WO2023054177A1 - Gas barrier film, method for producing same, polarizing plate equipped with gas barrier layer, and image display device - Google Patents

Gas barrier film, method for producing same, polarizing plate equipped with gas barrier layer, and image display device Download PDF

Info

Publication number
WO2023054177A1
WO2023054177A1 PCT/JP2022/035426 JP2022035426W WO2023054177A1 WO 2023054177 A1 WO2023054177 A1 WO 2023054177A1 JP 2022035426 W JP2022035426 W JP 2022035426W WO 2023054177 A1 WO2023054177 A1 WO 2023054177A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
gas barrier
film
oxygen
barrier film
Prior art date
Application number
PCT/JP2022/035426
Other languages
French (fr)
Japanese (ja)
Inventor
一裕 中島
帆奈美 伊藤
智剛 梨木
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2023054177A1 publication Critical patent/WO2023054177A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements

Definitions

  • the present invention relates to a gas barrier film, a method for producing the same, a polarizing plate with a gas barrier layer, and an image display device.
  • resin film substrates are being used instead of glass substrates. Since resin films have higher permeability to gases such as water vapor and oxygen than glass, it has been proposed to use a gas barrier film having a gas barrier layer for the purpose of suppressing element deterioration caused by these gases. .
  • Organic EL elements may have defects called “dark spots” due to the infiltration of even a small amount of moisture, and high gas barrier properties (water vapor blocking properties) are required.
  • Silicon nitride (SiN) and silicon oxynitride (SiON) are known as materials having excellent gas barrier properties.
  • Patent Document 1 proposes a gas barrier film including a silicon nitride layer and a silicon oxide layer as a gas barrier film with excellent transparency and flexibility.
  • ammonia (ammonia gas) can be generated from the nitrogen-containing layer in a humidified environment. This has been clarified by the studies of the inventors. Ammonia generated from the nitrogen-containing layer reacts with, for example, moisture in the air to produce ammonium ions and hydroxide ions, which may corrode the device.
  • Patent Document 1 With only the technology disclosed in Patent Document 1, it is difficult to obtain a gas barrier film that is excellent in transparency while ensuring gas barrier properties and that can suppress the generation of ammonia.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a gas barrier film that is excellent in transparency while ensuring gas barrier properties and that can suppress the generation of ammonia, a method for producing the same, and a method for producing the gas barrier film.
  • An object of the present invention is to provide a polarizing plate with a gas barrier layer and an image display device.
  • the present invention includes the following aspects.
  • a gas barrier film comprising a transparent film substrate and a gas barrier layer disposed directly or indirectly on at least one main surface of the transparent film substrate,
  • the gas barrier layer has a first layer containing silicon, oxygen and carbon as constituent elements, and a second layer containing silicon, oxygen and nitrogen as constituent elements,
  • the first layer is a layer located farthest from the transparent film substrate in the gas barrier layer,
  • the second layer is in contact with the main surface of the first layer on the transparent film substrate side,
  • the gas barrier film wherein the oxygen content in the second layer is 15 atomic % or more when the total of silicon, oxygen and nitrogen in the second layer is 100 atomic %.
  • the content of carbon in the first layer is 1 atomic % or more and 10 atomic % or less when the total of silicon, oxygen and carbon in the first layer is 100 atomic %.
  • the gas barrier film according to any one of [4].
  • a polarizing plate with a gas barrier layer comprising the gas barrier film according to any one of [1] to [6] above and a polarizer.
  • An image display device comprising the gas barrier film according to any one of [1] to [6] and an image display cell.
  • An image display device comprising the polarizing plate with a gas barrier layer according to [8] and an image display cell.
  • the present invention it is possible to provide a gas barrier film that is excellent in transparency while ensuring gas barrier properties and that can suppress the generation of ammonia, a method for producing the same, and a polarizing plate with a gas barrier layer and an image display device using the gas barrier film.
  • FIG. 1 is a cross-sectional view showing an example of a gas barrier film according to the present invention
  • FIG. 4 is a cross-sectional view showing another example of the gas barrier film according to the present invention
  • FIG. 4 is a cross-sectional view showing another example of the gas barrier film according to the present invention
  • FIG. 4 is a cross-sectional view showing another example of the gas barrier film according to the present invention
  • BRIEF DESCRIPTION OF THE DRAWINGS It is sectional drawing which shows an example of the polarizing plate with a gas barrier layer which concerns on this invention. It is a sectional view showing an example of an image display device concerning the present invention.
  • the number average primary particle diameter of the particles is the circle of 100 primary particles measured using a scanning electron microscope and image processing software (e.g., "ImageJ” manufactured by the National Institutes of Health), unless otherwise specified. It is a number average value of equivalent diameters (Heywood diameter: diameter of a circle having the same area as the projected area of primary particles).
  • Layered material (more specifically, transparent film substrate, gas barrier layer, first layer, second layer, silicon oxynitride layer, silicon oxycarbide layer, hard coat layer, adhesive layer, polarizer, etc.)
  • Plane refers to a plane perpendicular to the thickness direction of the layered product.
  • the numerical value for the "thickness" of the layered material is the "average thickness”.
  • the average thickness of the layered material is obtained by observing a cross section of the layered material cut in the thickness direction with an electron microscope, randomly selecting 10 measurement points from the cross-sectional image, and measuring the thickness of the selected 10 measurement points. Arithmetic mean of 10 measurements obtained.
  • Refractive index refers to the refractive index for light with a wavelength of 550 nm in an atmosphere at a temperature of 23°C.
  • the flow rate unit "sccm (Standard Cubic Centimeter per Minute)" is the flow rate unit “mL/min” under standard conditions (temperature: 0°C, pressure: 101.3 kPa).
  • system may be added after the name of the compound to generically refer to the compound and its derivatives.
  • polymer name is expressed by adding "system” after the compound name, it means that the repeating unit of the polymer is derived from the compound or its derivative.
  • Acryl and methacryl may be collectively referred to as "(meth)acryl”.
  • a gas barrier film according to a first embodiment of the present invention has a transparent film substrate and a gas barrier layer directly or indirectly arranged on at least one main surface of the transparent film substrate.
  • the gas barrier layer has a first layer containing silicon, oxygen and carbon as constituent elements and a second layer containing silicon, oxygen and nitrogen as constituent elements.
  • a 1st layer is a layer arrange
  • the second layer is in contact with the main surface of the first layer on the side of the transparent film substrate.
  • the oxygen content in the second layer is 15 atomic % or more when the total of silicon, oxygen and nitrogen in the second layer is 100 atomic %.
  • a layer containing silicon, oxygen and carbon as constituent elements may be referred to as a "silicon oxycarbide layer".
  • a layer containing silicon, oxygen, and nitrogen as constituent elements is sometimes referred to as a "silicon oxynitride layer.”
  • the content of oxygen in the second layer (or silicon oxynitride layer) when the total of silicon, oxygen and nitrogen in the second layer (or silicon oxynitride layer) is 100 atomic % is defined as "second content of oxygen in the layer (or silicon oxynitride layer)".
  • the content of carbon in the first layer (or silicon oxycarbide layer) when the total of silicon, oxygen and carbon in the first layer (or silicon oxycarbide layer) is 100 atomic % is defined as "first The content of carbon in the layer (or silicon oxycarbide layer)".
  • the elemental composition of the silicon oxycarbide layer is the elemental composition at the central portion in the thickness direction of the silicon oxycarbide layer (when 1/2 of the total etching time of the silicon oxycarbide layer, which will be described later, has elapsed). .
  • the elemental composition of the silicon oxynitride layer is the elemental composition at the central portion in the thickness direction of the silicon oxynitride layer (when 1/2 of the total etching time of the silicon oxynitride layer, which will be described later, has elapsed).
  • the method for measuring the elemental composition of the silicon oxycarbide layer and the method for measuring the elemental composition of the silicon oxynitride layer are both the same method as in Examples described later or a method based thereon.
  • the gas barrier film according to the first embodiment has the above configuration, it is possible to suppress the generation of ammonia while ensuring gas barrier properties and excellent transparency. The reason is presumed as follows.
  • silicon oxynitride layers tend to have higher gas barrier properties as the nitrogen ratio increases, and the higher the oxygen ratio, the less visible light is absorbed and the more transparent they tend to be.
  • the gas barrier film according to the first embodiment has excellent transparency because the silicon oxynitride layer, which is the second layer, has an oxygen content of 15 atomic % or more.
  • the gas barrier film according to the first embodiment has a silicon oxycarbide layer as the first layer in addition to the silicon oxynitride layer, even if the oxygen content in the silicon oxynitride layer is 15 atomic % or more, gas barrier properties can be ensured regardless of
  • the ammonia gas is released from the silicon oxynitride layer (second layer) in contact with the silicon oxycarbide layer. Even if it occurs, the diffusion of ammonia gas is blocked by the silicon oxycarbide layer. Therefore, according to the gas barrier film according to the first embodiment, it is possible to suppress the generation of ammonia (especially the generation of ammonia in a humidified environment).
  • the oxygen content in the second layer is preferably 18 atomic % or more, more preferably 19 atomic % or more, More preferably 20 atomic % or more, 21 atomic % or more, 22 atomic % or more, 23 atomic % or more, 24 atomic % or more, 25 atomic % or more, 26 atomic % or more, 27 atomic % or more, 28 atomic % or more , 29 atomic % or more, or 30 atomic % or more.
  • the oxygen content in the second layer is preferably 50 atomic % or less, more preferably 47 atomic % or less, It is more preferably 45 atomic % or less, and even more preferably 43 atomic % or less.
  • the thickness of the first layer is preferably 30 nm or more and 250 nm or less, more preferably 40 nm or more and 220 nm, in order to obtain a gas barrier film that is more excellent in gas barrier properties and transparency and can further suppress the generation of ammonia. It is more preferably 50 nm or more and 200 nm or less, even more preferably 60 nm or more and 200 nm or less, 70 nm or more and 200 nm or less, 80 nm or more and 200 nm or less, 90 nm or more and 200 nm or less, or 100 nm or more and 200 nm or less. may be
  • the thickness of the second layer is preferably 20 nm or more and 120 nm or less, more preferably 25 nm or more and 110 nm, in order to obtain a gas barrier film that is more excellent in gas barrier properties and transparency and can further suppress the generation of ammonia. It is more preferably 30 nm or more and 100 nm or less, even more preferably 30 nm or more and 90 nm or less, and may be 30 nm or more and 80 nm or less, 30 nm or more and 70 nm or less, or 30 nm or more and 60 nm or less. .
  • the carbon content in the first layer is 1 atomic % or more and 10 atomic % or less. It is preferably 2 atomic % or more and 7 atomic % or less, and still more preferably 3 atomic % or more and 5 atomic % or less.
  • the carbon content (the total of silicon, oxygen and carbon is The carbon content at the point where the carbon content at 100 atomic %) is the maximum value is sometimes referred to as the "maximum carbon content.”
  • the maximum carbon content is preferably 10 atomic % or less, more preferably 9 atomic % or less, and even more preferably 7 atomic % or less. It is even more preferably 5 atomic % or less, and particularly preferably 3 atomic % or more and 5 atomic % or less.
  • the maximum carbon content is at least one of the introduction amount (flow rate) of the silicon source, the introduction amount (flow rate) of the oxygen source, and the applied power. can be adjusted by changing the
  • condition 1 The oxygen content in the second layer is 18 atomic % or more and 50 atomic % or less, and the thickness of the first layer is 30 nm or more and 250 nm or less.
  • Condition 2 Condition 1 above is satisfied, and the thickness of the second layer is 20 nm or more and 120 nm or less.
  • Condition 3 Condition 2 above is satisfied, and the maximum carbon content of the first layer is 5 atomic % or less.
  • FIG. 1 is a cross-sectional view showing an example of the gas barrier film according to the first embodiment.
  • a gas barrier film 10 shown in FIG. 1 is a laminate having a transparent film substrate 11 and a gas barrier layer 12 directly disposed on one main surface 11 a of the transparent film substrate 11 .
  • the gas barrier layer 12 has a first layer 13 (silicon oxycarbide layer) containing silicon, oxygen and carbon as constituent elements, and a second layer 14 (silicon oxynitride layer) containing silicon, oxygen and nitrogen as constituent elements.
  • the first layer 13 is the layer located farthest from the transparent film substrate 11 in the gas barrier layer 12 .
  • the second layer 14 is in contact with the main surface 13a of the first layer 13 on the transparent film substrate 11 side.
  • the oxygen content in the second layer 14 is 15 atomic % or more when the total of silicon, oxygen and nitrogen in the second layer 14 is 100 atomic %.
  • the configuration of the gas barrier film according to the first embodiment is not limited to the configuration of the gas barrier film 10 shown in FIG.
  • a silicon oxycarbide layer may be arranged as a third layer between the silicon oxynitride layer and the transparent film substrate.
  • the gas barrier layer may include two or more silicon oxynitride layers, for example, two silicon oxynitride layers and three silicon oxycarbide layers. Alternating laminates may also be used.
  • the gas barrier layer may have a laminate structure of four layers or a laminate structure of six or more layers.
  • the gas barrier layer having a four-layer structure may be an alternate laminate in which silicon oxynitride layer/silicon oxycarbide layer/silicon oxynitride layer/silicon oxycarbide layer are arranged in this order from the transparent film substrate side.
  • the gas barrier layer may be an alternately laminated body composed of 3 silicon oxynitride layers and 4 silicon oxycarbide layers, a total of 7 layers, or may be an alternately laminated body composed of 8 or more layers.
  • the gas barrier layer preferably has a two-layer or three-layer laminate structure, and more preferably has a two-layer laminate structure like the gas barrier film 10 shown in FIG. preferable.
  • the gas barrier layer may be indirectly arranged on the main surface of the transparent film substrate.
  • the gas barrier film 20 shown in FIG. 2 has a hard coat layer 21 arranged between the transparent film substrate 11 and the gas barrier layer 12 (second layer 14).
  • the gas barrier layer 12 is indirectly arranged on the main surface of the transparent film substrate 11 .
  • the hard coat layer 21 is a layer that enhances mechanical properties such as hardness and elastic modulus of the gas barrier film 20 . If the main surface of the hard coat layer 21 on the side of the gas barrier layer 12 is smooth, the gas barrier properties of the gas barrier layer 12 formed thereon are enhanced, and the water vapor transmission rate tends to decrease.
  • the arithmetic mean height Sa of the main surface of the hard coat layer 21 on the side of the gas barrier layer 12 may be 1.5 nm or less or 1.0 nm or less.
  • the arithmetic mean height Sa is calculated according to ISO 25178 from the three-dimensional surface profile of the range of 1 ⁇ m ⁇ 1 ⁇ m measured by an atomic force microscope (AFM).
  • the hard coat layer 21 may contain particles with a number average primary particle diameter of less than 1.0 ⁇ m (hereinafter sometimes referred to as "nanoparticles"). For example, when the hard coat layer 21 contains nanoparticles, fine irregularities are formed on the surface of the hard coat layer 21, and adhesion between the hard coat layer 21 and the gas barrier layer 12 tends to be improved.
  • the gas barrier film according to the first embodiment may be provided with gas barrier layers on both main surfaces of the transparent film substrate in order to further improve gas barrier properties.
  • the gas barrier film 30 shown in FIG. and a gas barrier layer having a laminated structure of three or more layers may be provided on each of both main surfaces of the transparent film substrate.
  • the configuration of the gas barrier layer 31 may be the same as or different from the configuration of the gas barrier layer 12 . That is, the gas barrier layer 31 may have the silicon oxynitride layer 33 and the silicon oxycarbide layer 32 in this order from the transparent film substrate 11 side, and the oxygen content in the silicon oxynitride layer 33 is 15 atomic %. or more. Also, the gas barrier layer 31 may not have at least one of the silicon oxynitride layer 33 and the silicon oxycarbide layer 32 .
  • the gas barrier layer 31 has a silicon oxynitride layer 33 and a silicon oxycarbide layer 32 in this order from the transparent film substrate 11 side, and It is preferable that the oxygen content in the silicon nitride layer 33 is 15 atomic % or more.
  • the carbon content in the silicon oxycarbide layer 32 should be 1 atomic % or more and 10 atomic % or less. is preferred.
  • the gas barrier film according to the first embodiment may further have an adhesive layer.
  • a gas barrier film 40 shown in FIG. 4 has an adhesive layer 41 in addition to the configuration of the gas barrier film 30 .
  • the adhesive layer 41 is arranged on the main surface 13b of the first layer 13 opposite to the transparent film substrate 11 side.
  • a release liner may be temporarily attached to the main surface of the pressure-sensitive adhesive layer 41 opposite to the first layer 13 side.
  • the release liner protects the surface of the pressure-sensitive adhesive layer 41, for example, until the gas barrier film 40 is attached to the polarizing plate 101 (see FIG. 5), which will be described later.
  • Plastic films made of acrylic, polyolefin, cyclic polyolefin, polyester or the like are preferably used as the constituent material of the release liner.
  • the thickness of the release liner is, for example, 5 ⁇ m or more and 200 ⁇ m or less.
  • the surface of the release liner is preferably subjected to release treatment. Examples of release agent materials used in release treatment include silicone-based materials, fluorine-based materials, long-chain alkyl-based materials, fatty acid amide-based materials, and the like.
  • the transparent film substrate 11 is a layer that serves as a base for forming the gas barrier layer.
  • the transparent film substrate 11 may have flexibility.
  • the gas barrier layer can be formed by a roll-to-roll method, so the productivity of the gas barrier layer can be improved.
  • a gas barrier film in which a gas barrier layer is provided on a flexible film also has the advantage of being applicable to flexible devices and foldable devices.
  • the visible light transmittance of the transparent film substrate 11 is preferably 80% or higher, more preferably 90% or higher.
  • the thickness of the transparent film substrate 11 is not particularly limited, but from the viewpoint of strength, handleability, etc., it is preferably 5 ⁇ m or more and 200 ⁇ m or less, more preferably 10 ⁇ m or more and 150 ⁇ m or less, and 30 ⁇ m or more and 100 ⁇ m or less. is more preferred.
  • resin material that constitutes the transparent film substrate 11 a resin material that is excellent in transparency, mechanical strength and thermal stability is preferable.
  • resin materials include cellulose resins such as triacetyl cellulose, polyester resins, polyethersulfone resins, polysulfone resins, polycarbonate resins, polyamide resins, polyimide resins, polyolefin resins, (meth) Examples include acrylic resins, cyclic polyolefin resins (more specifically, norbornene resins, etc.), polyarylate resins, polystyrene resins, polyvinyl alcohol resins, and mixtures thereof.
  • Corona treatment, plasma treatment, flame treatment, ozone treatment, glow treatment, saponification treatment, and coupling agent are applied to the main surface of the transparent film substrate 11 on which the gas barrier layer is formed, for the purpose of improving adhesion with the gas barrier layer.
  • Surface modification treatment such as treatment with may be applied.
  • the surface layer of the transparent film substrate 11 on which the gas barrier layer is formed may be a primer layer (not shown).
  • the primer layer When the surface layer on which the gas barrier layer is formed is the primer layer, the adhesion between the transparent film substrate 11 and the gas barrier layer tends to be high.
  • Examples of materials constituting the primer layer include metals (or semi-metals) such as silicon, nickel, chromium, tin, gold, silver, platinum, zinc, indium, titanium, tungsten, aluminum, zirconium, and palladium; alloys (or metalloids); oxides, fluorides, sulfides or nitrides of these metals (or metalloids);
  • the thickness of the primer layer is, for example, 1 nm or more and 20 nm or less, preferably 1 nm or more and 15 nm or less, and more preferably 1 nm or more and 10 nm or less.
  • the second layer 14 is a layer mainly having a gas barrier function in the gas barrier layer, and is a silicon oxynitride layer made of a material containing silicon, oxygen and nitrogen as main constituent elements.
  • the second layer 14 may contain a small amount of elements such as hydrogen, carbon, etc. taken in from the raw material at the time of film formation, the transparent film substrate 11 and the external environment.
  • the carbon content in the second layer 14 is preferably lower than that in the first layer 13 .
  • the composition of silicon oxynitride contained in the second layer 14 is represented by the general formula SiO x N y .
  • x in the general formula SiO x N y may be simply referred to as "x”.
  • y in the general formula SiO x N y may be simply described as "y”.
  • the silicon oxynitride contained in the second layer 14 may have a stoichiometric composition or may be a non-stoichiometric composition deficient in oxygen or nitrogen.
  • the value of (x/2+3y/4) is preferably 0.70 or more and 1.10 or less.
  • the upper limit of (x/2+3y/4) is 1, but it may show a value greater than 1 due to excessive intake of oxygen or nitrogen. If (x/2+3y/4) is 0.70 or more, transparency and gas barrier properties tend to be enhanced.
  • x is preferably 0.3 or more. In order to obtain a gas barrier film with more excellent gas barrier properties, x is preferably 1.2 or less. In order to obtain a gas barrier film with more excellent gas barrier properties, y is preferably 0.4 or more. In order to obtain a gas barrier film having excellent transparency while further suppressing the generation of ammonia, y is preferably 0.8 or less.
  • the content of elements other than silicon, oxygen, and nitrogen is preferably 5 atomic % or less, more preferably 3 atomic % or less, and 1 atomic % or less. More preferred.
  • the total content of silicon, oxygen and nitrogen is preferably 90 atomic % or more, more preferably 95 atomic % or more, and 97 atomic % or more. is more preferable, and may be 99 atomic % or more, 99.5 atomic % or more, or 99.9 atomic % or more.
  • the refractive index of the second layer 14 is generally 1.50 or more and 2.20 or less, preferably 1.55 or more and 2.00 or less, and may be 1.60 or more and 1.90 or less. 0.85 or less, 1.80 or less, 1.75 or less, or 1.70 or less.
  • the second layer 14 having a refractive index within this range can achieve both excellent gas barrier properties and transparency. Further, when the refractive index is 2.00 or less, there is a tendency for the light transmittance to be improved. The second layer 14 tends to have a higher refractive index as the nitrogen ratio increases.
  • the density of the second layer 14 is preferably 2.10 g/cm 3 or more.
  • the second layer 14 tends to have a higher density as the nitrogen ratio increases.
  • a method for forming the second layer 14 is not particularly limited, and may be a dry coating method or a wet coating method.
  • a dry process such as a sputtering method, an ion plating method, a vacuum deposition method, or a chemical vapor deposition method (CVD method) is preferable because a film having a high film density and a high gas barrier property can be easily formed.
  • a CVD method is preferable, and a plasma CVD method is more preferable, because a film having small film stress and excellent bending resistance can be easily formed.
  • a film forming roll constitutes one or both electrodes of a pair of opposed electrodes, and a thin film is formed on the film when the film runs on the film forming roll. be.
  • two film-forming rolls constitute a pair of opposing electrodes, a thin film is formed on each of the film-forming rolls, so the film-forming speed can be doubled.
  • the expression "above” when explaining the film forming method by the CVD method has no relation to the direction in the CVD film forming apparatus, and has the same meaning as "in contact with”.
  • Examples of the silicon supply source (silicon source) when forming the second layer 14 by the CVD method include silicon hydride (more specifically, silane, disilane, etc.) and silicon halide (more specifically, , dichlorosilane, etc.) Si-containing gas such as hexamethyldisilazane, hexamethyldisiloxane, 1,1,3,3-tetramethyldisiloxane, tetramethylsilane, vinyltrimethoxysilane, vinyltrimethylsilane, dimethyldimethoxy Silicon compounds such as silane, tetramethoxysilane, methyltrimethoxysilane, dimethyldiethoxysilane, trimethylmethoxysilane, tetraethoxysilane, diethyldiethoxysilane, methyldimethoxysilane, methyldiethoxysiloxane, monosilylamine, disilylamine, and trisilylamine is mentioned. Among these, tri
  • Nitrogen sources include nitrogen and ammonia.
  • Oxygen sources include oxygen, carbon monoxide, carbon dioxide, and the like. Nitrogen (nitrogen gas) is preferable as the nitrogen source, and oxygen (oxygen gas) is preferable as the oxygen source, from the viewpoint of reducing hydrogen and carbon taken into the film.
  • a silicon nitride film formed by a CVD method by introducing a nitrogen source together with trisilylamine as a silicon source has a large amount of hydrogen in the film, and a wave number of 2140 cm ⁇ 1 (range of 2120 cm ⁇ 1 to 2150 cm ⁇ 1 ).
  • a silicon oxynitride film formed by a CVD method by introducing nitrogen and oxygen together with trisilylamine as a silicon source shifts the infrared absorption peak to the high wave number side, and is 2160 cm ⁇ 1 to 2280 cm It exhibits an infrared absorption peak in the range of -1 or less, and exhibits transparency superior to that of silicon nitride films.
  • Oxygen has a strong bonding force with silicon, so it is presumed that the introduction of oxygen suppresses the uptake of hydrogen into the film, which is one of the reasons for the improvement in transparency.
  • the composition of the second layer 14 can be appropriately adjusted.
  • the amount of oxygen to be introduced is set to 0.05 by volume with respect to the amount of nitrogen to be introduced. It is preferably 0.1 times or more and 5 times or less, more preferably 0.03 times or more and 2 times or less, further preferably 0.04 times or more and 1.5 times or less, and 0.04 times or more and 1 0 times or less, or 0.04 times or more and 0.5 times or less.
  • the amount of oxygen introduced is excessively small, the amount of oxygen introduced into the film tends to be small and the light transmittance of the film tends to decrease. If the amount of oxygen introduced is excessively large, the amount of nitrogen incorporated into the film tends to be small, resulting in insufficient gas barrier properties.
  • a gas other than the silicon source, the nitrogen source, and the oxygen source may be used as the introduced gas when forming the film by the CVD method.
  • a carrier gas may be used to vaporize the liquid and introduce it into the chamber (vacuum chamber).
  • a nitrogen source or an oxygen source may be mixed with a carrier gas and introduced into the vacuum chamber, or a discharge gas may be used to stabilize the plasma discharge.
  • Carrier gas and discharge gas include rare gases such as helium, argon, neon, and xenon, and hydrogen. A rare gas is preferable from the viewpoint of reducing the amount of hydrogen taken into the film and increasing the transparency.
  • the substrate temperature (temperature of the surface of the film-forming roll) is set, for example, within the range of -20°C or higher and 500°C or lower.
