WO2023054178A1 - Gas barrier film, method for producing same, polarizing plate with gas barrier layer, image display device and solar cell - Google Patents

Gas barrier film, method for producing same, polarizing plate with gas barrier layer, image display device and solar cell Download PDF

Info

Publication number
WO2023054178A1
WO2023054178A1 PCT/JP2022/035427 JP2022035427W WO2023054178A1 WO 2023054178 A1 WO2023054178 A1 WO 2023054178A1 JP 2022035427 W JP2022035427 W JP 2022035427W WO 2023054178 A1 WO2023054178 A1 WO 2023054178A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas barrier
layer
film
barrier film
silicon oxynitride
Prior art date
Application number
PCT/JP2022/035427
Other languages
French (fr)
Japanese (ja)
Inventor
恭太郎 山田
一裕 中島
帆奈美 伊藤
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2023054178A1 publication Critical patent/WO2023054178A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/42Silicides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00

Definitions

  • the present invention relates to a gas barrier film, a method for producing the same, a polarizing plate with a gas barrier layer, an image display device, and a solar cell.
  • resin film substrates are being used instead of glass substrates. Since resin films have higher permeability to gases such as water vapor and oxygen than glass, it has been proposed to use a gas barrier film having a gas barrier layer for the purpose of suppressing deterioration of display elements caused by these gases.
  • Organic EL elements may have defects called “dark spots” due to the infiltration of even a small amount of moisture, and high gas barrier properties (water vapor blocking properties) are required.
  • Silicon nitride (SiN) and silicon oxynitride (SiON) are known as materials having excellent gas barrier properties.
  • Patent Document 1 proposes a gas barrier film including a silicon nitride layer and a silicon oxide layer as a gas barrier film with excellent transparency and flexibility.
  • Patent Document 1 has room for improvement in terms of increasing the transparency and gas barrier properties of the gas barrier film.
  • the present invention has been made in view of the above problems, and aims to provide a gas barrier film having excellent transparency and gas barrier properties, a method for producing the same, a polarizing plate with a gas barrier layer using the gas barrier film, an image display device, and a method for producing the same. It is to provide solar cells.
  • the present invention includes the following aspects.
  • a gas barrier film comprising a transparent film substrate and a gas barrier layer disposed directly or indirectly on at least one main surface of the transparent film substrate,
  • the gas barrier layer has a silicon oxynitride layer containing oxygen, nitrogen and silicon as constituent elements
  • the composition ratio O/N is greater than 1.0 when 1/10 of the total etching time has elapsed, and the composition ratio O/N is less than 2.0 when 1/2 of the total etching time has elapsed, and
  • the composition ratio O/N when 9/10 has passed is greater than 1.0,
  • the composition ratio O/N when 1/10 of the total etching time has passed and the composition ratio O/N when 9/10 of the total etching time has passed are both 1/1 of the total etching time.
  • composition ratio O/N when 1/10 of the total etching time has passed and the composition ratio O/N when 9/10 of the total etching time has passed are both greater than 2.0.
  • composition ratio O/N when 1/10 of the total etching time has elapsed and the composition ratio O/N when 9/10 of the total etching time has elapsed are both greater than 10.0.
  • a polarizing plate with a gas barrier layer comprising the gas barrier film according to any one of [1] to [9] above and a polarizer.
  • An image display device comprising the gas barrier film according to any one of [1] to [9] and an image display cell.
  • An image display device comprising the polarizing plate with a gas barrier layer according to [11] and an image display cell.
  • a solar cell comprising the gas barrier film according to any one of [1] to [9] and a solar cell.
  • the present invention it is possible to provide a gas barrier film with excellent transparency and gas barrier properties, a method for producing the same, and a polarizing plate with a gas barrier layer, an image display device, and a solar cell using the gas barrier film.
  • FIG. 1 is a cross-sectional view showing an example of a gas barrier film according to the present invention
  • FIG. FIG. 4 is a cross-sectional view showing another example of the gas barrier film according to the present invention
  • FIG. 4 is a cross-sectional view showing another example of the gas barrier film according to the present invention
  • FIG. 4 is a cross-sectional view showing another example of the gas barrier film according to the present invention
  • FIG. 4 is a cross-sectional view showing another example of the gas barrier film according to the present invention
  • 1 is a configuration diagram showing an example of a film forming apparatus used in a method for producing a gas barrier film according to the present invention
  • FIG. 4 is a graph showing an example of composition analysis results in the thickness direction of the silicon oxynitride layer of the gas barrier film according to the present invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS It is sectional drawing which shows an example of the polarizing plate with a gas barrier layer which concerns on this invention. It is a sectional view showing an example of an image display device concerning the present invention.
  • the number average primary particle diameter of the particles is the circle of 100 primary particles measured using a scanning electron microscope and image processing software (e.g., "ImageJ” manufactured by the National Institutes of Health), unless otherwise specified. It is a number average value of equivalent diameters (Heywood diameter: diameter of a circle having the same area as the projected area of primary particles).
  • the "principal surface" of a layered product point to the face
  • the numerical value for the "thickness" of the layered material is the "average thickness".
  • the average thickness of the layered material is obtained by observing a cross section of the layered material cut in the thickness direction with an electron microscope, randomly selecting 10 measurement points from the cross-sectional image, and measuring the thickness of the selected 10 measurement points. Arithmetic mean of 10 measurements obtained.
  • Refractive index refers to the refractive index for light with a wavelength of 550 nm in an atmosphere at a temperature of 23°C.
  • the flow rate unit "sccm (Standard Cubic Centimeter per Minute)" is the flow rate unit “mL/min” under standard conditions (temperature: 0°C, pressure: 101.3 kPa).
  • system may be added after the name of the compound to generically refer to the compound and its derivatives.
  • polymer name is expressed by adding "system” after the compound name, it means that the repeating unit of the polymer is derived from the compound or its derivative.
  • Acryl and methacryl may be collectively referred to as "(meth)acryl”.
  • a gas barrier film according to a first embodiment of the present invention has a transparent film substrate and a gas barrier layer directly or indirectly arranged on at least one main surface of the transparent film substrate.
  • the gas barrier layer has a silicon oxynitride layer containing oxygen, nitrogen and silicon as constituent elements. While etching the silicon oxynitride layer under constant conditions using X-ray photoelectron spectroscopy, the composition ratio O/N of oxygen and nitrogen in the thickness direction of the silicon oxynitride layer was measured.
  • the composition ratio O/N is greater than 1.0 when 10 has passed, the composition ratio O/N is less than 2.0 when 1/2 of the total etching time has passed, and 9/10 of the total etching time is The composition ratio O/N is greater than 1.0 over time.
  • the composition ratio O/N when 1/10 of the total etching time has elapsed and the composition ratio O/N when 9/10 of the total etching time has elapsed are both the same when 1/2 of the total etching time has elapsed. is greater than the composition ratio O/N of
  • the method of analyzing the elemental composition in the thickness direction of the silicon oxynitride layer while etching the silicon oxynitride layer under certain conditions using X-ray photoelectron spectroscopy is the same method as in the examples described later or a method based thereon.
  • the phrase "while etching under constant conditions" means “while etching under the same conditions without changing the etching conditions”.
  • the etching conditions for the silicon oxynitride layer the etching conditions that are usually used for composition analysis in the thickness direction of the silicon oxynitride layer can be used.
  • composition ratio O/N means a value obtained by dividing the number of oxygen atoms by the number of nitrogen atoms (number of oxygen atoms/number of nitrogen atoms) at the measurement location of the silicon oxynitride layer.
  • total etching time means the time from the start to the end of etching the silicon oxynitride layer.
  • X-ray photoelectron spectroscopy may be referred to as "XPS".
  • XPS X-ray photoelectron spectroscopy
  • the composition ratio O/N when 1/10 of the total etching time has passed may be described as "1/10 ⁇ O/N”.
  • the composition ratio O/N when 1/2 of the total etching time has passed may be described as "1/2-O/N”.
  • the composition ratio O/N when 9/10 of the total etching time has elapsed is sometimes described as "9/10-O/N".
  • a gas barrier film with excellent transparency and gas barrier properties can be provided. The reason is presumed as follows.
  • the silicon oxynitride layer has a lower refractive index as the oxygen ratio in the layer increases, approaching the refractive index of resins and adhesives.
  • the surface layers on both sides of the silicon oxynitride layer have a relatively high oxygen ratio. Therefore, in the first embodiment, the difference in refractive index between the layer in contact with the silicon oxynitride layer (more specifically, the transparent film substrate, the adhesive layer, etc.) and the silicon oxynitride layer tends to decrease. be. As a result, the gas barrier film according to the first embodiment tends to have high light transmittance. Therefore, according to the first embodiment, a gas barrier film having excellent transparency can be obtained.
  • the silicon oxynitride layer tends to have higher gas barrier properties as the nitrogen ratio in the layer increases.
  • the ratio of nitrogen in the central portion in the thickness direction of the silicon oxynitride layer is relatively high. Therefore, in the first embodiment, there is a tendency for the gas barrier property of the central portion in the thickness direction of the silicon oxynitride layer to be high. Therefore, according to the first embodiment, a gas barrier film having excellent gas barrier properties can be obtained.
  • both 1/10-O/N and 9/10-O/N are preferably greater than 2.0, and 2.5. It is more preferably 3.0 or more, and more preferably 3.0 or more. Further, in the first embodiment, in order to obtain a gas barrier film with more excellent gas barrier properties, 1/2-O/N is preferably less than 1.0, more preferably 0.9 or less, and 0 0.8 or less is more preferable. Therefore, in the first embodiment, it is preferable that both 1/10-O/N and 9/10-O/N are larger than 2.0 or 1/2-O/N is smaller than 1.0.
  • 1/10-O/N and 9/10-O/N are both 2.5 or more, or 1/2-O/N is more preferably 0.9 or less, 1/10 More preferably, both -O/N and 9/10-O/N are 3.0 or more, or 1/2-O/N is 0.8 or less.
  • both 1/10-O/N and 9/10-O/N are preferably less than 10.0 in order to obtain a gas barrier film with more excellent gas barrier properties, and 9.0 It is more preferably 8.0 or less, more preferably 8.0 or less.
  • 1/2-O/N is preferably greater than 0.1, more preferably 0.2 or more, and more preferably 0.3. It is more preferable that it is above.
  • both 1/10-O/N and 9/10-O/N are greater than 2.0 and 1/2-O/ N is preferably greater than 0.5, 1/10-O/N and 9/10-O/N are both 2.5 or more, and 1/2-O/N is 1.0 or more More preferably, 1/10-O/N and 9/10-O/N are both 3.0 or more, and 1/2-O/N is 1.2 or more. .
  • 1/2-O/N is less than 1.0, and 1/10-O/N and 9/10-O/N are Both are preferably less than 5.0, 1/2-O/N is 0.9 or less, and 1/10-O/N and 9/10-O/N are both 4.0 or less More preferably, 1/2-O/N is 0.8 or less, and 1/10-O/N and 9/10-O/N are both 3.0 or less. .
  • FIG. 1 is a cross-sectional view showing an example of the gas barrier film according to the first embodiment.
  • a gas barrier film 10 shown in FIG. 1 is a laminate having a transparent film substrate 11 and a gas barrier layer 12 directly disposed on one main surface 11 a of the transparent film substrate 11 .
  • the gas barrier layer 12 has a single layer structure consisting of a silicon oxynitride layer 13 containing oxygen, nitrogen and silicon as constituent elements.
  • composition ratio O/N of oxygen and nitrogen in the thickness direction of the silicon oxynitride layer 13 was measured while etching the silicon oxynitride layer 13 under constant conditions using XPS, it was found to be 1/10-O/ N is greater than 1.0, 1/2-O/N is less than 2.0, and 9/10-O/N is greater than 1.0. Both 1/10-O/N and 9/10-O/N are greater than 1/2-O/N.
  • the configuration of the gas barrier film according to the first embodiment is not limited to the configuration of the gas barrier film 10 shown in FIG.
  • the gas barrier film according to the first embodiment may have a laminated structure in which the gas barrier layer is composed of a plurality of thin films, like the gas barrier film 20 shown in FIG.
  • the gas barrier layer 21 has the silicon oxynitride layer 13 and the low refractive index layer 22 disposed on the main surface 13a of the silicon oxynitride layer 13 opposite to the transparent film substrate 11 side.
  • the low refractive index layer 22 is a layer having a lower refractive index than the silicon oxynitride layer 13 .
  • the low refractive index layer 22 enhances gas barrier properties together with the silicon oxynitride layer 13, functions as an optical interference layer, and has the effect of reducing light reflection by the gas barrier layer 21 and increasing light transmittance.
  • the gas barrier film according to the first embodiment may have low refractive index layers on both main surfaces of the silicon oxynitride layer.
  • the gas barrier layer may include two or more silicon oxynitride layers, for example, two silicon oxynitride layers and three low refractive index layers. Alternating laminates may also be used.
  • the gas barrier layer may have a laminate structure of four layers or a laminate structure of six or more layers.
  • the gas barrier layer having a four-layer structure may be an alternate laminate in which silicon oxynitride layer/low refractive index layer/silicon oxynitride layer/low refractive index layer are arranged in this order from the transparent film substrate side.
  • the outermost layer is preferably a low refractive index layer.
  • the gas barrier layer which consists of a total of four or more layers, is interposed between the silicon oxynitride layer and the low refractive index layer.
  • a refractive index layer may be included.
  • the gas barrier layer may be an alternately laminated body composed of a total of seven layers, that is, three silicon oxynitride layers and four low refractive index layers, or may be an alternately laminated body composed of eight or more layers.
  • the gas barrier layer may be indirectly arranged on the main surface of the transparent film substrate.
  • the gas barrier film 30 shown in FIG. 3 has a hard coat layer 31 arranged between the transparent film substrate 11 and the gas barrier layer 12 (silicon oxynitride layer 13).
  • the gas barrier layer 12 is indirectly arranged on the main surface of the transparent film substrate 11 .
  • the hard coat layer 31 is a layer that enhances mechanical properties such as hardness and elastic modulus of the gas barrier film 30 . If the main surface of the hard coat layer 31 on the side of the gas barrier layer 12 is smooth, the gas barrier property of the gas barrier layer 12 formed thereon is enhanced, and the water vapor transmission rate tends to decrease.
  • the arithmetic mean height Sa of the main surface of the hard coat layer 31 on the side of the gas barrier layer 12 may be 1.5 nm or less or 1.0 nm or less.
  • the arithmetic mean height Sa is calculated according to ISO 25178 from the three-dimensional surface profile of the range of 1 ⁇ m ⁇ 1 ⁇ m measured by an atomic force microscope (AFM).
  • the hard coat layer 31 may contain particles with a number average primary particle diameter of less than 1.0 ⁇ m (hereinafter sometimes referred to as "nanoparticles").
  • nanoparticles particles with a number average primary particle diameter of less than 1.0 ⁇ m
  • the adhesion between the hard coat layer 31 and the gas barrier layer 12 tends to improve.
  • the adhesion between the hard coat layer 31 and the gas barrier layer 12 tends to be higher.
  • the gas barrier film according to the first embodiment may be provided with gas barrier layers on both main surfaces of the transparent film substrate in order to further improve gas barrier properties.
  • a gas barrier layer having a laminated structure may be provided on each of both main surfaces of the transparent film substrate.
  • the configuration of the gas barrier layer 41 may be the same as or different from the configuration of the gas barrier layer 12 . That is, the gas barrier layer 41 may or may have a silicon oxynitride layer with 1/10-O/N, 1/2-O/N, and 9/10-O/N in the above specific ranges. It doesn't have to be. In order to obtain a gas barrier film having excellent transparency while further improving gas barrier properties, the gas barrier layer 41 has a silicon oxynitride layer, and the silicon oxynitride layer of the gas barrier layer 41 has a ratio of 1/10-O/N. and 9/10-O/N are both greater than 1.0, 1/2-O/N is less than 2.0, and 1/10-O/N and 9/10-O/N are both 1 /2-O/N is preferred.
  • the gas barrier film according to the first embodiment may further have an adhesive layer.
  • the gas barrier film 50 shown in FIG. 5 has an adhesive layer 51 in addition to the configuration of the gas barrier film 40 .
  • an adhesive layer 51 is arranged on the main surface 13a of the gas barrier layer 12 (silicon oxynitride layer 13) on the side opposite to the transparent film substrate 11 side.
  • the silicon oxynitride layer 13 and the adhesive layer 51 are in contact with each other like the gas barrier film 50 shown in FIG.
  • a release liner may be temporarily attached to the main surface of the adhesive layer 51 opposite to the silicon oxynitride layer 13 side.
  • the release liner protects the surface of the pressure-sensitive adhesive layer 51, for example, until the gas barrier film 50 is attached to the polarizing plate 101 (see FIG. 8) described below.
  • Plastic films made of acrylic, polyolefin, cyclic polyolefin, polyester or the like are preferably used as the constituent material of the release liner.
  • the thickness of the release liner is, for example, 5 ⁇ m or more and 200 ⁇ m or less.
  • the surface of the release liner is preferably subjected to release treatment. Examples of release agent materials used in release treatment include silicone-based materials, fluorine-based materials, long-chain alkyl-based materials, fatty acid amide-based materials, and the like.
  • the transparent film substrate 11 is a layer that serves as a base for forming the gas barrier layer.
  • the transparent film substrate 11 may have flexibility.
  • the gas barrier layer can be formed by a roll-to-roll method, so the productivity of the gas barrier layer can be improved.
  • a gas barrier film in which a gas barrier layer is provided on a flexible film also has the advantage of being applicable to flexible devices and foldable devices.
  • the visible light transmittance of the transparent film substrate 11 is preferably 80% or higher, more preferably 90% or higher.
  • the thickness of the transparent film substrate 11 is not particularly limited, but from the viewpoint of strength, handleability, etc., it is preferably 5 ⁇ m or more and 200 ⁇ m or less, more preferably 10 ⁇ m or more and 150 ⁇ m or less, and 30 ⁇ m or more and 100 ⁇ m or less. is more preferred.
  • resin material that constitutes the transparent film substrate 11 a resin material that is excellent in transparency, mechanical strength and thermal stability is preferable.
  • resin materials include cellulose resins such as triacetyl cellulose, polyester resins, polyethersulfone resins, polysulfone resins, polycarbonate resins, polyamide resins, polyimide resins, polyolefin resins, (meth) Examples include acrylic resins, cyclic polyolefin resins (more specifically, norbornene resins, etc.), polyarylate resins, polystyrene resins, polyvinyl alcohol resins, and mixtures thereof.
  • Corona treatment, plasma treatment, flame treatment, ozone treatment, glow treatment, saponification treatment, and coupling agent are applied to the main surface of the transparent film substrate 11 on which the gas barrier layer is formed, for the purpose of improving adhesion with the gas barrier layer.
  • Surface modification treatment such as treatment with may be applied.
  • the surface layer of the transparent film substrate 11 on which the gas barrier layer is formed may be a primer layer (not shown).
  • the primer layer When the surface layer on which the gas barrier layer is formed is the primer layer, the adhesion between the transparent film substrate 11 and the gas barrier layer tends to be high.
  • Examples of materials constituting the primer layer include metals (or semi-metals) such as silicon, nickel, chromium, tin, gold, silver, platinum, zinc, indium, titanium, tungsten, aluminum, zirconium, and palladium; alloys (or metalloids); oxides, fluorides, sulfides or nitrides of these metals (or metalloids);
  • the thickness of the primer layer is, for example, 1 nm or more and 20 nm or less, preferably 1 nm or more and 15 nm or less, and more preferably 1 nm or more and 10 nm or less.
  • the silicon oxynitride layer 13 is a layer mainly having a gas barrier function in the gas barrier layer, and is a layer made of a material containing silicon, oxygen and nitrogen as main constituent elements.
  • the silicon oxynitride layer 13 may contain a small amount of elements such as hydrogen, carbon, etc. taken in from the raw material at the time of film formation, the transparent film substrate 11 and the external environment.
  • the content of elements other than silicon, oxygen, and nitrogen is preferably 5 atomic % or less, more preferably 3 atomic % or less, and 1 atomic % or less. is more preferred.
  • the total content of silicon, oxygen and nitrogen is preferably 90 atomic % or more, more preferably 95 atomic % or more, and 97 atomic % or more. More preferably, it may be 99 atomic % or more, 99.5 atomic % or more, or 99.9 atomic % or more.
  • the composition of silicon oxynitride in the silicon oxynitride layer 13 is represented by SiO x N y .
  • SiO x N y 0 ⁇ x ⁇ 2 and 0 ⁇ y ⁇ 1.33.
  • x and y in SiO x N y are x and y of the composition ratio at the central portion in the thickness direction of the silicon oxynitride layer 13 (when 1/2 of the total etching time has elapsed). point to Therefore, the ratio x/y is synonymous with 1/2-O/N.
  • x in the general formula SiO x N y may be simply referred to as "x”.
  • y in the general formula SiO x N y may be simply described as "y”.
  • the silicon oxynitride in the silicon oxynitride layer 13 may have a stoichiometric composition or may be a non-stoichiometric composition lacking oxygen or nitrogen.
  • the value of (x/2+3y/4) is preferably 0.70 or more and 1.10 or less.
  • the upper limit of (x/2+3y/4) is 1, but it may show a value greater than 1 due to excessive intake of oxygen or nitrogen. If (x/2+3y/4) is 0.70 or more, transparency and gas barrier properties tend to be enhanced.
  • the value of (x/2+3y/4) is preferably 0.75 or more.
  • the refractive index of the silicon oxynitride layer 13 is generally 1.50 or more and 2.20 or less, preferably 1.55 or more and 2.00 or less, and may be 1.60 or more and 1.90 or less. It may be 1.85 or less, 1.80 or less, 1.75 or less, or 1.70 or less.
  • the silicon oxynitride layer 13 having a refractive index within this range can achieve both excellent gas barrier properties and transparency. Further, when the refractive index is 2.00 or less, there is a tendency for the light transmittance to be improved. The silicon oxynitride layer 13 tends to have a higher refractive index as the nitrogen ratio increases.
  • the density of the silicon oxynitride layer 13 is preferably 2.10 g/cm 3 or more. The higher the density of the silicon oxynitride layer 13, the higher the gas barrier properties tend to be. The silicon oxynitride layer 13 tends to have a higher density as the nitrogen ratio increases.
  • the thickness of the silicon oxynitride layer 13 is preferably 5 nm or more, more preferably 10 nm or more. In order to obtain a gas barrier film with superior transparency, the thickness of the silicon oxynitride layer 13 is preferably 150 nm or less, more preferably 100 nm or less. In order to obtain a gas barrier film with superior gas barrier properties and transparency, the thickness of the silicon oxynitride layer 13 is preferably 5 nm or more and 150 nm or less, more preferably 10 nm or more and 100 nm or less.
  • a method for forming the silicon oxynitride layer 13 is not particularly limited, and may be a dry coating method or a wet coating method.
  • a dry process such as a sputtering method, an ion plating method, a vacuum deposition method, or a chemical vapor deposition method (CVD method) is preferable because a film having a high film density and a high gas barrier property can be easily formed.
  • a CVD method is preferable, and a plasma CVD method is more preferable, because a film having small film stress and excellent bending resistance can be easily formed.
  • a film forming roll constitutes one or both electrodes of a pair of opposed electrodes, and a thin film is formed on the film when the film runs on the film forming roll. be.
  • two film-forming rolls constitute a pair of opposing electrodes, a thin film is formed on each of the film-forming rolls, so the film-forming speed can be doubled.
  • the expression "above” when explaining the film forming method by the CVD method has no relation to the direction in the CVD film forming apparatus, and has the same meaning as "in contact with”.
  • Examples of the silicon source (silicon source) for forming the silicon oxynitride layer 13 by the CVD method include silicon hydride (more specifically, silane, disilane, etc.) and silicon halide (more specifically, hexamethyldisilazane, hexamethyldisiloxane, 1,1,3,3-tetramethyldisiloxane, tetramethylsilane, vinyltrimethoxysilane, vinyltrimethylsilane, dimethyl Silicon such as dimethoxysilane, tetramethoxysilane, methyltrimethoxysilane, dimethyldiethoxysilane, trimethylmethoxysilane, tetraethoxysilane, diethyldiethoxysilane, methyldimethoxysilane, methyldiethoxysiloxane, monosilylamine, disilylamine, trisilylamine, etc. compound. Among these, trisilylamine is preferable because it has low
  • Nitrogen sources include nitrogen and ammonia.
  • Oxygen sources include oxygen, carbon monoxide, carbon dioxide, and the like. Nitrogen (nitrogen gas) is preferable as the nitrogen source, and oxygen (oxygen gas) is preferable as the oxygen source, from the viewpoint of reducing hydrogen and carbon taken into the film.
  • a silicon nitride film formed by a CVD method by introducing a nitrogen source together with trisilylamine as a silicon source has a large amount of hydrogen in the film, and a wave number of 2140 cm ⁇ 1 (range of 2120 cm ⁇ 1 to 2150 cm ⁇ 1 ).
  • a silicon oxynitride film formed by a CVD method by introducing nitrogen and oxygen together with trisilylamine as a silicon source shifts the infrared absorption peak to the high wave number side, and is 2160 cm ⁇ 1 to 2280 cm It exhibits an infrared absorption peak in the range of -1 or less, and exhibits transparency superior to that of silicon nitride films.
  • Oxygen has a strong bonding force with silicon, so it is presumed that the introduction of oxygen suppresses the uptake of hydrogen into the film, which is one of the reasons for the improvement in transparency.
  • the composition of the silicon oxynitride layer 13 can be appropriately adjusted.
  • the amount of oxygen to be introduced is set to 0.05 by volume with respect to the amount of nitrogen to be introduced. It is preferably 0.1 times or more and 5 times or less, more preferably 0.03 times or more and 2 times or less, further preferably 0.04 times or more and 1.5 times or less, and 0.04 times or more and 1 0 times or less, or 0.04 times or more and 0.5 times or less.
  • the amount of oxygen introduced is excessively small, the amount of oxygen introduced into the film tends to be small and the light transmittance of the film tends to decrease. If the amount of oxygen introduced is excessively large, the amount of nitrogen incorporated into the film tends to be small, resulting in insufficient gas barrier properties.
  • a gas other than the silicon source, the nitrogen source, and the oxygen source may be used as the introduced gas when forming the film by the CVD method.
  • a carrier gas may be used to vaporize the liquid and introduce it into the chamber (vacuum chamber).
  • a nitrogen source or an oxygen source may be mixed with a carrier gas and introduced into the vacuum chamber, or a discharge gas may be used to stabilize the plasma discharge.
  • Carrier gas and discharge gas include rare gases such as helium, argon, neon, and xenon, and hydrogen. A rare gas is preferable from the viewpoint of reducing the amount of hydrogen taken into the film and increasing the transparency.
  • the substrate temperature (temperature of the surface of the film-forming roll) is set, for example, within the range of -20°C or higher and 500°C or lower.
  • the substrate temperature (film substrate temperature) when forming a gas barrier layer (for example, silicon oxynitride layer 13) on a film substrate is preferably 150° C. or less from the viewpoint of the heat resistance of the film substrate.
  • the temperature is preferably 100° C. or lower, and more preferably 100° C. or lower.
  • the pressure in the film forming chamber (inside the vacuum chamber) is, for example, 0.001 Pa or more and 50 Pa or less.
  • An AC power supply for example, is used as the power supply for plasma generation.
  • the frequency of the power supply in roll-to-roll CVD film formation is generally in the range of 50 kHz to 500 kHz.
  • the applied power in roll-to-roll CVD film formation is generally 0.1 kW or more and 10 kW or less.
  • the density of the silicon oxynitride layer 13 formed by the CVD method is, for example, 2.10 g/cm 3 or more and 2.50 g/cm 3 or less, and 2.15 g/cm 3 or more and 2.45 g/cm 3 or less. It may be 20 g/cm 3 or more and 2.40 g/cm 3 or less, or 2.25 g/cm 3 or more and 2.35 g/cm 3 or less.
  • the material of the low refractive index layer 22 is not particularly limited as long as it has a lower refractive index than the silicon oxynitride layer 13, and may be an organic layer or an inorganic layer.
  • the inorganic material forming the low refractive index layer 22 include silicon oxide and magnesium fluoride.
  • the refractive index difference between the silicon oxynitride layer 13 and the low refractive index layer 22 is preferably 0.10 or more, and may be 0.13 or more or 0.15 or more.
  • the refractive index difference is generally 1.0 or less, and may be 0.5 or less, 0.4 or less, or 0.3 or less.
  • the refractive index of the low refractive index layer 22 may be 1.30 or more and 1.55 or less, or 1.40 or more and 1.52 or less.
  • the low refractive index layer 22 is preferably a silicon oxide layer.
  • the silicon oxide layer may contain a small amount of elements such as hydrogen, carbon, nitrogen, etc. taken in from raw materials during film formation, the transparent film substrate 11 and the external environment. If the silicon oxide layer contains nitrogen, the nitrogen content is preferably lower than that of the silicon oxynitride layer 13 . In the silicon oxide layer, the content of elements other than silicon and oxygen is preferably 5 atomic % or less.
  • a method for forming the low refractive index layer 22 is not particularly limited, and may be a dry coating method or a wet coating method.
  • the silicon oxynitride layer 13 is formed by the CVD method
  • the low refractive index layer 22 is also preferably formed by the CVD method from the viewpoint of productivity.
  • the silicon source and oxygen source for forming the silicon oxide layer (more specifically, the silicon oxide layer as the low refractive index layer 22) by the CVD method, those exemplified above regarding the formation of the silicon oxynitride layer 13 are used. mentioned.
  • the silicon source organosilicon compounds are preferable because they have low toxicity and can suppress the incorporation of nitrogen into the film. They can suppress the incorporation of impurities into the film, and can form films with high transparency and gas barrier properties.
  • Hexamethyldisiloxane is more preferable because When an organosilicon compound such as hexamethyldisiloxane is used as the silicon source, carbon may be incorporated into the film. good. From the viewpoint of reducing the amount of carbon in the film, oxygen gas is preferable as the oxygen source.
  • the amount of oxygen introduced is preferably at least 10 times the amount of hexamethyldisiloxane (gas) introduced in volume ratio. It may be 15 times or more or 20 times or more. From the viewpoint of appropriately maintaining the film formation rate, the amount of oxygen introduced is preferably 200 times or less, and preferably 100 times or less or 50 times or less, the volume ratio of the amount of hexamethyldisiloxane (gas) introduced. good too.
  • a carrier gas or a discharge gas may be introduced in the CVD film formation of the silicon oxide layer.
  • Various conditions such as substrate temperature, pressure, power supply frequency, and applied power may be appropriately adjusted in the same manner as in the deposition of the silicon oxynitride layer 13 .
  • the density of the silicon oxide layer is preferably 1.80 g/cm 3 or more, and more preferably 1.90 g/cm 3 or more. is more preferably 2.00 g/cm 3 or more and 2.40 g/cm 3 or less, 2.05 g/cm 3 or more and 2.35 g/cm 3 or less, or 2.10 g/cm 3 or more and 2.30 g/cm 3 or less There may be.
  • the thickness of the low refractive index layer 22 is preferably 3 nm or more and 250 nm or less, and may be 5 nm or more and 200 nm or less, or 10 nm or more and 150 nm or less. . It is preferable to set the thickness of the low refractive index layer 22 so that the light reflectance of the gas barrier layer is small and the coloring of the reflected light is suppressed. The properties (spectrum) of reflected light can be accurately evaluated by optical model calculations.
  • the gas barrier layer may include layers (other layers) other than the silicon oxynitride layer 13 and the low refractive index layer 22.
  • “other layers” include inorganic thin films made of ceramic materials such as metal or semi-metal oxides, nitrides or oxynitrides. Oxides, nitrides or oxynitrides of Si, Al, In, Sn, Zn, Ti, Nb, Ce or Zr are preferred because they have both low moisture permeability and transparency.
  • the total thickness of the gas barrier layer is preferably 30 nm or more and 1000 nm or less, more preferably 40 nm or more and 500 nm or less.
  • the hard coat layer 31 contains, for example, a binder resin and nanoparticles.
  • a binder resin curable resins such as thermosetting resins, photocurable resins and electron beam curable resins are preferably used.
  • curable resins include polyester resins, acrylic resins, urethane resins, acrylic urethane resins, amide resins, silicone resins, silicate resins, epoxy resins, melamine resins, and oxetane resins. mentioned.
  • One or more curable resins can be used.
  • acrylic resins acrylic urethane resins, and epoxy resins are preferable because they have high hardness and can be photocured, and acrylic resins and acrylic urethane resins. More preferably, one or more selected from the group consisting of
  • the number average primary particle diameter of the nanoparticles contained in the hard coat layer 31 is preferably 15 nm or more, more preferably 20 nm or more, from the viewpoint of enhancing dispersibility in the binder resin. From the viewpoint of forming fine irregularities that contribute to improved adhesion, the number average primary particle diameter of the nanoparticles contained in the hard coat layer 31 is preferably 90 nm or less, more preferably 70 nm or less. It is more preferably 50 nm or less.
  • Inorganic oxides are preferable as materials for nanoparticles.
  • examples of inorganic oxides include metal (or metalloid) oxides such as silica, titanium oxide, aluminum oxide, zirconium oxide, niobium oxide, zinc oxide, tin oxide, cerium oxide, and magnesium oxide.
  • the inorganic oxide may be a composite oxide of multiple (semi)metals.
  • silica is preferable because it has a high adhesion improving effect. That is, silica particles (nanosilica particles) are preferable as the nanoparticles.
  • a functional group such as an acrylic group or an epoxy group may be introduced into the surface of the inorganic oxide particles as nanoparticles for the purpose of enhancing adhesion and affinity with the resin.
  • the amount of the nanoparticles in the hard coat layer 31 is preferably 5 parts by weight or more, 10 parts by weight or more, 20 parts by weight or more, or 30 parts by weight or more with respect to 100 parts by weight of the total amount of the binder resin and the nanoparticles. may be If the amount of the nanoparticles is 5 parts by weight or more, the adhesion to the gas barrier layer formed on the hard coat layer 31 can be improved.
  • the upper limit of the amount of nanoparticles in the hard coat layer 31 is, for example, 90 parts by weight, preferably 80 parts by weight, and preferably 70 parts by weight with respect to 100 parts by weight of the total amount of the binder resin and the nanoparticles. good too.
  • the thickness of the hard coat layer 31 is not particularly limited, but is preferably 0.5 ⁇ m or more, more preferably 1.0 ⁇ m or more, in order to improve the adhesion to the gas barrier layer while achieving high hardness. It is more preferably 2.0 ⁇ m or more, and even more preferably 3.0 ⁇ m or more. On the other hand, the thickness of the hard coat layer 31 is preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less, and even more preferably 12 ⁇ m or less, in order to suppress a decrease in strength due to cohesive failure.
  • the hard coat layer 31 is formed by applying the hard coat composition onto the transparent film substrate 11, and optionally removing the solvent and curing the resin.
  • the hard coat composition contains, for example, the above binder resin and nanoparticles, and optionally contains a solvent capable of dissolving or dispersing these components.
  • the resin component in the hard coat composition is a curable resin
  • the hard coat composition preferably contains an appropriate polymerization initiator.
  • the resin component in the hard coat composition is a photocurable resin
  • the hard coat composition preferably contains a photopolymerization initiator.
  • the hard coat composition includes particles (microparticles) having a number average primary particle diameter of 1.0 ⁇ m or more, leveling agents, viscosity modifiers (thixotropic agents, thickeners, etc.), antistatic agents, blocking agents, Additives such as inhibitors, dispersants, dispersion stabilizers, antioxidants, UV absorbers, antifoaming agents, surfactants and lubricants may be included.
  • any suitable method such as bar coating, roll coating, gravure coating, rod coating, slot orifice coating, curtain coating, fountain coating, comma coating, etc. can be used. can be adopted.
  • Adhesive layer 51 As a constituent material of the adhesive layer 51, an adhesive having a high visible light transmittance is preferably used.
  • adhesives constituting the adhesive layer 51 include acrylic polymers, silicone polymers, polyesters, polyurethanes, polyamides, polyvinyl ethers, vinyl acetate-vinyl chloride copolymers, modified polyolefins, epoxy resins, and fluorine resins. , natural rubber, synthetic rubber or the like as a base polymer can be appropriately selected and used.
  • the thickness of the adhesive layer 51 is preferably 5 ⁇ m or more and 100 ⁇ m or less.
  • the refractive index of the adhesive layer 51 is, for example, 1.4 or more and 1.5 or less.
  • the water vapor transmission rate of the gas barrier film is preferably 3.0 ⁇ 10 ⁇ 2 g/m 2 ⁇ day or less, more preferably 2.0 ⁇ 10 ⁇ 2 g/m 2 ⁇ day or less. It is more preferably 0 ⁇ 10 ⁇ 2 g/m 2 ⁇ day or less. From the viewpoint of suppressing deterioration of the protection object such as the organic EL element, the lower the water vapor transmission rate, the better. Although the lower limit of the water vapor transmission rate of the gas barrier film is not particularly limited, it is generally 1.0 ⁇ 10 ⁇ 5 g/m 2 ⁇ day. Water vapor transmission rate (WVTR) is measured according to the differential pressure method (Pressure Sensor Method) described in ISO 15106-5 under conditions of a temperature of 40° C. and a relative humidity of 90%.
  • WVTR Water vapor transmission rate
  • the light transmittance of the gas barrier film is preferably 75% or higher, more preferably 80% or higher.
  • Light transmittance is the Y value of the CIE tristimulus values specified in JlS Z8781-3:2016.
  • a method for manufacturing a gas barrier film according to the second embodiment of the present invention is a suitable method for manufacturing the gas barrier film according to the first embodiment described above. Therefore, descriptions of components that overlap with those of the above-described first embodiment may be omitted.
  • a silicon source for example, trisilylamine, etc.
  • a nitrogen source for example, nitrogen
  • an oxygen source for example, oxygen
  • FIG. 6 is a configuration diagram showing an example of a film forming apparatus used in the method for producing a gas barrier film according to the second embodiment.
  • the film forming apparatus shown in FIG. 6 includes a delivery roll 71, transport rolls 72, 73, 74 and 75, film forming rolls 76 and 77 as a pair of opposing electrodes, a winding roll 78, and a film forming gas. and a gas supply port 79 for A plurality of gas supply ports 79 may be provided.
  • a magnetic field generator (not shown) is installed inside each of the film forming rolls 76 and 77 .
  • at least the film forming rolls 76 and 77, the gas supply port 79, and the power source for plasma generation are arranged in a vacuum chamber (not shown).
  • the vacuum chamber is connected to a vacuum pump (not shown), and the pressure in the vacuum chamber can be appropriately adjusted by the vacuum pump.
  • the film forming rolls 76 and 77 are each provided with a power source for plasma generation so that the pair of film forming rolls (film forming rolls 76 and 77) can function as a pair of opposing electrodes. (not shown). Therefore, in the film forming apparatus shown in FIG. 6, by supplying power from the plasma generation power supply, it is possible to discharge the space between the film forming rolls 76 and 77, thereby forming a film. Plasma can be generated in the space between the roll 76 and the film forming roll 77 .
  • the central axes of the pair of film forming rolls (film forming rolls 76 and 77) should be substantially parallel on the same plane. are preferably arranged in the same direction.
  • the gas barrier film according to the first embodiment can be easily formed by adopting various conditions in the plasma CVD method illustrated in the explanation of the gas barrier film according to the first embodiment.
  • a pair of deposition gases (more specifically, a silicon source, an oxygen source, a nitrogen source, etc.) is supplied into the vacuum chamber.
  • the film-forming gas is decomposed by the plasma, and the film-forming region near the film-forming roll 76 and the film-forming region near the film-forming roll 77 are separated.
  • a silicon oxynitride layer 13 (see FIG. 1) is formed on a transparent film substrate 11 (see FIG. 1).
  • the transparent film substrate 11 is conveyed by the delivery roll 71, the conveying roll 72, and the like, and the transparent film substrate 11 is formed by a roll-to-roll continuous film formation process.
  • a silicon oxynitride layer 13 is formed thereon.
  • film deposition apparatus conditions At least one of the embracing angles (hereinafter collectively referred to as “film deposition apparatus conditions”) is changed, the film formation region near the film formation roll 76 and the film formation roll 77 near the film formation roll 77 change.
  • the composition ratio O/N (the number of oxygen atoms/the number of nitrogen atoms) of the silicon oxynitride layer 13 (see FIG. 1) can be changed in the thickness direction by changing at least one of the film forming apparatus conditions. can be done.
  • the "embracing angle” refers to the range of angles in which the film contacts the outer peripheral surface of the film forming roll in the circumferential direction, expressed as the central angle of the film forming roll.
  • the height H of the gas supply port 79 has a high correlation with 1/10-O/N, 1/2-O/N and 9/10-O/N.
  • the gas supply port 79 The height H of is preferably 100 mm or more and 200 mm or less, more preferably 150 mm or more and 180 mm or less.
  • the height H of each of the plurality of gas supply ports 79 may be the same or different.
  • FIG. 7 is a graph showing an example of composition analysis results in the thickness direction of a silicon oxynitride layer formed by the method for producing a gas barrier film according to the second embodiment.
  • the solid line shows the relationship between the etching time and the oxygen content in the thickness direction of the silicon oxynitride layer when composition analysis was performed while etching the silicon oxynitride layer under constant conditions by XPS.
  • the dashed line indicates the relationship between the etching time and the nitrogen content in the thickness direction of the silicon oxynitride layer when composition analysis was performed while etching the silicon oxynitride layer under constant conditions by XPS.
  • FIG. 7 is a graph showing an example of composition analysis results in the thickness direction of a silicon oxynitride layer formed by the method for producing a gas barrier film according to the second embodiment.
  • the solid line shows the relationship between the etching time and the oxygen content in the thickness direction of the silicon oxynitride layer when composition analysis was performed while etching the
  • section A which has a relatively long etching time, is formed in a region having a relatively long distance from the gas supply port 79 in the film forming region near the film forming roll 76 in the film forming apparatus shown in FIG. It is a partition that has been
  • section C which has a relatively short etching time, is a region with a relatively long distance from the gas supply port 79 among the film forming regions near the film forming roll 77 in the film forming apparatus shown in FIG. It is a section where a film is formed.
  • FIG. 7 which has a relatively long etching time
  • section B sandwiched between section A and section C is one of the film forming areas in the vicinity of the film forming roll 76 or the film forming area in the vicinity of the film forming roll 77 in the film forming apparatus shown in FIG. , are regions where the film is formed in a region relatively short from the gas supply port 79 .
  • the etching time for section A includes the etching time for measuring 9/10-O/N.
  • the etch time for the B section includes the etch time when measuring 1/2-O/N.
  • the etch time for the C section includes the etch time when measuring 1/10-O/N.
  • the distribution of the introduced film forming gas changes in each of the film forming region near the film forming roll 76 and the film forming region near the film forming roll 77. Since they change along the circumferential direction of the film-forming roll, the nitrogen content and oxygen content in the silicon oxynitride layer change (in the thickness direction) with the etching time as shown in FIG. 7, for example. Therefore, by changing at least one of the film forming apparatus conditions, the composition ratio O/N can be adjusted in the thickness direction of the silicon oxynitride layer. The composition ratio O/N can also be adjusted by changing the introduction amount ratio (flow rate ratio) of the oxygen source and the nitrogen source.
  • a polarizing plate with a gas barrier layer according to the third embodiment includes the gas barrier film according to the first embodiment and a polarizer.
  • FIG. 8 is a cross-sectional view showing an example of a polarizing plate with a gas barrier layer according to the third embodiment.
  • a polarizing plate 100 with a gas barrier layer shown in FIG. 8 has the gas barrier film 50 described above and a polarizing plate 101 .
  • the polarizing plate 101 is arranged on the main surface 51a of the pressure-sensitive adhesive layer 51 opposite to the silicon oxynitride layer 13 side. That is, the polarizing plate 101 and the silicon oxynitride layer 13 are bonded together with the adhesive layer 51 interposed therebetween.
  • 8 has a gas barrier film 50 (gas barrier film 40), the gas barrier film of the polarizing plate with a gas barrier layer according to the third embodiment is not limited to the gas barrier film 50.
  • it may be the gas barrier film 10, the gas barrier film 20, or the gas barrier film 30.
  • the polarizing plate 101 includes a polarizer (not shown), and generally transparent protective films (not shown) as polarizer protective films are laminated on both main surfaces of the polarizer.
  • a transparent protective film may not be provided on one principal surface or both principal surfaces of the polarizer.
  • a polarizer for example, a hydrophilic polymer film such as a polyvinyl alcohol film is uniaxially stretched after adsorbing a dichroic substance such as iodine or a dichroic dye.
  • a transparent resin film composed of a cellulose resin, a cyclic polyolefin resin, an acrylic resin, a phenylmaleimide resin, a polycarbonate resin, or the like is preferably used.
  • a gas barrier film may be used as the transparent protective film.
  • the polarizing plate 101 may include an optical functional film laminated on one or both main surfaces of a polarizer via an appropriate adhesive layer or pressure-sensitive adhesive layer as necessary.
  • the optical functional film include retardation plates, viewing angle widening films, viewing angle limiting (peep prevention) films, brightness improving films, and the like.
  • the gas barrier layer-attached polarizing plate according to the third embodiment has the gas barrier film according to the first embodiment, and therefore has excellent transparency and gas barrier properties.
  • An image display device includes the gas barrier film according to the first embodiment or the polarizing plate with a gas barrier layer according to the third embodiment, and an image display cell.
  • FIG. 9 is a cross-sectional view showing an example of an image display device according to the fourth embodiment.
  • An image display device 200 shown in FIG. 9 includes a gas barrier layer-attached polarizing plate 100 having a gas barrier film 50 and an image display cell 202 .
  • the image display cell 202 includes a substrate 203 and display elements 204 provided on the substrate 203 .
  • the gas barrier layer 41 and the display element 204 are bonded together with the adhesive layer 201 interposed therebetween.
  • the image display device 200 shown in FIG. 9 has the gas barrier film 50 (gas barrier film 40)
  • the gas barrier film of the image display device according to the fourth embodiment is not limited to the gas barrier film 50.
  • the gas barrier film 10 it may be the gas barrier film 20 or the gas barrier film 30;
  • the same adhesives as those exemplified as the adhesive constituting the adhesive layer 51 described above can be used.
  • the adhesive that forms the adhesive layer 201 and the adhesive that forms the adhesive layer 51 may be of the same type or of different types.
  • the preferable range of the thickness of the adhesive layer 201 is, for example, the same as the preferable range of the thickness of the adhesive layer 51 described above.
  • the thickness of the adhesive layer 201 and the thickness of the adhesive layer 51 may be the same or different.
  • a glass substrate or a plastic substrate is used as the substrate 203 .
  • the substrate 203 does not have to be transparent, and a highly heat-resistant film such as a polyimide film may be used as the substrate 203 .
  • Examples of the display element 204 include an organic EL element, a liquid crystal element, an electrophoretic display element (electronic paper), and the like.
  • a touch panel sensor (not shown) may be arranged on the viewing side of the image display cell 202 .
  • the image display cell 202 is, for example, top emission type.
  • the organic EL element includes, for example, a metal electrode (not shown), an organic light emitting layer (not shown), and a transparent electrode (not shown) in this order from the substrate 203 side.
  • the organic light-emitting layer may include an electron-transporting layer, a hole-transporting layer, etc. in addition to the organic layer that itself functions as a light-emitting layer.
  • the transparent electrode is a metal oxide layer or a metal thin film and transmits light from the organic light emitting layer.
  • a back sheet (not shown) may be provided on the back side of the substrate 203 for the purpose of protecting and reinforcing the substrate 203 .
  • the metal electrode of the organic EL element is light reflective. Therefore, when external light enters the inside of the image display cell 202, the light is reflected by the metal electrodes, and the reflected light is visually recognized as a mirror surface from the outside.
  • a circularly polarizing plate as the polarizing plate 101 on the viewing side of the image display cell 202, the re-emission of light reflected by the metal electrode to the outside is prevented, and the visibility and design of the screen of the image display device 200 are improved. can improve sexuality.
  • the circularly polarizing plate has, for example, a retardation film on the main surface of the polarizer on the image display cell 202 side.
  • the transparent protective film arranged adjacent to the polarizer may be a retardation film.
  • the transparent film substrate 11 of the gas barrier film 50 may be a retardation film. Lamination of the polarizer and the retardation film when the retardation film has a retardation of ⁇ / 4 and the angle formed by the slow axis direction of the retardation film and the absorption axis direction of the polarizer is 45 °
  • the body functions as a circular polarizer for suppressing re-emission of reflected light from the metal electrode.
  • the retardation film that constitutes the circularly polarizing plate may be a laminate of two or more layers of films.
  • a broadband circularly polarizing plate that functions as a circularly polarizing plate over a wide band of visible light is obtained. can get.
  • the image display cell 202 may be of a bottom emission type in which a transparent electrode, an organic light emitting layer and a metal electrode are laminated in this order on a substrate.
  • a transparent substrate is used, and the transparent substrate is arranged on the viewing side.
  • a gas barrier film may be used as the transparent substrate.
  • the image display device includes the gas barrier film according to the first embodiment, it is possible to suppress deterioration of the display element caused by gas (for example, water vapor).
  • gas for example, water vapor
  • a solar cell according to the fifth embodiment includes the gas barrier film according to the first embodiment and a solar cell.
  • the gas barrier film according to the first embodiment and the solar cell are bonded together with a transparent adhesive or a transparent adhesive.
  • the solar cell according to the fifth embodiment includes the gas barrier film according to the first embodiment, deterioration of the solar cell due to gas (for example, water vapor) can be suppressed.
  • gas for example, water vapor
  • Example 1 A 40 ⁇ m-thick cyclic polyolefin film (“Zeonor (registered trademark) film ZF-14” manufactured by Nippon Zeon Co., Ltd.) as a transparent film substrate was set in a film forming apparatus, and the pressure in the vacuum chamber was reduced to 1 ⁇ 10 ⁇ 3 Pa. . Next, while the film was running, a silicon oxynitride layer (gas barrier layer) having a thickness of 50 nm was formed by CVD at a substrate temperature of 12° C. to obtain a gas barrier film of Example 1.
  • the frequency of the power source for plasma generation was set to 80 kHz, and plasma was generated by discharging under the conditions of applied power of 1.0 kW, trisilylamine (TSA): 30 sccm, Under flow conditions of nitrogen: 575 sccm and oxygen: 25 sccm, a gas was introduced between the film-forming rolls (between the electrodes) in the vacuum chamber to form a film at a pressure of 1.0 Pa. Note that TSA was vaporized by heating and introduced into the vacuum chamber.
  • Example 2 A gas barrier film of Example 2 was produced in the same manner as in Example 1, except that the nitrogen flow conditions were set to 550 sccm and the oxygen flow conditions were set to 50 sccm.
  • Example 3 A gas barrier film of Example 3 was produced in the same manner as in Example 1, except that the nitrogen flow conditions were set to 525 sccm and the oxygen flow conditions were set to 75 sccm.
  • Example 4 A gas barrier film of Example 4 was produced in the same manner as in Example 1 except that the nitrogen flow conditions were set to 500 sccm and the oxygen flow conditions were set to 100 sccm.
  • Comparative Example 1 A gas barrier film of Comparative Example 1 was produced in the same manner as in Example 1, except that the nitrogen flow rate was set to 600 sccm and oxygen was not introduced.
  • Comparative Example 2 A gas barrier film of Comparative Example 2 was produced in the same manner as in Example 1, except that the oxygen flow rate was set to 600 sccm and nitrogen was not introduced.
  • composition analysis of Silicon Oxynitride Layer Using an X-ray photoelectron spectrometer equipped with an Ar ion gun ("Quantera SXM" manufactured by ULVAC-Phi, Inc.), the silicon oxynitride layer is exposed to the silicon oxynitride layer from the main surface opposite to the transparent film substrate side under the following conditions. While etching with , composition analysis in the thickness direction of the silicon oxynitride layer was performed by XPS.
  • the light transmittance (Y value) of the gas barrier film was measured with a spectrophotometer ("U4100" manufactured by Hitachi High-Tech Science). When the light transmittance was 75% or more, it was evaluated as “excellent in transparency”. On the other hand, when the light transmittance was less than 75%, it was evaluated as "not excellent in transparency”.
  • the WVTR was 3.0 ⁇ 10 ⁇ 2 g/m 2 ⁇ day or less. Therefore, the gas barrier films of Examples 1 to 4 were excellent in gas barrier properties. In Examples 1 to 4, the light transmittance was 75% or more. Therefore, the gas barrier films of Examples 1 to 4 were excellent in transparency.
  • Comparative Example 1 As shown in Table 1, in Comparative Example 1, the light transmittance was less than 75%. Therefore, the gas barrier film of Comparative Example 1 was not excellent in transparency. In Comparative Example 2, WVTR exceeded 3.0 ⁇ 10 ⁇ 2 g/m 2 ⁇ day. Therefore, the gas barrier film of Comparative Example 2 was not excellent in gas barrier properties.
  • the present invention can provide a gas barrier film with excellent transparency and gas barrier properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Laminated Bodies (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

A gas barrier film (10) according to the present invention comprises a transparent film base material (11) and a gas barrier layer (12). The gas barrier layer (12) has a silicon oxynitride layer (13). If the composition ratio O/N of oxygen to nitrogen in the thickness direction of the silicon oxynitride layer (13) is measured, the composition ratio O/N when 1/10 of the total etching time has passed is larger than 1.0, the composition ratio O/N when 1/2 of the total etching time has passed is smaller than 2.0, and the composition ratio O/N when 9/10 of the total etching time has passed is larger than 1.0. Both the composition ratio O/N when 1/10 of the total etching time has passed and the composition ratio O/N when 9/10 of the total etching time has passed are larger than the composition ratio O/N when 1/2 of the total etching time has passed.

Description

ガスバリアフィルム及びその製造方法、並びにガスバリア層付き偏光板、画像表示装置及び太陽電池GAS BARRIER FILM AND METHOD FOR MANUFACTURING THE SAME, POLARIZING PLATE WITH GAS BARRIER LAYER, IMAGE DISPLAY DEVICE, AND SOLAR CELL
 本発明は、ガスバリアフィルム及びその製造方法、並びにガスバリア層付き偏光板、画像表示装置及び太陽電池に関する。 The present invention relates to a gas barrier film, a method for producing the same, a polarizing plate with a gas barrier layer, an image display device, and a solar cell.
 画像表示装置の軽量化・薄型化・フレキシブル化に伴って、ガラス基板の代わりに樹脂フィルム基板が用いられるようになっている。樹脂フィルムは、ガラスに比べて水蒸気や酸素等のガス透過性が高いため、これらのガスに起因する表示素子の劣化を抑制する目的で、ガスバリア層を備えたガスバリアフィルムを用いることが提案されている。 As image display devices become lighter, thinner, and more flexible, resin film substrates are being used instead of glass substrates. Since resin films have higher permeability to gases such as water vapor and oxygen than glass, it has been proposed to use a gas barrier film having a gas barrier layer for the purpose of suppressing deterioration of display elements caused by these gases. there is
 有機EL素子は、わずかな水分の浸入に起因して「ダークスポット」と呼ばれる欠点が生じる場合があり、高いガスバリア性(水蒸気遮断性)が要求される。ガスバリア性に優れる材料として、窒化ケイ素(SiN)及び酸窒化ケイ素(SiON)が知られている。 Organic EL elements may have defects called "dark spots" due to the infiltration of even a small amount of moisture, and high gas barrier properties (water vapor blocking properties) are required. Silicon nitride (SiN) and silicon oxynitride (SiON) are known as materials having excellent gas barrier properties.
 例えば、特許文献1では、透明性及び屈曲性に優れるガスバリアフィルムとして、窒化ケイ素層と酸化ケイ素層とを備えるガスバリアフィルムが提案されている。 For example, Patent Document 1 proposes a gas barrier film including a silicon nitride layer and a silicon oxide layer as a gas barrier film with excellent transparency and flexibility.
国際公開第2019/187978号WO2019/187978
 しかしながら、特許文献1に開示される技術は、ガスバリアフィルムの透明性及びガスバリア性を高めることについて、改善の余地がある。 However, the technology disclosed in Patent Document 1 has room for improvement in terms of increasing the transparency and gas barrier properties of the gas barrier film.
 本発明は、上記課題に鑑みてなされたものであり、その目的は、透明性及びガスバリア性に優れるガスバリアフィルム及びその製造方法、並びに当該ガスバリアフィルムを用いたガスバリア層付き偏光板、画像表示装置及び太陽電池を提供することである。 The present invention has been made in view of the above problems, and aims to provide a gas barrier film having excellent transparency and gas barrier properties, a method for producing the same, a polarizing plate with a gas barrier layer using the gas barrier film, an image display device, and a method for producing the same. It is to provide solar cells.
<本発明の態様>
 本発明には、以下の態様が含まれる。
<Aspect of the present invention>
The present invention includes the following aspects.
[1]透明フィルム基材と、前記透明フィルム基材の少なくとも一方の主面に直接的又は間接的に配置されたガスバリア層とを有するガスバリアフィルムであって、
 前記ガスバリア層は、構成元素として酸素、窒素及びケイ素を含む酸窒化ケイ素層を有し、
 X線光電子分光法を用いて前記酸窒化ケイ素層を一定条件でエッチングしながら、前記酸窒化ケイ素層の厚み方向における酸素と窒素との組成比O/Nを測定した際において、総エッチング時間の1/10が経過したときの前記組成比O/Nが1.0より大きく、総エッチング時間の1/2が経過したときの前記組成比O/Nが2.0より小さく、総エッチング時間の9/10が経過したときの前記組成比O/Nが1.0より大きく、
 前記総エッチング時間の1/10が経過したときの前記組成比O/N及び前記総エッチング時間の9/10が経過したときの前記組成比O/Nは、いずれも前記総エッチング時間の1/2が経過したときの前記組成比O/Nより大きい、ガスバリアフィルム。
[1] A gas barrier film comprising a transparent film substrate and a gas barrier layer disposed directly or indirectly on at least one main surface of the transparent film substrate,
The gas barrier layer has a silicon oxynitride layer containing oxygen, nitrogen and silicon as constituent elements,
When measuring the composition ratio O/N of oxygen and nitrogen in the thickness direction of the silicon oxynitride layer while etching the silicon oxynitride layer under constant conditions using X-ray photoelectron spectroscopy, the total etching time The composition ratio O/N is greater than 1.0 when 1/10 of the total etching time has elapsed, and the composition ratio O/N is less than 2.0 when 1/2 of the total etching time has elapsed, and The composition ratio O/N when 9/10 has passed is greater than 1.0,
The composition ratio O/N when 1/10 of the total etching time has passed and the composition ratio O/N when 9/10 of the total etching time has passed are both 1/1 of the total etching time. A gas barrier film that is greater than the composition ratio O/N when 2 has passed.
[2]前記総エッチング時間の1/10が経過したときの前記組成比O/N及び前記総エッチング時間の9/10が経過したときの前記組成比O/Nがいずれも2.0より大きいか、又は前記総エッチング時間の1/2が経過したときの前記組成比O/Nが1.0より小さい、前記[1]に記載のガスバリアフィルム。 [2] The composition ratio O/N when 1/10 of the total etching time has passed and the composition ratio O/N when 9/10 of the total etching time has passed are both greater than 2.0. Or, the gas barrier film according to [1], wherein the composition ratio O/N is less than 1.0 when ½ of the total etching time has elapsed.
[3]前記総エッチング時間の1/10が経過したときの前記組成比O/N及び前記総エッチング時間の9/10が経過したときの前記組成比O/Nは、いずれも10.0より小さい、前記[1]又は[2]に記載のガスバリアフィルム。 [3] The composition ratio O/N when 1/10 of the total etching time has elapsed and the composition ratio O/N when 9/10 of the total etching time has elapsed are both greater than 10.0. The gas barrier film according to [1] or [2], which is small.
[4]前記総エッチング時間の1/2が経過したときの前記組成比O/Nは、0.1より大きい、前記[1]~[3]のいずれか一つに記載のガスバリアフィルム。 [4] The gas barrier film according to any one of [1] to [3], wherein the composition ratio O/N is greater than 0.1 when 1/2 of the total etching time has elapsed.
[5]前記酸窒化ケイ素層の厚みが、10nm以上100nm以下である、前記[1]~[4]のいずれか一つに記載のガスバリアフィルム。 [5] The gas barrier film according to any one of [1] to [4], wherein the silicon oxynitride layer has a thickness of 10 nm or more and 100 nm or less.
[6]前記透明フィルム基材と前記ガスバリア層との間に配置された、個数平均一次粒子径1.0μm未満のシリカ粒子を含むハードコート層を更に有する、前記[1]~[5]のいずれか一つに記載のガスバリアフィルム。 [6] Any of the above [1] to [5], further comprising a hard coat layer containing silica particles having a number average primary particle diameter of less than 1.0 μm, disposed between the transparent film substrate and the gas barrier layer. The gas barrier film according to any one.
[7]前記酸窒化ケイ素層と前記ハードコート層とは、接している、前記[6]に記載のガスバリアフィルム。 [7] The gas barrier film according to [6], wherein the silicon oxynitride layer and the hard coat layer are in contact with each other.
[8]前記ガスバリア層の前記透明フィルム基材側とは反対側に配置された粘着剤層を更に有する、前記[1]~[7]のいずれか一つに記載のガスバリアフィルム。 [8] The gas barrier film according to any one of [1] to [7], further comprising an adhesive layer disposed on the side of the gas barrier layer opposite to the transparent film substrate side.
[9]前記酸窒化ケイ素層と前記粘着剤層とは、接している、前記[8]に記載のガスバリアフィルム。 [9] The gas barrier film according to [8], wherein the silicon oxynitride layer and the adhesive layer are in contact with each other.
[10]前記[1]~[9]のいずれか一つに記載のガスバリアフィルムの製造方法であって、
 一対の対向電極として一対の成膜ロールを有する成膜装置のチャンバー内に、ケイ素源、窒素源及び酸素源を導入して、化学気相成長法により前記酸窒化ケイ素層を形成する工程を備える、ガスバリアフィルムの製造方法。
[10] A method for producing a gas barrier film according to any one of [1] to [9],
A step of introducing a silicon source, a nitrogen source and an oxygen source into a chamber of a film forming apparatus having a pair of film forming rolls as a pair of opposing electrodes to form the silicon oxynitride layer by chemical vapor deposition. , a method for producing a gas barrier film.
[11]前記[1]~[9]のいずれか一つに記載のガスバリアフィルムと、偏光子とを備える、ガスバリア層付き偏光板。 [11] A polarizing plate with a gas barrier layer, comprising the gas barrier film according to any one of [1] to [9] above and a polarizer.
[12]前記[1]~[9]のいずれか一つに記載のガスバリアフィルムと、画像表示セルとを備える、画像表示装置。 [12] An image display device comprising the gas barrier film according to any one of [1] to [9] and an image display cell.
[13]前記[11]に記載のガスバリア層付き偏光板と、画像表示セルとを備える、画像表示装置。 [13] An image display device comprising the polarizing plate with a gas barrier layer according to [11] and an image display cell.
[14]前記画像表示セルは、有機EL素子を含む、前記[12]又は[13]に記載の画像表示装置。 [14] The image display device according to [12] or [13], wherein the image display cell includes an organic EL element.
[15]前記[1]~[9]のいずれか一つに記載のガスバリアフィルムと、太陽電池セルとを備える、太陽電池。 [15] A solar cell comprising the gas barrier film according to any one of [1] to [9] and a solar cell.
 本発明によれば、透明性及びガスバリア性に優れるガスバリアフィルム及びその製造方法、並びに当該ガスバリアフィルムを用いたガスバリア層付き偏光板、画像表示装置及び太陽電池を提供できる。 According to the present invention, it is possible to provide a gas barrier film with excellent transparency and gas barrier properties, a method for producing the same, and a polarizing plate with a gas barrier layer, an image display device, and a solar cell using the gas barrier film.
本発明に係るガスバリアフィルムの一例を示す断面図である。1 is a cross-sectional view showing an example of a gas barrier film according to the present invention; FIG. 本発明に係るガスバリアフィルムの他の例を示す断面図である。FIG. 4 is a cross-sectional view showing another example of the gas barrier film according to the present invention; 本発明に係るガスバリアフィルムの他の例を示す断面図である。FIG. 4 is a cross-sectional view showing another example of the gas barrier film according to the present invention; 本発明に係るガスバリアフィルムの他の例を示す断面図である。FIG. 4 is a cross-sectional view showing another example of the gas barrier film according to the present invention; 本発明に係るガスバリアフィルムの他の例を示す断面図である。FIG. 4 is a cross-sectional view showing another example of the gas barrier film according to the present invention; 本発明に係るガスバリアフィルムの製造方法に使用される成膜装置の一例を示す構成図である。1 is a configuration diagram showing an example of a film forming apparatus used in a method for producing a gas barrier film according to the present invention; FIG. 本発明に係るガスバリアフィルムが有する酸窒化ケイ素層の厚み方向の組成分析結果の一例を示すグラフである。4 is a graph showing an example of composition analysis results in the thickness direction of the silicon oxynitride layer of the gas barrier film according to the present invention. 本発明に係るガスバリア層付き偏光板の一例を示す断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is sectional drawing which shows an example of the polarizing plate with a gas barrier layer which concerns on this invention. 本発明に係る画像表示装置の一例を示す断面図である。It is a sectional view showing an example of an image display device concerning the present invention.
 以下、本発明の好適な実施形態について説明する。まず、本明細書中で使用される用語について説明する。粒子の個数平均一次粒子径は、何ら規定していなければ、走査型電子顕微鏡及び画像処理ソフトウェア(例えば、アメリカ国立衛生研究所製「ImageJ」)を用いて測定した、100個の一次粒子の円相当径(ヘイウッド径:一次粒子の投影面積と同じ面積を有する円の直径)の個数平均値である。 A preferred embodiment of the present invention will be described below. First, the terms used in this specification will be explained. The number average primary particle diameter of the particles is the circle of 100 primary particles measured using a scanning electron microscope and image processing software (e.g., "ImageJ" manufactured by the National Institutes of Health), unless otherwise specified. It is a number average value of equivalent diameters (Heywood diameter: diameter of a circle having the same area as the projected area of primary particles).
 層状物(より具体的には、透明フィルム基材、ガスバリア層、酸窒化ケイ素層、ハードコート層、粘着剤層、偏光子等)の「主面」とは、層状物の厚み方向に直交する面をさす。層状物の「厚み」の数値は、「平均厚み」である。層状物の平均厚みは、層状物を厚み方向に切断した断面を電子顕微鏡で観察し、断面画像から無作為に測定箇所を10箇所選択し、選択した10箇所の測定箇所の厚みを測定して得られた10個の測定値の算術平均値である。 The "principal surface" of a layered product (more specifically, a transparent film substrate, a gas barrier layer, a silicon oxynitride layer, a hard coat layer, an adhesive layer, a polarizer, etc.) point to the face The numerical value for the "thickness" of the layered material is the "average thickness". The average thickness of the layered material is obtained by observing a cross section of the layered material cut in the thickness direction with an electron microscope, randomly selecting 10 measurement points from the cross-sectional image, and measuring the thickness of the selected 10 measurement points. Arithmetic mean of 10 measurements obtained.
 「屈折率」とは、温度23℃の雰囲気下における波長550nmの光に対する屈折率をいう。 "Refractive index" refers to the refractive index for light with a wavelength of 550 nm in an atmosphere at a temperature of 23°C.
 流量の単位「sccm(Standard Cubic Centimeter per Minute)」は、標準状態(温度:0℃、圧力:101.3kPa)における流量の単位「mL/分」である。 The flow rate unit "sccm (Standard Cubic Centimeter per Minute)" is the flow rate unit "mL/min" under standard conditions (temperature: 0°C, pressure: 101.3 kPa).
 以下、化合物名の後に「系」を付けて、化合物及びその誘導体を包括的に総称する場合がある。化合物名の後に「系」を付けて重合体名を表す場合には、重合体の繰り返し単位が化合物又はその誘導体に由来することを意味する。アクリル及びメタクリルを包括的に「(メタ)アクリル」と総称する場合がある。 In the following, "system" may be added after the name of the compound to generically refer to the compound and its derivatives. When the polymer name is expressed by adding "system" after the compound name, it means that the repeating unit of the polymer is derived from the compound or its derivative. Acryl and methacryl may be collectively referred to as "(meth)acryl".
 以下の説明において参照する図面は、理解しやすくするために、それぞれの構成要素を主体に模式的に示しており、図示された各構成要素の大きさ、個数、形状等は、図面作成の都合上から実際とは異なる場合がある。また、説明の都合上、後に説明する図面において、先に説明した図面と同一構成部分については、同一符号を付して、その説明を省略する場合がある。 The drawings referred to in the following description mainly show each component schematically for the sake of easy understanding. It may be different from the actual from above. Also, for convenience of description, in the drawings described later, the same components as those in the drawings described earlier may be denoted by the same reference numerals, and the description thereof may be omitted.
<第1実施形態:ガスバリアフィルム>
 本発明の第1実施形態に係るガスバリアフィルムは、透明フィルム基材と、透明フィルム基材の少なくとも一方の主面に直接的又は間接的に配置されたガスバリア層とを有する。ガスバリア層は、構成元素として酸素、窒素及びケイ素を含む酸窒化ケイ素層を有する。X線光電子分光法を用いて酸窒化ケイ素層を一定条件でエッチングしながら、酸窒化ケイ素層の厚み方向における酸素と窒素との組成比O/Nを測定した際において、総エッチング時間の1/10が経過したときの組成比O/Nが1.0より大きく、総エッチング時間の1/2が経過したときの組成比O/Nが2.0より小さく、総エッチング時間の9/10が経過したときの組成比O/Nが1.0より大きい。総エッチング時間の1/10が経過したときの組成比O/N及び総エッチング時間の9/10が経過したときの組成比O/Nは、いずれも総エッチング時間の1/2が経過したときの組成比O/Nより大きい。
<First Embodiment: Gas Barrier Film>
A gas barrier film according to a first embodiment of the present invention has a transparent film substrate and a gas barrier layer directly or indirectly arranged on at least one main surface of the transparent film substrate. The gas barrier layer has a silicon oxynitride layer containing oxygen, nitrogen and silicon as constituent elements. While etching the silicon oxynitride layer under constant conditions using X-ray photoelectron spectroscopy, the composition ratio O/N of oxygen and nitrogen in the thickness direction of the silicon oxynitride layer was measured. The composition ratio O/N is greater than 1.0 when 10 has passed, the composition ratio O/N is less than 2.0 when 1/2 of the total etching time has passed, and 9/10 of the total etching time is The composition ratio O/N is greater than 1.0 over time. The composition ratio O/N when 1/10 of the total etching time has elapsed and the composition ratio O/N when 9/10 of the total etching time has elapsed are both the same when 1/2 of the total etching time has elapsed. is greater than the composition ratio O/N of
 X線光電子分光法を用いて酸窒化ケイ素層を一定条件でエッチングしながら、酸窒化ケイ素層の厚み方向における元素組成を分析する方法は、後述する実施例と同じ方法又はそれに準ずる方法である。上記「一定条件でエッチングしながら」とは、「エッチング条件を変えずに同一条件でエッチングしながら」という意味である。酸窒化ケイ素層のエッチング条件としては、酸窒化ケイ素層の厚み方向の組成分析をする際に通常採用されるエッチング条件を採用できる。上記「組成比O/N」とは、酸窒化ケイ素層の測定箇所において酸素原子数を窒素原子数で除した値(酸素原子数/窒素原子数)を意味する。上記「総エッチング時間」とは、酸窒化ケイ素層のエッチングの開始から終了までの時間を意味する。 The method of analyzing the elemental composition in the thickness direction of the silicon oxynitride layer while etching the silicon oxynitride layer under certain conditions using X-ray photoelectron spectroscopy is the same method as in the examples described later or a method based thereon. The phrase "while etching under constant conditions" means "while etching under the same conditions without changing the etching conditions". As the etching conditions for the silicon oxynitride layer, the etching conditions that are usually used for composition analysis in the thickness direction of the silicon oxynitride layer can be used. The above-mentioned "composition ratio O/N" means a value obtained by dividing the number of oxygen atoms by the number of nitrogen atoms (number of oxygen atoms/number of nitrogen atoms) at the measurement location of the silicon oxynitride layer. The above "total etching time" means the time from the start to the end of etching the silicon oxynitride layer.
 以下、X線光電子分光法を「XPS」と記載することがある。また、総エッチング時間の1/10が経過したときの組成比O/Nを「1/10-O/N」と記載することがある。また、総エッチング時間の1/2が経過したときの組成比O/Nを「1/2-O/N」と記載することがある。また、総エッチング時間の9/10が経過したときの組成比O/Nを「9/10-O/N」と記載することがある。 Hereinafter, X-ray photoelectron spectroscopy may be referred to as "XPS". Also, the composition ratio O/N when 1/10 of the total etching time has passed may be described as "1/10−O/N". Also, the composition ratio O/N when 1/2 of the total etching time has passed may be described as "1/2-O/N". Also, the composition ratio O/N when 9/10 of the total etching time has elapsed is sometimes described as "9/10-O/N".
 第1実施形態によれば、透明性及びガスバリア性に優れるガスバリアフィルムを提供できる。その理由は、以下のように推測される。 According to the first embodiment, a gas barrier film with excellent transparency and gas barrier properties can be provided. The reason is presumed as follows.
 一般に、酸窒化ケイ素層は、層中の酸素比率が高くなると、屈折率が低くなり、樹脂や粘着剤の屈折率に近くなる。第1実施形態に係るガスバリアフィルムでは、酸窒化ケイ素層の両側の表層の酸素比率が比較的高い。このため、第1実施形態では、酸窒化ケイ素層に接する層(より具体的には、透明フィルム基材、粘着剤層等)と酸窒化ケイ素層との間の屈折率差が小さくなる傾向がある。その結果、第1実施形態に係るガスバリアフィルムでは、光透過率が高くなる傾向がある。よって、第1実施形態によれば、透明性に優れるガスバリアフィルムが得られる。 In general, the silicon oxynitride layer has a lower refractive index as the oxygen ratio in the layer increases, approaching the refractive index of resins and adhesives. In the gas barrier film according to the first embodiment, the surface layers on both sides of the silicon oxynitride layer have a relatively high oxygen ratio. Therefore, in the first embodiment, the difference in refractive index between the layer in contact with the silicon oxynitride layer (more specifically, the transparent film substrate, the adhesive layer, etc.) and the silicon oxynitride layer tends to decrease. be. As a result, the gas barrier film according to the first embodiment tends to have high light transmittance. Therefore, according to the first embodiment, a gas barrier film having excellent transparency can be obtained.
 また、一般に、酸窒化ケイ素層は、層中の窒素比率が高いほど、ガスバリア性が高められる傾向がある。第1実施形態に係るガスバリアフィルムでは、酸窒化ケイ素層の厚み方向の中央部の窒素比率が比較的高い。このため、第1実施形態では、酸窒化ケイ素層の厚み方向の中央部のガスバリア性が高くなる傾向がある。よって、第1実施形態によれば、ガスバリア性に優れるガスバリアフィルムが得られる。 Also, in general, the silicon oxynitride layer tends to have higher gas barrier properties as the nitrogen ratio in the layer increases. In the gas barrier film according to the first embodiment, the ratio of nitrogen in the central portion in the thickness direction of the silicon oxynitride layer is relatively high. Therefore, in the first embodiment, there is a tendency for the gas barrier property of the central portion in the thickness direction of the silicon oxynitride layer to be high. Therefore, according to the first embodiment, a gas barrier film having excellent gas barrier properties can be obtained.
 第1実施形態において、透明性により優れるガスバリアフィルムを得るためには、1/10-O/N及び9/10-O/Nが、いずれも、2.0より大きいことが好ましく、2.5以上であることがより好ましく、3.0以上であることが更に好ましい。また、第1実施形態において、ガスバリア性により優れるガスバリアフィルムを得るためには、1/2-O/Nが、1.0より小さいことが好ましく、0.9以下であることがより好ましく、0.8以下であることが更に好ましい。よって、第1実施形態では、1/10-O/N及び9/10-O/Nがいずれも2.0より大きいか、又は1/2-O/Nが1.0より小さいことが好ましく、1/10-O/N及び9/10-O/Nがいずれも2.5以上であるか、又は1/2-O/Nが0.9以下であることがより好ましく、1/10-O/N及び9/10-O/Nがいずれも3.0以上であるか、又は1/2-O/Nが0.8以下であることが更に好ましい。 In the first embodiment, in order to obtain a gas barrier film with better transparency, both 1/10-O/N and 9/10-O/N are preferably greater than 2.0, and 2.5. It is more preferably 3.0 or more, and more preferably 3.0 or more. Further, in the first embodiment, in order to obtain a gas barrier film with more excellent gas barrier properties, 1/2-O/N is preferably less than 1.0, more preferably 0.9 or less, and 0 0.8 or less is more preferable. Therefore, in the first embodiment, it is preferable that both 1/10-O/N and 9/10-O/N are larger than 2.0 or 1/2-O/N is smaller than 1.0. , 1/10-O/N and 9/10-O/N are both 2.5 or more, or 1/2-O/N is more preferably 0.9 or less, 1/10 More preferably, both -O/N and 9/10-O/N are 3.0 or more, or 1/2-O/N is 0.8 or less.
 第1実施形態において、ガスバリア性により優れるガスバリアフィルムを得るためには、1/10-O/N及び9/10-O/Nが、いずれも、10.0より小さいことが好ましく、9.0以下であることがより好ましく、8.0以下であることが更に好ましい。 In the first embodiment, both 1/10-O/N and 9/10-O/N are preferably less than 10.0 in order to obtain a gas barrier film with more excellent gas barrier properties, and 9.0 It is more preferably 8.0 or less, more preferably 8.0 or less.
 第1実施形態において、透明性により優れるガスバリアフィルムを得るためには、1/2-O/Nが、0.1より大きいことが好ましく、0.2以上であることがより好ましく、0.3以上であることが更に好ましい。 In the first embodiment, in order to obtain a gas barrier film with more excellent transparency, 1/2-O/N is preferably greater than 0.1, more preferably 0.2 or more, and more preferably 0.3. It is more preferable that it is above.
 第1実施形態において、透明性に更に優れるガスバリアフィルムを得るためには、1/10-O/N及び9/10-O/Nがいずれも2.0より大きく、かつ1/2-O/Nが0.5より大きいことが好ましく、1/10-O/N及び9/10-O/Nがいずれも2.5以上であり、かつ1/2-O/Nが1.0以上であることがより好ましく、1/10-O/N及び9/10-O/Nがいずれも3.0以上であり、かつ1/2-O/Nが1.2以上であることが更に好ましい。 In the first embodiment, in order to obtain a gas barrier film with even better transparency, both 1/10-O/N and 9/10-O/N are greater than 2.0 and 1/2-O/ N is preferably greater than 0.5, 1/10-O/N and 9/10-O/N are both 2.5 or more, and 1/2-O/N is 1.0 or more More preferably, 1/10-O/N and 9/10-O/N are both 3.0 or more, and 1/2-O/N is 1.2 or more. .
 第1実施形態において、ガスバリア性に更に優れるガスバリアフィルムを得るためには、1/2-O/Nが1.0より小さく、かつ1/10-O/N及び9/10-O/Nがいずれも5.0より小さいことが好ましく、1/2-O/Nが0.9以下であり、かつ1/10-O/N及び9/10-O/Nがいずれも4.0以下であることがより好ましく、1/2-O/Nが0.8以下であり、かつ1/10-O/N及び9/10-O/Nがいずれも3.0以下であることが更に好ましい。 In the first embodiment, in order to obtain a gas barrier film with even better gas barrier properties, 1/2-O/N is less than 1.0, and 1/10-O/N and 9/10-O/N are Both are preferably less than 5.0, 1/2-O/N is 0.9 or less, and 1/10-O/N and 9/10-O/N are both 4.0 or less More preferably, 1/2-O/N is 0.8 or less, and 1/10-O/N and 9/10-O/N are both 3.0 or less. .
 以下、第1実施形態について、図面を参照しながら詳述する。図1は、第1実施形態に係るガスバリアフィルムの一例を示す断面図である。図1に示すガスバリアフィルム10は、透明フィルム基材11と、透明フィルム基材11の一方の主面11aに直接的に配置されたガスバリア層12とを有する積層体である。ガスバリア層12は、構成元素として酸素、窒素及びケイ素を含む酸窒化ケイ素層13からなる単層構造である。また、XPSを用いて酸窒化ケイ素層13を一定条件でエッチングしながら、酸窒化ケイ素層13の厚み方向における酸素と窒素との組成比O/Nを測定した際において、1/10-O/Nが1.0より大きく、1/2-O/Nが2.0より小さく、9/10-O/Nが1.0より大きい。1/10-O/N及び9/10-O/Nは、いずれも1/2-O/Nより大きい。 The first embodiment will be described in detail below with reference to the drawings. FIG. 1 is a cross-sectional view showing an example of the gas barrier film according to the first embodiment. A gas barrier film 10 shown in FIG. 1 is a laminate having a transparent film substrate 11 and a gas barrier layer 12 directly disposed on one main surface 11 a of the transparent film substrate 11 . The gas barrier layer 12 has a single layer structure consisting of a silicon oxynitride layer 13 containing oxygen, nitrogen and silicon as constituent elements. In addition, when the composition ratio O/N of oxygen and nitrogen in the thickness direction of the silicon oxynitride layer 13 was measured while etching the silicon oxynitride layer 13 under constant conditions using XPS, it was found to be 1/10-O/ N is greater than 1.0, 1/2-O/N is less than 2.0, and 9/10-O/N is greater than 1.0. Both 1/10-O/N and 9/10-O/N are greater than 1/2-O/N.
 第1実施形態に係るガスバリアフィルムの構成は、図1に示すガスバリアフィルム10の構成に限定されない。例えば、第1実施形態に係るガスバリアフィルムは、図2に示すガスバリアフィルム20のように、ガスバリア層が複数の薄膜からなる積層構造であってもよい。ガスバリアフィルム20では、ガスバリア層21が、酸窒化ケイ素層13と、酸窒化ケイ素層13の透明フィルム基材11側とは反対側の主面13aに配置された低屈折率層22とを有する。低屈折率層22は、酸窒化ケイ素層13よりも屈折率が低い層である。低屈折率層22は、酸窒化ケイ素層13とともにガスバリア性を高め、かつ光学干渉層として機能し、ガスバリア層21による光反射を低減して光透過率を高める作用を有する。第1実施形態に係るガスバリアフィルムは、酸窒化ケイ素層の両主面に低屈折率層を備えていてもよい。 The configuration of the gas barrier film according to the first embodiment is not limited to the configuration of the gas barrier film 10 shown in FIG. For example, the gas barrier film according to the first embodiment may have a laminated structure in which the gas barrier layer is composed of a plurality of thin films, like the gas barrier film 20 shown in FIG. In the gas barrier film 20, the gas barrier layer 21 has the silicon oxynitride layer 13 and the low refractive index layer 22 disposed on the main surface 13a of the silicon oxynitride layer 13 opposite to the transparent film substrate 11 side. The low refractive index layer 22 is a layer having a lower refractive index than the silicon oxynitride layer 13 . The low refractive index layer 22 enhances gas barrier properties together with the silicon oxynitride layer 13, functions as an optical interference layer, and has the effect of reducing light reflection by the gas barrier layer 21 and increasing light transmittance. The gas barrier film according to the first embodiment may have low refractive index layers on both main surfaces of the silicon oxynitride layer.
 また、第1実施形態に係るガスバリアフィルムでは、ガスバリア層が、2層以上の酸窒化ケイ素層を含んでいてもよく、例えば、2層の酸窒化ケイ素層と3層の低屈折率層との交互積層体であってもよい。ガスバリア層は、4層の積層構造又は6層以上の積層構造であってもよい。例えば、4層構造のガスバリア層は、透明フィルム基材側から、酸窒化ケイ素層/低屈折率層/酸窒化ケイ素層/低屈折率層の順に配置された交互積層体であってもよい。合計の層数が偶数である交互積層体においても、最外層が低屈折率層であることが好ましい。合計4層以上からなるガスバリア層は、酸窒化ケイ素層と低屈折率層の間に、両者の中間の屈折率を有する中屈折率層や、酸窒化ケイ素よりも高屈折率の材料からなる高屈折率層を含んでいてもよい。ガスバリア層は、3層の酸窒化ケイ素層と4層の低屈折率層の計7層からなる交互積層体であってもよく、8層以上からなる交互積層体であってもよい。 Further, in the gas barrier film according to the first embodiment, the gas barrier layer may include two or more silicon oxynitride layers, for example, two silicon oxynitride layers and three low refractive index layers. Alternating laminates may also be used. The gas barrier layer may have a laminate structure of four layers or a laminate structure of six or more layers. For example, the gas barrier layer having a four-layer structure may be an alternate laminate in which silicon oxynitride layer/low refractive index layer/silicon oxynitride layer/low refractive index layer are arranged in this order from the transparent film substrate side. Even in an alternate laminate having an even number of layers in total, the outermost layer is preferably a low refractive index layer. The gas barrier layer, which consists of a total of four or more layers, is interposed between the silicon oxynitride layer and the low refractive index layer. A refractive index layer may be included. The gas barrier layer may be an alternately laminated body composed of a total of seven layers, that is, three silicon oxynitride layers and four low refractive index layers, or may be an alternately laminated body composed of eight or more layers.
 また、第1実施形態に係るガスバリアフィルムは、ガスバリア層が透明フィルム基材の主面に間接的に配置されていてもよい。例えば、図3に示すガスバリアフィルム30は、透明フィルム基材11とガスバリア層12(酸窒化ケイ素層13)との間に配置されたハードコート層31を有する。ガスバリアフィルム30では、ガスバリア層12が透明フィルム基材11の主面に間接的に配置されている。ハードコート層31は、ガスバリアフィルム30の硬度や弾性率等の機械的特性を高める層である。ハードコート層31のガスバリア層12側の主面が平滑であれば、その上に形成されるガスバリア層12のガスバリア性が高められ、水蒸気透過率が小さくなる傾向がある。ハードコート層31のガスバリア層12側の主面の算術平均高さSaは、1.5nm以下又は1.0nm以下であってもよい。算術平均高さSaは、原子間力顕微鏡(AFM)により測定した1μm×1μmの範囲の三次元表面形状から、ISO 25178に準じて算出される。 Further, in the gas barrier film according to the first embodiment, the gas barrier layer may be indirectly arranged on the main surface of the transparent film substrate. For example, the gas barrier film 30 shown in FIG. 3 has a hard coat layer 31 arranged between the transparent film substrate 11 and the gas barrier layer 12 (silicon oxynitride layer 13). In the gas barrier film 30 , the gas barrier layer 12 is indirectly arranged on the main surface of the transparent film substrate 11 . The hard coat layer 31 is a layer that enhances mechanical properties such as hardness and elastic modulus of the gas barrier film 30 . If the main surface of the hard coat layer 31 on the side of the gas barrier layer 12 is smooth, the gas barrier property of the gas barrier layer 12 formed thereon is enhanced, and the water vapor transmission rate tends to decrease. The arithmetic mean height Sa of the main surface of the hard coat layer 31 on the side of the gas barrier layer 12 may be 1.5 nm or less or 1.0 nm or less. The arithmetic mean height Sa is calculated according to ISO 25178 from the three-dimensional surface profile of the range of 1 μm×1 μm measured by an atomic force microscope (AFM).
 ハードコート層31は、個数平均一次粒子径が1.0μm未満の粒子(以下、「ナノ粒子」と記載することがある)を含んでいてもよい。例えば、ハードコート層31がナノ粒子を含むことにより、ハードコート層31の表面に微細な凹凸が形成され、ハードコート層31とガスバリア層12との密着性が向上する傾向がある。特に、図3に示すガスバリアフィルム30のように、酸窒化ケイ素層13とハードコート層31とが接している場合、酸窒化ケイ素層13のハードコート層31側の近傍の酸素比率が高い領域(表層)とハードコート層31とが接しているため、ハードコート層31とガスバリア層12(酸窒化ケイ素層13)との密着性がより高くなる傾向がある。 The hard coat layer 31 may contain particles with a number average primary particle diameter of less than 1.0 μm (hereinafter sometimes referred to as "nanoparticles"). For example, when the hard coat layer 31 contains nanoparticles, fine irregularities are formed on the surface of the hard coat layer 31, and the adhesion between the hard coat layer 31 and the gas barrier layer 12 tends to improve. In particular, when the silicon oxynitride layer 13 and the hard coat layer 31 are in contact with each other like the gas barrier film 30 shown in FIG. surface layer) and the hard coat layer 31 are in contact with each other, the adhesion between the hard coat layer 31 and the gas barrier layer 12 (silicon oxynitride layer 13) tends to be higher.
 また、第1実施形態に係るガスバリアフィルムは、ガスバリア性をより向上させるため、透明フィルム基材の両主面にガスバリア層が設けられていてもよい。例えば、図4に示すガスバリアフィルム40は、透明フィルム基材11の一方の主面11aに配置されたガスバリア層12(酸窒化ケイ素層13)と、透明フィルム基材11のもう一方の主面11bに配置されたガスバリア層41とを有する。第1実施形態に係るガスバリアフィルムでは、透明フィルム基材の両主面のそれぞれに、積層構造のガスバリア層が設けられていてもよい。 In addition, the gas barrier film according to the first embodiment may be provided with gas barrier layers on both main surfaces of the transparent film substrate in order to further improve gas barrier properties. For example, the gas barrier film 40 shown in FIG. and a gas barrier layer 41 disposed on the . In the gas barrier film according to the first embodiment, a gas barrier layer having a laminated structure may be provided on each of both main surfaces of the transparent film substrate.
 ガスバリア層41の構成は、ガスバリア層12の構成と同一でも異なっていてもよい。つまり、ガスバリア層41は、1/10-O/N、1/2-O/N及び9/10-O/Nが上記特定範囲の酸窒化ケイ素層を、有していてもよく、有していなくてもよい。ガスバリア性をより向上させつつ、透明性により優れるガスバリアフィルムを得るためには、ガスバリア層41が酸窒化ケイ素層を有し、かつガスバリア層41の酸窒化ケイ素層において、1/10-O/N及び9/10-O/Nがいずれも1.0より大きく、1/2-O/Nが2.0より小さく、1/10-O/N及び9/10-O/Nがいずれも1/2-O/Nより大きいことが好ましい。 The configuration of the gas barrier layer 41 may be the same as or different from the configuration of the gas barrier layer 12 . That is, the gas barrier layer 41 may or may have a silicon oxynitride layer with 1/10-O/N, 1/2-O/N, and 9/10-O/N in the above specific ranges. It doesn't have to be. In order to obtain a gas barrier film having excellent transparency while further improving gas barrier properties, the gas barrier layer 41 has a silicon oxynitride layer, and the silicon oxynitride layer of the gas barrier layer 41 has a ratio of 1/10-O/N. and 9/10-O/N are both greater than 1.0, 1/2-O/N is less than 2.0, and 1/10-O/N and 9/10-O/N are both 1 /2-O/N is preferred.
 また、第1実施形態に係るガスバリアフィルムは、粘着剤層を更に有していてもよい。例えば、図5に示すガスバリアフィルム50は、ガスバリアフィルム40の構成に加え、粘着剤層51を有する。ガスバリアフィルム50では、ガスバリア層12(酸窒化ケイ素層13)の透明フィルム基材11側とは反対側の主面13aに粘着剤層51が配置されている。 In addition, the gas barrier film according to the first embodiment may further have an adhesive layer. For example, the gas barrier film 50 shown in FIG. 5 has an adhesive layer 51 in addition to the configuration of the gas barrier film 40 . In the gas barrier film 50, an adhesive layer 51 is arranged on the main surface 13a of the gas barrier layer 12 (silicon oxynitride layer 13) on the side opposite to the transparent film substrate 11 side.
 ガスバリア層12と粘着剤層51との密着性を高めるためには、図5に示すガスバリアフィルム50のように、酸窒化ケイ素層13と粘着剤層51とが接していることが好ましい。 In order to improve the adhesion between the gas barrier layer 12 and the adhesive layer 51, it is preferable that the silicon oxynitride layer 13 and the adhesive layer 51 are in contact with each other like the gas barrier film 50 shown in FIG.
 粘着剤層51の酸窒化ケイ素層13側とは反対側の主面には、はく離ライナー(不図示)が仮着されていてもよい。はく離ライナーは、例えば、ガスバリアフィルム50を後述する偏光板101(図8参照)と貼り合わせるまでの間、粘着剤層51の表面を保護する。はく離ライナーの構成材料としては、アクリル、ポリオレフィン、環状ポリオレフィン、ポリエステル等から形成されたプラスチックフィルムが好適に用いられる。はく離ライナーの厚みは、例えば、5μm以上200μm以下である。はく離ライナーの表面には、離型処理が施されていることが好ましい。離型処理に使用される離型剤の材料としては、シリコーン系材料、フッ素系材料、長鎖アルキル系材料、脂肪酸アミド系材料等が挙げられる。 A release liner (not shown) may be temporarily attached to the main surface of the adhesive layer 51 opposite to the silicon oxynitride layer 13 side. The release liner protects the surface of the pressure-sensitive adhesive layer 51, for example, until the gas barrier film 50 is attached to the polarizing plate 101 (see FIG. 8) described below. Plastic films made of acrylic, polyolefin, cyclic polyolefin, polyester or the like are preferably used as the constituent material of the release liner. The thickness of the release liner is, for example, 5 μm or more and 200 μm or less. The surface of the release liner is preferably subjected to release treatment. Examples of release agent materials used in release treatment include silicone-based materials, fluorine-based materials, long-chain alkyl-based materials, fatty acid amide-based materials, and the like.
 以上、図面を参照しながら第1実施形態に係るガスバリアフィルムの構成について説明した。次に、第1実施形態に係るガスバリアフィルムの要素について説明する。 The configuration of the gas barrier film according to the first embodiment has been described above with reference to the drawings. Next, elements of the gas barrier film according to the first embodiment will be described.
[透明フィルム基材11]
 透明フィルム基材11は、ガスバリア層形成の土台となる層である。透明フィルム基材11は、可撓性を有していてもよい。基材として可撓性のフィルムを用いることにより、ロールトゥロール方式でガスバリア層を形成可能であるため、ガスバリア層の生産性が高められる。また、可撓性フィルム上にガスバリア層が設けられたガスバリアフィルムは、フレキシブルデバイスやフォルダブルデバイスにも適用できるとの利点を有する。
[Transparent film substrate 11]
The transparent film substrate 11 is a layer that serves as a base for forming the gas barrier layer. The transparent film substrate 11 may have flexibility. By using a flexible film as the base material, the gas barrier layer can be formed by a roll-to-roll method, so the productivity of the gas barrier layer can be improved. A gas barrier film in which a gas barrier layer is provided on a flexible film also has the advantage of being applicable to flexible devices and foldable devices.
 透明フィルム基材11の可視光透過率は、好ましくは80%以上、より好ましくは90%以上である。透明フィルム基材11の厚みは、特に限定されないが、強度や取扱性等の観点から、5μm以上200μm以下であることが好ましく、10μm以上150μm以下であることがより好ましく、30μm以上100μm以下であることが更に好ましい。 The visible light transmittance of the transparent film substrate 11 is preferably 80% or higher, more preferably 90% or higher. The thickness of the transparent film substrate 11 is not particularly limited, but from the viewpoint of strength, handleability, etc., it is preferably 5 μm or more and 200 μm or less, more preferably 10 μm or more and 150 μm or less, and 30 μm or more and 100 μm or less. is more preferred.
 透明フィルム基材11を構成する樹脂材料としては、透明性、機械強度及び熱安定性に優れる樹脂材料が好ましい。樹脂材料の具体例としては、トリアセチルセルロース等のセルロース系樹脂、ポリエステル系樹脂、ポリエーテルスルホン系樹脂、ポリスルホン系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリオレフィン系樹脂、(メタ)アクリル系樹脂、環状ポリオレフィン系樹脂(より具体的には、ノルボルネン系樹脂等)、ポリアリレート系樹脂、ポリスチレン系樹脂、ポリビニルアルコール系樹脂、及びこれらの混合物が挙げられる。 As the resin material that constitutes the transparent film substrate 11, a resin material that is excellent in transparency, mechanical strength and thermal stability is preferable. Specific examples of resin materials include cellulose resins such as triacetyl cellulose, polyester resins, polyethersulfone resins, polysulfone resins, polycarbonate resins, polyamide resins, polyimide resins, polyolefin resins, (meth) Examples include acrylic resins, cyclic polyolefin resins (more specifically, norbornene resins, etc.), polyarylate resins, polystyrene resins, polyvinyl alcohol resins, and mixtures thereof.
 透明フィルム基材11のガスバリア層が形成される主面に、ガスバリア層との密着性向上等の目的で、コロナ処理、プラズマ処理、フレーム処理、オゾン処理、グロー処理、ケン化処理、カップリング剤による処理等の表面改質処理を施してもよい。 Corona treatment, plasma treatment, flame treatment, ozone treatment, glow treatment, saponification treatment, and coupling agent are applied to the main surface of the transparent film substrate 11 on which the gas barrier layer is formed, for the purpose of improving adhesion with the gas barrier layer. Surface modification treatment such as treatment with may be applied.
 透明フィルム基材11は、ガスバリア層が形成される側の表層がプライマー層(不図示)であってもよい。ガスバリア層が形成される側の表層がプライマー層である場合、透明フィルム基材11とガスバリア層との密着性が高くなる傾向がある。プライマー層を構成する材料としては、例えば、ケイ素、ニッケル、クロム、スズ、金、銀、白金、亜鉛、インジウム、チタン、タングステン、アルミニウム、ジルコニウム、パラジウム等の金属(又は半金属);これらの金属(又は半金属)の合金;これらの金属(又は半金属)の酸化物、フッ化物、硫化物又は窒化物等が挙げられる。プライマー層の厚みは、例えば、1nm以上20nm以下であり、好ましくは1nm以上15nm以下であり、より好ましくは1nm以上10nm以下である。 The surface layer of the transparent film substrate 11 on which the gas barrier layer is formed may be a primer layer (not shown). When the surface layer on which the gas barrier layer is formed is the primer layer, the adhesion between the transparent film substrate 11 and the gas barrier layer tends to be high. Examples of materials constituting the primer layer include metals (or semi-metals) such as silicon, nickel, chromium, tin, gold, silver, platinum, zinc, indium, titanium, tungsten, aluminum, zirconium, and palladium; alloys (or metalloids); oxides, fluorides, sulfides or nitrides of these metals (or metalloids); The thickness of the primer layer is, for example, 1 nm or more and 20 nm or less, preferably 1 nm or more and 15 nm or less, and more preferably 1 nm or more and 10 nm or less.
[酸窒化ケイ素層13]
 酸窒化ケイ素層13は、ガスバリア層におけるガスバリア機能を主に担う層であり、ケイ素、酸素及び窒素を主たる構成元素とする材料からなる層である。酸窒化ケイ素層13は、成膜時の原料、透明フィルム基材11及び外部環境から取り込まれる少量の水素・炭素等の元素を含んでいてもよい。
[Silicon oxynitride layer 13]
The silicon oxynitride layer 13 is a layer mainly having a gas barrier function in the gas barrier layer, and is a layer made of a material containing silicon, oxygen and nitrogen as main constituent elements. The silicon oxynitride layer 13 may contain a small amount of elements such as hydrogen, carbon, etc. taken in from the raw material at the time of film formation, the transparent film substrate 11 and the external environment.
 酸窒化ケイ素層13において、ケイ素、酸素及び窒素以外の元素の含有率は、それぞれ、5原子%以下であることが好ましく、3原子%以下であることがより好ましく、1原子%以下であることが更に好ましい。酸窒化ケイ素層13を構成する元素のうち、ケイ素、酸素及び窒素の合計含有率は、90原子%以上であることが好ましく、95原子%以上であることがより好ましく、97原子%以上であることが更に好ましく、99原子%以上、99.5原子%以上又は99.9原子%以上であってもよい。 In the silicon oxynitride layer 13, the content of elements other than silicon, oxygen, and nitrogen is preferably 5 atomic % or less, more preferably 3 atomic % or less, and 1 atomic % or less. is more preferred. Among the elements constituting the silicon oxynitride layer 13, the total content of silicon, oxygen and nitrogen is preferably 90 atomic % or more, more preferably 95 atomic % or more, and 97 atomic % or more. More preferably, it may be 99 atomic % or more, 99.5 atomic % or more, or 99.9 atomic % or more.
 酸窒化ケイ素層13中の酸窒化ケイ素の組成は、SiOで表される。ただし、SiOにおいて、0<x<2であり、かつ0<y<1.33である。以下、特に断りがない限り、SiOにおけるx及びyは、酸窒化ケイ素層13の厚み方向の中央部(上記総エッチング時間の1/2が経過したとき)における組成比のx及びyをさす。よって、比x/yは、1/2-O/Nと同義である。比x/yが小さいほど(すなわち、窒素の比率が高いほど)ガスバリア性が高められる傾向があり、比x/yが大きいほど(すなわち、酸素の比率が高いほど)可視光の吸収が少なく透明性が向上する傾向がある。以下、一般式SiOのxを、単に「x」と記載することがある。また、一般式SiOのyを、単に「y」と記載することがある。 The composition of silicon oxynitride in the silicon oxynitride layer 13 is represented by SiO x N y . However, in SiO x N y , 0<x<2 and 0<y<1.33. Hereinafter, unless otherwise specified, x and y in SiO x N y are x and y of the composition ratio at the central portion in the thickness direction of the silicon oxynitride layer 13 (when 1/2 of the total etching time has elapsed). point to Therefore, the ratio x/y is synonymous with 1/2-O/N. The smaller the ratio x/y (that is, the higher the nitrogen ratio), the higher the gas barrier properties, and the larger the x/y ratio (that is, the higher the oxygen ratio), the less visible light absorption and transparency. tend to improve. Hereinafter, x in the general formula SiO x N y may be simply referred to as "x". Also, y in the general formula SiO x N y may be simply described as "y".
 酸窒化ケイ素層13中の酸窒化ケイ素は、化学量論組成を有していてもよく、酸素又は窒素が不足している非化学量論組成であってもよい。化学量論組成の酸窒化ケイ素は、x/2+3y/4=1である。(x/2+3y/4)の値は、0.70以上1.10以下であることが好ましい。(x/2+3y/4)の上限は理論的には1であるが、酸素又は窒素が過剰に取り込まれることにより、1より大きな値を示す場合がある。(x/2+3y/4)が0.70以上であれば、透明性及びガスバリア性が高められる傾向がある。(x/2+3y/4)の値は、0.75以上であることが好ましい。 The silicon oxynitride in the silicon oxynitride layer 13 may have a stoichiometric composition or may be a non-stoichiometric composition lacking oxygen or nitrogen. Stoichiometric silicon oxynitride has x/2+3y/4=1. The value of (x/2+3y/4) is preferably 0.70 or more and 1.10 or less. Theoretically, the upper limit of (x/2+3y/4) is 1, but it may show a value greater than 1 due to excessive intake of oxygen or nitrogen. If (x/2+3y/4) is 0.70 or more, transparency and gas barrier properties tend to be enhanced. The value of (x/2+3y/4) is preferably 0.75 or more.
 酸窒化ケイ素層13の屈折率は、一般に1.50以上2.20以下であり、1.55以上2.00以下であることが好ましく、1.60以上1.90以下であってもよく、1.85以下、1.80以下、1.75以下又は1.70以下であってもよい。屈折率がこの範囲である酸窒化ケイ素層13は、優れたガスバリア性と透明性を両立可能である。また、屈折率が2.00以下であることにより、光透過性が向上する傾向がある。酸窒化ケイ素層13は、窒素の比率が高いほど、屈折率が高くなる傾向がある。 The refractive index of the silicon oxynitride layer 13 is generally 1.50 or more and 2.20 or less, preferably 1.55 or more and 2.00 or less, and may be 1.60 or more and 1.90 or less. It may be 1.85 or less, 1.80 or less, 1.75 or less, or 1.70 or less. The silicon oxynitride layer 13 having a refractive index within this range can achieve both excellent gas barrier properties and transparency. Further, when the refractive index is 2.00 or less, there is a tendency for the light transmittance to be improved. The silicon oxynitride layer 13 tends to have a higher refractive index as the nitrogen ratio increases.
 酸窒化ケイ素層13の密度は2.10g/cm以上であることが好ましい。酸窒化ケイ素層13の密度が大きいほど、ガスバリア性が高くなる傾向がある。酸窒化ケイ素層13は、窒素の比率が高いほど、密度が大きくなる傾向がある。 The density of the silicon oxynitride layer 13 is preferably 2.10 g/cm 3 or more. The higher the density of the silicon oxynitride layer 13, the higher the gas barrier properties tend to be. The silicon oxynitride layer 13 tends to have a higher density as the nitrogen ratio increases.
 ガスバリア性により優れるガスバリアフィルムを得るためには、酸窒化ケイ素層13の厚みは、5nm以上であることが好ましく、10nm以上であることがより好ましい。透明性により優れるガスバリアフィルムを得るためには、酸窒化ケイ素層13の厚みは、150nm以下であることが好ましく、100nm以下であることがより好ましい。ガスバリア性及び透明性により優れるガスバリアフィルムを得るためには、酸窒化ケイ素層13の厚みは、5nm以上150nm以下であることが好ましく、10nm以上100nm以下であることがより好ましい。 In order to obtain a gas barrier film with better gas barrier properties, the thickness of the silicon oxynitride layer 13 is preferably 5 nm or more, more preferably 10 nm or more. In order to obtain a gas barrier film with superior transparency, the thickness of the silicon oxynitride layer 13 is preferably 150 nm or less, more preferably 100 nm or less. In order to obtain a gas barrier film with superior gas barrier properties and transparency, the thickness of the silicon oxynitride layer 13 is preferably 5 nm or more and 150 nm or less, more preferably 10 nm or more and 100 nm or less.
 酸窒化ケイ素層13の成膜方法は、特に限定されず、ドライコーティング法でもウェットコーティング法でもよい。膜密度が高くガスバリア性の高い膜が形成されやすいことから、スパッタ法、イオンプレーティング法、真空蒸着法、化学気相成長法(CVD法)等のドライプロセスが好ましい。膜応力が小さく、耐屈曲性に優れる膜が形成されやすいことから、CVD法が好ましく、プラズマCVD法がより好ましい。 A method for forming the silicon oxynitride layer 13 is not particularly limited, and may be a dry coating method or a wet coating method. A dry process such as a sputtering method, an ion plating method, a vacuum deposition method, or a chemical vapor deposition method (CVD method) is preferable because a film having a high film density and a high gas barrier property can be easily formed. A CVD method is preferable, and a plasma CVD method is more preferable, because a film having small film stress and excellent bending resistance can be easily formed.
 透明フィルム基材11として可撓性フィルムを用い、可撓性フィルム上にガスバリア層(例えば、酸窒化ケイ素層13)を形成(成膜)する場合は、ロールトゥロール方式でCVD成膜を実施することにより、生産性を向上できる。ロールトゥロール方式のCVD成膜装置は、成膜ロールが一対の対向電極の一方又は両方の電極を構成しており、成膜ロール上をフィルムが走行する際に、フィルム上に薄膜が形成される。2つの成膜ロールが一対の対向電極を構成している場合は、それぞれの成膜ロール上で薄膜が形成されるため、成膜速度を2倍に向上できる。なお、CVD法による成膜方法を説明する際の「上に」との表現は、CVD成膜装置内の方向とは無関係であり、「に接して」と同義である。 When a flexible film is used as the transparent film substrate 11 and a gas barrier layer (for example, the silicon oxynitride layer 13) is formed (film-formed) on the flexible film, CVD film formation is performed by a roll-to-roll method. productivity can be improved. In a roll-to-roll type CVD film forming apparatus, a film forming roll constitutes one or both electrodes of a pair of opposed electrodes, and a thin film is formed on the film when the film runs on the film forming roll. be. When two film-forming rolls constitute a pair of opposing electrodes, a thin film is formed on each of the film-forming rolls, so the film-forming speed can be doubled. In addition, the expression "above" when explaining the film forming method by the CVD method has no relation to the direction in the CVD film forming apparatus, and has the same meaning as "in contact with".
 CVD法により酸窒化ケイ素層13を成膜する際のケイ素の供給源(ケイ素源)としては、例えば、水素化ケイ素(より具体的には、シラン、ジシラン等)やハロゲン化ケイ素(より具体的には、ジクロロシラン等)等のSi含有ガス;ヘキサメチルジシラザン、ヘキサメチルジシロキサン、1,1,3,3-テトラメチルジシロキサン、テトラメチルシラン、ビニルトリメトキシシラン、ビニルトリメチルシラン、ジメチルジメトキシシラン、テトラメトキシシラン、メチルトリメトキシシラン、ジメチルジエトキシシラン、トリメチルメトキシシラン、テトラエトキシシラン、ジエチルジエトキシシラン、メチルジメトキシシラン、メチルジエトキシシロキサン、モノシリルアミン、ジシリルアミン、トリシリルアミン等のケイ素化合物が挙げられる。これらの中でも、毒性が低く、低沸点であり、高透明かつ高密度の膜を形成可能であることから、トリシリルアミンが好ましい。 Examples of the silicon source (silicon source) for forming the silicon oxynitride layer 13 by the CVD method include silicon hydride (more specifically, silane, disilane, etc.) and silicon halide (more specifically, hexamethyldisilazane, hexamethyldisiloxane, 1,1,3,3-tetramethyldisiloxane, tetramethylsilane, vinyltrimethoxysilane, vinyltrimethylsilane, dimethyl Silicon such as dimethoxysilane, tetramethoxysilane, methyltrimethoxysilane, dimethyldiethoxysilane, trimethylmethoxysilane, tetraethoxysilane, diethyldiethoxysilane, methyldimethoxysilane, methyldiethoxysiloxane, monosilylamine, disilylamine, trisilylamine, etc. compound. Among these, trisilylamine is preferable because it has low toxicity, a low boiling point, and can form a highly transparent and high-density film.
 酸窒化ケイ素層13を成膜するためには、通常、ケイ素源に加えて、窒素源及び酸素源となるガスを導入する。窒素源としては、窒素、アンモニア等が挙げられる。酸素源としては、酸素、一酸化炭素、二酸化炭素等が挙げられる。膜中に取り込まれる水素や炭素を低減する観点から、窒素源としては窒素(窒素ガス)が好ましく、酸素源としては酸素(酸素ガス)が好ましい。 In order to form the silicon oxynitride layer 13, normally, in addition to the silicon source, a nitrogen source and an oxygen source gas are introduced. Nitrogen sources include nitrogen and ammonia. Oxygen sources include oxygen, carbon monoxide, carbon dioxide, and the like. Nitrogen (nitrogen gas) is preferable as the nitrogen source, and oxygen (oxygen gas) is preferable as the oxygen source, from the viewpoint of reducing hydrogen and carbon taken into the film.
 一般に、ケイ素源としてのトリシリルアミンとともに窒素源を導入してCVD法により成膜した窒化ケイ素膜は、膜中の水素量が多く、Si-H等の水素化ケイ素に由来する波数2140cm-1付近(2120cm-1以上2150cm-1以下の範囲)の赤外吸収ピークを示す。また、一般に、ケイ素源としてのトリシリルアミンとともに窒素及び酸素を導入してCVD法により成膜した酸窒化ケイ素膜は、赤外吸収のピークが高波数側にシフトして、2160cm-1以上2280cm-1以下の範囲に赤外吸収ピークを示し、窒化ケイ素膜よりも優れた透明性を示す。酸素は、ケイ素に対する結合力が強いため、酸素の導入により膜中への水素の取り込みが抑制されることが、透明性向上の一因と推定される。 In general, a silicon nitride film formed by a CVD method by introducing a nitrogen source together with trisilylamine as a silicon source has a large amount of hydrogen in the film, and a wave number of 2140 cm − 1 (range of 2120 cm −1 to 2150 cm −1 ). In addition, in general, a silicon oxynitride film formed by a CVD method by introducing nitrogen and oxygen together with trisilylamine as a silicon source shifts the infrared absorption peak to the high wave number side, and is 2160 cm −1 to 2280 cm It exhibits an infrared absorption peak in the range of -1 or less, and exhibits transparency superior to that of silicon nitride films. Oxygen has a strong bonding force with silicon, so it is presumed that the introduction of oxygen suppresses the uptake of hydrogen into the film, which is one of the reasons for the improvement in transparency.
 ケイ素源に対する窒素源及び酸素源の少なくとも一方の導入量(流量)を変更することにより、酸窒化ケイ素層13の組成を適宜に調整できる。窒素源として窒素を使用し、かつ酸素源として酸素を使用する場合、透明性とガスバリア性とを両立する観点から、酸素の導入量は、窒素の導入量に対して、体積比で、0.01倍以上5倍以下であることが好ましく、0.03倍以上2倍以下であることがより好ましく、0.04倍以上1.5倍以下であることが更に好ましく、0.04倍以上1.0倍以下又は0.04倍以上0.5倍以下であってもよい。酸素導入量が過度に小さい場合は、膜に導入される酸素量が少なく、膜の光透過率が小さくなる傾向がある。酸素導入量が過度に大きい場合は、膜に取り込まれる窒素量が少なく、ガスバリア性が不足する傾向がある。 By changing the introduction amount (flow rate) of at least one of the nitrogen source and the oxygen source with respect to the silicon source, the composition of the silicon oxynitride layer 13 can be appropriately adjusted. When nitrogen is used as the nitrogen source and oxygen is used as the oxygen source, from the viewpoint of achieving both transparency and gas barrier properties, the amount of oxygen to be introduced is set to 0.05 by volume with respect to the amount of nitrogen to be introduced. It is preferably 0.1 times or more and 5 times or less, more preferably 0.03 times or more and 2 times or less, further preferably 0.04 times or more and 1.5 times or less, and 0.04 times or more and 1 0 times or less, or 0.04 times or more and 0.5 times or less. If the amount of oxygen introduced is excessively small, the amount of oxygen introduced into the film tends to be small and the light transmittance of the film tends to decrease. If the amount of oxygen introduced is excessively large, the amount of nitrogen incorporated into the film tends to be small, resulting in insufficient gas barrier properties.
 CVD法により成膜する際の導入ガスとして、ケイ素源、窒素源及び酸素源以外のガスを用いてもよい。例えば、トリシリルアミン等の液体を用いる場合は、液体を気化させてチャンバー(真空チャンバー)内に導入するためにキャリアガスを用いてもよい。また、窒素源や酸素源を、キャリアガスと混合して真空チャンバー内に導入してもよく、プラズマ放電を安定させるために放電用ガスを用いてもよい。キャリアガス及び放電用ガスとしては、ヘリウム、アルゴン、ネオン、キセノン等の希ガスや水素が挙げられる。膜中に取り込まれる水素量を低減して透明性を高める観点から、希ガスが好ましい。 A gas other than the silicon source, the nitrogen source, and the oxygen source may be used as the introduced gas when forming the film by the CVD method. For example, when using a liquid such as trisilylamine, a carrier gas may be used to vaporize the liquid and introduce it into the chamber (vacuum chamber). Also, a nitrogen source or an oxygen source may be mixed with a carrier gas and introduced into the vacuum chamber, or a discharge gas may be used to stabilize the plasma discharge. Carrier gas and discharge gas include rare gases such as helium, argon, neon, and xenon, and hydrogen. A rare gas is preferable from the viewpoint of reducing the amount of hydrogen taken into the film and increasing the transparency.
 プラズマCVD法における諸条件は、適宜設定すればよい。基材温度(成膜ロール表面の温度)は、例えば-20℃以上500℃以下の範囲内に設定される。フィルム基材上にガスバリア層(例えば、酸窒化ケイ素層13)を成膜する場合の基材温度(フィルム基材温度)は、フィルム基材の耐熱性の観点から、150℃以下であることが好ましく、100℃以下であることがより好ましい。成膜室(真空チャンバー内)の圧力は、例えば、0.001Pa以上50Pa以下である。プラズマ発生用電源としては、例えば、交流電源が用いられる。ロールトゥロール方式のCVD成膜における電源の周波数は、一般に50kHz以上500kHz以下の範囲内である。ロールトゥロール方式のCVD成膜における印加電力は、一般に0.1kW以上10kW以下である。 Various conditions in the plasma CVD method can be set as appropriate. The substrate temperature (temperature of the surface of the film-forming roll) is set, for example, within the range of -20°C or higher and 500°C or lower. The substrate temperature (film substrate temperature) when forming a gas barrier layer (for example, silicon oxynitride layer 13) on a film substrate is preferably 150° C. or less from the viewpoint of the heat resistance of the film substrate. The temperature is preferably 100° C. or lower, and more preferably 100° C. or lower. The pressure in the film forming chamber (inside the vacuum chamber) is, for example, 0.001 Pa or more and 50 Pa or less. An AC power supply, for example, is used as the power supply for plasma generation. The frequency of the power supply in roll-to-roll CVD film formation is generally in the range of 50 kHz to 500 kHz. The applied power in roll-to-roll CVD film formation is generally 0.1 kW or more and 10 kW or less.
 CVD法により成膜した酸窒化ケイ素層13の密度は、例えば2.10g/cm以上2.50g/cm以下であり、2.15g/cm以上2.45g/cm以下、2.20g/cm以上2.40g/cm以下又は2.25g/cm以上2.35g/cm以下であってもよい。 The density of the silicon oxynitride layer 13 formed by the CVD method is, for example, 2.10 g/cm 3 or more and 2.50 g/cm 3 or less, and 2.15 g/cm 3 or more and 2.45 g/cm 3 or less. It may be 20 g/cm 3 or more and 2.40 g/cm 3 or less, or 2.25 g/cm 3 or more and 2.35 g/cm 3 or less.
[低屈折率層22]
 低屈折率層22は、酸窒化ケイ素層13よりも低屈折率であればその材料は特に限定されず、有機層でも無機層でもよい。低屈折率層22を構成する無機材料としては、酸化ケイ素、フッ化マグネシウム等が挙げられる。酸窒化ケイ素層13と低屈折率層22との屈折率差は、0.10以上が好ましく、0.13以上又は0.15以上であってもよい。上記屈折率差は、一般に1.0以下であり、0.5以下、0.4以下又は0.3以下であってもよい。低屈折率層22の屈折率は、1.30以上1.55以下であってもよく、1.40以上1.52以下であってもよい。
[Low refractive index layer 22]
The material of the low refractive index layer 22 is not particularly limited as long as it has a lower refractive index than the silicon oxynitride layer 13, and may be an organic layer or an inorganic layer. Examples of the inorganic material forming the low refractive index layer 22 include silicon oxide and magnesium fluoride. The refractive index difference between the silicon oxynitride layer 13 and the low refractive index layer 22 is preferably 0.10 or more, and may be 0.13 or more or 0.15 or more. The refractive index difference is generally 1.0 or less, and may be 0.5 or less, 0.4 or less, or 0.3 or less. The refractive index of the low refractive index layer 22 may be 1.30 or more and 1.55 or less, or 1.40 or more and 1.52 or less.
 低屈折率層22は、好ましくは酸化ケイ素層である。酸化ケイ素層は、成膜時の原料、透明フィルム基材11及び外部環境から取り込まれる少量の水素・炭素・窒素等の元素を含んでいてもよい。酸化ケイ素層が窒素を含む場合、窒素含有量は、酸窒化ケイ素層13よりも小さいことが好ましい。酸化ケイ素層において、ケイ素及び酸素以外の元素の含有率は、それぞれ、5原子%以下であることが好ましい。 The low refractive index layer 22 is preferably a silicon oxide layer. The silicon oxide layer may contain a small amount of elements such as hydrogen, carbon, nitrogen, etc. taken in from raw materials during film formation, the transparent film substrate 11 and the external environment. If the silicon oxide layer contains nitrogen, the nitrogen content is preferably lower than that of the silicon oxynitride layer 13 . In the silicon oxide layer, the content of elements other than silicon and oxygen is preferably 5 atomic % or less.
 低屈折率層22の成膜方法は、特に限定されず、ドライコーティング法でもウェットコーティング法でもよい。酸窒化ケイ素層13をCVD法により成膜する場合は、生産性の観点から、低屈折率層22もCVD法により成膜することが好ましい。 A method for forming the low refractive index layer 22 is not particularly limited, and may be a dry coating method or a wet coating method. When the silicon oxynitride layer 13 is formed by the CVD method, the low refractive index layer 22 is also preferably formed by the CVD method from the viewpoint of productivity.
 CVD法により酸化ケイ素層(詳しくは、低屈折率層22としての酸化ケイ素層)を成膜する場合のケイ素源及び酸素源としては、酸窒化ケイ素層13の成膜に関して先に例示したものが挙げられる。ケイ素源としては、毒性が低く、膜中への窒素の取り込みを抑制できることから有機ケイ素化合物が好ましく、膜中への不純物の取り込みを抑制可能であり、透明性及びガスバリア性の高い膜を形成可能であることからヘキサメチルジシロキサンがより好ましい。ケイ素源としてヘキサメチルジシロキサン等の有機ケイ素化合物を用いた場合、膜中に炭素が取り込まれる場合があるが、上記のように、少量であれば、酸化ケイ素層に炭素が含まれていてもよい。膜中の炭素量を低減する観点から、酸素源としては酸素ガスが好ましい。 As the silicon source and oxygen source for forming the silicon oxide layer (more specifically, the silicon oxide layer as the low refractive index layer 22) by the CVD method, those exemplified above regarding the formation of the silicon oxynitride layer 13 are used. mentioned. As the silicon source, organosilicon compounds are preferable because they have low toxicity and can suppress the incorporation of nitrogen into the film. They can suppress the incorporation of impurities into the film, and can form films with high transparency and gas barrier properties. Hexamethyldisiloxane is more preferable because When an organosilicon compound such as hexamethyldisiloxane is used as the silicon source, carbon may be incorporated into the film. good. From the viewpoint of reducing the amount of carbon in the film, oxygen gas is preferable as the oxygen source.
 ケイ素源に対する酸素源の導入量が多いほど、膜中の炭素量が低減し、膜密度が高くなる傾向がある。ヘキサメチルジシロキサンと酸素を用いてCVD法により酸化ケイ素層を成膜する場合、酸素の導入量は、ヘキサメチルジシロキサン(気体)の導入量に対して、体積比で10倍以上が好ましく、15倍以上又は20倍以上であってもよい。成膜速度を適切に維持する観点から、酸素の導入量は、ヘキサメチルジシロキサン(気体)の導入量に対して、体積比で200倍以下が好ましく、100倍以下又は50倍以下であってもよい。  The more the amount of oxygen source introduced relative to the silicon source, the more the amount of carbon in the film tends to decrease and the film density tends to increase. When forming a silicon oxide layer by a CVD method using hexamethyldisiloxane and oxygen, the amount of oxygen introduced is preferably at least 10 times the amount of hexamethyldisiloxane (gas) introduced in volume ratio. It may be 15 times or more or 20 times or more. From the viewpoint of appropriately maintaining the film formation rate, the amount of oxygen introduced is preferably 200 times or less, and preferably 100 times or less or 50 times or less, the volume ratio of the amount of hexamethyldisiloxane (gas) introduced. good too.
 酸化ケイ素層のCVD成膜においては、キャリアガスや放電ガスを導入してもよい。基材温度、圧力、電源周波数、印加電力等の諸条件は、酸窒化ケイ素層13の成膜と同様、適宜調整すればよい。 A carrier gas or a discharge gas may be introduced in the CVD film formation of the silicon oxide layer. Various conditions such as substrate temperature, pressure, power supply frequency, and applied power may be appropriately adjusted in the same manner as in the deposition of the silicon oxynitride layer 13 .
 低屈折率層22としての酸化ケイ素層をガスバリア性向上に寄与させる観点から、酸化ケイ素層の密度は、1.80g/cm以上であることが好ましく、1.90g/cm以上であることがより好ましく、2.00g/cm以上2.40g/cm以下、2.05g/cm以上2.35g/cm以下、又は2.10g/cm以上2.30g/cm以下であってもよい。 From the viewpoint of making the silicon oxide layer as the low refractive index layer 22 contribute to improving gas barrier properties, the density of the silicon oxide layer is preferably 1.80 g/cm 3 or more, and more preferably 1.90 g/cm 3 or more. is more preferably 2.00 g/cm 3 or more and 2.40 g/cm 3 or less, 2.05 g/cm 3 or more and 2.35 g/cm 3 or less, or 2.10 g/cm 3 or more and 2.30 g/cm 3 or less There may be.
 低屈折率層22を光学干渉層として適切に作用させる観点から、低屈折率層22の厚みは、3nm以上250nm以下であることが好ましく、5nm以上200nm以下又は10nm以上150nm以下であってもよい。低屈折率層22の厚みは、ガスバリア層の光反射率が小さくなり、かつ反射光の色付きが抑制されるように設定することが好ましい。反射光の特性(スペクトル)は、光学モデル計算により正確に評価することが可能である。光学計算により多層光学薄膜の反射スペクトルを求める方法としては、薄膜のそれぞれの界面に対して薄膜干渉の公式を繰り返し適用して、多重反射した波を全て足し合わせる方法、及びマックスウェル方程式の境界条件を考慮して転送行列により反射スペクトルを計算する方法等が知られている。 From the viewpoint of allowing the low refractive index layer 22 to function properly as an optical interference layer, the thickness of the low refractive index layer 22 is preferably 3 nm or more and 250 nm or less, and may be 5 nm or more and 200 nm or less, or 10 nm or more and 150 nm or less. . It is preferable to set the thickness of the low refractive index layer 22 so that the light reflectance of the gas barrier layer is small and the coloring of the reflected light is suppressed. The properties (spectrum) of reflected light can be accurately evaluated by optical model calculations. As a method of obtaining the reflection spectrum of a multi-layer optical thin film by optical calculation, the method of repeatedly applying the thin film interference formula to each interface of the thin film and summing all the multiple reflected waves, and the boundary conditions of Maxwell's equations There is known a method of calculating a reflection spectrum by a transfer matrix in consideration of .
 ガスバリア層は、酸窒化ケイ素層13及び低屈折率層22以外の層(他の層)を含んでいてもよい。「他の層」の例としては、金属若しくは半金属の酸化物、窒化物又は酸窒化物等のセラミック材料からなる無機薄膜が挙げられる。低透湿性と透明性を兼ね備えることから、Si、Al、In、Sn、Zn、Ti、Nb、Ce若しくはZrの酸化物、窒化物又は酸窒化物が好ましい。 The gas barrier layer may include layers (other layers) other than the silicon oxynitride layer 13 and the low refractive index layer 22. Examples of "other layers" include inorganic thin films made of ceramic materials such as metal or semi-metal oxides, nitrides or oxynitrides. Oxides, nitrides or oxynitrides of Si, Al, In, Sn, Zn, Ti, Nb, Ce or Zr are preferred because they have both low moisture permeability and transparency.
 高いガスバリア性と透明性とを両立させる観点から、ガスバリア層の合計厚みは、30nm以上1000nm以下であることが好ましく、40nm以上500nm以下であることがより好ましい。 From the viewpoint of achieving both high gas barrier properties and transparency, the total thickness of the gas barrier layer is preferably 30 nm or more and 1000 nm or less, more preferably 40 nm or more and 500 nm or less.
[ハードコート層31]
 ハードコート層31は、例えば、バインダー樹脂とナノ粒子とを含む。バインダー樹脂としては、熱硬化性樹脂、光硬化性樹脂、電子線硬化性樹脂等の硬化性樹脂が好ましく用いられる。硬化性樹脂の種類としては、ポリエステル系樹脂、アクリル系樹脂、ウレタン系樹脂、アクリルウレタン系樹脂、アミド系樹脂、シリコーン系樹脂、シリケート系樹脂、エポキシ系樹脂、メラミン系樹脂、オキセタン系樹脂等が挙げられる。硬化性樹脂は、一種又は二種以上を使用できる。これらの中でも、硬度が高く、光硬化が可能であることから、アクリル系樹脂、アクリルウレタン系樹脂及びエポキシ系樹脂からなる群より選択される一種以上が好ましく、アクリル系樹脂及びアクリルウレタン系樹脂からなる群より選択される一種以上がより好ましい。
[Hard coat layer 31]
The hard coat layer 31 contains, for example, a binder resin and nanoparticles. As the binder resin, curable resins such as thermosetting resins, photocurable resins and electron beam curable resins are preferably used. Types of curable resins include polyester resins, acrylic resins, urethane resins, acrylic urethane resins, amide resins, silicone resins, silicate resins, epoxy resins, melamine resins, and oxetane resins. mentioned. One or more curable resins can be used. Among these, one or more selected from the group consisting of acrylic resins, acrylic urethane resins, and epoxy resins are preferable because they have high hardness and can be photocured, and acrylic resins and acrylic urethane resins. More preferably, one or more selected from the group consisting of
 ハードコート層31に含まれるナノ粒子の個数平均一次粒子径は、バインダー樹脂中での分散性を高める観点から、15nm以上であることが好ましく、20nm以上であることがより好ましい。密着性向上に寄与する微細な凹凸形状を形成する観点から、ハードコート層31に含まれるナノ粒子の個数平均一次粒子径は、90nm以下であることが好ましく、70nm以下であることがより好ましく、50nm以下であることが更に好ましい。 The number average primary particle diameter of the nanoparticles contained in the hard coat layer 31 is preferably 15 nm or more, more preferably 20 nm or more, from the viewpoint of enhancing dispersibility in the binder resin. From the viewpoint of forming fine irregularities that contribute to improved adhesion, the number average primary particle diameter of the nanoparticles contained in the hard coat layer 31 is preferably 90 nm or less, more preferably 70 nm or less. It is more preferably 50 nm or less.
 ナノ粒子の材料としては、無機酸化物が好ましい。無機酸化物としては、シリカ、酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化ニオブ、酸化亜鉛、酸化スズ、酸化セリウム、酸化マグネシウム等の金属(又は半金属)の酸化物が挙げられる。無機酸化物は、複数種の(半)金属の複合酸化物でもよい。例示の無機酸化物の中でも、密着性向上効果が高いことから、シリカが好ましい。つまり、ナノ粒子としては、シリカ粒子(ナノシリカ粒子)が好ましい。ナノ粒子としての無機酸化物粒子の表面には、樹脂との密着性や親和性を高める目的で、アクリル基、エポキシ基等の官能基が導入されていてもよい。 Inorganic oxides are preferable as materials for nanoparticles. Examples of inorganic oxides include metal (or metalloid) oxides such as silica, titanium oxide, aluminum oxide, zirconium oxide, niobium oxide, zinc oxide, tin oxide, cerium oxide, and magnesium oxide. The inorganic oxide may be a composite oxide of multiple (semi)metals. Among the exemplified inorganic oxides, silica is preferable because it has a high adhesion improving effect. That is, silica particles (nanosilica particles) are preferable as the nanoparticles. A functional group such as an acrylic group or an epoxy group may be introduced into the surface of the inorganic oxide particles as nanoparticles for the purpose of enhancing adhesion and affinity with the resin.
 ハードコート層31におけるナノ粒子の量は、バインダー樹脂とナノ粒子の合計量100重量部に対して、5重量部以上であることが好ましく、10重量部以上、20重量部以上又は30重量部以上であってもよい。ナノ粒子の量が5重量部以上であれば、ハードコート層31上に形成されるガスバリア層との密着性を向上させることができる。ハードコート層31におけるナノ粒子の量の上限は、バインダー樹脂とナノ粒子の合計量100重量部に対して、例えば90重量部であり、80重量部であることが好ましく、70重量部であってもよい。 The amount of the nanoparticles in the hard coat layer 31 is preferably 5 parts by weight or more, 10 parts by weight or more, 20 parts by weight or more, or 30 parts by weight or more with respect to 100 parts by weight of the total amount of the binder resin and the nanoparticles. may be If the amount of the nanoparticles is 5 parts by weight or more, the adhesion to the gas barrier layer formed on the hard coat layer 31 can be improved. The upper limit of the amount of nanoparticles in the hard coat layer 31 is, for example, 90 parts by weight, preferably 80 parts by weight, and preferably 70 parts by weight with respect to 100 parts by weight of the total amount of the binder resin and the nanoparticles. good too.
 ハードコート層31の厚みは、特に限定されないが、高い硬度を実現しつつガスバリア層との密着性を向上させるためには、0.5μm以上であることが好ましく、1.0μm以上であることがより好ましく、2.0μm以上であることが更に好ましく、3.0μm以上であることが更により好ましい。一方、凝集破壊による強度の低下を抑制するためには、ハードコート層31の厚みは、20μm以下であることが好ましく、15μm以下であることがより好ましく、12μm以下であることが更に好ましい。 The thickness of the hard coat layer 31 is not particularly limited, but is preferably 0.5 μm or more, more preferably 1.0 μm or more, in order to improve the adhesion to the gas barrier layer while achieving high hardness. It is more preferably 2.0 μm or more, and even more preferably 3.0 μm or more. On the other hand, the thickness of the hard coat layer 31 is preferably 20 μm or less, more preferably 15 μm or less, and even more preferably 12 μm or less, in order to suppress a decrease in strength due to cohesive failure.
(ハードコート層31の形成方法)
 透明フィルム基材11上にハードコート組成物を塗布し、必要に応じて溶媒の除去及び樹脂の硬化を行うことにより、ハードコート層31が形成される。ハードコート組成物は、例えば、上記のバインダー樹脂及びナノ粒子を含み、必要に応じてこれらの成分を溶解又は分散可能な溶媒を含む。ハードコート組成物中の樹脂成分が硬化性樹脂である場合は、ハードコート組成物中に、適宜の重合開始剤が含まれていることが好ましい。例えば、ハードコート組成物中の樹脂成分が光硬化型樹脂である場合には、ハードコート組成物中に光重合開始剤が含まれていることが好ましい。
(Method for Forming Hard Coat Layer 31)
The hard coat layer 31 is formed by applying the hard coat composition onto the transparent film substrate 11, and optionally removing the solvent and curing the resin. The hard coat composition contains, for example, the above binder resin and nanoparticles, and optionally contains a solvent capable of dissolving or dispersing these components. When the resin component in the hard coat composition is a curable resin, the hard coat composition preferably contains an appropriate polymerization initiator. For example, when the resin component in the hard coat composition is a photocurable resin, the hard coat composition preferably contains a photopolymerization initiator.
 ハードコート組成物は、上記成分の他に、個数平均一次粒子径が1.0μm以上の粒子(マイクロ粒子)、レベリング剤、粘度調整剤(チクソトロピー剤、増粘剤等)、帯電防止剤、ブロッキング防止剤、分散剤、分散安定剤、酸化防止剤、紫外線吸収剤、消泡剤、界面活性剤、滑剤等の添加剤を含んでいてもよい。 In addition to the above components, the hard coat composition includes particles (microparticles) having a number average primary particle diameter of 1.0 μm or more, leveling agents, viscosity modifiers (thixotropic agents, thickeners, etc.), antistatic agents, blocking agents, Additives such as inhibitors, dispersants, dispersion stabilizers, antioxidants, UV absorbers, antifoaming agents, surfactants and lubricants may be included.
 ハードコート組成物の塗布方法としては、バーコート法、ロールコート法、グラビアコート法、ロッドコート法、スロットオリフィスコート法、カーテンコート法、ファウンテンコート法、コンマコート法等の任意の適切な方法を採用し得る。 As a method for applying the hard coat composition, any suitable method such as bar coating, roll coating, gravure coating, rod coating, slot orifice coating, curtain coating, fountain coating, comma coating, etc. can be used. can be adopted.
[粘着剤層51]
 粘着剤層51の構成材料としては、可視光透過率が高い粘着剤が好適に用いられる。粘着剤層51を構成する粘着剤としては、例えば、アクリル系ポリマー、シリコーン系ポリマー、ポリエステル、ポリウレタン、ポリアミド、ポリビニルエーテル、酢酸ビニル-塩化ビニル共重合体、変性ポリオレフィン、エポキシ系樹脂、フッ素系樹脂、天然ゴム、合成ゴム等のポリマーをベースポリマーとする透明な粘着剤を、適宜に選択して用いることができる。粘着剤層51の厚みは、好ましくは5μm以上100μm以下である。粘着剤層51の屈折率は、例えば1.4以上1.5以下である。
[Adhesive layer 51]
As a constituent material of the adhesive layer 51, an adhesive having a high visible light transmittance is preferably used. Examples of adhesives constituting the adhesive layer 51 include acrylic polymers, silicone polymers, polyesters, polyurethanes, polyamides, polyvinyl ethers, vinyl acetate-vinyl chloride copolymers, modified polyolefins, epoxy resins, and fluorine resins. , natural rubber, synthetic rubber or the like as a base polymer can be appropriately selected and used. The thickness of the adhesive layer 51 is preferably 5 μm or more and 100 μm or less. The refractive index of the adhesive layer 51 is, for example, 1.4 or more and 1.5 or less.
[ガスバリアフィルムの特性]
 ガスバリアフィルムの水蒸気透過率は、3.0×10-2g/m・day以下であることが好ましく、2.0×10-2g/m・day以下であることがより好ましく、1.0×10-2g/m・day以下であることが更に好ましい。有機EL素子等の保護対象の劣化を抑制する観点からは、水蒸気透過率は小さいほど好ましい。ガスバリアフィルムの水蒸気透過率の下限は、特に限定されないが、一般には1.0×10-5g/m・dayである。水蒸気透過率(WVTR)は、温度40℃かつ相対湿度90%の条件下、ISO 15106-5に記載された差圧法(Pressure Sensor Method)に従って測定される。
[Characteristics of gas barrier film]
The water vapor transmission rate of the gas barrier film is preferably 3.0×10 −2 g/m 2 ·day or less, more preferably 2.0×10 −2 g/m 2 ·day or less. It is more preferably 0×10 −2 g/m 2 ·day or less. From the viewpoint of suppressing deterioration of the protection object such as the organic EL element, the lower the water vapor transmission rate, the better. Although the lower limit of the water vapor transmission rate of the gas barrier film is not particularly limited, it is generally 1.0×10 −5 g/m 2 ·day. Water vapor transmission rate (WVTR) is measured according to the differential pressure method (Pressure Sensor Method) described in ISO 15106-5 under conditions of a temperature of 40° C. and a relative humidity of 90%.
 ガスバリアフィルムの光透過率は、75%以上であることが好ましく、80%以上であることがより好ましい。光透過率は、JlS Z8781-3:2016で規定されるCIE三刺激値のY値である。 The light transmittance of the gas barrier film is preferably 75% or higher, more preferably 80% or higher. Light transmittance is the Y value of the CIE tristimulus values specified in JlS Z8781-3:2016.
<第2実施形態:ガスバリアフィルムの製造方法>
 次に、本発明の第2実施形態に係るガスバリアフィルムの製造方法について説明する。第2実施形態に係るガスバリアフィルムの製造方法は、上述した第1実施形態に係るガスバリアフィルムの好適な製造方法である。よって、上述した第1実施形態と重複する構成要素については、その説明を省略する場合がある。第2実施形態に係るガスバリアフィルムの製造方法は、一対の対向電極として一対の成膜ロールを有する成膜装置のチャンバー(真空チャンバー)内に、ケイ素源(例えば、トリシリルアミン等)、窒素源(例えば、窒素等)及び酸素源(例えば、酸素等)を導入して、CVD法により酸窒化ケイ素層を形成する工程を備える。
<Second Embodiment: Method for Producing Gas Barrier Film>
Next, a method for manufacturing a gas barrier film according to the second embodiment of the present invention will be described. The method for manufacturing the gas barrier film according to the second embodiment is a suitable method for manufacturing the gas barrier film according to the first embodiment described above. Therefore, descriptions of components that overlap with those of the above-described first embodiment may be omitted. In the method for producing a gas barrier film according to the second embodiment, a silicon source (for example, trisilylamine, etc.) and a nitrogen source are placed in a chamber (vacuum chamber) of a film forming apparatus having a pair of film forming rolls as a pair of counter electrodes. (for example, nitrogen) and an oxygen source (for example, oxygen) are introduced to form a silicon oxynitride layer by a CVD method.
 以下、第2実施形態に係るガスバリアフィルムの製造方法について、図6を参照しながら説明する。図6は、第2実施形態に係るガスバリアフィルムの製造方法に使用される成膜装置の一例を示す構成図である。 A method for manufacturing a gas barrier film according to the second embodiment will be described below with reference to FIG. FIG. 6 is a configuration diagram showing an example of a film forming apparatus used in the method for producing a gas barrier film according to the second embodiment.
 図6に示す成膜装置は、送り出しロール71と、搬送ロール72、73、74及び75と、一対の対向電極としての成膜ロール76及び77と、巻取りロール78と、成膜ガスを導入するためのガス供給口79とを備えている。ガス供給口79は、複数個設けられていてもよい。成膜ロール76及び77の各々の内部には、図示を省略した磁場発生装置が設置されている。また、図6に示す成膜装置では、少なくとも成膜ロール76及び77と、ガス供給口79と、プラズマ発生用電源(不図示)とが図示を省略した真空チャンバー内に配置されている。更に、図6に示す成膜装置では、上記真空チャンバーが図示を省略した真空ポンプに接続されており、この真空ポンプにより真空チャンバー内の圧力を適宜調整することが可能となっている。 The film forming apparatus shown in FIG. 6 includes a delivery roll 71, transport rolls 72, 73, 74 and 75, film forming rolls 76 and 77 as a pair of opposing electrodes, a winding roll 78, and a film forming gas. and a gas supply port 79 for A plurality of gas supply ports 79 may be provided. A magnetic field generator (not shown) is installed inside each of the film forming rolls 76 and 77 . Further, in the film forming apparatus shown in FIG. 6, at least the film forming rolls 76 and 77, the gas supply port 79, and the power source for plasma generation (not shown) are arranged in a vacuum chamber (not shown). Furthermore, in the film forming apparatus shown in FIG. 6, the vacuum chamber is connected to a vacuum pump (not shown), and the pressure in the vacuum chamber can be appropriately adjusted by the vacuum pump.
 図6に示す成膜装置では、一対の成膜ロール(成膜ロール76及び77)を一対の対向電極として機能させることが可能となるように、成膜ロール76及び77がそれぞれプラズマ発生用電源(不図示)に接続されている。そのため、図6に示す成膜装置では、プラズマ発生用電源により電力を供給することにより、成膜ロール76と成膜ロール77との間の空間に放電することが可能であり、これにより成膜ロール76と成膜ロール77との間の空間にプラズマを発生させることができる。図6に示す成膜装置において、高い成膜レートで成膜するためには、一対の成膜ロール(成膜ロール76及び77)は、その中心軸が同一平面上において略平行となるようにして配置されていることが好ましい。 In the film forming apparatus shown in FIG. 6, the film forming rolls 76 and 77 are each provided with a power source for plasma generation so that the pair of film forming rolls (film forming rolls 76 and 77) can function as a pair of opposing electrodes. (not shown). Therefore, in the film forming apparatus shown in FIG. 6, by supplying power from the plasma generation power supply, it is possible to discharge the space between the film forming rolls 76 and 77, thereby forming a film. Plasma can be generated in the space between the roll 76 and the film forming roll 77 . In the film forming apparatus shown in FIG. 6, in order to form a film at a high film forming rate, the central axes of the pair of film forming rolls (film forming rolls 76 and 77) should be substantially parallel on the same plane. are preferably arranged in the same direction.
 このような図6に示す成膜装置を用いて、例えば、第1実施形態に係るガスバリアフィルムの説明において例示したプラズマCVD法における諸条件を採用し、第1実施形態に係るガスバリアフィルムを容易に製造することができる。例えば、上述したガスバリアフィルム10(図1参照)を製造する場合は、成膜ガス(より具体的には、ケイ素源、酸素源、窒素源等)を真空チャンバー内に供給しつつ、一対の成膜ロール(成膜ロール76及び77)間にプラズマ放電を発生させることにより、上記成膜ガスがプラズマによって分解され、成膜ロール76近傍の成膜領域及び成膜ロール77近傍の成膜領域の双方において、透明フィルム基材11(図1参照)上に酸窒化ケイ素層13(図1参照)が形成される。なお、酸窒化ケイ素層13の成膜に際しては、透明フィルム基材11が、送り出しロール71、搬送ロール72等により搬送され、ロールトゥロール方式の連続的な成膜プロセスにより、透明フィルム基材11上に酸窒化ケイ素層13が形成される。 Using the film forming apparatus shown in FIG. 6, for example, the gas barrier film according to the first embodiment can be easily formed by adopting various conditions in the plasma CVD method illustrated in the explanation of the gas barrier film according to the first embodiment. can be manufactured. For example, when manufacturing the gas barrier film 10 (see FIG. 1) described above, a pair of deposition gases (more specifically, a silicon source, an oxygen source, a nitrogen source, etc.) is supplied into the vacuum chamber. By generating plasma discharge between the film rolls (film-forming rolls 76 and 77), the film-forming gas is decomposed by the plasma, and the film-forming region near the film-forming roll 76 and the film-forming region near the film-forming roll 77 are separated. In both, a silicon oxynitride layer 13 (see FIG. 1) is formed on a transparent film substrate 11 (see FIG. 1). When forming the silicon oxynitride layer 13, the transparent film substrate 11 is conveyed by the delivery roll 71, the conveying roll 72, and the like, and the transparent film substrate 11 is formed by a roll-to-roll continuous film formation process. A silicon oxynitride layer 13 is formed thereon.
 図6に示す成膜装置において、成膜ロール76の中心軸と成膜ロール77の中心軸とを含む仮想平面Pからのガス供給口79の高さH、成膜ロール76とガス供給口79との最短距離D1、成膜ロール77とガス供給口79との最短距離D2、成膜ロール76のロール径、成膜ロール77のロール径、成膜ロール76の抱き角度、及び成膜ロール77の抱き角度(以下、これらをまとめて「成膜装置条件」と記載することがある)のうちの少なくとも1つを変更すると、成膜ロール76近傍の成膜領域及び成膜ロール77近傍の成膜領域の各々において、導入した成膜ガスの分布が成膜ロールの周方向に沿って変化する。よって、成膜装置条件のうちの少なくとも1つを変更することにより、酸窒化ケイ素層13(図1参照)の組成比O/N(酸素原子数/窒素原子数)を厚み方向で変化させることができる。なお、「抱き角度」とは、フィルムが成膜ロールの外周面に周方向において接触する角度範囲を成膜ロールの中心角で表したものをさす。 In the film forming apparatus shown in FIG. 6, the height H of the gas supply port 79 from the virtual plane P including the central axis of the film forming roll 76 and the central axis of the film forming roll 77, the film forming roll 76 and the gas supply port 79 , the shortest distance D2 between the film-forming roll 77 and the gas supply port 79, the roll diameter of the film-forming roll 76, the roll diameter of the film-forming roll 77, the holding angle of the film-forming roll 76, and the film-forming roll 77 When at least one of the embracing angles (hereinafter collectively referred to as “film deposition apparatus conditions”) is changed, the film formation region near the film formation roll 76 and the film formation roll 77 near the film formation roll 77 change. In each of the film regions, the distribution of the introduced film forming gas changes along the circumferential direction of the film forming roll. Therefore, the composition ratio O/N (the number of oxygen atoms/the number of nitrogen atoms) of the silicon oxynitride layer 13 (see FIG. 1) can be changed in the thickness direction by changing at least one of the film forming apparatus conditions. can be done. The "embracing angle" refers to the range of angles in which the film contacts the outer peripheral surface of the film forming roll in the circumferential direction, expressed as the central angle of the film forming roll.
 上記成膜装置条件のうち、ガス供給口79の高さHは、1/10-O/N、1/2-O/N及び9/10-O/Nとの相関性が高い。1/10-O/N、1/2-O/N及び9/10-O/Nのそれぞれを、第1実施形態で説明した特定範囲内に容易に調整するためには、ガス供給口79の高さHは、100mm以上200mm以下であることが好ましく、150mm以上180mm以下であることがより好ましい。なお、ガス供給口79が複数個設けられている場合、複数個のガス供給口79のそれぞれの高さHは、同一でも異なっていてもよい。 Among the above film forming apparatus conditions, the height H of the gas supply port 79 has a high correlation with 1/10-O/N, 1/2-O/N and 9/10-O/N. In order to easily adjust each of 1/10-O/N, 1/2-O/N and 9/10-O/N within the specific range described in the first embodiment, the gas supply port 79 The height H of is preferably 100 mm or more and 200 mm or less, more preferably 150 mm or more and 180 mm or less. In addition, when a plurality of gas supply ports 79 are provided, the height H of each of the plurality of gas supply ports 79 may be the same or different.
 図7は、第2実施形態に係るガスバリアフィルムの製造方法により形成された酸窒化ケイ素層の厚み方向の組成分析結果の一例を示すグラフである。図7において、実線は、XPSにより酸窒化ケイ素層を一定条件でエッチングしながら組成分析した際において、酸窒化ケイ素層の厚み方向におけるエッチング時間と酸素含有率との関係を示す。また、図7において、破線は、XPSにより酸窒化ケイ素層を一定条件でエッチングしながら組成分析した際において、酸窒化ケイ素層の厚み方向におけるエッチング時間と窒素含有率との関係を示す。図7において、エッチング時間が比較的長いA区画は、図6に示す成膜装置において、成膜ロール76近傍の成膜領域のうち、ガス供給口79からの距離が比較的長い領域で成膜された区画である。また、図7において、エッチング時間が比較的短いC区画は、図6に示す成膜装置において、成膜ロール77近傍の成膜領域のうち、ガス供給口79からの距離が比較的長い領域で成膜された区画である。また、図7において、A区画とC区画とに挟まれたB区画は、図6に示す成膜装置において、成膜ロール76近傍の成膜領域又は成膜ロール77近傍の成膜領域のうち、ガス供給口79からの距離が比較的短い領域で成膜された区画である。なお、A区画のエッチング時間には、9/10-O/Nを測定する際のエッチング時間が含まれる。B区画のエッチング時間には、1/2-O/Nを測定する際のエッチング時間が含まれる。C区画のエッチング時間には、1/10-O/Nを測定する際のエッチング時間が含まれる。 FIG. 7 is a graph showing an example of composition analysis results in the thickness direction of a silicon oxynitride layer formed by the method for producing a gas barrier film according to the second embodiment. In FIG. 7, the solid line shows the relationship between the etching time and the oxygen content in the thickness direction of the silicon oxynitride layer when composition analysis was performed while etching the silicon oxynitride layer under constant conditions by XPS. In FIG. 7, the dashed line indicates the relationship between the etching time and the nitrogen content in the thickness direction of the silicon oxynitride layer when composition analysis was performed while etching the silicon oxynitride layer under constant conditions by XPS. In FIG. 7, section A, which has a relatively long etching time, is formed in a region having a relatively long distance from the gas supply port 79 in the film forming region near the film forming roll 76 in the film forming apparatus shown in FIG. It is a partition that has been In addition, in FIG. 7, section C, which has a relatively short etching time, is a region with a relatively long distance from the gas supply port 79 among the film forming regions near the film forming roll 77 in the film forming apparatus shown in FIG. It is a section where a film is formed. In addition, in FIG. 7, section B sandwiched between section A and section C is one of the film forming areas in the vicinity of the film forming roll 76 or the film forming area in the vicinity of the film forming roll 77 in the film forming apparatus shown in FIG. , are regions where the film is formed in a region relatively short from the gas supply port 79 . The etching time for section A includes the etching time for measuring 9/10-O/N. The etch time for the B section includes the etch time when measuring 1/2-O/N. The etch time for the C section includes the etch time when measuring 1/10-O/N.
 上述のように、成膜装置条件のうちの少なくとも1つを変更すると、成膜ロール76近傍の成膜領域及び成膜ロール77近傍の成膜領域の各々において、導入した成膜ガスの分布が成膜ロールの周方向に沿って変化するため、酸窒化ケイ素層における窒素含有率と酸素含有率が、例えば図7に示すようにエッチング時間とともに(厚み方向に)変化する。よって、成膜装置条件のうちの少なくとも1つを変更することにより、組成比O/Nを、酸窒化ケイ素層の厚み方向で調整することができる。なお、組成比O/Nは、酸素源及び窒素源の導入量比(流量比)を変化させることにより調整することもできる。 As described above, when at least one of the film forming apparatus conditions is changed, the distribution of the introduced film forming gas changes in each of the film forming region near the film forming roll 76 and the film forming region near the film forming roll 77. Since they change along the circumferential direction of the film-forming roll, the nitrogen content and oxygen content in the silicon oxynitride layer change (in the thickness direction) with the etching time as shown in FIG. 7, for example. Therefore, by changing at least one of the film forming apparatus conditions, the composition ratio O/N can be adjusted in the thickness direction of the silicon oxynitride layer. The composition ratio O/N can also be adjusted by changing the introduction amount ratio (flow rate ratio) of the oxygen source and the nitrogen source.
<第3実施形態:ガスバリア層付き偏光板>
 次に、本発明の第3実施形態に係るガスバリア層付き偏光板について説明する。第3実施形態に係るガスバリア層付き偏光板は、第1実施形態に係るガスバリアフィルムと、偏光子とを備える。図8は、第3実施形態に係るガスバリア層付き偏光板の一例を示す断面図である。図8に示すガスバリア層付き偏光板100は、上述したガスバリアフィルム50と、偏光板101とを有する。ガスバリア層付き偏光板100では、粘着剤層51の酸窒化ケイ素層13側とは反対側の主面51aに偏光板101が配置されている。つまり、偏光板101と酸窒化ケイ素層13とが、粘着剤層51を介して貼り合わせられている。なお、図8に示すガスバリア層付き偏光板100はガスバリアフィルム50(ガスバリアフィルム40)を有するが、第3実施形態に係るガスバリア層付き偏光板が有するガスバリアフィルムは、ガスバリアフィルム50に限定されず、例えば、ガスバリアフィルム10、ガスバリアフィルム20又はガスバリアフィルム30であってもよい。
<Third Embodiment: Polarizing Plate with Gas Barrier Layer>
Next, a polarizing plate with a gas barrier layer according to a third embodiment of the present invention will be described. A polarizing plate with a gas barrier layer according to the third embodiment includes the gas barrier film according to the first embodiment and a polarizer. FIG. 8 is a cross-sectional view showing an example of a polarizing plate with a gas barrier layer according to the third embodiment. A polarizing plate 100 with a gas barrier layer shown in FIG. 8 has the gas barrier film 50 described above and a polarizing plate 101 . In the polarizing plate 100 with a gas barrier layer, the polarizing plate 101 is arranged on the main surface 51a of the pressure-sensitive adhesive layer 51 opposite to the silicon oxynitride layer 13 side. That is, the polarizing plate 101 and the silicon oxynitride layer 13 are bonded together with the adhesive layer 51 interposed therebetween. 8 has a gas barrier film 50 (gas barrier film 40), the gas barrier film of the polarizing plate with a gas barrier layer according to the third embodiment is not limited to the gas barrier film 50. For example, it may be the gas barrier film 10, the gas barrier film 20, or the gas barrier film 30.
 偏光板101は、偏光子(不図示)を含み、一般には、偏光子の両主面に偏光子保護フィルムとしての透明保護フィルム(不図示)が積層されている。偏光子の一方の主面又は両主面の透明保護フィルムは、設けられていなくてもよい。偏光子としては、例えば、ポリビニルアルコール系フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質を吸着させて一軸延伸したものが挙げられる。 The polarizing plate 101 includes a polarizer (not shown), and generally transparent protective films (not shown) as polarizer protective films are laminated on both main surfaces of the polarizer. A transparent protective film may not be provided on one principal surface or both principal surfaces of the polarizer. As a polarizer, for example, a hydrophilic polymer film such as a polyvinyl alcohol film is uniaxially stretched after adsorbing a dichroic substance such as iodine or a dichroic dye.
 透明保護フィルムとしては、セルロース系樹脂、環状ポリオレフィン系樹脂、アクリル系樹脂、フェニルマレイミド系樹脂、ポリカーボネート系樹脂等から構成された透明樹脂フィルムが好ましく用いられる。透明保護フィルムとしてガスバリアフィルムを用いてもよい。 As the transparent protective film, a transparent resin film composed of a cellulose resin, a cyclic polyolefin resin, an acrylic resin, a phenylmaleimide resin, a polycarbonate resin, or the like is preferably used. A gas barrier film may be used as the transparent protective film.
 偏光板101は、偏光子の一方又は両方の主面に、必要に応じて適宜の接着剤層や粘着剤層を介して積層された光学機能フィルムを備えていてもよい。光学機能フィルムとしては、位相差板、視野角拡大フィルム、視野角制限(覗き見防止)フィルム、輝度向上フィルム等が挙げられる。 The polarizing plate 101 may include an optical functional film laminated on one or both main surfaces of a polarizer via an appropriate adhesive layer or pressure-sensitive adhesive layer as necessary. Examples of the optical functional film include retardation plates, viewing angle widening films, viewing angle limiting (peep prevention) films, brightness improving films, and the like.
 第3実施形態に係るガスバリア層付き偏光板は、第1実施形態に係るガスバリアフィルムを備えるため、透明性及びガスバリア性に優れる。 The gas barrier layer-attached polarizing plate according to the third embodiment has the gas barrier film according to the first embodiment, and therefore has excellent transparency and gas barrier properties.
<第4実施形態:画像表示装置>
 次に、本発明の第4実施形態に係る画像表示装置について説明する。第4実施形態に係る画像表示装置は、第1実施形態に係るガスバリアフィルム又は第3実施形態に係るガスバリア層付き偏光板と、画像表示セルとを備える。
<Fourth Embodiment: Image Display Device>
Next, an image display device according to a fourth embodiment of the invention will be described. An image display device according to the fourth embodiment includes the gas barrier film according to the first embodiment or the polarizing plate with a gas barrier layer according to the third embodiment, and an image display cell.
 図9は、第4実施形態に係る画像表示装置の一例を示す断面図である。図9に示す画像表示装置200は、ガスバリアフィルム50を有するガスバリア層付き偏光板100と、画像表示セル202とを備える。画像表示セル202は、基板203と、基板203上に設けられた表示素子204とを備える。画像表示装置200では、ガスバリア層41と表示素子204とが、粘着剤層201を介して貼り合わせられている。なお、図9に示す画像表示装置200はガスバリアフィルム50(ガスバリアフィルム40)を有するが、第4実施形態に係る画像表示装置が有するガスバリアフィルムは、ガスバリアフィルム50に限定されず、例えば、ガスバリアフィルム10、ガスバリアフィルム20又はガスバリアフィルム30であってもよい。 FIG. 9 is a cross-sectional view showing an example of an image display device according to the fourth embodiment. An image display device 200 shown in FIG. 9 includes a gas barrier layer-attached polarizing plate 100 having a gas barrier film 50 and an image display cell 202 . The image display cell 202 includes a substrate 203 and display elements 204 provided on the substrate 203 . In the image display device 200 , the gas barrier layer 41 and the display element 204 are bonded together with the adhesive layer 201 interposed therebetween. Although the image display device 200 shown in FIG. 9 has the gas barrier film 50 (gas barrier film 40), the gas barrier film of the image display device according to the fourth embodiment is not limited to the gas barrier film 50. For example, the gas barrier film 10, it may be the gas barrier film 20 or the gas barrier film 30;
 粘着剤層201を構成する粘着剤としては、例えば上述した粘着剤層51を構成する粘着剤として例示したものと同じ粘着剤が挙げられる。粘着剤層201を構成する粘着剤と粘着剤層51を構成する粘着剤とは、同種であってもよく、互いに異なる種類であってもよい。 As the adhesive constituting the adhesive layer 201, for example, the same adhesives as those exemplified as the adhesive constituting the adhesive layer 51 described above can be used. The adhesive that forms the adhesive layer 201 and the adhesive that forms the adhesive layer 51 may be of the same type or of different types.
 粘着剤層201の厚みの好ましい範囲は、例えば、上述した粘着剤層51の厚みの好ましい範囲と同じである。粘着剤層201の厚み及び粘着剤層51の厚みは、同一であっても異なっていてもよい。 The preferable range of the thickness of the adhesive layer 201 is, for example, the same as the preferable range of the thickness of the adhesive layer 51 described above. The thickness of the adhesive layer 201 and the thickness of the adhesive layer 51 may be the same or different.
 基板203としては、ガラス基板又はプラスチック基板が用いられる。画像表示セル202がトップエミッション型である場合、基板203は透明である必要はなく、基板203としてポリイミドフィルム等の高耐熱性フィルムを用いてもよい。 A glass substrate or a plastic substrate is used as the substrate 203 . When the image display cell 202 is of the top emission type, the substrate 203 does not have to be transparent, and a highly heat-resistant film such as a polyimide film may be used as the substrate 203 .
 表示素子204としては、有機EL素子、液晶素子、電気泳動方式の表示素子(電子ペーパー)等が挙げられる。画像表示セル202の視認側には、タッチパネルセンサー(不図示)が配置されていてもよい。 Examples of the display element 204 include an organic EL element, a liquid crystal element, an electrophoretic display element (electronic paper), and the like. A touch panel sensor (not shown) may be arranged on the viewing side of the image display cell 202 .
 表示素子204が有機EL素子である場合、画像表示セル202は、例えばトップエミッション型である。有機EL素子は、例えば、基板203側から、金属電極(不図示)、有機発光層(不図示)及び透明電極(不図示)をこの順に備える。 When the display element 204 is an organic EL element, the image display cell 202 is, for example, top emission type. The organic EL element includes, for example, a metal electrode (not shown), an organic light emitting layer (not shown), and a transparent electrode (not shown) in this order from the substrate 203 side.
 有機発光層は、それ自身が発光層として機能する有機層の他に、電子輸送層、正孔輸送層等を備えていてもよい。透明電極は、金属酸化物層又は金属薄膜であり、有機発光層からの光を透過する。基板203の裏面側には基板203の保護や補強を目的としてバックシート(不図示)が設けられていてもよい。 The organic light-emitting layer may include an electron-transporting layer, a hole-transporting layer, etc. in addition to the organic layer that itself functions as a light-emitting layer. The transparent electrode is a metal oxide layer or a metal thin film and transmits light from the organic light emitting layer. A back sheet (not shown) may be provided on the back side of the substrate 203 for the purpose of protecting and reinforcing the substrate 203 .
 有機EL素子の金属電極は光反射性である。そのため、外光が画像表示セル202の内部に入射すると、金属電極で光が反射し、外部からは反射光が鏡面のように視認される。画像表示セル202の視認側に、偏光板101として円偏光板を配置することにより、金属電極での反射光の外部への再出射を防止して、画像表示装置200の画面の視認性及び意匠性を向上させることができる。  The metal electrode of the organic EL element is light reflective. Therefore, when external light enters the inside of the image display cell 202, the light is reflected by the metal electrodes, and the reflected light is visually recognized as a mirror surface from the outside. By arranging a circularly polarizing plate as the polarizing plate 101 on the viewing side of the image display cell 202, the re-emission of light reflected by the metal electrode to the outside is prevented, and the visibility and design of the screen of the image display device 200 are improved. can improve sexuality.
 円偏光板は、例えば偏光子の画像表示セル202側の主面に位相差フィルムを備える。偏光子に隣接して配置された透明保護フィルムが位相差フィルムであってもよい。また、ガスバリアフィルム50の透明フィルム基材11が位相差フィルムであってもよい。位相差フィルムがλ/4のレターデーションを有し、位相差フィルムの遅相軸方向と偏光子の吸収軸方向とのなす角度が45°である場合に、偏光子と位相差フィルムとの積層体が、金属電極での反射光の再出射を抑制するための円偏光板として機能する。円偏光板を構成する位相差フィルムは、2層以上のフィルムが積層されたものであってもよい。例えば、偏光子とλ/2板とλ/4板とを、それぞれの光学軸が所定の角度をなすように積層することにより、可視光の広帯域にわたって円偏光板として機能する広帯域円偏光板が得られる。 The circularly polarizing plate has, for example, a retardation film on the main surface of the polarizer on the image display cell 202 side. The transparent protective film arranged adjacent to the polarizer may be a retardation film. Further, the transparent film substrate 11 of the gas barrier film 50 may be a retardation film. Lamination of the polarizer and the retardation film when the retardation film has a retardation of λ / 4 and the angle formed by the slow axis direction of the retardation film and the absorption axis direction of the polarizer is 45 ° The body functions as a circular polarizer for suppressing re-emission of reflected light from the metal electrode. The retardation film that constitutes the circularly polarizing plate may be a laminate of two or more layers of films. For example, by laminating a polarizer, a λ/2 plate, and a λ/4 plate so that their optical axes form a predetermined angle, a broadband circularly polarizing plate that functions as a circularly polarizing plate over a wide band of visible light is obtained. can get.
 画像表示セル202は、基板上に透明電極と有機発光層と金属電極とをこの順に積層したボトムエミッション型であってもよい。ボトムエミッション型の画像表示セル202では、透明基板が用いられ、透明基板が視認側に配置される。透明基板としてガスバリアフィルムを用いてもよい。 The image display cell 202 may be of a bottom emission type in which a transparent electrode, an organic light emitting layer and a metal electrode are laminated in this order on a substrate. In the bottom emission type image display cell 202, a transparent substrate is used, and the transparent substrate is arranged on the viewing side. A gas barrier film may be used as the transparent substrate.
 第4実施形態に係る画像表示装置は、第1実施形態に係るガスバリアフィルムを備えるため、ガス(例えば水蒸気)に起因する表示素子の劣化を抑制できる。 Since the image display device according to the fourth embodiment includes the gas barrier film according to the first embodiment, it is possible to suppress deterioration of the display element caused by gas (for example, water vapor).
<第5実施形態:太陽電池>
 次に、本発明の第5実施形態に係る太陽電池について説明する。第5実施形態に係る太陽電池は、第1実施形態に係るガスバリアフィルムと、太陽電池セルとを備える。第5実施形態に係る太陽電池では、例えば、第1実施形態に係るガスバリアフィルムと太陽電池セルとが、透明な接着剤又は透明な粘着剤で貼り合わせられている。
<Fifth Embodiment: Solar Cell>
Next, a solar cell according to a fifth embodiment of the invention will be described. A solar cell according to the fifth embodiment includes the gas barrier film according to the first embodiment and a solar cell. In the solar cell according to the fifth embodiment, for example, the gas barrier film according to the first embodiment and the solar cell are bonded together with a transparent adhesive or a transparent adhesive.
 第5実施形態に係る太陽電池は、第1実施形態に係るガスバリアフィルムを備えるため、ガス(例えば水蒸気)に起因する太陽電池セルの劣化を抑制できる。 Since the solar cell according to the fifth embodiment includes the gas barrier film according to the first embodiment, deterioration of the solar cell due to gas (for example, water vapor) can be suppressed.
 以下、本発明の実施例について説明するが、本発明は以下の実施例に限定されるものではない。 Examples of the present invention will be described below, but the present invention is not limited to the following examples.
<ガスバリアフィルムの作製>
 以下、実施例1~4並びに比較例1及び2のガスバリアフィルムの作製方法について、それぞれ説明する。実施例1~4並びに比較例1及び2のガスバリアフィルムの作製において、酸窒化ケイ素層の成膜には、いずれも、上述した図6に示す成膜装置と同じ構成を備えた成膜装置(詳しくは、ロールトゥロール方式のCVD成膜装置)を使用した。酸窒化ケイ素層の成膜に使用した上記成膜装置は、窒素及び酸素を導入するためのガス供給口と、トリシリルアミンを導入するためのガス供給口とを備えていた。また、実施例1~4並びに比較例1及び2のガスバリアフィルムの作製では、窒素及び酸素を導入するためのガス供給口の高さ(図6の高さH)を174mmとし、かつトリシリルアミンを導入するためのガス供給口の高さ(図6の高さH)を156mmとした。
<Production of gas barrier film>
The methods for producing the gas barrier films of Examples 1 to 4 and Comparative Examples 1 and 2 are described below. In the production of the gas barrier films of Examples 1 to 4 and Comparative Examples 1 and 2, a film forming apparatus ( Specifically, a roll-to-roll type CVD film forming apparatus) was used. The film forming apparatus used for forming the silicon oxynitride layer had a gas supply port for introducing nitrogen and oxygen and a gas supply port for introducing trisilylamine. In the production of the gas barrier films of Examples 1 to 4 and Comparative Examples 1 and 2, the height of the gas supply port for introducing nitrogen and oxygen (height H in FIG. 6) was set to 174 mm, and trisilylamine The height of the gas supply port (height H in FIG. 6) for introducing is set to 156 mm.
[実施例1]
 透明フィルム基材としての厚み40μmの環状ポリオレフィンフィルム(日本ゼオン社製「ゼオノア(登録商標)フィルムZF-14」)を成膜装置にセットし、真空チャンバー内を1×10-3Paまで減圧した。次いで、フィルムを走行させながら、基材温度12℃で、厚み50nmの酸窒化ケイ素層(ガスバリア層)をCVD成膜し、実施例1のガスバリアフィルムを得た。実施例1のガスバリアフィルムを得る際のCVD成膜では、プラズマ発生用電源の周波数を80kHzとし、印加電力1.0kWの条件で放電してプラズマを発生させ、トリシリルアミン(TSA):30sccm、窒素:575sccm、酸素:25sccmの流量条件で、真空チャンバー内の成膜ロール間(電極間)にガスを導入し、圧力1.0Paで成膜した。なお、TSAは加熱気化させて、真空チャンバー内に導入した。
[Example 1]
A 40 μm-thick cyclic polyolefin film (“Zeonor (registered trademark) film ZF-14” manufactured by Nippon Zeon Co., Ltd.) as a transparent film substrate was set in a film forming apparatus, and the pressure in the vacuum chamber was reduced to 1×10 −3 Pa. . Next, while the film was running, a silicon oxynitride layer (gas barrier layer) having a thickness of 50 nm was formed by CVD at a substrate temperature of 12° C. to obtain a gas barrier film of Example 1. In the CVD film formation for obtaining the gas barrier film of Example 1, the frequency of the power source for plasma generation was set to 80 kHz, and plasma was generated by discharging under the conditions of applied power of 1.0 kW, trisilylamine (TSA): 30 sccm, Under flow conditions of nitrogen: 575 sccm and oxygen: 25 sccm, a gas was introduced between the film-forming rolls (between the electrodes) in the vacuum chamber to form a film at a pressure of 1.0 Pa. Note that TSA was vaporized by heating and introduced into the vacuum chamber.
[実施例2]
 窒素の流量条件を550sccmとし、かつ酸素の流量条件を50sccmとしたこと以外は、実施例1と同じ方法により実施例2のガスバリアフィルムを作製した。
[Example 2]
A gas barrier film of Example 2 was produced in the same manner as in Example 1, except that the nitrogen flow conditions were set to 550 sccm and the oxygen flow conditions were set to 50 sccm.
[実施例3]
 窒素の流量条件を525sccmとし、かつ酸素の流量条件を75sccmとしたこと以外は、実施例1と同じ方法により実施例3のガスバリアフィルムを作製した。
[Example 3]
A gas barrier film of Example 3 was produced in the same manner as in Example 1, except that the nitrogen flow conditions were set to 525 sccm and the oxygen flow conditions were set to 75 sccm.
[実施例4]
 窒素の流量条件を500sccmとし、かつ酸素の流量条件を100sccmとしたこと以外は、実施例1と同じ方法により実施例4のガスバリアフィルムを作製した。
[Example 4]
A gas barrier film of Example 4 was produced in the same manner as in Example 1 except that the nitrogen flow conditions were set to 500 sccm and the oxygen flow conditions were set to 100 sccm.
[比較例1]
 窒素の流量条件を600sccmとし、かつ酸素を導入しなかったこと以外は、実施例1と同じ方法により比較例1のガスバリアフィルムを作製した。
[Comparative Example 1]
A gas barrier film of Comparative Example 1 was produced in the same manner as in Example 1, except that the nitrogen flow rate was set to 600 sccm and oxygen was not introduced.
[比較例2]
 酸素の流量条件を600sccmとし、かつ窒素を導入しなかったこと以外は、実施例1と同じ方法により比較例2のガスバリアフィルムを作製した。
[Comparative Example 2]
A gas barrier film of Comparative Example 2 was produced in the same manner as in Example 1, except that the oxygen flow rate was set to 600 sccm and nitrogen was not introduced.
<酸窒化ケイ素層の組成分析>
 Arイオン銃を備えるX線光電子分光装置(アルバック・ファイ社製「Quantera SXM」)を用いて、酸窒化ケイ素層の透明フィルム基材側とは反対側の主面から酸窒化ケイ素層を下記条件でエッチングしながら、XPSにより酸窒化ケイ素層の厚み方向における組成分析を行った。そして、1/10-O/N、1/2-O/N及び9/10-O/N、並びに酸窒化ケイ素層の厚み方向の中央部(総エッチング時間の1/2が経過したとき)における各元素(Si、O、N及びC)の含有率を算出した。組成比O/N及び各元素の含有率の算出には、ワイドスキャンスペクトルから得られるSiの2p、Oの1s、Nの1s、及びCの1sのそれぞれの結合エネルギーに相当するピークを用いた。詳細な測定条件を以下に示す。
<Composition Analysis of Silicon Oxynitride Layer>
Using an X-ray photoelectron spectrometer equipped with an Ar ion gun ("Quantera SXM" manufactured by ULVAC-Phi, Inc.), the silicon oxynitride layer is exposed to the silicon oxynitride layer from the main surface opposite to the transparent film substrate side under the following conditions. While etching with , composition analysis in the thickness direction of the silicon oxynitride layer was performed by XPS. Then, 1/10-O/N, 1/2-O/N and 9/10-O/N, and the central portion in the thickness direction of the silicon oxynitride layer (when 1/2 of the total etching time has elapsed) The content of each element (Si, O, N and C) in was calculated. For calculation of the composition ratio O/N and the content of each element, the peaks corresponding to the respective binding energies of 2p of Si, 1s of O, 1s of N, and 1s of C obtained from the wide scan spectrum were used. . Detailed measurement conditions are shown below.
[測定条件]
 X線源:モノクロAlKα
 X線の焦点サイズ:100μmφ(15kV、25W)
 光電子取り出し角:試料表面に対して45°
 結合エネルギーの補正:C-C結合由来のピークを285.0eVに補正(最表面のみ)
 帯電中和条件:電子中和銃とArイオン銃(中和モード)の併用
 Arイオン銃の加速電圧:1kV
 Arイオン銃のラスターサイズ:1mm×1mm
 Arイオン銃のエッチング速度:5nm/分(SiO換算)
[Measurement condition]
X-ray source: monochrome AlKα
X-ray focal size: 100 μmφ (15 kV, 25 W)
Photoelectron extraction angle: 45° with respect to the sample surface
Bond energy correction: CC bond derived peak corrected to 285.0 eV (top surface only)
Charge neutralization conditions: combined use of electron neutralization gun and Ar ion gun (neutralization mode) Acceleration voltage of Ar ion gun: 1 kV
Ar ion gun raster size: 1mm x 1mm
Etching rate of Ar ion gun: 5 nm/min (in terms of SiO2 )
<ガスバリアフィルムの評価方法>
[水蒸気透過率]
 ISO 15106-5に記載された差圧法(Pressure Sensor Method)に従って、Technolox社製の水蒸気透過率測定装置「Deltaperm(登録商標)」を用いて、温度40℃かつ相対湿度90%の条件下で、ガスバリアフィルムの水蒸気透過率(WVTR)を測定した。WVTRが3.0×10-2g/m・day以下である場合、「ガスバリア性に優れている」と評価した。一方、WVTRが3.0×10-2g/m・dayを超えている場合、「ガスバリア性に優れていない」と評価した。
<Method for evaluating gas barrier film>
[Water vapor transmission rate]
According to the differential pressure method (Pressure Sensor Method) described in ISO 15106-5, using a water vapor transmission rate measuring device "Deltaperm (registered trademark)" manufactured by Technolox, under the conditions of a temperature of 40 ° C. and a relative humidity of 90%, The water vapor transmission rate (WVTR) of the gas barrier film was measured. When WVTR was 3.0×10 −2 g/m 2 ·day or less, it was evaluated as “excellent in gas barrier properties”. On the other hand, when WVTR exceeded 3.0×10 −2 g/m 2 ·day, it was evaluated as “not excellent in gas barrier properties”.
[光透過率]
 分光光度計(日立ハイテクサイエンス社製「U4100」)により、ガスバリアフィルムの光透過率(Y値)を測定した。光透過率が75%以上である場合、「透明性に優れている」と評価した。一方、光透過率が75%未満である場合、「透明性に優れていない」と評価した。
[Light transmittance]
The light transmittance (Y value) of the gas barrier film was measured with a spectrophotometer ("U4100" manufactured by Hitachi High-Tech Science). When the light transmittance was 75% or more, it was evaluated as "excellent in transparency". On the other hand, when the light transmittance was less than 75%, it was evaluated as "not excellent in transparency".
<評価結果>
 実施例1~4並びに比較例1及び2について、1/10-O/N、1/2-O/N、9/10-O/N、各元素(Si、O及びN)の含有率、WVTR及び光透過率を、表1に示す。なお、表1の各元素(Si、O及びN)の含有率は、酸窒化ケイ素層の厚み方向の中央部(総エッチング時間の1/2が経過したとき)における含有率であり、Si、O、N及びCの合計を100原子%として算出した。
<Evaluation results>
For Examples 1 to 4 and Comparative Examples 1 and 2, 1/10-O/N, 1/2-O/N, 9/10-O/N, the content of each element (Si, O and N), WVTR and light transmittance are shown in Table 1. The content of each element (Si, O and N) in Table 1 is the content in the central portion of the silicon oxynitride layer in the thickness direction (when half the total etching time has elapsed). The total of O, N and C was calculated as 100 atomic %.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1~4では、1/10-O/Nが1.0より大きく、1/2-O/Nが2.0より小さく、9/10-O/Nが1.0より大きかった。実施例1~4では、1/10-O/Nが1/2-O/Nより大きく、9/10-O/Nが1/2-O/Nより大きかった。 As shown in Table 1, in Examples 1 to 4, 1/10-O/N is greater than 1.0, 1/2-O/N is less than 2.0, and 9/10-O/N is was greater than 1.0. In Examples 1 to 4, 1/10-O/N was greater than 1/2-O/N and 9/10-O/N was greater than 1/2-O/N.
 表1に示すように、実施例1~4では、WVTRが3.0×10-2g/m・day以下であった。よって、実施例1~4のガスバリアフィルムは、ガスバリア性に優れていた。実施例1~4では、光透過率が75%以上であった。よって、実施例1~4のガスバリアフィルムは、透明性に優れていた。 As shown in Table 1, in Examples 1 to 4, the WVTR was 3.0×10 −2 g/m 2 ·day or less. Therefore, the gas barrier films of Examples 1 to 4 were excellent in gas barrier properties. In Examples 1 to 4, the light transmittance was 75% or more. Therefore, the gas barrier films of Examples 1 to 4 were excellent in transparency.
 表1に示すように、比較例1では、1/10-O/Nが1.0より小さく、9/10-O/Nが1.0より小さかった。比較例2では、1/2-O/Nが2.0より大きかった。 As shown in Table 1, in Comparative Example 1, 1/10-O/N was less than 1.0 and 9/10-O/N was less than 1.0. In Comparative Example 2, 1/2-O/N was greater than 2.0.
 表1に示すように、比較例1では、光透過率が75%未満であった。よって、比較例1のガスバリアフィルムは、透明性に優れていなかった。比較例2では、WVTRが3.0×10-2g/m・dayを超えていた。よって、比較例2のガスバリアフィルムは、ガスバリア性に優れていなかった。 As shown in Table 1, in Comparative Example 1, the light transmittance was less than 75%. Therefore, the gas barrier film of Comparative Example 1 was not excellent in transparency. In Comparative Example 2, WVTR exceeded 3.0×10 −2 g/m 2 ·day. Therefore, the gas barrier film of Comparative Example 2 was not excellent in gas barrier properties.
 以上の結果から、本発明によれば、透明性及びガスバリア性に優れるガスバリアフィルムを提供できることが示された。 From the above results, it was shown that the present invention can provide a gas barrier film with excellent transparency and gas barrier properties.
10、20、30、40、50 ガスバリアフィルム
11 透明フィルム基材
12、21、41 ガスバリア層
13 酸窒化ケイ素層
31 ハードコート層
51 粘着剤層
100 ガスバリア層付き偏光板
101 偏光板
200 画像表示装置
202 画像表示セル

 
10, 20, 30, 40, 50 gas barrier film 11 transparent film substrate 12, 21, 41 gas barrier layer 13 silicon oxynitride layer 31 hard coat layer 51 adhesive layer 100 polarizing plate with gas barrier layer 101 polarizing plate 200 image display device 202 image display cell

Claims (15)

  1.  透明フィルム基材と、前記透明フィルム基材の少なくとも一方の主面に直接的又は間接的に配置されたガスバリア層とを有するガスバリアフィルムであって、
     前記ガスバリア層は、構成元素として酸素、窒素及びケイ素を含む酸窒化ケイ素層を有し、
     X線光電子分光法を用いて前記酸窒化ケイ素層を一定条件でエッチングしながら、前記酸窒化ケイ素層の厚み方向における酸素と窒素との組成比O/Nを測定した際において、総エッチング時間の1/10が経過したときの前記組成比O/Nが1.0より大きく、総エッチング時間の1/2が経過したときの前記組成比O/Nが2.0より小さく、総エッチング時間の9/10が経過したときの前記組成比O/Nが1.0より大きく、
     前記総エッチング時間の1/10が経過したときの前記組成比O/N及び前記総エッチング時間の9/10が経過したときの前記組成比O/Nは、いずれも前記総エッチング時間の1/2が経過したときの前記組成比O/Nより大きい、ガスバリアフィルム。
    A gas barrier film comprising a transparent film substrate and a gas barrier layer disposed directly or indirectly on at least one main surface of the transparent film substrate,
    The gas barrier layer has a silicon oxynitride layer containing oxygen, nitrogen and silicon as constituent elements,
    When measuring the composition ratio O/N of oxygen and nitrogen in the thickness direction of the silicon oxynitride layer while etching the silicon oxynitride layer under constant conditions using X-ray photoelectron spectroscopy, the total etching time The composition ratio O/N is greater than 1.0 when 1/10 of the total etching time has elapsed, and the composition ratio O/N is less than 2.0 when 1/2 of the total etching time has elapsed, and The composition ratio O/N when 9/10 has passed is greater than 1.0,
    The composition ratio O/N when 1/10 of the total etching time has passed and the composition ratio O/N when 9/10 of the total etching time has passed are both 1/1 of the total etching time. A gas barrier film that is greater than the composition ratio O/N when 2 has passed.
  2.  前記総エッチング時間の1/10が経過したときの前記組成比O/N及び前記総エッチング時間の9/10が経過したときの前記組成比O/Nがいずれも2.0より大きいか、又は前記総エッチング時間の1/2が経過したときの前記組成比O/Nが1.0より小さい、請求項1に記載のガスバリアフィルム。 The composition ratio O/N when 1/10 of the total etching time has passed and the composition ratio O/N when 9/10 of the total etching time has passed are both greater than 2.0, or 2. The gas barrier film according to claim 1, wherein said composition ratio O/N is less than 1.0 when 1/2 of said total etching time has elapsed.
  3.  前記総エッチング時間の1/10が経過したときの前記組成比O/N及び前記総エッチング時間の9/10が経過したときの前記組成比O/Nは、いずれも10.0より小さい、請求項1又は2に記載のガスバリアフィルム。 The composition ratio O/N when 1/10 of the total etching time has elapsed and the composition ratio O/N when 9/10 of the total etching time has elapsed are both less than 10.0. 3. The gas barrier film according to Item 1 or 2.
  4.  前記総エッチング時間の1/2が経過したときの前記組成比O/Nは、0.1より大きい、請求項1又は2に記載のガスバリアフィルム。 The gas barrier film according to claim 1 or 2, wherein the composition ratio O/N is greater than 0.1 when 1/2 of the total etching time has elapsed.
  5.  前記酸窒化ケイ素層の厚みが、10nm以上100nm以下である、請求項1又は2に記載のガスバリアフィルム。 The gas barrier film according to claim 1 or 2, wherein the silicon oxynitride layer has a thickness of 10 nm or more and 100 nm or less.
  6.  前記透明フィルム基材と前記ガスバリア層との間に配置された、個数平均一次粒子径1.0μm未満のシリカ粒子を含むハードコート層を更に有する、請求項1又は2に記載のガスバリアフィルム。 The gas barrier film according to claim 1 or 2, further comprising a hard coat layer containing silica particles having a number average primary particle diameter of less than 1.0 µm, disposed between the transparent film substrate and the gas barrier layer.
  7.  前記酸窒化ケイ素層と前記ハードコート層とは、接している、請求項6に記載のガスバリアフィルム。 The gas barrier film according to claim 6, wherein the silicon oxynitride layer and the hard coat layer are in contact with each other.
  8.  前記ガスバリア層の前記透明フィルム基材側とは反対側に配置された粘着剤層を更に有する、請求項1又は2に記載のガスバリアフィルム。 The gas barrier film according to claim 1 or 2, further comprising an adhesive layer disposed on the side of the gas barrier layer opposite to the transparent film substrate side.
  9.  前記酸窒化ケイ素層と前記粘着剤層とは、接している、請求項8に記載のガスバリアフィルム。 The gas barrier film according to claim 8, wherein the silicon oxynitride layer and the adhesive layer are in contact with each other.
  10.  請求項1又は2に記載のガスバリアフィルムの製造方法であって、
     一対の対向電極として一対の成膜ロールを有する成膜装置のチャンバー内に、ケイ素源、窒素源及び酸素源を導入して、化学気相成長法により前記酸窒化ケイ素層を形成する工程を備える、ガスバリアフィルムの製造方法。
    A method for producing the gas barrier film according to claim 1 or 2,
    A step of introducing a silicon source, a nitrogen source and an oxygen source into a chamber of a film forming apparatus having a pair of film forming rolls as a pair of opposing electrodes to form the silicon oxynitride layer by chemical vapor deposition. , a method for producing a gas barrier film.
  11.  請求項1に記載のガスバリアフィルムと、偏光子とを備える、ガスバリア層付き偏光板。 A polarizing plate with a gas barrier layer, comprising the gas barrier film according to claim 1 and a polarizer.
  12.  請求項1に記載のガスバリアフィルムと、画像表示セルとを備える、画像表示装置。 An image display device comprising the gas barrier film according to claim 1 and an image display cell.
  13.  請求項11に記載のガスバリア層付き偏光板と、画像表示セルとを備える、画像表示装置。 An image display device comprising the gas barrier layer-attached polarizing plate according to claim 11 and an image display cell.
  14.  前記画像表示セルは、有機EL素子を含む、請求項12又は13に記載の画像表示装置。 The image display device according to claim 12 or 13, wherein the image display cell includes an organic EL element.
  15.  請求項1又は2に記載のガスバリアフィルムと、太陽電池セルとを備える、太陽電池。 A solar cell comprising the gas barrier film according to claim 1 or 2 and a solar cell.
PCT/JP2022/035427 2021-09-30 2022-09-22 Gas barrier film, method for producing same, polarizing plate with gas barrier layer, image display device and solar cell WO2023054178A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021160934A JP2023050694A (en) 2021-09-30 2021-09-30 Gas barrier film and method for producing the same, and polarizing plate with gas barrier layer, image display device and solar cell
JP2021-160934 2021-09-30

Publications (1)

Publication Number Publication Date
WO2023054178A1 true WO2023054178A1 (en) 2023-04-06

Family

ID=85782579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035427 WO2023054178A1 (en) 2021-09-30 2022-09-22 Gas barrier film, method for producing same, polarizing plate with gas barrier layer, image display device and solar cell

Country Status (3)

Country Link
JP (1) JP2023050694A (en)
TW (1) TW202330254A (en)
WO (1) WO2023054178A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007237702A (en) * 2006-03-13 2007-09-20 Fujifilm Corp Gas barrier film and organic device using this
JP2009196155A (en) * 2008-02-20 2009-09-03 Dainippon Printing Co Ltd Gas barrier film and preparation method and preparation equipment of gas barrier membrane
JP2011156752A (en) * 2010-02-01 2011-08-18 Konica Minolta Holdings Inc Gas barrier film, method of manufacturing the same, and organic electron device
JP2011183773A (en) * 2010-03-11 2011-09-22 Konica Minolta Holdings Inc Gas barrier film, method for production thereof, and organic photoelectric conversion element using the gas barrier film
JP2012016854A (en) * 2010-07-07 2012-01-26 Konica Minolta Holdings Inc Gas barrier film, organic photoelectric conversion element, and organic electroluminescent element
JP2012087326A (en) * 2010-10-15 2012-05-10 Lintec Corp Transparent conductive film, production method therefor, member for electronic device, and electronic device
WO2015098671A1 (en) * 2013-12-26 2015-07-02 住友化学株式会社 Laminate film and flexible electronic device
JP2017185789A (en) * 2016-03-31 2017-10-12 住友化学株式会社 Laminate film and production method of the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007237702A (en) * 2006-03-13 2007-09-20 Fujifilm Corp Gas barrier film and organic device using this
JP2009196155A (en) * 2008-02-20 2009-09-03 Dainippon Printing Co Ltd Gas barrier film and preparation method and preparation equipment of gas barrier membrane
JP2011156752A (en) * 2010-02-01 2011-08-18 Konica Minolta Holdings Inc Gas barrier film, method of manufacturing the same, and organic electron device
JP2011183773A (en) * 2010-03-11 2011-09-22 Konica Minolta Holdings Inc Gas barrier film, method for production thereof, and organic photoelectric conversion element using the gas barrier film
JP2012016854A (en) * 2010-07-07 2012-01-26 Konica Minolta Holdings Inc Gas barrier film, organic photoelectric conversion element, and organic electroluminescent element
JP2012087326A (en) * 2010-10-15 2012-05-10 Lintec Corp Transparent conductive film, production method therefor, member for electronic device, and electronic device
WO2015098671A1 (en) * 2013-12-26 2015-07-02 住友化学株式会社 Laminate film and flexible electronic device
JP2017185789A (en) * 2016-03-31 2017-10-12 住友化学株式会社 Laminate film and production method of the same

Also Published As

Publication number Publication date
JP2023050694A (en) 2023-04-11
TW202330254A (en) 2023-08-01

Similar Documents

Publication Publication Date Title
CN107209299B (en) Wavelength conversion member, backlight unit provided with same, liquid crystal display device, and method for manufacturing wavelength conversion member
JP6333749B2 (en) Wavelength conversion member, backlight unit including the same, liquid crystal display device, and method for manufacturing wavelength conversion member
JP7304129B2 (en) Antireflection film, manufacturing method thereof, and polarizing plate with antireflection layer
WO2022172957A1 (en) Gas barrier film, production method thereof and polarizing plate and imade display with gas barrier layer
WO2019107036A1 (en) Hard coat film, optical layered body, and image display device
WO2022014569A1 (en) Optical film with anti-fouling layer
WO2023054178A1 (en) Gas barrier film, method for producing same, polarizing plate with gas barrier layer, image display device and solar cell
JP2004258394A (en) Optical functional film, anti-reflection film, polarizing plate, and display device
WO2023054176A1 (en) Gas barrier film, method for producing same, polarizing plate with gas barrier layer and image display device
WO2023054175A1 (en) Gas barrier film and production method of same, and gas barrier layer-provided polarizing plate and image display apparatus
WO2023153307A1 (en) Gas barrier film, method for producing the same, polarizing plate with gas barrier layer and image display device
WO2023054177A1 (en) Gas barrier film, method for producing same, polarizing plate equipped with gas barrier layer, and image display device
WO2023153010A1 (en) Gas barrier film, method for producing same, polarizing plate with gas barrier layer, and image display device
WO2022209829A1 (en) Optical multilayer body and image display device
JP6983040B2 (en) Gas barrier film and devices containing it
WO2022172956A1 (en) Gas barrier film, polarizing plate equipped with gas barrier layer, and image display device
JP4332310B2 (en) Method for producing titanium oxide layer, titanium oxide layer produced by this method, and antireflection film using titanium oxide
JP2004223769A (en) Transparent laminated film, antireflection film, polarizing plate using the same and liquid crystal display device
WO2022014574A1 (en) Laminate
WO2022080137A1 (en) Polarizing plate provided with antireflective layer, and image display device
JP2005224948A (en) Transparent reflecting base material, color filter and liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876045

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE