できる。添加剤としては、例えば、増感剤(イソプロピルチオキサントン、ジエチルチオキサントン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、9,10-ジブトキシアントラセン、クマリン、ケトクマリン、アクリジンオレンジ、カンファーキノン等)、重合禁止剤(p-メトキシフェノール、ヒドロキノン、2,6-ジ-t-ブチル-4-メチルフェノール、フェノチアジン等)、紫外線吸収剤、赤外線吸収剤、光安定剤、酸化防止剤、レベリング剤、表面調整剤、界面活性剤、増粘剤、消泡剤、接着促進剤、可塑剤、エポキシ化合物、チオール化合物、エチレン性不飽和結合を有する樹脂、飽和樹脂、着色染料、蛍光染料、顔料(有機顔料、無機顔料)、炭素系材料(炭素繊維、カーボンブラック、黒鉛、黒鉛化カーボンブラック、活性炭、カーボンナノチューブ、フラーレン、グラフェン、カーボンマイクロコイル、カーボンナノホーン、カーボンエアロゲル等)、金属酸化物(酸化チタン、酸化イリジウム、酸化亜鉛、アルミナ、シリカ等)、金属(銀、銅等)、無機化合物(ガラス粉末、層状粘度鉱物、マイカ、タルク、炭酸カルシウム等)、分散剤、難燃剤等が挙げられる。添加剤は、単独で用いてもよく2種類以上を併用してもよい。 As the other components, the polymerizable composition is generally used in applications such as coating agents, paints, printing inks, photosensitive printing plates, adhesives, various photoresists such as color resists and black resists. Additives can be blended. Examples of additives include sensitizers (isopropylthioxanthone, diethylthioxanthone, 4,4′-bis (diethylamino) benzophenone, 9,10-dibutoxyanthracene, coumarin, ketocoumarin, acridine orange, camphorquinone, etc.), polymerization inhibition Agents (p-methoxyphenol, hydroquinone, 2,6-di-t-butyl-4-methylphenol, phenothiazine, etc.), ultraviolet absorbers, infrared absorbers, light stabilizers, antioxidants, leveling agents, surface conditioners , Surfactant, thickener, antifoaming agent, adhesion promoter, plasticizer, epoxy compound, thiol compound, resin with ethylenically unsaturated bond, saturated resin, colored dye, fluorescent dye, pigment (organic pigment, inorganic Pigments), carbon-based materials (carbon fiber, carbon black, graphite, graphitized carbon black, Charcoal, carbon nanotube, fullerene, graphene, carbon microcoil, carbon nanohorn, carbon aerogel, etc.), metal oxide (titanium oxide, iridium oxide, zinc oxide, alumina, silica, etc.), metal (silver, copper, etc.), inorganic Examples include compounds (glass powder, lamellar viscosity minerals, mica, talc, calcium carbonate, etc.), dispersants, flame retardants, and the like. An additive may be used independently and may use 2 or more types together.
 前記添加剤の含有量は、使用目的に応じて適宜選択され、特に制限されるものではないが、通常、(b)ラジカル重合性化合物100質量部に対して、500質量部以下でありことが好ましく、100質量部以下であることより好ましい。 The content of the additive is appropriately selected according to the purpose of use and is not particularly limited, but is usually 500 parts by mass or less with respect to 100 parts by mass of the (b) radical polymerizable compound. The amount is preferably 100 parts by mass or less.
 前記重合性組成物には、粘度や塗装性、硬化膜の平滑性の改良のため、更に溶媒を加えることもできる。溶媒は、前記(a)重合開始剤、前記(b)ラジカル重合性化合物、前記(c)アルカリ可溶性樹脂、前記その他の成分を、溶解または分散することができるものであり、乾燥温度において揮発する溶媒であれば、特に制限されるものではない。 The solvent may be further added to the polymerizable composition in order to improve the viscosity, paintability, and smoothness of the cured film. The solvent is capable of dissolving or dispersing the (a) polymerization initiator, the (b) radical polymerizable compound, the (c) alkali-soluble resin, and the other components, and is volatilized at a drying temperature. If it is a solvent, it will not restrict | limit in particular.
 前記溶媒としては、例えば、水、アルコール系溶媒、カルビトール系溶媒、エステル系溶媒、ケトン系溶媒、エーテル系溶媒、ラクトン系溶媒、不飽和炭化水素系溶媒、セロソルブアセテート系溶媒、カルビトールアセテート系溶媒やプロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールジメチルエーテル等が挙げられる。溶媒は、単独で用いてもよく2種類以上を併用してもよい。 Examples of the solvent include water, alcohol solvents, carbitol solvents, ester solvents, ketone solvents, ether solvents, lactone solvents, unsaturated hydrocarbon solvents, cellosolve acetate solvents, carbitol acetate solvents. Examples include solvents, propylene glycol monomethyl ether acetate, and diethylene glycol dimethyl ether. A solvent may be used independently and may use 2 or more types together.
 前記溶媒の使用量は、重合性組成物の固形分100質量部に対して、10から1000質量部であることが好ましく、20から500質量部であることがより好ましい。 The amount of the solvent used is preferably 10 to 1000 parts by mass and more preferably 20 to 500 parts by mass with respect to 100 parts by mass of the solid content of the polymerizable composition.
<重合性組成物の調製方法>
 前記重合性組成物を調整する場合には、収納容器内に前記(a)重合開始剤、前記(b)ラジカル重合性化合物、必要に応じて、前記(c)アルカリ可溶性樹脂や前記その他の成分を投入し、ペイントシェーカー、ビーズミル、サンドグラインドミル、ボールミル、アトライターミル、2本ロールミル、3本ロールミル等を用いて、常法に従って溶解または分散させればよい。また、必要に応じて、メッシュまたはメンブレンフィルター等を通してもろ過してもよい。
<Method for Preparing Polymerizable Composition>
When adjusting the polymerizable composition, the (a) polymerization initiator, the (b) radical polymerizable compound, and, if necessary, the (c) alkali-soluble resin and the other components in a storage container. And then dissolved or dispersed in accordance with a conventional method using a paint shaker, bead mill, sand grind mill, ball mill, attritor mill, 2-roll mill, 3-roll mill or the like. Moreover, you may filter through a mesh or a membrane filter etc. as needed.
 なお、前記重合性組成物の調整において、前記(a)重合開始剤は、重合性組成物に最初から添加しておいてもよいが、重合性組成物を比較的長時間保存する場合には、使用直前に(a)重合開始剤を(b)ラジカル重合性を含む組成物中に溶解または分散させることが好ましい。 In the preparation of the polymerizable composition, the (a) polymerization initiator may be added to the polymerizable composition from the beginning, but when the polymerizable composition is stored for a relatively long time. The (a) polymerization initiator is preferably dissolved or dispersed in the composition containing (b) radical polymerizability immediately before use.
<硬化物の製造方法>
 本発明の硬化物は、前記重合性組成物から形成されるものである。硬化物の製造方法は、重合性組成物を基板上に塗布後、当該重合性組成物を活性エネルギー線で照射する工程、および当該重合性組成物を加熱する工程のいずれかの工程を含む製造方法である。また、前記活性エネルギー線で照射する工程と前記加熱する工程の両方を含む工程を、デュアルキュア工程ともいう。
<Method for producing cured product>
The cured product of the present invention is formed from the polymerizable composition. The manufacturing method of hardened | cured material is a manufacturing which includes any process of the process of irradiating the said polymeric composition with an active energy ray, and heating the said polymeric composition after apply | coating a polymeric composition on a board | substrate. Is the method. Moreover, the process including both the process of irradiating with the active energy ray and the process of heating is also referred to as a dual cure process.
 前記塗布方法としては、例えば、スピンコート法、バーコート法、スプレーコート法、ディップコート法、フローコート法、スリットコート法、ドクターブレードコート法、グラビアコート法、スクリーン印刷法、オフセット印刷法、インクジェット印刷法、ディスペンサー印刷法等の種々の方法が挙げられる。また、前記基板は、例えば、ガラス、シリコンウエハ、金属、プラスチック等のフィルムやシート、および立体形状の成形品等が挙げられ、基板の形状が制限されることは無い。 Examples of the coating method include spin coating, bar coating, spray coating, dip coating, flow coating, slit coating, doctor blade coating, gravure coating, screen printing, offset printing, and inkjet. Various methods, such as a printing method and a dispenser printing method, are mentioned. Examples of the substrate include glass, silicon wafer, metal and plastic films and sheets, and three-dimensional molded products, and the shape of the substrate is not limited.
 上記の重合性組成物を活性エネルギー線で照射する工程は、電子線、紫外線、可視光線、放射線等の活性エネルギー線の照射により、(a)重合開始剤を分解させて、(b)ラジカル重合性化合物を重合させることで、硬化物を得ることができるものである。 The step of irradiating the polymerizable composition with active energy rays comprises (a) decomposing a polymerization initiator by irradiating active energy rays such as electron beam, ultraviolet ray, visible light, and radiation, and (b) radical polymerization. A cured product can be obtained by polymerizing the active compound.
 活性エネルギー線は、活性エネルギー線の波長が250から450nmの光であることが好ましく、硬化を迅速に行うことができる観点から、350から410nmの光であることがより好ましい。 The active energy ray is preferably light having an active energy ray wavelength of 250 to 450 nm, and more preferably light having a wavelength of 350 to 410 nm from the viewpoint of allowing rapid curing.
 前記光の照射の光源としては、低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、メタルハライドランプ、紫外線無電極ランプ、発光ダイオード(LED)、キセノンアークランプ、カーボンアークランプ、太陽光、YAGレーザー等の固体レーザー、半導体レーザー、アルゴンレーザー等のガスレーザー等を使用することができる。なお、(a)重合開始剤の吸収が少ない可視光から赤外光の光を用いる場合には、前記添加剤として、その光を吸収する増感剤を使用することにより硬化を行なうことができる。 As the light source for the light irradiation, a low pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a metal halide lamp, an ultraviolet electrodeless lamp, a light emitting diode (LED), a xenon arc lamp, a carbon arc lamp, sunlight, a YAG laser, etc. A gas laser such as a solid-state laser, a semiconductor laser, or an argon laser can be used. In addition, (a) When using visible light to infrared light with little absorption of the polymerization initiator, curing can be performed by using a sensitizer that absorbs the light as the additive. .
 前記活性エネルギー線の露光量は、活性エネルギー線の波長や強度、重合性組成物の組成に応じて適宜設定すべきである。一例として、UV-A領域での露光量は、10から5,000mJ/cmであることが好ましく、30から1,000mJ/cmであることがより好ましい。なお、上記の硬化物の製造方法として、デュアルキュア工程を適用し、かつ前記活性エネルギー線で照射する工程の後に、加熱する工程を行う場合、(a)重合開始剤が、活性エネルギー線により完全に分解してしまわないように、露光量を適宜設定すべきである。 The exposure amount of the active energy ray should be appropriately set according to the wavelength and intensity of the active energy ray and the composition of the polymerizable composition. As an example, the exposure dose in the UV-A region is preferably 10 to 5,000 mJ / cm 2 , and more preferably 30 to 1,000 mJ / cm 2 . In addition, as a manufacturing method of said hardened | cured material, when applying a dual cure process and performing the process of heating after the process of irradiating with the said active energy ray, (a) polymerization initiator is completely by an active energy ray. The exposure amount should be set as appropriate so that it is not decomposed.
 上記の重合性組成物を加熱する工程は、熱により(a)重合開始剤を分解させて、(b)ラジカル重合性化合物を重合させることで、硬化物を得ることができるものである。 In the step of heating the polymerizable composition, a cured product can be obtained by (a) decomposing the polymerization initiator with heat and (b) polymerizing the radical polymerizable compound.
 前記重合性組成物を加熱する工程において、加熱する手法は、例えば、加熱、通風加熱等が挙げられる。加熱の方式としては、特に制限されることはないが、例えば、オーブン、ホットプレート、赤外線照射、電磁波照射等が挙げられる。また、通風加熱の方式としては、例えば、送風式乾燥オーブン等が挙げられる。 In the step of heating the polymerizable composition, examples of the heating method include heating and ventilation heating. The heating method is not particularly limited, and examples thereof include an oven, a hot plate, infrared irradiation, electromagnetic wave irradiation, and the like. Moreover, as a method of ventilation heating, a ventilation drying oven etc. are mentioned, for example.
 前記重合性組成物を加熱する工程において、加熱温度は高いほど、(a)重合開始剤の分解速度は加速される。しかし、分解速度が速すぎると、(b)ラジカル重合性化合物の分解残渣が多くなる場合を有する。一方、加熱温度は低いほど、(a)重合開始剤の分解速度は遅いため、硬化に長時間を必要とする。よって、加熱温度と加熱時間は、前記重合性組成物の組成により適宜設定すべきである。一例として、加熱温度は、50から230℃であることが好ましく、100から160℃であることがより好ましい。また、前記重合性組成物に、前記硬化促進剤を配合する場合には、その種類や配合量により、加熱温度は室温から160℃で任意に調整することができる。一方、加熱時間は1から180分であることが好ましく、5から120分であることがさらに好ましい。 In the step of heating the polymerizable composition, the higher the heating temperature, the faster the decomposition rate of (a) the polymerization initiator. However, when the decomposition rate is too high, there are cases where the decomposition residue of (b) radical polymerizable compound increases. On the other hand, the lower the heating temperature, the slower the decomposition rate of (a) the polymerization initiator, and thus a longer time is required for curing. Therefore, the heating temperature and the heating time should be appropriately set depending on the composition of the polymerizable composition. As an example, the heating temperature is preferably 50 to 230 ° C, and more preferably 100 to 160 ° C. Moreover, when mix | blending the said hardening accelerator with the said polymeric composition, heating temperature can be arbitrarily adjusted at 160 degreeC from room temperature with the kind and compounding quantity. On the other hand, the heating time is preferably 1 to 180 minutes, and more preferably 5 to 120 minutes.
 前記硬化物の製造方法として、前記デュアルキュア工程を適用する場合、特に、重合性組成物を活性エネルギー線で照射する工程の後に、加熱する工程を行うことが、光を吸収や散乱する着色顔料を高濃度に含む重合組成物の塗膜の深部や、光が遮光されて光が届いていない箇所の硬化を効率よく行なうことができるため、好ましい。 When applying the dual cure process as a method for producing the cured product, in particular, a colored pigment that absorbs or scatters light by performing a heating process after a process of irradiating the polymerizable composition with active energy rays. This is preferable because it can efficiently cure the deep part of the coating film of the polymerization composition containing a high concentration of light and a portion where light is blocked and light does not reach.
 また、前記重合組成物に前記溶媒を含む場合、前記硬化物の製造方法は、乾燥工程を含むことができる。特に、重合性組成物を基板上に塗布後に、続いて、前記活性エネルギー線で照射する工程を適用する場合、当該活性エネルギー線で照射する工程の前に、乾燥工程を設けることが好ましい。 Further, when the polymerization composition contains the solvent, the method for producing the cured product may include a drying step. In particular, when applying the step of irradiating with the active energy ray after applying the polymerizable composition on the substrate, it is preferable to provide a drying step before the step of irradiating with the active energy ray.
 前記乾燥工程において、溶媒を乾燥させる手法は、例えば、加熱乾燥、通風加熱乾燥、減圧乾燥等が挙げられる。加熱乾燥の方式としては、特に制限されることはないが、例えば、オーブン、ホットプレート、赤外線照射、電磁波照射等が挙げられる。また、通風加熱乾燥の方式としては、例えば、送風式乾燥オーブン等が挙げられる。 In the drying step, examples of the method for drying the solvent include heat drying, ventilation heat drying, and reduced pressure drying. The method of heat drying is not particularly limited, and examples thereof include an oven, a hot plate, infrared irradiation, electromagnetic wave irradiation, and the like. Moreover, as a system of ventilation heating drying, a ventilation drying oven etc. are mentioned, for example.
 また、前記乾燥工程において、重合性組成物の温度は、溶媒の蒸発潜熱によって、乾燥の設定温度よりも低くなるため、重合性組成物のゲル化するまでの時間を長く確保することができる。このゲル化するまでの時間は、乾燥手法や膜厚等にも影響されるため、溶媒の選定を含めて乾燥温度と時間は適宜設定すべきである。一例として、乾燥温度は、20から120℃であることが好ましく、40から100℃であることがより好ましい。乾燥時間は1から60分であることが好ましく、1から30分であることがより好ましい。また、前記重合禁止剤を使用することで、ゲル化までの時間を長く確保することもできる。なお、前記トリアジンペルオキシド誘導体は熱により分解するが、80℃で5分の加熱した際の当該化合物の分解率は0.1%程度であるため、この程度の条件であれば重合性組成物が増粘やゲル化することはあまりない。 In the drying step, the temperature of the polymerizable composition is lower than the preset drying temperature due to the latent heat of vaporization of the solvent, so that it is possible to ensure a long time until the polymerizable composition is gelled. Since the time until gelation is affected by the drying method, film thickness, and the like, the drying temperature and time should be appropriately set including the selection of the solvent. As an example, the drying temperature is preferably 20 to 120 ° C., and more preferably 40 to 100 ° C. The drying time is preferably 1 to 60 minutes, and more preferably 1 to 30 minutes. Further, by using the polymerization inhibitor, it is possible to ensure a long time until gelation. The triazine peroxide derivative is decomposed by heat, but the decomposition rate of the compound when heated at 80 ° C. for 5 minutes is about 0.1%. There is not much thickening or gelation.
 前記重合性組成物の乾燥膜厚(硬化物の膜厚)は、用途に応じて適宜設定されるが、0.05から300μmであることが好ましく、0.1から100μmであることがより好ましい。 The dry film thickness (film thickness of the cured product) of the polymerizable composition is appropriately set depending on the application, but is preferably 0.05 to 300 μm, more preferably 0.1 to 100 μm. .
<パターン形成方法>
 前記重合性組成物が(c)アルカリ可溶性樹脂を含む場合、フォトリソグラフィー法によりパターンを形成することができる。前述と同様にして重合性組成物を基材に塗布し、必要に応じて、乾燥して乾燥被膜を形成する。そして、乾燥被膜にマスクを介して活性エネルギー線を照射することにより、露光部では(b)ラジカル重合性化合物が重合することで硬化膜となる。一方、レーザーを用いた直接描画により、マスクを介さずに高精度なパターン形状を作製することもできる。
<Pattern formation method>
When the polymerizable composition contains (c) an alkali-soluble resin, a pattern can be formed by a photolithography method. In the same manner as described above, the polymerizable composition is applied to a substrate and dried as necessary to form a dry film. Then, by irradiating the dry film with active energy rays through a mask, the radical polymerizable compound (b) is polymerized in the exposed portion to form a cured film. On the other hand, a highly accurate pattern shape can be produced without using a mask by direct writing using a laser.
 上記の露光後、未露光部は、例えば、0.3から3質量%の炭酸ナトリウム水溶液等のアルカリ現像液により現像除去され、パターン化した硬化膜が得られる。さらに、硬化膜と基材との密着性を高めること等を目的に、後乾燥として180から250℃、20から90分でのポストベークが行われる。このようにして、硬化膜に基づく所望のパターンが形成される。 After the above exposure, the unexposed portion is developed and removed with an alkaline developer such as an aqueous solution of 0.3 to 3% by mass of sodium carbonate to obtain a patterned cured film. Further, post-baking is performed as post-drying at 180 to 250 ° C. for 20 to 90 minutes for the purpose of improving the adhesion between the cured film and the substrate. In this way, a desired pattern based on the cured film is formed.
 本発明の重合性組成物は、ハードコート剤、光ディスク用コート剤、光ファイバー用コート剤、モバイル端末用塗料、家電用塗料、化粧品容器用塗料、光学素子用内面反射防止塗料、高・低屈折率コート剤、遮熱コート剤、放熱コート剤、防曇剤等の塗料・コーティング剤;オフセット印刷インキ、グラビア印刷インキ、スクリーン印刷インキ、インクジェット印刷インキ、導電性インキ、絶縁性インキ、導光板用インキ等の印刷インキ;感光性印刷版;ナノインプリント材料;3Dプリンター用樹脂;ホログラフィー記録材料;歯科用材料;導波路用材料;レンズシート用ブラックストライプ;コンデンサ用グリーンシートおよび電極材料;FPD用接着剤、HDD用接着剤、光ピックアップ用接着剤、イメージセンサー用接着剤、有機EL用シール剤、タッチパネル用OCA、タッチパネル用OCR等の接着剤・シール剤;カラーレジスト、ブラックレジスト、カラーフィルター用保護膜、フォトスペーサー、ブラックカラムスペーサー、額縁レジスト、TFT配線用フォトレジスト、層間絶縁膜等のFPD用レジスト;液状ソルダーレジスト、ドライフィルムレジスト等のプリント基板用レジスト;半導体レジスト、バッファーコート膜等の半導体用材料等の各種用途に使用でき、その用途に特に制限は無い。 The polymerizable composition of the present invention includes a hard coating agent, a coating agent for optical disks, a coating agent for optical fibers, a coating material for mobile terminals, a coating material for home appliances, a coating material for cosmetic containers, an inner surface antireflection coating material for optical elements, and a high / low refractive index. Coating agents, thermal barrier coating agents, heat dissipation coating agents, anti-fogging agents, and other paints and coating agents; offset printing ink, gravure printing ink, screen printing ink, inkjet printing ink, conductive ink, insulating ink, light guide plate ink Photosensitive printing plates; nanoimprint materials; 3D printer resins; holographic recording materials; dental materials; waveguide materials; black stripes for lens sheets; green sheets and electrode materials for capacitors; adhesives for FPDs; HDD adhesive, optical pickup adhesive, image sensor adhesive, organic Adhesives and sealants such as L sealant, OCA for touch panel, OCR for touch panel; color resist, black resist, color filter protective film, photo spacer, black column spacer, frame resist, TFT wiring photoresist, interlayer insulation Resist for FPD such as film; Resist for printed circuit board such as liquid solder resist, dry film resist; Semiconductor materials such as semiconductor resist, buffer coat film, etc.
 以下に実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例のみに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to only these examples.
<実施例1~5>
(1)トリアジンペルオキシド誘導体の合成
[合成例1:化合物1の合成]
 20mLナスフラスコにイオン交換水1.66g、48質量%水酸化ナトリウム水溶液0.553g(6.64mmol)を加え、30℃以下で69質量%tert-ブチルヒドロペルオキシド水溶液0.698g(5.31mmol)を徐々に加えた。ここに、2,4-ジクロロ-6-フェニル-1,3,5-トリアジン0.500g(2.21mmol、ナミキ商事より購入)とテトラヒドロフラン1mLの混合溶液を、10℃で10分かけて滴下し、20℃にて3.5時間反応させた。反応終了後、ジクロロメタン10mLを添加した後に、水相を分液した。油相をイオン交換水で洗浄し、0℃にて無水硫酸マグネシウムで乾燥した。ろ過後、油相を減圧下で濃縮し、0.683g(収率92%)の本発明の化合物1を得た。得られた化合物1の性状、EI-MSおよびH-NMRによる分析結果を表1および表2に示す。
<Examples 1 to 5>
(1) Synthesis of triazine peroxide derivative [Synthesis Example 1: Synthesis of Compound 1]
To a 20 mL eggplant flask, 1.66 g of ion-exchanged water and 0.553 g (6.64 mmol) of a 48% by mass sodium hydroxide aqueous solution were added, and 0.698 g (5.31 mmol) of a 69% by mass tert-butyl hydroperoxide aqueous solution at 30 ° C. or lower. Was gradually added. To this, a mixed solution of 0.500 g of 2,4-dichloro-6-phenyl-1,3,5-triazine (2.21 mmol, purchased from Namiki Shoji) and 1 mL of tetrahydrofuran was added dropwise at 10 ° C. over 10 minutes. And reacted at 20 ° C. for 3.5 hours. After completion of the reaction, 10 mL of dichloromethane was added, and the aqueous phase was separated. The oil phase was washed with ion exchange water and dried over anhydrous magnesium sulfate at 0 ° C. After filtration, the oil phase was concentrated under reduced pressure to obtain 0.683 g (yield 92%) of Compound 1 of the present invention. Table 1 and Table 2 show the properties, EI-MS and 1 H-NMR analysis results of the obtained Compound 1.
[合成例2:化合物23の合成]
 ヒートドライ乾燥した500mL三つ口フラスコに、マグネシウム1.69g(69.5mmol)、脱水テトラヒドロフラン57mL、触媒量のヨウ素を入れ、室温下で撹拌した。ここに、1-ブロモナフタレン7.07g(50.7mmol)と脱水テトラヒドロフラン57mLの混合溶液を滴下した後、還流撹拌させた。1時間後、内温を-60℃以下まで冷却した。別途調整した塩化シアヌル8.92g(48.4mmol)と脱水テトラヒドロフランの混合溶液を15分かけ滴下した。その後、30分かけて室温にあげ、水浴下で撹拌した。62時間後、反応液を氷浴で冷却し、1M塩酸を加え、飽和炭酸水素ナトリウム水溶液でpHを8に調整した。次いで、イオン交換水160mLを加え、酢酸エチルで抽出した。油相を飽和食塩水で1回洗浄した後、硫酸マグネシウムで脱水した。ろ過後、油相を減圧下で濃縮し、粗体14.6gを得た。粗体をシリカゲルカラムクロマトグラフィー(n-ヘキサン/酢酸エチル=1/1から1/3)で精製し、5.14g(収率38%)の2,4-ジクロロ-6-(1-ナフタレニル)-1,3,5-トリアジンを得た。
[Synthesis Example 2: Synthesis of Compound 23]
In a 500 mL three-necked flask dried by heat drying, 1.69 g (69.5 mmol) of magnesium, 57 mL of dehydrated tetrahydrofuran and a catalytic amount of iodine were added and stirred at room temperature. To this was added dropwise a mixed solution of 7.07 g (50.7 mmol) of 1-bromonaphthalene and 57 mL of dehydrated tetrahydrofuran, followed by stirring under reflux. After 1 hour, the internal temperature was cooled to −60 ° C. or lower. A separately prepared mixed solution of cyanuric chloride 8.92 g (48.4 mmol) and dehydrated tetrahydrofuran was added dropwise over 15 minutes. Thereafter, the mixture was raised to room temperature over 30 minutes and stirred in a water bath. After 62 hours, the reaction solution was cooled in an ice bath, 1M hydrochloric acid was added, and the pH was adjusted to 8 with a saturated aqueous sodium hydrogen carbonate solution. Next, 160 mL of ion-exchanged water was added and extracted with ethyl acetate. The oil phase was washed once with saturated saline and then dehydrated with magnesium sulfate. After filtration, the oil phase was concentrated under reduced pressure to obtain 14.6 g of a crude product. The crude product was purified by silica gel column chromatography (n-hexane / ethyl acetate = 1/1 to 1/3) and 5.14 g (yield 38%) of 2,4-dichloro-6- (1-naphthalenyl). -1,3,5-triazine was obtained.
 30mLナスフラスコにイオン交換水0.815g、48質量%水酸化ナトリウム水溶液0.272g(3.26mmol)を加え、30℃以下で69質量%tert-ブチルヒドロペルオキシド水溶液0.343g(2.61mmol)を徐々に加えた。ここに、2,4-ジクロロ-6-(1-ナフタレニル)-1,3,5-トリアジン0.300g(1.09mmol)とテトラヒドロフラン3mLの混合溶液を、10℃で10分かけて滴下し、20℃にて2時間反応させた。反応終了後、反応溶液を氷水50mLに投入した。析出した結晶をろ過し、イオン交換水で洗浄し、減圧下で乾燥させ、0.216g(収率52%)で本発明の化合物2を得た。得られた化合物1の性状、EI-MSおよびH-NMRによる分析結果を表1および表2に示す。 To a 30 mL eggplant flask, 0.815 g of ion-exchanged water and 0.272 g (3.26 mmol) of a 48% by mass aqueous sodium hydroxide solution were added, and 0.343 g (2.61 mmol) of a 69% by mass tert-butyl hydroperoxide aqueous solution at 30 ° C. or lower. Was gradually added. A mixed solution of 0.300 g (1.09 mmol) of 2,4-dichloro-6- (1-naphthalenyl) -1,3,5-triazine and 3 mL of tetrahydrofuran was added dropwise at 10 ° C. over 10 minutes. The reaction was carried out at 20 ° C. for 2 hours. After completion of the reaction, the reaction solution was poured into 50 mL of ice water. The precipitated crystals were filtered, washed with ion-exchanged water, and dried under reduced pressure to obtain Compound 2 of the present invention at 0.216 g (yield 52%). Table 1 and Table 2 show the properties, EI-MS and 1 H-NMR analysis results of the obtained Compound 1.
[合成例3:化合物25の合成]
 300mLナスフラスコに、1-メトキシナフタレン5.01g(31.7mmol)、脱水ジクロロメタン100mL、塩化シアヌル6.12g(33.2mmol)を入れ、氷浴下撹拌した。15分後、塩化アルミニウム4.43g(33.2mmol)を加え、室温に昇温した。1時間後、反応液を氷冷1M塩酸75mLに注ぎ、水相を分液した。油相を飽和食塩水100mLで洗浄し、無水硫酸ナトリウムにて脱水した。ろ過後、減圧濃縮し、粗体を9.59gの黄色固体を得た。粗体をシリカゲルカラムクロマトグラフィー(n-ヘキサン/トルエン=4/1から1.5/1)で精製し、8.05g(収率83%)の2,4-ジクロロ-6-(4-メトキシ-1-ナフタレニル)-1,3,5-トリアジンを得た。
[Synthesis Example 3: Synthesis of Compound 25]
A 300 mL eggplant flask was charged with 5.01 g (31.7 mmol) of 1-methoxynaphthalene, 100 mL of dehydrated dichloromethane and 6.12 g (33.2 mmol) of cyanuric chloride, and stirred in an ice bath. After 15 minutes, 4.43 g (33.2 mmol) of aluminum chloride was added, and the temperature was raised to room temperature. After 1 hour, the reaction solution was poured into 75 mL of ice-cold 1M hydrochloric acid, and the aqueous phase was separated. The oil phase was washed with 100 mL of saturated brine and dehydrated with anhydrous sodium sulfate. After filtration, the filtrate was concentrated under reduced pressure to obtain 9.59 g of a yellow solid as a crude product. The crude product was purified by silica gel column chromatography (n-hexane / toluene = 4/1 to 1.5 / 1), and 8.05 g (yield 83%) of 2,4-dichloro-6- (4-methoxy). -1-Naphthalenyl) -1,3,5-triazine was obtained.
 30mLナスフラスコにイオン交換水0.245g、48質量%水酸化ナトリウム水溶液0.0817g(0.98mmol)を加え、30℃以下で69質量%tert-ブチルヒドロペルオキシド水溶液0.103g(0.78mmol)を徐々に加えた。ここに、2,4-ジクロロ-6-(4-メトキシ-1-ナフタレニル)-1,3,5-トリアジン0.100g(0.33mmol)とテトラヒドロフラン2mLの混合溶液を、10℃で10分かけて滴下し、20℃にて4時間反応させた。反応終了後、酢酸エチル50mL、イオン交換水50mLを添加した後に、水相を分液した。油相を5%水酸化ナトリウム水溶液およびイオン交換水で洗浄し、無水硫酸マグネシウムで乾燥した。ろ過後、油相を減圧下で濃縮し、0.125g(収率93%)の本発明の化合物3を得た。得られた化合物3の性状、EI-MSおよびH-NMRによる分析結果を表1および表2に示す。 To a 30 mL eggplant flask, 0.245 g of ion-exchanged water and 0.0817 g (0.98 mmol) of a 48 mass% sodium hydroxide aqueous solution were added, and 0.103 g (0.78 mmol) of a 69 mass% tert-butyl hydroperoxide aqueous solution at 30 ° C. or lower. Was gradually added. A mixed solution of 0.100 g (0.33 mmol) of 2,4-dichloro-6- (4-methoxy-1-naphthalenyl) -1,3,5-triazine and 2 mL of tetrahydrofuran was added at 10 ° C. over 10 minutes. The solution was added dropwise and reacted at 20 ° C. for 4 hours. After completion of the reaction, 50 mL of ethyl acetate and 50 mL of ion exchange water were added, and then the aqueous phase was separated. The oil phase was washed with 5% aqueous sodium hydroxide solution and ion-exchanged water, and dried over anhydrous magnesium sulfate. After filtration, the oil phase was concentrated under reduced pressure to obtain 0.125 g (yield 93%) of Compound 3 of the present invention. Table 1 and Table 2 show the properties of the obtained compound 3, and the results of analysis by EI-MS and 1 H-NMR.
[合成例4:化合物26の合成]
 本発明の化合物4は、合成例2に記載の1-ブロモナフタレンを、2-ブロモ-6-メトキシナフタレンに変更したこと以外は、合成例2に記載の方法に準じて合成した。得られた化合物26の性状、EI-MSおよびH-NMRによる分析結果を表1および表2に示す。
[Synthesis Example 4: Synthesis of Compound 26]
Compound 4 of the present invention was synthesized according to the method described in Synthesis Example 2, except that 1-bromonaphthalene described in Synthesis Example 2 was changed to 2-bromo-6-methoxynaphthalene. Table 1 and Table 2 show the properties of the obtained Compound 26 and the results of analysis by EI-MS and 1 H-NMR.
[合成例5:化合物31の合成]
 本発明の化合物4は、合成例1に記載の2,4-ジクロロ-6-フェニル-1,3,5-トリアジンを、2,4-ジクロロ-6-(4-エトキシ-1-ナフタレニル)-1,3,5-トリアジン(シグマアルドリッチ試薬)に変更したこと以外は、合成例1に記載の方法に準じて合成した。得られた化合物31の性状、EI-MSおよびH-NMRによる分析結果を表1および表2に示す。
[Synthesis Example 5: Synthesis of Compound 31]
Compound 4 of the present invention is obtained by reacting 2,4-dichloro-6-phenyl-1,3,5-triazine described in Synthesis Example 1 with 2,4-dichloro-6- (4-ethoxy-1-naphthalenyl)- The compound was synthesized according to the method described in Synthesis Example 1, except that it was changed to 1,3,5-triazine (Sigma-Aldrich reagent). Properties and EI-MS and 1 H-NMR analysis results of the resulting compound 31 are shown in Tables 1 and 2.
[合成例6:化合物32の合成]
 本発明の化合物32は、合成例3に記載の69質量%tert-ブチルヒドロペルオキシド水溶液を、85質量%tert-アミルヒドロペルオキシドに変更したこと以外は、合成例3に記載の方法に準じて合成した。得られた化合物32の性状、EI-MSおよびH-NMRによる分析結果を表1および表2に示す。
[Synthesis Example 6: Synthesis of Compound 32]
Compound 32 of the present invention was synthesized according to the method described in Synthesis Example 3 except that the 69% by mass tert-butyl hydroperoxide aqueous solution described in Synthesis Example 3 was changed to 85% by mass tert-amyl hydroperoxide. did. Properties and EI-MS and 1 H-NMR analysis results of the resulting compound 32 are shown in Tables 1 and 2.
[合成例7:化合物33の合成]
 本発明の化合物33は、合成例1に記載の2,4-ジクロロ-6-フェニル-1,3,5-トリアジンを、2-(4-ビフェニリル)-4,6-ジクロロ-1,3,5-トリアジン(東京化成工業試薬)に変更したこと以外は、合成例1に記載の方法に準じて合成した。得られた化合物33の性状、EI-MSおよびH-NMRによる分析結果を表1および表2に示す。
[Synthesis Example 7: Synthesis of Compound 33]
Compound 33 of the present invention is obtained by reacting 2,4-dichloro-6-phenyl-1,3,5-triazine described in Synthesis Example 1 with 2- (4-biphenylyl) -4,6-dichloro-1,3, The compound was synthesized according to the method described in Synthesis Example 1 except that 5-triazine (Tokyo Chemical Industry Reagent) was used. Properties and EI-MS and 1 H-NMR analysis results of the resulting compound 33 are shown in Tables 1 and 2.
[合成例8:化合物35の合成]
 本発明の化合物35は、合成例2に記載の1-ブロモナフタレンを、4-ブロモ-4’-メトキシビフェニルに変更したこと以外は、合成例2に記載の方法に準じて合成した。得られた化合物35の性状、EI-MSおよびH-NMRによる分析結果を表1および表2に示す。
[Synthesis Example 8: Synthesis of Compound 35]
Compound 35 of the present invention was synthesized according to the method described in Synthesis Example 2, except that 1-bromonaphthalene described in Synthesis Example 2 was changed to 4-bromo-4′-methoxybiphenyl. Table 1 and Table 2 show the properties of the obtained Compound 35, and the results of analysis by EI-MS and 1 H-NMR.
[合成例9:化合物37の合成]
 本発明の化合物37は、合成例2に記載の1-ブロモナフタレンを、4-ブロモ-4’-メトキシビフェニルに、及び69質量%tert-ブチルヒドロペルオキシド水溶液を85質量%tert-アミルヒドロペルオキシドに変更したこと以外は、合成例2に記載の方法に準じて合成した。得られた化合物37の性状、EI-MSおよびH-NMRによる分析結果を表1および表2に示す。
[Synthesis Example 9: Synthesis of Compound 37]
Compound 37 of the present invention was prepared by converting 1-bromonaphthalene described in Synthesis Example 2 into 4-bromo-4′-methoxybiphenyl and 69% by mass tert-butyl hydroperoxide aqueous solution into 85% by mass tert-amyl hydroperoxide. The compound was synthesized according to the method described in Synthesis Example 2 except for the change. Table 1 and Table 2 show the properties of the obtained Compound 37, and the results of analysis by EI-MS and 1 H-NMR.
[合成例10:化合物38の合成]
 本発明の化合物38は、合成例2に記載の1-ブロモナフタレンを、4-ブロモ-4’-メトキシビフェニル、及び69質量%tert-ブチルヒドロペルオキシド水溶液を90質量%tert-ヘキシルヒドロペルオキシドに変更したこと以外は、合成例2に記載の方法に準じて合成した。得られた化合物38の性状、EI-MSおよびH-NMRによる分析結果を表1および表2に示す。
[Synthesis Example 10: Synthesis of Compound 38]
Compound 38 of the present invention was prepared by changing 1-bromonaphthalene described in Synthesis Example 2 to 4-bromo-4′-methoxybiphenyl and a 69% by mass tert-butyl hydroperoxide aqueous solution to 90% by mass tert-hexyl hydroperoxide. Except for the above, it was synthesized according to the method described in Synthesis Example 2. Table 1 and Table 2 show the properties of the obtained Compound 38, and the results of analysis by EI-MS and 1 H-NMR.
[合成例11:化合物40の合成]
 本発明の化合物40は、合成例2に記載の1-ブロモナフタレンを、4-ブロモ-4’-メトキシビフェニルに、及び69質量%tert-ブチルヒドロペルオキシド水溶液を80質量%クメンヒドロペルオキシドに変更したこと以外は、合成例2に記載の方法に準じて合成した。得られた化合物40の性状、EI-MSおよびH-NMRによる分析結果を表1および表2に示す。
[Synthesis Example 11: Synthesis of Compound 40]
In Compound 40 of the present invention, 1-bromonaphthalene described in Synthesis Example 2 was changed to 4-bromo-4′-methoxybiphenyl, and 69% by mass aqueous tert-butyl hydroperoxide solution was changed to 80% by mass cumene hydroperoxide. Except for the above, it was synthesized according to the method described in Synthesis Example 2. Table 1 and Table 2 show the properties of the obtained compound 40, and the results of analysis by EI-MS and 1 H-NMR.
[合成例12:化合物41の合成]
 本発明の化合物41は、合成例2に記載の1-ブロモナフタレンを、4-ブロモスチルベンに変更したこと以外は、合成例2に記載の方法に準じて合成した。得られた化合物41の性状、EI-MSおよびH-NMRによる分析結果を表1および表2に示す。
[Synthesis Example 12: Synthesis of Compound 41]
Compound 41 of the present invention was synthesized according to the method described in Synthesis Example 2, except that 1-bromonaphthalene described in Synthesis Example 2 was changed to 4-bromostilbene. Table 1 and Table 2 show the properties of the obtained Compound 41 and the results of analysis by EI-MS and 1 H-NMR.
[合成例13:化合物43の合成]
 100mLナスフラスコに、塩化シアヌル5.70g(10mmol)、trans-フェニルビニルボロン酸1.56g(30mmol、シグマアルドリッチ試薬)、ビス(トリフェニルホスフィン)ジクロリド0.31g(0.4mmol)、トルエン40mLを入れ、室温で撹拌した。リン酸三カリウム8.68g(40mmol)の水溶液10mLを0℃で滴下した。滴下終了後、室温で1時間の反応を行った。反応終了後、水相を分液した。油相を飽和食塩水で1回洗浄した後、硫酸マグネシウムで脱水した。ろ過後、油相を減圧下で濃縮し粗体を得た。粗体をシリカゲルカラムクロマトグラフィーで精製し、2.08g(収率78%)の2,4-ジクロロ-6-(2-フェニルエテニル)-1,3,5-トリアジンを得た。
[Synthesis Example 13: Synthesis of Compound 43]
In a 100 mL eggplant flask, 5.70 g (10 mmol) of cyanuric chloride, 1.56 g of trans-phenylvinylboronic acid (30 mmol, Sigma-Aldrich reagent), 0.31 g (0.4 mmol) of bis (triphenylphosphine) dichloride, and 40 mL of toluene were added. And stirred at room temperature. 10 mL of an aqueous solution of 8.68 g (40 mmol) of tripotassium phosphate was added dropwise at 0 ° C. After completion of the dropping, the reaction was performed at room temperature for 1 hour. After completion of the reaction, the aqueous phase was separated. The oil phase was washed once with saturated saline and then dehydrated with magnesium sulfate. After filtration, the oil phase was concentrated under reduced pressure to obtain a crude product. The crude product was purified by silica gel column chromatography to obtain 2.08 g (yield 78%) of 2,4-dichloro-6- (2-phenylethenyl) -1,3,5-triazine.
 20mLナスフラスコにイオン交換水0.893g、48質量%水酸化ナトリウム水溶液0.298g(3.57mmol)を加え、30℃以下で69質量%tert-ブチルヒドロペルオキシド水溶液0.376g(2.86mmol)を徐々に加えた。ここに、2,4-ジクロロ-6-(2-フェニルエテニル)-1,3,5-トリアジン0.300g(1.19mmol)とテトラヒドロフラン3mLの混合溶液を、10℃で10分かけて滴下し、20℃にて2時間反応させた。反応終了後、ジクロロメタン50mL、イオン交換水50mLを添加した後に、水相を分液した。油相を5%水酸化ナトリウム水溶液およびイオン交換水で洗浄し、無水硫酸マグネシウムで乾燥した。ろ過後、油相を減圧下で濃縮し、0.308g(収率71%)の本発明の化合物43を得た。得られた化合物43の性状、EI-MSおよびH-NMRによる分析結果を表1および表2に示す。 To a 20 mL eggplant flask, 0.893 g of ion-exchanged water and 0.298 g (3.57 mmol) of 48 mass% sodium hydroxide aqueous solution were added, and 0.376 g (2.86 mmol) of 69 mass% tert-butyl hydroperoxide aqueous solution at 30 ° C. or lower. Was gradually added. A mixed solution of 0.300 g (1.19 mmol) of 2,4-dichloro-6- (2-phenylethenyl) -1,3,5-triazine and 3 mL of tetrahydrofuran was added dropwise at 10 ° C. over 10 minutes. And reacted at 20 ° C. for 2 hours. After completion of the reaction, 50 mL of dichloromethane and 50 mL of ion exchange water were added, and then the aqueous phase was separated. The oil phase was washed with 5% aqueous sodium hydroxide solution and ion-exchanged water, and dried over anhydrous magnesium sulfate. After filtration, the oil phase was concentrated under reduced pressure to obtain 0.308 g (yield 71%) of Compound 43 of the present invention. Properties and EI-MS and 1 H-NMR analysis results of the resulting compound 43 are shown in Tables 1 and 2.
[合成例14:化合物44の合成]
 本発明の化合物35は、合成例2に記載の1-ブロモナフタレンを、p-(2-ブロモ)ビニルアニソールに変更したこと以外は、合成例2に記載の方法に準じて合成した。得られた化合物41の性状、EI-MSおよびH-NMRによる分析結果を表1および表2に示す。
[Synthesis Example 14: Synthesis of Compound 44]
Compound 35 of the present invention was synthesized according to the method described in Synthesis Example 2, except that 1-bromonaphthalene described in Synthesis Example 2 was changed to p- (2-bromo) vinylanisole. Table 1 and Table 2 show the properties of the obtained Compound 41 and the results of analysis by EI-MS and 1 H-NMR.
[合成例15:化合物5の合成]
 本発明の化合物5は、合成例3に記載の1-メトキシナフタレンを、アニソールに変更したこと以外は、合成例3に記載の方法に準じて合成した。得られた化合物5の性状、EI-MSおよびH-NMRによる分析結果を表1および表2に示す。
[Synthesis Example 15: Synthesis of Compound 5]
Compound 5 of the present invention was synthesized according to the method described in Synthesis Example 3 except that 1-methoxynaphthalene described in Synthesis Example 3 was changed to anisole. Table 1 and Table 2 show the properties of the obtained compound 5, and the results of analysis by EI-MS and 1 H-NMR.
[合成例16:化合物19の合成]
 本発明の化合物19は、合成例3に記載の1-メトキシナフタレンを、ジフェニルスルフィドに変更したこと以外は、合成例3に記載の方法に準じて合成した。得られた化合物19の性状、EI-MSおよびH-NMRによる分析結果を表1および表2に示す。
[Synthesis Example 16: Synthesis of Compound 19]
Compound 19 of the present invention was synthesized according to the method described in Synthesis Example 3, except that 1-methoxynaphthalene described in Synthesis Example 3 was changed to diphenyl sulfide. Table 1 and Table 2 show the properties of the obtained Compound 19, and the results of analysis by EI-MS and 1 H-NMR.
[合成例17:化合物48の合成]
 本発明の化合物48は、合成例3に記載の1-メトキシナフタレンを、1-(2-エチルヘキシルオキシ)ナフタレンに変更したこと以外は、合成例3に記載の方法に準じて合成した。得られた化合物19の性状、EI-MSおよびH-NMRによる分析結果を表1および表2に示す。
[Synthesis Example 17: Synthesis of Compound 48]
Compound 48 of the present invention was synthesized according to the method described in Synthesis Example 3, except that 1-methoxynaphthalene described in Synthesis Example 3 was changed to 1- (2-ethylhexyloxy) naphthalene. Table 1 and Table 2 show the properties of the obtained Compound 19, and the results of analysis by EI-MS and 1 H-NMR.
Figure JPOXMLDOC01-appb-T000013
   
Figure JPOXMLDOC01-appb-T000013
   
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-I000015
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-I000015
(2)UV吸収特性の評価
 表1に記載される化合物のアセトニトリル溶液について、UV-VISスペクトル測定装置(1.0cm石英セル、島津製作所製、UV-2450)を用いて、波長200から600nmにおけるUV-VISスペクトルを測定した。その結果を表3に示す。
(2) Evaluation of UV absorption characteristics About acetonitrile solutions of the compounds described in Table 1, using a UV-VIS spectrum measurement device (1.0 cm quartz cell, manufactured by Shimadzu Corporation, UV-2450) at a wavelength of 200 to 600 nm UV-VIS spectrum was measured. The results are shown in Table 3.
<比較例1~2>
 また、比較例として、化合物R1および化合物R2の結果を表3に示す。なお、化合物R1は特開昭59-197401号公報に記載の製法に準じて合成し、EI-MSおよびH-NMRによって同定した。化合物R2はイルガキュア184(BASF製)を使用した。
Figure JPOXMLDOC01-appb-C000016
<Comparative Examples 1 and 2>
In addition, as a comparative example, Table 3 shows the results of Compound R1 and Compound R2. Compound R1 was synthesized according to the production method described in JP-A-59-197401 and identified by EI-MS and 1 H-NMR. As compound R2, Irgacure 184 (manufactured by BASF) was used.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 表3において、λmaxは最大吸収波長(nm)、εmaxは最大吸収波長にけるモル吸光係数(L・mol-1・cm-1)、ε313は波長313nmにおけるモル吸光係数(L・mol-1・cm-1)、ε365は波長365nmにおけるモル吸光係数(L・mol-1・cm-1)を示す。 In Table 3, λ max is the maximum absorption wavelength (nm), ε max is the molar extinction coefficient at the maximum absorption wavelength (L · mol −1 · cm −1 ), and ε 313 is the molar extinction coefficient at the wavelength of 313 nm (L · mol). −1 · cm −1 ) and ε 365 indicate the molar extinction coefficient (L · mol −1 · cm −1 ) at a wavelength of 365 nm.
 一般に、露光波長における光重合開始剤のモル吸光係数が大きいほど、光が吸収されやすく、ラジカルの発生が起こりやすい。すなわち、光重合開始剤の高感度化には、露光波長におけるモル吸光係数が大きい化合物が好適である。UV硬化に使用されるや超高圧水銀ランプや高圧水銀ランプは波長365nm(i線)を主波長とし、波長313nm(j線)等の光を効率よく放出する。表3の結果より、ベンゾフェノン骨格の化合物R1に対して、本発明のトリアジンペルオキシド誘導体は、高圧水銀ランプ等から放出される波長365nm及び波長313nmのモル吸光係数が大きいことが分かる。さらに、LEDからは波長365nm等の単一の光が放出されるが、化合物25、化合物26、化合物31、化合物32、化合物35、化合物37、化合物38、化合物40、化合物41、化合物44、化合物19、及び化合物48は、波長365nmのモル吸光係数が大きいことが分かる。 Generally, the larger the molar extinction coefficient of the photopolymerization initiator at the exposure wavelength, the easier the light is absorbed and the more easily radicals are generated. That is, a compound having a large molar extinction coefficient at the exposure wavelength is suitable for increasing the sensitivity of the photopolymerization initiator. When used for UV curing, an ultra-high pressure mercury lamp or a high-pressure mercury lamp has a wavelength of 365 nm (i-line) as a main wavelength and efficiently emits light having a wavelength of 313 nm (j-line). From the results in Table 3, it can be seen that the triazine peroxide derivative of the present invention has a large molar extinction coefficient at a wavelength of 365 nm and a wavelength of 313 nm emitted from a high-pressure mercury lamp or the like with respect to the compound R1 having a benzophenone skeleton. Furthermore, a single light having a wavelength of 365 nm or the like is emitted from the LED, but compound 25, compound 26, compound 31, compound 32, compound 35, compound 37, compound 38, compound 40, compound 41, compound 44, compound 19 and Compound 48 are found to have a large molar extinction coefficient at a wavelength of 365 nm.
<実施例18~34、比較例3~5>
<重合性組成物(A)から(C)の調整>
 表4に示す量の(b)ラジカル重合性化合物、(c)アルカリ可溶性樹脂、その他の成分を混合撹拌し、(a)重合開始剤を添加してよく撹拌し、実施例18~34および比較例3~5の重合性組成物(A)から(C)を調整した。
<Examples 18 to 34, Comparative Examples 3 to 5>
<Adjustment of polymerizable composition (A) to (C)>
The amounts of (b) radical polymerizable compound, (c) alkali-soluble resin and other components shown in Table 4 were mixed and stirred, (a) the polymerization initiator was added and stirred well, and Examples 18 to 34 and Comparative Example The polymerizable compositions (A) to (C) of Examples 3 to 5 were prepared.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 上記表4中、DPHAは、ジペンタエリスリトールペンタアクリレートおよびジペンタエリスリトールヘキサアクリレートの混合物(商品名:アロニックスM-402、東亞合成社製);
 RD200は、メタクリル酸メチル/メタクリル酸/シクロヘキシルマレイミド(質量%:61/14/25)共重合物、重量平均分子量:17,000、酸価:90(合成品);
 EMK:4,4‘-ビス(ジエチルアミノ)ベンゾフェノン(東京化成工業試薬)
 F-477は、フッ素系レベリング剤(商品名:メガファックF-477、DIC社製);
 PGMEAは、プロピレングリコールモノメチルエーテルアセテート(和光純薬工業試薬);を示す。
In Table 4 above, DPHA is a mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate (trade name: Aronix M-402, manufactured by Toagosei Co., Ltd.);
RD200 is a methyl methacrylate / methacrylic acid / cyclohexyl maleimide (mass%: 61/14/25) copolymer, weight average molecular weight: 17,000, acid value: 90 (synthetic product);
EMK: 4,4'-bis (diethylamino) benzophenone (Tokyo Chemical Industry Reagent)
F-477 is a fluorine-based leveling agent (trade name: Megafax F-477, manufactured by DIC Corporation);
PGMEA indicates propylene glycol monomethyl ether acetate (Wako Pure Chemical Industries, Ltd.).
(3)感度の評価
 上記で調整した重合性組成物(A)を、スピンコーターを用いて、アルミニウム基板上に塗布した。塗布後、アルミニウム基板を90℃のクリーンオーブン中で2.5分間乾燥処理により溶媒を乾燥させ、厚さ1.5μmの均一な塗布膜を作製した。次いで、超高圧水銀灯を光源とするプロキシミティー露光機を用い、マスクパターンを介して10から1000mJ/cmの範囲で、段階露光を行った。露光後のアルミニウム基板を1.0質量%の炭酸ナトリウム水溶液に23℃で60秒間浸漬して、現像による未露光部の除去を行った。続いて純水にて30秒間洗浄を行い、パターン形状を得た。パターン形状が形成される最低露光量を「感度」として評価した。各(a)重合開始剤の評価結果を、表5に示す。
(3) Evaluation of sensitivity The polymerizable composition (A) prepared as described above was applied on an aluminum substrate using a spin coater. After application, the aluminum substrate was dried in a clean oven at 90 ° C. for 2.5 minutes to dry the solvent, thereby producing a uniform coating film having a thickness of 1.5 μm. Subsequently, stepwise exposure was performed in a range of 10 to 1000 mJ / cm 2 through a mask pattern using a proximity exposure machine using an ultrahigh pressure mercury lamp as a light source. The exposed aluminum substrate was immersed in a 1.0% by mass aqueous sodium carbonate solution at 23 ° C. for 60 seconds to remove unexposed portions by development. Subsequently, washing was performed with pure water for 30 seconds to obtain a pattern shape. The minimum exposure amount at which a pattern shape was formed was evaluated as “sensitivity”. Table 5 shows the evaluation results of each (a) polymerization initiator.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 ベンゾフェノン骨格の化合物R1に対して、表5の結果より、化合物23、化合物25、化合物26、化合物31、化合物32、化合物33、化合物35、化合物37、化合物38、化合物40、化合物41、化合物43、化合物44、化合物5、化合物19、及び化合物48の感度が高いことが明らかとなった。これらの化合物は波長365nmおよび波長313nmのモル吸光係数が高いため、感度が高いと推測される。また、化合物1に増感剤を併用することにより、感度が向上することが明らかとなった。化合物1の増感剤からのエネルギー移動効率が優れるため、感度が高いと推測される。 Based on the results in Table 5, for compound R1 having a benzophenone skeleton, compound 23, compound 25, compound 26, compound 31, compound 32, compound 33, compound 35, compound 37, compound 38, compound 40, compound 41, and compound 43 are obtained. Compound 44, Compound 5, Compound 19, and Compound 48 were found to have high sensitivity. Since these compounds have high molar extinction coefficients at a wavelength of 365 nm and a wavelength of 313 nm, it is assumed that the sensitivity is high. Moreover, it became clear that a sensitivity improves by using a sensitizer together with the compound 1. Since the energy transfer efficiency from the sensitizer of Compound 1 is excellent, it is presumed that the sensitivity is high.
<実施例35、比較例6>
<重合性組成物(D)の調整>
 表6に示す量の(b)ラジカル重合性化合物、硬化促進剤を混合撹拌し、(a)重合開始剤を添加してよく撹拌し、実施例29および比較例6の重合性組成物(B)を調整した。
<Example 35, Comparative Example 6>
<Adjustment of polymerizable composition (D)>
The amount of (b) radical polymerizable compound and curing accelerator shown in Table 6 were mixed and stirred, (a) the polymerization initiator was added and stirred well, and the polymerizable compositions of Example 29 and Comparative Example 6 (B ) Was adjusted.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 表6中、UV-3700Bは、ウレタンアクリレート(商品名:紫光UV-3700B、日本合成化学工業社製);
 IBOAは、イソボルニルアクリレート(東京化成工業試薬);
 THFAは、テトラヒドロフルフリルアクリレート(東京化成工業試薬);
 TMPTAは、トリメチロールプロパントリアクリレート(東京化成工業試薬);
 DMTは、N,N-ジメチルトルイジン(東京化成工業試薬);を示す。
In Table 6, UV-3700B is urethane acrylate (trade name: Purple light UV-3700B, manufactured by Nippon Synthetic Chemical Industry);
IBOA is isobornyl acrylate (Tokyo Chemical Industry Reagent);
THFA is tetrahydrofurfuryl acrylate (Tokyo Chemical Industry Reagent);
TMPTA is trimethylolpropane triacrylate (Tokyo Chemical Industry Reagent);
DMT indicates N, N-dimethyltoluidine (Tokyo Chemical Industry Reagent).
(4)デュアルキュア硬化特性の評価
 上記で調整した重合性組成物(D)を、厚さ100μmの易接着処理されたPETフィルム(商品名:コスモシャインA4300、東洋紡社製)に、アプリケーターにて50μmに塗布し、表面に黒色コーティングが施されたPETフィルム(波長365nmの透過率は0.1%未満)を被膜の半分の領域に設置した。そして、高圧水銀ランプが設置されたコンベア式UV照射装置を使用して100mJ/cmの照射を行った。次いで、送風定温恒温機内に静置し、90℃で90分の加熱を行った。
(4) Evaluation of dual cure curing characteristics The polymerizable composition (D) prepared as described above was applied to a PET film (trade name: Cosmo Shine A4300, manufactured by Toyobo Co., Ltd.) having a thickness of 100 μm by an applicator. A PET film (having a wavelength of 365 nm having a transmittance of less than 0.1%) applied to 50 μm and having a black coating on the surface was placed in a half region of the coating. And irradiation of 100 mJ / cm < 2 > was performed using the conveyor type | mold UV irradiation apparatus in which the high pressure mercury lamp was installed. Then, it left still in a ventilation constant temperature thermostat, and heated for 90 minutes at 90 degreeC.
 上記の加熱後、黒色コーティングが施されたPETフィルムを取り除いて硬化膜を露出させて、その硬化膜部分を減衰全反射赤外分光法(ATR-IR)にて硬化度(%)を測定した。その際、二重結合基の面内変角振動の吸収スペクトル(1410cm-1)および露光前後で変化のないカルボニル基の吸収スペクトル(1740cm-1)のピーク面積を用いて、以下の式に基づいて硬化率(硬化度)を算出した。その結果を表7に示す。
Figure JPOXMLDOC01-appb-M000021
After the above heating, the black film-coated PET film was removed to expose the cured film, and the cured film portion was measured for degree of cure (%) by attenuated total reflection infrared spectroscopy (ATR-IR). . At that time, using the peak area of the double bond plane absorption spectrum of bending vibration of the (1410 cm -1) and absorption spectra of the free carbonyl group of changes before and after exposure (1740 cm -1), based on the following equation The curing rate (curing degree) was calculated. The results are shown in Table 7.
Figure JPOXMLDOC01-appb-M000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 表7の結果より、本発明のトリアジンペルオキシド誘導体、および当該化合物を含む重合性組成物は光に対して優れた感度を有し、光硬化性と熱硬化性を有することを特長とすることが明らかである。 From the results shown in Table 7, the triazine peroxide derivative of the present invention and the polymerizable composition containing the compound have excellent sensitivity to light, and are characterized by having photocurability and thermosetting properties. it is obvious.
<実施例36~39、比較例7~8>
<重合性組成物(E)の調整>
 表8に示す量の(b)ラジカル重合性化合物、(c)アルカリ可溶性樹脂、その他の成分を混合撹拌し、(a)重合開始剤を添加してよく撹拌し、実施例36~39および比較例7~8の重合性組成物(E)を調整した。また、比較例のハロメチルトリアジン誘導体である化合物R3および化合物R4は東京化成試薬を使用した。
<Examples 36 to 39, Comparative Examples 7 to 8>
<Adjustment of polymerizable composition (E)>
The amounts of (b) radical polymerizable compound, (c) alkali-soluble resin and other components shown in Table 8 were mixed and stirred, (a) the polymerization initiator was added and stirred well, and Examples 36 to 39 and Comparative Examples The polymerizable compositions (E) of Examples 7 to 8 were prepared. In addition, as a compound R3 and a compound R4, which are halomethyltriazine derivatives of comparative examples, Tokyo Kasei Reagent was used.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
(5)色相(b値)の評価
 上記で調整した重合性組成物(E)を、スピンコーターを用いて、ガラス基板上に塗布した。塗布後、ガラス基板を90℃のクリーンオーブン中で2.5分間乾燥処理により溶媒を乾燥させ、厚さ1.5μmの均一な塗布膜を作製した。そして、高圧水銀ランプが設置されたコンベア式UV照射装置を使用して300mJ/cmの照射を行い、試験片を作製した。得られた試験片の硬化度を測定した結果、すべての試験片において硬化度は90%以上であった。得られた試験片について、分光測色計(CM-3500d、ミノルタカメラ製)を用いてL,a,b表色系の値をJIS-Z-8722に従って、透過法にて測定した。bの値を黄色度の指標として評価し、bが小さいほど黄色度が低い。その結果を表9に示す。
(5) Evaluation of hue (b * value) The polymerizable composition (E) prepared above was applied onto a glass substrate using a spin coater. After coating, the glass substrate was dried in a clean oven at 90 ° C. for 2.5 minutes to dry the solvent, thereby preparing a uniform coating film having a thickness of 1.5 μm. And 300 mJ / cm < 2 > was irradiated using the conveyor type UV irradiation apparatus in which the high pressure mercury lamp was installed, and the test piece was produced. As a result of measuring the degree of cure of the obtained test pieces, the degree of cure of all the test pieces was 90% or more. About the obtained test piece, the value of L * , a * , b * color system was measured by the transmission method according to JIS-Z-8722 using a spectrocolorimeter (CM-3500d, manufactured by Minolta Camera). . b * of the value evaluated as an indicator of yellowness, low yellowness index as b * is small. The results are shown in Table 9.
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
 表9の結果より、本発明のトリアジンペルオキシド誘導体を含む重合性組成物から形成される硬化膜は黄色度が低いことを特長とすることが明らかである。 From the results in Table 9, it is clear that the cured film formed from the polymerizable composition containing the triazine peroxide derivative of the present invention is characterized by low yellowness.

Claims (7)

  1.  一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、RおよびRは独立してメチル基またはエチル基、Rは炭素数1~5の脂肪族炭化水素基、またはアルキル基を有してもよい炭素数6~9の芳香族炭化水素基を表し、nは0から2の整数を表し、Xは一般式(2):Ar、Ar、Ar、またはArで表されるアリール基である。)
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、mは0から3の整数を表し、Rは、独立した置換基であって、炭素数1~18のアルキル基、一般式(3):R-Y-で表される置換基、ニトロ基、またはシアノ基を表し、前記Yは、酸素原子または硫黄原子を表し、前記Rは、炭素骨格中に、エーテル結合、チオエーテル結合、および、末端に水酸基のいずれか1つ以上を有していてもよい炭素数1~18の炭化水素基、アルキル基を有してもよい炭素数6~9の芳香族炭化水素基、または炭素数1~8のアシル基を表す。あるいは、Rは隣接する2つの前記一般式(3):R-Y-により5~6員環を形成する炭化水素基を表す。)で表されることを特徴とするトリアジンペルオキシド誘導体。
    General formula (1):
    Figure JPOXMLDOC01-appb-C000001
    (In the formula (1), R 1 and R 2 are each independently a methyl group or an ethyl group, R 3 is an aliphatic hydrocarbon group having 1 to 5 carbon atoms, or an optionally substituted alkyl group having 6 to 6 carbon atoms. 9 represents an aromatic hydrocarbon group of 9, n represents an integer of 0 to 2, and X is an aryl group represented by the general formula (2): Ar 1 , Ar 2 , Ar 3 , or Ar 4 .
    Figure JPOXMLDOC01-appb-C000002
    (In the formula (2), m represents an integer of 0 to 3, R 4 is an independent substituent, an alkyl group having 1 to 18 carbon atoms, represented by the general formula (3): R 5 —Y— Represents a substituent, a nitro group, or a cyano group, and Y represents an oxygen atom or a sulfur atom, and R 5 represents any of an ether bond, a thioether bond, and a hydroxyl group at the terminal in the carbon skeleton. Or a hydrocarbon group having 1 to 18 carbon atoms which may have one or more, an aromatic hydrocarbon group having 6 to 9 carbon atoms which may have an alkyl group, or an acyl group having 1 to 8 carbon atoms Or R 4 is a triazine represented by the above-mentioned two general formulas (3): a hydrocarbon group which forms a 5- to 6-membered ring by R 5 —Y—. Peroxide derivatives.
  2.  前記一般式(2)中、Rは、独立した置換基であって、炭素数1から8のアルキル基、または一般式(3):R-Y-で表される置換基を表し、前記Yは、酸素原子を表し、前記Rは、炭素骨格中に、エーテル結合、および、末端に水酸基のいずれか1つ以上を有していてもよい炭素数1~8の炭化水素基、またはアルキル基を有してもよい炭素数6~9の芳香族炭化水素基を表し、あるいは、Rは隣接する2つの前記一般式(3):R-Y-により5~6員環を形成する炭化水素基を表すことを特徴とする請求項1記載のトリアジンペルオキシド誘導体。 In the general formula (2), R 4 is an independent substituent and represents an alkyl group having 1 to 8 carbon atoms, or a substituent represented by the general formula (3): R 5 —Y—, Y represents an oxygen atom, and R 5 represents a hydrocarbon group having 1 to 8 carbon atoms which may have any one or more of an ether bond and a hydroxyl group at the terminal in the carbon skeleton, Or an aromatic hydrocarbon group having 6 to 9 carbon atoms which may have an alkyl group, or R 4 is a 5- to 6-membered ring by two adjacent general formulas (3): R 5 —Y— The triazine peroxide derivative according to claim 1, which represents a hydrocarbon group which forms
  3.  請求項1または請求項2記載のトリアジンペルオキシド誘導体を含む(a)重合開始剤、および(b)ラジカル重合性化合物を含有することを特徴とする重合性組成物。 A polymerizable composition comprising (a) a polymerization initiator containing the triazine peroxide derivative according to claim 1 or 2, and (b) a radical polymerizable compound.
  4.  さらに(c)アルカリ可溶性樹脂を含有することを特徴とする請求項3記載の重合性組成物。 The polymerizable composition according to claim 3, further comprising (c) an alkali-soluble resin.
  5.  請求項3または請求項4記載の重合性組成物から形成されることを特徴とする硬化物。 A cured product formed from the polymerizable composition according to claim 3 or 4.
  6.  前記重合性組成物を活性エネルギー線で照射する工程を含むことを特徴とする請求項5記載の硬化物の製造方法。 The method for producing a cured product according to claim 5, comprising a step of irradiating the polymerizable composition with active energy rays.
  7.  前記活性エネルギー線で照射する工程の後、さらに、加熱する工程を含むことを特徴とする請求項6記載の硬化物の製造方法。 The method for producing a cured product according to claim 6, further comprising a heating step after the step of irradiating with the active energy ray.
PCT/JP2018/018484 2017-06-01 2018-05-14 Triazine peroxide derivative and polymerizable composition containing said compound WO2018221177A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197034707A KR102542689B1 (en) 2017-06-01 2018-05-14 Triazine peroxide derivative, polymerizable composition containing the compound
JP2019522081A JP7021668B2 (en) 2017-06-01 2018-05-14 Triazine peroxide derivative, a polymerizable composition containing the compound
CN201880033759.6A CN110662738B (en) 2017-06-01 2018-05-14 Triazine peroxide derivative and polymerizable composition containing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-109456 2017-06-01
JP2017109456 2017-06-01

Publications (1)

Publication Number Publication Date
WO2018221177A1 true WO2018221177A1 (en) 2018-12-06

Family

ID=64456220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/018484 WO2018221177A1 (en) 2017-06-01 2018-05-14 Triazine peroxide derivative and polymerizable composition containing said compound

Country Status (5)

Country Link
JP (1) JP7021668B2 (en)
KR (1) KR102542689B1 (en)
CN (1) CN110662738B (en)
TW (1) TWI762648B (en)
WO (1) WO2018221177A1 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019172919A (en) * 2018-03-29 2019-10-10 日油株式会社 Adhesive composition and pressure sensitive adhesive sheet
JP2020094196A (en) * 2018-11-29 2020-06-18 日油株式会社 Method of producing cured product
WO2022065006A1 (en) 2020-09-28 2022-03-31 富士フイルム株式会社 Laminate manufacturing method, antenna-in package manufacturing method, laminate, and composition
WO2022130773A1 (en) 2020-12-17 2022-06-23 富士フイルム株式会社 Composition, film, optical filter, solid-state imaging element, image display device, and infrared sensor
WO2022131191A1 (en) 2020-12-16 2022-06-23 富士フイルム株式会社 Composition, membrane, optical filter, solid image pickup element, image display apparatus, and infrared ray sensor
WO2022196599A1 (en) 2021-03-19 2022-09-22 富士フイルム株式会社 Film and photosensor
WO2022202647A1 (en) 2021-03-22 2022-09-29 富士フイルム株式会社 Negative photosensitive resin composition, cured product, laminate, method for producing cured product, and semiconductor device
WO2023032545A1 (en) 2021-08-31 2023-03-09 富士フイルム株式会社 Cured product production method, laminate production method, semiconductor device manufacturing method, and processing liquid
CN115851199A (en) * 2022-11-18 2023-03-28 深圳市图特美高分子材料有限公司 Preparation method of novel flame retardant modified epoxy resin adhesive film
WO2023054225A1 (en) * 2021-09-28 2023-04-06 日油株式会社 Triazine peroxide derivative and production method thereof, polymerizable composition, and cured product and production method thereof
WO2023054142A1 (en) 2021-09-29 2023-04-06 富士フイルム株式会社 Composition, resin, film and optical sensor
WO2023120037A1 (en) 2021-12-23 2023-06-29 富士フイルム株式会社 Joined body production method, joined body, laminate production method, laminate, device production method, device, and composition for forming polyimide-containing precursor part
WO2023162687A1 (en) 2022-02-24 2023-08-31 富士フイルム株式会社 Resin composition, cured article, laminate, method for producing cured article, method for producing laminate, method for producing semiconductor device, and semiconductor device
WO2023190064A1 (en) 2022-03-29 2023-10-05 富士フイルム株式会社 Resin composition, cured product, laminate, method for producing cured product, method for producing laminate, method for producing semiconductor device, and semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5474887A (en) * 1977-11-29 1979-06-15 Fuji Photo Film Co Ltd Photo-polymerizable composition
JPS6310769A (en) * 1986-06-11 1988-01-18 アクゾ・ナ−ムロ−ゼ・フェンノ−トシャップ Unsaturated peroxide
JPH0845604A (en) * 1994-08-02 1996-02-16 Yazaki Corp Waterproof seal part for connector

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59197401A (en) * 1983-04-26 1984-11-09 Nippon Oil & Fats Co Ltd Photopolymerization initiator
JP4213792B2 (en) 1998-09-24 2009-01-21 日東電工株式会社 Thermosetting pressure-sensitive adhesive and its adhesive sheets
DE102010026973A1 (en) * 2010-07-13 2012-01-19 Clariant International Ltd. Flame retardant stabilizer combination for thermoplastic polymers
DE102010049968A1 (en) * 2010-10-28 2012-05-03 Clariant International Ltd. Flame-resistant polyester compounds
DE102011011928A1 (en) * 2011-02-22 2012-08-23 Clariant International Ltd. Flame retardant stabilizer combination for thermoplastic polymers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5474887A (en) * 1977-11-29 1979-06-15 Fuji Photo Film Co Ltd Photo-polymerizable composition
JPS6310769A (en) * 1986-06-11 1988-01-18 アクゾ・ナ−ムロ−ゼ・フェンノ−トシャップ Unsaturated peroxide
JPH0845604A (en) * 1994-08-02 1996-02-16 Yazaki Corp Waterproof seal part for connector

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019172919A (en) * 2018-03-29 2019-10-10 日油株式会社 Adhesive composition and pressure sensitive adhesive sheet
JP2020094196A (en) * 2018-11-29 2020-06-18 日油株式会社 Method of producing cured product
JP7300108B2 (en) 2018-11-29 2023-06-29 日油株式会社 Cured product manufacturing method
WO2022065006A1 (en) 2020-09-28 2022-03-31 富士フイルム株式会社 Laminate manufacturing method, antenna-in package manufacturing method, laminate, and composition
WO2022131191A1 (en) 2020-12-16 2022-06-23 富士フイルム株式会社 Composition, membrane, optical filter, solid image pickup element, image display apparatus, and infrared ray sensor
WO2022130773A1 (en) 2020-12-17 2022-06-23 富士フイルム株式会社 Composition, film, optical filter, solid-state imaging element, image display device, and infrared sensor
WO2022196599A1 (en) 2021-03-19 2022-09-22 富士フイルム株式会社 Film and photosensor
WO2022202647A1 (en) 2021-03-22 2022-09-29 富士フイルム株式会社 Negative photosensitive resin composition, cured product, laminate, method for producing cured product, and semiconductor device
WO2023032545A1 (en) 2021-08-31 2023-03-09 富士フイルム株式会社 Cured product production method, laminate production method, semiconductor device manufacturing method, and processing liquid
KR20240068585A (en) 2021-09-28 2024-05-17 니치유 가부시키가이샤 Triazine peroxide derivative and method for producing the same, polymerizable composition, and cured product and method for producing the same
WO2023054225A1 (en) * 2021-09-28 2023-04-06 日油株式会社 Triazine peroxide derivative and production method thereof, polymerizable composition, and cured product and production method thereof
WO2023054142A1 (en) 2021-09-29 2023-04-06 富士フイルム株式会社 Composition, resin, film and optical sensor
WO2023120037A1 (en) 2021-12-23 2023-06-29 富士フイルム株式会社 Joined body production method, joined body, laminate production method, laminate, device production method, device, and composition for forming polyimide-containing precursor part
WO2023162687A1 (en) 2022-02-24 2023-08-31 富士フイルム株式会社 Resin composition, cured article, laminate, method for producing cured article, method for producing laminate, method for producing semiconductor device, and semiconductor device
WO2023190064A1 (en) 2022-03-29 2023-10-05 富士フイルム株式会社 Resin composition, cured product, laminate, method for producing cured product, method for producing laminate, method for producing semiconductor device, and semiconductor device
CN115851199B (en) * 2022-11-18 2024-04-05 深圳市图特美高分子材料有限公司 Preparation method of novel flame retardant modified epoxy resin adhesive film
CN115851199A (en) * 2022-11-18 2023-03-28 深圳市图特美高分子材料有限公司 Preparation method of novel flame retardant modified epoxy resin adhesive film

Also Published As

Publication number Publication date
CN110662738A (en) 2020-01-07
KR20200015496A (en) 2020-02-12
KR102542689B1 (en) 2023-06-12
TWI762648B (en) 2022-05-01
JPWO2018221177A1 (en) 2020-04-02
CN110662738B (en) 2023-06-06
TW201902881A (en) 2019-01-16
JP7021668B2 (en) 2022-02-17

Similar Documents

Publication Publication Date Title
JP7021668B2 (en) Triazine peroxide derivative, a polymerizable composition containing the compound
JP6923130B2 (en) A benzophenone derivative having a peroxyester group, a polymerizable composition containing the compound, a cured product thereof, and a method for producing the cured product.
JP6995309B2 (en) A polymerizable composition containing a thioxanthone derivative having a peroxyester group, a cured product thereof, and a method for producing the cured product.
JP7031605B2 (en) Peroxycinnamate derivative, polymerizable composition containing the compound
JP6970922B2 (en) A peroxycinnamate derivative, a polymerizable composition containing the compound and a cured product thereof, and a method for producing the cured product.
JP7421169B2 (en) Dialkyl peroxide having a thioxanthone skeleton, polymerizable composition containing the compound
JP7371554B2 (en) Bisoxime ester photopolymerization initiator, polymerizable composition, cured product and method for producing the same
JP7382010B2 (en) Polymerization initiator mixture, polymerizable composition, cured product, and method for producing cured product
JP7385830B2 (en) Method for manufacturing cured product
JP7300108B2 (en) Cured product manufacturing method
WO2023054225A1 (en) Triazine peroxide derivative and production method thereof, polymerizable composition, and cured product and production method thereof
JP2022069041A (en) Polymerization initiator mixture, polymerizable composition, cured object and production method of cured object
KR101991838B1 (en) Novel 1,3-benzodiazole beta-oxime ester compound and composition comprising the same
TW202344502A (en) Polymerization initiator, polymerizable composition, cured product and hydroperoxide having thioxanthone skeleton
JP2024093292A (en) Method for producing cured product
JP2024093323A (en) Method for producing cured product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18809781

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019522081

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197034707

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18809781

Country of ref document: EP

Kind code of ref document: A1