  • the substrate temperature (film substrate temperature) when forming a gas barrier layer (for example, the second layer 14) on the film substrate is preferably 150° C. or less from the viewpoint of the heat resistance of the film substrate. , 100° C. or lower.
  • the pressure in the film forming chamber (inside the vacuum chamber) is, for example, 0.001 Pa or more and 50 Pa or less.
  • An AC power supply for example, is used as the power supply for plasma generation.
  • the frequency of the power supply in roll-to-roll CVD film formation is generally in the range of 50 kHz to 500 kHz.
  • the applied power in roll-to-roll CVD film formation is generally 0.1 kW or more and 10 kW or less.
  • the density of the second layer 14 formed by the CVD method is, for example, 2.10 g/cm 3 or more and 2.50 g/cm 3 or less, 2.15 g/cm 3 or more and 2.45 g/cm 3 or less, or 2.20 g/cm 3 or more. /cm 3 or more and 2.40 g/cm 3 or less, or 2.25 g/cm 3 or more and 2.35 g/cm 3 or less.
  • the first layer 13 is a layer that blocks the diffusion of ammonia gas from the second layer 14 while having a gas barrier function together with the second layer 14, and is made of a material containing silicon, oxygen and carbon as main constituent elements. Silicon layer.
  • the first layer 13 may contain a small amount of elements such as hydrogen, nitrogen, etc. taken in from the raw material at the time of film formation, the transparent film substrate 11 and the external environment. When the first layer 13 contains nitrogen, the nitrogen content in the first layer 13 is preferably lower than that in the second layer 14 .
  • the content of elements other than silicon, oxygen, and carbon is preferably 3 atomic % or less, more preferably 1 atomic % or less, and 0.5 atomic % or less. is more preferred.
  • the total content of silicon, oxygen and carbon is preferably 90 atomic % or more, more preferably 95 atomic % or more, and 97 atomic % or more. is more preferable, and may be 99 atomic % or more, 99.5 atomic % or more, or 99.9 atomic % or more.
  • the composition of silicon oxycarbide contained in the first layer 13 is represented by the general formula SiO a C b .
  • a in the general formula SiO a C b may be simply referred to as "a”.
  • b in the general formula SiOaCb may be simply described as "b”.
  • a is 1.5 or more and 2.5 or less, and b is 0.01 or more and 0.5 or less. is preferred.
  • a method for forming the first layer 13 is not particularly limited, and may be a dry coating method or a wet coating method.
  • the first layer 13 is also preferably formed by the CVD method from the viewpoint of productivity.
  • Examples of the silicon source and the oxygen source for forming the first layer 13 by the CVD method include those exemplified above regarding the formation of the second layer 14 .
  • the silicon source organosilicon compounds are preferred because they have low toxicity and can suppress incorporation of nitrogen into the film. methylsilane, vinyltrimethoxysilane, vinyltrimethylsilane, dimethyldimethoxysilane, tetramethoxysilane, methyltrimethoxysilane, dimethyldiethoxysilane, trimethylmethoxysilane, tetraethoxysilane, diethyldiethoxysilane, methyldimethoxysilane, and methyldimethoxysilane.
  • organosilicon compounds More preferably, one or more selected from the group consisting of ethoxysiloxane.
  • ethoxysiloxane hexamethyldisiloxane is particularly preferred because it can suppress incorporation of impurities into the film and can form a film with high transparency and gas barrier properties.
  • the organosilicon compound as the silicon source also serves as a carbon source, an organic compound containing no silicon may be used as the carbon source in addition to the organosilicon compound.
  • Oxygen gas is preferable as the oxygen source from the viewpoint of reducing the amount of hydrogen in the film.
  • the amount of oxygen introduced is preferably 10 times or more by volume the amount of hexamethyldisiloxane (gas) introduced. , 15 times or more, or 20 times or more. From the viewpoint of appropriately maintaining the film formation rate, the amount of oxygen introduced is preferably 200 times or less, and preferably 100 times or less or 50 times or less, the volume ratio of the amount of hexamethyldisiloxane (gas) introduced. good too.
  • the composition of the first layer 13 can be appropriately adjusted by changing the introduction amount of the oxygen source (or the oxygen source and the carbon source) with respect to the silicon source.
  • a carrier gas or a discharge gas may be introduced in the CVD film formation of the first layer 13 .
  • Various conditions such as substrate temperature, pressure, power supply frequency, and applied power may be appropriately adjusted in the same manner as in the film formation of the second layer 14 .
  • the density of the first layer 13 is preferably 1.80 g/cm 3 or more, more preferably 1.90 g/cm 3 or more. 00 g/cm 3 or more and 2.40 g/cm 3 or less, 2.05 g/cm 3 or more and 2.35 g/cm 3 or less, or 2.10 g/cm 3 or more and 2.30 g/cm 3 or less.
  • the gas barrier layer may include layers (other layers) other than the second layer 14 and the first layer 13.
  • “other layers” include inorganic thin films made of ceramic materials such as metal or semi-metal oxides, nitrides or oxynitrides. Oxides, nitrides or oxynitrides of Si, Al, In, Sn, Zn, Ti, Nb, Ce or Zr are preferred because they have both low moisture permeability and transparency.
  • the total thickness of the gas barrier layer is preferably 50 nm or more and 1000 nm or less, more preferably 80 nm or more and 500 nm or less.
  • the hard coat layer 21 contains, for example, a binder resin and nanoparticles.
  • a binder resin curable resins such as thermosetting resins, photocurable resins and electron beam curable resins are preferably used.
  • curable resins include polyester resins, acrylic resins, urethane resins, acrylic urethane resins, amide resins, silicone resins, silicate resins, epoxy resins, melamine resins, and oxetane resins. mentioned.
  • One or more curable resins can be used.
  • acrylic resins acrylic urethane resins, and epoxy resins are preferable because they have high hardness and can be photocured, and acrylic resins and acrylic urethane resins. More preferably, one or more selected from the group consisting of
  • the number average primary particle size of the nanoparticles contained in the hard coat layer 21 is preferably 15 nm or more, more preferably 20 nm or more, from the viewpoint of enhancing dispersibility in the binder resin. From the viewpoint of forming fine irregularities that contribute to improved adhesion, the number average primary particle diameter of the nanoparticles contained in the hard coat layer 21 is preferably 90 nm or less, more preferably 70 nm or less. It is more preferably 50 nm or less.
  • Inorganic oxides are preferable as materials for nanoparticles.
  • examples of inorganic oxides include metal (or metalloid) oxides such as silica, titanium oxide, aluminum oxide, zirconium oxide, niobium oxide, zinc oxide, tin oxide, cerium oxide, and magnesium oxide.
  • the inorganic oxide may be a composite oxide of multiple (semi)metals.
  • silica is preferable because it has a high adhesion improving effect. That is, silica particles (nanosilica particles) are preferable as the nanoparticles.
  • a functional group such as an acrylic group or an epoxy group may be introduced into the surface of the inorganic oxide particles as nanoparticles for the purpose of enhancing adhesion and affinity with the resin.
  • the amount of nanoparticles in the hard coat layer 21 is preferably 5 parts by weight or more, 10 parts by weight or more, 20 parts by weight or more, or 30 parts by weight or more with respect to 100 parts by weight of the total amount of the binder resin and the nanoparticles. may be If the amount of nanoparticles is 5 parts by weight or more, the adhesion to the gas barrier layer formed on the hard coat layer 21 can be improved.
  • the upper limit of the amount of nanoparticles in the hard coat layer 21 is, for example, 90 parts by weight, preferably 80 parts by weight, and preferably 70 parts by weight with respect to 100 parts by weight of the total amount of the binder resin and the nanoparticles. good too.
  • the thickness of the hard coat layer 21 is not particularly limited, but is preferably 0.5 ⁇ m or more, more preferably 1.0 ⁇ m or more, in order to improve the adhesion to the gas barrier layer while achieving high hardness. It is more preferably 2.0 ⁇ m or more, and even more preferably 3.0 ⁇ m or more. On the other hand, the thickness of the hard coat layer 21 is preferably 20 ⁇ m or less, more preferably 15 ⁇ m or less, and even more preferably 12 ⁇ m or less in order to suppress a decrease in strength due to cohesive failure.
  • the hard coat layer 21 is formed by applying the hard coat composition onto the transparent film substrate 11 and, if necessary, removing the solvent and curing the resin.
  • the hard coat composition contains, for example, the above binder resin and nanoparticles, and optionally contains a solvent capable of dissolving or dispersing these components.
  • the resin component in the hard coat composition is a curable resin
  • the hard coat composition preferably contains an appropriate polymerization initiator.
  • the resin component in the hard coat composition is a photocurable resin
  • the hard coat composition preferably contains a photopolymerization initiator.
  • the hard coat composition includes particles (microparticles) having a number average primary particle diameter of 1.0 ⁇ m or more, leveling agents, viscosity modifiers (thixotropic agents, thickeners, etc.), antistatic agents, blocking agents, Additives such as inhibitors, dispersants, dispersion stabilizers, antioxidants, UV absorbers, antifoaming agents, surfactants and lubricants may be included.
  • any suitable method such as bar coating, roll coating, gravure coating, rod coating, slot orifice coating, curtain coating, fountain coating, comma coating, etc. can be used. can be adopted.
  • Adhesive layer 41 As a constituent material of the adhesive layer 41, an adhesive having a high visible light transmittance is preferably used.
  • adhesives constituting the adhesive layer 41 include acrylic polymers, silicone polymers, polyesters, polyurethanes, polyamides, polyvinyl ethers, vinyl acetate-vinyl chloride copolymers, modified polyolefins, epoxy resins, and fluorine resins. , natural rubber, synthetic rubber or the like as a base polymer can be appropriately selected and used.
  • the thickness of the adhesive layer 41 is preferably 5 ⁇ m or more and 100 ⁇ m or less.
  • the refractive index of the adhesive layer 41 is, for example, 1.4 or more and 1.5 or less.
  • the water vapor transmission rate of the gas barrier film is preferably 3.0 ⁇ 10 ⁇ 2 g/m 2 ⁇ day or less, more preferably 2.0 ⁇ 10 ⁇ 2 g/m 2 ⁇ day or less. It is more preferably 0 ⁇ 10 ⁇ 2 g/m 2 ⁇ day or less. From the viewpoint of suppressing deterioration of the protection object such as the organic EL element, the lower the water vapor transmission rate, the better. Although the lower limit of the water vapor transmission rate of the gas barrier film is not particularly limited, it is generally 1.0 ⁇ 10 ⁇ 5 g/m 2 ⁇ day. Water vapor transmission rate (WVTR) is measured according to the differential pressure method (Pressure Sensor Method) described in ISO 15106-5 under conditions of a temperature of 40° C. and a relative humidity of 90%.
  • WVTR Water vapor transmission rate
  • the light transmittance of the gas barrier film is preferably 75% or higher, more preferably 80% or higher.
  • Light transmittance is the Y value of the CIE tristimulus values specified in JlS Z8781-3:2016.
  • the amount of ammonium ions extracted per 1 cm 2 of the gas barrier film is preferably 0.30 ⁇ g or less, more preferably 0.15 ⁇ g or less, even more preferably 0.12 ⁇ g or less, and 0.11 ⁇ g or less. It is even more preferred to have
  • the method for measuring the extracted amount of ammonium ions is the same method as in Examples described later or a method based thereon.
  • the method for manufacturing the gas barrier film according to the second embodiment is a suitable method for manufacturing the gas barrier film according to the first embodiment described above. Therefore, descriptions of components that overlap with those of the above-described first embodiment may be omitted.
  • trisilylamine, nitrogen and oxygen are introduced into a chamber (vacuum chamber) of a film forming apparatus to form the second layer 14 by chemical vapor deposition. and a step of introducing an organosilicon compound and oxygen into a chamber of a film forming apparatus to form the first layer 13 by chemical vapor deposition.
  • the second layer 14 is formed.
  • a film-forming gas more specifically, trisilylamine, oxygen, nitrogen, etc.
  • plasma discharge is generated between a pair of film-forming rolls, so that the film-forming gas is It is decomposed by plasma, and the second layer 14 is formed on the transparent film substrate 11, for example.
  • plasma discharge is generated between a pair of film-forming rolls while supplying a film-forming gas (more specifically, an organic silicon compound, oxygen, etc.) for forming the first layer 13 into the vacuum chamber.
  • a film-forming gas more specifically, an organic silicon compound, oxygen, etc.
  • a polarizing plate with a gas barrier layer according to the third embodiment includes the gas barrier film according to the first embodiment and a polarizer.
  • FIG. 5 is a cross-sectional view showing an example of a polarizing plate with a gas barrier layer according to the third embodiment.
  • the polarizing plate 100 with a gas barrier layer shown in FIG. 5 has the gas barrier film 40 and the polarizing plate 101 described above.
  • the polarizing plate 101 is arranged on the main surface 41a of the adhesive layer 41 opposite to the first layer 13 side.
  • the polarizing plate 101 and the first layer 13 are bonded together with the adhesive layer 41 interposed therebetween.
  • the polarizing plate 100 with a gas barrier layer shown in FIG. it may be the gas barrier film 10 or the gas barrier film 20 .
  • the polarizing plate 101 includes a polarizer (not shown), and generally transparent protective films (not shown) as polarizer protective films are laminated on both main surfaces of the polarizer.
  • a transparent protective film may not be provided on one principal surface or both principal surfaces of the polarizer.
  • a polarizer for example, a hydrophilic polymer film such as a polyvinyl alcohol film is uniaxially stretched after adsorbing a dichroic substance such as iodine or a dichroic dye.
  • a transparent resin film composed of a cellulose resin, a cyclic polyolefin resin, an acrylic resin, a phenylmaleimide resin, a polycarbonate resin, or the like is preferably used.
  • a gas barrier film may be used as the transparent protective film.
  • the polarizing plate 101 may include an optical functional film laminated on one or both main surfaces of a polarizer via an appropriate adhesive layer or pressure-sensitive adhesive layer as necessary.
  • the optical functional film include retardation plates, viewing angle widening films, viewing angle limiting (peep prevention) films, brightness improving films, and the like.
  • the polarizing plate with a gas barrier layer according to the third embodiment includes the gas barrier film according to the first embodiment, it has excellent transparency while ensuring gas barrier properties, and can suppress the generation of ammonia.
  • An image display device includes the gas barrier film according to the first embodiment or the polarizing plate with a gas barrier layer according to the third embodiment, and an image display cell.
  • FIG. 6 is a cross-sectional view showing an example of an image display device according to the fourth embodiment.
  • An image display device 200 shown in FIG. 6 includes a gas barrier layer-attached polarizing plate 100 having a gas barrier film 40 and an image display cell 202 .
  • the image display cell 202 includes a substrate 203 and display elements 204 provided on the substrate 203 .
  • the gas barrier layer 31 and the display element 204 are bonded together with the adhesive layer 201 interposed therebetween.
  • the image display device 200 shown in FIG. 6 has the gas barrier film 40 (gas barrier film 30)
  • the gas barrier film of the image display device according to the fourth embodiment is not limited to the gas barrier film 40.
  • the gas barrier film 10 or gas barrier film 20 is not limited to the gas barrier film 40.
  • the same adhesives as those exemplified as the adhesive constituting the adhesive layer 41 described above can be used.
  • the adhesive that forms the adhesive layer 201 and the adhesive that forms the adhesive layer 41 may be of the same type or of different types.
  • the preferable range of the thickness of the adhesive layer 201 is, for example, the same as the preferable range of the thickness of the adhesive layer 41 described above.
  • the thickness of the adhesive layer 201 and the thickness of the adhesive layer 41 may be the same or different.
  • a glass substrate or a plastic substrate is used as the substrate 203 .
  • the substrate 203 does not have to be transparent, and a highly heat-resistant film such as a polyimide film may be used as the substrate 203 .
  • Examples of the display element 204 include an organic EL element, a liquid crystal element, an electrophoretic display element (electronic paper), and the like.
  • a touch panel sensor (not shown) may be arranged on the viewing side of the image display cell 202 .
  • the image display cell 202 is, for example, top emission type.
  • the organic EL element includes, for example, a metal electrode (not shown), an organic light emitting layer (not shown), and a transparent electrode (not shown) in this order from the substrate 203 side.
  • the organic light-emitting layer may include an electron-transporting layer, a hole-transporting layer, etc. in addition to the organic layer that itself functions as a light-emitting layer.
  • the transparent electrode is a metal oxide layer or a metal thin film and transmits light from the organic light emitting layer.
  • a back sheet (not shown) may be provided on the back side of the substrate 203 for the purpose of protecting and reinforcing the substrate 203 .
  • the metal electrode of the organic EL element is light reflective. Therefore, when external light enters the inside of the image display cell 202, the light is reflected by the metal electrodes, and the reflected light is visually recognized as a mirror surface from the outside.
  • a circularly polarizing plate as the polarizing plate 101 on the viewing side of the image display cell 202, the re-emission of light reflected by the metal electrode to the outside is prevented, and the visibility and design of the screen of the image display device 200 are improved. can improve sexuality.
  • the circularly polarizing plate has, for example, a retardation film on the main surface of the polarizer on the image display cell 202 side.
  • the transparent protective film arranged adjacent to the polarizer may be a retardation film.
  • the transparent film substrate 11 of the gas barrier film 40 may be a retardation film. Lamination of the polarizer and the retardation film when the retardation film has a retardation of ⁇ / 4 and the angle formed by the slow axis direction of the retardation film and the absorption axis direction of the polarizer is 45 °
  • the body functions as a circular polarizer for suppressing re-emission of reflected light from the metal electrode.
  • the retardation film that constitutes the circularly polarizing plate may be a laminate of two or more layers of films.
  • a broadband circularly polarizing plate that functions as a circularly polarizing plate over a wide band of visible light is obtained. can get.
  • the image display cell 202 may be of a bottom emission type in which a transparent electrode, an organic light emitting layer and a metal electrode are laminated in this order on a substrate.
  • a transparent substrate is used, and the transparent substrate is arranged on the viewing side.
  • a gas barrier film may be used as the transparent substrate.
  • the image display device includes the gas barrier film according to the first embodiment, it is possible to suppress deterioration of the display element caused by gas (for example, water vapor).
  • gas for example, water vapor
  • Example 1 A 40 ⁇ m-thick cyclic polyolefin film (“Zeonor (registered trademark) film ZF-14” manufactured by Nippon Zeon Co., Ltd.) as a transparent film substrate was set in a film forming apparatus, and the pressure in the vacuum chamber was reduced to 1 ⁇ 10 ⁇ 3 Pa. . Next, while the film was running, a silicon oxynitride layer having a thickness of 60 nm was formed on the film by CVD, and then a silicon oxycarbide layer having a thickness of 200 nm was formed by CVD on the silicon oxynitride layer.
  • Zeonor (registered trademark) film ZF-14 manufactured by Nippon Zeon Co., Ltd.
  • a gas barrier film having a gas barrier layer having a silicon oxynitride layer and a silicon oxycarbide layer was obtained.
  • the substrate temperature was set to 12° C.
  • the frequency of the power source for plasma generation was set to 80 kHz
  • the discharge was performed under the conditions of an applied power of 1.0 kW.
  • a film was formed at a pressure of 1.0 Pa by introducing a film forming gas between the film forming rolls (between the electrodes) in the vacuum chamber.
  • TSA trisilylamine
  • nitrogen flow rate: 500 sccm
  • oxygen flow rate: 100 sccm
  • TSA trisilylamine
  • HMDSO hexamethyldisiloxane
  • HMDSO flow rate: 25 sccm
  • oxygen flow rate: 700 sccm
  • Example 2 A gas barrier film of Example 2 was produced in the same manner as in Example 1, except that the thickness of the silicon oxycarbide layer was changed to 100 nm.
  • Example 3 A gas barrier film of Example 3 was produced in the same manner as in Example 1, except that the thickness of the silicon oxycarbide layer was changed to 50 nm.
  • Example 4 A gas barrier film of Example 4 was produced in the same manner as in Example 1, except that the thickness of the silicon oxynitride layer was changed to 30 nm.
  • Example 5 A gas barrier film of Example 5 was produced in the same manner as in Example 1, except that the thickness of the silicon oxynitride layer was changed to 100 nm.
  • Example 6 A gas barrier film of Example 6 was produced in the same manner as in Example 1, except that the flow rate of nitrogen was set to 550 sccm and the flow rate of oxygen was set to 50 sccm when forming the silicon oxynitride layer.
  • Example 7 The gas barrier film of Example 7 was prepared in the same manner as in Example 1 except that the flow rate of HMDSO was 15 sccm, the flow rate of oxygen was 420 sccm, and the applied power was 0.6 kW when forming the silicon oxycarbide layer. was made.
  • Example 8 A gas barrier film of Example 8 was produced in the same manner as in Example 1, except that the nitrogen flow rate was set to 575 sccm and the oxygen flow rate was set to 25 sccm when forming the silicon oxynitride layer.
  • Comparative Example 1 A gas barrier film of Comparative Example 1 was produced in the same manner as in Example 1, except that the silicon oxycarbide layer was not formed.
  • Comparative Example 2 In forming the silicon oxynitride layer, the same method as in Example 1 was used except that the flow rate of nitrogen was set to 525 sccm and the flow rate of oxygen was set to 75 sccm, and the silicon oxycarbide layer was not formed. A gas barrier film of Comparative Example 2 was produced.
  • Comparative Example 3 In forming the silicon oxynitride layer, the same method as in Example 1 was used, except that the flow rate of nitrogen was set to 550 sccm and the flow rate of oxygen was set to 50 sccm, and the silicon oxycarbide layer was not formed. A gas barrier film of Comparative Example 3 was produced.
  • Comparative Example 4 In forming the silicon oxynitride layer, the same method as in Example 1 was used except that the flow rate of nitrogen was set to 575 sccm and the flow rate of oxygen was set to 25 sccm, and the silicon oxycarbide layer was not formed. A gas barrier film of Comparative Example 4 was produced.
  • Example 5 Comparison was performed by the same method as in Example 1 except that the nitrogen flow rate was 600 sccm, oxygen was not introduced, and the silicon oxycarbide layer was not formed when forming the silicon oxynitride layer. A gas barrier film of Example 5 was prepared.
  • Comparative Example 6 A comparative example was prepared in the same manner as in Example 1, except that after forming a silicon oxycarbide layer on the film, a silicon oxynitride layer was formed on the silicon oxycarbide layer (the order of film formation was changed). No. 6 gas barrier film was produced.
  • the content of each element (Si, O, N, and C) in the central portion of the silicon oxycarbide layer in the thickness direction (when 1/2 of the total etching time of the silicon oxycarbide layer has elapsed), and the silicon oxycarbide The maximum carbon content of the layer and the content of each element (Si, O, N and C) in the central portion of the silicon oxynitride layer in the thickness direction (when 1/2 of the total etching time of the silicon oxynitride layer has elapsed) rate was calculated.
  • the “total etching time of the silicon oxycarbide layer” means the time from the start to the end of etching when etching the silicon oxycarbide layer.
  • the "total etching time of the silicon oxynitride layer” means the time from the start to the end of etching when etching the silicon oxynitride layer. Peaks corresponding to the binding energies of 2p of Si, 1s of O, 1s of N, and 1s of C obtained from the wide scan spectrum were used to calculate the content of each element. Detailed measurement conditions are shown below.
  • the light transmittance (Y value) of the gas barrier film was measured with a spectrophotometer ("U4100" manufactured by Hitachi High-Tech Science). When the light transmittance was 75% or more, it was evaluated as “excellent in transparency”. On the other hand, when the light transmittance was less than 75%, it was evaluated as "not excellent in transparency”.
  • the gas barrier film was cut into a size of 60 mm ⁇ 60 mm to obtain a sample for measurement.
  • 100 mL of ultrapure water was put into the container.
  • the container containing the sample and ultrapure water was placed in a dryer set at a temperature of 120° C. for 1 hour, and then the liquid (extract) in the container was filtered through a membrane filter with a pore size of 0.2 ⁇ m.
  • IC method ion chromatography
  • a commercially available ammonium ion standard solution (manufactured by Kanto Kagaku Co., Ltd.) was used for quantification.
  • the amount of extracted ammonium ions per 1 cm 2 of the sample was 0.11 ⁇ g or less, it was evaluated as “ammonia generation can be suppressed”.
  • the amount of extracted ammonium ions per 1 cm 2 of the sample exceeded 0.11 ⁇ g, it was evaluated as "the generation of ammonia cannot be suppressed.”
  • Table 1 shows details of the gas barrier layers for Examples 1 to 8 and Comparative Examples 1 to 6.
  • Table 2 shows the light transmittance, WVTR, and the amount of extracted ammonium ions per 1 cm 2 of the sample for Examples 1 to 8 and Comparative Examples 1 to 6.
  • the maximum carbon content of the first layer (silicon oxycarbide layer) of Examples 1 to 6 was 9 atomic %.
  • the maximum carbon content of the first layer (silicon oxycarbide layer) of Example 7 was 4 atomic %.
  • first layer in Table 1 means the layer arranged farthest from the transparent film substrate in the gas barrier layer.
  • second layer in Table 1 means a layer in contact with the main surface of the first layer on the side of the transparent film substrate (the layer closest to the transparent film substrate in the gas barrier layer).
  • each element (Si, O, N and C) in Table 1 is the thickness direction central portion of the measured layer (either the silicon oxycarbide layer or the silicon oxynitride layer) (1 /2), and the total of Si, O, N and C was calculated as 100 atomic %.
  • the "NH 4 + extraction amount" in Table 2 is the extraction amount of ammonium ions per 1 cm 2 of the sample.
  • the gas barrier layer had a first layer containing silicon, oxygen and carbon as constituent elements and a second layer containing silicon, oxygen and nitrogen as constituent elements.
  • the oxygen content in the second layer was 15 atomic % or more when the total of silicon, oxygen and nitrogen in the second layer was 100 atomic %.
  • the light transmittance was 75% or more. Therefore, the gas barrier films of Examples 1 to 8 were excellent in transparency.
  • the WVTR was 1.0 ⁇ 10 ⁇ 2 g/m 2 ⁇ day or less. Therefore, the gas barrier films of Examples 1 to 8 were able to secure gas barrier properties.
  • the amount of ammonium ions extracted per 1 cm 2 of the sample was 0.11 ⁇ g or less. Therefore, the gas barrier films of Examples 1 to 8 were able to suppress the generation of ammonia.
  • the gas barrier layer had a single layer structure consisting of the first layer.
  • the gas barrier layer had a first layer containing silicon, oxygen and nitrogen as constituent elements and a second layer containing silicon, oxygen and carbon as constituent elements.
  • Comparative Example 5 As shown in Table 2, in Comparative Example 5, the light transmittance was less than 75%. Therefore, the gas barrier film of Comparative Example 5 was not excellent in transparency. In Comparative Examples 1 and 6, WVTR exceeded 1.0 ⁇ 10 ⁇ 2 g/m 2 ⁇ day. Therefore, the gas barrier films of Comparative Examples 1 and 6 could not ensure gas barrier properties. In Comparative Examples 1 to 6, the amount of extracted ammonium ions per 1 cm 2 of sample exceeded 0.11 ⁇ g. Therefore, the gas barrier films of Comparative Examples 1 to 6 could not suppress the generation of ammonia.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Laminated Bodies (AREA)

Abstract

A gas barrier film (10) comprises a transparent film substrate (11) and a gas barrier layer (12). The gas barrier layer (12) has a first layer (13) that contains silicon, oxygen, and carbon as constituent elements and a second layer (14) that contains silicon, oxygen, and nitrogen as constituent elements. The first layer (13) is, in the gas barrier layer (12), the layer disposed furthest from the transparent film substrate (11). The second layer (14) is in contact with the main surface (13a) of the first layer (13) on the transparent film substrate (11) side. The content of the oxygen in the second layer (14) is not less than 15 at%, where the total of the silicon, oxygen, and nitrogen in the second layer (14) is 100 at%.

Description

ガスバリアフィルム及びその製造方法、並びにガスバリア層付き偏光板及び画像表示装置GAS BARRIER FILM, METHOD FOR MANUFACTURING THE SAME, POLARIZING PLATE WITH GAS BARRIER LAYER, AND IMAGE DISPLAY DEVICE
 本発明は、ガスバリアフィルム及びその製造方法、並びにガスバリア層付き偏光板及び画像表示装置に関する。 The present invention relates to a gas barrier film, a method for producing the same, a polarizing plate with a gas barrier layer, and an image display device.
 画像表示装置の軽量化・薄型化・フレキシブル化に伴って、ガラス基板に代えて樹脂フィルム基板が用いられるようになっている。樹脂フィルムは、ガラスに比べて水蒸気や酸素等のガス透過性が高いため、これらのガスに起因する素子の劣化を抑制する目的で、ガスバリア層を備えたガスバリアフィルムを用いることが提案されている。 As image display devices become lighter, thinner, and more flexible, resin film substrates are being used instead of glass substrates. Since resin films have higher permeability to gases such as water vapor and oxygen than glass, it has been proposed to use a gas barrier film having a gas barrier layer for the purpose of suppressing element deterioration caused by these gases. .
 有機EL素子は、わずかな水分の浸入に起因して「ダークスポット」と呼ばれる欠点が生じる場合があり、高いガスバリア性(水蒸気遮断性)が要求される。ガスバリア性に優れる材料として、窒化ケイ素(SiN)及び酸窒化ケイ素(SiON)が知られている。 Organic EL elements may have defects called "dark spots" due to the infiltration of even a small amount of moisture, and high gas barrier properties (water vapor blocking properties) are required. Silicon nitride (SiN) and silicon oxynitride (SiON) are known as materials having excellent gas barrier properties.
 例えば、特許文献1では、透明性及び屈曲性に優れるガスバリアフィルムとして、窒化ケイ素層と酸化ケイ素層とを備えるガスバリアフィルムが提案されている。 For example, Patent Document 1 proposes a gas barrier film including a silicon nitride layer and a silicon oxide layer as a gas barrier film with excellent transparency and flexibility.
国際公開第2019/187978号WO2019/187978
 ガスバリア層として窒素含有層(より具体的には、窒化ケイ素層、酸窒化ケイ素層等)を用いたガスバリアフィルムでは、加湿環境下において窒素含有層からアンモニア(アンモニアガス)が発生しうることが本発明者らの検討により判明した。窒素含有層から発生したアンモニアは、例えば空気中の水分と反応することにより、アンモニウムイオン及び水酸化物イオンを生じさせ、これらのイオンが素子を腐食させる場合がある。 In a gas barrier film using a nitrogen-containing layer (more specifically, a silicon nitride layer, a silicon oxynitride layer, etc.) as a gas barrier layer, ammonia (ammonia gas) can be generated from the nitrogen-containing layer in a humidified environment. This has been clarified by the studies of the inventors. Ammonia generated from the nitrogen-containing layer reacts with, for example, moisture in the air to produce ammonium ions and hydroxide ions, which may corrode the device.
 特許文献1に開示される技術だけでは、ガスバリア性を確保しつつ透明性に優れる上、アンモニアの発生を抑制できるガスバリアフィルムを得ることは難しい。 With only the technology disclosed in Patent Document 1, it is difficult to obtain a gas barrier film that is excellent in transparency while ensuring gas barrier properties and that can suppress the generation of ammonia.
 本発明は、上記課題に鑑みてなされたものであり、その目的は、ガスバリア性を確保しつつ透明性に優れる上、アンモニアの発生を抑制できるガスバリアフィルム及びその製造方法、並びに当該ガスバリアフィルムを用いたガスバリア層付き偏光板及び画像表示装置を提供することである。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a gas barrier film that is excellent in transparency while ensuring gas barrier properties and that can suppress the generation of ammonia, a method for producing the same, and a method for producing the gas barrier film. An object of the present invention is to provide a polarizing plate with a gas barrier layer and an image display device.
<本発明の態様>
 本発明には、以下の態様が含まれる。
<Aspect of the present invention>
The present invention includes the following aspects.
[1]透明フィルム基材と、前記透明フィルム基材の少なくとも一方の主面に直接的又は間接的に配置されたガスバリア層とを有するガスバリアフィルムであって、
 前記ガスバリア層は、構成元素としてケイ素、酸素及び炭素を含む第1層と、構成元素としてケイ素、酸素及び窒素を含む第2層とを有し、
 前記第1層は、前記ガスバリア層において前記透明フィルム基材から最も離れて配置された層であり、
 前記第2層は、前記第1層の前記透明フィルム基材側の主面に接しており、
 前記第2層中のケイ素、酸素及び窒素の合計を100原子%としたときの前記第2層中の酸素の含有率が、15原子%以上である、ガスバリアフィルム。
[1] A gas barrier film comprising a transparent film substrate and a gas barrier layer disposed directly or indirectly on at least one main surface of the transparent film substrate,
The gas barrier layer has a first layer containing silicon, oxygen and carbon as constituent elements, and a second layer containing silicon, oxygen and nitrogen as constituent elements,
The first layer is a layer located farthest from the transparent film substrate in the gas barrier layer,
The second layer is in contact with the main surface of the first layer on the transparent film substrate side,
The gas barrier film, wherein the oxygen content in the second layer is 15 atomic % or more when the total of silicon, oxygen and nitrogen in the second layer is 100 atomic %.
[2]前記第2層中のケイ素、酸素及び窒素の合計を100原子%としたときの前記第2層中の酸素の含有率が、50原子%以下である、前記[1]に記載のガスバリアフィルム。 [2] The above-mentioned [1], wherein the oxygen content in the second layer is 50 atomic % or less when the total of silicon, oxygen and nitrogen in the second layer is 100 atomic %. gas barrier film.
[3]前記第1層の厚みが、30nm以上250nm以下である、前記[1]又は[2]に記載のガスバリアフィルム。 [3] The gas barrier film according to [1] or [2] above, wherein the first layer has a thickness of 30 nm or more and 250 nm or less.
[4]前記第2層の厚みが、20nm以上120nm以下である、前記[1]~[3]のいずれか一つに記載のガスバリアフィルム。 [4] The gas barrier film according to any one of [1] to [3], wherein the second layer has a thickness of 20 nm or more and 120 nm or less.
[5]前記第1層中のケイ素、酸素及び炭素の合計を100原子%としたときの前記第1層中の炭素の含有率が、1原子%以上10原子%以下である、前記[1]~[4]のいずれか一つに記載のガスバリアフィルム。 [5] The content of carbon in the first layer is 1 atomic % or more and 10 atomic % or less when the total of silicon, oxygen and carbon in the first layer is 100 atomic %. ] The gas barrier film according to any one of [4].
[6]前記透明フィルム基材と前記ガスバリア層との間に配置されたハードコート層を更に有する、前記[1]~[5]のいずれか一つに記載のガスバリアフィルム。 [6] The gas barrier film according to any one of [1] to [5], further comprising a hard coat layer disposed between the transparent film substrate and the gas barrier layer.
[7]前記[1]~[6]のいずれか一つに記載のガスバリアフィルムの製造方法であって、
 成膜装置のチャンバー内に、トリシリルアミン、窒素及び酸素を導入して、化学気相成長法により前記第2層を形成する工程と、
 成膜装置のチャンバー内に、有機ケイ素化合物及び酸素を導入して、化学気相成長法により前記第1層を形成する工程と
を備える、ガスバリアフィルムの製造方法。
[7] A method for producing a gas barrier film according to any one of [1] to [6],
introducing trisilylamine, nitrogen and oxygen into a chamber of a film forming apparatus to form the second layer by a chemical vapor deposition method;
A method for producing a gas barrier film, comprising introducing an organosilicon compound and oxygen into a chamber of a film forming apparatus to form the first layer by a chemical vapor deposition method.
[8]前記[1]~[6]のいずれか一つに記載のガスバリアフィルムと、偏光子とを備える、ガスバリア層付き偏光板。 [8] A polarizing plate with a gas barrier layer, comprising the gas barrier film according to any one of [1] to [6] above and a polarizer.
[9]前記[1]~[6]のいずれか一つに記載のガスバリアフィルムと、画像表示セルとを備える、画像表示装置。 [9] An image display device comprising the gas barrier film according to any one of [1] to [6] and an image display cell.
[10]前記[8]に記載のガスバリア層付き偏光板と、画像表示セルとを備える、画像表示装置。 [10] An image display device comprising the polarizing plate with a gas barrier layer according to [8] and an image display cell.
[11]前記画像表示セルは、有機EL素子を含む、前記[9]又は[10]に記載の画像表示装置。 [11] The image display device according to [9] or [10], wherein the image display cell includes an organic EL element.
 本発明によれば、ガスバリア性を確保しつつ透明性に優れる上、アンモニアの発生を抑制できるガスバリアフィルム及びその製造方法、並びに当該ガスバリアフィルムを用いたガスバリア層付き偏光板及び画像表示装置を提供できる。 According to the present invention, it is possible to provide a gas barrier film that is excellent in transparency while ensuring gas barrier properties and that can suppress the generation of ammonia, a method for producing the same, and a polarizing plate with a gas barrier layer and an image display device using the gas barrier film. .
本発明に係るガスバリアフィルムの一例を示す断面図である。1 is a cross-sectional view showing an example of a gas barrier film according to the present invention; FIG. 本発明に係るガスバリアフィルムの他の例を示す断面図である。FIG. 4 is a cross-sectional view showing another example of the gas barrier film according to the present invention; 本発明に係るガスバリアフィルムの他の例を示す断面図である。FIG. 4 is a cross-sectional view showing another example of the gas barrier film according to the present invention; 本発明に係るガスバリアフィルムの他の例を示す断面図である。FIG. 4 is a cross-sectional view showing another example of the gas barrier film according to the present invention; 本発明に係るガスバリア層付き偏光板の一例を示す断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is sectional drawing which shows an example of the polarizing plate with a gas barrier layer which concerns on this invention. 本発明に係る画像表示装置の一例を示す断面図である。It is a sectional view showing an example of an image display device concerning the present invention.
 以下、本発明の好適な実施形態について説明する。まず、本明細書中で使用される用語について説明する。粒子の個数平均一次粒子径は、何ら規定していなければ、走査型電子顕微鏡及び画像処理ソフトウェア(例えば、アメリカ国立衛生研究所製「ImageJ」)を用いて測定した、100個の一次粒子の円相当径(ヘイウッド径:一次粒子の投影面積と同じ面積を有する円の直径)の個数平均値である。 A preferred embodiment of the present invention will be described below. First, the terms used in this specification will be explained. The number average primary particle diameter of the particles is the circle of 100 primary particles measured using a scanning electron microscope and image processing software (e.g., "ImageJ" manufactured by the National Institutes of Health), unless otherwise specified. It is a number average value of equivalent diameters (Heywood diameter: diameter of a circle having the same area as the projected area of primary particles).
 層状物(より具体的には、透明フィルム基材、ガスバリア層、第1層、第2層、酸窒化ケイ素層、酸炭化ケイ素層、ハードコート層、粘着剤層、偏光子等)の「主面」とは、層状物の厚み方向に直交する面をさす。層状物の「厚み」の数値は、「平均厚み」である。層状物の平均厚みは、層状物を厚み方向に切断した断面を電子顕微鏡で観察し、断面画像から無作為に測定箇所を10箇所選択し、選択した10箇所の測定箇所の厚みを測定して得られた10個の測定値の算術平均値である。 Layered material (more specifically, transparent film substrate, gas barrier layer, first layer, second layer, silicon oxynitride layer, silicon oxycarbide layer, hard coat layer, adhesive layer, polarizer, etc.) "Plane" refers to a plane perpendicular to the thickness direction of the layered product. The numerical value for the "thickness" of the layered material is the "average thickness". The average thickness of the layered material is obtained by observing a cross section of the layered material cut in the thickness direction with an electron microscope, randomly selecting 10 measurement points from the cross-sectional image, and measuring the thickness of the selected 10 measurement points. Arithmetic mean of 10 measurements obtained.
 「屈折率」とは、温度23℃の雰囲気下における波長550nmの光に対する屈折率をいう。 "Refractive index" refers to the refractive index for light with a wavelength of 550 nm in an atmosphere at a temperature of 23°C.
 流量の単位「sccm(Standard Cubic Centimeter per Minute)」は、標準状態(温度:0℃、圧力:101.3kPa)における流量の単位「mL/分」である。 The flow rate unit "sccm (Standard Cubic Centimeter per Minute)" is the flow rate unit "mL/min" under standard conditions (temperature: 0°C, pressure: 101.3 kPa).
 以下、化合物名の後に「系」を付けて、化合物及びその誘導体を包括的に総称する場合がある。化合物名の後に「系」を付けて重合体名を表す場合には、重合体の繰り返し単位が化合物又はその誘導体に由来することを意味する。アクリル及びメタクリルを包括的に「(メタ)アクリル」と総称する場合がある。 In the following, "system" may be added after the name of the compound to generically refer to the compound and its derivatives. When the polymer name is expressed by adding "system" after the compound name, it means that the repeating unit of the polymer is derived from the compound or its derivative. Acryl and methacryl may be collectively referred to as "(meth)acryl".
 以下の説明において参照する図面は、理解しやすくするために、それぞれの構成要素を主体に模式的に示しており、図示された各構成要素の大きさ、個数、形状等は、図面作成の都合上から実際とは異なる場合がある。また、説明の都合上、後に説明する図面において、先に説明した図面と同一構成部分については、同一符号を付して、その説明を省略する場合がある。 The drawings referred to in the following description mainly show each component schematically for the sake of easy understanding. It may be different from the actual from above. Also, for convenience of description, in the drawings described later, the same components as those in the drawings described earlier may be denoted by the same reference numerals, and the description thereof may be omitted.
<第1実施形態:ガスバリアフィルム>
 本発明の第1実施形態に係るガスバリアフィルムは、透明フィルム基材と、透明フィルム基材の少なくとも一方の主面に直接的又は間接的に配置されたガスバリア層とを有する。ガスバリア層は、構成元素としてケイ素、酸素及び炭素を含む第1層と、構成元素としてケイ素、酸素及び窒素を含む第2層とを有する。第1層は、ガスバリア層において透明フィルム基材から最も離れて配置された層である。第2層は、第1層の透明フィルム基材側の主面に接している。第2層中のケイ素、酸素及び窒素の合計を100原子%としたときの第2層中の酸素の含有率は、15原子%以上である。
<First Embodiment: Gas Barrier Film>
A gas barrier film according to a first embodiment of the present invention has a transparent film substrate and a gas barrier layer directly or indirectly arranged on at least one main surface of the transparent film substrate. The gas barrier layer has a first layer containing silicon, oxygen and carbon as constituent elements and a second layer containing silicon, oxygen and nitrogen as constituent elements. A 1st layer is a layer arrange|positioned farthest from a transparent film base material in a gas barrier layer. The second layer is in contact with the main surface of the first layer on the side of the transparent film substrate. The oxygen content in the second layer is 15 atomic % or more when the total of silicon, oxygen and nitrogen in the second layer is 100 atomic %.
 以下、構成元素としてケイ素、酸素及び炭素を含む層を、「酸炭化ケイ素層」と記載することがある。また、構成元素としてケイ素、酸素及び窒素を含む層を、「酸窒化ケイ素層」と記載することがある。また、第2層(又は酸窒化ケイ素層)中のケイ素、酸素及び窒素の合計を100原子%としたときの第2層(又は酸窒化ケイ素層)中の酸素の含有率を、「第2層(又は酸窒化ケイ素層)中の酸素の含有率」と記載することがある。また、第1層(又は酸炭化ケイ素層)中のケイ素、酸素及び炭素の合計を100原子%としたときの第1層(又は酸炭化ケイ素層)中の炭素の含有率を、「第1層(又は酸炭化ケイ素層)中の炭素の含有率」と記載することがある。酸炭化ケイ素層の元素組成は、特に断りがない限り、酸炭化ケイ素層の厚み方向の中央部(後述する酸炭化ケイ素層の総エッチング時間の1/2が経過したとき)における元素組成である。酸窒化ケイ素層の元素組成は、特に断りがない限り、酸窒化ケイ素層の厚み方向の中央部(後述する酸窒化ケイ素層の総エッチング時間の1/2が経過したとき)における元素組成である。酸炭化ケイ素層の元素組成の測定方法、及び酸窒化ケイ素層の元素組成の測定方法は、いずれも後述する実施例と同じ方法又はそれに準ずる方法である。 Hereinafter, a layer containing silicon, oxygen and carbon as constituent elements may be referred to as a "silicon oxycarbide layer". A layer containing silicon, oxygen, and nitrogen as constituent elements is sometimes referred to as a "silicon oxynitride layer." Further, the content of oxygen in the second layer (or silicon oxynitride layer) when the total of silicon, oxygen and nitrogen in the second layer (or silicon oxynitride layer) is 100 atomic % is defined as "second content of oxygen in the layer (or silicon oxynitride layer)". Further, the content of carbon in the first layer (or silicon oxycarbide layer) when the total of silicon, oxygen and carbon in the first layer (or silicon oxycarbide layer) is 100 atomic % is defined as "first The content of carbon in the layer (or silicon oxycarbide layer)". Unless otherwise specified, the elemental composition of the silicon oxycarbide layer is the elemental composition at the central portion in the thickness direction of the silicon oxycarbide layer (when 1/2 of the total etching time of the silicon oxycarbide layer, which will be described later, has elapsed). . Unless otherwise specified, the elemental composition of the silicon oxynitride layer is the elemental composition at the central portion in the thickness direction of the silicon oxynitride layer (when 1/2 of the total etching time of the silicon oxynitride layer, which will be described later, has elapsed). . The method for measuring the elemental composition of the silicon oxycarbide layer and the method for measuring the elemental composition of the silicon oxynitride layer are both the same method as in Examples described later or a method based thereon.
 第1実施形態に係るガスバリアフィルムは、上記構成を備えているため、ガスバリア性を確保しつつ透明性に優れる上、アンモニアの発生を抑制できる。その理由は、以下のように推測される。 Since the gas barrier film according to the first embodiment has the above configuration, it is possible to suppress the generation of ammonia while ensuring gas barrier properties and excellent transparency. The reason is presumed as follows.
 一般に、酸窒化ケイ素層は、窒素の比率が高いほどガスバリア性が高められる傾向があり、酸素の比率が高いほど可視光の吸収が少なく透明性が向上する傾向がある。第1実施形態に係るガスバリアフィルムは、第2層である酸窒化ケイ素層中の酸素の含有率が15原子%以上であるため、透明性に優れる。 In general, silicon oxynitride layers tend to have higher gas barrier properties as the nitrogen ratio increases, and the higher the oxygen ratio, the less visible light is absorbed and the more transparent they tend to be. The gas barrier film according to the first embodiment has excellent transparency because the silicon oxynitride layer, which is the second layer, has an oxygen content of 15 atomic % or more.
 また、第1実施形態に係るガスバリアフィルムは、酸窒化ケイ素層に加え、第1層として酸炭化ケイ素層を有するため、酸窒化ケイ素層中の酸素の含有率が15原子%以上であるにもかかわらず、ガスバリア性を確保できる。 Further, since the gas barrier film according to the first embodiment has a silicon oxycarbide layer as the first layer in addition to the silicon oxynitride layer, even if the oxygen content in the silicon oxynitride layer is 15 atomic % or more, gas barrier properties can be ensured regardless of
 また、第1実施形態に係るガスバリアフィルムは、ガスバリア層の最外層が酸炭化ケイ素層(第1層)であるため、酸炭化ケイ素層に接する酸窒化ケイ素層(第2層)からアンモニアガスが発生しても、酸炭化ケイ素層によりアンモニアガスの拡散が遮断される。よって、第1実施形態に係るガスバリアフィルムによれば、アンモニアの発生(特に、加湿環境下におけるアンモニアの発生)を抑制できる。 In the gas barrier film according to the first embodiment, since the outermost layer of the gas barrier layer is the silicon oxycarbide layer (first layer), the ammonia gas is released from the silicon oxynitride layer (second layer) in contact with the silicon oxycarbide layer. Even if it occurs, the diffusion of ammonia gas is blocked by the silicon oxycarbide layer. Therefore, according to the gas barrier film according to the first embodiment, it is possible to suppress the generation of ammonia (especially the generation of ammonia in a humidified environment).
 第1実施形態において、透明性により優れるガスバリアフィルムを得るためには、第2層中の酸素の含有率が、18原子%以上であることが好ましく、19原子%以上であることがより好ましく、20原子%以上であることが更に好ましく、21原子%以上、22原子%以上、23原子%以上、24原子%以上、25原子%以上、26原子%以上、27原子%以上、28原子%以上、29原子%以上又は30原子%以上であってもよい。 In the first embodiment, in order to obtain a gas barrier film with more excellent transparency, the oxygen content in the second layer is preferably 18 atomic % or more, more preferably 19 atomic % or more, More preferably 20 atomic % or more, 21 atomic % or more, 22 atomic % or more, 23 atomic % or more, 24 atomic % or more, 25 atomic % or more, 26 atomic % or more, 27 atomic % or more, 28 atomic % or more , 29 atomic % or more, or 30 atomic % or more.
 第1実施形態において、ガスバリア性により優れるガスバリアフィルムを得るためには、第2層中の酸素の含有率が、50原子%以下であることが好ましく、47原子%以下であることがより好ましく、45原子%以下であることが更に好ましく、43原子%以下であることが更により好ましい。 In the first embodiment, in order to obtain a gas barrier film with more excellent gas barrier properties, the oxygen content in the second layer is preferably 50 atomic % or less, more preferably 47 atomic % or less, It is more preferably 45 atomic % or less, and even more preferably 43 atomic % or less.
 第1実施形態において、ガスバリア性及び透明性により優れる上、アンモニアの発生をより抑制できるガスバリアフィルムを得るためには、第1層の厚みが、30nm以上250nm以下であることが好ましく、40nm以上220nm以下であることがより好ましく、50nm以上200nm以下であることが更に好ましく、60nm以上200nm以下であることが更により好ましく、70nm以上200nm以下、80nm以上200nm以下、90nm以上200nm以下又は100nm以上200nm以下であってもよい。 In the first embodiment, the thickness of the first layer is preferably 30 nm or more and 250 nm or less, more preferably 40 nm or more and 220 nm, in order to obtain a gas barrier film that is more excellent in gas barrier properties and transparency and can further suppress the generation of ammonia. It is more preferably 50 nm or more and 200 nm or less, even more preferably 60 nm or more and 200 nm or less, 70 nm or more and 200 nm or less, 80 nm or more and 200 nm or less, 90 nm or more and 200 nm or less, or 100 nm or more and 200 nm or less. may be
 第1実施形態において、ガスバリア性及び透明性により優れる上、アンモニアの発生をより抑制できるガスバリアフィルムを得るためには、第2層の厚みが、20nm以上120nm以下であることが好ましく、25nm以上110nm以下であることがより好ましく、30nm以上100nm以下であることが更に好ましく、30nm以上90nm以下であることが更により好ましく、30nm以上80nm以下、30nm以上70nm以下又は30nm以上60nm以下であってもよい。 In the first embodiment, the thickness of the second layer is preferably 20 nm or more and 120 nm or less, more preferably 25 nm or more and 110 nm, in order to obtain a gas barrier film that is more excellent in gas barrier properties and transparency and can further suppress the generation of ammonia. It is more preferably 30 nm or more and 100 nm or less, even more preferably 30 nm or more and 90 nm or less, and may be 30 nm or more and 80 nm or less, 30 nm or more and 70 nm or less, or 30 nm or more and 60 nm or less. .
 第1実施形態において、ガスバリア性及び透明性により優れる上、アンモニアの発生をより抑制できるガスバリアフィルムを得るためには、第1層中の炭素の含有率が、1原子%以上10原子%以下であることが好ましく、2原子%以上7原子%以下であることがより好ましく、3原子%以上5原子%以下であることが更に好ましい。 In the first embodiment, in order to obtain a gas barrier film that is more excellent in gas barrier properties and transparency and can further suppress the generation of ammonia, the carbon content in the first layer is 1 atomic % or more and 10 atomic % or less. It is preferably 2 atomic % or more and 7 atomic % or less, and still more preferably 3 atomic % or more and 5 atomic % or less.
 以下、X線光電子分光装置を用いて、酸炭化ケイ素層(具体的には、第1層等)の厚み方向における組成分析を行った際に、炭素含有率(ケイ素、酸素及び炭素の合計を100原子%としたときの炭素含有率)が最大値を示す箇所の当該炭素含有率を、「最大炭素含有率」と記載することがある。ガスバリア性により優れるガスバリアフィルムを得るためには、最大炭素含有率が、10原子%以下であることが好ましく、9原子%以下であることがより好ましく、7原子%以下であることが更に好ましく、5原子%以下であることが更により好ましく、3原子%以上5原子%以下であることが特に好ましい。最大炭素含有率は、例えば、後述するCVD法により酸炭化ケイ素層を成膜する際において、ケイ素源の導入量(流量)、酸素源の導入量(流量)、及び印加電力のうちの少なくとも1つを変更することにより調整できる。 Hereinafter, when the composition analysis in the thickness direction of the silicon oxycarbide layer (specifically, the first layer, etc.) is performed using an X-ray photoelectron spectrometer, the carbon content (the total of silicon, oxygen and carbon is The carbon content at the point where the carbon content at 100 atomic %) is the maximum value is sometimes referred to as the "maximum carbon content." In order to obtain a gas barrier film with better gas barrier properties, the maximum carbon content is preferably 10 atomic % or less, more preferably 9 atomic % or less, and even more preferably 7 atomic % or less. It is even more preferably 5 atomic % or less, and particularly preferably 3 atomic % or more and 5 atomic % or less. For example, when forming a silicon oxycarbide layer by the CVD method described later, the maximum carbon content is at least one of the introduction amount (flow rate) of the silicon source, the introduction amount (flow rate) of the oxygen source, and the applied power. can be adjusted by changing the
 第1実施形態において、ガスバリア性及び透明性に更に優れる上、アンモニアの発生を更に抑制できるガスバリアフィルムを得るためには、下記条件1を満たすことが好ましく、下記条件2を満たすことがより好ましく、下記条件3を満たすことが更に好ましい。
 条件1:第2層中の酸素の含有率が18原子%以上50原子%以下であり、かつ第1層の厚みが30nm以上250nm以下である。
 条件2:上記条件1を満たし、かつ第2層の厚みが20nm以上120nm以下である。
 条件3:上記条件2を満たし、かつ第1層の最大炭素含有率が5原子%以下である。
In the first embodiment, in order to obtain a gas barrier film that is more excellent in gas barrier properties and transparency and can further suppress the generation of ammonia, it is preferable to satisfy the following condition 1, and more preferably to satisfy the following condition 2. It is more preferable to satisfy condition 3 below.
Condition 1: The oxygen content in the second layer is 18 atomic % or more and 50 atomic % or less, and the thickness of the first layer is 30 nm or more and 250 nm or less.
Condition 2: Condition 1 above is satisfied, and the thickness of the second layer is 20 nm or more and 120 nm or less.
Condition 3: Condition 2 above is satisfied, and the maximum carbon content of the first layer is 5 atomic % or less.
 以下、第1実施形態について、図面を参照しながら詳述する。図1は、第1実施形態に係るガスバリアフィルムの一例を示す断面図である。図1に示すガスバリアフィルム10は、透明フィルム基材11と、透明フィルム基材11の一方の主面11aに直接的に配置されたガスバリア層12とを有する積層体である。ガスバリア層12は、構成元素としてケイ素、酸素及び炭素を含む第1層13(酸炭化ケイ素層)と、構成元素としてケイ素、酸素及び窒素を含む第2層14(酸窒化ケイ素層)とを有する。第1層13は、ガスバリア層12において透明フィルム基材11から最も離れて配置された層である。第2層14は、第1層13の透明フィルム基材11側の主面13aに接している。第2層14中のケイ素、酸素及び窒素の合計を100原子%としたときの第2層14中の酸素の含有率は、15原子%以上である。 The first embodiment will be described in detail below with reference to the drawings. FIG. 1 is a cross-sectional view showing an example of the gas barrier film according to the first embodiment. A gas barrier film 10 shown in FIG. 1 is a laminate having a transparent film substrate 11 and a gas barrier layer 12 directly disposed on one main surface 11 a of the transparent film substrate 11 . The gas barrier layer 12 has a first layer 13 (silicon oxycarbide layer) containing silicon, oxygen and carbon as constituent elements, and a second layer 14 (silicon oxynitride layer) containing silicon, oxygen and nitrogen as constituent elements. . The first layer 13 is the layer located farthest from the transparent film substrate 11 in the gas barrier layer 12 . The second layer 14 is in contact with the main surface 13a of the first layer 13 on the transparent film substrate 11 side. The oxygen content in the second layer 14 is 15 atomic % or more when the total of silicon, oxygen and nitrogen in the second layer 14 is 100 atomic %.
 第1実施形態に係るガスバリアフィルムの構成は、図1に示すガスバリアフィルム10の構成に限定されない。例えば、第1実施形態に係るガスバリアフィルムは、酸窒化ケイ素層と透明フィルム基材との間に、第3層として酸炭化ケイ素層が配置されていてもよい。また、第1実施形態に係るガスバリアフィルムでは、ガスバリア層が、2層以上の酸窒化ケイ素層を含んでいてもよく、例えば、2層の酸窒化ケイ素層と3層の酸炭化ケイ素層との交互積層体であってもよい。ガスバリア層は、4層の積層構造又は6層以上の積層構造であってもよい。例えば、4層構造のガスバリア層は、透明フィルム基材側から、酸窒化ケイ素層/酸炭化ケイ素層/酸窒化ケイ素層/酸炭化ケイ素層の順に配置された交互積層体であってもよい。ガスバリア層は、3層の酸窒化ケイ素層と4層の酸炭化ケイ素層の計7層からなる交互積層体であってもよく、8層以上からなる交互積層体であってもよい。透明性により優れるガスバリアフィルムを得るためには、ガスバリア層は、2層又は3層の積層構造であることが好ましく、図1に示すガスバリアフィルム10のように2層の積層構造であることがより好ましい。 The configuration of the gas barrier film according to the first embodiment is not limited to the configuration of the gas barrier film 10 shown in FIG. For example, in the gas barrier film according to the first embodiment, a silicon oxycarbide layer may be arranged as a third layer between the silicon oxynitride layer and the transparent film substrate. In addition, in the gas barrier film according to the first embodiment, the gas barrier layer may include two or more silicon oxynitride layers, for example, two silicon oxynitride layers and three silicon oxycarbide layers. Alternating laminates may also be used. The gas barrier layer may have a laminate structure of four layers or a laminate structure of six or more layers. For example, the gas barrier layer having a four-layer structure may be an alternate laminate in which silicon oxynitride layer/silicon oxycarbide layer/silicon oxynitride layer/silicon oxycarbide layer are arranged in this order from the transparent film substrate side. The gas barrier layer may be an alternately laminated body composed of 3 silicon oxynitride layers and 4 silicon oxycarbide layers, a total of 7 layers, or may be an alternately laminated body composed of 8 or more layers. In order to obtain a gas barrier film with better transparency, the gas barrier layer preferably has a two-layer or three-layer laminate structure, and more preferably has a two-layer laminate structure like the gas barrier film 10 shown in FIG. preferable.
 また、第1実施形態に係るガスバリアフィルムは、ガスバリア層が透明フィルム基材の主面に間接的に配置されていてもよい。例えば、図2に示すガスバリアフィルム20は、透明フィルム基材11とガスバリア層12(第2層14)との間に配置されたハードコート層21を有する。ガスバリアフィルム20では、ガスバリア層12が透明フィルム基材11の主面に間接的に配置されている。ハードコート層21は、ガスバリアフィルム20の硬度や弾性率等の機械的特性を高める層である。ハードコート層21のガスバリア層12側の主面が平滑であれば、その上に形成されるガスバリア層12のガスバリア性が高められ、水蒸気透過率が小さくなる傾向がある。ハードコート層21のガスバリア層12側の主面の算術平均高さSaは、1.5nm以下又は1.0nm以下であってもよい。算術平均高さSaは、原子間力顕微鏡(AFM)により測定した1μm×1μmの範囲の三次元表面形状から、ISO 25178に準じて算出される。 Further, in the gas barrier film according to the first embodiment, the gas barrier layer may be indirectly arranged on the main surface of the transparent film substrate. For example, the gas barrier film 20 shown in FIG. 2 has a hard coat layer 21 arranged between the transparent film substrate 11 and the gas barrier layer 12 (second layer 14). In the gas barrier film 20 , the gas barrier layer 12 is indirectly arranged on the main surface of the transparent film substrate 11 . The hard coat layer 21 is a layer that enhances mechanical properties such as hardness and elastic modulus of the gas barrier film 20 . If the main surface of the hard coat layer 21 on the side of the gas barrier layer 12 is smooth, the gas barrier properties of the gas barrier layer 12 formed thereon are enhanced, and the water vapor transmission rate tends to decrease. The arithmetic mean height Sa of the main surface of the hard coat layer 21 on the side of the gas barrier layer 12 may be 1.5 nm or less or 1.0 nm or less. The arithmetic mean height Sa is calculated according to ISO 25178 from the three-dimensional surface profile of the range of 1 μm×1 μm measured by an atomic force microscope (AFM).
 ハードコート層21は、個数平均一次粒子径が1.0μm未満の粒子(以下、「ナノ粒子」と記載することがある)を含んでいてもよい。例えば、ハードコート層21がナノ粒子を含むことにより、ハードコート層21の表面に微細な凹凸が形成され、ハードコート層21とガスバリア層12との密着性が向上する傾向がある。 The hard coat layer 21 may contain particles with a number average primary particle diameter of less than 1.0 μm (hereinafter sometimes referred to as "nanoparticles"). For example, when the hard coat layer 21 contains nanoparticles, fine irregularities are formed on the surface of the hard coat layer 21, and adhesion between the hard coat layer 21 and the gas barrier layer 12 tends to be improved.
 また、第1実施形態に係るガスバリアフィルムは、ガスバリア性をより向上させるため、透明フィルム基材の両主面にガスバリア層が設けられていてもよい。例えば、図3に示すガスバリアフィルム30は、透明フィルム基材11の一方の主面11aに配置されたガスバリア層12と、透明フィルム基材11のもう一方の主面11bに配置されたガスバリア層31とを有する。第1実施形態に係るガスバリアフィルムでは、透明フィルム基材の両主面のそれぞれに、3層以上の積層構造を有するガスバリア層が設けられていてもよい。 In addition, the gas barrier film according to the first embodiment may be provided with gas barrier layers on both main surfaces of the transparent film substrate in order to further improve gas barrier properties. For example, the gas barrier film 30 shown in FIG. and In the gas barrier film according to the first embodiment, a gas barrier layer having a laminated structure of three or more layers may be provided on each of both main surfaces of the transparent film substrate.
 ガスバリア層31の構成は、ガスバリア層12の構成と同一でも異なっていてもよい。つまり、ガスバリア層31は、透明フィルム基材11側から酸窒化ケイ素層33及び酸炭化ケイ素層32をこの順に有していてもよく、酸窒化ケイ素層33中の酸素の含有率が15原子%以上であってもよい。また、ガスバリア層31は、酸窒化ケイ素層33及び酸炭化ケイ素層32のうちの少なくとも一方を有していなくてもよい。ガスバリア性をより向上させつつ、透明性により優れるガスバリアフィルムを得るためには、ガスバリア層31が透明フィルム基材11側から酸窒化ケイ素層33及び酸炭化ケイ素層32をこの順に有し、かつ酸窒化ケイ素層33中の酸素の含有率が15原子%以上であることが好ましい。また、ガスバリア性及び透明性により優れる上、アンモニアの発生をより抑制できるガスバリアフィルムを得るためには、酸炭化ケイ素層32中の炭素の含有率が、1原子%以上10原子%以下であることが好ましい。 The configuration of the gas barrier layer 31 may be the same as or different from the configuration of the gas barrier layer 12 . That is, the gas barrier layer 31 may have the silicon oxynitride layer 33 and the silicon oxycarbide layer 32 in this order from the transparent film substrate 11 side, and the oxygen content in the silicon oxynitride layer 33 is 15 atomic %. or more. Also, the gas barrier layer 31 may not have at least one of the silicon oxynitride layer 33 and the silicon oxycarbide layer 32 . In order to obtain a gas barrier film with more excellent transparency while further improving the gas barrier property, the gas barrier layer 31 has a silicon oxynitride layer 33 and a silicon oxycarbide layer 32 in this order from the transparent film substrate 11 side, and It is preferable that the oxygen content in the silicon nitride layer 33 is 15 atomic % or more. In addition, in order to obtain a gas barrier film that is more excellent in gas barrier properties and transparency and can further suppress the generation of ammonia, the carbon content in the silicon oxycarbide layer 32 should be 1 atomic % or more and 10 atomic % or less. is preferred.
 また、第1実施形態に係るガスバリアフィルムは、粘着剤層を更に有していてもよい。例えば、図4に示すガスバリアフィルム40は、ガスバリアフィルム30の構成に加え、粘着剤層41を有する。ガスバリアフィルム40では、第1層13の透明フィルム基材11側とは反対側の主面13bに粘着剤層41が配置されている。 In addition, the gas barrier film according to the first embodiment may further have an adhesive layer. For example, a gas barrier film 40 shown in FIG. 4 has an adhesive layer 41 in addition to the configuration of the gas barrier film 30 . In the gas barrier film 40, the adhesive layer 41 is arranged on the main surface 13b of the first layer 13 opposite to the transparent film substrate 11 side.
 粘着剤層41の第1層13側とは反対側の主面には、はく離ライナー(不図示)が仮着されていてもよい。はく離ライナーは、例えば、ガスバリアフィルム40を後述する偏光板101(図5参照)と貼り合わせるまでの間、粘着剤層41の表面を保護する。はく離ライナーの構成材料としては、アクリル、ポリオレフィン、環状ポリオレフィン、ポリエステル等から形成されたプラスチックフィルムが好適に用いられる。はく離ライナーの厚みは、例えば、5μm以上200μm以下である。はく離ライナーの表面には、離型処理が施されていることが好ましい。離型処理に使用される離型剤の材料としては、シリコーン系材料、フッ素系材料、長鎖アルキル系材料、脂肪酸アミド系材料等が挙げられる。 A release liner (not shown) may be temporarily attached to the main surface of the pressure-sensitive adhesive layer 41 opposite to the first layer 13 side. The release liner protects the surface of the pressure-sensitive adhesive layer 41, for example, until the gas barrier film 40 is attached to the polarizing plate 101 (see FIG. 5), which will be described later. Plastic films made of acrylic, polyolefin, cyclic polyolefin, polyester or the like are preferably used as the constituent material of the release liner. The thickness of the release liner is, for example, 5 μm or more and 200 μm or less. The surface of the release liner is preferably subjected to release treatment. Examples of release agent materials used in release treatment include silicone-based materials, fluorine-based materials, long-chain alkyl-based materials, fatty acid amide-based materials, and the like.
 以上、図面を参照しながら第1実施形態に係るガスバリアフィルムの構成について説明した。次に、第1実施形態に係るガスバリアフィルムの要素について説明する。 The configuration of the gas barrier film according to the first embodiment has been described above with reference to the drawings. Next, elements of the gas barrier film according to the first embodiment will be described.
[透明フィルム基材11]
 透明フィルム基材11は、ガスバリア層形成の土台となる層である。透明フィルム基材11は、可撓性を有していてもよい。基材として可撓性のフィルムを用いることにより、ロールトゥロール方式でガスバリア層を形成可能であるため、ガスバリア層の生産性が高められる。また、可撓性フィルム上にガスバリア層が設けられたガスバリアフィルムは、フレキシブルデバイスやフォルダブルデバイスにも適用できるとの利点を有する。
[Transparent film substrate 11]
The transparent film substrate 11 is a layer that serves as a base for forming the gas barrier layer. The transparent film substrate 11 may have flexibility. By using a flexible film as the base material, the gas barrier layer can be formed by a roll-to-roll method, so the productivity of the gas barrier layer can be improved. A gas barrier film in which a gas barrier layer is provided on a flexible film also has the advantage of being applicable to flexible devices and foldable devices.
 透明フィルム基材11の可視光透過率は、好ましくは80%以上、より好ましくは90%以上である。透明フィルム基材11の厚みは、特に限定されないが、強度や取扱性等の観点から、5μm以上200μm以下であることが好ましく、10μm以上150μm以下であることがより好ましく、30μm以上100μm以下であることが更に好ましい。 The visible light transmittance of the transparent film substrate 11 is preferably 80% or higher, more preferably 90% or higher. The thickness of the transparent film substrate 11 is not particularly limited, but from the viewpoint of strength, handleability, etc., it is preferably 5 μm or more and 200 μm or less, more preferably 10 μm or more and 150 μm or less, and 30 μm or more and 100 μm or less. is more preferred.
 透明フィルム基材11を構成する樹脂材料としては、透明性、機械強度及び熱安定性に優れる樹脂材料が好ましい。樹脂材料の具体例としては、トリアセチルセルロース等のセルロース系樹脂、ポリエステル系樹脂、ポリエーテルスルホン系樹脂、ポリスルホン系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリオレフィン系樹脂、(メタ)アクリル系樹脂、環状ポリオレフィン系樹脂(より具体的には、ノルボルネン系樹脂等)、ポリアリレート系樹脂、ポリスチレン系樹脂、ポリビニルアルコール系樹脂、及びこれらの混合物が挙げられる。 As the resin material that constitutes the transparent film substrate 11, a resin material that is excellent in transparency, mechanical strength and thermal stability is preferable. Specific examples of resin materials include cellulose resins such as triacetyl cellulose, polyester resins, polyethersulfone resins, polysulfone resins, polycarbonate resins, polyamide resins, polyimide resins, polyolefin resins, (meth) Examples include acrylic resins, cyclic polyolefin resins (more specifically, norbornene resins, etc.), polyarylate resins, polystyrene resins, polyvinyl alcohol resins, and mixtures thereof.
 透明フィルム基材11のガスバリア層が形成される主面に、ガスバリア層との密着性向上等の目的で、コロナ処理、プラズマ処理、フレーム処理、オゾン処理、グロー処理、ケン化処理、カップリング剤による処理等の表面改質処理を施してもよい。 Corona treatment, plasma treatment, flame treatment, ozone treatment, glow treatment, saponification treatment, and coupling agent are applied to the main surface of the transparent film substrate 11 on which the gas barrier layer is formed, for the purpose of improving adhesion with the gas barrier layer. Surface modification treatment such as treatment with may be applied.
 透明フィルム基材11は、ガスバリア層が形成される側の表層がプライマー層(不図示)であってもよい。ガスバリア層が形成される側の表層がプライマー層である場合、透明フィルム基材11とガスバリア層との密着性が高くなる傾向がある。プライマー層を構成する材料としては、例えば、ケイ素、ニッケル、クロム、スズ、金、銀、白金、亜鉛、インジウム、チタン、タングステン、アルミニウム、ジルコニウム、パラジウム等の金属(又は半金属);これらの金属(又は半金属)の合金;これらの金属(又は半金属)の酸化物、フッ化物、硫化物又は窒化物等が挙げられる。プライマー層の厚みは、例えば、1nm以上20nm以下であり、好ましくは1nm以上15nm以下であり、より好ましくは1nm以上10nm以下である。 The surface layer of the transparent film substrate 11 on which the gas barrier layer is formed may be a primer layer (not shown). When the surface layer on which the gas barrier layer is formed is the primer layer, the adhesion between the transparent film substrate 11 and the gas barrier layer tends to be high. Examples of materials constituting the primer layer include metals (or semi-metals) such as silicon, nickel, chromium, tin, gold, silver, platinum, zinc, indium, titanium, tungsten, aluminum, zirconium, and palladium; alloys (or metalloids); oxides, fluorides, sulfides or nitrides of these metals (or metalloids); The thickness of the primer layer is, for example, 1 nm or more and 20 nm or less, preferably 1 nm or more and 15 nm or less, and more preferably 1 nm or more and 10 nm or less.
[第2層14]
 第2層14は、ガスバリア層におけるガスバリア機能を主に担う層であり、ケイ素、酸素及び窒素を主たる構成元素とする材料からなる酸窒化ケイ素層である。第2層14は、成膜時の原料、透明フィルム基材11及び外部環境から取り込まれる少量の水素・炭素等の元素を含んでいてもよい。第2層14が炭素を含む場合、第2層14中の炭素の含有率は、第1層13よりも小さいことが好ましい。
[Second layer 14]
The second layer 14 is a layer mainly having a gas barrier function in the gas barrier layer, and is a silicon oxynitride layer made of a material containing silicon, oxygen and nitrogen as main constituent elements. The second layer 14 may contain a small amount of elements such as hydrogen, carbon, etc. taken in from the raw material at the time of film formation, the transparent film substrate 11 and the external environment. When the second layer 14 contains carbon, the carbon content in the second layer 14 is preferably lower than that in the first layer 13 .
 第2層14に含まれる酸窒化ケイ素の組成は、一般式SiOで表される。以下、一般式SiOのxを、単に「x」と記載することがある。また、一般式SiOのyを、単に「y」と記載することがある。第2層14に含まれる酸窒化ケイ素は、化学量論組成を有していてもよく、酸素又は窒素が不足している非化学量論組成であってもよい。化学量論組成の酸窒化ケイ素は、x/2+3y/4=1である。(x/2+3y/4)の値は、0.70以上1.10以下であることが好ましい。(x/2+3y/4)の上限は理論的には1であるが、酸素又は窒素が過剰に取り込まれることにより、1より大きな値を示す場合がある。(x/2+3y/4)が0.70以上であれば、透明性及びガスバリア性が高められる傾向がある。 The composition of silicon oxynitride contained in the second layer 14 is represented by the general formula SiO x N y . Hereinafter, x in the general formula SiO x N y may be simply referred to as "x". Also, y in the general formula SiO x N y may be simply described as "y". The silicon oxynitride contained in the second layer 14 may have a stoichiometric composition or may be a non-stoichiometric composition deficient in oxygen or nitrogen. Stoichiometric silicon oxynitride has x/2+3y/4=1. The value of (x/2+3y/4) is preferably 0.70 or more and 1.10 or less. Theoretically, the upper limit of (x/2+3y/4) is 1, but it may show a value greater than 1 due to excessive intake of oxygen or nitrogen. If (x/2+3y/4) is 0.70 or more, transparency and gas barrier properties tend to be enhanced.
 透明性により優れるガスバリアフィルムを得るためには、xが、0.3以上であることが好ましい。ガスバリア性により優れるガスバリアフィルムを得るためには、xが、1.2以下であることが好ましい。ガスバリア性により優れるガスバリアフィルムを得るためには、yが、0.4以上であることが好ましい。アンモニアの発生をより抑制しつつ、透明性により優れるガスバリアフィルムを得るためには、yが、0.8以下であることが好ましい。 In order to obtain a gas barrier film with better transparency, x is preferably 0.3 or more. In order to obtain a gas barrier film with more excellent gas barrier properties, x is preferably 1.2 or less. In order to obtain a gas barrier film with more excellent gas barrier properties, y is preferably 0.4 or more. In order to obtain a gas barrier film having excellent transparency while further suppressing the generation of ammonia, y is preferably 0.8 or less.
 第2層14において、ケイ素、酸素及び窒素以外の元素の含有率は、それぞれ、5原子%以下であることが好ましく、3原子%以下であることがより好ましく、1原子%以下であることが更に好ましい。第2層14を構成する元素のうち、ケイ素、酸素及び窒素の合計含有率は、90原子%以上であることが好ましく、95原子%以上であることがより好ましく、97原子%以上であることが更に好ましく、99原子%以上、99.5原子%以上又は99.9原子%以上であってもよい。 In the second layer 14, the content of elements other than silicon, oxygen, and nitrogen is preferably 5 atomic % or less, more preferably 3 atomic % or less, and 1 atomic % or less. More preferred. Among the elements constituting the second layer 14, the total content of silicon, oxygen and nitrogen is preferably 90 atomic % or more, more preferably 95 atomic % or more, and 97 atomic % or more. is more preferable, and may be 99 atomic % or more, 99.5 atomic % or more, or 99.9 atomic % or more.
 第2層14の屈折率は、一般に1.50以上2.20以下であり、1.55以上2.00以下であることが好ましく、1.60以上1.90以下であってもよく、1.85以下、1.80以下、1.75以下又は1.70以下であってもよい。屈折率がこの範囲である第2層14は、優れたガスバリア性と透明性を両立可能である。また、屈折率が2.00以下であることにより、光透過性が向上する傾向がある。第2層14は、窒素の比率が高いほど、屈折率が高くなる傾向がある。 The refractive index of the second layer 14 is generally 1.50 or more and 2.20 or less, preferably 1.55 or more and 2.00 or less, and may be 1.60 or more and 1.90 or less. 0.85 or less, 1.80 or less, 1.75 or less, or 1.70 or less. The second layer 14 having a refractive index within this range can achieve both excellent gas barrier properties and transparency. Further, when the refractive index is 2.00 or less, there is a tendency for the light transmittance to be improved. The second layer 14 tends to have a higher refractive index as the nitrogen ratio increases.
 第2層14の密度は2.10g/cm以上であることが好ましい。第2層14の密度が大きいほど、ガスバリア性が高くなる傾向がある。第2層14は、窒素の比率が高いほど、密度が大きくなる傾向がある。 The density of the second layer 14 is preferably 2.10 g/cm 3 or more. The higher the density of the second layer 14, the higher the gas barrier properties tend to be. The second layer 14 tends to have a higher density as the nitrogen ratio increases.
 第2層14の成膜方法は、特に限定されず、ドライコーティング法でもウェットコーティング法でもよい。膜密度が高くガスバリア性の高い膜が形成されやすいことから、スパッタ法、イオンプレーティング法、真空蒸着法、化学気相成長法(CVD法)等のドライプロセスが好ましい。膜応力が小さく、耐屈曲性に優れる膜が形成されやすいことから、CVD法が好ましく、プラズマCVD法がより好ましい。 A method for forming the second layer 14 is not particularly limited, and may be a dry coating method or a wet coating method. A dry process such as a sputtering method, an ion plating method, a vacuum deposition method, or a chemical vapor deposition method (CVD method) is preferable because a film having a high film density and a high gas barrier property can be easily formed. A CVD method is preferable, and a plasma CVD method is more preferable, because a film having small film stress and excellent bending resistance can be easily formed.
 透明フィルム基材11として可撓性フィルムを用い、可撓性フィルム上にガスバリア層(例えば、第2層14)を形成(成膜)する場合は、ロールトゥロール方式でCVD成膜を実施することにより、生産性を向上できる。ロールトゥロール方式のCVD成膜装置は、成膜ロールが一対の対向電極の一方又は両方の電極を構成しており、成膜ロール上をフィルムが走行する際に、フィルム上に薄膜が形成される。2つの成膜ロールが一対の対向電極を構成している場合は、それぞれの成膜ロール上で薄膜が形成されるため、成膜速度を2倍に向上できる。なお、CVD法による成膜方法を説明する際の「上に」との表現は、CVD成膜装置内の方向とは無関係であり、「に接して」と同義である。 When a flexible film is used as the transparent film substrate 11 and a gas barrier layer (for example, the second layer 14) is formed (film-formed) on the flexible film, CVD film-forming is performed by a roll-to-roll method. Therefore, productivity can be improved. In a roll-to-roll type CVD film forming apparatus, a film forming roll constitutes one or both electrodes of a pair of opposed electrodes, and a thin film is formed on the film when the film runs on the film forming roll. be. When two film-forming rolls constitute a pair of opposing electrodes, a thin film is formed on each of the film-forming rolls, so the film-forming speed can be doubled. In addition, the expression "above" when explaining the film forming method by the CVD method has no relation to the direction in the CVD film forming apparatus, and has the same meaning as "in contact with".
 CVD法により第2層14を成膜する際のケイ素の供給源(ケイ素源)としては、例えば、水素化ケイ素(より具体的には、シラン、ジシラン等)やハロゲン化ケイ素(より具体的には、ジクロロシラン等)等のSi含有ガス;ヘキサメチルジシラザン、ヘキサメチルジシロキサン、1,1,3,3-テトラメチルジシロキサン、テトラメチルシラン、ビニルトリメトキシシラン、ビニルトリメチルシラン、ジメチルジメトキシシラン、テトラメトキシシラン、メチルトリメトキシシラン、ジメチルジエトキシシラン、トリメチルメトキシシラン、テトラエトキシシラン、ジエチルジエトキシシラン、メチルジメトキシシラン、メチルジエトキシシロキサン、モノシリルアミン、ジシリルアミン、トリシリルアミン等のケイ素化合物が挙げられる。これらの中でも、毒性が低く、低沸点であり、高透明かつ高密度の膜を形成可能であることから、トリシリルアミンが好ましい。 Examples of the silicon supply source (silicon source) when forming the second layer 14 by the CVD method include silicon hydride (more specifically, silane, disilane, etc.) and silicon halide (more specifically, , dichlorosilane, etc.) Si-containing gas such as hexamethyldisilazane, hexamethyldisiloxane, 1,1,3,3-tetramethyldisiloxane, tetramethylsilane, vinyltrimethoxysilane, vinyltrimethylsilane, dimethyldimethoxy Silicon compounds such as silane, tetramethoxysilane, methyltrimethoxysilane, dimethyldiethoxysilane, trimethylmethoxysilane, tetraethoxysilane, diethyldiethoxysilane, methyldimethoxysilane, methyldiethoxysiloxane, monosilylamine, disilylamine, and trisilylamine is mentioned. Among these, trisilylamine is preferable because it has low toxicity, a low boiling point, and can form a highly transparent and high-density film.
 第2層14を成膜するためには、通常、ケイ素源に加えて、窒素源及び酸素源となるガスを導入する。窒素源としては、窒素、アンモニア等が挙げられる。酸素源としては、酸素、一酸化炭素、二酸化炭素等が挙げられる。膜中に取り込まれる水素や炭素を低減する観点から、窒素源としては窒素(窒素ガス)が好ましく、酸素源としては酸素(酸素ガス)が好ましい。 In order to form the second layer 14, normally, in addition to the silicon source, a nitrogen source and an oxygen source gas are introduced. Nitrogen sources include nitrogen and ammonia. Oxygen sources include oxygen, carbon monoxide, carbon dioxide, and the like. Nitrogen (nitrogen gas) is preferable as the nitrogen source, and oxygen (oxygen gas) is preferable as the oxygen source, from the viewpoint of reducing hydrogen and carbon taken into the film.
 一般に、ケイ素源としてのトリシリルアミンとともに窒素源を導入してCVD法により成膜した窒化ケイ素膜は、膜中の水素量が多く、Si-H等の水素化ケイ素に由来する波数2140cm-1付近(2120cm-1以上2150cm-1以下の範囲)の赤外吸収ピークを示す。また、一般に、ケイ素源としてのトリシリルアミンとともに窒素及び酸素を導入してCVD法により成膜した酸窒化ケイ素膜は、赤外吸収のピークが高波数側にシフトして、2160cm-1以上2280cm-1以下の範囲に赤外吸収ピークを示し、窒化ケイ素膜よりも優れた透明性を示す。酸素は、ケイ素に対する結合力が強いため、酸素の導入により膜中への水素の取り込みが抑制されることが、透明性向上の一因と推定される。 In general, a silicon nitride film formed by a CVD method by introducing a nitrogen source together with trisilylamine as a silicon source has a large amount of hydrogen in the film, and a wave number of 2140 cm − 1 (range of 2120 cm −1 to 2150 cm −1 ). In addition, in general, a silicon oxynitride film formed by a CVD method by introducing nitrogen and oxygen together with trisilylamine as a silicon source shifts the infrared absorption peak to the high wave number side, and is 2160 cm −1 to 2280 cm It exhibits an infrared absorption peak in the range of -1 or less, and exhibits transparency superior to that of silicon nitride films. Oxygen has a strong bonding force with silicon, so it is presumed that the introduction of oxygen suppresses the uptake of hydrogen into the film, which is one of the reasons for the improvement in transparency.
 ケイ素源に対する窒素源及び酸素源の少なくとも一方の導入量を変更することにより、第2層14の組成を適宜に調整できる。窒素源として窒素を使用し、かつ酸素源として酸素を使用する場合、透明性とガスバリア性とを両立する観点から、酸素の導入量は、窒素の導入量に対して、体積比で、0.01倍以上5倍以下であることが好ましく、0.03倍以上2倍以下であることがより好ましく、0.04倍以上1.5倍以下であることが更に好ましく、0.04倍以上1.0倍以下又は0.04倍以上0.5倍以下であってもよい。酸素導入量が過度に小さい場合は、膜に導入される酸素量が少なく、膜の光透過率が小さくなる傾向がある。酸素導入量が過度に大きい場合は、膜に取り込まれる窒素量が少なく、ガスバリア性が不足する傾向がある。 By changing the introduction amount of at least one of the nitrogen source and the oxygen source with respect to the silicon source, the composition of the second layer 14 can be appropriately adjusted. When nitrogen is used as the nitrogen source and oxygen is used as the oxygen source, from the viewpoint of achieving both transparency and gas barrier properties, the amount of oxygen to be introduced is set to 0.05 by volume with respect to the amount of nitrogen to be introduced. It is preferably 0.1 times or more and 5 times or less, more preferably 0.03 times or more and 2 times or less, further preferably 0.04 times or more and 1.5 times or less, and 0.04 times or more and 1 0 times or less, or 0.04 times or more and 0.5 times or less. If the amount of oxygen introduced is excessively small, the amount of oxygen introduced into the film tends to be small and the light transmittance of the film tends to decrease. If the amount of oxygen introduced is excessively large, the amount of nitrogen incorporated into the film tends to be small, resulting in insufficient gas barrier properties.
 CVD法により成膜する際の導入ガスとして、ケイ素源、窒素源及び酸素源以外のガスを用いてもよい。例えば、トリシリルアミン等の液体を用いる場合は、液体を気化させてチャンバー(真空チャンバー)内に導入するためにキャリアガスを用いてもよい。また、窒素源や酸素源を、キャリアガスと混合して真空チャンバー内に導入してもよく、プラズマ放電を安定させるために放電用ガスを用いてもよい。キャリアガス及び放電用ガスとしては、ヘリウム、アルゴン、ネオン、キセノン等の希ガスや水素が挙げられる。膜中に取り込まれる水素量を低減して透明性を高める観点から、希ガスが好ましい。 A gas other than the silicon source, the nitrogen source, and the oxygen source may be used as the introduced gas when forming the film by the CVD method. For example, when using a liquid such as trisilylamine, a carrier gas may be used to vaporize the liquid and introduce it into the chamber (vacuum chamber). Also, a nitrogen source or an oxygen source may be mixed with a carrier gas and introduced into the vacuum chamber, or a discharge gas may be used to stabilize the plasma discharge. Carrier gas and discharge gas include rare gases such as helium, argon, neon, and xenon, and hydrogen. A rare gas is preferable from the viewpoint of reducing the amount of hydrogen taken into the film and increasing the transparency.
 プラズマCVD法における諸条件は、適宜設定すればよい。基材温度(成膜ロール表面の温度)は、例えば-20℃以上500℃以下の範囲内に設定される。フィルム基材上にガスバリア層(例えば、第2層14)を成膜する場合の基材温度(フィルム基材温度)は、フィルム基材の耐熱性の観点から、150℃以下であることが好ましく、100℃以下であることがより好ましい。成膜室(真空チャンバー内)の圧力は、例えば、0.001Pa以上50Pa以下である。プラズマ発生用電源としては、例えば、交流電源が用いられる。ロールトゥロール方式のCVD成膜における電源の周波数は、一般に50kHz以上500kHz以下の範囲内である。ロールトゥロール方式のCVD成膜における印加電力は、一般に0.1kW以上10kW以下である。 Various conditions in the plasma CVD method can be set as appropriate. The substrate temperature (temperature of the surface of the film-forming roll) is set, for example, within the range of -20°C or higher and 500°C or lower. The substrate temperature (film substrate temperature) when forming a gas barrier layer (for example, the second layer 14) on the film substrate is preferably 150° C. or less from the viewpoint of the heat resistance of the film substrate. , 100° C. or lower. The pressure in the film forming chamber (inside the vacuum chamber) is, for example, 0.001 Pa or more and 50 Pa or less. An AC power supply, for example, is used as the power supply for plasma generation. The frequency of the power supply in roll-to-roll CVD film formation is generally in the range of 50 kHz to 500 kHz. The applied power in roll-to-roll CVD film formation is generally 0.1 kW or more and 10 kW or less.
 CVD法により成膜した第2層14の密度は、例えば2.10g/cm以上2.50g/cm以下であり、2.15g/cm以上2.45g/cm以下、2.20g/cm以上2.40g/cm以下又は2.25g/cm以上2.35g/cm以下であってもよい。 The density of the second layer 14 formed by the CVD method is, for example, 2.10 g/cm 3 or more and 2.50 g/cm 3 or less, 2.15 g/cm 3 or more and 2.45 g/cm 3 or less, or 2.20 g/cm 3 or more. /cm 3 or more and 2.40 g/cm 3 or less, or 2.25 g/cm 3 or more and 2.35 g/cm 3 or less.
[第1層13]
 第1層13は、第2層14とともにガスバリア機能を担いつつ、第2層14からのアンモニアガスの拡散を遮断する層であり、ケイ素、酸素及び炭素を主たる構成元素とする材料からなる酸炭化ケイ素層である。第1層13は、成膜時の原料、透明フィルム基材11及び外部環境から取り込まれる少量の水素・窒素等の元素を含んでいてもよい。第1層13が窒素を含む場合、第1層13中の窒素の含有率は、第2層14よりも小さいことが好ましい。第1層13において、ケイ素、酸素及び炭素以外の元素の含有率は、それぞれ、3原子%以下であることが好ましく、1原子%以下であることがより好ましく、0.5原子%以下であることが更に好ましい。第1層13を構成する元素のうち、ケイ素、酸素及び炭素の合計含有率は、90原子%以上であることが好ましく、95原子%以上であることがより好ましく、97原子%以上であることが更に好ましく、99原子%以上、99.5原子%以上又は99.9原子%以上であってもよい。
[First layer 13]
The first layer 13 is a layer that blocks the diffusion of ammonia gas from the second layer 14 while having a gas barrier function together with the second layer 14, and is made of a material containing silicon, oxygen and carbon as main constituent elements. Silicon layer. The first layer 13 may contain a small amount of elements such as hydrogen, nitrogen, etc. taken in from the raw material at the time of film formation, the transparent film substrate 11 and the external environment. When the first layer 13 contains nitrogen, the nitrogen content in the first layer 13 is preferably lower than that in the second layer 14 . In the first layer 13, the content of elements other than silicon, oxygen, and carbon is preferably 3 atomic % or less, more preferably 1 atomic % or less, and 0.5 atomic % or less. is more preferred. Among the elements constituting the first layer 13, the total content of silicon, oxygen and carbon is preferably 90 atomic % or more, more preferably 95 atomic % or more, and 97 atomic % or more. is more preferable, and may be 99 atomic % or more, 99.5 atomic % or more, or 99.9 atomic % or more.
 第1層13に含まれる酸炭化ケイ素の組成は、一般式SiOで表される。以下、一般式SiOのaを、単に「a」と記載することがある。また、一般式SiOのbを、単に「b」と記載することがある。 The composition of silicon oxycarbide contained in the first layer 13 is represented by the general formula SiO a C b . Hereinafter, a in the general formula SiO a C b may be simply referred to as "a". In addition, b in the general formula SiOaCb may be simply described as "b".
 ガスバリア性及び透明性により優れる上、アンモニアの発生をより抑制できるガスバリアフィルムを得るためには、aが1.5以上2.5以下であり、かつbが0.01以上0.5以下であることが好ましい。 In order to obtain a gas barrier film that is more excellent in gas barrier properties and transparency and can further suppress the generation of ammonia, a is 1.5 or more and 2.5 or less, and b is 0.01 or more and 0.5 or less. is preferred.
 第1層13の成膜方法は、特に限定されず、ドライコーティング法でもウェットコーティング法でもよい。第2層14をCVD法により成膜する場合は、生産性の観点から、第1層13もCVD法により成膜することが好ましい。 A method for forming the first layer 13 is not particularly limited, and may be a dry coating method or a wet coating method. When the second layer 14 is formed by the CVD method, the first layer 13 is also preferably formed by the CVD method from the viewpoint of productivity.
 CVD法により第1層13を成膜する場合のケイ素源及び酸素源としては、第2層14の成膜に関して先に例示したものが挙げられる。ケイ素源としては、毒性が低く、膜中への窒素の取り込みを抑制できることから有機ケイ素化合物が好ましく、ヘキサメチルジシラザン、ヘキサメチルジシロキサン、1,1,3,3-テトラメチルジシロキサン、テトラメチルシラン、ビニルトリメトキシシラン、ビニルトリメチルシラン、ジメチルジメトキシシラン、テトラメトキシシラン、メチルトリメトキシシラン、ジメチルジエトキシシラン、トリメチルメトキシシラン、テトラエトキシシラン、ジエチルジエトキシシラン、メチルジメトキシシラン、及びメチルジエトキシシロキサンからなる群より選択される一種以上がより好ましい。これらの有機ケイ素化合物の中でも、膜中への不純物の取り込みを抑制可能であり、透明性及びガスバリア性の高い膜を形成可能であることからヘキサメチルジシロキサンが特に好ましい。ケイ素源としての有機ケイ素化合物は炭素源も兼ねているが、有機ケイ素化合物に加えて、炭素源として、ケイ素を含まない有機化合物を用いてもよい。膜中の水素量を低減する観点から、酸素源としては酸素ガスが好ましい。 Examples of the silicon source and the oxygen source for forming the first layer 13 by the CVD method include those exemplified above regarding the formation of the second layer 14 . As the silicon source, organosilicon compounds are preferred because they have low toxicity and can suppress incorporation of nitrogen into the film. methylsilane, vinyltrimethoxysilane, vinyltrimethylsilane, dimethyldimethoxysilane, tetramethoxysilane, methyltrimethoxysilane, dimethyldiethoxysilane, trimethylmethoxysilane, tetraethoxysilane, diethyldiethoxysilane, methyldimethoxysilane, and methyldimethoxysilane. More preferably, one or more selected from the group consisting of ethoxysiloxane. Among these organosilicon compounds, hexamethyldisiloxane is particularly preferred because it can suppress incorporation of impurities into the film and can form a film with high transparency and gas barrier properties. Although the organosilicon compound as the silicon source also serves as a carbon source, an organic compound containing no silicon may be used as the carbon source in addition to the organosilicon compound. Oxygen gas is preferable as the oxygen source from the viewpoint of reducing the amount of hydrogen in the film.
 ヘキサメチルジシロキサンと酸素を用いてCVD法により第1層13を成膜する場合、酸素の導入量は、ヘキサメチルジシロキサン(気体)の導入量に対して、体積比で10倍以上が好ましく、15倍以上又は20倍以上であってもよい。成膜速度を適切に維持する観点から、酸素の導入量は、ヘキサメチルジシロキサン(気体)の導入量に対して、体積比で200倍以下が好ましく、100倍以下又は50倍以下であってもよい。 When the first layer 13 is formed by a CVD method using hexamethyldisiloxane and oxygen, the amount of oxygen introduced is preferably 10 times or more by volume the amount of hexamethyldisiloxane (gas) introduced. , 15 times or more, or 20 times or more. From the viewpoint of appropriately maintaining the film formation rate, the amount of oxygen introduced is preferably 200 times or less, and preferably 100 times or less or 50 times or less, the volume ratio of the amount of hexamethyldisiloxane (gas) introduced. good too.
 ケイ素源に対する酸素源(又は酸素源及び炭素源)の導入量を変更することにより、第1層13の組成を適宜に調整できる。 The composition of the first layer 13 can be appropriately adjusted by changing the introduction amount of the oxygen source (or the oxygen source and the carbon source) with respect to the silicon source.
 第1層13のCVD成膜においては、キャリアガスや放電ガスを導入してもよい。基材温度、圧力、電源周波数、印加電力等の諸条件は、第2層14の成膜と同様、適宜調整すればよい。 A carrier gas or a discharge gas may be introduced in the CVD film formation of the first layer 13 . Various conditions such as substrate temperature, pressure, power supply frequency, and applied power may be appropriately adjusted in the same manner as in the film formation of the second layer 14 .
 第1層13をガスバリア性向上に寄与させる観点から、第1層13の密度は、1.80g/cm以上であることが好ましく、1.90g/cm以上であることがより好ましく、2.00g/cm以上2.40g/cm以下、2.05g/cm以上2.35g/cm以下、又は2.10g/cm以上2.30g/cm以下であってもよい。 From the viewpoint of contributing to the improvement of gas barrier properties of the first layer 13, the density of the first layer 13 is preferably 1.80 g/cm 3 or more, more preferably 1.90 g/cm 3 or more. 00 g/cm 3 or more and 2.40 g/cm 3 or less, 2.05 g/cm 3 or more and 2.35 g/cm 3 or less, or 2.10 g/cm 3 or more and 2.30 g/cm 3 or less.
 ガスバリア層は、第2層14及び第1層13以外の層(他の層)を含んでいてもよい。「他の層」の例としては、金属若しくは半金属の酸化物、窒化物又は酸窒化物等のセラミック材料からなる無機薄膜が挙げられる。低透湿性と透明性を兼ね備えることから、Si、Al、In、Sn、Zn、Ti、Nb、Ce若しくはZrの酸化物、窒化物又は酸窒化物が好ましい。 The gas barrier layer may include layers (other layers) other than the second layer 14 and the first layer 13. Examples of "other layers" include inorganic thin films made of ceramic materials such as metal or semi-metal oxides, nitrides or oxynitrides. Oxides, nitrides or oxynitrides of Si, Al, In, Sn, Zn, Ti, Nb, Ce or Zr are preferred because they have both low moisture permeability and transparency.
 高いガスバリア性と透明性とを両立させる観点から、ガスバリア層の合計厚みは、50nm以上1000nm以下であることが好ましく、80nm以上500nm以下であることがより好ましい。 From the viewpoint of achieving both high gas barrier properties and transparency, the total thickness of the gas barrier layer is preferably 50 nm or more and 1000 nm or less, more preferably 80 nm or more and 500 nm or less.
[ハードコート層21]
 ハードコート層21は、例えば、バインダー樹脂とナノ粒子とを含む。バインダー樹脂としては、熱硬化性樹脂、光硬化性樹脂、電子線硬化性樹脂等の硬化性樹脂が好ましく用いられる。硬化性樹脂の種類としては、ポリエステル系樹脂、アクリル系樹脂、ウレタン系樹脂、アクリルウレタン系樹脂、アミド系樹脂、シリコーン系樹脂、シリケート系樹脂、エポキシ系樹脂、メラミン系樹脂、オキセタン系樹脂等が挙げられる。硬化性樹脂は、一種又は二種以上を使用できる。これらの中でも、硬度が高く、光硬化が可能であることから、アクリル系樹脂、アクリルウレタン系樹脂及びエポキシ系樹脂からなる群より選択される一種以上が好ましく、アクリル系樹脂及びアクリルウレタン系樹脂からなる群より選択される一種以上がより好ましい。
[Hard coat layer 21]
The hard coat layer 21 contains, for example, a binder resin and nanoparticles. As the binder resin, curable resins such as thermosetting resins, photocurable resins and electron beam curable resins are preferably used. Types of curable resins include polyester resins, acrylic resins, urethane resins, acrylic urethane resins, amide resins, silicone resins, silicate resins, epoxy resins, melamine resins, and oxetane resins. mentioned. One or more curable resins can be used. Among these, one or more selected from the group consisting of acrylic resins, acrylic urethane resins, and epoxy resins are preferable because they have high hardness and can be photocured, and acrylic resins and acrylic urethane resins. More preferably, one or more selected from the group consisting of
 ハードコート層21に含まれるナノ粒子の個数平均一次粒子径は、バインダー樹脂中での分散性を高める観点から、15nm以上であることが好ましく、20nm以上であることがより好ましい。密着性向上に寄与する微細な凹凸形状を形成する観点から、ハードコート層21に含まれるナノ粒子の個数平均一次粒子径は、90nm以下であることが好ましく、70nm以下であることがより好ましく、50nm以下であることが更に好ましい。 The number average primary particle size of the nanoparticles contained in the hard coat layer 21 is preferably 15 nm or more, more preferably 20 nm or more, from the viewpoint of enhancing dispersibility in the binder resin. From the viewpoint of forming fine irregularities that contribute to improved adhesion, the number average primary particle diameter of the nanoparticles contained in the hard coat layer 21 is preferably 90 nm or less, more preferably 70 nm or less. It is more preferably 50 nm or less.
 ナノ粒子の材料としては、無機酸化物が好ましい。無機酸化物としては、シリカ、酸化チタン、酸化アルミニウム、酸化ジルコニウム、酸化ニオブ、酸化亜鉛、酸化スズ、酸化セリウム、酸化マグネシウム等の金属(又は半金属)の酸化物が挙げられる。無機酸化物は、複数種の(半)金属の複合酸化物でもよい。例示の無機酸化物の中でも、密着性向上効果が高いことから、シリカが好ましい。つまり、ナノ粒子としては、シリカ粒子(ナノシリカ粒子)が好ましい。ナノ粒子としての無機酸化物粒子の表面には、樹脂との密着性や親和性を高める目的で、アクリル基、エポキシ基等の官能基が導入されていてもよい。 Inorganic oxides are preferable as materials for nanoparticles. Examples of inorganic oxides include metal (or metalloid) oxides such as silica, titanium oxide, aluminum oxide, zirconium oxide, niobium oxide, zinc oxide, tin oxide, cerium oxide, and magnesium oxide. The inorganic oxide may be a composite oxide of multiple (semi)metals. Among the exemplified inorganic oxides, silica is preferable because it has a high adhesion improving effect. That is, silica particles (nanosilica particles) are preferable as the nanoparticles. A functional group such as an acrylic group or an epoxy group may be introduced into the surface of the inorganic oxide particles as nanoparticles for the purpose of enhancing adhesion and affinity with the resin.
 ハードコート層21におけるナノ粒子の量は、バインダー樹脂とナノ粒子の合計量100重量部に対して、5重量部以上であることが好ましく、10重量部以上、20重量部以上又は30重量部以上であってもよい。ナノ粒子の量が5重量部以上であれば、ハードコート層21上に形成されるガスバリア層との密着性を向上させることができる。ハードコート層21におけるナノ粒子の量の上限は、バインダー樹脂とナノ粒子の合計量100重量部に対して、例えば90重量部であり、80重量部であることが好ましく、70重量部であってもよい。 The amount of nanoparticles in the hard coat layer 21 is preferably 5 parts by weight or more, 10 parts by weight or more, 20 parts by weight or more, or 30 parts by weight or more with respect to 100 parts by weight of the total amount of the binder resin and the nanoparticles. may be If the amount of nanoparticles is 5 parts by weight or more, the adhesion to the gas barrier layer formed on the hard coat layer 21 can be improved. The upper limit of the amount of nanoparticles in the hard coat layer 21 is, for example, 90 parts by weight, preferably 80 parts by weight, and preferably 70 parts by weight with respect to 100 parts by weight of the total amount of the binder resin and the nanoparticles. good too.
 ハードコート層21の厚みは、特に限定されないが、高い硬度を実現しつつガスバリア層との密着性を向上させるためには、0.5μm以上であることが好ましく、1.0μm以上であることがより好ましく、2.0μm以上であることが更に好ましく、3.0μm以上であることが更により好ましい。一方、凝集破壊による強度の低下を抑制するためには、ハードコート層21の厚みは、20μm以下であることが好ましく、15μm以下であることがより好ましく、12μm以下であることが更に好ましい。 The thickness of the hard coat layer 21 is not particularly limited, but is preferably 0.5 μm or more, more preferably 1.0 μm or more, in order to improve the adhesion to the gas barrier layer while achieving high hardness. It is more preferably 2.0 μm or more, and even more preferably 3.0 μm or more. On the other hand, the thickness of the hard coat layer 21 is preferably 20 μm or less, more preferably 15 μm or less, and even more preferably 12 μm or less in order to suppress a decrease in strength due to cohesive failure.
(ハードコート層21の形成方法)
 透明フィルム基材11上にハードコート組成物を塗布し、必要に応じて溶媒の除去及び樹脂の硬化を行うことにより、ハードコート層21が形成される。ハードコート組成物は、例えば、上記のバインダー樹脂及びナノ粒子を含み、必要に応じてこれらの成分を溶解又は分散可能な溶媒を含む。ハードコート組成物中の樹脂成分が硬化性樹脂である場合は、ハードコート組成物中に、適宜の重合開始剤が含まれていることが好ましい。例えば、ハードコート組成物中の樹脂成分が光硬化型樹脂である場合には、ハードコート組成物中に光重合開始剤が含まれていることが好ましい。
(Method for forming hard coat layer 21)
The hard coat layer 21 is formed by applying the hard coat composition onto the transparent film substrate 11 and, if necessary, removing the solvent and curing the resin. The hard coat composition contains, for example, the above binder resin and nanoparticles, and optionally contains a solvent capable of dissolving or dispersing these components. When the resin component in the hard coat composition is a curable resin, the hard coat composition preferably contains an appropriate polymerization initiator. For example, when the resin component in the hard coat composition is a photocurable resin, the hard coat composition preferably contains a photopolymerization initiator.
 ハードコート組成物は、上記成分の他に、個数平均一次粒子径が1.0μm以上の粒子(マイクロ粒子)、レベリング剤、粘度調整剤(チクソトロピー剤、増粘剤等)、帯電防止剤、ブロッキング防止剤、分散剤、分散安定剤、酸化防止剤、紫外線吸収剤、消泡剤、界面活性剤、滑剤等の添加剤を含んでいてもよい。 In addition to the above components, the hard coat composition includes particles (microparticles) having a number average primary particle diameter of 1.0 μm or more, leveling agents, viscosity modifiers (thixotropic agents, thickeners, etc.), antistatic agents, blocking agents, Additives such as inhibitors, dispersants, dispersion stabilizers, antioxidants, UV absorbers, antifoaming agents, surfactants and lubricants may be included.
 ハードコート組成物の塗布方法としては、バーコート法、ロールコート法、グラビアコート法、ロッドコート法、スロットオリフィスコート法、カーテンコート法、ファウンテンコート法、コンマコート法等の任意の適切な方法を採用し得る。 As a method for applying the hard coat composition, any suitable method such as bar coating, roll coating, gravure coating, rod coating, slot orifice coating, curtain coating, fountain coating, comma coating, etc. can be used. can be adopted.
[粘着剤層41]
 粘着剤層41の構成材料としては、可視光透過率が高い粘着剤が好適に用いられる。粘着剤層41を構成する粘着剤としては、例えば、アクリル系ポリマー、シリコーン系ポリマー、ポリエステル、ポリウレタン、ポリアミド、ポリビニルエーテル、酢酸ビニル-塩化ビニル共重合体、変性ポリオレフィン、エポキシ系樹脂、フッ素系樹脂、天然ゴム、合成ゴム等のポリマーをベースポリマーとする透明な粘着剤を、適宜に選択して用いることができる。粘着剤層41の厚みは、好ましくは5μm以上100μm以下である。粘着剤層41の屈折率は、例えば1.4以上1.5以下である。
[Adhesive layer 41]
As a constituent material of the adhesive layer 41, an adhesive having a high visible light transmittance is preferably used. Examples of adhesives constituting the adhesive layer 41 include acrylic polymers, silicone polymers, polyesters, polyurethanes, polyamides, polyvinyl ethers, vinyl acetate-vinyl chloride copolymers, modified polyolefins, epoxy resins, and fluorine resins. , natural rubber, synthetic rubber or the like as a base polymer can be appropriately selected and used. The thickness of the adhesive layer 41 is preferably 5 μm or more and 100 μm or less. The refractive index of the adhesive layer 41 is, for example, 1.4 or more and 1.5 or less.
[ガスバリアフィルムの特性]
 ガスバリアフィルムの水蒸気透過率は、3.0×10-2g/m・day以下であることが好ましく、2.0×10-2g/m・day以下であることがより好ましく、1.0×10-2g/m・day以下であることが更に好ましい。有機EL素子等の保護対象の劣化を抑制する観点からは、水蒸気透過率は小さいほど好ましい。ガスバリアフィルムの水蒸気透過率の下限は、特に限定されないが、一般には1.0×10-5g/m・dayである。水蒸気透過率(WVTR)は、温度40℃かつ相対湿度90%の条件下、ISO 15106-5に記載された差圧法(Pressure Sensor Method)に従って測定される。
[Characteristics of gas barrier film]
The water vapor transmission rate of the gas barrier film is preferably 3.0×10 −2 g/m 2 ·day or less, more preferably 2.0×10 −2 g/m 2 ·day or less. It is more preferably 0×10 −2 g/m 2 ·day or less. From the viewpoint of suppressing deterioration of the protection object such as the organic EL element, the lower the water vapor transmission rate, the better. Although the lower limit of the water vapor transmission rate of the gas barrier film is not particularly limited, it is generally 1.0×10 −5 g/m 2 ·day. Water vapor transmission rate (WVTR) is measured according to the differential pressure method (Pressure Sensor Method) described in ISO 15106-5 under conditions of a temperature of 40° C. and a relative humidity of 90%.
 ガスバリアフィルムの光透過率は、75%以上であることが好ましく、80%以上であることがより好ましい。光透過率は、JlS Z8781-3:2016で規定されるCIE三刺激値のY値である。 The light transmittance of the gas barrier film is preferably 75% or higher, more preferably 80% or higher. Light transmittance is the Y value of the CIE tristimulus values specified in JlS Z8781-3:2016.
 ガスバリアフィルム1cmあたりのアンモニウムイオンの抽出量は、0.30μg以下であることが好ましく、0.15μg以下であることがより好ましく、0.12μg以下であることが更に好ましく、0.11μg以下であることが更により好ましい。なお、アンモニウムイオンの抽出量の測定方法は、後述する実施例と同じ方法又はそれに準ずる方法である。 The amount of ammonium ions extracted per 1 cm 2 of the gas barrier film is preferably 0.30 μg or less, more preferably 0.15 μg or less, even more preferably 0.12 μg or less, and 0.11 μg or less. It is even more preferred to have The method for measuring the extracted amount of ammonium ions is the same method as in Examples described later or a method based thereon.
<第2実施形態:ガスバリアフィルムの製造方法>
 次に、本発明の第2実施形態に係るガスバリアフィルムの製造方法について説明する。第2実施形態に係るガスバリアフィルムの製造方法は、上述した第1実施形態に係るガスバリアフィルムの好適な製造方法である。よって、上述した第1実施形態と重複する構成要素については、その説明を省略する場合がある。第2実施形態に係るガスバリアフィルムの製造方法は、成膜装置のチャンバー(真空チャンバー)内に、トリシリルアミン、窒素及び酸素を導入して、化学気相成長法により第2層14を形成する工程と、成膜装置のチャンバー内に、有機ケイ素化合物及び酸素を導入して、化学気相成長法により第1層13を形成する工程とを備える。
<Second Embodiment: Method for Producing Gas Barrier Film>
Next, a method for manufacturing a gas barrier film according to the second embodiment of the present invention will be described. The method for manufacturing the gas barrier film according to the second embodiment is a suitable method for manufacturing the gas barrier film according to the first embodiment described above. Therefore, descriptions of components that overlap with those of the above-described first embodiment may be omitted. In the method for producing a gas barrier film according to the second embodiment, trisilylamine, nitrogen and oxygen are introduced into a chamber (vacuum chamber) of a film forming apparatus to form the second layer 14 by chemical vapor deposition. and a step of introducing an organosilicon compound and oxygen into a chamber of a film forming apparatus to form the first layer 13 by chemical vapor deposition.
 第2実施形態では、例えば、CVD成膜装置(不図示)を用いて、第1実施形態に係るガスバリアフィルムの説明において例示したプラズマCVD法における諸条件を採用することで、第1実施形態に係るガスバリアフィルムを容易に製造することができる。例えば、一対の成膜ロールが一対の対向電極を構成しているCVD成膜装置(不図示)を用いて、第1実施形態に係るガスバリアフィルムを製造する場合は、第2層14を形成するための成膜ガス(より具体的には、トリシリルアミン、酸素、窒素等)を真空チャンバー内に供給しつつ、一対の成膜ロール間にプラズマ放電を発生させることにより、上記成膜ガスがプラズマによって分解され、例えば透明フィルム基材11上に第2層14が形成される。次いで、第1層13を形成するための成膜ガス(より具体的には、有機ケイ素化合物、酸素等)を真空チャンバー内に供給しつつ、一対の成膜ロール間にプラズマ放電を発生させることにより、上記成膜ガスがプラズマによって分解され、第2層14上に第1層13が形成される。 In the second embodiment, for example, by using a CVD film forming apparatus (not shown) and adopting the conditions of the plasma CVD method illustrated in the explanation of the gas barrier film according to the first embodiment, Such a gas barrier film can be easily produced. For example, when producing the gas barrier film according to the first embodiment using a CVD film forming apparatus (not shown) in which a pair of film forming rolls constitutes a pair of opposed electrodes, the second layer 14 is formed. While supplying a film-forming gas (more specifically, trisilylamine, oxygen, nitrogen, etc.) to the vacuum chamber, plasma discharge is generated between a pair of film-forming rolls, so that the film-forming gas is It is decomposed by plasma, and the second layer 14 is formed on the transparent film substrate 11, for example. Next, plasma discharge is generated between a pair of film-forming rolls while supplying a film-forming gas (more specifically, an organic silicon compound, oxygen, etc.) for forming the first layer 13 into the vacuum chamber. As a result, the deposition gas is decomposed by plasma, and the first layer 13 is formed on the second layer 14 .
<第3実施形態:ガスバリア層付き偏光板>
 次に、本発明の第3実施形態に係るガスバリア層付き偏光板について説明する。第3実施形態に係るガスバリア層付き偏光板は、第1実施形態に係るガスバリアフィルムと、偏光子とを備える。図5は、第3実施形態に係るガスバリア層付き偏光板の一例を示す断面図である。図5に示すガスバリア層付き偏光板100は、上述したガスバリアフィルム40と、偏光板101とを有する。ガスバリア層付き偏光板100では、粘着剤層41の第1層13側とは反対側の主面41aに偏光板101が配置されている。つまり、偏光板101と第1層13とが、粘着剤層41を介して貼り合わせられている。なお、図5に示すガスバリア層付き偏光板100はガスバリアフィルム40(ガスバリアフィルム30)を有するが、第3実施形態に係るガスバリア層付き偏光板が有するガスバリアフィルムは、ガスバリアフィルム40に限定されず、例えば、ガスバリアフィルム10又はガスバリアフィルム20であってもよい。
<Third Embodiment: Polarizing Plate with Gas Barrier Layer>
Next, a polarizing plate with a gas barrier layer according to a third embodiment of the present invention will be described. A polarizing plate with a gas barrier layer according to the third embodiment includes the gas barrier film according to the first embodiment and a polarizer. FIG. 5 is a cross-sectional view showing an example of a polarizing plate with a gas barrier layer according to the third embodiment. The polarizing plate 100 with a gas barrier layer shown in FIG. 5 has the gas barrier film 40 and the polarizing plate 101 described above. In the gas barrier layer-attached polarizing plate 100, the polarizing plate 101 is arranged on the main surface 41a of the adhesive layer 41 opposite to the first layer 13 side. That is, the polarizing plate 101 and the first layer 13 are bonded together with the adhesive layer 41 interposed therebetween. Although the polarizing plate 100 with a gas barrier layer shown in FIG. For example, it may be the gas barrier film 10 or the gas barrier film 20 .
 偏光板101は、偏光子(不図示)を含み、一般には、偏光子の両主面に偏光子保護フィルムとしての透明保護フィルム(不図示)が積層されている。偏光子の一方の主面又は両主面の透明保護フィルムは、設けられていなくてもよい。偏光子としては、例えば、ポリビニルアルコール系フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質を吸着させて一軸延伸したものが挙げられる。 The polarizing plate 101 includes a polarizer (not shown), and generally transparent protective films (not shown) as polarizer protective films are laminated on both main surfaces of the polarizer. A transparent protective film may not be provided on one principal surface or both principal surfaces of the polarizer. As a polarizer, for example, a hydrophilic polymer film such as a polyvinyl alcohol film is uniaxially stretched after adsorbing a dichroic substance such as iodine or a dichroic dye.
 透明保護フィルムとしては、セルロース系樹脂、環状ポリオレフィン系樹脂、アクリル系樹脂、フェニルマレイミド系樹脂、ポリカーボネート系樹脂等から構成された透明樹脂フィルムが好ましく用いられる。透明保護フィルムとしてガスバリアフィルムを用いてもよい。 As the transparent protective film, a transparent resin film composed of a cellulose resin, a cyclic polyolefin resin, an acrylic resin, a phenylmaleimide resin, a polycarbonate resin, or the like is preferably used. A gas barrier film may be used as the transparent protective film.
 偏光板101は、偏光子の一方又は両方の主面に、必要に応じて適宜の接着剤層や粘着剤層を介して積層された光学機能フィルムを備えていてもよい。光学機能フィルムとしては、位相差板、視野角拡大フィルム、視野角制限(覗き見防止)フィルム、輝度向上フィルム等が挙げられる。 The polarizing plate 101 may include an optical functional film laminated on one or both main surfaces of a polarizer via an appropriate adhesive layer or pressure-sensitive adhesive layer as necessary. Examples of the optical functional film include retardation plates, viewing angle widening films, viewing angle limiting (peep prevention) films, brightness improving films, and the like.
 第3実施形態に係るガスバリア層付き偏光板は、第1実施形態に係るガスバリアフィルムを備えるため、ガスバリア性を確保しつつ透明性に優れる上、アンモニアの発生を抑制できる。 Since the polarizing plate with a gas barrier layer according to the third embodiment includes the gas barrier film according to the first embodiment, it has excellent transparency while ensuring gas barrier properties, and can suppress the generation of ammonia.
<第4実施形態:画像表示装置>
 次に、本発明の第4実施形態に係る画像表示装置について説明する。第4実施形態に係る画像表示装置は、第1実施形態に係るガスバリアフィルム又は第3実施形態に係るガスバリア層付き偏光板と、画像表示セルとを備える。
<Fourth Embodiment: Image Display Device>
Next, an image display device according to a fourth embodiment of the invention will be described. An image display device according to the fourth embodiment includes the gas barrier film according to the first embodiment or the polarizing plate with a gas barrier layer according to the third embodiment, and an image display cell.
 図6は、第4実施形態に係る画像表示装置の一例を示す断面図である。図6に示す画像表示装置200は、ガスバリアフィルム40を有するガスバリア層付き偏光板100と、画像表示セル202とを備える。画像表示セル202は、基板203と、基板203上に設けられた表示素子204とを備える。画像表示装置200では、ガスバリア層31と表示素子204とが、粘着剤層201を介して貼り合わせられている。なお、図6に示す画像表示装置200はガスバリアフィルム40(ガスバリアフィルム30)を有するが、第4実施形態に係る画像表示装置が有するガスバリアフィルムは、ガスバリアフィルム40に限定されず、例えば、ガスバリアフィルム10又はガスバリアフィルム20であってもよい。 FIG. 6 is a cross-sectional view showing an example of an image display device according to the fourth embodiment. An image display device 200 shown in FIG. 6 includes a gas barrier layer-attached polarizing plate 100 having a gas barrier film 40 and an image display cell 202 . The image display cell 202 includes a substrate 203 and display elements 204 provided on the substrate 203 . In the image display device 200 , the gas barrier layer 31 and the display element 204 are bonded together with the adhesive layer 201 interposed therebetween. Although the image display device 200 shown in FIG. 6 has the gas barrier film 40 (gas barrier film 30), the gas barrier film of the image display device according to the fourth embodiment is not limited to the gas barrier film 40. For example, the gas barrier film 10 or gas barrier film 20 .
 粘着剤層201を構成する粘着剤としては、例えば上述した粘着剤層41を構成する粘着剤として例示したものと同じ粘着剤が挙げられる。粘着剤層201を構成する粘着剤と粘着剤層41を構成する粘着剤とは、同種であってもよく、互いに異なる種類であってもよい。 As the adhesive constituting the adhesive layer 201, for example, the same adhesives as those exemplified as the adhesive constituting the adhesive layer 41 described above can be used. The adhesive that forms the adhesive layer 201 and the adhesive that forms the adhesive layer 41 may be of the same type or of different types.
 粘着剤層201の厚みの好ましい範囲は、例えば、上述した粘着剤層41の厚みの好ましい範囲と同じである。粘着剤層201の厚み及び粘着剤層41の厚みは、同一であっても異なっていてもよい。 The preferable range of the thickness of the adhesive layer 201 is, for example, the same as the preferable range of the thickness of the adhesive layer 41 described above. The thickness of the adhesive layer 201 and the thickness of the adhesive layer 41 may be the same or different.
 基板203としては、ガラス基板又はプラスチック基板が用いられる。画像表示セル202がトップエミッション型である場合、基板203は透明である必要はなく、基板203としてポリイミドフィルム等の高耐熱性フィルムを用いてもよい。 A glass substrate or a plastic substrate is used as the substrate 203 . When the image display cell 202 is of the top emission type, the substrate 203 does not have to be transparent, and a highly heat-resistant film such as a polyimide film may be used as the substrate 203 .
 表示素子204としては、有機EL素子、液晶素子、電気泳動方式の表示素子(電子ペーパー)等が挙げられる。画像表示セル202の視認側には、タッチパネルセンサー(不図示)が配置されていてもよい。 Examples of the display element 204 include an organic EL element, a liquid crystal element, an electrophoretic display element (electronic paper), and the like. A touch panel sensor (not shown) may be arranged on the viewing side of the image display cell 202 .
 表示素子204が有機EL素子である場合、画像表示セル202は、例えばトップエミッション型である。有機EL素子は、例えば、基板203側から、金属電極(不図示)、有機発光層(不図示)及び透明電極(不図示)をこの順に備える。 When the display element 204 is an organic EL element, the image display cell 202 is, for example, top emission type. The organic EL element includes, for example, a metal electrode (not shown), an organic light emitting layer (not shown), and a transparent electrode (not shown) in this order from the substrate 203 side.
 有機発光層は、それ自身が発光層として機能する有機層の他に、電子輸送層、正孔輸送層等を備えていてもよい。透明電極は、金属酸化物層又は金属薄膜であり、有機発光層からの光を透過する。基板203の裏面側には基板203の保護や補強を目的としてバックシート(不図示)が設けられていてもよい。 The organic light-emitting layer may include an electron-transporting layer, a hole-transporting layer, etc. in addition to the organic layer that itself functions as a light-emitting layer. The transparent electrode is a metal oxide layer or a metal thin film and transmits light from the organic light emitting layer. A back sheet (not shown) may be provided on the back side of the substrate 203 for the purpose of protecting and reinforcing the substrate 203 .
 有機EL素子の金属電極は光反射性である。そのため、外光が画像表示セル202の内部に入射すると、金属電極で光が反射し、外部からは反射光が鏡面のように視認される。画像表示セル202の視認側に、偏光板101として円偏光板を配置することにより、金属電極での反射光の外部への再出射を防止して、画像表示装置200の画面の視認性及び意匠性を向上させることができる。  The metal electrode of the organic EL element is light reflective. Therefore, when external light enters the inside of the image display cell 202, the light is reflected by the metal electrodes, and the reflected light is visually recognized as a mirror surface from the outside. By arranging a circularly polarizing plate as the polarizing plate 101 on the viewing side of the image display cell 202, the re-emission of light reflected by the metal electrode to the outside is prevented, and the visibility and design of the screen of the image display device 200 are improved. can improve sexuality.
 円偏光板は、例えば偏光子の画像表示セル202側の主面に位相差フィルムを備える。偏光子に隣接して配置された透明保護フィルムが位相差フィルムであってもよい。また、ガスバリアフィルム40の透明フィルム基材11が位相差フィルムであってもよい。位相差フィルムがλ/4のレターデーションを有し、位相差フィルムの遅相軸方向と偏光子の吸収軸方向とのなす角度が45°である場合に、偏光子と位相差フィルムとの積層体が、金属電極での反射光の再出射を抑制するための円偏光板として機能する。円偏光板を構成する位相差フィルムは、2層以上のフィルムが積層されたものであってもよい。例えば、偏光子とλ/2板とλ/4板とを、それぞれの光学軸が所定の角度をなすように積層することにより、可視光の広帯域にわたって円偏光板として機能する広帯域円偏光板が得られる。 The circularly polarizing plate has, for example, a retardation film on the main surface of the polarizer on the image display cell 202 side. The transparent protective film arranged adjacent to the polarizer may be a retardation film. Further, the transparent film substrate 11 of the gas barrier film 40 may be a retardation film. Lamination of the polarizer and the retardation film when the retardation film has a retardation of λ / 4 and the angle formed by the slow axis direction of the retardation film and the absorption axis direction of the polarizer is 45 ° The body functions as a circular polarizer for suppressing re-emission of reflected light from the metal electrode. The retardation film that constitutes the circularly polarizing plate may be a laminate of two or more layers of films. For example, by laminating a polarizer, a λ/2 plate and a λ/4 plate so that their optical axes form a predetermined angle, a broadband circularly polarizing plate that functions as a circularly polarizing plate over a wide band of visible light is obtained. can get.
 画像表示セル202は、基板上に透明電極と有機発光層と金属電極とをこの順に積層したボトムエミッション型であってもよい。ボトムエミッション型の画像表示セル202では、透明基板が用いられ、透明基板が視認側に配置される。透明基板としてガスバリアフィルムを用いてもよい。 The image display cell 202 may be of a bottom emission type in which a transparent electrode, an organic light emitting layer and a metal electrode are laminated in this order on a substrate. In the bottom emission type image display cell 202, a transparent substrate is used, and the transparent substrate is arranged on the viewing side. A gas barrier film may be used as the transparent substrate.
 第4実施形態に係る画像表示装置は、第1実施形態に係るガスバリアフィルムを備えるため、ガス(例えば水蒸気)に起因する表示素子の劣化を抑制できる。 Since the image display device according to the fourth embodiment includes the gas barrier film according to the first embodiment, it is possible to suppress deterioration of the display element caused by gas (for example, water vapor).
 以下、本発明の実施例について説明するが、本発明は以下の実施例に限定されるものではない。 Examples of the present invention will be described below, but the present invention is not limited to the following examples.
<ガスバリアフィルムの作製>
 以下、実施例1~8及び比較例1~6のガスバリアフィルムの作製方法について、それぞれ説明する。なお、実施例1~8及び比較例1~6のガスバリアフィルムの作製において、ガスバリア層を構成する各層の成膜には、ロールトゥロール方式のCVD成膜装置を使用した。
<Production of gas barrier film>
The methods for producing the gas barrier films of Examples 1 to 8 and Comparative Examples 1 to 6 are described below. In the preparation of the gas barrier films of Examples 1 to 8 and Comparative Examples 1 to 6, a roll-to-roll CVD film forming apparatus was used for film formation of each layer constituting the gas barrier layer.
[実施例1]
 透明フィルム基材としての厚み40μmの環状ポリオレフィンフィルム(日本ゼオン社製「ゼオノア(登録商標)フィルムZF-14」)を成膜装置にセットし、真空チャンバー内を1×10-3Paまで減圧した。次いで、フィルムを走行させながら、フィルム上に厚み60nmの酸窒化ケイ素層をCVD成膜した後、酸窒化ケイ素層上に厚み200nmの酸炭化ケイ素層をCVD成膜し、実施例1のガスバリアフィルムとして、酸窒化ケイ素層と酸炭化ケイ素層とを有するガスバリア層を備えたガスバリアフィルムを得た。酸窒化ケイ素層の成膜及び酸炭化ケイ素層の成膜のいずれについても、基材温度を12℃とし、プラズマ発生用電源の周波数を80kHzに設定し、印加電力1.0kWの条件で放電してプラズマを発生させ、真空チャンバー内の成膜ロール間(電極間)に成膜ガスを導入し、圧力1.0Paで成膜した。酸窒化ケイ素層を成膜する際は、成膜ガスとして、トリシリルアミン(TSA)(流量条件:30sccm)、窒素(流量条件:500sccm)及び酸素(流量条件:100sccm)を使用した。また、酸炭化ケイ素層を成膜する際は、成膜ガスとして、ヘキサメチルジシロキサン(HMDSO)(流量条件:25sccm)及び酸素(流量条件:700sccm)を使用した。なお、TSA及びHMDSOは、いずれも加熱気化させて、真空チャンバー内に導入した。
[Example 1]
A 40 μm-thick cyclic polyolefin film (“Zeonor (registered trademark) film ZF-14” manufactured by Nippon Zeon Co., Ltd.) as a transparent film substrate was set in a film forming apparatus, and the pressure in the vacuum chamber was reduced to 1×10 −3 Pa. . Next, while the film was running, a silicon oxynitride layer having a thickness of 60 nm was formed on the film by CVD, and then a silicon oxycarbide layer having a thickness of 200 nm was formed by CVD on the silicon oxynitride layer. As a result, a gas barrier film having a gas barrier layer having a silicon oxynitride layer and a silicon oxycarbide layer was obtained. For both the deposition of the silicon oxynitride layer and the deposition of the silicon oxycarbide layer, the substrate temperature was set to 12° C., the frequency of the power source for plasma generation was set to 80 kHz, and the discharge was performed under the conditions of an applied power of 1.0 kW. A film was formed at a pressure of 1.0 Pa by introducing a film forming gas between the film forming rolls (between the electrodes) in the vacuum chamber. When forming the silicon oxynitride layer, trisilylamine (TSA) (flow rate: 30 sccm), nitrogen (flow rate: 500 sccm), and oxygen (flow rate: 100 sccm) were used as deposition gases. When forming the silicon oxycarbide layer, hexamethyldisiloxane (HMDSO) (flow rate: 25 sccm) and oxygen (flow rate: 700 sccm) were used as deposition gases. Both TSA and HMDSO were vaporized by heating and introduced into the vacuum chamber.
[実施例2]
 酸炭化ケイ素層の厚みを100nmに変更したこと以外は、実施例1と同じ方法により実施例2のガスバリアフィルムを作製した。
[Example 2]
A gas barrier film of Example 2 was produced in the same manner as in Example 1, except that the thickness of the silicon oxycarbide layer was changed to 100 nm.
[実施例3]
 酸炭化ケイ素層の厚みを50nmに変更したこと以外は、実施例1と同じ方法により実施例3のガスバリアフィルムを作製した。
[Example 3]
A gas barrier film of Example 3 was produced in the same manner as in Example 1, except that the thickness of the silicon oxycarbide layer was changed to 50 nm.
[実施例4]
 酸窒化ケイ素層の厚みを30nmに変更したこと以外は、実施例1と同じ方法により実施例4のガスバリアフィルムを作製した。
[Example 4]
A gas barrier film of Example 4 was produced in the same manner as in Example 1, except that the thickness of the silicon oxynitride layer was changed to 30 nm.
[実施例5]
 酸窒化ケイ素層の厚みを100nmに変更したこと以外は、実施例1と同じ方法により実施例5のガスバリアフィルムを作製した。
[Example 5]
A gas barrier film of Example 5 was produced in the same manner as in Example 1, except that the thickness of the silicon oxynitride layer was changed to 100 nm.
[実施例6]
 酸窒化ケイ素層を成膜する際において、窒素の流量を550sccmとし、かつ酸素の流量を50sccmとしたこと以外は、実施例1と同じ方法により実施例6のガスバリアフィルムを作製した。
[Example 6]
A gas barrier film of Example 6 was produced in the same manner as in Example 1, except that the flow rate of nitrogen was set to 550 sccm and the flow rate of oxygen was set to 50 sccm when forming the silicon oxynitride layer.
[実施例7]
 酸炭化ケイ素層を成膜する際において、HMDSOの流量を15sccmとし、酸素の流量を420sccmとし、印加電力を0.6kWとしたこと以外は、実施例1と同じ方法により実施例7のガスバリアフィルムを作製した。
[Example 7]
The gas barrier film of Example 7 was prepared in the same manner as in Example 1 except that the flow rate of HMDSO was 15 sccm, the flow rate of oxygen was 420 sccm, and the applied power was 0.6 kW when forming the silicon oxycarbide layer. was made.
[実施例8]
 酸窒化ケイ素層を成膜する際において、窒素の流量を575sccmとし、かつ酸素の流量を25sccmとしたこと以外は、実施例1と同じ方法により実施例8のガスバリアフィルムを作製した。
[Example 8]
A gas barrier film of Example 8 was produced in the same manner as in Example 1, except that the nitrogen flow rate was set to 575 sccm and the oxygen flow rate was set to 25 sccm when forming the silicon oxynitride layer.
[比較例1]
 酸炭化ケイ素層を成膜しなかったこと以外は、実施例1と同じ方法により比較例1のガスバリアフィルムを作製した。
[Comparative Example 1]
A gas barrier film of Comparative Example 1 was produced in the same manner as in Example 1, except that the silicon oxycarbide layer was not formed.
[比較例2]
 酸窒化ケイ素層を成膜する際において、窒素の流量を525sccmとし、かつ酸素の流量を75sccmとしたこと、及び酸炭化ケイ素層を成膜しなかったこと以外は、実施例1と同じ方法により比較例2のガスバリアフィルムを作製した。
[Comparative Example 2]
In forming the silicon oxynitride layer, the same method as in Example 1 was used except that the flow rate of nitrogen was set to 525 sccm and the flow rate of oxygen was set to 75 sccm, and the silicon oxycarbide layer was not formed. A gas barrier film of Comparative Example 2 was produced.
[比較例3]
 酸窒化ケイ素層を成膜する際において、窒素の流量を550sccmとし、かつ酸素の流量を50sccmとしたこと、及び酸炭化ケイ素層を成膜しなかったこと以外は、実施例1と同じ方法により比較例3のガスバリアフィルムを作製した。
[Comparative Example 3]
In forming the silicon oxynitride layer, the same method as in Example 1 was used, except that the flow rate of nitrogen was set to 550 sccm and the flow rate of oxygen was set to 50 sccm, and the silicon oxycarbide layer was not formed. A gas barrier film of Comparative Example 3 was produced.
[比較例4]
 酸窒化ケイ素層を成膜する際において、窒素の流量を575sccmとし、かつ酸素の流量を25sccmとしたこと、及び酸炭化ケイ素層を成膜しなかったこと以外は、実施例1と同じ方法により比較例4のガスバリアフィルムを作製した。
[Comparative Example 4]
In forming the silicon oxynitride layer, the same method as in Example 1 was used except that the flow rate of nitrogen was set to 575 sccm and the flow rate of oxygen was set to 25 sccm, and the silicon oxycarbide layer was not formed. A gas barrier film of Comparative Example 4 was produced.
[比較例5]
 酸窒化ケイ素層を成膜する際において、窒素の流量を600sccmとし、かつ酸素を導入しなかったこと、及び酸炭化ケイ素層を成膜しなかったこと以外は、実施例1と同じ方法により比較例5のガスバリアフィルムを作製した。
[Comparative Example 5]
Comparison was performed by the same method as in Example 1 except that the nitrogen flow rate was 600 sccm, oxygen was not introduced, and the silicon oxycarbide layer was not formed when forming the silicon oxynitride layer. A gas barrier film of Example 5 was prepared.
[比較例6]
 フィルム上に酸炭化ケイ素層を成膜した後、酸炭化ケイ素層上に酸窒化ケイ素層を成膜したこと(成膜の順番を入れ替えたこと)以外は、実施例1と同じ方法により比較例6のガスバリアフィルムを作製した。
[Comparative Example 6]
A comparative example was prepared in the same manner as in Example 1, except that after forming a silicon oxycarbide layer on the film, a silicon oxynitride layer was formed on the silicon oxycarbide layer (the order of film formation was changed). No. 6 gas barrier film was produced.
<酸窒化ケイ素層及び酸炭化ケイ素層の元素組成の測定>
 上記実施例及び比較例のガスバリアフィルムの各々について、Arイオン銃を備えるX線光電子分光装置(アルバック・ファイ社製「Quantera SXM」)を用いて、ガスバリア層の透明フィルム基材側とは反対側の主面からガスバリア層を下記条件でエッチングしながら、X線光電子分光法(XPS)によりガスバリア層(詳しくは、酸炭化ケイ素層及び酸窒化ケイ素層)の厚み方向における組成分析を行った。そして、酸炭化ケイ素層の厚み方向の中央部(酸炭化ケイ素層の総エッチング時間の1/2が経過したとき)における各元素(Si、O、N及びC)の含有率と、酸炭化ケイ素層の最大炭素含有率と、酸窒化ケイ素層の厚み方向の中央部(酸窒化ケイ素層の総エッチング時間の1/2が経過したとき)における各元素(Si、O、N及びC)の含有率とを算出した。なお、「酸炭化ケイ素層の総エッチング時間」とは、酸炭化ケイ素層をエッチングする際のエッチングの開始から終了までの時間を意味する。「酸窒化ケイ素層の総エッチング時間」とは、酸窒化ケイ素層をエッチングする際のエッチングの開始から終了までの時間を意味する。各元素の含有率の算出には、ワイドスキャンスペクトルから得られるSiの2p、Oの1s、Nの1s、及びCの1sのそれぞれの結合エネルギーに相当するピークを用いた。詳細な測定条件を以下に示す。
<Measurement of Elemental Composition of Silicon Oxynitride Layer and Silicon Oxycarbide Layer>
For each of the gas barrier films of the above Examples and Comparative Examples, an X-ray photoelectron spectrometer equipped with an Ar ion gun (“Quantera SXM” manufactured by ULVAC-Phi, Inc.) was used to examine the side of the gas barrier layer opposite to the transparent film substrate side. Composition analysis in the thickness direction of the gas barrier layer (specifically, the silicon oxycarbide layer and the silicon oxynitride layer) was performed by X-ray photoelectron spectroscopy (XPS) while etching the gas barrier layer from the main surface of the film under the following conditions. Then, the content of each element (Si, O, N, and C) in the central portion of the silicon oxycarbide layer in the thickness direction (when 1/2 of the total etching time of the silicon oxycarbide layer has elapsed), and the silicon oxycarbide The maximum carbon content of the layer and the content of each element (Si, O, N and C) in the central portion of the silicon oxynitride layer in the thickness direction (when 1/2 of the total etching time of the silicon oxynitride layer has elapsed) rate was calculated. In addition, the “total etching time of the silicon oxycarbide layer” means the time from the start to the end of etching when etching the silicon oxycarbide layer. The "total etching time of the silicon oxynitride layer" means the time from the start to the end of etching when etching the silicon oxynitride layer. Peaks corresponding to the binding energies of 2p of Si, 1s of O, 1s of N, and 1s of C obtained from the wide scan spectrum were used to calculate the content of each element. Detailed measurement conditions are shown below.
[測定条件]
 X線源:モノクロAlKα
 X線の焦点サイズ:100μmφ(15kV、25W)
 光電子取り出し角:試料表面に対して45°
 結合エネルギーの補正:C-C結合由来のピークを285.0eVに補正(ガスバリア層の最表面のみ)
 帯電中和条件:電子中和銃とArイオン銃(中和モード)の併用
 Arイオン銃の加速電圧:1kV
 Arイオン銃のラスターサイズ:1mm×1mm
 Arイオン銃のエッチング速度:5nm/分(SiO換算)
 元素組成の測定間隔:60秒(5nm)
[Measurement condition]
X-ray source: monochrome AlKα
X-ray focal size: 100 μmφ (15 kV, 25 W)
Photoelectron extraction angle: 45° with respect to the sample surface
Correction of bond energy: Correction of the peak derived from CC bond to 285.0 eV (only the outermost surface of the gas barrier layer)
Charge neutralization conditions: combined use of electron neutralization gun and Ar ion gun (neutralization mode) Acceleration voltage of Ar ion gun: 1 kV
Ar ion gun raster size: 1mm x 1mm
Etching rate of Ar ion gun: 5 nm/min (in terms of SiO2 )
Elemental composition measurement interval: 60 seconds (5 nm)
<ガスバリアフィルムの評価方法>
[光透過率]
 分光光度計(日立ハイテクサイエンス社製「U4100」)により、ガスバリアフィルムの光透過率(Y値)を測定した。光透過率が75%以上である場合、「透明性に優れている」と評価した。一方、光透過率が75%未満である場合、「透明性に優れていない」と評価した。
<Method for evaluating gas barrier film>
[Light transmittance]
The light transmittance (Y value) of the gas barrier film was measured with a spectrophotometer ("U4100" manufactured by Hitachi High-Tech Science). When the light transmittance was 75% or more, it was evaluated as "excellent in transparency". On the other hand, when the light transmittance was less than 75%, it was evaluated as "not excellent in transparency".
[水蒸気透過率]
 ISO 15106-5に記載された差圧法(Pressure Sensor Method)に従って、Technolox社製の水蒸気透過率測定装置「Deltaperm(登録商標)」を用いて、温度40℃かつ相対湿度90%の条件下で、ガスバリアフィルムの水蒸気透過率(WVTR)を測定した。WVTRが1.0×10-2g/m・day以下である場合、「ガスバリア性を確保できている」と評価した。一方、WVTRが1.0×10-2g/m・dayを超えている場合、「ガスバリア性を確保できていない」と評価した。
[Water vapor transmission rate]
According to the differential pressure method (Pressure Sensor Method) described in ISO 15106-5, using a water vapor transmission rate measuring device "Deltaperm (registered trademark)" manufactured by Technolox, under the conditions of a temperature of 40 ° C. and a relative humidity of 90%, The water vapor transmission rate (WVTR) of the gas barrier film was measured. When the WVTR was 1.0×10 −2 g/m 2 ·day or less, it was evaluated as “gas barrier property is ensured”. On the other hand, when WVTR exceeded 1.0×10 −2 g/m 2 ·day, it was evaluated as “gas barrier properties cannot be ensured”.
[アンモニウムイオンの抽出量]
 まず、ガスバリアフィルムを、60mm×60mmの大きさに裁断し、測定用のサンプルを得た。次いで、得られたサンプルを、ポリプロピレン製容器に入れた後、容器に超純水100mLを入れた。次いで、サンプル及び超純水が入った容器を、温度120℃に設定した乾燥機に1時間投入した後、容器内の液体(抽出液)を、孔径0.2μmのメンブレンフィルターでろ過した。そして、イオンクロマトグラフ法(IC法)を用いて、下記条件により、得られたろ液中のアンモニウムイオンの量(抽出量)を定量した。定量には、市販のアンモニウムイオン標準液(関東化学社製)を用いた。サンプル1cmあたりのアンモニウムイオンの抽出量が0.11μg以下である場合、「アンモニアの発生を抑制できている」と評価した。一方、サンプル1cmあたりのアンモニウムイオンの抽出量が0.11μgを超えている場合、「アンモニアの発生を抑制できていない」と評価した。
[Extraction amount of ammonium ions]
First, the gas barrier film was cut into a size of 60 mm×60 mm to obtain a sample for measurement. Next, after putting the obtained sample into a container made of polypropylene, 100 mL of ultrapure water was put into the container. Next, the container containing the sample and ultrapure water was placed in a dryer set at a temperature of 120° C. for 1 hour, and then the liquid (extract) in the container was filtered through a membrane filter with a pore size of 0.2 μm. Then, using ion chromatography (IC method), the amount of ammonium ions (extracted amount) in the resulting filtrate was quantified under the following conditions. A commercially available ammonium ion standard solution (manufactured by Kanto Kagaku Co., Ltd.) was used for quantification. When the amount of extracted ammonium ions per 1 cm 2 of the sample was 0.11 μg or less, it was evaluated as “ammonia generation can be suppressed”. On the other hand, when the amount of extracted ammonium ions per 1 cm 2 of the sample exceeded 0.11 µg, it was evaluated as "the generation of ammonia cannot be suppressed."
(IC法の測定条件)
 分析装置:サーモフィッシャーサイエンティフィック社製「Dionex(登録商標)ICS-6000」
 分離カラム:サーモフィッシャーサイエンティフィック社製「Dionex(登録商標)IonPac CS16(3mm×250mm)」
 ガードカラム:サーモフィッシャーサイエンティフィック社製「Dionex(登録商標)IonPac CG16(3mm×50mm)」
 サプレッサー:サーモフィッシャーサイエンティフィック社製「Dionex(登録商標)CDRS 600(エクスターナルモード)」
 検出器:電気伝導度検出器
 溶離液:メタンスルホン酸水溶液(メタンスルホン酸の濃度:25mmоl/L)
 溶離液流量:0.36mL/分
 試料(ろ液)の注入量:5μL
(Measurement conditions for the IC method)
Analyzer: Thermo Fisher Scientific "Dionex (registered trademark) ICS-6000"
Separation column: Thermo Fisher Scientific "Dionex (registered trademark) IonPac CS16 (3 mm × 250 mm)"
Guard column: Thermo Fisher Scientific "Dionex (registered trademark) IonPac CG16 (3 mm × 50 mm)"
Suppressor: Thermo Fisher Scientific "Dionex (registered trademark) CDRS 600 (external mode)"
Detector: Conductivity detector Eluent: Methanesulfonic acid aqueous solution (concentration of methanesulfonic acid: 25 mmol/L)
Eluent flow rate: 0.36 mL/min Injection volume of sample (filtrate): 5 μL
<分析結果及び評価結果>
 実施例1~8及び比較例1~6について、ガスバリア層の詳細を表1に示す。また、実施例1~8及び比較例1~6について、光透過率、WVTR、及びサンプル1cmあたりのアンモニウムイオンの抽出量を、表2に示す。なお、実施例1~6の第1層(酸炭化ケイ素層)の最大炭素含有率は、9原子%であった。また、実施例7の第1層(酸炭化ケイ素層)の最大炭素含有率は、4原子%であった。
<Analysis results and evaluation results>
Table 1 shows details of the gas barrier layers for Examples 1 to 8 and Comparative Examples 1 to 6. Table 2 shows the light transmittance, WVTR, and the amount of extracted ammonium ions per 1 cm 2 of the sample for Examples 1 to 8 and Comparative Examples 1 to 6. The maximum carbon content of the first layer (silicon oxycarbide layer) of Examples 1 to 6 was 9 atomic %. The maximum carbon content of the first layer (silicon oxycarbide layer) of Example 7 was 4 atomic %.
 また、表1の「第1層」は、ガスバリア層において透明フィルム基材から最も離れて配置された層を意味する。表1の「第2層」は、第1層の透明フィルム基材側の主面に接する層(ガスバリア層において透明フィルム基材に最も近い層)を意味する。ガスバリア層が単層構造である場合、表1では、ガスバリア層が第1層からなる単層構造であるものとする。表1において、「-」は、第2層を成膜しなかったことを意味する。 In addition, the "first layer" in Table 1 means the layer arranged farthest from the transparent film substrate in the gas barrier layer. "Second layer" in Table 1 means a layer in contact with the main surface of the first layer on the side of the transparent film substrate (the layer closest to the transparent film substrate in the gas barrier layer). When the gas barrier layer has a single layer structure, Table 1 assumes that the gas barrier layer has a single layer structure consisting of the first layer. In Table 1, "-" means that the second layer was not deposited.
 また、表1の各元素(Si、O、N及びC)の含有率は、測定した層(酸炭化ケイ素層及び酸窒化ケイ素層のいずれか)の厚み方向の中央部(総エッチング時間の1/2が経過したとき)における含有率であり、Si、O、N及びCの合計を100原子%として算出した。表2の「NH 抽出量」は、サンプル1cmあたりのアンモニウムイオンの抽出量である。 In addition, the content of each element (Si, O, N and C) in Table 1 is the thickness direction central portion of the measured layer (either the silicon oxycarbide layer or the silicon oxynitride layer) (1 /2), and the total of Si, O, N and C was calculated as 100 atomic %. The "NH 4 + extraction amount" in Table 2 is the extraction amount of ammonium ions per 1 cm 2 of the sample.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1に示すように、実施例1~8では、ガスバリア層が、構成元素としてケイ素、酸素及び炭素を含む第1層と、構成元素としてケイ素、酸素及び窒素を含む第2層とを有していた。実施例1~8では、第2層中のケイ素、酸素及び窒素の合計を100原子%としたときの第2層中の酸素の含有率が15原子%以上であった。 As shown in Table 1, in Examples 1 to 8, the gas barrier layer had a first layer containing silicon, oxygen and carbon as constituent elements and a second layer containing silicon, oxygen and nitrogen as constituent elements. was In Examples 1 to 8, the oxygen content in the second layer was 15 atomic % or more when the total of silicon, oxygen and nitrogen in the second layer was 100 atomic %.
 表2に示すように、実施例1~8では、光透過率が75%以上であった。よって、実施例1~8のガスバリアフィルムは、透明性に優れていた。実施例1~8では、WVTRが1.0×10-2g/m・day以下であった。よって、実施例1~8のガスバリアフィルムは、ガスバリア性を確保できていた。実施例1~8では、サンプル1cmあたりのアンモニウムイオンの抽出量が0.11μg以下であった。よって、実施例1~8のガスバリアフィルムは、アンモニアの発生を抑制できていた。 As shown in Table 2, in Examples 1 to 8, the light transmittance was 75% or more. Therefore, the gas barrier films of Examples 1 to 8 were excellent in transparency. In Examples 1 to 8, the WVTR was 1.0×10 −2 g/m 2 ·day or less. Therefore, the gas barrier films of Examples 1 to 8 were able to secure gas barrier properties. In Examples 1 to 8, the amount of ammonium ions extracted per 1 cm 2 of the sample was 0.11 μg or less. Therefore, the gas barrier films of Examples 1 to 8 were able to suppress the generation of ammonia.
 表1に示すように、比較例1~5では、ガスバリア層が第1層からなる単層構造であった。比較例6では、ガスバリア層が、構成元素としてケイ素、酸素及び窒素を含む第1層と、構成元素としてケイ素、酸素及び炭素を含む第2層とを有していた。 As shown in Table 1, in Comparative Examples 1 to 5, the gas barrier layer had a single layer structure consisting of the first layer. In Comparative Example 6, the gas barrier layer had a first layer containing silicon, oxygen and nitrogen as constituent elements and a second layer containing silicon, oxygen and carbon as constituent elements.
 表2に示すように、比較例5では、光透過率が75%未満であった。よって、比較例5のガスバリアフィルムは、透明性に優れていなかった。比較例1及び6では、WVTRが1.0×10-2g/m・dayを超えていた。よって、比較例1及び6のガスバリアフィルムは、ガスバリア性を確保できていなかった。比較例1~6では、サンプル1cmあたりのアンモニウムイオンの抽出量が0.11μgを超えていた。よって、比較例1~6のガスバリアフィルムは、アンモニアの発生を抑制できていなかった。 As shown in Table 2, in Comparative Example 5, the light transmittance was less than 75%. Therefore, the gas barrier film of Comparative Example 5 was not excellent in transparency. In Comparative Examples 1 and 6, WVTR exceeded 1.0×10 −2 g/m 2 ·day. Therefore, the gas barrier films of Comparative Examples 1 and 6 could not ensure gas barrier properties. In Comparative Examples 1 to 6, the amount of extracted ammonium ions per 1 cm 2 of sample exceeded 0.11 μg. Therefore, the gas barrier films of Comparative Examples 1 to 6 could not suppress the generation of ammonia.
 以上の結果から、本発明によれば、ガスバリア性を確保しつつ透明性に優れる上、アンモニアの発生を抑制できるガスバリアフィルムを提供できることが示された。 From the above results, it was shown that according to the present invention, it is possible to provide a gas barrier film that is excellent in transparency while ensuring gas barrier properties, and that can suppress the generation of ammonia.
10、20、30、40 ガスバリアフィルム
11 透明フィルム基材
12、31 ガスバリア層
13 第1層
14 第2層
21 ハードコート層
100 ガスバリア層付き偏光板
101 偏光板
200 画像表示装置
202 画像表示セル

 
10, 20, 30, 40 gas barrier film 11 transparent film substrate 12, 31 gas barrier layer 13 first layer 14 second layer 21 hard coat layer 100 polarizing plate with gas barrier layer 101 polarizing plate 200 image display device 202 image display cell

Claims (11)

  1.  透明フィルム基材と、前記透明フィルム基材の少なくとも一方の主面に直接的又は間接的に配置されたガスバリア層とを有するガスバリアフィルムであって、
     前記ガスバリア層は、構成元素としてケイ素、酸素及び炭素を含む第1層と、構成元素としてケイ素、酸素及び窒素を含む第2層とを有し、
     前記第1層は、前記ガスバリア層において前記透明フィルム基材から最も離れて配置された層であり、
     前記第2層は、前記第1層の前記透明フィルム基材側の主面に接しており、
     前記第2層中のケイ素、酸素及び窒素の合計を100原子%としたときの前記第2層中の酸素の含有率が、15原子%以上である、ガスバリアフィルム。
    A gas barrier film comprising a transparent film substrate and a gas barrier layer disposed directly or indirectly on at least one main surface of the transparent film substrate,
    The gas barrier layer has a first layer containing silicon, oxygen and carbon as constituent elements, and a second layer containing silicon, oxygen and nitrogen as constituent elements,
    The first layer is a layer located farthest from the transparent film substrate in the gas barrier layer,
    The second layer is in contact with the main surface of the first layer on the transparent film substrate side,
    The gas barrier film, wherein the oxygen content in the second layer is 15 atomic % or more when the total of silicon, oxygen and nitrogen in the second layer is 100 atomic %.
  2.  前記第2層中のケイ素、酸素及び窒素の合計を100原子%としたときの前記第2層中の酸素の含有率が、50原子%以下である、請求項1に記載のガスバリアフィルム。 The gas barrier film according to claim 1, wherein the oxygen content in the second layer is 50 atomic % or less when the total of silicon, oxygen and nitrogen in the second layer is 100 atomic %.
  3.  前記第1層の厚みが、30nm以上250nm以下である、請求項1又は2に記載のガスバリアフィルム。 The gas barrier film according to claim 1 or 2, wherein the first layer has a thickness of 30 nm or more and 250 nm or less.
  4.  前記第2層の厚みが、20nm以上120nm以下である、請求項1又は2に記載のガスバリアフィルム。 The gas barrier film according to claim 1 or 2, wherein the second layer has a thickness of 20 nm or more and 120 nm or less.
  5.  前記第1層中のケイ素、酸素及び炭素の合計を100原子%としたときの前記第1層中の炭素の含有率が、1原子%以上10原子%以下である、請求項1又は2に記載のガスバリアフィルム。 3. According to claim 1 or 2, wherein the carbon content in the first layer is 1 atomic % or more and 10 atomic % or less when the total of silicon, oxygen and carbon in the first layer is 100 atomic %. The gas barrier film described.
  6.  前記透明フィルム基材と前記ガスバリア層との間に配置されたハードコート層を更に有する、請求項1又は2に記載のガスバリアフィルム。 The gas barrier film according to claim 1 or 2, further comprising a hard coat layer arranged between the transparent film substrate and the gas barrier layer.
  7.  請求項1又は2に記載のガスバリアフィルムの製造方法であって、
     成膜装置のチャンバー内に、トリシリルアミン、窒素及び酸素を導入して、化学気相成長法により前記第2層を形成する工程と、
     成膜装置のチャンバー内に、有機ケイ素化合物及び酸素を導入して、化学気相成長法により前記第1層を形成する工程と
    を備える、ガスバリアフィルムの製造方法。
    A method for producing the gas barrier film according to claim 1 or 2,
    introducing trisilylamine, nitrogen and oxygen into a chamber of a film forming apparatus to form the second layer by a chemical vapor deposition method;
    A method for producing a gas barrier film, comprising introducing an organosilicon compound and oxygen into a chamber of a film forming apparatus to form the first layer by a chemical vapor deposition method.
  8.  請求項1に記載のガスバリアフィルムと、偏光子とを備える、ガスバリア層付き偏光板。 A polarizing plate with a gas barrier layer, comprising the gas barrier film according to claim 1 and a polarizer.
  9.  請求項1に記載のガスバリアフィルムと、画像表示セルとを備える、画像表示装置。 An image display device comprising the gas barrier film according to claim 1 and an image display cell.
  10.  請求項8に記載のガスバリア層付き偏光板と、画像表示セルとを備える、画像表示装置。 An image display device comprising the gas barrier layer-attached polarizing plate according to claim 8 and an image display cell.
  11.  前記画像表示セルは、有機EL素子を含む、請求項9又は10に記載の画像表示装置。

     
    11. The image display device according to claim 9, wherein said image display cell includes an organic EL element.

PCT/JP2022/035426 2021-09-30 2022-09-22 Gas barrier film, method for producing same, polarizing plate equipped with gas barrier layer, and image display device WO2023054177A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021160933 2021-09-30
JP2021-160933 2021-09-30

Publications (1)

Publication Number Publication Date
WO2023054177A1 true WO2023054177A1 (en) 2023-04-06

Family

ID=85782573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/035426 WO2023054177A1 (en) 2021-09-30 2022-09-22 Gas barrier film, method for producing same, polarizing plate equipped with gas barrier layer, and image display device

Country Status (2)

Country Link
TW (1) TW202330253A (en)
WO (1) WO2023054177A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006263989A (en) * 2005-03-22 2006-10-05 Fuji Photo Film Co Ltd Gas barrier film, base material film and organic electroluminescence element
JP2007015350A (en) * 2005-07-11 2007-01-25 Fujifilm Holdings Corp Gas barrier film, substrate film, and organic electroluminescent element
JP2010064303A (en) * 2008-09-09 2010-03-25 Gunze Ltd Gas-barrier film having transparent conductive film and touch panel using the same
JP2012087326A (en) * 2010-10-15 2012-05-10 Lintec Corp Transparent conductive film, production method therefor, member for electronic device, and electronic device
JP2012086378A (en) * 2010-10-15 2012-05-10 Lintec Corp Transparent conductive film, its forming method, member for electronic device, and electronic device
JP2013180473A (en) * 2012-03-01 2013-09-12 Nitto Denko Corp Transparent gas barrier film, organic el element, solar cell, and thin-film battery
JP2015131473A (en) * 2014-01-15 2015-07-23 コニカミノルタ株式会社 Gas barrier film and electronic device using the same
JP2017007310A (en) * 2015-06-26 2017-01-12 株式会社マテリアルデザインファクトリ− Gas barrier film, product including gas barrier film, and method for producing gas barrier film

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006263989A (en) * 2005-03-22 2006-10-05 Fuji Photo Film Co Ltd Gas barrier film, base material film and organic electroluminescence element
JP2007015350A (en) * 2005-07-11 2007-01-25 Fujifilm Holdings Corp Gas barrier film, substrate film, and organic electroluminescent element
JP2010064303A (en) * 2008-09-09 2010-03-25 Gunze Ltd Gas-barrier film having transparent conductive film and touch panel using the same
JP2012087326A (en) * 2010-10-15 2012-05-10 Lintec Corp Transparent conductive film, production method therefor, member for electronic device, and electronic device
JP2012086378A (en) * 2010-10-15 2012-05-10 Lintec Corp Transparent conductive film, its forming method, member for electronic device, and electronic device
JP2013180473A (en) * 2012-03-01 2013-09-12 Nitto Denko Corp Transparent gas barrier film, organic el element, solar cell, and thin-film battery
JP2015131473A (en) * 2014-01-15 2015-07-23 コニカミノルタ株式会社 Gas barrier film and electronic device using the same
JP2017007310A (en) * 2015-06-26 2017-01-12 株式会社マテリアルデザインファクトリ− Gas barrier film, product including gas barrier film, and method for producing gas barrier film

Also Published As

Publication number Publication date
TW202330253A (en) 2023-08-01

Similar Documents

Publication Publication Date Title
JP6333749B2 (en) Wavelength conversion member, backlight unit including the same, liquid crystal display device, and method for manufacturing wavelength conversion member
JP7304129B2 (en) Antireflection film, manufacturing method thereof, and polarizing plate with antireflection layer
CN107209299B (en) Wavelength conversion member, backlight unit provided with same, liquid crystal display device, and method for manufacturing wavelength conversion member
WO2022172957A1 (en) Gas barrier film, production method thereof and polarizing plate and imade display with gas barrier layer
WO2023054178A1 (en) Gas barrier film, method for producing same, polarizing plate with gas barrier layer, image display device and solar cell
KR20220024963A (en) Flexible Multilayer Cover Lens Stacks for Foldable Displays
WO2023054177A1 (en) Gas barrier film, method for producing same, polarizing plate equipped with gas barrier layer, and image display device
WO2023054176A1 (en) Gas barrier film, method for producing same, polarizing plate with gas barrier layer and image display device
WO2023054175A1 (en) Gas barrier film and production method of same, and gas barrier layer-provided polarizing plate and image display apparatus
WO2023153010A1 (en) Gas barrier film, method for producing same, polarizing plate with gas barrier layer, and image display device
WO2023153307A1 (en) Gas barrier film, method for producing the same, polarizing plate with gas barrier layer and image display device
JP2007041438A (en) Conductive anti-reflection laminate
WO2022209829A1 (en) Optical multilayer body and image display device
WO2022172956A1 (en) Gas barrier film, polarizing plate equipped with gas barrier layer, and image display device
JP6983040B2 (en) Gas barrier film and devices containing it
JP4332310B2 (en) Method for producing titanium oxide layer, titanium oxide layer produced by this method, and antireflection film using titanium oxide
WO2022014574A1 (en) Laminate
WO2022080137A1 (en) Polarizing plate provided with antireflective layer, and image display device
WO2022181371A1 (en) Transparent substrate with multilayer film and image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22876044

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE