WO2023053977A1 - 塩の製造方法、感活性光線性又は感放射線性樹脂組成物の製造方法、パターン形成方法、及び電子デバイスの製造方法 - Google Patents

塩の製造方法、感活性光線性又は感放射線性樹脂組成物の製造方法、パターン形成方法、及び電子デバイスの製造方法 Download PDF

Info

Publication number
WO2023053977A1
WO2023053977A1 PCT/JP2022/034485 JP2022034485W WO2023053977A1 WO 2023053977 A1 WO2023053977 A1 WO 2023053977A1 JP 2022034485 W JP2022034485 W JP 2022034485W WO 2023053977 A1 WO2023053977 A1 WO 2023053977A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
salt
lot
acid
groups
Prior art date
Application number
PCT/JP2022/034485
Other languages
English (en)
French (fr)
Inventor
明弘 金子
雅史 小島
研由 後藤
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2023053977A1 publication Critical patent/WO2023053977A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C25/00Compounds containing at least one halogen atom bound to a six-membered aromatic ring
    • C07C25/02Monocyclic aromatic halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/02Sulfonic acids having sulfo groups bound to acyclic carbon atoms
    • C07C309/03Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C309/05Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton containing at least two sulfo groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/02Sulfonic acids having sulfo groups bound to acyclic carbon atoms
    • C07C309/03Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C309/07Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton containing oxygen atoms bound to the carbon skeleton
    • C07C309/12Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton containing oxygen atoms bound to the carbon skeleton containing esterified hydroxy groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/02Sulfonic acids having sulfo groups bound to acyclic carbon atoms
    • C07C309/03Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C309/17Sulfonic acids having sulfo groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton containing carboxyl groups bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/28Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C309/29Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton of non-condensed six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/28Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C309/41Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing singly-bound oxygen atoms bound to the carbon skeleton
    • C07C309/42Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing singly-bound oxygen atoms bound to the carbon skeleton having the sulfo groups bound to carbon atoms of non-condensed six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C311/00Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/50Compounds containing any of the groups, X being a hetero atom, Y being any atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C381/00Compounds containing carbon and sulfur and having functional groups not covered by groups C07C301/00 - C07C337/00
    • C07C381/12Sulfonium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/44Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 ortho- or peri-condensed with carbocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D327/00Heterocyclic compounds containing rings having oxygen and sulfur atoms as the only ring hetero atoms
    • C07D327/02Heterocyclic compounds containing rings having oxygen and sulfur atoms as the only ring hetero atoms one oxygen atom and one sulfur atom
    • C07D327/06Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/46Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings substituted on the ring sulfur atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/76Dibenzothiophenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/12Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains three hetero rings
    • C07D493/16Peri-condensed systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor

Definitions

  • the present invention relates to a salt production method, an actinic ray-sensitive or radiation-sensitive resin composition production method, a pattern formation method, and an electronic device production method.
  • a method of lithography includes a method of forming a resist film from a photosensitive composition, exposing the obtained film, and then developing it.
  • EB Electro Beam
  • EUV Extreme Ultraviolet
  • the actinic ray- or radiation-sensitive resin composition contains components such as a resin, a compound that generates acid upon exposure to actinic rays or radiation, an acid diffusion controller, and a solvent.
  • a salt consisting of an organic cation and an organic anion, which is used as a compound that generates an acid upon exposure to actinic rays or radiation, among the above components.
  • some differences between product lots of this salt affect performance variations between product lots of the composition using conventional NMR (nuclear magnetic resonance).
  • an object of the present invention is to provide a method for producing a salt that can suppress variations in sensitivity due to differences in product lots of actinic ray-sensitive or radiation-sensitive resin compositions.
  • Another object of the present invention is to provide a method for producing the actinic ray-sensitive or radiation-sensitive resin composition, a method for forming a pattern, and a method for producing an electronic device.
  • a method for producing a salt (P) of an organic cation and an organic anion comprising the following steps. (1) A step of obtaining a product containing the salt (P) by performing anion exchange on the salt (I) of the organic cation and the halide ion (2) A silver nitrate aqueous solution for the product (3) obtaining the molar ratio X of the salt (I) to the salt (P) by applying a potentiometric titration method using The step [2] of determining whether Furthermore, (4) when the molar ratio X exceeds a predetermined value in the step (3), by applying a measure to improve the purity of the product containing the salt (P), the molar ratio X is reduced to the above
  • the method for producing salt (P) according to [1] comprising the step of obtaining a product containing salt (P) having a predetermined value or less.
  • the anion exchange in the step (1) is by ion exchange between the salt (I) and the metal salt (M) of the organic anion
  • a measure for improving the purity of the product containing the salt (P) in the step (4) is to add the metal salt (M) of the organic anion to the product to perform the anion exchange.
  • the concentration Y of the salt (P) based on the total amount of the product containing the salt (P) in which the molar ratio X is the predetermined value or less is determined by high performance liquid chromatography.
  • [6] Furthermore, (6) a step of obtaining the concentration Z of the residual acid contained in the product containing the salt (P) by an ultraviolet-visible absorption spectroscopy method, and (7) the concentration Z of the residual acid satisfies a predetermined standard.
  • R 201 , R 202 and R 203 each independently represent an organic group.
  • Actinic ray-sensitive containing the salt (P) as a compound that generates an acid upon irradiation with actinic rays or radiation including the method for producing the salt (P) according to any one of [1] to [10] Or a method for producing a radiation-sensitive resin composition.
  • An actinic ray-sensitive or radiation-sensitive film is formed on a substrate from the actinic ray-sensitive or radiation-sensitive resin composition produced by the method for producing an actinic ray-sensitive or radiation-sensitive resin composition according to [11].
  • forming, A pattern forming method comprising the steps of: exposing the actinic ray-sensitive or radiation-sensitive film; and developing the exposed actinic ray-sensitive or radiation-sensitive film with a developer.
  • a method for manufacturing an electronic device including the pattern forming method according to [12].
  • the manufacturing method of the salt which can suppress the fluctuation
  • the manufacturing method of the said actinic-ray-sensitive or radiation-sensitive resin composition, the pattern formation method, and the manufacturing method of an electronic device can be provided.
  • the present invention will be described in detail below. The description of the constituent elements described below may be made based on representative embodiments of the present invention, but the present invention is not limited to such embodiments.
  • the notation that does not describe substituted or unsubstituted includes groups containing substituents as well as groups that do not have substituents. do.
  • an "alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • the term "organic group” as used herein refers to a group containing at least one carbon atom. As a substituent, a monovalent substituent is preferable unless otherwise specified.
  • actinic ray or “radiation” means, for example, the emission line spectrum of a mercury lamp, far ultraviolet rays represented by excimer lasers, extreme ultraviolet rays (EUV light: Extreme Ultraviolet), X-rays, and electron beams ( EB means Electron Beam).
  • light means actinic rays or radiation.
  • exposure means, unless otherwise specified, not only exposure by the emission line spectrum of mercury lamps, far ultraviolet rays represented by excimer lasers, extreme ultraviolet rays (EUV: Extreme ultraviolet), and X-rays, It also includes writing with electron beams and particle beams such as ion beams.
  • the term "to” is used to include the numerical values before and after it as lower and upper limits.
  • the binding direction of the divalent linking groups indicated is not limited unless otherwise specified.
  • Y when Y is -COO-, Y may be -CO-O- or -O-CO- good too.
  • the compound may be "X—CO—O—Z” or "X—O—CO—Z.”
  • (meth)acrylate refers to acrylate and methacrylate
  • (meth)acryl refers to acrylic and methacrylic.
  • weight average molecular weight (Mw), number average molecular weight (Mn), and dispersity (hereinafter also referred to as "molecular weight distribution") (Mw/Mn) are measured by GPC (Gel Permeation Chromatography) equipment (Tosoh Corporation).
  • HLC-8120 GPC manufactured by HLC-8120 GPC by GPC measurement (solvent: tetrahydrofuran, flow rate (sample injection volume): 10 ⁇ L, column: TSK gel Multipore HXL-M manufactured by Tosoh Corporation, column temperature: 40 ° C., flow rate: 1.0 mL / min, detector : Defined as a polystyrene conversion value by a differential refractive index detector (Refractive Index Detector).
  • the acid dissociation constant (pKa) represents the pKa in an aqueous solution. is a calculated value.
  • Software Package 1 Advanced Chemistry Development (ACD/Labs) Software V8.14 for Solaris (1994-2007 ACD/Labs).
  • pKa can also be determined by molecular orbital calculation.
  • a specific method there is a method of calculating the H 2 + dissociation free energy in an aqueous solution based on the thermodynamic cycle.
  • the H + dissociation free energy can be calculated by, for example, DFT (density functional theory), but various other methods have been reported in literature, etc., and the method is not limited to this. Note that there are a plurality of software that can implement DFT, and Gaussian16 is an example.
  • pKa refers to a value obtained by calculating a value based on Hammett's substituent constant and a database of known literature values using Software Package 1, as described above. cannot be calculated, a value obtained by Gaussian 16 based on DFT (density functional theory) shall be adopted.
  • pKa refers to "pKa in aqueous solution” as described above, but when pKa in aqueous solution cannot be calculated, “pKa in dimethyl sulfoxide (DMSO) solution” is adopted.
  • Solid content means the components forming the actinic ray-sensitive or radiation-sensitive film, and does not include solvent. In addition, as long as it is a component that forms an actinic ray-sensitive or radiation-sensitive film, it is regarded as a solid content even if the property is liquid.
  • the method for producing the salt (P) of the present invention is a method for producing the salt (P) of an organic cation and an organic anion, comprising the following steps (1) to (3).
  • a step of obtaining a product containing the salt (P) by performing anion exchange on the salt (I) of the organic cation and the halide ion (2)
  • a silver nitrate aqueous solution for the product (3) obtaining the molar ratio X of the salt (I) to the salt (P) by applying a potentiometric titration method using The step of determining whether the
  • the method for producing the salt (P) includes, first, a step of obtaining a product containing the salt (P) by subjecting the salt (I) of an organic cation and a halide ion to anion exchange.
  • the molar ratio X of salt (I) to salt (P) is obtained by applying potentiometric titration using an aqueous solution of silver nitrate. Based on this technique, the purity of the salt (I) in the product is determined, and if necessary, the salt (I) is produced through measures to improve the purity, and the obtained salt (I) is used to make the salt (I) sensitive to actinic radiation.
  • the method for producing the salt (P) is a method for producing the salt (P) of an organic cation and an organic anion, including the above steps (1) to (3).
  • Step (1) is a step of obtaining a product containing the salt (P) by subjecting the salt (I) of the organic cation and the halide ion to anion exchange.
  • a salt (P) is a compound consisting of an organic cation and an organic anion.
  • the salt (P) is not particularly limited, but may be a compound (onium salt) represented by “M + X ⁇ ” in the “photoacid generator” described later, or a compound in the “photoacid generator” described later ( At least one selected from the group consisting of I) to (II) can be mentioned.
  • the organic cation is not particularly limited, but may be the organic cation M + in the "photoacid generator” described later, preferably the cation represented by the formula (ZaI) described later.
  • the organic anion is not particularly limited, but at least one selected from the group consisting of X ⁇ in the “photoacid generator” described below, or compounds (I) to (II) in the “photoacid generator” described below.
  • the "anion part" in one can be mentioned.
  • the “anion moiety” in compound (I) represents a structure other than cationic site M 1 + and cationic site M 2 + in compound (I).
  • the “anion moiety” in compound (II) represents a structure other than the cationic site M 1 + in compound (II).
  • a product containing salt (P) can be obtained by subjecting salt (I) of the above organic cation and halide ion to anion exchange.
  • Salt (I) is a compound consisting of the above organic cation and halide ion.
  • Halide ions include, but are not limited to, chloride ions, bromide ions, and iodide ions.
  • Anion exchange can be performed by a conventional method. As a preferred embodiment, each synthesis example described in Examples can be given. Although the method of anion exchange is not particularly limited, it is preferable to carry out the reaction in a two-layer system containing water and a water-immiscible solvent.
  • solvents used include halogen solvents such as methylene chloride and chloroform, ester solvents such as ethyl acetate, ketone solvents such as methyl isobutyl ketone, and ether solvents such as cyclopentyl methyl ether and tert-butyl methyl ether. These may be appropriately combined with a water-soluble solvent such as acetone, THF, or methanol.
  • Anion exchange is typically by ion exchange between the salt (I) and the metal salt (M) of the organic anion.
  • the metal ion in the metal salt (M) of the organic anion is not particularly limited, examples thereof include potassium ion and sodium ion.
  • the metal salt of the organic anion may be generated in the reaction system by mixing the proton form of the organic anion with an inorganic salt such as sodium hydrogen carbonate together with the salt (I) and a solvent during the reaction. .
  • Step (2) is a step of obtaining the molar ratio X of the salt (I) to the salt (P) by subjecting the product to potentiometric titration using an aqueous solution of silver nitrate.
  • An example of a preferred embodiment of a potentiometric titration method using an aqueous silver nitrate solution is described below.
  • V1 is the titration volume (ml) of the sample solution
  • V2 is the titration volume (ml) of the empty solution
  • f is the titer of the titrant (silver nitrate aqueous solution)
  • MQ is the molar mass of the halogen atom to be obtained ( g/mol)
  • W represents the weight of the product containing salt (P).
  • MB (g/mol) represents the molecular weight of salt (P).
  • Examples of the titer measurement method include the method described in "JIS K 8001: 2017 Test Reagent Method General Rules Appendix JA.6 Titration Solution-JA.6.4n".
  • the above molar ratio X indicates the residual rate (mol%) of salt (I) with respect to 1 mol of salt (P).
  • the concentration of the silver nitrate aqueous solution used is not particularly limited, it is preferably 0.01 N (mol/L) or less.
  • the amount of the product containing salt (P) used is not particularly limited, but is preferably 50 mg or more.
  • the solvent for dissolving the product containing the salt (P) is not particularly limited as long as it is a polar solvent that is water-soluble and does not react with silver nitrate. is preferred.
  • the step (3) is a step of determining whether the purity of the salt (P) satisfies a predetermined standard based on the molar ratio X. Based on the molar ratio X, the purity of the salt (P) is determined. If the molar ratio X is high, the purity of the salt (P) will decrease, and if the molar ratio X is low, the purity of the salt (P) will increase. "determining whether or not” is preferably made by "determining whether or not the molar ratio X is equal to or less than a predetermined value".
  • the predetermined standard (for example, the predetermined value) can be appropriately set in the method for producing salt (P).
  • the salt (I) can function as an acid diffusion control agent, it has a large effect on sensitivity (line width variation), and X is preferably made as small as possible.
  • X is preferably 0.5 mol % or less, more preferably 0.4 mol % or less, and even more preferably 0.3 mol % or less.
  • the method for producing the salt (P) of the present invention further includes (4) measures to improve the purity of the product containing the salt (P) when the molar ratio X exceeds a predetermined value in the step (3). is applied to obtain a product containing a salt (P) in which the molar ratio X is equal to or less than the predetermined value.
  • Step (4) when the molar ratio X exceeds a predetermined value in the step (3), by applying a measure to improve the purity of the product containing the salt (P), the molar ratio X is It is a step of obtaining a product containing a salt (P) not more than the predetermined value.
  • the step (4) is a step of applying a step of reducing the molar ratio X when the molar ratio X exceeds a predetermined value.
  • the predetermined value can be set as appropriate, it is preferably 0.5 mol %, more preferably 0.4 mol %, and even more preferably 0.3 mol %.
  • the measure for improving the purity of the product containing the salt (P) in step (4) is purification by removing the salt (I) from the product containing the salt (P). .
  • Removal of the salt (I) includes, for example, crystallization of the product.
  • Solvents that can be used for crystallization are not particularly limited, but examples include water, alcohol solvents (preferably methanol), nitrile solvents (preferably acetonitrile), ketone solvents (preferably acetone), ester solvents (preferably ethyl acetate), halogen-based solvents (preferably chloroform), ether-based solvents (preferably diisopropyl ether), hydrocarbon-based solvents (preferably hexane), and the like.
  • the removal of the salt (I) for example, when the salt (I) has relatively high water solubility, a method of removing the salt (I) by increasing the number of liquid separation operations can be used.
  • organic solvents include halogen solvents such as methylene chloride and chloroform, ester solvents such as ethyl acetate, ketone solvents such as methyl isobutyl ketone, and ether solvents such as cyclopentyl methyl ether and tert-butyl methyl ether. , these may be combined with water-soluble solvents such as acetone, THF, methanol, etc. as appropriate.
  • the number of liquid separations is preferably 3 or more, more preferably 5 or more.
  • various chromatography methods such as silica gel column chromatography, are mentioned as removal of said salt (I).
  • the anion exchange in the step (1) is by ion exchange between the salt (I) and the metal salt (M) of the organic anion
  • the measure for improving the purity of the product containing the salt (P) in the step (4) is to add the metal salt (M) of the organic anion to the product to perform the anion exchange. be done.
  • the amount of the organic anion metal salt (M) to be added can be appropriately set according to the molar ratio X determined in step (3). Since the salt (I) remaining in the product is calculated from the molar ratio X, the amount of the metal salt (M) of the organic anion that reacts with the remaining salt (I) can be appropriately set.
  • the anion exchange in the step (1) is by ion exchange between the salt (I) and the metal salt (M) of the organic anion
  • Purity improvement measures for the product containing the salt (P) in the step (4) include changing the molar ratio of the salt (I) and the metal salt (M) of the organic anion to the step (1). implementation.
  • the molar ratio X of the salt (I) to the salt (P) is obtained by carrying out the step (2) on the product containing the salt (P) obtained based on the above measures for improving the purity. Then, step (3) is performed to determine whether the purity of the salt (P) satisfies a predetermined standard. When the purity of the salt (P) satisfies a predetermined standard (specifically, the molar ratio X is equal to or less than a predetermined value), the reaction is terminated. When the purity of the salt (P) does not satisfy the predetermined standard, the purity improvement measure for the product containing the salt (P) in the step (4) is again carried out in the step (4). A product containing a salt (P) in which the molar ratio X is equal to or less than the predetermined value can be obtained by the step (4). Thus, salt (P) is produced.
  • the method for producing the salt (P) of the present invention further comprises (5) the concentration Y of the salt (P) based on the total amount of the product containing the salt (P) in which the molar ratio X is the predetermined value or less. , is preferably determined by high performance liquid chromatography (HPLC).
  • Step (5) the concentration Y of the salt (P) based on the total amount of the product containing the salt (P) in which the molar ratio X is the predetermined value or less is determined by high performance liquid chromatography (HPLC). It is a process.
  • the salt (P) concentration Y (% by mass) can be obtained by the step (5).
  • An example of a preferred embodiment of the method for measuring the concentration Y of the salt (P) by high performance liquid chromatography (HPLC) is described below.
  • the internal standard substance is not particularly limited as long as the peaks do not overlap with the cations and anions that make up the salt (P) and there is absorption at the detection wavelength, but it is preferably an aromatic compound. 3,5-trimethoxybenzene etc.), ester group-substituted benzenes (propyl benzoate etc.), alkyl group-substituted benzenes (dibenzyl etc.) and the like.
  • the solvent is not particularly limited, and acetonitrile, THF, methanol and the like are preferably used.
  • the eluent is not particularly limited, and acetonitrile, THF, methanol and the like are preferably used.
  • Ammonium acetate, phosphoric acid/triethylamine, and the like are preferably used as buffers.
  • the optimal ratio of the organic solvent to the buffer in the eluent varies depending on the structure of the salt (P) and the type of solvent used. Measurement is preferred.
  • the reference lot of salt (P) should be sufficiently free of raw material cations and raw material anions to reduce impurities that affect the cation/anion ratio as much as possible.
  • a purification method for sufficiently removing the raw material cations or raw material anions purification by recrystallization, purification by various chromatography methods, and the like are preferable.
  • a method of detecting residual halogen by silver nitrate titration is preferred.
  • the raw material cation is a salt of an organic anion
  • the metal element As a means for confirming that the raw material anion has been completely removed from the reference lot, it is preferable to detect the metal element by means such as ICP-OES or ICP-MS when the raw material anion is a metal salt.
  • non-metal salts if there is an element that has only the counter salt between the raw material anion and its counter salt, it can be detected by elemental analysis, but in other cases, the raw material anion is synthesized as a metal salt only in the standard lot. preferably. It is preferable that impurities other than raw material cations and raw material anions and residual solvent are small. Purification methods for reducing impurities include, as mentioned above, purification by recrystallization, purification by various types of chromatography, and the like. It is preferable to confirm that organic impurities are sufficiently removed by HPLC or LCMS measurement.
  • a method for reducing the residual solvent there is a method of preparing a solution of a solvent having a low boiling point such as methylene chloride and drying under reduced pressure while heating.
  • the residual solvent may be quantified by NMR, gas chromatography, or the like, and used as a reference lot. In this case, the accuracy of the concentration (solid content value) of the reference lot itself is low, but by the method of the present invention, it is possible to manage the lot as a relative value, and in some cases the solid content value may exceed 100%. There is no problem.
  • step (5) the salt (P) concentration Y (% by mass) can be obtained.
  • the reaction is terminated when the purity of the salt (P) satisfies a predetermined standard (specifically, the molar ratio X is equal to or less than a predetermined value).
  • the salt (P) is obtained by such a reaction, and fluctuations in resolution due to differences in production lots of the actinic ray-sensitive or radiation-sensitive resin composition can be suppressed.
  • the concentration Y (% by mass) of the salt (P) can be obtained from a viewpoint different from the molar ratio X.
  • the concentration Y is based on the product containing the salt (P), and focuses on impurities other than the salt (I) (for example, solvent, etc.). Such a step is preferable because the concentration of the salt (P) can be obtained in more detail, and thus fluctuations in resolution due to differences in product lots of the actinic ray-sensitive or radiation-sensitive resin composition can be further suppressed.
  • the product containing salt (P) may or may not be purified.
  • a well-known method is mentioned as the purification method.
  • the compounding amount of the salt (P) is the expected compounding amount of the salt (P) ⁇ (100/Y).
  • the predetermined amount of salt (P) can be added to the resist composition more reliably, and it tends to be possible to further suppress variations in resolution due to differences in product lots, which is preferable.
  • the method for producing the salt (P) of the present invention further includes (6) a step of obtaining the residual acid concentration Z contained in the product containing the salt (P) by an ultraviolet-visible absorption spectroscopy method, and (7) ) It is preferable to have a step of determining whether the concentration Z of the residual acid satisfies a predetermined standard.
  • the step (6) is a step of obtaining the residual acid concentration Z contained in the product containing the salt (P) by an ultraviolet-visible absorption spectroscopy method.
  • the protonated form of the raw material anion may remain, the acid used during liquid separation may remain, or the acid may remain due to the decomposition of the raw material or the salt (P) itself.
  • the purity of the salt (P) can be further increased, which is preferable.
  • Method for measuring concentration Z An example of a method for measuring the concentration Z by an ultraviolet-visible absorption spectroscopy method is shown below, but the present invention is not limited to this.
  • Solution A is prepared by dissolving compound C (hereinafter also referred to as compound C) that develops color with an acid in a solvent.
  • a solution B is prepared by dissolving an existing acidic compound D (hereinafter also referred to as compound D) in a solvent.
  • Solution D1 is prepared by mixing solution A and solution B and diluting with a solvent.
  • the UV-visible absorption spectrum of solution D1 is measured using "UV-1800 (manufactured by Shimadzu Corporation), solvent: acetonitrile" to obtain absorbance Abs D1 at the maximum absorption wavelength of compound C.
  • Solutions D2, D3, and D4 are prepared in the same manner by varying the dilution of solution D1.
  • the ultraviolet-visible absorption spectra of D2, D3 and D4 obtained are similarly measured to obtain Abs D2 , Abs D3 and Abs D4 .
  • a solution E is prepared by diluting only the solution A.
  • the ultraviolet-visible absorption spectrum of Solution E is measured to obtain the absorbance Abs E at the maximum absorption wavelength.
  • Abs DE1 to Abs DE4 the difference from Abs E is obtained, and the obtained results are defined as Abs DE1 to Abs DE4 , respectively.
  • a calibration curve of molar concentration of compound D and absorbance of compound C is prepared.
  • the compound C that develops color with an acid is not particularly limited as long as it reacts quantitatively with a trace amount of acid to produce a coloring material having strong absorption at a specific wavelength. manufactured by Aldrich).
  • the acidic compound D is not particularly limited as long as it is an acidic compound capable of developing the color of the compound C. Examples thereof include tosylic acid (p-toluenesulfonic acid), methanesulfonic acid, and hydrochloric acid.
  • the ultraviolet-visible absorption spectrum of each solution D may be measured a plurality of times, and the average value thereof may be used as Abs D.
  • the solvent to be used is not particularly limited as long as it is neutral or basic and has no absorption at the absorption wavelength of the acid color former.
  • Preferred solvents include acetonitrile, aprotic polar solvents such as THF, methanol and halogen-based solvents such as methylene chloride.
  • a solution A is prepared by dissolving compound C, which develops color with an acid, in a solvent.
  • the product Wg containing the salt (P) is weighed out, solution A is added, and solution F diluted with solvent is prepared.
  • a solution E is prepared by diluting only the solution A.
  • the ultraviolet-visible absorption spectra of solution F and solution E are measured in the same manner as in the preparation of the above calibration curve, and absorbances Abs F and Abs E at the maximum absorption wavelength of compound C are obtained.
  • the concentration Z (ppm) in terms of compound D contained in the product containing the salt (P) is calculated.
  • Z T ⁇ MT ⁇ LB ⁇ 1000/W (4)
  • MT (g/mol) represents the molecular weight of compound D.
  • LB represents the total solvent volume of solution F (l).
  • the concentration Z of the residual acid contained in the product containing the salt (P) is the concentration in terms of compound D.
  • Step (7) is a step of determining whether or not the concentration Z of the residual acid satisfies a predetermined standard.
  • the predetermined standard can be appropriately set in the method for producing salt (P).
  • Z is preferably 100 ppm or less, more preferably 50 ppm or less.
  • Step (8) In the step (7), if the concentration Z of the residual acid exceeds a predetermined value, it is preferable to have a step of (8) implementing measures to reduce the concentration Z of the residual acid.
  • a basic compound is appropriately added for purification and extraction.
  • a known method can be used for purification and extraction.
  • an organic solvent e.g., methylene chloride
  • water or water containing a basic compound e.g., ammonia
  • the number of times of washing is preferably 3 times or more, more preferably 5 times or more.
  • a measure for reducing the concentration Z is to crystallize the product.
  • Solvents that can be used for crystallization include, but are not limited to, the same solvents as used in step (4).
  • various chromatographic methods such as silica gel column chromatography can be used to reduce the concentration Z described above.
  • the salt (P) is preferably a compound that generates an acid upon exposure to actinic rays or radiation for actinic ray-sensitive or radiation-sensitive resin compositions.
  • the compound that generates an acid upon exposure to actinic rays or radiation include a photoacid generator (B) and an acid diffusion control agent, which will be described later.
  • the method for producing an actinic ray-sensitive or radiation-sensitive resin composition according to the present invention comprises: A method for producing an actinic ray-sensitive or radiation-sensitive resin composition containing the salt (P) as a compound that generates an acid upon exposure to actinic rays or radiation, including the method for producing the salt (P).
  • the actinic ray-sensitive or radiation-sensitive resin composition obtained by the method for producing the composition of the present invention is described below.
  • the actinic ray-sensitive or radiation-sensitive resin composition is preferably a resist composition, and may be a positive resist composition or a negative resist composition.
  • the resist composition may be a resist composition for alkali development or a resist composition for organic solvent development.
  • the resist composition may be a chemically amplified resist composition or a non-chemically amplified resist composition.
  • the resist composition is typically a chemically amplified resist composition.
  • the actinic ray-sensitive or radiation-sensitive resin composition (hereinafter also referred to as "the composition of the present invention") in the method for producing the actinic ray-sensitive or radiation-sensitive resin composition of the present invention can have Ingredients are detailed.
  • the composition of the present invention may contain an acid-decomposable resin (hereinafter also referred to as "resin (A)").
  • the resin (A) usually contains a group that is decomposed by the action of an acid to increase its polarity (hereinafter also referred to as "acid-decomposable group”), and preferably contains a repeating unit having an acid-decomposable group.
  • an acid-decomposable group typically when an alkaline developer is employed as the developer, a positive pattern is preferably formed and developed. When an organic developer is used as the liquid, a negative pattern is preferably formed.
  • a repeating unit having an acid-decomposable group a repeating unit having an acid-decomposable group containing an unsaturated bond is preferable in addition to the repeating unit having an acid-decomposable group described below.
  • An acid-decomposable group is a group that is decomposed by the action of an acid to form a polar group.
  • the acid-decomposable group preferably has a structure in which the polar group is protected with a group that is released by the action of an acid (leaving group). That is, the resin (A) has a repeating unit having a group that is decomposed by the action of an acid to form a polar group.
  • a resin having this repeating unit has an increased polarity under the action of an acid, thereby increasing the solubility in an alkaline developer and decreasing the solubility in an organic solvent.
  • the polar group is preferably an alkali-soluble group such as a carboxyl group, a phenolic hydroxyl group, a fluorinated alcohol group, a sulfonic acid group, a phosphoric acid group, a sulfonamide group, a sulfonylimide group, (alkylsulfonyl)(alkylcarbonyl)methylene group, (alkylsulfonyl)(alkylcarbonyl)imide group, bis(alkylcarbonyl)methylene group, bis(alkylcarbonyl)imide group, bis(alkylsulfonyl)methylene group, bis(alkylsulfonyl)imide group, tris(alkylcarbonyl) Methylene groups, acidic groups such as tris(alkylsulfonyl)methylene groups, and alcoholic hydroxyl groups are included.
  • alkali-soluble group such as a carboxyl group, a phenolic
  • the polar group is preferably a carboxyl group, a phenolic hydroxyl group, a fluorinated alcohol group (preferably a hexafluoroisopropanol group), or a sulfonic acid group.
  • Examples of groups that leave by the action of an acid include groups represented by formulas (Y1) to (Y4).
  • Formula (Y1) -C(Rx 1 )(Rx 2 )(Rx 3 )
  • Formula (Y3) —C(R 36 )(R 37 )(OR 38 )
  • Rx 1 to Rx 3 each independently represent an alkyl group (linear or branched), a cycloalkyl group (monocyclic or polycyclic), an alkenyl group (linear or branched chain) or an aryl group (monocyclic or polycyclic).
  • Rx 1 to Rx 3 are alkyl groups (linear or branched)
  • at least two of Rx 1 to Rx 3 are preferably methyl groups.
  • Rx 1 to Rx 3 preferably each independently represent a linear or branched alkyl group, and Rx 1 to Rx 3 each independently represent a linear alkyl group. is more preferred.
  • Rx 1 to Rx 3 may combine to form a monocyclic or polycyclic ring.
  • the alkyl groups of Rx 1 to Rx 3 include alkyl groups having 1 to 5 carbon atoms such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group and t-butyl group. preferable.
  • the cycloalkyl groups represented by Rx 1 to Rx 3 include monocyclic cycloalkyl groups such as cyclopentyl and cyclohexyl groups, norbornyl, tetracyclodecanyl, tetracyclododecanyl, and adamantyl groups. is preferred.
  • the aryl group represented by Rx 1 to Rx 3 is preferably an aryl group having 6 to 10 carbon atoms, such as phenyl group, naphthyl group and anthryl group.
  • a vinyl group is preferable as the alkenyl group for Rx 1 to Rx 3 .
  • the ring formed by combining two of Rx 1 to Rx 3 is preferably a cycloalkyl group.
  • the cycloalkyl group formed by combining two of Rx 1 to Rx 3 includes a monocyclic cycloalkyl group such as a cyclopentyl group or a cyclohexyl group, a norbornyl group, a tetracyclodecanyl group, and a tetracyclododeca.
  • a polycyclic cycloalkyl group such as a nyl group or an adamantyl group is preferable, and a monocyclic cycloalkyl group having 5 to 6 carbon atoms is more preferable.
  • one of the methylene groups constituting the ring is a group containing a heteroatom such as an oxygen atom, a heteroatom such as a carbonyl group, or a vinylidene group. may be replaced with In these cycloalkyl groups, one or more ethylene groups constituting the cycloalkane ring may be replaced with a vinylene group.
  • Rx 1 is a methyl group or an ethyl group
  • Rx 2 and Rx 3 combine to form the above-described cycloalkyl group. is preferred.
  • composition of the present invention is a resist composition for EUV exposure
  • the ring formed by combining two atoms further has a fluorine atom or an iodine atom as a substituent.
  • R 36 to R 38 each independently represent a hydrogen atom or a monovalent organic group.
  • R 37 and R 38 may combine with each other to form a ring.
  • Monovalent organic groups include alkyl groups, cycloalkyl groups, aryl groups, aralkyl groups, and alkenyl groups. It is also preferred that R 36 is a hydrogen atom.
  • the alkyl group, cycloalkyl group, aryl group, and aralkyl group may contain a heteroatom such as an oxygen atom and/or a group containing a heteroatom such as a carbonyl group.
  • one or more of the methylene groups may be replaced with a heteroatom such as an oxygen atom and/or a group containing a heteroatom such as a carbonyl group.
  • R 38 may combine with another substituent of the main chain of the repeating unit to form a ring.
  • the group formed by bonding R 38 and another substituent of the main chain of the repeating unit to each other is preferably an alkylene group such as a methylene group.
  • monovalent organic groups represented by R 36 to R 38 and R 37 and R 38 are formed by binding to each other.
  • the ring also preferably has a fluorine atom or an iodine atom as a substituent.
  • L 1 and L 2 each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, or a group combining these (e.g., a group combining an alkyl group and an aryl group).
  • M represents a single bond or a divalent linking group.
  • Q is an alkyl group optionally containing a heteroatom, a cycloalkyl group optionally containing a heteroatom, an aryl group optionally containing a heteroatom, an amino group, an ammonium group, a mercapto group, a cyano group, an aldehyde group, or a group combining these (for example, a group combining an alkyl group and a cycloalkyl group).
  • one of the methylene groups may be replaced by a heteroatom such as an oxygen atom or a heteroatom-containing group such as a carbonyl group.
  • L 1 and L 2 is preferably a hydrogen atom, and the other is preferably an alkyl group, a cycloalkyl group, an aryl group, or a combination of an alkylene group and an aryl group. At least two of Q, M, and L1 may combine to form a ring (preferably a 5- or 6-membered ring).
  • L2 is preferably a secondary or tertiary alkyl group, more preferably a tertiary alkyl group.
  • Secondary alkyl groups include isopropyl, cyclohexyl, and norbornyl groups, and tertiary alkyl groups include tert-butyl and adamantane groups.
  • the Tg (glass transition temperature) and the activation energy are increased, so that the film strength can be ensured and fogging can be suppressed.
  • the alkyl group, cycloalkyl group, aryl group, and group combining these represented by L 1 and L 2 are further It is also preferable to have a fluorine atom or an iodine atom as a substituent.
  • the alkyl group, cycloalkyl group, aryl group, and aralkyl group preferably contain a heteroatom such as an oxygen atom in addition to the fluorine atom and the iodine atom.
  • one of the methylene groups is replaced with a heteroatom such as an oxygen atom, or a group containing a heteroatom such as a carbonyl group.
  • the resist composition is a resist composition for EUV exposure
  • the alkyl group represented by Q which may contain a heteroatom
  • the cycloalkyl group which may contain a heteroatom
  • the heteroatom-containing aryl group amino group, ammonium group, mercapto group, cyano group, aldehyde group, and groups in which these are combined
  • the heteroatom is selected from the group consisting of a fluorine atom, an iodine atom and an oxygen atom.
  • a heteroatom is also preferred.
  • Ar represents an aromatic ring group.
  • Rn represents an alkyl group, a cycloalkyl group, or an aryl group.
  • Rn and Ar may combine with each other to form a non-aromatic ring.
  • Ar is preferably an aryl group.
  • the aromatic ring group represented by Ar and the alkyl group, cycloalkyl group and aryl group represented by Rn have fluorine as a substituent. It is also preferred to have an atom or an iodine atom.
  • the ring member atoms adjacent to the ring member atoms directly bonded to the polar group (or residue thereof) do not have halogen atoms such as fluorine atoms as substituents.
  • Groups that can be eliminated by the action of an acid also include a 2-cyclopentenyl group having a substituent (such as an alkyl group) such as a 3-methyl-2-cyclopentenyl group, and a 1,1,4,4 A cyclohexyl group having a substituent (such as an alkyl group) such as a -tetramethylcyclohexyl group may also be used.
  • repeating unit having an acid-decomposable group a repeating unit represented by formula (A) is also preferred.
  • L 1 represents a divalent linking group optionally having a fluorine atom or an iodine atom
  • R 1 is a hydrogen atom, a fluorine atom, an iodine atom, an alkyl group optionally having a fluorine atom or an iodine atom , or represents an aryl group optionally having a fluorine atom or an iodine atom
  • R 2 represents a leaving group optionally having a fluorine atom or an iodine atom which is eliminated by the action of an acid.
  • at least one of L 1 , R 1 and R 2 has a fluorine atom or an iodine atom.
  • the divalent linking group optionally having a fluorine atom or an iodine atom represented by L 1 includes -CO-, -O-, -S-, -SO-, -SO 2 -, fluorine atom or a hydrocarbon group optionally having an iodine atom (eg, an alkylene group, a cycloalkylene group, an alkenylene group, an arylene group, etc.), and a linking group in which a plurality of these are linked.
  • L 1 is preferably -CO-, an arylene group, or an -arylene group - an alkylene group having a fluorine atom or an iodine atom -, and -CO- or an -arylene group - a fluorine atom or an iodine atom.
  • An alkylene group with - is more preferred.
  • a phenylene group is preferred as the arylene group.
  • Alkylene groups may be linear or branched. Although the number of carbon atoms in the alkylene group is not particularly limited, it is preferably 1-10, more preferably 1-3.
  • the total number of fluorine atoms and iodine atoms contained in the alkylene group having fluorine atoms or iodine atoms is not particularly limited, but is preferably 2 or more, more preferably 2 to 10, and even more preferably 3 to 6.
  • the alkyl group represented by R 1 may be linear or branched. Although the number of carbon atoms in the alkyl group is not particularly limited, it is preferably 1-10, more preferably 1-3. The total number of fluorine atoms and iodine atoms contained in the alkyl group having a fluorine atom or an iodine atom represented by R 1 is not particularly limited, but is preferably 1 or more, more preferably 1 to 5, and 1 to 3. More preferred.
  • the alkyl group represented by R 1 may contain a heteroatom such as an oxygen atom other than the halogen atom.
  • the leaving group optionally having a fluorine atom or an iodine atom represented by R 2 is represented by the above formulas (Y1) to (Y4) and having a fluorine atom or an iodine atom. groups.
  • repeating unit having an acid-decomposable group a repeating unit represented by formula (AI) is also preferred.
  • Xa 1 represents a hydrogen atom or an optionally substituted alkyl group.
  • T represents a single bond or a divalent linking group.
  • Rx 1 to Rx 3 each independently represent an alkyl group (linear or branched), a cycloalkyl group (monocyclic or polycyclic), an alkenyl group (linear or branched), or an aryl ( monocyclic or polycyclic) group. However, when all of Rx 1 to Rx 3 are alkyl groups (linear or branched), at least two of Rx 1 to Rx 3 are preferably methyl groups. Two of Rx 1 to Rx 3 may combine to form a monocyclic or polycyclic group (such as a monocyclic or polycyclic cycloalkyl group).
  • Examples of the optionally substituted alkyl group represented by Xa 1 include a methyl group and a group represented by -CH 2 -R 11 .
  • R 11 represents a halogen atom (such as a fluorine atom), a hydroxyl group, or a monovalent organic group.
  • the monovalent organic group represented by R 11 includes, for example, an alkyl group having 5 or less carbon atoms which may be substituted with a halogen atom, an acyl group having 5 or less carbon atoms which may be substituted with a halogen atom, and an alkoxy group having 5 or less carbon atoms which may be substituted with a halogen atom, preferably an alkyl group having 3 or less carbon atoms, and more preferably a methyl group.
  • Xa 1 is preferably a hydrogen atom, a methyl group, a trifluoromethyl group, or a hydroxymethyl group.
  • the divalent linking group of T includes an alkylene group, an aromatic ring group, a -COO-Rt- group and a -O-Rt- group.
  • Rt represents an alkylene group or a cycloalkylene group.
  • T is preferably a single bond or a -COO-Rt- group.
  • Rt is preferably an alkylene group having 1 to 5 carbon atoms, a -CH 2 - group, a -(CH 2 ) 2 - group, or a -(CH 2 ) 3 - groups are more preferred.
  • the alkyl groups of Rx 1 to Rx 3 include alkyl groups having 1 to 4 carbon atoms such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group and t-butyl group. preferable.
  • Cycloalkyl groups of Rx 1 to Rx 3 include monocyclic cycloalkyl groups such as cyclopentyl group and cyclohexyl group, norbornyl group, tetracyclodecanyl group, tetracyclododecanyl group, and adamantyl group. is preferred.
  • the aryl group represented by Rx 1 to Rx 3 is preferably an aryl group having 6 to 10 carbon atoms, such as phenyl group, naphthyl group and anthryl group.
  • a vinyl group is preferable as the alkenyl group for Rx 1 to Rx 3 .
  • the cycloalkyl group formed by combining two of Rx 1 to Rx 3 is preferably a monocyclic cycloalkyl group such as a cyclopentyl group and a cyclohexyl group.
  • Polycyclic cycloalkyl groups such as a norbornyl group, a tetracyclodecanyl group, a tetracyclododecanyl group, and an adamantyl group are also preferred. Among them, monocyclic cycloalkyl groups having 5 to 6 carbon atoms are preferred.
  • a cycloalkyl group formed by combining two of Rx 1 to Rx 3 is, for example, a group in which one of the methylene groups constituting the ring contains a heteroatom such as an oxygen atom, a heteroatom such as a carbonyl group, or It may be substituted with a vinylidene group.
  • Rx 1 is a methyl group or an ethyl group
  • Rx 2 and Rx 3 are preferably combined to form the above-mentioned cycloalkyl group.
  • substituents include an alkyl group (1 to 4 carbon atoms), a halogen atom, a hydroxyl group, an alkoxy group (1 to 4 carbon atoms), a carboxyl group, and an alkoxycarbonyl group. (2 to 6 carbon atoms).
  • the number of carbon atoms in the substituent is preferably 8 or less.
  • the repeating unit represented by the formula (AI) includes an acid-decomposable (meth)acrylic acid tertiary alkyl ester-based repeating unit (Xa 1 represents a hydrogen atom or a methyl group, and T represents a single bond. ) is preferred.
  • repeating units having an acid-decomposable group are shown below, but are not limited thereto.
  • Xa 1 represents H, CH 3 , CF 3 or CH 2 OH
  • Rxa and Rxb each independently represent a linear or branched alkyl group having 1 to 5 carbon atoms.
  • Resin (A) may have a repeating unit having an acid-decomposable group containing an unsaturated bond as the repeating unit having an acid-decomposable group.
  • a repeating unit represented by formula (B) is preferable.
  • Xb represents a hydrogen atom, a halogen atom, or an optionally substituted alkyl group.
  • L represents a single bond or a divalent linking group which may have a substituent.
  • Ry 1 to Ry 3 each independently represent a linear or branched alkyl group, a monocyclic or polycyclic cycloalkyl group, an alkenyl group, an alkynyl group, or a monocyclic or polycyclic aryl group . However, at least one of Ry 1 to Ry 3 represents an alkenyl group, an alkynyl group, a monocyclic or polycyclic cycloalkenyl group, or a monocyclic or polycyclic aryl group. Two of Ry 1 to Ry 3 may combine to form a monocyclic or polycyclic ring (a monocyclic or polycyclic cycloalkyl group, cycloalkenyl group, etc.).
  • the optionally substituted alkyl group represented by Xb includes, for example, a methyl group and a group represented by —CH 2 —R 11 .
  • R 11 represents a halogen atom (such as a fluorine atom), a hydroxyl group, or a monovalent organic group, for example, an alkyl group having 5 or less carbon atoms which may be substituted with a halogen atom, and an alkoxy group having 5 or less carbon atoms which may be substituted with a halogen atom, preferably an alkyl group having 3 or less carbon atoms, and more preferably a methyl group.
  • Xb is preferably a hydrogen atom, a fluorine atom, a methyl group, a trifluoromethyl group, or a hydroxymethyl group.
  • the divalent linking group of L includes -Rt- group, -CO- group, -COO-Rt- group, -COO-Rt-CO- group, -Rt-CO- group, and -O-Rt- groups.
  • Rt represents an alkylene group, a cycloalkylene group, or an aromatic ring group, preferably an aromatic ring group.
  • L is preferably -Rt-, -CO-, -COO-Rt-CO- or -Rt-CO-.
  • Rt may have substituents such as halogen atoms, hydroxyl groups, and alkoxy groups.
  • the alkyl groups represented by Ry 1 to Ry 3 include alkyl groups having 1 to 4 carbon atoms such as methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group and t-butyl group. preferable.
  • Cycloalkyl groups represented by Ry 1 to Ry 3 include monocyclic cycloalkyl groups such as cyclopentyl group and cyclohexyl group, norbornyl group, tetracyclodecanyl group, tetracyclododecanyl group and adamantyl group. Polycyclic cycloalkyl groups are preferred.
  • the aryl group represented by Ry 1 to Ry 3 is preferably an aryl group having 6 to 10 carbon atoms, such as phenyl group, naphthyl group and anthryl group.
  • a vinyl group is preferable as the alkenyl group for Ry 1 to Ry 3 .
  • An ethynyl group is preferred as the alkynyl group for Ry 1 to Ry 3 .
  • Cycloalkenyl groups represented by Ry 1 to Ry 3 are preferably monocyclic cycloalkyl groups such as cyclopentyl groups and cyclohexyl groups, which partially contain a double bond.
  • the cycloalkyl group formed by combining two of Ry 1 to Ry 3 includes a monocyclic cycloalkyl group such as a cyclopentyl group and a cyclohexyl group, a norbornyl group, a tetracyclodecanyl group, and a tetracyclododeca.
  • Polycyclic cycloalkyl groups such as a nyl group and an adamantyl group are preferred. Among them, a monocyclic cycloalkyl group having 5 to 6 carbon atoms is more preferable.
  • a cycloalkyl group formed by combining two of Ry 1 to Ry 3 or a cycloalkenyl group for example, one of the methylene groups constituting the ring is a hetero atom such as an oxygen atom, a carbonyl group, or —SO 2 It may be substituted with a group containing a heteroatom such as a - group and a -SO 3 - group, a vinylidene group, or a combination thereof.
  • one or more ethylene groups constituting the cycloalkane ring or cycloalkene ring may be replaced with a vinylene group.
  • Ry 1 is a methyl group, an ethyl group, a vinyl group, an allyl group, or an aryl group
  • Ry 2 and Ry 3 combine to form the above-mentioned cycloalkyl
  • a preferred embodiment forms a group or a cycloalkenyl group.
  • substituents include an alkyl group (1 to 4 carbon atoms), a halogen atom, a hydroxyl group, an alkoxy group (1 to 4 carbon atoms), a carboxyl group, and an alkoxycarbonyl group. (2 to 6 carbon atoms).
  • the number of carbon atoms in the substituent is preferably 8 or less.
  • the repeating unit represented by the formula (B) is preferably an acid-decomposable (meth)acrylic acid tertiary ester-based repeating unit (Xb represents a hydrogen atom or a methyl group, and L represents a —CO— group.
  • repeating unit represented acid-decomposable hydroxystyrene tertiary alkyl ether-based repeating unit (repeating unit in which Xb represents a hydrogen atom or a methyl group and L represents a phenyl group), acid-decomposable styrene carboxylic acid tertiary ester It is a repeating unit (a repeating unit in which Xb represents a hydrogen atom or a methyl group and L represents a -Rt-CO- group (Rt is an aromatic group)).
  • the content of the repeating unit having an acid-decomposable group containing an unsaturated bond is preferably 15 mol% or more, more preferably 20 mol% or more, and 30 mol% or more, based on the total repeating units in the resin (A). is more preferred.
  • the upper limit thereof is preferably 80 mol % or less, more preferably 70 mol % or less, and even more preferably 60 mol % or less, based on all repeating units in the resin (A).
  • repeating units having an acid-decomposable group containing an unsaturated bond are shown below, but are not limited thereto.
  • Xb and L1 represent any of the substituents and linking groups described above
  • Ar represents an aromatic group
  • R represents a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an aralkyl group, Alkenyl group, hydroxyl group, alkoxy group, acyloxy group, cyano group, nitro group, amino group, halogen atom, ester group (-OCOR''' or -COOR''', R''' is alkyl having 1 to 20 carbon atoms group or fluorinated alkyl group), or a substituent such as a carboxyl group
  • R′ is a linear or branched alkyl group, a monocyclic or polycyclic cycloalkyl group, an alkenyl group, an alkynyl group, or , represents a mono
  • the content of repeating units having an acid-decomposable group is preferably 15 mol% or more, more preferably 20 mol% or more, and even more preferably 30 mol% or more, relative to all repeating units in the resin (A).
  • the upper limit is preferably 90 mol% or less, more preferably 80 mol% or less, still more preferably 70 mol% or less, and particularly 60 mol% or less, relative to all repeating units in the resin (A). preferable.
  • the resin (A) may contain at least one repeating unit selected from the group consisting of Group A below and/or at least one repeating unit selected from the group consisting of Group B below. good.
  • Group A A group consisting of the following repeating units (20) to (25). (20) a repeating unit having an acid group, which will be described later; A repeating unit (23) having a lactone group, a sultone group, or a carbonate group, and a repeating unit (24) having a photoacid-generating group, which will be described later.
  • Repeating unit (25) a repeating unit for reducing the mobility of the main chain
  • the represented repeating unit corresponds to (25) the repeating unit for reducing the mobility of the main chain.
  • Group B A group consisting of the following repeating units (30) to (32).
  • the resin (A) preferably has an acid group, and preferably contains a repeating unit having an acid group, as described later.
  • the definition of the acid group will be explained later along with preferred embodiments of repeating units having an acid group.
  • the resin (A) may have at least one type of repeating unit selected from the group consisting of the A group.
  • the resin (A) has at least one repeating unit selected from the group consisting of Group A above. is preferred.
  • Resin (A) may contain at least one of a fluorine atom and an iodine atom.
  • the resin (A) preferably contains at least one of a fluorine atom and an iodine atom.
  • the resin (A) may have one repeating unit containing both a fluorine atom and an iodine atom, and the resin (A) It may contain two types of a repeating unit containing a fluorine atom and a repeating unit containing an iodine atom.
  • Resin (A) may have a repeating unit having an aromatic group.
  • the composition of the present invention is used as an actinic ray-sensitive or radiation-sensitive resin composition for EUV exposure, it is also preferred that the resin (A) has a repeating unit having an aromatic group.
  • the resin (A) may have at least one type of repeating unit selected from the group consisting of Group B above.
  • the resin (A) When the resist composition is used as an actinic ray-sensitive or radiation-sensitive resin composition for ArF, the resin (A) preferably has at least one repeating unit selected from the group consisting of Group B above. When the resist composition is used as an actinic ray-sensitive or radiation-sensitive resin composition for ArF, the resin (A) preferably contains neither fluorine atoms nor silicon atoms. When the composition of the present invention is used as an actinic ray-sensitive or radiation-sensitive resin composition for ArF, the resin (A) preferably has no aromatic group.
  • Resin (A) may have a repeating unit having an acid group.
  • an acid group having a pKa of 13 or less is preferable.
  • the acid dissociation constant of the acid group is preferably 13 or less, more preferably 3-13, even more preferably 5-10.
  • the content of the acid group in the resin (A) is not particularly limited, but is often 0.2 to 6.0 mmol/g. Among them, 0.8 to 6.0 mmol/g is preferable, 1.2 to 5.0 mmol/g is more preferable, and 1.6 to 4.0 mmol/g is even more preferable.
  • the acid group is preferably, for example, a carboxyl group, a phenolic hydroxyl group, a fluoroalcohol group (preferably a hexafluoroisopropanol group), a sulfonic acid group, a sulfonamide group, or an isopropanol group.
  • a fluoroalcohol group preferably a hexafluoroisopropanol group
  • a sulfonic acid group preferably a sulfonamide group
  • an isopropanol group preferably, for example, a carboxyl group, a phenolic hydroxyl group, a fluoroalcohol group (preferably a hexafluoroisopropanol group), a sulfonic acid group, a sulfonamide group, or an isopropanol group.
  • one or more (preferably 1 to 2) fluorine atoms may be substituted with a group other than a fluor
  • the acid group is -C(CF 3 )(OH)-CF 2 - thus formed.
  • one or more of the fluorine atoms may be substituted with a group other than a fluorine atom to form a ring containing -C(CF 3 )(OH)-CF 2 -.
  • the repeating unit having an acid group is different from the repeating unit having a structure in which the polar group is protected by a group that leaves under the action of an acid, and the repeating unit having a lactone group, a sultone group, or a carbonate group, which will be described later. It is preferably a repeating unit.
  • a repeating unit having an acid group may have a fluorine atom or an iodine atom.
  • repeating units having an acid group include the following repeating units.
  • repeating unit having an acid group a repeating unit represented by the following formula (1) is preferable.
  • A represents a hydrogen atom, an alkyl group, a cycloalkyl group, a halogen atom, or a cyano group.
  • R represents a halogen atom, an alkyl group, a cycloalkyl group, an aryl group, an alkenyl group, an aralkyl group, an alkoxy group, an alkylcarbonyloxy group, an alkylsulfonyloxy group, an alkyloxycarbonyl group, or an aryloxycarbonyl group; In some cases they may be the same or different. When it has a plurality of R, they may jointly form a ring.
  • a hydrogen atom is preferred as R.
  • a represents an integer of 1 to 3;
  • b represents an integer from 0 to (5-a).
  • repeating units having an acid group examples include 1 or 2.
  • R represents a hydrogen atom or a methyl group
  • a represents 2 or 3.
  • the content of repeating units having an acid group is preferably 10 mol% or more, more preferably 15 mol% or more, relative to all repeating units in the resin (A). Moreover, the upper limit thereof is preferably 70 mol % or less, more preferably 65 mol % or less, and still more preferably 60 mol % or less, based on all repeating units in the resin (A).
  • the resin (A) has neither an acid-decomposable group nor an acid group, apart from the above-described ⁇ repeating unit having an acid-decomposable group> and ⁇ repeating unit having an acid group>, and contains a fluorine atom and a bromine atom.
  • it may have a repeating unit having an iodine atom (hereinafter also referred to as unit X).
  • the ⁇ repeating unit having neither an acid-decomposable group nor an acid group and having a fluorine atom, a bromine atom, or an iodine atom> referred to here is a ⁇ repeating unit having a lactone group, a sultone group, or a carbonate group> described later.
  • ⁇ repeating unit having a photoacid-generating group> is a ⁇ repeating unit having a lactone group, a sultone group, or a carbonate group> described later.
  • a repeating unit represented by formula (C) is preferable.
  • L5 represents a single bond or an ester group.
  • R9 represents a hydrogen atom or an alkyl group optionally having a fluorine atom or an iodine atom.
  • R 10 may have a hydrogen atom, an alkyl group optionally having a fluorine atom or an iodine atom, a cycloalkyl group optionally having a fluorine atom or an iodine atom, a fluorine atom or an iodine atom represents an aryl group or a group combining these;
  • repeating units having a fluorine atom or an iodine atom are shown below.
  • the content of the unit X is preferably 0 mol% or more, more preferably 5 mol% or more, and still more preferably 10 mol% or more, relative to all repeating units in the resin (A). Moreover, the upper limit thereof is preferably 50 mol % or less, more preferably 45 mol % or less, and still more preferably 40 mol % or less, relative to all repeating units in the resin (A).
  • the total content of repeating units containing at least one of a fluorine atom, a bromine atom and an iodine atom is preferably 10 mol% or more with respect to all repeating units of the resin (A). , more preferably 20 mol % or more, still more preferably 30 mol % or more, and particularly preferably 40 mol % or more.
  • the upper limit is not particularly limited, it is, for example, 100 mol % or less with respect to all repeating units of the resin (A).
  • the repeating unit containing at least one of a fluorine atom, a bromine atom and an iodine atom includes, for example, a repeating unit having a fluorine atom, a bromine atom or an iodine atom and having an acid-decomposable group, a fluorine atom, a bromine repeating units having an acid group, and repeating units having a fluorine atom, a bromine atom, or an iodine atom.
  • Resin (A) may have a repeating unit (hereinafter also referred to as “unit Y”) having at least one selected from the group consisting of a lactone group, a sultone group and a carbonate group. It is also preferable that the unit Y does not have a hydroxyl group and an acid group such as a hexafluoropropanol group.
  • the lactone group or sultone group may have a lactone structure or sultone structure.
  • the lactone structure or sultone structure is preferably a 5- to 7-membered ring lactone structure or a 5- to 7-membered ring sultone structure.
  • the resin (A) has a lactone structure represented by any one of the following formulas (LC1-1) to (LC1-21), or any one of the following formulas (SL1-1) to (SL1-3). It preferably has a repeating unit having a lactone group or a sultone group obtained by removing one or more hydrogen atoms from a ring member atom of a sultone structure, and the lactone group or sultone group may be directly bonded to the main chain.
  • ring member atoms of a lactone group or a sultone group may constitute the main chain of resin (A).
  • the lactone structure or sultone structure may have a substituent (Rb 2 ).
  • Preferred substituents (Rb 2 ) include alkyl groups having 1 to 8 carbon atoms, cycloalkyl groups having 4 to 7 carbon atoms, alkoxy groups having 1 to 8 carbon atoms, alkoxycarbonyl groups having 1 to 8 carbon atoms, and carboxyl groups. , halogen atoms, cyano groups, and acid-labile groups.
  • n2 represents an integer of 0-4. When n2 is 2 or more, multiple Rb 2 may be different, and multiple Rb 2 may combine to form a ring.
  • Rb 0 represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms. Preferred substituents that the alkyl group of Rb 0 may have include a hydroxyl group and a halogen atom.
  • a halogen atom for Rb 0 includes a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • Rb 0 is preferably a hydrogen atom or a methyl group.
  • Ab is a single bond, an alkylene group, a divalent linking group having a monocyclic or polycyclic alicyclic hydrocarbon structure, an ether group, an ester group, a carbonyl group, a carboxyl group, or a combination of these divalent linkages represents a group.
  • Ab is preferably a single bond or a linking group represented by -Ab 1 -CO 2 -.
  • Ab 1 is a linear or branched alkylene group or a monocyclic or polycyclic cycloalkylene group, preferably a methylene group, ethylene group, cyclohexylene group, adamantylene group or norbornylene group.
  • V is a group obtained by removing one hydrogen atom from a ring member atom of a lactone structure represented by any one of formulas (LC1-1) to (LC1-21), or formulas (SL1-1) to (SL1- 3) represents a group obtained by removing one hydrogen atom from a ring member atom of the sultone structure represented by any one of 3).
  • any optical isomer may be used.
  • one kind of optical isomer may be used alone, or a plurality of optical isomers may be mixed and used.
  • its optical purity (ee) is preferably 90 or more, more preferably 95 or more.
  • a cyclic carbonate group is preferred.
  • a repeating unit having a cyclic carbonate group a repeating unit represented by the following formula (A-1) is preferable.
  • R A 1 represents a hydrogen atom, a halogen atom, or a monovalent organic group (preferably a methyl group).
  • n represents an integer of 0 or more.
  • RA2 represents a substituent. When n is 2 or more, a plurality of R A 2 may be the same or different.
  • A represents a single bond or a divalent linking group.
  • the divalent linking group includes an alkylene group, a divalent linking group having a monocyclic or polycyclic alicyclic hydrocarbon structure, an ether group, an ester group, a carbonyl group, a carboxyl group, or a combination of these.
  • a valent linking group is preferred.
  • Z represents an atomic group forming a monocyclic or polycyclic ring together with the group represented by -O-CO-O- in the formula.
  • Rx represents a hydrogen atom, -CH 3 , -CH 2 OH or -CF 3 .
  • the content of the unit Y is preferably 1 mol% or more, more preferably 10 mol% or more, relative to all repeating units in the resin (A).
  • the upper limit is preferably 85 mol% or less, more preferably 80 mol% or less, still more preferably 70 mol% or less, and particularly 60 mol% or less, relative to all repeating units in the resin (A). preferable.
  • the resin (A) may have, as a repeating unit other than the above, a repeating unit having a group that generates an acid upon exposure to actinic rays or radiation (hereinafter also referred to as a "photoacid-generating group").
  • Repeating units having a photoacid-generating group include those described in paragraphs [0109] to [0115] of WO2020/004306.
  • Resin (A) may have a repeating unit represented by formula (V-1) or formula (V-2).
  • Examples of the repeating unit represented by formula (V-1) or formula (V-2) include those described in paragraphs [0116] to [0119] of WO2020/004306.
  • Repeating units for reducing the mobility of the main chain include those described in paragraphs [0120] to [0151] of WO2020/004306.
  • the resin (A) may have repeating units having at least one group selected from lactone groups, sultone groups, carbonate groups, hydroxyl groups, cyano groups, and alkali-soluble groups.
  • the repeating unit having a lactone group, a sultone group, or a carbonate group that the resin (A) has include the repeating units described in the above ⁇ Repeating unit having a lactone group, sultone group, or carbonate group>.
  • the preferable content is also as described in ⁇ Repeating unit having lactone group, sultone group, or carbonate group>.
  • Resin (A) may have a repeating unit having a hydroxyl group or a cyano group. This improves the adhesion to the substrate and the compatibility with the developer.
  • a repeating unit having a hydroxyl group or a cyano group is preferably a repeating unit having an alicyclic hydrocarbon structure substituted with a hydroxyl group or a cyano group.
  • a repeating unit having a hydroxyl group or a cyano group preferably does not have an acid-decomposable group. Examples of repeating units having a hydroxyl group or a cyano group include those described in paragraphs [0081] to [0084] of JP-A-2014-098921.
  • Resin (A) may have a repeating unit having an alkali-soluble group.
  • the alkali-soluble group includes a carboxyl group, a sulfonamide group, a sulfonylimide group, a bissulfonylimide group, and an aliphatic alcohol group substituted with an electron-withdrawing group at the ⁇ -position (e.g., hexafluoroisopropanol group). , is preferably a carboxyl group.
  • the resin (A) contains a repeating unit having an alkali-soluble group, the resolution for contact holes is increased. Repeating units having an alkali-soluble group include those described in paragraphs [0085] and [0086] of JP-A-2014-098921.
  • Resin (A) may have a repeating unit that has an alicyclic hydrocarbon structure and does not exhibit acid decomposability. Examples of such repeating units include those described in paragraph [0164] of WO2020/004306.
  • Resin (A) may have a repeating unit represented by formula (III) that has neither a hydroxyl group nor a cyano group.
  • Examples of the repeating unit represented by formula (III) having neither a hydroxyl group nor a cyano group include those described in paragraphs [0165] to [0173] of WO2020/004306.
  • the resin (A) may have repeating units other than the repeating units described above.
  • the resin (A) has repeating units selected from the group consisting of repeating units having an oxathian ring group, repeating units having an oxazolone ring group, repeating units having a dioxane ring group, and repeating units having a hydantoin ring group. You may have Specific examples of repeating units other than the repeating units described above are shown below.
  • the resin (A) may contain various repeating structural units for the purpose of adjusting dry etching resistance, suitability for standard developer, substrate adhesion, resist profile, resolution, heat resistance, sensitivity, and the like. may have
  • all of the repeating units are repeating units derived from a compound having an ethylenically unsaturated bond. It is preferably composed of In particular, it is also preferred that all of the repeating units are composed of (meth)acrylate repeating units.
  • all of the repeating units are composed of (meth)acrylate repeating units, all of the repeating units are methacrylate repeating units, all of the repeating units are acrylate repeating units, and all of the repeating units are methacrylates. It is possible to use either one based on repeating units and acrylate repeating units, and it is preferable that the acrylate repeating units be 50 mol % or less of the total repeating units.
  • Resin (A) can be synthesized according to a conventional method (for example, radical polymerization).
  • the weight average molecular weight of the resin (A) is preferably 30,000 or less, more preferably 1,000 to 30,000, even more preferably 3,000 to 30,000, further preferably 5,000 as a polystyrene equivalent value by GPC method. ⁇ 15,000 is particularly preferred.
  • the dispersity (molecular weight distribution) of the resin (A) is preferably 1 to 5, more preferably 1 to 3, still more preferably 1.2 to 3.0, and particularly preferably 1.2 to 2.0. The smaller the degree of dispersion, the better the resolution and resist shape, the smoother the side walls of the resist pattern, and the better the roughness.
  • the content of the resin (A) is preferably 40.0 to 99.9% by mass, more preferably 60.0 to 90.0% by mass, based on the total solid content of the composition. .
  • the resin (A) may be used singly or in combination.
  • the composition of the present invention may contain a compound that generates an acid upon exposure to actinic rays or radiation (hereinafter also referred to as "photoacid generator (B)").
  • the photoacid generator (B) may be in the form of a low-molecular-weight compound, or may be in the form of being incorporated into a part of a polymer (for example, a resin (A) described below).
  • the form of a low-molecular-weight compound and the form incorporated into a part of a polymer for example, the resin (A) described later
  • the molecular weight of the photoacid generator is preferably 3,000 or less, more preferably 2,000 or less, and even more preferably 1,000 or less. Although the lower limit is not particularly limited, 100 or more is preferable.
  • the photoacid generator (B) is in the form of being incorporated into a part of the polymer, it may be incorporated into a part of the resin (A), or may be incorporated into a resin different from the resin (A). good.
  • the photoacid generator (B) is preferably in the form of a low molecular weight compound.
  • Examples of the photoacid generator (B) include compounds (onium salts) represented by “M + X ⁇ ”, and compounds that generate an organic acid upon exposure are preferred.
  • Examples of the organic acid include sulfonic acid (aliphatic sulfonic acid, aromatic sulfonic acid, camphorsulfonic acid, etc.), carboxylic acid (aliphatic carboxylic acid, aromatic carboxylic acid, aralkylcarboxylic acid, etc.), carbonylsulfonylimide, acids, bis(alkylsulfonyl)imidic acids, and tris(alkylsulfonyl)methide acids.
  • M + represents an organic cation.
  • the valence of the organic cation may be 1 or 2 or more.
  • a cation represented by the formula (ZaI) hereinafter also referred to as “cation (ZaI)
  • ZaII a cation represented by the formula (ZaII)
  • ZaII a cation represented by the formula (ZaII)
  • R 201 , R 202 and R 203 each independently represent an organic group.
  • the number of carbon atoms in the organic groups for R 201 , R 202 and R 203 is preferably 1-30, more preferably 1-20.
  • Two of R 201 to R 203 may combine to form a ring structure, and the ring may contain an oxygen atom, a sulfur atom, an ester group, an amide group, or a carbonyl group.
  • Examples of the group formed by combining two of R 201 to R 203 include an alkylene group (eg, a butylene group and a pentylene group) and —CH 2 —CH 2 —O—CH 2 —CH 2 —. mentioned.
  • Suitable embodiments of the organic cation in formula (ZaI) include cation (ZaI-1), cation (ZaI-2), cation (ZaI-3b), and cation (ZaI-4b), which will be described later.
  • Cation (ZaI-1) is an arylsulfonium cation in which at least one of R 201 to R 203 in formula (ZaI) above is an aryl group. At least one of R 201 to R 203 in formula (ZaI) is preferably an aryl group.
  • all of R 201 to R 203 may be aryl groups, or part of R 201 to R 203 may be aryl groups and the rest may be alkyl groups or cycloalkyl groups.
  • R 201 to R 203 is an aryl group, and the remaining two of R 201 to R 203 may combine to form a ring structure, in which an oxygen atom, a sulfur atom and an ester group , an amide group, or a carbonyl group.
  • the group formed by bonding two of R 201 to R 203 includes, for example, one or more methylene groups substituted with an oxygen atom, a sulfur atom, an ester group, an amide group and/or a carbonyl group. alkylene groups (eg, butylene group, pentylene group, and —CH 2 —CH 2 —O—CH 2 —CH 2 —).
  • Arylsulfonium cations include triarylsulfonium cations, diarylalkylsulfonium cations, aryldialkylsulfonium cations, diarylcycloalkylsulfonium cations, and aryldicycloalkylsulfonium cations.
  • the aryl group contained in the arylsulfonium cation is preferably a phenyl group or a naphthyl group, more preferably a phenyl group.
  • the aryl group may be an aryl group having a heterocyclic structure having an oxygen atom, a nitrogen atom, a sulfur atom, or the like. Heterocyclic structures include pyrrole, furan, thiophene, indole, benzofuran, and benzothiophene residues.
  • the arylsulfonium cation has two or more aryl groups, the two or more aryl groups may be the same or different.
  • the alkyl group or cycloalkyl group optionally possessed by the arylsulfonium cation is a linear alkyl group having 1 to 15 carbon atoms, a branched alkyl group having 3 to 15 carbon atoms, or 3 to 15 carbon atoms. is preferred, and a methyl group, ethyl group, propyl group, n-butyl group, sec-butyl group, t-butyl group, cyclopropyl group, cyclobutyl group or cyclohexyl group is more preferred.
  • substituents that the aryl group, alkyl group and cycloalkyl group of R 201 to R 203 may have include an alkyl group (eg, 1 to 15 carbon atoms), a cycloalkyl group (eg, 3 to 3 carbon atoms).
  • aryl groups eg, 6 to 14 carbon atoms
  • alkoxy groups eg, 1 to 15 carbon atoms
  • cycloalkylalkoxy groups eg, 1 to 15 carbon atoms
  • halogen atoms eg, fluorine and iodine
  • a hydroxyl group a carboxyl group, an ester group, a sulfinyl group, a sulfonyl group, an alkylthio group, or a phenylthio group.
  • the substituent may further have a substituent
  • the alkyl group preferably has a halogen atom as a substituent to form a halogenated alkyl group such as a trifluoromethyl group. It is also preferable to form an acid-decomposable group by any combination of the above substituents.
  • the acid-decomposable group is intended to be a group that is decomposed by the action of an acid to generate a polar group, and preferably has a structure in which the polar group is protected by a group that is eliminated by the action of an acid.
  • the polar group and leaving group are as described above.
  • At least one aryl group of R 201 to R 203 in formula (ZaI) preferably has a substituent.
  • Cation (ZaI-2) is a cation in which R 201 to R 203 in formula (ZaI) each independently represents an organic group having no aromatic ring.
  • Aromatic rings also include aromatic rings containing heteroatoms.
  • the number of carbon atoms in the organic group having no aromatic ring as R 201 to R 203 is preferably 1-30, more preferably 1-20.
  • R 201 to R 203 are each independently preferably an alkyl group, a cycloalkyl group, an allyl group, or a vinyl group, and a linear or branched 2-oxoalkyl group, 2-oxocycloalkyl group, or An alkoxycarbonylmethyl group is more preferred, and a linear or branched 2-oxoalkyl group is even more preferred.
  • the alkyl groups and cycloalkyl groups of R 201 to R 203 are, for example, linear alkyl groups having 1 to 10 carbon atoms or branched alkyl groups having 3 to 10 carbon atoms (e.g., methyl group, ethyl group, propyl group, , butyl group, and pentyl group), and cycloalkyl groups having 3 to 10 carbon atoms (eg, cyclopentyl group, cyclohexyl group, and norbornyl group).
  • R 201 to R 203 may be further substituted with a halogen atom, an alkoxy group (eg, 1-5 carbon atoms), a hydroxyl group, a cyano group, or a nitro group. It is also preferred that the substituents of R 201 to R 203 each independently form an acid-decomposable group by any combination of substituents.
  • the cation (ZaI-3b) is a cation represented by the following formula (ZaI-3b).
  • R 1c to R 5c each independently represent a hydrogen atom, an alkyl group, a cycloalkyl group, an aryl group, an alkoxy group, an aryloxy group, an alkoxycarbonyl group, an alkylcarbonyloxy group, a cycloalkyl represents a carbonyloxy group, a halogen atom, a hydroxyl group, a nitro group, an alkylthio group, or an arylthio group; R 6c and R 7c each independently represent a hydrogen atom, an alkyl group (eg, t-butyl group), a cycloalkyl group, a halogen atom, a cyano group, or an aryl group.
  • R 6c and R 7c each independently represent a hydrogen atom, an alkyl group (eg, t-butyl group), a cycloalkyl group, a halogen atom, a cyano group, or an ary
  • R x and R y each independently represent an alkyl group, a cycloalkyl group, a 2-oxoalkyl group, a 2-oxocycloalkyl group, an alkoxycarbonylalkyl group, an allyl group, or a vinyl group. It is also preferred that the substituents of R 1c to R 7c , R x and R y each independently form an acid-decomposable group by any combination of substituents.
  • R 1c to R 5c , R 5c and R 6c , R 6c and R 7c , R 5c and R x , and R x and R y may combine with each other to form a ring.
  • the rings may each independently contain an oxygen atom, a sulfur atom, a ketone group, an ester bond, or an amide bond.
  • Examples of the ring include aromatic or non-aromatic hydrocarbon rings, aromatic or non-aromatic hetero rings, and polycyclic condensed rings in which two or more of these rings are combined.
  • the ring includes a 3- to 10-membered ring, preferably a 4- to 8-membered ring, more preferably a 5- or 6-membered ring.
  • Examples of groups formed by bonding two or more of R 1c to R 5c , R 6c and R 7c , and R x and R y include alkylene groups such as a butylene group and a pentylene group. A methylene group in this alkylene group may be substituted with a heteroatom such as an oxygen atom.
  • the group formed by combining R 5c and R 6c and R 5c and R x is preferably a single bond or an alkylene group.
  • Alkylene groups include methylene and ethylene groups.
  • R 1c to R 5c , R 6c , R 7c , R x , R y , and two or more of R 1c to R 5c , R 5c and R 6c , R 6c and R 7c , R 5c and R x , and the ring formed by combining each other with R x and R y may have a substituent.
  • the cation (ZaI-4b) is a cation represented by the following formula (ZaI-4b).
  • R 13 is a hydrogen atom, a halogen atom (e.g., fluorine atom, iodine atom, etc.), a hydroxyl group, an alkyl group, a halogenated alkyl group, an alkoxy group, a carboxyl group, an alkoxycarbonyl group, or a group containing a cycloalkyl group (cycloalkyl may be the group itself, or may be a group partially containing a cycloalkyl group). These groups may have a substituent.
  • a halogen atom e.g., fluorine atom, iodine atom, etc.
  • R 14 is a hydroxyl group, a halogen atom (e.g., fluorine atom, iodine atom, etc.), an alkyl group, a halogenated alkyl group, an alkoxy group, an alkoxycarbonyl group, an alkylcarbonyl group, an alkylsulfonyl group, a cycloalkylsulfonyl group, or a cycloalkyl represents a group containing a group (either a cycloalkyl group itself or a group partially containing a cycloalkyl group). These groups may have a substituent. When two or more R 14 are present, each independently represents the above group such as a hydroxyl group.
  • a halogen atom e.g., fluorine atom, iodine atom, etc.
  • Each R 15 independently represents an alkyl group, a cycloalkyl group, or a naphthyl group. Two R 15 may be joined together to form a ring. When two R 15 are combined to form a ring, the ring skeleton may contain a heteroatom such as an oxygen atom or a nitrogen atom. In one aspect, two R 15 are alkylene groups, preferably joined together to form a ring structure. The ring formed by combining the alkyl group, the cycloalkyl group, the naphthyl group, and the two R 15 groups may have a substituent.
  • the alkyl groups of R 13 , R 14 and R 15 may be linear or branched.
  • the number of carbon atoms in the alkyl group is preferably 1-10.
  • the alkyl group is preferably a methyl group, an ethyl group, an n-butyl group, a t-butyl group, or the like. It is also preferred that each of the substituents of R 13 to R 15 , R x and R y independently forms an acid-decomposable group by any combination of substituents.
  • R 204 and R 205 each independently represent an aryl group, an alkyl group or a cycloalkyl group.
  • the aryl group for R 204 and R 205 is preferably a phenyl group or a naphthyl group, more preferably a phenyl group.
  • the aryl group for R 204 and R 205 may be an aryl group having a heterocyclic ring having an oxygen atom, a nitrogen atom, a sulfur atom, or the like.
  • Skeletons of heterocyclic aryl groups include, for example, pyrrole, furan, thiophene, indole, benzofuran, and benzothiophene.
  • the alkyl group and cycloalkyl group for R 204 and R 205 include a linear alkyl group having 1 to 10 carbon atoms or a branched alkyl group having 3 to 10 carbon atoms (e.g., methyl group, ethyl group, propyl group, butyl group, or pentyl group), or a cycloalkyl group having 3 to 10 carbon atoms (eg, cyclopentyl group, cyclohexyl group, or norbornyl group).
  • the aryl group, alkyl group and cycloalkyl group of R 204 and R 205 may each independently have a substituent.
  • substituents that the aryl group, alkyl group and cycloalkyl group of R 204 and R 205 may have include an alkyl group (eg, 1 to 15 carbon atoms) and a cycloalkyl group (eg, 3 to 15), aryl groups (eg, 6 to 15 carbon atoms), alkoxy groups (eg, 1 to 15 carbon atoms), halogen atoms, hydroxyl groups, and phenylthio groups. It is also preferred that the substituents of R 204 and R 205 each independently form an acid-decomposable group by any combination of substituents.
  • X ⁇ represents an organic anion.
  • the organic anion is not particularly limited, and includes organic anions having a valence of 1, 2 or more.
  • an anion having a significantly low ability to cause a nucleophilic reaction is preferred, and a non-nucleophilic anion is more preferred.
  • non-nucleophilic anions examples include sulfonate anions (aliphatic sulfonate anions, aromatic sulfonate anions, camphorsulfonate anions, etc.), carboxylate anions (aliphatic carboxylate anions, aromatic carboxylate anions, and aralkyl carboxylic acid anions), sulfonylimide anions, bis(alkylsulfonyl)imide anions, and tris(alkylsulfonyl)methide anions.
  • sulfonate anions aliphatic sulfonate anions, aromatic sulfonate anions, camphorsulfonate anions, etc.
  • carboxylate anions aliphatic carboxylate anions, aromatic carboxylate anions, and aralkyl carboxylic acid anions
  • sulfonylimide anions bis(alkylsulfonyl)imide anions
  • the aliphatic moiety in the aliphatic sulfonate anion and the aliphatic carboxylate anion may be a linear or branched alkyl group or a cycloalkyl group, and may be a straight chain having 1 to 30 carbon atoms. Alternatively, a branched alkyl group or a cycloalkyl group having 3 to 30 carbon atoms is preferred.
  • the alkyl group may be, for example, a fluoroalkyl group (which may have a substituent other than a fluorine atom, or may be a perfluoroalkyl group).
  • the aryl group in the aromatic sulfonate anion and the aromatic carboxylate anion is preferably an aryl group having 6 to 14 carbon atoms, such as a phenyl group, a tolyl group, and a naphthyl group.
  • the alkyl group, cycloalkyl group, and aryl group listed above may have a substituent.
  • the substituents are not particularly limited, but examples include nitro groups, halogen atoms such as fluorine atoms and chlorine atoms, carboxyl groups, hydroxyl groups, amino groups, cyano groups, alkoxy groups (preferably having 1 to 15 carbon atoms), alkyl groups (preferably 1 to 10 carbon atoms), cycloalkyl groups (preferably 3 to 15 carbon atoms), aryl groups (preferably 6 to 14 carbon atoms), alkoxycarbonyl groups (preferably 2 to 7 carbon atoms), acyl groups ( preferably 2 to 12 carbon atoms), alkoxycarbonyloxy group (preferably 2 to 7 carbon atoms), alkylthio group (preferably 1 to 15 carbon atoms), alkylsulfonyl group (preferably 1 to 15 carbon atoms), alkylimino A sulfonyl group (preferably having 1 to 15 carbon atoms
  • aralkyl group in the aralkylcarboxylate anion an aralkyl group having 7 to 14 carbon atoms is preferred.
  • Aralkyl groups having 7 to 14 carbon atoms include, for example, benzyl, phenethyl, naphthylmethyl, naphthylethyl and naphthylbutyl groups.
  • Sulfonylimide anions include, for example, saccharin anions.
  • alkyl group in the bis(alkylsulfonyl)imide anion and the tris(alkylsulfonyl)methide anion an alkyl group having 1 to 5 carbon atoms is preferable.
  • substituents of these alkyl groups include halogen atoms, halogen-substituted alkyl groups, alkoxy groups, alkylthio groups, alkyloxysulfonyl groups, aryloxysulfonyl groups, and cycloalkylaryloxysulfonyl groups.
  • a fluorine atom or an alkyl group substituted with a fluorine atom is preferred.
  • the alkyl groups in the bis(alkylsulfonyl)imide anion may combine with each other to form a ring structure. This increases the acid strength.
  • non-nucleophilic anions include, for example, phosphorous fluorides (eg, PF 6 ⁇ ), boron fluorides (eg, BF 4 ⁇ ), and antimony fluorides (eg, SbF 6 ⁇ ).
  • non-nucleophilic anions include aliphatic sulfonate anions in which at least the ⁇ -position of sulfonic acid is substituted with fluorine atoms, aromatic sulfonate anions in which fluorine atoms or groups having fluorine atoms are substituted, and alkyl groups in which fluorine atoms are present.
  • a bis(alkylsulfonyl)imide anion substituted with or a tris(alkylsulfonyl)methide anion in which an alkyl group is substituted with a fluorine atom is preferable.
  • perfluoroaliphatic sulfonate anions preferably having 4 to 8 carbon atoms
  • benzenesulfonate anions having a fluorine atom are more preferable, nonafluorobutanesulfonate anions, perfluorooctanesulfonate anions, pentafluoro A benzenesulfonate anion or a 3,5-bis(trifluoromethyl)benzenesulfonate anion is more preferred.
  • an anion represented by the following formula (AN1) is also preferable.
  • R 1 and R 2 each independently represent a hydrogen atom or a substituent.
  • the substituent is not particularly limited, but a group that is not an electron-withdrawing group is preferred.
  • Groups that are not electron-withdrawing groups include, for example, hydrocarbon groups, hydroxyl groups, oxyhydrocarbon groups, oxycarbonyl hydrocarbon groups, amino groups, hydrocarbon-substituted amino groups, and hydrocarbon-substituted amide groups.
  • Groups that are not electron-withdrawing groups are preferably -R', -OH, -OR', -OCOR', -NH 2 , -NR' 2 , -NHR' or -NHCOR' each independently.
  • R' is a monovalent hydrocarbon group.
  • Examples of the monovalent hydrocarbon group represented by R' include alkyl groups such as methyl, ethyl, propyl, and butyl; alkenyl groups such as ethenyl, propenyl, and butenyl; ethynyl monovalent linear or branched hydrocarbon groups such as alkynyl groups such as groups, propynyl groups, and butynyl groups; cyclopropyl groups, cyclobutyl groups, cyclopentyl groups, cyclohexyl groups, norbornyl groups, and adamantyl groups Cycloalkyl group; monovalent alicyclic hydrocarbon group such as cycloalkenyl group such as cyclopropenyl group, cyclobutenyl group, cyclopentenyl group, and norbornenyl group; phenyl group, tolyl group, xylyl group, mesityl group, naphthyl group, methyl aryl groups such as
  • L represents a divalent linking group.
  • divalent linking groups include -O-CO-O-, -COO-, -CONH-, -CO-, -O-, -S-, -SO-, -SO 2 -, alkylene groups ( preferably 1 to 6 carbon atoms), a cycloalkylene group (preferably 3 to 15 carbon atoms), an alkenylene group (preferably 2 to 6 carbon atoms), and a divalent linking group combining a plurality of these.
  • the divalent linking group includes -O-CO-O-, -COO-, -CONH-, -CO-, -O-, -SO 2 -, and -O-CO-O-alkylene group- , -COO-alkylene group-, or -CONH-alkylene group- is preferred, and -O-CO-O-, -O-CO-O-alkylene group-, -COO-, -CONH-, -SO 2 - , or -COO-alkylene group- is more preferred.
  • a group represented by the following formula (AN1-1) is preferable. * a - (CR 2a 2 ) X - Q- (CR 2b 2 ) Y - * b (AN1-1)
  • * a represents the bonding position with R3 in formula (AN1).
  • * b represents the bonding position with -C(R 1 )(R 2 )- in formula (AN1).
  • X and Y each independently represent an integer of 0-10, preferably an integer of 0-3.
  • R 2a and R 2b each independently represent a hydrogen atom or a substituent. When multiple R 2a and R 2b are present, the multiple R 2a and R 2b may be the same or different. However, when Y is 1 or more, R 2b in CR 2b 2 directly bonded to —C(R 1 )(R 2 )— in formula (AN1) is other than a fluorine atom.
  • Q is * A -O-CO-O-* B , * A -CO-* B , * A -CO-O-* B , * A -O-CO-* B , * A -O-* B , * A -S-* B or * A - SO2- * B .
  • R3 represents an organic group.
  • the organic group is not particularly limited as long as it has 1 or more carbon atoms. branched chain alkyl group) or a cyclic group.
  • the organic group may or may not have a substituent.
  • the organic group may or may not have a heteroatom (oxygen atom, sulfur atom, and/or nitrogen atom, etc.).
  • R 3 is preferably an organic group having a cyclic structure.
  • the cyclic structure may be monocyclic or polycyclic, and may have a substituent.
  • the ring in the organic group containing a cyclic structure is preferably directly bonded to L in formula (AN1).
  • the organic group having a cyclic structure may or may not have a heteroatom (oxygen atom, sulfur atom, and/or nitrogen atom, etc.), for example. Heteroatoms may replace one or more of the carbon atoms that form the ring structure.
  • the organic group having a cyclic structure is preferably, for example, a hydrocarbon group having a cyclic structure, a lactone ring group, or a sultone ring group.
  • the organic group having a cyclic structure is preferably a hydrocarbon group having a cyclic structure.
  • the above hydrocarbon group having a cyclic structure is preferably a monocyclic or polycyclic cycloalkyl group. These groups may have a substituent.
  • the cycloalkyl group may be monocyclic (such as cyclohexyl group) or polycyclic (such as adamantyl group), and preferably has 5 to 12 carbon atoms.
  • Examples of the lactone group and sultone group include structures represented by the above formulas (LC1-1) to (LC1-21) and structures represented by formulas (SL1-1) to (SL1-3). , preferably a group obtained by removing one hydrogen atom from a ring member atom constituting a lactone structure or a sultone structure.
  • the non-nucleophilic anion may be a benzenesulfonate anion, preferably a benzenesulfonate anion substituted with a branched alkyl group or cycloalkyl group.
  • an anion represented by the following formula (AN2) is also preferable.
  • o represents an integer of 1-3.
  • p represents an integer from 0 to 10;
  • q represents an integer from 0 to 10;
  • Xf represents a hydrogen atom, a fluorine atom, an alkyl group substituted with at least one fluorine atom, or an organic group having no fluorine atom.
  • the number of carbon atoms in this alkyl group is preferably 1-10, more preferably 1-4.
  • a perfluoroalkyl group is preferred as the alkyl group substituted with at least one fluorine atom.
  • Xf is preferably a fluorine atom or a perfluoroalkyl group having 1 to 4 carbon atoms, more preferably a fluorine atom or CF 3 , and even more preferably both Xf are fluorine atoms.
  • R4 and R5 each independently represent a hydrogen atom, a fluorine atom, an alkyl group, or an alkyl group substituted with at least one fluorine atom. When multiple R 4 and R 5 are present, each of R 4 and R 5 may be the same or different.
  • the alkyl groups represented by R 4 and R 5 preferably have 1 to 4 carbon atoms. The above alkyl group may have a substituent. Hydrogen atoms are preferred as R 4 and R 5 .
  • L represents a divalent linking group.
  • the definition of L is synonymous with L in formula (AN1).
  • W represents an organic group containing a cyclic structure.
  • a cyclic organic group is preferable.
  • Cyclic organic groups include, for example, alicyclic groups, aryl groups, and heterocyclic groups.
  • the alicyclic group may be monocyclic or polycyclic.
  • Monocyclic alicyclic groups include, for example, monocyclic cycloalkyl groups such as a cyclopentyl group, a cyclohexyl group, and a cyclooctyl group.
  • the polycyclic alicyclic group includes, for example, a norbornyl group, a tricyclodecanyl group, a tetracyclodecanyl group, a tetracyclododecanyl group, and a polycyclic cycloalkyl group such as an adamantyl group.
  • alicyclic groups having a bulky structure with 7 or more carbon atoms such as norbornyl, tricyclodecanyl, tetracyclodecanyl, tetracyclododecanyl, and adamantyl groups, are preferred.
  • Aryl groups may be monocyclic or polycyclic. Examples of the aryl group include phenyl group, naphthyl group, phenanthryl group, and anthryl group.
  • a heterocyclic group may be monocyclic or polycyclic. Especially, when it is a polycyclic heterocyclic group, diffusion of acid can be further suppressed.
  • a heterocyclic group may or may not have an aromatic character. Heterocyclic rings having aromaticity include, for example, furan ring, thiophene ring, benzofuran ring, benzothiophene ring, dibenzofuran ring, dibenzothiophene ring, and pyridine ring.
  • Non-aromatic heterocycles include, for example, a tetrahydropyran ring, a lactone ring, a sultone ring, and a decahydroisoquinoline ring.
  • the heterocyclic ring in the heterocyclic group is preferably a furan ring, a thiophene ring, a pyridine ring, or a decahydroisoquinoline ring.
  • the cyclic organic group may have a substituent.
  • substituents include alkyl groups (either linear or branched, preferably having 1 to 12 carbon atoms), cycloalkyl groups (monocyclic, polycyclic, and spirocyclic). any group, preferably having 3 to 20 carbon atoms), aryl group (preferably having 6 to 14 carbon atoms), hydroxyl group, alkoxy group, ester group, amide group, urethane group, ureido group, thioether group, sulfonamide and sulfonate ester groups.
  • carbonyl carbon may be sufficient as carbon (carbon which contributes to ring formation) which comprises a cyclic
  • Examples of anions represented by formula (AN2) include SO 3 ⁇ —CF 2 —CH 2 —OCO-(L) q′ —W, SO 3 ⁇ —CF 2 —CHF—CH 2 —OCO-(L) q ' -W, SO 3 - -CF 2 -COO-(L) q' -W, SO 3 - -CF 2 -CF 2 -CH 2 -CH 2 -(L) q -W, or SO 3 - - CF 2 —CH(CF 3 )—OCO—(L) q′ —W is preferred.
  • L, q and W are the same as in formula (AN2).
  • q' represents an integer from 0 to 10;
  • an aromatic sulfonate anion represented by the following formula (AN3) is also preferable.
  • Ar represents an aryl group (such as a phenyl group) and may further have a substituent other than the sulfonate anion and -(D-B) group.
  • Substituents which may be further included include, for example, a fluorine atom and a hydroxyl group.
  • n represents an integer of 0 or more. n is preferably 1 to 4, more preferably 2 to 3, and still more preferably 3.
  • D represents a single bond or a divalent linking group.
  • Divalent linking groups include ether groups, thioether groups, carbonyl groups, sulfoxide groups, sulfone groups, sulfonate ester groups, ester groups, and groups consisting of combinations of two or more thereof.
  • B represents a hydrocarbon group.
  • B is preferably an aliphatic hydrocarbon group, more preferably an isopropyl group, a cyclohexyl group, or an optionally substituted aryl group (such as a tricyclohexylphenyl group).
  • Disulfonamide anions are also preferred as non-nucleophilic anions.
  • a disulfonamide anion is, for example, an anion represented by N ⁇ (SO 2 —R q ) 2 .
  • R q represents an optionally substituted alkyl group, preferably a fluoroalkyl group, more preferably a perfluoroalkyl group.
  • Two R q may combine with each other to form a ring.
  • the group formed by bonding two R q together is preferably an optionally substituted alkylene group, preferably a fluoroalkylene group, more preferably a perfluoroalkylene group.
  • the alkylene group preferably has 2 to 4 carbon atoms.
  • Non-nucleophilic anions also include anions represented by the following formulas (d1-1) to (d1-4).
  • R 51 represents a hydrocarbon group (eg, an aryl group such as a phenyl group) optionally having a substituent (eg, hydroxyl group).
  • Z 2c represents an optionally substituted hydrocarbon group having 1 to 30 carbon atoms (provided that the carbon atom adjacent to S is not substituted with a fluorine atom).
  • the above hydrocarbon group for Z 2c may be linear or branched, and may have a cyclic structure.
  • the carbon atom in the hydrocarbon group (preferably the carbon atom that is a ring member atom when the hydrocarbon group has a cyclic structure) may be carbonyl carbon (--CO-).
  • Examples of the hydrocarbon group include a group having an optionally substituted norbornyl group.
  • a carbon atom forming the norbornyl group may be a carbonyl carbon.
  • Z 2c —SO 3 ⁇ in formula (d1-2) is preferably different from the anions represented by formulas (AN1) to (AN3) above.
  • Z 2c is preferably other than an aryl group.
  • the ⁇ -position and ⁇ -position atoms with respect to —SO 3 — in Z 2c are preferably atoms other than carbon atoms having a fluorine atom as a substituent.
  • the ⁇ -position atom and/or the ⁇ -position atom with respect to —SO 3 — is preferably a ring member atom in a cyclic group.
  • R 52 represents an organic group (preferably a hydrocarbon group having a fluorine atom)
  • Y 3 represents a linear, branched or cyclic alkylene group, an arylene group, or represents a carbonyl group
  • Rf represents a hydrocarbon group
  • R 53 and R 54 each independently represent an organic group (preferably a hydrocarbon group having a fluorine atom). R 53 and R 54 may combine with each other to form a ring.
  • the organic anions may be used singly or in combination of two or more.
  • the photoacid generator is also preferably at least one selected from the group consisting of compounds (I) to (II).
  • Compound (I) is a compound having one or more structural moieties X shown below and one or more structural moieties Y shown below, wherein the first acidic It is a compound that generates an acid containing a site and a second acidic site described below derived from the structural site Y described below.
  • Structural site X Structural site consisting of an anionic site A 1 ⁇ and a cation site M 1 + and forming a first acidic site represented by HA 1 upon exposure to actinic rays or radiation
  • Structural site Y anionic site A structural site consisting of A 2 - and a cation site M 2 + and forming a second acidic site represented by HA 2 upon exposure to actinic rays or radiation.
  • the compound (I) satisfies Condition I below. .
  • Condition I A compound PI obtained by replacing the cation site M 1 + in the structural site X and the cation site M 2 + in the structural site Y in the compound (I) with H + in the structural site X and the acid dissociation constant a1 derived from the acidic site represented by HA 1 obtained by replacing the cation site M 1 + with H + , and replacing the cation site M 2 + in the structural site Y with H + It has an acid dissociation constant a2 derived from the acidic site represented by HA2 , and the acid dissociation constant a2 is greater than the acid dissociation constant a1.
  • compound PI corresponds to "a compound having HA 1 and HA 2 ".
  • the acid dissociation constant a1 and the acid dissociation constant a2 of compound PI are defined as "a compound having A 1 - and HA 2 " when the acid dissociation constant of compound PI is determined. is the acid dissociation constant a1, and the pKa when the "compound having A 1 - and HA 2 " becomes the "compound having A 1 - and A 2 - " is the acid dissociation constant a2 be.
  • compound (I) is, for example, an acid-generating compound having two first acidic sites derived from the structural site X and one second acidic site derived from the structural site Y
  • compound PI corresponds to "a compound having two HA 1 and one HA 2 ".
  • the acid dissociation constant of compound PI is obtained, the acid dissociation constant when compound PI becomes "a compound having one A 1 - , one HA 1 and one HA 2 " and "one A 1 - and one HA 1 and one HA 2 ” becomes a “compound having two A 1 - and one HA 2 ” corresponds to the acid dissociation constant a1 described above. .
  • the acid dissociation constant when "a compound having two A 1 - and one HA 2 -" becomes "a compound having two A 1 - and A 2 - " corresponds to the acid dissociation constant a2. That is, in the case of the compound PI, when it has a plurality of acid dissociation constants derived from the acidic site represented by HA 1 obtained by replacing the cation site M 1 + in the structural site X with H + , a plurality of acid dissociation constants The value of the acid dissociation constant a2 is larger than the largest value of a1.
  • the acid dissociation constant when the compound PI becomes "a compound having one A 1 - , one HA 1 and one HA 2 " is aa, and "one A 1 - and one HA 1 and 1
  • the relationship between aa and ab satisfies aa ⁇ ab, where ab is the acid dissociation constant when a compound having two HA2 's becomes a compound having two A1- and one HA2 . .
  • the acid dissociation constant a1 and the acid dissociation constant a2 are determined by the method for measuring the acid dissociation constant described above.
  • the above compound PI corresponds to an acid generated when compound (I) is irradiated with actinic rays or radiation.
  • the structural moieties X may be the same or different.
  • Two or more of A 1 ⁇ and two or more of M 1 + may be the same or different.
  • a 1 - and A 2 - , and M 1 + and M 2 + may be the same or different, but A 1 - and A 2 - are preferably different.
  • the difference (absolute value) between the acid dissociation constant a1 (the maximum value when there are multiple acid dissociation constants a1) and the acid dissociation constant a2 is preferably 0.1 or more, and preferably 0.5 or more. More preferably, 1.0 or more is even more preferable.
  • the upper limit of the difference (absolute value) between the acid dissociation constant a1 (the maximum value if there are a plurality of acid dissociation constants a1) and the acid dissociation constant a2 is not particularly limited, but is, for example, 16 or less.
  • the acid dissociation constant a2 is preferably 20 or less, more preferably 15 or less.
  • the lower limit of the acid dissociation constant a2 is preferably -4.0 or more.
  • the acid dissociation constant a1 is preferably 2.0 or less, more preferably 0 or less.
  • the lower limit of the acid dissociation constant a1 is preferably ⁇ 20.0 or more.
  • the anion site A 1 - and the anion site A 2 - are structural sites containing negatively charged atoms or atomic groups, for example, formulas (AA-1) to (AA-3) and formula (BB -1) to (BB-6).
  • the anion site A 1 - is preferably one capable of forming an acidic site with a small acid dissociation constant, and more preferably one of the formulas (AA-1) to (AA-3). AA-1) and (AA-3) are more preferred.
  • the anion site A 2 - is preferably one capable of forming an acidic site with a larger acid dissociation constant than the anion site A 1 - , and is any of the formulas (BB-1) to (BB-6).
  • RA represents a monovalent organic group.
  • the monovalent organic group represented by RA is not particularly limited, examples thereof include a cyano group, a trifluoromethyl group and a methanesulfonyl group.
  • the cation site M 1 + and the cation site M 2 + are structural sites containing positively charged atoms or atomic groups, such as monovalent organic cations.
  • Examples of organic cations include organic cations represented by M + described above.
  • compound (I) is not particularly limited, but includes, for example, compounds represented by formulas (Ia-1) to (Ia-5) described later.
  • the compound represented by formula (Ia-1) generates an acid represented by HA 11 -L 1 -A 12 H upon exposure to actinic rays or radiation.
  • M 11 + and M 12 + each independently represent an organic cation.
  • a 11 - and A 12 - each independently represent a monovalent anionic functional group.
  • L 1 represents a divalent linking group.
  • M 11 + and M 12 + may be the same or different.
  • a 11 - and A 12 - may be the same or different, but are preferably different from each other.
  • the acid dissociation constant a2 derived from the acidic site represented by HA11 is greater than the acid dissociation constant a1 derived from the acidic site represented by HA11 .
  • the preferred values of the acid dissociation constant a1 and the acid dissociation constant a2 are as described above.
  • the same acid is generated from compound PIa and the compound represented by formula (Ia-1) upon exposure to actinic rays or radiation.
  • At least one of M 11 + , M 12 + , A 11 ⁇ , A 12 ⁇ , and L 1 may have an acid-decomposable group as a substituent.
  • the organic cations represented by M 11 + and M 12 + include the organic cations represented by M 1 + described above.
  • the monovalent anionic functional group represented by A 11 - intends a monovalent group containing the above-described anion site A 1 - .
  • the monovalent anionic functional group represented by A 12 - intends a monovalent group containing the above-mentioned anion site A 2 - .
  • the monovalent anionic functional groups represented by A 11 - and A 12 - include any of the above formulas (AA-1) to (AA-3) and formulas (BB-1) to (BB-6). It is preferably a monovalent anionic functional group containing an anion site, selected from the group consisting of formulas (AX-1) to (AX-3) and formulas (BX-1) to (BX-7) is more preferably a monovalent anionic functional group.
  • the monovalent anionic functional group represented by A 11 - is, among others, a monovalent anionic functional group represented by any one of formulas (AX-1) to (AX-3). preferable.
  • As the monovalent anionic functional group represented by A 12 - monovalent anionic functional groups represented by any one of formulas (BX-1) to (BX-7) are preferred, and A monovalent anionic functional group represented by any one of (BX-1) to (BX-6) is more preferable.
  • R A1 and R A2 each independently represent a monovalent organic group. * represents a binding position.
  • the monovalent organic group represented by R A1 is not particularly limited, and examples thereof include a cyano group, a trifluoromethyl group and a methanesulfonyl group.
  • the monovalent organic group represented by RA2 is preferably a linear, branched or cyclic alkyl group or aryl group.
  • the number of carbon atoms in the alkyl group is preferably 1-15, more preferably 1-10, even more preferably 1-6.
  • the above alkyl group may have a substituent.
  • the substituent is preferably a fluorine atom or a cyano group, more preferably a fluorine atom.
  • the alkyl group has a fluorine atom as a substituent, it may be a perfluoroalkyl group.
  • the aryl group is preferably a phenyl group or a naphthyl group, more preferably a phenyl group.
  • the aryl group may have a substituent.
  • the substituent is preferably a fluorine atom, an iodine atom, a perfluoroalkyl group (eg, preferably having 1 to 10 carbon atoms, more preferably having 1 to 6 carbon atoms), or a cyano group, a fluorine atom, an iodine atom, or , perfluoroalkyl groups are more preferred.
  • R 2 B represents a monovalent organic group.
  • * represents a binding position.
  • the monovalent organic group represented by RB is preferably a linear, branched or cyclic alkyl group or aryl group.
  • the number of carbon atoms in the alkyl group is preferably 1-15, more preferably 1-10, even more preferably 1-6.
  • the above alkyl group may have a substituent. Although the substituent is not particularly limited, the substituent is preferably a fluorine atom or a cyano group, more preferably a fluorine atom. When the alkyl group has a fluorine atom as a substituent, it may be a perfluoroalkyl group.
  • the carbon atom serving as the bonding position in the alkyl group has a substituent, it is also preferably a substituent other than a fluorine atom or a cyano group.
  • the carbon atom to be the bonding position in the alkyl group is, for example, in the case of formulas (BX-1) and (BX-4), the carbon directly bonded to -CO- indicated in the formula in the alkyl group In the case of formulas (BX-2) and (BX-3), the carbon atom directly bonded to —SO 2 — indicated in the formula in the alkyl group corresponds to the formula (BX-6)
  • the carbon atom in the alkyl group that is directly bonded to the N 2 - specified in the formula is applicable.
  • a carbon atom of the alkyl group may be substituted with a carbonyl carbon.
  • the aryl group is preferably a phenyl group or a naphthyl group, more preferably a phenyl group.
  • the aryl group may have a substituent.
  • substituents include a fluorine atom, an iodine atom, a perfluoroalkyl group (eg, preferably having 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms), a cyano group, an alkyl group (eg, 1 to 10 carbon atoms).
  • an alkoxy group eg, preferably 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms.
  • an alkoxycarbonyl group eg, 2 to 10 carbon atoms are preferred, and those having 2 to 6 carbon atoms are more preferred.
  • the divalent linking group represented by L 1 is not particularly limited, and includes -CO-, -NR-, -O-, -S-, -SO-, -SO 2 - , an alkylene group (preferably having 1 to 6 carbon atoms, which may be linear or branched), a cycloalkylene group (preferably having 3 to 15 carbon atoms), an alkenylene group (preferably having 2 to 6 carbon atoms), divalent of an aliphatic heterocyclic group (preferably a 5- to 10-membered ring having at least one N atom, O atom, S atom, or Se atom in the ring structure, more preferably a 5- to 7-membered ring, a 5- to 6-membered ring is more preferable), a divalent aromatic heterocyclic group (preferably a 5- to 10-membered ring having at least one N atom, O atom, S atom, or Se atom in the ring structure, and a 5- to 7-membered
  • the monovalent organic group is not particularly limited, for example, an alkyl group (preferably having 1 to 6 carbon atoms) is preferable.
  • the alkylene group, the cycloalkylene group, the alkenylene group, the divalent aliphatic heterocyclic group, the divalent aromatic heterocyclic group, and the divalent aromatic hydrocarbon ring group have a substituent.
  • Substituents include, for example, halogen atoms (preferably fluorine atoms).
  • the divalent linking group represented by L1 is preferably a divalent linking group represented by formula (L1).
  • L 111 represents a single bond or a divalent linking group.
  • the divalent linking group represented by L 111 is not particularly limited, and may be, for example, —CO—, —NH—, —O—, —SO—, —SO 2 —, or have a substituent.
  • Alkylene group preferably having 1 to 6 carbon atoms, which may be linear or branched
  • optionally substituted cycloalkylene group preferably having 3 to 15 carbon atoms
  • substituted An aryl group preferably having 6 to 10 carbon atoms
  • a divalent linking group combining a plurality of these groups may be mentioned.
  • the substituent is not particularly limited, and examples thereof include halogen atoms.
  • Each Xf 1 independently represents a fluorine atom or an alkyl group substituted with at least one fluorine atom.
  • the number of carbon atoms in this alkyl group is preferably 1-10, more preferably 1-4.
  • a perfluoroalkyl group is preferred as the alkyl group substituted with at least one fluorine atom.
  • Each Xf2 independently represents a hydrogen atom, an alkyl group optionally having a fluorine atom as a substituent, or a fluorine atom.
  • the number of carbon atoms in this alkyl group is preferably 1-10, more preferably 1-4.
  • Xf2 preferably represents a fluorine atom or an alkyl group substituted with at least one fluorine atom, more preferably a fluorine atom or a perfluoroalkyl group.
  • Xf 1 and Xf 2 are each independently preferably a fluorine atom or a perfluoroalkyl group having 1 to 4 carbon atoms, more preferably a fluorine atom or CF 3 .
  • both Xf 1 and Xf 2 are more preferably fluorine atoms.
  • * represents a binding position.
  • a 21a - and A 21b - each independently represent a monovalent anionic functional group.
  • the monovalent anionic functional groups represented by A 21a - and A 21b - are meant to be monovalent groups containing the above-described anionic site A 1 - .
  • the monovalent anionic functional groups represented by A 21a - and A 21b - are not particularly limited.
  • Anionic functional groups are included.
  • a 22 - represents a divalent anionic functional group.
  • the divalent anionic functional group represented by A 22 - intends a divalent linking group containing the above-mentioned anion site A 2 - .
  • Examples of the divalent anionic functional group represented by A 22 - include divalent anionic functional groups represented by formulas (BX-8) to (BX-11) shown below.
  • M 21a + , M 21b + , and M 22 + each independently represent an organic cation.
  • the organic cations represented by M 21a + , M 21b + , and M 22 + are synonymous with M 11 + above, and the preferred embodiments are also the same.
  • L21 and L22 each independently represent a divalent organic group.
  • a 31a - and A 32 - each independently represent a monovalent anionic functional group.
  • the definition of the monovalent anionic functional group represented by A 31a - is synonymous with A 21a - and A 21b - in formula (Ia-2) described above, and the preferred embodiments are also the same.
  • the monovalent anionic functional group represented by A 32 - intends a monovalent group containing the above-mentioned anion site A 2 - .
  • the monovalent anionic functional group represented by A 32 - is not particularly limited, and is, for example, a monovalent anionic functional group selected from the group consisting of the above formulas (BX-1) to (BX-7). is mentioned.
  • a 31b - represents a divalent anionic functional group.
  • the divalent anionic functional group represented by A 31b - intends a divalent linking group containing the anionic site A 1 - described above.
  • Examples of the divalent anionic functional group represented by A 31b - include a divalent anionic functional group represented by formula (AX-4) shown below.
  • M 31a + , M 31b + , and M 32 + each independently represent a monovalent organic cation.
  • the organic cations represented by M 31a + , M 31b + , and M 32 + are synonymous with M 11 + above, and the preferred embodiments are also the same.
  • L 31 and L 32 each independently represent a divalent organic group.
  • the derived acid dissociation constant a2 is larger than the acid dissociation constant a1-3 derived from the acidic site represented by A 31a H and the acid dissociation constant a1-4 derived from the acidic site represented by A 31b H.
  • the acid dissociation constant a1-3 and the acid dissociation constant a1-4 correspond to the acid dissociation constant a1 described above.
  • a 31a - and A 32 - may be the same or different.
  • M 31a + , M 31b + , and M 32 + may be the same or different. At least one of M 31a + , M 31b + , M 32 + , A 31a ⁇ , A 32 ⁇ , L 31 and L 32 may have an acid-decomposable group as a substituent.
  • a 41a ⁇ , A 41b ⁇ , and A 42 ⁇ each independently represent a monovalent anionic functional group.
  • the definitions of the monovalent anionic functional groups represented by A 41a - and A 41b - are the same as those of A 21a - and A 21b - in formula (Ia-2) described above.
  • the definition of the monovalent anionic functional group represented by A 42 - is the same as A 32 - in formula (Ia-3) described above, and the preferred embodiments are also the same.
  • M 41a + , M 41b + , and M 42 + each independently represent an organic cation.
  • the organic cations represented by M 41a + , M 41b + , and M 42 + are synonymous with M 11 + above, and the preferred embodiments are also the same.
  • L41 represents a trivalent organic group.
  • M 41a + , M 41b + , and M 42 + may be the same or different. At least one of M 41a + , M 41b + , M 42 + , A 41a ⁇ , A 41b ⁇ , A 42 ⁇ , and L 41 may have an acid-decomposable group as a substituent.
  • the divalent organic groups represented by L 21 and L 22 in formula (Ia-2) and L 31 and L 32 in formula (Ia-3) are not particularly limited, for example, —CO— , —NR—, —O—, —S—, —SO—, —SO 2 —, an alkylene group (preferably having 1 to 6 carbon atoms, which may be linear or branched), a cycloalkylene group (preferably 3 to 15 carbon atoms), alkenylene groups (preferably 2 to 6 carbon atoms), divalent aliphatic heterocyclic groups (at least one N atom, O atom, S atom, or Se atom in the ring structure 5 A to 10-membered ring is preferred, a 5- to 7-membered ring is more preferred, and a 5- to 6-membered ring is even more preferred.), a divalent aromatic heterocyclic group (at least one N atom, O atom, S atom, or Se A 5- to 10-membered ring having an atom in the
  • R in -NR- is a hydrogen atom or a monovalent organic group.
  • the monovalent organic group is not particularly limited, for example, an alkyl group (preferably having 1 to 6 carbon atoms) is preferable.
  • the alkylene group, the cycloalkylene group, the alkenylene group, the divalent aliphatic heterocyclic group, the divalent aromatic heterocyclic group, and the divalent aromatic hydrocarbon ring group have a substituent.
  • Substituents include, for example, halogen atoms (preferably fluorine atoms).
  • Examples of divalent organic groups represented by L 21 and L 22 in formula (Ia-2) and L 31 and L 32 in formula (Ia-3) are represented by the following formula (L2): It is also preferred that it is a divalent organic group that
  • q represents an integer of 1-3. * represents a binding position.
  • Each Xf independently represents a fluorine atom or an alkyl group substituted with at least one fluorine atom.
  • the number of carbon atoms in this alkyl group is preferably 1-10, more preferably 1-4.
  • a perfluoroalkyl group is preferred as the alkyl group substituted with at least one fluorine atom.
  • Xf is preferably a fluorine atom or a C 1-4 perfluoroalkyl group, more preferably a fluorine atom or CF 3 . In particular, it is more preferable that both Xf are fluorine atoms.
  • LA represents a single bond or a divalent linking group.
  • the divalent linking group represented by L A is not particularly limited, and examples thereof include -CO-, -O-, -SO-, -SO 2 -, alkylene groups (preferably having 1 to 6 carbon atoms, straight-chain may be in the form of a branched chain), a cycloalkylene group (preferably having 3 to 15 carbon atoms), a divalent aromatic hydrocarbon ring group (preferably a 6- to 10-membered ring, more preferably a 6-membered ring), and Divalent linking groups in which a plurality of these are combined are included.
  • the alkylene group, the cycloalkylene group, and the divalent aromatic hydrocarbon ring group may have a substituent. Substituents include, for example, halogen atoms (preferably fluorine atoms).
  • Examples of the divalent organic group represented by formula (L2) include *-CF 2 -*, *-CF 2 -CF 2 -*, *-CF 2 -CF 2 -CF 2 -*, *- Ph-O- SO2 - CF2- *, *-Ph-O- SO2 - CF2 - CF2- *, *-Ph-O- SO2 - CF2 - CF2 - CF2- *, and , *—Ph—OCO—CF 2 —*.
  • Ph is an optionally substituted phenylene group, preferably a 1,4-phenylene group.
  • an alkyl group eg, preferably having 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms
  • an alkoxy group eg, preferably having 1 to 10 carbon atoms, 1 to 1 carbon atoms, 6 is more preferable
  • an alkoxycarbonyl group eg, preferably having 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms.
  • a 51a ⁇ , A 51b ⁇ , and A 51c ⁇ each independently represent a monovalent anionic functional group.
  • the monovalent anionic functional groups represented by A 51a ⁇ , A 51b ⁇ , and A 51c ⁇ are intended to be monovalent groups containing the above-described anion site A 1 ⁇ .
  • the monovalent anionic functional groups represented by A 51a ⁇ , A 51b ⁇ , and A 51c ⁇ are not particularly limited, but are, for example, the group consisting of the above formulas (AX-1) to (AX-3) A selected monovalent anionic functional group can be mentioned.
  • a 52a - and A 52b - represent divalent anionic functional groups.
  • the divalent anionic functional groups represented by A 52a - and A 52b - are intended to be divalent linking groups containing the above-mentioned anion site A 2 - .
  • the divalent anionic functional group represented by A 22 - includes, for example, divalent anionic functional groups selected from the group consisting of the above formulas (BX-8) to (BX-11).
  • M 51a + , M 51b + , M 51c + , M 52a + , and M 52b + each independently represent an organic cation.
  • the organic cations represented by M 51a + , M 51b + , M 51c + , M 52a + , and M 52b + are synonymous with M 11 + described above, and the preferred embodiments are also the same.
  • L51 and L53 each independently represent a divalent organic group.
  • the divalent organic groups represented by L 51 and L 53 have the same meanings as L 21 and L 22 in formula (Ia-2) above, and the preferred embodiments are also the same.
  • L52 represents a trivalent organic group.
  • the trivalent organic group represented by L 52 has the same definition as L 41 in formula (Ia-4) above, and the preferred embodiments are also the same.
  • the acid dissociation constants a1-1 to a1-3 correspond to the acid dissociation constant a1 described above, and the acid dissociation constants a2-1 and a2-2 correspond to the acid dissociation constant a2 described above.
  • a 51a ⁇ , A 51b ⁇ , and A 51c ⁇ may be the same or different.
  • a 52a - and A 52b - may be the same or different.
  • M 51a + , M 51b + , M 51c + , M 52a + , and M 52b + may be the same or different.
  • M 51b + , M 51c + , M 52a + , M 52b + , A 51a ⁇ , A 51b ⁇ , A 51c ⁇ , L 51 , L 52 and L 53 is an acid-decomposable group as a substituent may have
  • Compound (II) is a compound having two or more of the above structural moieties X and one or more of the following structural moieties Z, wherein the first acidic It is a compound that generates an acid containing two or more sites and the structural site Z described above.
  • Structural site Z nonionic site capable of neutralizing acid
  • the preferred range of the acid dissociation constant a1 derived from the acidic site represented by is the same as the acid dissociation constant a1 in the above compound PI.
  • the compound (II) is a compound that generates an acid having two of the first acidic sites derived from the structural site X and the structural site Z
  • the compound PII is "two HA 1 It corresponds to "a compound having When the acid dissociation constant of this compound PII is determined, the acid dissociation constant when the compound PII is "a compound having one A 1 - and one HA 1 " and "one A 1 - and one HA
  • the acid dissociation constant when the "compound having 1 " becomes "the compound having two A 1 - " corresponds to the acid dissociation constant a1.
  • the acid dissociation constant a1 is obtained by the method for measuring the acid dissociation constant described above.
  • the above compound PII corresponds to an acid generated when compound (II) is irradiated with actinic rays or radiation.
  • the two or more structural sites X may be the same or different.
  • Two or more of A 1 ⁇ and two or more of M 1 + may be the same or different.
  • the nonionic site capable of neutralizing the acid in the structural site Z is not particularly limited.
  • a site containing a group capable of electrostatically interacting with protons or a functional group having electrons is preferred.
  • a group capable of electrostatically interacting with protons or a functional group having electrons is a functional group having a macrocyclic structure such as a cyclic polyether, or a lone pair of electrons that does not contribute to ⁇ conjugation.
  • a functional group having a nitrogen atom is included.
  • a nitrogen atom having a lone pair of electrons that does not contribute to ⁇ -conjugation is, for example, a nitrogen atom having a partial structure represented by the following formula.
  • Partial structures of functional groups having electrons or groups capable of electrostatically interacting with protons include, for example, a crown ether structure, an azacrown ether structure, a primary to tertiary amine structure, a pyridine structure, an imidazole structure, and a pyrazine structure. Among them, primary to tertiary amine structures are preferred.
  • the compound (II) is not particularly limited, but includes, for example, compounds represented by the following formulas (IIa-1) and (IIa-2).
  • a 61a - and A 61b - have the same meanings as A 11 - in formula (Ia-1) above, and preferred embodiments are also the same.
  • M 61a + and M 61b + have the same meanings as M 11 + in formula (Ia-1) described above, and the preferred embodiments are also the same.
  • L 61 and L 62 have the same definitions as L 1 in formula (Ia-1) above, and the preferred embodiments are also the same.
  • R 2X represents a monovalent organic group.
  • the monovalent organic group represented by R 2X is not particularly limited, and may be an alkyl group (preferably having 1 to 10 carbon atoms, which may be linear or branched), a cycloalkyl group (preferably having 3 to 15), or an alkenyl group (preferably having 2 to 6 carbon atoms).
  • —CH 2 — contained in the alkyl group, cycloalkyl group and alkenyl group in the monovalent organic group represented by R 2X is —CO—, —NH—, —O—, —S—, and —SO— , and —SO 2 — may be substituted with one or a combination of two or more.
  • the alkylene group, the cycloalkylene group, and the alkenylene group may have a substituent. Examples of substituents include, but are not particularly limited to, halogen atoms (preferably fluorine atoms).
  • the acid dissociation constant a1-8 derived from the acidic site represented by a1-7 and A 61b H corresponds to the acid dissociation constant a1 described above.
  • the compound PIIa-1 obtained by replacing the cation sites M 61a + and M 61b + in the structural site X in the structural site X in the compound (IIa-1) with H + is HA 61a -L 61 -N(R 2X ) -L 62 -A 61b H.
  • compound PIIa-1 is the same as the acid generated from the compound represented by formula (IIa-1) upon exposure to actinic rays or radiation.
  • At least one of M 61a + , M 61b + , A 61a ⁇ , A 61b ⁇ , L 61 , L 62 and R 2X may have an acid-decomposable group as a substituent.
  • a 71a ⁇ , A 71b ⁇ , and A 71c ⁇ have the same meanings as A 11 ⁇ in formula (Ia-1) above, and preferred embodiments are also the same.
  • M 71a + , M 71b + , and M 71c + have the same meanings as M 11 + in formula (Ia-1) above, and the preferred embodiments are also the same.
  • L 71 , L 72 , and L 73 have the same meanings as L 1 in formula (Ia-1) above, and preferred embodiments are also the same.
  • the acid dissociation constant a1-9 derived from, the acid dissociation constant a1-10 derived from the acidic site represented by A 71b H, and the acid dissociation constant a1-11 derived from the acidic site represented by A 71c H are It corresponds to the acid dissociation constant a1 described above.
  • a compound PIIa-2 obtained by replacing the cation sites M 71a + , M 71b + , and M 71c + in the structural site X of the compound (IIa-1) with H + is HA 71a -L 71 -N(L 73 -A 71c H) -L 72 -A 71b H.
  • compound PIIa-2 is the same as the acid generated from the compound represented by formula (IIa-2) upon exposure to actinic rays or radiation.
  • M 71a + , M 71b + , M 71c + , A 71a ⁇ , A 71b ⁇ , A 71c ⁇ , L 71 , L 72 and L 73 has an acid-decomposable group as a substituent; may
  • the content is not particularly limited, but since the cross-sectional shape of the formed pattern becomes more rectangular, the total solid content of the composition is , is preferably 0.5% by mass or more, more preferably 1.0% by mass or more.
  • the content is preferably 50.0% by mass or less, more preferably 30.0% by mass or less, and even more preferably 25.0% by mass or less, relative to the total solid content of the composition.
  • the photoacid generator (B) may be used alone or in combination of two or more.
  • the composition of the present invention may contain an acid diffusion control agent.
  • the acid diffusion control agent traps the acid generated from the photoacid generator or the like during exposure, and acts as a quencher that suppresses the reaction of the acid-decomposable resin in the unexposed area due to excess generated acid.
  • the type of acid diffusion controller is not particularly limited, and examples include basic compounds (CA), low-molecular-weight compounds (CB) having nitrogen atoms and groups that leave under the action of acids, and actinic rays or radiation. and a compound (CC) whose ability to control acid diffusion decreases or disappears upon irradiation.
  • a basic compound (CA) include, for example, those described in paragraphs [0132] to [0136] of WO2020/066824, and the basicity is reduced or reduced by exposure to actinic rays or radiation.
  • Specific examples of the disappearing basic compound (CE) include those described in paragraphs [0137] to [0155] of WO 2020/066824, have a nitrogen atom, and are eliminated by the action of an acid.
  • the low-molecular-weight compound having a group include those described in paragraphs [0156] to [0163] of WO 2020/066824, and basicity is obtained by irradiation with actinic rays or radiation.
  • Specific examples of the basic compound (CE) that decreases or disappears include those described in paragraph [0164] of WO2020/066824.
  • Specific examples of the onium salt compound (CD), which is a relatively weak acid with respect to the photoacid generator include those described in paragraphs [0305] to [0314] of International Publication No. 2020/158337. .
  • paragraphs [0627] to [0664] of US Patent Application Publication No. 2016/0070167A1 paragraphs [0095] to [0187] of US Patent Application Publication No. 2015/0004544A1
  • paragraphs [0237190A1 and paragraphs [0259] to [0328] of US Patent Application Publication No. 2016/0274458A1 can be suitably used as acid diffusion control agents.
  • the content of the acid diffusion control agent (the total when multiple types are present) is 0.1 to 15% relative to the total solid content of the resist composition. 0% by mass is preferred, and 1.0 to 15.0% by mass is more preferred.
  • the acid diffusion controller may be used singly or in combination of two or more.
  • the composition of the invention may further comprise a hydrophobic resin different from resin (A).
  • Hydrophobic resins are preferably designed to be unevenly distributed on the surface of the resist film. may not contribute to
  • the effects of adding a hydrophobic resin include control of the static and dynamic contact angles of the resist film surface with respect to water, and suppression of outgassing.
  • the hydrophobic resin preferably has one or more of a fluorine atom, a silicon atom, and a CH3 partial structure contained in the side chain portion of the resin. It is more preferable to have The hydrophobic resin preferably has a hydrocarbon group with 5 or more carbon atoms. These groups may be present in the main chain of the resin or may be substituted on the side chain. Hydrophobic resins include compounds described in paragraphs [0275] to [0279] of WO2020/004306.
  • the content of the hydrophobic resin is preferably 0.01 to 20.0% by mass, and 0.1 to 15.0% by mass, based on the total solid content of the composition. % by mass is more preferred.
  • the composition of the invention may contain a surfactant.
  • a surfactant When a surfactant is contained, it is possible to form a pattern with excellent adhesion and fewer development defects.
  • the surfactant is preferably a fluorine-based and/or silicon-based surfactant. Fluorinated and/or silicon-based surfactants include surfactants disclosed in paragraphs [0218] and [0219] of WO2018/193954.
  • One type of these surfactants may be used alone, or two or more types may be used.
  • the content of the surfactant is preferably 0.0001 to 2.0% by mass, preferably 0.0005 to 1.0%, based on the total solid content of the composition. % by mass is more preferred, and 0.1 to 1.0% by mass is even more preferred.
  • the composition of the invention preferably contains a solvent.
  • Solvent consists of (M1) propylene glycol monoalkyl ether carboxylate and (M2) propylene glycol monoalkyl ether, lactate, acetate, alkoxypropionate, linear ketone, cyclic ketone, lactone, and alkylene carbonate. It is preferable to include at least one selected from the group.
  • the solvent may further contain components other than components (M1) and (M2).
  • a combination of the above-described solvent and the above-described resin is preferable from the viewpoint of improving the coatability of the resist composition and reducing the number of development defects in the pattern. Since the solvent described above has a good balance of solubility, boiling point, and viscosity of the resin described above, it is possible to suppress unevenness in the thickness of the resist film and generation of deposits during spin coating. Details of component (M1) and component (M2) are described in paragraphs [0218] to [0226] of WO2020/004306, the contents of which are incorporated herein.
  • the content of components other than components (M1) and (M2) is preferably 5 to 30% by mass relative to the total amount of the solvent.
  • the content of the solvent in the composition of the present invention is preferably determined so that the solid content concentration is 0.5 to 30% by mass, more preferably 1 to 20% by mass. By doing so, the coatability of the resist composition can be further improved.
  • the solid content means all the components other than the solvent, and as described above, the components that form the actinic ray-sensitive or radiation-sensitive film.
  • the solid content concentration is the mass percentage of the mass of other components excluding the solvent relative to the total mass of the composition of the present invention.
  • Total solid content refers to the total mass of components excluding the solvent from the total composition of the composition of the present invention.
  • the “solid content” is the component excluding the solvent, and may be solid or liquid at 25° C., for example.
  • the composition of the present invention contains a dissolution-inhibiting compound, a dye, a plasticizer, a photosensitizer, a light-absorbing agent, and/or a compound that promotes solubility in a developer (for example, a phenol compound having a molecular weight of 1000 or less, or An alicyclic or aliphatic compound containing a carboxyl group) may further be included.
  • a dissolution-inhibiting compound for example, a dye, a plasticizer, a photosensitizer, a light-absorbing agent, and/or a compound that promotes solubility in a developer (for example, a phenol compound having a molecular weight of 1000 or less, or An alicyclic or aliphatic compound containing a carboxyl group) may further be included.
  • the “dissolution-inhibiting compound” is a compound with a molecular weight of 3000 or less, which is decomposed by the action of an acid to reduce its solubility in an organic developer.
  • the composition of the specification is suitably used as a photosensitive composition for EUV exposure.
  • EUV light has a wavelength of 13.5 nm, which is shorter than ArF (wavelength 193 nm) light and the like, so the number of incident photons is smaller when exposed with the same sensitivity. Therefore, the effect of "photon shot noise", in which the number of photons stochastically varies, is large, leading to deterioration of LER and bridge defects.
  • photon shot noise there is a method of increasing the number of incident photons by increasing the amount of exposure, but this is a trade-off with the demand for higher sensitivity.
  • the method for producing an actinic ray-sensitive or radiation-sensitive resin composition according to the present invention (hereinafter also referred to as "the method for producing the composition of the present invention” or “the method for producing a composition”) is as described above.
  • a method for producing an actinic ray-sensitive or radiation-sensitive resin composition containing the salt (P) as a compound that generates an acid upon exposure to actinic rays or radiation including a method for producing the salt (P).
  • the method for producing the composition includes, for example, a compound that is produced by the method for producing the salt (P) described above and generates an acid upon exposure to actinic rays or radiation in the actinic ray-sensitive or radiation-sensitive resin composition, and an actinic ray-sensitive resin composition. It can be produced by mixing each component that may be included in the curable or radiation-sensitive resin composition.
  • the EUV light and electron beam absorption efficiency of the resist film formed from the resist composition increases, which is effective in reducing photon shot noise.
  • the A value represents the absorption efficiency of the EUV light and the electron beam relative to the mass ratio of the resist film.
  • A ([H] x 0.04 + [C] x 1.0 + [N] x 2.1 + [O] x 3.6 + [F] x 5.6 + [S] x 1.5 + [I] ⁇ 39.5) / ([H] ⁇ 1 + [C] ⁇ 12 + [N] ⁇ 14 + [O] ⁇ 16 + [F] ⁇ 19 + [S] ⁇ 32 + [I] ⁇ 127)
  • the A value is preferably 0.120 or more.
  • the upper limit is not particularly limited, if the A value is too large, the EUV light and electron beam transmittance of the resist film will decrease, the optical image profile in the resist film will deteriorate, and as a result, it will be difficult to obtain a good pattern shape. Therefore, 0.240 or less is preferable, and 0.220 or less is more preferable.
  • [H] represents the molar ratio of hydrogen atoms derived from the total solid content to the total atoms of the total solid content in the actinic ray-sensitive or radiation-sensitive resin composition
  • [C] represents the molar ratio of carbon atoms derived from the total solid content to the total atoms of the total solid content in the actinic ray-sensitive or radiation-sensitive resin composition
  • [N] is the actinic ray-sensitive or radiation-sensitive resin
  • [O] is the total atoms of the total solid content in the actinic ray-sensitive or radiation-sensitive resin composition
  • [F] represents the molar ratio of fluorine atoms derived from the total solid content to the total atoms of the total solid content in the actinic ray-sensitive or radiation-sensitive resin
  • [S] represents the molar ratio of sulfur atoms derived from the total solid content to the total atoms of the total solid content in the actinic ray-sensitive or radiation-sensitive resin composition
  • [I] is the actinic ray-sensitive represents the molar ratio of iodine atoms derived from the total solid content to the total atoms of the total solid content in the curable or radiation-sensitive resin composition.
  • the resist composition contains an acid-decomposable resin, a photoacid generator, an acid diffusion controller, and a solvent
  • the acid-decomposable resin, the photoacid generator, and the acid diffusion controller correspond to the solid content. do.
  • the total atoms of the total solid content correspond to the sum of all atoms derived from the resin, all atoms derived from the photoacid generator, and all atoms derived from the acid diffusion control agent.
  • [H] represents the molar ratio of hydrogen atoms derived from the total solid content to the total atoms of the total solid content.
  • hydrogen atoms derived from the acid-decomposable resin, hydrogen atoms derived from the photoacid generator, and the acid with respect to the sum of all atoms derived from the photoacid generator and all atoms derived from the acid diffusion control agent It represents the total molar ratio of hydrogen atoms derived from the diffusion control agent.
  • the A value can be calculated by calculating the contained atomic ratio when the structure and content of the constituent components of the total solid content in the resist composition are known. Further, even if the constituent components are unknown, the constituent atomic number ratio can be calculated by analytical methods such as elemental analysis for the resist film obtained by evaporating the solvent component of the resist composition. .
  • Step 1 A step of forming an actinic ray- or radiation-sensitive film on a substrate from the actinic ray- or radiation-sensitive resin composition produced by the method for producing an actinic ray- or radiation-sensitive resin composition.
  • Step 2 Step of exposing the actinic ray-sensitive or radiation-sensitive film
  • Step 3 Step of developing the exposed actinic ray-sensitive or radiation-sensitive film using a developer
  • Step 1 actinic ray-sensitive or radiation-sensitive film forming step
  • Step 1 is to form an actinic ray- or radiation-sensitive film on a substrate using the actinic ray- or radiation-sensitive resin composition produced by the method for producing an actinic ray- or radiation-sensitive resin composition. It is a process.
  • An actinic ray-sensitive or radiation-sensitive film (preferably a resist film) is formed on a substrate using an actinic ray- or radiation-sensitive resin composition produced by a method for producing an actinic ray- or radiation-sensitive resin composition.
  • the forming method include a method of coating the composition of the present invention on a substrate.
  • the pore size of the filter is preferably 0.1 ⁇ m or less, more preferably 0.05 ⁇ m or less, and even more preferably 0.03 ⁇ m or less.
  • Filters are preferably made of polytetrafluoroethylene, polyethylene, or nylon.
  • compositions of the present invention can be applied onto substrates such as those used in the manufacture of integrated circuit devices (eg, silicon, silicon dioxide coatings) by any suitable coating method such as a spinner or coater.
  • the coating method is preferably spin coating using a spinner.
  • the rotation speed for spin coating using a spinner is preferably 1000 to 3000 rpm.
  • the substrate may be dried to form an actinic ray-sensitive or radiation-sensitive film. If necessary, various undercoat films (inorganic film, organic film, antireflection film) may be formed under the actinic ray-sensitive or radiation-sensitive film.
  • Heating can be carried out by a means provided in a normal exposure machine and/or a developing machine, and may be carried out using a hot plate or the like.
  • the heating temperature is preferably 80 to 150°C, more preferably 80 to 140°C, even more preferably 80 to 130°C.
  • the heating time is preferably 30 to 1000 seconds, more preferably 60 to 800 seconds, even more preferably 60 to 600 seconds.
  • the film thickness of the actinic ray-sensitive or radiation-sensitive film is not particularly limited, it is preferably 10 to 120 nm from the viewpoint of forming finer patterns with higher precision.
  • the film thickness of the actinic ray-sensitive or radiation-sensitive film is more preferably 10 to 65 nm, and even more preferably 15 to 50 nm.
  • the thickness of the actinic ray-sensitive or radiation-sensitive film is more preferably 10 to 120 nm, still more preferably 15 to 90 nm.
  • a topcoat composition may be used to form a topcoat on the upper layer of the actinic ray-sensitive or radiation-sensitive film.
  • the topcoat composition does not mix with the actinic ray-sensitive or radiation-sensitive film and can be uniformly applied over the actinic ray- or radiation-sensitive film.
  • the topcoat is not particularly limited, and a conventionally known topcoat can be formed by a conventionally known method. can be formed.
  • Specific examples of basic compounds that the topcoat may contain include basic compounds that the resist composition may contain.
  • the topcoat also preferably contains a compound containing at least one group or bond selected from the group consisting of an ether bond, a thioether bond, a hydroxyl group, a thiol group, a carbonyl bond, and an ester bond.
  • Step 2 is a step of exposing the actinic ray-sensitive or radiation-sensitive film.
  • the exposure method include a method of irradiating the formed actinic ray-sensitive or radiation-sensitive film with actinic rays or radiation through a predetermined mask.
  • Actinic rays or radiation include infrared light, visible light, ultraviolet light, far ultraviolet light, extreme ultraviolet light, X-rays, and electron beams, preferably 250 nm or less, more preferably 220 nm or less, 1 to 200 nm Particularly preferred are wavelengths of deep UV light, specifically KrF excimer lasers (248 nm), ArF excimer lasers (193 nm), F2 excimer lasers (157 nm), EUV (13.5 nm), X-rays, and electron beams.
  • baking is preferably performed before development. Baking accelerates the reaction of the exposed area, resulting in better sensitivity and pattern shape.
  • the heating temperature is preferably 80 to 150°C, more preferably 80 to 140°C, even more preferably 80 to 130°C.
  • the heating time is preferably 10 to 1000 seconds, more preferably 10 to 180 seconds, even more preferably 30 to 120 seconds. Heating can be carried out by a means provided in a normal exposing machine and/or developing machine, and may be carried out using a hot plate or the like. This step is also called a post-exposure bake.
  • Step 3 is a step of developing the exposed actinic ray-sensitive or radiation-sensitive film using a developer to form a pattern.
  • the developer may be an alkaline developer or a developer containing an organic solvent (hereinafter also referred to as an organic developer).
  • a method of immersing the substrate in a tank filled with a developer for a certain period of time for example, a method of immersing the substrate in a tank filled with a developer for a certain period of time (dip method), a method of developing by standing the developer on the surface of the substrate for a certain period of time using surface tension (puddle method). method), a method of spraying the developer onto the substrate surface (spray method), and a method of continuously discharging the developer while scanning the developer discharge nozzle at a constant speed onto the substrate rotating at a constant speed (dynamic dispensing method). ). Further, after the step of developing, a step of stopping development may be performed while replacing the solvent with another solvent.
  • the development time is not particularly limited as long as the resin in the unexposed area is sufficiently dissolved, and is preferably 10 to 300 seconds, more preferably 20 to 120 seconds.
  • the temperature of the developer is preferably 0 to 50°C, more preferably 15 to 35°C.
  • alkaline aqueous solution containing alkali is not particularly limited, for example, quaternary ammonium salts represented by tetramethylammonium hydroxide, inorganic alkalis, primary amines, secondary amines, tertiary amines, alcohol amines, or cyclic amines. and an alkaline aqueous solution containing Among them, the alkaline developer is preferably an aqueous solution of a quaternary ammonium salt represented by tetramethylammonium hydroxide (TMAH). Suitable amounts of alcohols, surfactants and the like may be added to the alkaline developer.
  • the alkali concentration of the alkali developer is usually preferably 0.1 to 20% by mass.
  • the pH of the alkaline developer is preferably 10.0 to 15.0.
  • the organic developer is a developer containing at least one organic solvent selected from the group consisting of ketone solvents, ester solvents, alcohol solvents, amide solvents, ether solvents, and hydrocarbon solvents. Preferably.
  • a plurality of the above solvents may be mixed, or may be mixed with a solvent other than the above or water.
  • the water content of the developer as a whole is preferably less than 50% by mass, more preferably less than 20% by mass, even more preferably less than 10% by mass, and particularly preferably substantially free of water.
  • the content of the organic solvent in the organic developer is preferably 50% by mass or more and 100% by mass or less, more preferably 80% by mass or more and 100% by mass or less, and 90% by mass or more and 100% by mass with respect to the total amount of the developer. The following are more preferable, and 95% by mass or more and 100% by mass or less are particularly preferable.
  • the pattern forming method preferably includes a step of washing with a rinse after step 3.
  • Pure water is an example of the rinse solution used in the rinse step after the step of developing with an alkaline developer.
  • An appropriate amount of surfactant may be added to pure water.
  • An appropriate amount of surfactant may be added to the rinse solution.
  • the rinse solution used in the rinse step after the development step using the organic developer is not particularly limited as long as it does not dissolve the pattern, and a solution containing a general organic solvent can be used.
  • the rinse solution should contain at least one organic solvent selected from the group consisting of hydrocarbon solvents, ketone solvents, ester solvents, alcohol solvents, amide solvents, and ether solvents. is preferred.
  • the method of the rinsing step is not particularly limited. For example, a method of continuously discharging the rinsing liquid onto the substrate rotating at a constant speed (rotation coating method), or a method of immersing the substrate in a tank filled with the rinsing liquid for a certain period of time. a method (dip method) and a method of spraying a rinse liquid onto the substrate surface (spray method).
  • the pattern forming method may include a heating step (Post Bake) after the rinsing step. In this step, the developing solution and the rinse solution remaining between the patterns and inside the patterns due to baking are removed. In addition, this process smoothes the resist pattern, and has the effect of improving the roughness of the surface of the pattern.
  • the heating step after the rinsing step is usually carried out at 40 to 250° C. (preferably 90 to 200° C.) for 10 seconds to 3 minutes (preferably 30 seconds to 120 seconds).
  • the substrate may be etched using the formed pattern as a mask. That is, the pattern formed in step 3 may be used as a mask to process the substrate (or the underlying film and substrate) to form a pattern on the substrate.
  • the method for processing the substrate (or the underlying film and the substrate) is not particularly limited, but the substrate (or the underlying film and the substrate) is dry-etched using the pattern formed in step 3 as a mask.
  • a method of forming a pattern is preferred. Dry etching is preferably oxygen plasma etching.
  • the composition of the present invention and various materials used in the pattern forming method of the present specification e.g., solvent, developer, rinse, antireflection film-forming composition, topcoat-forming composition, etc.
  • impurities such as The content of impurities contained in these materials is preferably 1 mass ppm or less, more preferably 10 mass ppb or less, still more preferably 100 mass ppt or less, particularly preferably 10 mass ppt or less, and most preferably 1 mass ppt or less.
  • the lower limit is not particularly limited, and is preferably 0 mass ppt or more.
  • examples of metal impurities include Na, K, Ca, Fe, Cu, Mg, Al, Li, Cr, Ni, Sn, Ag, As, Au, Ba, Cd, Co, Pb, Ti, V, W, and Zn.
  • Methods for reducing impurities such as metals contained in various materials include, for example, a method of selecting raw materials with a low metal content as raw materials constituting various materials, and a method of filtering raw materials constituting various materials with a filter. and a method of performing distillation under conditions in which contamination is suppressed as much as possible by, for example, lining the inside of the apparatus with Teflon (registered trademark).
  • impurities may be removed with an adsorbent, or filter filtration and adsorbent may be used in combination.
  • adsorbent known adsorbents can be used.
  • inorganic adsorbents such as silica gel and zeolite, and organic adsorbents such as activated carbon can be used.
  • metal impurities such as metals contained in the various materials described above, it is necessary to prevent metal impurities from entering during the manufacturing process. Whether the metal impurities are sufficiently removed from the manufacturing equipment can be confirmed by measuring the content of the metal component contained in the cleaning liquid used for cleaning the manufacturing equipment.
  • the content of the metal component contained in the cleaning liquid after use is preferably 100 mass ppt (parts per trillion) or less, more preferably 10 mass ppt or less, and even more preferably 1 mass ppt or less.
  • the lower limit is not particularly limited, and is preferably 0 mass ppt or more.
  • Organic processing liquids such as rinsing liquids should contain conductive compounds to prevent damage to chemical piping and various parts (filters, O-rings, tubes, etc.) due to electrostatic charging and subsequent electrostatic discharge.
  • the conductive compound is not particularly limited, and examples thereof include methanol.
  • the amount added is not particularly limited, but is preferably 10% by mass or less, more preferably 5% by mass or less, from the viewpoint of maintaining preferable developing properties or rinsing properties.
  • the lower limit is not particularly limited, and is preferably 0.01% by mass or more.
  • chemical liquid pipe for example, SUS (stainless steel), antistatic treated polyethylene, polypropylene, or various pipes coated with fluororesin (polytetrafluoroethylene, perfluoroalkoxy resin, etc.) can be used.
  • Antistatic treated polyethylene, polypropylene, or fluororesin (polytetrafluoroethylene, perfluoroalkoxy resin, etc.) can also be used for filters and O-rings.
  • the present specification also relates to an electronic device manufacturing method including the pattern forming method described above, and an electronic device manufactured by this manufacturing method.
  • a preferred embodiment of the electronic device of the present specification includes a mode in which it is installed in electric/electronic equipment (household appliances, OA (Office Automation), media-related equipment, optical equipment, communication equipment, etc.).
  • the molar ratio X (mol%) of the salt (I) to the salt (P) was calculated using the above formulas (1) and (2).
  • the above molar ratio X indicates the residual rate (mol%) of salt (I) with respect to 1 mol of salt (P).
  • the predetermined standard (predetermined amount) of X was set to 0.5 mol %.
  • 1 obtained by the above method was used as the titer of the silver nitrate aqueous solution.
  • the concentration Y was measured as follows.
  • a solution A is prepared by dissolving 1.6 g of the internal standard substance 1,3,5-trimethoxybenzene in 100 ml of acetonitrile.
  • To 0.08 g of the lot to be measured of the product containing salt (P) is added 10 ml of solution A and diluted to 20 ml with acetonitrile to form solution C1.
  • the solution C1 is subjected to HPLC measurement under the same conditions as above, and the peak area value SC of the salt (P) cation is calculated with respect to the peak area value of the internal standard substance. The measurement of the same sample solution is repeated two more times, and the average SC value SC AVE is calculated.
  • the corresponding sample concentration KC (g/ml) is calculated from the SC AVE and the calibration curve.
  • concentration Y (% by mass) of the lot to be measured for the salt (P) in the product containing the salt (P) was calculated from the above formula (3).
  • the concentration Z was measured as follows.
  • a solution A is prepared by dissolving 12 mg of rhodamine base (manufactured by Sigma-Aldrich) (compound C) in 200 ml of acetonitrile.
  • a solution B is prepared by dissolving 50 mg of tosylic acid (compound D) in 200 ml of acetonitrile.
  • a solution C is prepared by diluting 5 ml of the solution B 40 times with acetonitrile. 2 ml of solution A and 2 ml of solution C are placed in a 10 ml volumetric flask and diluted to 10 ml with acetonitrile to prepare solution D1.
  • the ultraviolet-visible absorption spectrum of solution D1 is measured with "UV-1800 (manufactured by Shimadzu Corporation)" to obtain absorbance Abs D1 at a maximum absorption wavelength of 556 nm.
  • solutions D2, D3 and D4 are similarly prepared.
  • the ultraviolet-visible absorption spectra of D2, D3 and D4 obtained are similarly measured to obtain Abs D2 , Abs D3 and Abs D4 .
  • 2 ml of solution A is taken in a 10 ml volumetric flask and diluted to 10 ml with acetonitrile to prepare solution E.
  • the ultraviolet-visible absorption spectrum of Solution E is measured to obtain absorbance Abs E at a wavelength of 556 nm.
  • Abs D1 to Abs D4 obtained above, the difference from Abs E is obtained, and the obtained results are defined as Abs DE1 to Abs DE4 , respectively.
  • a calibration curve for the molar concentration of tosylic acid in D1, D2, D3 and D4 and the absorbance at a wavelength of 556 nm is prepared from the obtained Abs DE1 to Abs DE4 .
  • a solution A is prepared by dissolving 12 mg of rhodamine base (manufactured by Sigma-Aldrich) (compound C) in 200 ml of acetonitrile. Weigh 0.05 g of the product containing salt (P), add 2 ml of solution A, and further add acetonitrile to prepare solution F diluted to 10 ml. As a blank, 2 ml of solution A is taken in a 10 ml volumetric flask and diluted to 10 ml with acetonitrile to prepare solution E.
  • the ultraviolet-visible absorption spectra of Solution F and Solution E are measured in the same manner as in preparing the above calibration curve, and absorbances Abs F and Abs E at a wavelength of 556 nm are obtained.
  • Abs FE Abs F -Abs E
  • the corresponding molar concentration T (mol/l) of tosylic acid is calculated from the calibration curve prepared above.
  • the residual acid concentration Z (ppm) in terms of tosylic acid contained in the product containing the salt (P) was calculated.
  • the molecular weight of tosylic acid of 172.20 was used for MT (g/mol), and the solvent amount of solution F of 0.01 (l) was used for LB.
  • the concentration Z of the residual acid contained in the product containing the salt (P) is the concentration in terms of tosylic acid (compound D).
  • the predetermined standard (predetermined amount) of Z was set to 100 ppm.
  • Lot 1-b-2 had X of 0.15 mol % and Z of 21 ppm.
  • Table 1 the above values (X is 0.15 mol % and Z is 21 ppm) are described in the columns of X and Z for Lot 2 in Synthesis Example 1, Salt B1, "b”.
  • Lot 1-b-3 had X of 0.29 mol % and Z of 16 ppm.
  • Table 1 the above values (X is 0.29 mol % and Z is 16 ppm) are described in the columns of X and Z for Lot 3 in Synthesis Example 1, Salt B1, "b”.
  • X and Z are listed in Table 1, respectively.
  • Lot 1-b-2 had a solid content of 99.1% calculated from 1 H NMR measurement
  • lot 1-b-3 had a solid content of 98.2%.
  • Lot 1-R-1 After adding 100 g of diisopropyl ether to the crude product and stirring, the solid was collected by filtration and dried under reduced pressure for 5 hours. A part of the obtained solid was dissolved in deuterated acetone and subjected to 1 H NMR measurement, and the solid content value was calculated from the integral ratio with the residual diisopropyl ether to be 96.6%. X, Y, Z were not calculated.
  • the solid obtained is referred to as Lot 1-R-1.
  • Lot 1-R-2 and Lot 1-R-3 were synthesized by the same procedure as above. Lot 1-R-2 had a solids content of 97.6% calculated from 1 H NMR measurement, and lot 1-R-3 had a solids content of 98.8%.
  • a portion of the obtained solid was dissolved in deuterated acetone and subjected to 1 H NMR measurement, and the solid content was determined from the integral ratio with the remaining diisopropyl ether to be 99.3%.
  • X and Z were measured with respect to the solid after drying, X was 0.09 mol% and Z was 10 ppm.
  • the resulting solid is referred to as Lot 2-a-0.
  • the concentration of the reference lot was the above 99.3%.
  • the crude product, salt C2 (0.045 g), 80 g of methylene chloride and 80 g of water were mixed and stirred at room temperature for 30 minutes. After removing the aqueous layer, the organic layer was washed once with 80 g of 0.1N hydrochloric acid and five times with 80 g of water, and concentrated under reduced pressure. When X was calculated again with respect to the obtained crude product, it was 0.18 mol%. 100 g of diisopropyl ether was added to the crude product and stirred, and the filtered solid was dried under reduced pressure for 5 hours.
  • Lot 2-a-3 was synthesized by the same procedure as lot 2-a-1.
  • X, Y, and Z were measured for lot 2-a-3, X was 0.24 mol%, Y was 98.2%, and Z was 31 ppm.
  • Lot 2-b-2 and Lot 2-b-3 were synthesized in the same manner as above.
  • Lot 2-b-2 had X of 0.14 mol % and Z of 44 ppm.
  • Lot 2-b-3 had X of 0.28 mol % and Z of 11 ppm.
  • Lot 2-b-2 had a solid content of 97.5% calculated from 1 H NMR measurement, and lot 2-b-3 also had a solid content of 98.8%.
  • a portion of the obtained solid was dissolved in deuterated acetone and subjected to 1 H NMR measurement, and the solid content value was calculated from the integral ratio with the residual diisopropyl ether to be 99.1%.
  • X and Z were measured with respect to the solid after drying, X was 0.08 mol% and Z was 4 ppm.
  • the resulting solid is lot 3-a-0.
  • the concentration of the reference lot was 99.1% above.
  • the crude product was mixed with salt C3 (0.11 g), 100 g of methylene chloride and 100 g of water, and stirred at room temperature for 30 minutes. After removing the aqueous layer, the organic layer was washed once with 100 g of 0.1N hydrochloric acid and three times with 100 g of water, and concentrated under reduced pressure. When X was calculated again with respect to the obtained crude product, it was 0.22 mol %. 120 g of diisopropyl ether was added to the crude product and stirred, and the filtered solid was dried under reduced pressure for 5 hours.
  • Lot 3-a-3 was synthesized by the same procedure as lot 3-a-2.
  • X, Y, and Z were measured for lot 3-a-3, X was 0.19 mol%, Y was 95.7%, and Z was 19 ppm.
  • Lot 3-b-2 and lot 3-b-3 were synthesized by the same procedure as above.
  • X was 0.11 mol% and Z was 10 ppm.
  • Lot 3-b-3 had X of 0.20 mol % and Z of 16 ppm.
  • Lot 3-b-2 had a solid content of 97.5% calculated from 1 H NMR measurement, and lot 3-b-3 also had a solid content of 99.0%.
  • a portion of the obtained solid was dissolved in deuterated acetone and subjected to 1 H NMR measurement, and the solid content value was calculated from the integral ratio with the residual diisopropyl ether to be 99.2%.
  • X and Z were measured with respect to the solid after drying, X was 0.10 mol% and Z was 5 ppm.
  • the resulting solid is lot 4-a-0.
  • the concentration of the reference lot was the above 99.2%.
  • the crude product was mixed with salt C4 (0.070 g), 160 g of methylene chloride and 160 g of water, and stirred at room temperature for 30 minutes. After removing the aqueous layer, the organic layer was washed once with 160 g of 0.1N hydrochloric acid and five times with 160 g of water, and concentrated under reduced pressure. When X was calculated again with respect to the obtained crude product, it was 0.10 mol%. 200 g of diisopropyl ether was added to the crude product and stirred, and the filtered solid was dried under reduced pressure for 5 hours.
  • Lot 4-a-3 was synthesized by the same procedure as lot 4-a-1.
  • X, Y, and Z were measured for lot 4-a-3, X was 0.24 mol%, Y was 96.6%, and Z was 9 ppm.
  • Lot 4-b-2 and Lot 4-b-3 were synthesized by the same procedure as above.
  • Lot 4-b-2 had X of 0.17 mol % and Z of 35 ppm.
  • Lot 4-b-3 had X of 0.14 mol % and Z of 10 ppm.
  • Lot 4-b-2 had a solid content of 97.5% calculated from 1 H NMR measurement, and lot 4-b-3 also had a solid content of 98.1%.
  • a portion of the obtained solid was dissolved in deuterated acetone and subjected to 1 H NMR measurement, and the solid content value was determined from the integral ratio with residual diisopropyl ether to be 99.0%.
  • X and Z were measured with respect to the solid after drying, X was 0.09 mol% and Z was 4 ppm.
  • the resulting solid is lot 5-a-0.
  • the concentration of the reference lot was 99.0% above.
  • the crude product was mixed with salt C5 (0.050 g), 80 g of methylene chloride and 80 g of water, and stirred at room temperature for 30 minutes. After removing the aqueous layer, the organic layer was washed once with 80 g of 0.1N hydrochloric acid and five times with 80 g of water, and concentrated under reduced pressure. When X was calculated again with respect to the obtained crude product, it was 0.25 mol%. 100 g of diisopropyl ether was added to the crude product and stirred, and the filtered solid was dried under reduced pressure for 5 hours.
  • Lot 5-a-3 was synthesized by the same procedure as lot 5-a-1.
  • X, Y, and Z were measured for lot 5-a-3, X was 0.13 mol%, Y was 96.0%, and Z was 21 ppm.
  • Lot 5-b-2 and lot 5-b-3 were synthesized by the same procedure as above.
  • Lot 5-b-2 had X of 0.13 mol % and Z of 18 ppm.
  • Lot 5-b-3 had X of 0.15 mol % and Z of 33 ppm.
  • Lot 5-b-2 had a solid content of 96.6% calculated from 1 H NMR measurement, and lot 5-b-3 had a solid content of 96.7%.
  • a part of the obtained solid was dissolved in deuterated acetone and subjected to 1 H NMR measurement, and the solid content value was calculated from the integral ratio with residual diisopropyl ether to be 99.5%.
  • X and Z were measured with respect to the solid after drying, X was 0.09 mol% and Z was 6 ppm.
  • the resulting solid is referred to as Lot 6-a-0.
  • the concentration of the reference lot was 99.5% above.
  • Lot 6-a-2 and Lot 6-a-3 were synthesized in the same manner as Lot 6-a-1, respectively.
  • X was 0.09 mol%
  • Y was 98.9%
  • Z was 13 ppm.
  • Lot 6-a-3 had X of 0.14 mol %, Y of 99.4% and Z of 22 ppm.
  • Lot 6-b-2 had X of 0.13 mol % and Z of 14 ppm.
  • Lot 6-b-3 had X of 0.10 mol % and Z of 10 ppm.
  • Lot 6-b-2 had a solid content of 98.8% calculated from 1 H NMR measurement, and lot 6-b-3 had a solid content of 96.8%.
  • a portion of the obtained solid was dissolved in deuterated acetone and subjected to 1 H NMR measurement. Since no diisopropyl ether peak was observed, the solid content value was determined from the integral ratio with residual isopropyl alcohol, and was 99.7. %Met. When X and Z were measured for the solid after drying, X was 0.10 mol % and Z was 5 ppm. The resulting solid is lot 7-a-0. The concentration of the reference lot was the above 99.7%.
  • Lot 7-a-3 was synthesized by the same procedure as lot 7-a-2.
  • X, Y, and Z were measured for lot 7-a-3, X was 0.21 mol%, Y was 98.1%, and Z was 21 ppm.
  • Lot 7-b-2 had X of 0.25 mol % and Z of 14 ppm.
  • Lot 7-b-3 had X of 0.11 mol % and Z of 10 ppm.
  • Lot 7-b-2 had a solids content of 95.8% calculated from 1 H NMR measurement, and lot 7-b-3 had a solids content of 98.3%.
  • Lot 7-c-2 and lot 7-c-3 were synthesized by the same procedure as above.
  • Lot 7-c-2 had X of 0.15 mol % and Y of 97.4%.
  • Lot 7-c-3 had X of 0.28 mol % and Y of 98.6%.
  • Me represents a methyl group.
  • a portion of the obtained solid was dissolved in deuterated acetone and subjected to 1 H NMR measurement, and the solid content value was determined from the integral ratio with the residual isopropyl alcohol to be 99.7%.
  • X and Z were measured with respect to the solid after drying, X was 0.08 mol% and Z was 7 ppm.
  • the resulting solid is lot 8-a-0.
  • the concentration of the reference lot was the above 99.7%.
  • Lot 8-a-3 was synthesized by the same procedure as lot 8-a-1.
  • X, Y, and Z were measured for lot 8-a-3, X was 0.13 mol%, Y was 99.1%, and Z was 10 ppm.
  • Lot 8-b-2 and lot 8-b-3 were synthesized by the same procedure as above.
  • Lot 8-b-2 had X of 0.15 mol % and Z of 31 ppm.
  • Lot 8-b-3 had X of 0.12 mol % and Z of 13 ppm.
  • Lot 8-b-2 had a solid content of 99.2% calculated from 1 H NMR measurement, and lot 8-b-3 had a solid content of 98.9%.
  • Lot 8-c-2 and lot 8-c-3 were synthesized by the same procedure as above.
  • Lot 8-c-2 had X of 0.12 mol % and Y of 98.8%.
  • X in lot 8-c-3 was 0.13 mol % and Y was 99.4%.
  • Lot 9-a-3 was synthesized by a procedure similar to lot 9-a-1.
  • X, Y, and Z were measured for lot 9-a-3, X was 0.11 mol%, Y was 99.2%, and Z was 11 ppm.
  • Lot 9-b-2 had X of 0.16 mol % and Z of 9 ppm.
  • Lot 9-b-3 had X of 0.16 mol % and Z of 14 ppm.
  • Lot 9-b-2 had a solids content of 98.6% calculated from 1 H NMR measurement, and lot 9-b-3 had a solids content of 99.2% as well.
  • Lot 9-c-2 and lot 9-c-3 were synthesized by the same procedure as above.
  • Lot 9-c-2 had X of 0.16 mol % and Y of 98.6%.
  • Lot 9-c-3 had X of 0.10 mol % and Y of 99.2%.
  • the solid obtained by repeating this three times was dried under reduced pressure for 8 hours.
  • a portion of the obtained solid was dissolved in deuterated acetone and subjected to 1 H NMR measurement, and the solid content value was calculated from the integral ratio with residual diisopropyl ether to be 99.3%.
  • X and Z were measured with respect to the solid after drying, X was 0.09 mol% and Z was 8 ppm.
  • the resulting solid is lot 10-a-0.
  • the concentration of the reference lot was the above 99.3%.
  • Lot 10-a-2 and Lot 10-a-3 were synthesized in the same manner as Lot 10-a-1, respectively.
  • Lot 10-a-2 had X of 0.16 mol %, Y of 97.2% and Z of 24 ppm.
  • Lot 10-a-3 had X of 0.19 mol %, Y of 95.8% and Z of 17 ppm.
  • Lot 10-b-2 and lot 10-b-3 were synthesized by the same procedure as above.
  • Lot 10-b-2 had X of 0.15 mol % and Z of 11 ppm.
  • Lot 10-b-3 had X of 0.13 mol % and Z of 12 ppm.
  • Lot 10-b-2 had a solids content of 95.8% calculated from 1 H NMR measurement, and lot 10-b-3 had a solids content of 97.1% as well.
  • Lot 10-c-2 and lot 10-c-3 were synthesized by the same procedure as above.
  • Lot 10-c-2 had X of 0.18 mol % and Y of 96.9%.
  • Lot 10-c-3 had X of 0.22 mol % and Y of 95.5%.
  • a portion of the obtained solid was dissolved in deuterated acetone and subjected to 1 H NMR measurement, and the solid content value was determined from the integral ratio with residual chloroform to be 99.8%.
  • X and Z were measured with respect to the solid after drying, X was 0.08 mol% and Z was 4 ppm.
  • the resulting solid is lot 11-a-0.
  • the concentration of the reference lot was 99.8% above.
  • the crude product was mixed with salt C10 (0.044 g), 80 g of methylene chloride and 80 g of water, and stirred at room temperature for 30 minutes. After removing the aqueous layer, the organic layer was washed once with 80 g of 0.1N hydrochloric acid and five times with 80 g of water, and concentrated under reduced pressure. When X was calculated again with respect to the obtained crude product, it was 0.11 mol %. 100 g of diisopropyl ether was added to the crude product and stirred, and the filtered solid was dried under reduced pressure for 5 hours.
  • Lot 11-a-3 was synthesized in a manner similar to lot 11-a-1.
  • X, Y and Z were measured for lot 11-a-3, X was 0.15 mol%, Y was 99.2%, and Z was 12 ppm.
  • Lot 11-b-2 and lot 11-b-3 were synthesized by the same procedure as above.
  • Lot 11-b-2 had X of 0.19 mol % and Z of 9 ppm.
  • Lot 11-b-3 had X of 0.12 mol % and Z of 14 ppm.
  • Lot 11-b-2 had a solids content of 98.8% calculated from 1 H NMR measurement, and lot 11-b-3 had a solids content of 98.0% as well.
  • Lot 11-c-2 and lot 11-c-3 were synthesized by the same procedure as above.
  • Lot 11-c-2 had X of 0.12 mol % and Y of 98.2%.
  • Lot 11-c-3 had X of 0.16 mol % and Y of 98.4%.
  • a portion of the obtained solid was dissolved in deuterated acetone and subjected to 1 H NMR measurement, and the solid content value was calculated from the integral ratio with the residual diisopropyl ether to be 99.5%.
  • X and Z were measured for the solid after drying, X was 0.09 mol% and Z was 7 ppm.
  • the resulting solid is lot 12-a-0.
  • the concentration of the reference lot was 99.5% above.
  • Lot 12-a-2 and Lot 12-a-3 were each synthesized in the same manner as Lot 12-a-1.
  • Lot 12-a-2 had X of 0.18 mol %, Y of 99.4% and Z of 15 ppm.
  • Lot 12-a-3 had X of 0.25 mol %, Y of 98.2% and Z of 14 ppm.
  • Lot 12-b-2 and lot 12-b-3 were synthesized by the same procedure as above.
  • Lot 12-b-2 had X of 0.18 mol % and Z of 30 ppm.
  • Lot 12-b-3 had X of 0.16 mol % and Z of 10 ppm.
  • Lot 12-b-2 had a solids content of 99.2% calculated from 1 H NMR measurement, and lot 12-b-3 had a solids content of 98.5% as well.
  • Lot 12-c-2 and lot 12-c-3 were synthesized by the same procedure as above.
  • Lot 12-c-2 had X of 0.19 mol % and Y of 99.3%.
  • Lot 12-c-3 had X of 0.16 mol % and Y of 99.2%.
  • a portion of the obtained solid was dissolved in deuterated acetone and subjected to 1 H NMR measurement, and the solid content value was calculated from the integral ratio with the residual diisopropyl ether to be 99.4%.
  • X and Z were measured with respect to the solid after drying, X was 0.10 mol% and Z was 8 ppm.
  • the resulting solid is lot 13-a-0.
  • the concentration of the reference lot was the above 99.4%.
  • the crude product was mixed with salt C12 (0.046 g), 80 g of methylene chloride and 80 g of water, and stirred at room temperature for 30 minutes. After removing the aqueous layer, the organic layer was washed once with 80 g of 0.1N hydrochloric acid and five times with 80 g of water, and concentrated under reduced pressure. When X was calculated again with respect to the obtained crude product, it was 0.12 mol %. 100 g of diisopropyl ether was added to the crude product and stirred, and the filtered solid was dried under reduced pressure for 5 hours.
  • Lot 13-a-3 was synthesized by a procedure similar to lot 13-a-1.
  • X, Y, and Z were measured for lot 13-a-3, X was 0.18 mol%, Y was 99.0%, and Z was 11 ppm.
  • Lot 13-b-2 and Lot 13-b-3 were synthesized in the same manner as above.
  • Lot 13-b-2 had X of 0.10 mol % and Z of 29 ppm.
  • Lot 13-b-3 had X of 0.13 mol % and Z of 28 ppm.
  • Lot 13-b-2 had a solids content of 96.8% calculated from 1 H NMR measurements, and lot 13-b-3 had a solids content of 98.1% as well.
  • Lot 13-c-2 and lot 13-c-3 were synthesized by the same procedure as above.
  • Lot 13-c-2 had X of 0.12 mol % and Y of 99.5%.
  • Lot 13-c-3 had X of 0.13 mol % and Y of 98.8%.
  • the crude product was mixed with salt C13 (0.051 g), 80 g of methylene chloride and 80 g of water, and stirred at room temperature for 30 minutes. After removing the aqueous layer, the organic layer was washed once with 80 g of 0.1N hydrochloric acid and five times with 80 g of water, and concentrated under reduced pressure. When X was calculated again with respect to the obtained crude product, it was 0.19 mol%. 100 g of diisopropyl ether was added to the crude product and stirred, and the filtered solid was dried under reduced pressure for 5 hours.
  • a portion of the obtained solid was dissolved in deuterated acetone and subjected to 1 H NMR measurement, and the solid content value was determined from the integral ratio with the residual diisopropyl ether to be 98.9%.
  • X, Y, and Z were measured for the solid after drying, X was 0.19 mol%, Y was 98.1%, and Z was 21 ppm.
  • the resulting solid is lot 14-a-1.
  • Lot 14-a-3 was synthesized by a procedure similar to lot 14-a-1.
  • X, Y and Z were measured for lot 14-a-3, X was 0.19 mol%, Y was 99.1%, and Z was 12 ppm.
  • Lot 14-b-2 and lot 14-b-3 were synthesized by the same procedure as above.
  • Lot 14-b-2 had X of 0.26 mol % and Z of 19 ppm.
  • Lot 14-b-3 had X of 0.12 mol % and Z of 18 ppm.
  • Lot 14-b-2 had a solids content of 98.7% calculated from 1 H NMR measurement, and lot 14-b-3 had a solids content of 98.3%.
  • Lot 14-c-2 and lot 14-c-3 were synthesized by the same procedure as above.
  • Lot 14-c-2 had X of 0.19 mol % and Y of 99.4%.
  • Lot 14-c-3 had X of 0.15 mol % and Y of 98.0%.
  • a portion of the obtained solid was dissolved in deuterated acetone and subjected to 1 H NMR measurement, and the solid content value was calculated from the integral ratio with the remaining isopropyl alcohol to be 99.3%.
  • X and Z were measured for the solid after drying, X was 0.08 mol% and Z was 8 ppm.
  • the resulting solid is designated Lot 15-a-0.
  • the concentration of the reference lot was the above 99.3%.
  • the crude product was mixed with salt C14 (0.050 g), 100 g of methylene chloride and 100 g of water, and stirred at room temperature for 30 minutes. After removing the aqueous layer, the organic layer was washed once with 100 g of 0.1N hydrochloric acid and five times with 100 g of water, and concentrated under reduced pressure. When X was calculated again with respect to the obtained crude product, it was 0.11 mol %. 120 g of diisopropyl ether was added to the crude product and stirred, and the filtered solid was dried under reduced pressure for 5 hours.
  • Lot 15-b-2 had X of 0.16 mol % and Z of 12 ppm.
  • Lot 15-b-3 had X of 0.16 mol % and Z of 20 ppm.
  • Lot 15-b-2 had a solids content of 98.5% calculated from 1 H NMR measurement, and lot 15-b-3 had a solids content of 96.9% as well.
  • Lot 15-c-2 and lot 15-c-3 were synthesized by the same procedure as above.
  • Lot 15-c-2 had X of 0.16 mol % and Y of 96.9%.
  • Lot 15-c-3 had X of 0.11 mol % and Y of 97.5%.
  • a portion of the obtained solid was dissolved in deuterated acetone and subjected to 1 H NMR measurement, and the solid content value was calculated from the integral ratio with the residual diisopropyl ether to be 99.4%.
  • X and Z were measured with respect to the solid after drying, X was 0.09 mol% and Z was 6 ppm.
  • the resulting solid is lot 16-a-0.
  • the concentration of the reference lot was the above 99.4%.
  • Lot 16-a-2 and Lot 16-a-3 were synthesized by the same procedure as Lot 16-a-1, respectively.
  • Lot 16-a-2 had X of 0.15 mol %, Y of 98.7%, and Z of 11 ppm.
  • Lot 16-a-3 had X of 0.14 mol %, Y of 99.2% and Z of 11 ppm.
  • Lot 16-b-2 had X of 0.19 mol % and Z of 12 ppm.
  • Lot 16-b-3 had X of 0.12 mol % and Z of 21 ppm.
  • Lot 16-b-2 had a solids content of 99.4% calculated from 1 H NMR measurement, and lot 16-b-3 had a solids content of 99.8% as well.
  • Lot 16-c-2 and lot 16-c-3 were synthesized by the same procedure as above.
  • Lot 16-c-2 had X of 0.21 mol % and Y of 99.4%.
  • Lot 16-c-3 had X of 0.10 mol % and Y of 99.4%.
  • the crude product was mixed with salt C16 (0.020 g), 80 g of methylene chloride, and 80 g of water, and stirred at room temperature for 30 minutes. After removing the aqueous layer, the organic layer was washed once with 80 g of 0.1N hydrochloric acid and five times with 80 g of water, and concentrated under reduced pressure. When X was calculated again with respect to the obtained crude product, it was 0.27 mol%. 100 g of diisopropyl ether was added to the crude product and stirred, and the filtered solid was dried under reduced pressure for 5 hours.
  • Lot 17-a-3 was synthesized by a procedure similar to lot 17-a-1.
  • X, Y, and Z were measured for lot 17-a-3, X was 0.14 mol%, Y was 99.1%, and Z was 13 ppm.
  • Lot 17-b-2 and lot 17-b-3 were synthesized by the same procedure as above.
  • Lot 17-b-2 had X of 0.15 mol % and Z of 10 ppm.
  • Lot 17-b-3 had X of 0.13 mol % and Z of 13 ppm.
  • Lot 17-b-2 had a solids content of 98.2% calculated from 1 H NMR measurement, and lot 17-b-3 had a solids content of 97.2% as well.
  • the crude product was mixed with salt C17 (0.030 g), 80 g of methylene chloride, and 80 g of water, and stirred at room temperature for 30 minutes. After removing the aqueous layer, the organic layer was washed once with 80 g of 0.1N hydrochloric acid and five times with 80 g of water, and concentrated under reduced pressure. When X was calculated again with respect to the obtained crude product, it was 0.12 mol %. 100 g of diisopropyl ether was added to the crude product and stirred, and the filtered solid was dried under reduced pressure for 5 hours.
  • Lot 18-a-3 was synthesized following the same procedure as lot 18-a-2.
  • X, Y, and Z were measured for lot 18-a-3, X was 0.12 mol%, Y was 98.3%, and Z was 11 ppm.
  • Lot 18-b-2 and lot 18-b-3 were synthesized by the same procedure as above.
  • Lot 18-b-2 had X of 0.14 mol % and Z of 14 ppm.
  • Lot 18-b-3 had X of 0.14 mol % and Z of 9 ppm.
  • Lot 18-b-2 had a solids content of 98.5% calculated from 1 H NMR measurement, and lot 18-b-3 had a solids content of 99.0% as well.
  • Lot 18-c-2 and lot 18-c-3 were synthesized by the same procedure as above.
  • Lot 18-c-2 had X of 0.17 mol % and Y of 98.3%.
  • Lot 18-c-3 had X of 0.12 mol % and Y of 99.0%.
  • the crude product was mixed with salt C18 (0.026 g), 80 g of methylene chloride and 80 g of water, and stirred at room temperature for 30 minutes. After removing the aqueous layer, the organic layer was washed once with 80 g of 0.1N hydrochloric acid and five times with 80 g of water, and concentrated under reduced pressure. When X was calculated again with respect to the obtained crude product, it was 0.19 mol%. 100 g of diisopropyl ether was added to the crude product and stirred, and the filtered solid was dried under reduced pressure for 5 hours.
  • Lot 19-a-3 was synthesized by a procedure similar to lot 19-a-1.
  • X, Y, and Z were measured for lot 19-a-3, X was 0.18 mol%, Y was 99.0%, and Z was 12 ppm.
  • Lot 19-b-2 and lot 19-b-3 were synthesized by the same procedure as above.
  • Lot 19-b-2 had X of 0.10 mol % and Z of 24 ppm.
  • Lot 19-b-3 had X of 0.19 mol % and Z of 11 ppm.
  • Lot 19-b-2 had a solids content of 97.4% calculated from 1 H NMR measurement, and lot 19-b-3 had a solids content of 98.6% as well.
  • Lot 19-c-2 and lot 19-c-3 were synthesized by the same procedure as above.
  • Lot 19-c-2 had X of 0.17 mol % and Y of 98.8%.
  • Lot 19-c-3 had X of 0.19 mol % and Y of 98.3%.
  • Lot 20-a-3 was synthesized following the same procedure as lot 20-a-2.
  • X, Y, and Z were measured for lot 20-a-3, X was 0.14 mol%, Y was 98.8%, and Z was 15 ppm.
  • Lot 20-b-2 had X of 0.11 mol % and Z of 10 ppm.
  • Lot 20-b-3 had X of 0.11 mol % and Z of 23 ppm.
  • Lot 20-b-2 had a solids content of 98.3% calculated from 1 H NMR measurement, and lot 20-b-3 had a solids content of 99.9% as well.
  • Lot 20-c-2 had X of 0.16 mol % and Y of 99.4%.
  • Lot 20-c-3 had X of 0.21 mol % and Y of 98.5%.
  • Table 1 shows the results of X, Y, and Z for each lot in each synthesis example.
  • S-1 Propylene glycol monomethyl ether acetate (PGMEA)
  • S-2 Propylene glycol monomethyl ether (PGME)
  • S-3 ⁇ -butyrolactone
  • S-4 ethyl lactate
  • S-5 cyclohexanone
  • S-6 2-heptanone
  • Examples 1-20 and Comparative Examples 1-20 Preparation of actinic ray-sensitive or radiation-sensitive resin composition
  • Each component shown in Table 2 was mixed so that the solid content concentration was 2.0% by mass.
  • the resulting mixture is first filtered through a polyethylene filter with a pore size of 50 nm, then with a nylon filter with a pore size of 10 nm, and finally with a polyethylene filter with a pore size of 5 nm, in order to obtain an actinic ray-sensitive or radiation-sensitive
  • a flexible resin composition (resist composition) was prepared.
  • the amount of salt (P) was calculated from the solid content value and weighed so that the amount shown in Table 2 was obtained.
  • Y was measured in each lot, Y was taken as the solid content value.
  • the "% by mass" column indicates the content (% by mass) of each component with respect to the total solid content in the resist composition.
  • the amounts (mass parts) of the solvents used are shown in the table.
  • ⁇ Sensitivity fluctuation evaluation> The difference ⁇ CD (nm) between the pattern line width of each lot of each salt (P) and the target pattern size of 25 nm was calculated, and the average value ⁇ CD AVE of ⁇ CD between each lot was calculated.
  • a positive value of ⁇ CD indicates a shift to the low sensitivity side
  • a negative value of ⁇ CD indicates a shift to the high sensitivity side.
  • the absolute value of ⁇ CD AVE is preferably as low as possible, preferably 0.5 nm or less, more preferably 0.2 nm or less.
  • Example 1 one of each lot ((1-a-1) to (1-a-3)) of (a-1) to (a-3) related to salt B1 is selected.
  • the sensitivity (Eop) was defined as the irradiation energy for resolving a 1:1 line-and-space pattern with a line width of 25 nm.
  • Two lots other than the selected lots were exposed at the above Eop, the line width of the resulting pattern size was measured, and the difference ⁇ CD (nm) from 25 nm was calculated.
  • An average value ⁇ CD AVE of ⁇ CD between each lot was calculated. The value obtained is reported as " ⁇ CD AVE " for Lot a in Example 1 of Table 3.
  • Example 1 select one of each lot ((1-b-1) to (1-b-3)) of (b-1) to (b-3) related to salt B1.
  • the sensitivity (Eop) was defined as the irradiation energy for resolving a 1:1 line-and-space pattern with a line width of 25 nm.
  • Two lots other than the selected lots were exposed at the above Eop, the line width of the resulting pattern size was measured, and the difference ⁇ CD (nm) from 25 nm was calculated.
  • An average value ⁇ CD AVE of ⁇ CD between each lot was calculated. The value obtained is reported as " ⁇ CD AVE " for Lot b in Example 1 of Table 3.
  • Example 1 select one of each lot ((1-c-1) to (1-c-3)) of (c-1) to (c-3) related to salt B1.
  • the sensitivity (Eop) was defined as the irradiation energy for resolving a 1:1 line-and-space pattern with a line width of 25 nm. Two lots other than the selected lots were exposed at the above Eop, the line width of the resulting pattern size was measured, and the difference ⁇ CD (nm) from 25 nm was calculated. An average value ⁇ CD AVE of ⁇ CD between each lot was calculated. The value obtained is reported as " ⁇ CD AVE " for Lot c in Example 1 of Table 3. In each of lots a to c of Example 1, the smaller the absolute value of " ⁇ CD AVE " is, the smaller the variation in sensitivity is, which is preferable. Examples 2 to 20 were also evaluated in the same manner as in Example 1.
  • Comparative Example 1 one of each lot ((1-R-1) to (1-R-3)) of (R-1) to (R-3) related to salt B1 is selected,
  • the sensitivity (Eop) was defined as the irradiation energy for resolving a 1:1 line-and-space pattern with a line width of 25 nm.
  • Two lots other than the selected lots were exposed at the above Eop, the line width of the resulting pattern size was measured, and the difference ⁇ CD (nm) from 25 nm was calculated.
  • An average value ⁇ CD AVE of ⁇ CD between each lot was calculated. The obtained value is listed as " ⁇ CD AVE " for Lot R in Comparative Example 1 in Table 3.
  • Comparative Examples 2 to 20 were evaluated in the same manner as in Comparative Example 1. Table 3 shows the evaluation results.
  • the manufacturing method of the salt which can suppress the fluctuation
  • the manufacturing method of the said actinic-ray-sensitive or radiation-sensitive resin composition, the pattern formation method, and the manufacturing method of an electronic device can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Materials For Photolithography (AREA)

Abstract

本発明は、(1)上記有機カチオンとハロゲン化物イオンとの塩(I)に対してアニオン交換を行うことで、上記塩(P)を含む生成物を得る工程、(2)上記生成物に対して、硝酸銀水溶液を用いた電位差滴定法を適用することにより、上記塩(P)に対する上記塩(I)のモル比率Xを得る工程、(3)上記モル比率Xに基づき、上記塩(P)の純度が所定基準を満たすか否かを判定する工程を有する、有機カチオンと有機アニオンとの塩(P)の製造方法を提供する。

Description

塩の製造方法、感活性光線性又は感放射線性樹脂組成物の製造方法、パターン形成方法、及び電子デバイスの製造方法
 本発明は、塩の製造方法、感活性光線性又は感放射線性樹脂組成物の製造方法、パターン形成方法、及び電子デバイスの製造方法に関する。
 IC(Integrated Circuit、集積回路)及びLSI(LargeScale Integrated circuit、大規模集積回路)等の半導体デバイスの製造プロセスにおいては、感光性組成物を用いたリソグラフィーによる微細加工が行われている。
 リソグラフィーの方法として、感光性組成物によりレジスト膜を形成した後、得られた膜を露光して、その後、現像する方法が挙げられる。特に、近年、露光の際に、ArFエキシマレーザーに加えて、EB(Electron Beam)、EUV(Extreme ultraviolet)光を用いる検討がなされており、EUV露光に適した感活性光線性又は感放射線性樹脂組成物の開発がなされている。
 微細なパターン形成を目的としたEUV(波長13.5nm)、又は電子線を用いたレジストパターンの形成においては、従来のArF(波長193nm)光等を用いた場合よりも各種性能において求められる要求が厳しくなっている(例えば、特許文献1)。
国際公開2020/261885号
 近年、EUV光又は電子線を用いて形成されるパターンの微細化に伴い、パターンを形成する感活性光線性又は感放射線性樹脂組成物には、諸性能において、更なる向上が求められている。
 上記組成物の諸性能向上を目的に、本発明者らが検討したところ、同一条件で製造される同一の成分を有する組成物であっても、組成物の製品ロットの違いにより、パターン形成における解像性等に差が生じ、このような性能の差(以降、「製品ロット間の性能変動」とも言う)は、パターンの微細化に伴って、顕在化しやすく、また避けがたいことが分かってきた。
 感活性光線性又は感放射線性樹脂組成物は、一つの好適の実施形態において、樹脂、活性光線又は放射線の照射により酸を発生する化合物、酸拡散制御剤、溶剤等の成分を含有する。組成物の製品ロット間の性能変動を抑制すべく、本発明者らは、上記成分の内、活性光線又は放射線の照射により酸を発生する化合物として使用される、有機カチオンと有機アニオンからなる塩について着目し、この塩の製品ロット間の何らかの差異(例えば、塩における不純物量の製品ロット間の差異)が、組成物の製品ロット間の性能変動に与える影響について、従来法であるNMR(nuclear magnetic resonance)を用いて検討した。
 しかしながら、NMRによる上記塩における不純物量の分析、及び、その分析結果を鑑みた組成物の製造方法等では、組成物の製品ロット間の性能変動を抑制することは困難であることが判明した。この結果を踏まえ、本発明者らは、更に検討を進め、上記塩の製造方法において、硝酸銀水溶液を用いた電位差滴定法を用いた分析、及び、分析結果に基づく塩の純度管理を行ったところ、組成物の製品ロット間の性能変動を著しく抑制できることを見出し、本発明を完成したものである。
 そこで本発明は、感活性光線性又は感放射線性樹脂組成物の製品ロットの違いによる感度の変動を抑制できる、塩の製造方法を提供することを課題とする。
 また、本発明は、上記感活性光線性又は感放射線性樹脂組成物の製造方法、パターン形成方法、及び電子デバイスの製造方法を提供することを課題とする。
 本発明者らは、以下の構成により上記課題を解決できることを見出した。
[1]
 下記工程を有する、有機カチオンと有機アニオンとの塩(P)の製造方法。
(1)上記有機カチオンとハロゲン化物イオンとの塩(I)に対してアニオン交換を行うことで、上記塩(P)を含む生成物を得る工程
(2)上記生成物に対して、硝酸銀水溶液を用いた電位差滴定法を適用することにより、上記塩(P)に対する上記塩(I)のモル比率Xを得る工程
(3)上記モル比率Xに基づき、上記塩(P)の純度が所定基準を満たすか否かを判定する工程
[2]
 更に、(4)上記工程(3)において前記モル比率Xが所定値を超える場合には上記塩(P)を含む生成物に対して純度向上策を適用することで、上記モル比率Xが上記所定値以下の塩(P)を含む生成物を得る工程を有する、[1]に記載の塩(P)の製造方法。
[3]
 上記工程(4)における上記塩(P)を含む生成物に対する純度向上策が、上記塩(P)を含む生成物に対する上記塩(I)の除去による精製である、[2]に記載の塩(P)の製造方法。
[4]
 上記工程(1)におけるアニオン交換が、上記塩(I)と上記有機アニオンの金属塩(M)とのイオン交換によるものであり、
 上記工程(4)における上記塩(P)を含む生成物に対する純度向上策が、上記生成物に対して上記有機アニオンの金属塩(M)を添加して、上記アニオン交換を実施することである、
 [2]に記載の塩(P)の製造方法。
[5]
 更に、(5)上記モル比率Xが上記所定値以下の塩(P)を含む生成物の全量を基準とした上記塩(P)の濃度Yを、高速液体クロマトグラフィー法により求める工程を有する、[1]~[4]のいずれか1項に記載の塩(P)の製造方法。
[6]
 更に、(6)上記塩(P)を含む生成物に含有される残存酸の濃度Zを、紫外可視吸収スペクトル法により得る工程、及び、(7)上記残存酸の濃度Zが所定基準を満たすか否かを判定する工程を有する、[1]~[5]のいずれか1項に記載の塩(P)の製造方法。
[7]
 上記工程(7)において、上記残存酸の濃度Zが所定値を超過する場合、(8)上記残存酸の濃度Zの低減策を実施する工程を有する、[6]に記載の塩(P)の製造方法。
[8]
 上記塩(P)が、感活性光線性又は感放射線性樹脂組成物用の活性光線又は放射線の照射によって酸を発生する化合物である、[1]~[7]のいずれか1項に記載の塩(P)の製造方法。
[9]
 上記塩(P)におけるカチオンが下記式(ZaI)で表されるカチオンである、[1]~[8]のいずれか1項に記載の塩(P)の製造方法。
Figure JPOXMLDOC01-appb-C000002
 式(ZaI)中、
 R201、R202、及びR203は、それぞれ独立に、有機基を表す。
[10]
 上記式(ZaI)中のR201~R203の少なくとも一つが、アリール基である、[9]に記載の塩(P)の製造方法。
[11]
 [1]~[10]のいずれか1項に記載の塩(P)の製造方法を含む、活性光線又は放射線の照射によって酸を発生する化合物として上記塩(P)を含有する感活性光線性又は感放射線性樹脂組成物の製造方法。
[12]
 [11]に記載の感活性光線性又は感放射線性樹脂組成物の製造方法により製造された上記感活性光線性又は感放射線性樹脂組成物により基板上に感活性光線性又は感放射線性膜を形成する工程、
 上記感活性光線性又は感放射線性膜を露光する工程、及び
 上記露光された感活性光線性又は感放射線性膜を現像液を用いて現像する工程
を有する、パターン形成方法。
[13]
 [12]に記載のパターン形成方法を含む、電子デバイスの製造方法。
 本発明によれば、感活性光線性又は感放射線性樹脂組成物の製品ロットの違いによる感度の変動を抑制できる、塩の製造方法を提供することができる。
 また、本発明によれば、上記感活性光線性又は感放射線性樹脂組成物の製造方法、パターン形成方法、及び電子デバイスの製造方法を提供することができる。
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされる場合があるが、本発明はそのような実施態様に限定されない。
 本明細書中における基(原子団)の表記について、本発明の趣旨に反しない限り、置換及び無置換を記していない表記は、置換基を有さない基と共に置換基を含む基をも包含する。例えば、「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含する。また、本明細書中において、「有機基」とは、少なくとも1個の炭素原子を含む基をいう。
 置換基としては、特に断らない限り、1価の置換基が好ましい。
 本明細書において、「活性光線」又は「放射線」とは、例えば、水銀灯の輝線スペクトル、エキシマレーザーに代表される遠紫外線、極紫外線(EUV光: Extreme Ultraviolet)、X線、及び、電子線(EB:Electron Beam)を意味する。
 本明細書において、「光」とは、活性光線又は放射線を意味する。
 本明細書において、「露光」とは、特に断らない限り、水銀灯の輝線スペクトル、エキシマレーザーに代表される遠紫外線、極紫外線(EUV:Extreme ultraviolet)、及び、X線等による露光のみならず、電子線、及び、イオンビーム等の粒子線による描画も含む。
 本明細書において、「~」とは、その前後に記載される数値を下限値及び上限値として含む意味で使用される。
 本明細書において、表記される2価の連結基の結合方向は、特に断らない限り制限されない。例えば、「X-Y-Z」なる式で表される化合物中の、Yが-COO-である場合、Yは、-CO-O-であってもよく、-O-CO-であってもよい。上記化合物は「X-CO-O-Z」であってもよく、「X-O-CO-Z」であってもよい。
 本明細書において、(メタ)アクリレートはアクリレート及びメタクリレートを表し、(メタ)アクリルはアクリル及びメタクリルを表す。
 本明細書において、重量平均分子量(Mw)、数平均分子量(Mn)、及び、分散度(以下「分子量分布」ともいう。)(Mw/Mn)は、GPC(Gel Permeation Chromatography)装置(東ソー社製HLC-8120GPC)によるGPC測定(溶媒:テトラヒドロフラン、流量(サンプル注入量):10μL、カラム:東ソー社製TSK gel Multipore HXL-M、カラム温度:40℃、流速:1.0mL/分、検出器:示差屈折率検出器(Refractive Index Detector))によるポリスチレン換算値として定義される。
 本明細書において、酸解離定数(pKa)とは、水溶液中でのpKaを表し、具体的には、下記ソフトウェアパッケージ1を用いて、ハメットの置換基定数及び公知文献値のデータベースに基づいた値を、計算により求められる値である。
 ソフトウェアパッケージ1: Advanced Chemistry Development (ACD/Labs) Software V8.14 for Solaris (1994-2007 ACD/Labs)。
 pKaは、分子軌道計算法によっても求められる。具体的な方法としては、熱力学サイクルに基づいて、水溶液中におけるH解離自由エネルギーを計算することで算出する手法が挙げられる。H解離自由エネルギーの計算方法については、例えばDFT(密度汎関数法)により計算することができるが、他にも様々な手法が文献等で報告されており、これに制限されない。なお、DFTを実施できるソフトウェアは複数存在するが、例えば、Gaussian16が挙げられる。
 本明細書中において、pKaとは、上述した通り、ソフトウェアパッケージ1を用いて、ハメットの置換基定数及び公知文献値のデータベースに基づいた値を計算により求められる値を指すが、この手法によりpKaが算出できない場合には、DFT(密度汎関数法)に基づいてGaussian16により得られる値を採用するものとする。
 本明細書中において、pKaは、上述した通り「水溶液中でのpKa」を指すが、水溶液中でのpKaが算出できない場合には、「ジメチルスルホキシド(DMSO)溶液中でのpKa」を採用するものとする。
 「固形分」とは、感活性光線性又は感放射線性膜を形成する成分を意味し、溶剤は含まれない。また、感活性光線性又は感放射線性膜を形成する成分であれば、その性状が液体状であっても、固形分とみなす。
(塩(P)の製造方法)
 以下、本発明の塩(P)の製造方法について詳細に説明する。
 塩(P)の製造方法は、下記工程(1)~(3)を有する、有機カチオンと有機アニオンとの塩(P)の製造方法である。
(1)上記有機カチオンとハロゲン化物イオンとの塩(I)に対してアニオン交換を行うことで、上記塩(P)を含む生成物を得る工程
(2)上記生成物に対して、硝酸銀水溶液を用いた電位差滴定法を適用することにより、上記塩(P)に対する上記塩(I)のモル比率Xを得る工程
(3)上記モル比率Xに基づき、上記塩(P)の純度が所定基準を満たすか否かを判定する工程
 このように、塩(P)の製造方法は、先ず、有機カチオンとハロゲン化物イオンとの塩(I)に対してアニオン交換を行うことで、上記塩(P)を含む生成物を得る工程を有する。そして、本発明では、塩(P)に対する塩(I)のモル比率Xを硝酸銀水溶液を用いた電位差滴定法を適用することにより得る。この手法に基づき、生成物における塩(I)の純度を把握し、必要な場合には純度向上策を経て塩(I)を製造し、得られた塩(I)を用いて感活性光線性又は感放射線性樹脂組成物したところ、感活性光線性又は感放射線性樹脂組成物の製品ロットの違いによる感度の変動を抑制が可能となった。この理由については、完全には明らかになってはいないが、例えば、NMR等の代表的な分析方法を用いる場合と比較して、硝酸銀水溶液を用いた電位差滴定法を用いる場合によれば、ハロゲン化物イオンをより高精度に分析できるが故に、生成物における塩(P)の純度を、極めて高精度に分析できることによるものと考えられる。また、従来のArFレジスト等では許容されていたわずかなロット間差による線幅変動も、超微細パターンを目的とするEUVレジスト等では無視できないため、従来のNMRでは検知できないロット間差を検知できる電位差滴定法が必要になったと考えられる。その結果、この分析結果に基づいて、必要な純度向上策を適確に適用することができるため、どの製造ロットにおいても、高純度な塩(P)が製造されやすく、ひいては、感活性光線性又は感放射線性樹脂組成物の製品ロットの違いによって生じる、感度に影響を与える組成のバラツキが抑制されたことによるものと推測される。
[塩(P)の製造方法]
 塩(P)の製造方法は、上記工程(1)~(3)を有する、有機カチオンと有機アニオンとの塩(P)の製造方法である。
(工程(1))
 工程(1)は、上記有機カチオンとハロゲン化物イオンとの塩(I)に対してアニオン交換を行うことで、上記塩(P)を含む生成物を得る工程である。
 塩(P)は、有機カチオンと有機アニオンからなる化合物である。
 塩(P)としては、特に限定されないが、後述の「光酸発生剤」における「M X」で表される化合物(オニウム塩)、又は、後述の「光酸発生剤」における化合物(I)~(II)からなる群から選択される少なくとも1つなどを挙げることができる。
 有機カチオンとしては、特に限定されないが、後述の「光酸発生剤」における有機カチオンMを挙げることができ、後述の式(ZaI)で表されるカチオンが好ましい。
 有機アニオンとしては、特に限定されないが、後述の「光酸発生剤」におけるX、又は、後述の「光酸発生剤」における化合物(I)~(II)からなる群から選択される少なくとも1つにおける「アニオン部」を挙げることができる。
 化合物(I)における「アニオン部」とは、化合物(I)におけるカチオン性部位M 、カチオン部位M 以外の構造を表す。
 化合物(II)における「アニオン部」とは、化合物(II)におけるカチオン性部位M 以外の構造を表す。
 塩(P)を含む生成物は、上記有機カチオンとハロゲン化物イオンとの塩(I)に対してアニオン交換を行うことで得ることができる。
 塩(I)は、上記有機カチオンとハロゲン化物イオンからなる化合物である。
 ハロゲン化物イオンとしては、特に限定されないが、塩化物イオン、臭化物イオン、ヨウ化物イオンを挙げることができる。
 アニオン交換は、常法により行うことができる。好ましい一態様として、実施例に記載の各合成例を挙げることができる。
 アニオン交換の方法は特に限定されないが、水と、水と非混和な溶剤を含む2層系での反応とすることが好ましい。用いられる溶剤の例としては、塩化メチレン、クロロホルムなどのハロゲン系溶媒、酢酸エチルなどのエステル系溶媒、メチルイソブチルケトンなどのケトン系溶媒、シクロペンチルメチルエーテル、tertーブチルメチルエーテルなどのエーテル系溶媒などが挙げられ、これらは適宜、アセトン、THF、メタノールなどの水溶性溶媒と組み合わせてもよい。
 アニオン交換は、典型的には、上記塩(I)と上記有機アニオンの金属塩(M)とのイオン交換によるものである。
 上記有機アニオンの金属塩(M)における金属イオンとしては、特に限定されないが、カリウムイオン、ナトリウムイオン等を挙げることができる。
 また、上記有機アニオンの金属塩は、反応時に塩(I)、溶媒とともに、上記有機アニオンのプロトン体と炭酸水素ナトリウムなどの無機塩とを混合することで、反応系中で発生させてもよい。
(工程(2))
 工程(2)は、上記生成物に対して、硝酸銀水溶液を用いた電位差滴定法を適用することにより、上記塩(P)に対する上記塩(I)のモル比率Xを得る工程である。
 以下、硝酸銀水溶液を用いた電位差滴定法の好適な実施形態の一例について、記載する。
(電位差滴定法)
 塩(P)を含む生成物をWg測り取り、THF(テトラヒドロフラン)などの溶媒に溶解し試料溶液とする。A(N)の硝酸銀水溶液を用いて、溶媒のみの空溶液と上記試料溶液について、自動滴定装置(AT-510京都電子工業(株))にて滴定量を測定する。得られた滴定量の結果から、下記式(1)を用いてハロゲン量Q(ppm)を算出する。
 
Q(ppm)=(V1-V2)×A×f×MQ×1000/W   (1)
 
式(1)中、V1は試料溶液の滴定量(ml)、V2は空溶液の滴定量(ml)、fは滴定液(硝酸銀水溶液)の力価、MQは求めたいハロゲン原子のモル質量(g/mol)、Wは塩(P)を含む生成物の秤量値を表す。
 上記で得られたQが全て塩(I)(原料)の残存によるものとして、下記式(2)を用いて、塩(P)に対する塩(I)のモル比率X(mol%)を計算する。
 
X=Q×MB/MQ/10000    (2)
 
式(2)中、MB(g/mol)は塩(P)の分子量を表す。
 力価の測定法としては例えば、「JIS K 8001:2017 試験試薬方法通則
 付属書 JA.6 滴定用溶液-JA.6.4n」に記載されている方法が挙げられる。
 上記モル比率Xは、塩(P)1molに対する塩(I)の残存率(mol%)を示すものである。
 用いられる硝酸銀水溶液の濃度は、特に限定されないが、0.01N(mol/L)以下であることが好ましい。用いられる塩(P)を含む生成物の量は、特に限定されないが、50mg以上であることが好ましい。塩(P)を含む生成物を溶解する溶媒は、水溶性で硝酸銀と反応しない極性溶媒であれば特に制限はないが、THFなどのエーテル系溶媒やγ-ブチロラクトンなどのエステル系溶媒であることが好ましい。
(工程(3))
 工程(3)は、上記モル比率Xに基づき、上記塩(P)の純度が所定基準を満たすか否かを判定する工程である。
 上記モル比率Xに基づき、上記塩(P)の純度が決定される。上記モル比率Xが高いと上記塩(P)の純度が下がり、上記モル比率Xが低いと上記塩(P)の純度が上がることになるため、「塩(P)の純度が所定基準を満たすか否かの判定」は、好ましくは、「モル比率Xが所定値以下であるか否かの判定」によりなされる。
 上記所定基準(例えば上記所定値)は、塩(P)の製造方法において、適宜設定することができる。
 塩(I)は酸拡散制御剤として機能しうるため、感度(線幅変動)への影響が大きく、Xは可能な限り小さくすることが好ましい。好ましい一態様として、Xは0.5mol%以下であることが好ましく、0.4mol%以下であることがより好ましく、0.3mol%以下であることがさらに好ましい。
 本発明の塩(P)の製造方法は、更に、(4)上記工程(3)において上記モル比率Xが所定値を超える場合には上記塩(P)を含む生成物に対して純度向上策を適用することで、上記モル比率Xが上記所定値以下の塩(P)を含む生成物を得る工程を有することが好ましい。
(工程(4))
 工程(4)は、上記工程(3)において上記モル比率Xが所定値を超える場合には上記塩(P)を含む生成物に対して純度向上策を適用することで、上記モル比率Xが上記所定値以下の塩(P)を含む生成物を得る工程である。
 工程(4)は、上記モル比率Xが所定値を超える場合のモル比率Xを低減させる工程を適用する工程である。
 上記所定値は、適宜設定可能であるが、0.5mol%であることが好ましく、0.4mol%であることがより好ましく、0.3mol%であることがさらに好ましい。
 好ましい一態様として、工程(4)における上記塩(P)を含む生成物に対する純度向上策が、上記塩(P)を含む生成物に対する上記塩(I)の除去による精製であることが挙げられる。
 上記塩(I)の除去としては、例えば、上記生成物において晶析を行うことが挙げられる。晶析に使用され得る溶剤としては、特に限定されないが、例えば、水、アルコール系溶媒(好ましくはメタノール)、ニトリル系溶媒(好ましくはアセトニトリル)、ケトン系溶媒(好ましくはアセトン)、エステル系溶媒(好ましくは酢酸エチル)、ハロゲン系溶媒(好ましくはクロロホルム)、エーテル系溶媒(好ましくはジイソプロピルエーテル)、炭化水素系溶媒(好ましくはヘキサン)などが挙げられ、これらから2種以上を選択して組み合わせて用いることが好ましい。
 また、上記塩(I)の除去としては、例えば、塩(I)の水溶性が比較的高い場合は、分液操作の回数を増やすことによって除去する方法が挙げられる。有機溶剤としては、塩化メチレン、クロロホルムなどのハロゲン系溶媒、酢酸エチルなどのエステル系溶媒、メチルイソブチルケトンなどのケトン系溶媒、シクロペンチルメチルエーテル、tertーブチルメチルエーテルなどのエーテル系溶媒などが挙げられ、これらは適宜、アセトン、THF、メタノールなどの水溶性溶媒と組み合わせてもよい。分液回数は3回以上が好ましく、5回以上がより好ましい。
 また、上記塩(I)の除去としては、シリカゲルカラムクロマトグラフィーなど各種クロマトグラフィー法が挙げられる。
 また、好ましい一態様として、上記工程(1)におけるアニオン交換が、上記塩(I)と上記有機アニオンの金属塩(M)とのイオン交換によるものであり、
 上記工程(4)における上記塩(P)を含む生成物に対する純度向上策が、上記生成物に対して上記有機アニオンの金属塩(M)を添加して、上記アニオン交換を実施することが挙げられる。
 有機アニオンの金属塩(M)の添加量は、工程(3)にて判定されたモル比率Xに応じて、適宜設定することができる。上記モル比率Xにより、上記生成物中に残存する塩(I)が算出されるので、残存する塩(I)と反応する有機アニオンの金属塩(M)の量を適宜設定することができる。
 また、好ましい一態様として、上記工程(1)におけるアニオン交換が、上記塩(I)と上記有機アニオンの金属塩(M)とのイオン交換によるものであり、
 上記工程(4)における上記塩(P)を含む生成物に対する純度向上策が、上記塩(I)と上記有機アニオンの金属塩(M)とのモル比を変更して、上記工程(1)を実施することが挙げられる。
 上記純度向上策に基づき、得られた塩(P)を含む生成物について、上記工程(2)を実施することにより、上記塩(P)に対する上記塩(I)のモル比率Xを得る。そして、工程(3)を実施して、上記塩(P)の純度が所定基準を満たすか否かを判定する。
 上記塩(P)の純度が所定基準を満たす(具体的には、モル比率Xが所定値以下の)場合は、反応を終了する。
 上記塩(P)の純度が所定基準を満たさない場合は、再度、工程(4)における上記工程(4)における上記塩(P)を含む生成物に対する純度向上策を実施する。
 工程(4)により上記モル比率Xが上記所定値以下の塩(P)を含む生成物を得ることができる。このようにして、塩(P)が製造される。
 本発明の塩(P)の製造方法は、更に、(5)上記モル比率Xが上記所定値以下の塩(P)を含む生成物の全量を基準とした上記塩(P)の濃度Yを、高速液体クロマトグラフィー法(HPLC)により求める工程を有することが好ましい。
(工程(5))
 工程(5)は、上記モル比率Xが上記所定値以下の塩(P)を含む生成物の全量を基準とした上記塩(P)の濃度Yを、高速液体クロマトグラフィー法(HPLC)により求める工程である。
 工程(5)により上記塩(P)濃度Y(質量%)を得ることができる。
 以下に高速液体クロマトグラフィー法(HPLC)による上記塩(P)の濃度Yの測定方法の好適な実施形態の一例を記載する。
(濃度Yの測定方法)
 以下にHPLCによる測定方法の一例を示すが、本発明はこれに限定されるものではない。
(A)検量線作成
 内部標準物質を溶媒で溶解した溶液Aを作成する。塩(P)の基準ロットWgと溶液Aと溶媒を混合し、溶液B1を作成する。塩(P)の量をそれぞれWg、Wgに変えて、同様に溶液B2、B3を作成する。溶液B1~B3を下記条件でHPLC測定を行い、それぞれに対し、内部標準物質のピーク面積値に対する、塩(P)のカチオン(またはアニオン)のピーク面積値S1~S3を算出する。同測定を数回繰り返し、それぞれの平均値S1AVE~S3AVEを算出する。各溶液の試料濃度(g/ml)とS1AVE~S3AVEとから検量線を作成する。
<HPLC測定条件>
測定装置:Waters HPLCシステム 2695(Waters社製)
カラム:Shim-pack CLC-ODS(内径6.0mm×150mm)
溶離液:アセトニトリル/0.05M酢酸アンモニウム水溶液
カラム温度:40℃
流速:1ml/min
試料注入量:5μl
検出波長:254nm
 内部標準物質は、塩(P)を構成するカチオン及びアニオンとピークが重ならず、検出波長に吸収があれば特に限定されないが、芳香族化合物であることが好ましく、アルコキシ基置換シベンゼン(1,3,5-トリメトキシベンゼンなど)、エステル基置換ベンゼン(安息香酸プロピルなど)、アルキル基置換ベンゼン(ジベンジルなど)などが挙げられる。
 溶媒としては、特に制限はなく、アセトニトリル、THF、メタノールなどが好適に用いられる。
 溶離液に特に制限はなく、アセトニトリル、THF、メタノールなどが好適に用いられる。緩衝液は、酢酸アンモニウム、リン酸/トリエチルアミンなどが好適に用いられる。溶離液の有機溶媒と緩衝液比率は、塩(P)の構造や使用する溶媒種によって最適比率が異なるが、有機溶媒/緩衝液=40/60~80/20(体積比)の範囲内で測定するのが好ましい。
 検量線作成の際は、検量線の精度向上のため、試料濃度を変えた溶液を3種類以上測定することが好ましい。また、HPLCのピーク面積値のバラツキの影響を抑制するため、1つの溶液につき3回以上測定してその平均値を用いることが好ましい。
(B)濃度Y測定
 内部標準物質の溶液Aを作成する。塩(P)を含む生成物の測定対象ロットWgと溶液Aと溶媒を混合し、LCmlの溶液C1を作成する。溶液C1を上記と同じ条件でHPLC測定を行い、内部標準物質のピーク面積値に対する、塩(P)のカチオン(またはアニオン)のピーク面積値SCを算出する。同じ試料溶液の測定を数回繰り返し、SCの平均値SCAVEを算出する。上記SCAVEと上記検量線から、対応する試料濃度KC(g/ml)を算出する。塩(P)を含む生成物における塩(P)の濃度Y(質量%)を、下記式(3)から算出する。
 
Y=(KC×LC/W)×100   (3)
 
 式(3)において、LCは、溶液C1の溶媒量(ml)を表す。
 濃度Yは、塩(P)を含む生成物における塩(P)の濃度を示すものである。
<検量線作成における塩(P)の基準ロットについて>
 塩(P)の基準ロットは、可能な限り、原料カチオン及び原料アニオンが十分に除去され、カチオン/アニオン比に影響を及ぼす不純物を低減したものであることが好ましい。
 原料カチオンまたは原料アニオンを十分に除去するための精製法としては、再結晶による精製、各種クロマトグラフィーによる精製などが好ましい。基準ロットから原料カチオンが十分に除去されたことを確認する手段としては、硝酸銀滴定法により残存ハロゲンを検出する手法が好ましい。原料カチオンが有機アニオンの塩である場合、イオン交換樹脂を用いてハロゲン塩に変換してから塩(P)の合成に用い、上記硝酸銀滴定法を用いるのが好ましい。基準ロットから原料アニオンが完全に除去されたことを確認する手段としては、原料アニオンが金属塩の場合は、ICP-OESやICP-MSなどの手段で金属元素の検出を行うことが好ましい。非金属塩の場合、原料アニオンとその対塩とで、対塩しか有さない元素がある場合は、元素分析で検出可能だが、それ以外の場合は、基準ロットのみ原料アニオンを金属塩として合成することが好ましい。
 原料カチオン及び原料アニオン以外の不純物や残存溶剤も少ない方が好ましい。不純物を低減するための精製法としては、上記と同様、再結晶による精製、各種クロマトグラフィーによる精製などが挙げられる。HPLCやLCMS測定で、有機物の不純物が十分に除去できていることを確認するのが好ましい。また、ICP-OESやICP-MSなどの手段で金属元素の検出を行い、無機塩またはそれに類する不純物がないことを確認するのが好ましい。残存溶媒の低減方法としては、塩化メチレンなど沸点が低い溶媒の溶液とし、加熱しながら減圧乾燥するなどの方法が挙げられる。また、残存溶媒を低減するのが難しい場合、NMRやガスクロマトグラフィー法などで残存溶媒を定量化し、基準ロットとして用いてもよい。この場合、基準ロットの濃度(固形分値)自体の精度は低いが、本発明の手法により、相対値としてロット管理することは可能で、場合によっては100%を越える固形分値を示すこともあるが問題はない。
 工程(5)において、塩(P)の濃度Y(質量%)を得ることができる。
 本発明の塩(P)の製造方法では、上記塩(P)の純度が所定基準を満たす(具体的には、モル比率Xが所定値以下の)場合は、反応を終了する。かかる反応により塩(P)が得られ、感活性光線性又は感放射線性樹脂組成物の製品ロットの違いによる解像性の変動を抑制できる。
 工程(5)において、モル比率Xとは異なる観点での塩(P)の濃度Y(質量%)を得ることができる。濃度Yは、塩(P)を含む生成物を基準として、塩(I)以外の不純物(例えば、溶剤等)に着目したものである。かかる工程により、より詳細に塩(P)の濃度を得ることができるため、感活性光線性又は感放射線性樹脂組成物の製品ロットの違いによる解像性の変動をより抑制できるため好ましい。
 濃度Yを得た後に、塩(P)を含む生成物を精製しても良く、精製はしなくても良い。精製方法は、公知の方法が挙げられる。
 精製しない場合、濃度Yを得ることができれば、レジスト組成物の製造(典型的には調液)において、塩(P)の配合量を、塩(P)の配合予定量×(100/Y)とすることで、予定量の塩(P)をより確実にレジスト組成物に投入できるため、製品ロットの違いによる解像性の変動をさらに抑制することができる傾向となるため、好ましい。
 本発明の塩(P)の製造方法は、更に、(6)上記塩(P)を含む生成物に含有される残存酸の濃度Zを、紫外可視吸収スペクトル法により得る工程、及び、(7)上記残存酸の濃度Zが所定基準を満たすか否かを判定する工程を有することが好ましい。
(工程(6))
 工程(6)は、上記塩(P)を含む生成物に含有される残存酸の濃度Zを、紫外可視吸収スペクトル法により得る工程である。
 塩(P)の製造過程で、原料アニオンのプロトン化体の残存、分液時に用いた酸の残存、あるいは原料や塩(P)自体の分解等によって酸が残存することがあるが、工程(7)により得られる、所定基準を満たさない残存酸を除去することで、より一層、塩(P)の純度を高めることができるため、好ましい。
 以下に、紫外可視吸収スペクトル法による上記塩(P)を含む生成物に含有される残存酸の濃度Zの測定方法の好適な実施形態の一例を記載する。
(濃度Zの測定方法)
 以下に紫外可視吸収スペクトル法による濃度Zの測定方法の一例を示すが、本発明はこれに限定されるものではない。
(A)検量線作成
 酸により発色する化合物C(以下、化合物Cともいう)を溶媒で溶解して溶液Aを作成する。既存の酸性化合物D(以下、化合物Dともいう)を溶媒で溶解して溶液Bを作成する。溶液Aと溶液Bを混合し、溶媒で希釈した溶液D1を作成する。溶液D1について、紫外可視吸収スペクトルを「UV-1800(島津製作所社製)、溶媒:アセトニトリル」にて測定し、化合物Cの極大吸収波長の吸光度AbsD1を得る。溶液D1の希釈度を変え、同様に溶液D2、D3、D4を作成する。得られたD2、D3、D4の紫外可視吸収スペクトルを同様に測定し、AbsD2、AbsD3、AbsD4を得る。ブランクとして、溶液Aのみを希釈した溶液Eを作成する。同様に溶液Eの紫外可視吸収スペクトルを測定し、極大吸収波長における吸光度Absを得る。上記で得られたAbsD1~AbsD4について、Absとの差分を求め、得られた結果をそれぞれAbsDE1~AbsDE4とする。D1、D2、D3及びD4中の化合物Dの各モル濃度と得られたAbsDE1~AbsDE4から、化合物Dのモル濃度と化合物Cの吸光度との検量線を作成する。
 酸により発色する化合物Cとしては、微量の酸とも定量的に反応し特定波長に強い吸収を有する発色体を生成する化合物であれば特に限定されないが、例えば、ローダミン誘導体(例えば、ローダミンベース(シグマアルドリッチ社製)を挙げることができる。
 酸性化合物Dとしては、化合物Cを発色できる酸性化合物であれば特に限定されないが、例えば、トシル酸(p-トルエンスルホン酸)、メタンスルホン酸、塩酸などを挙げることができる。
 検量線の精度を上げるため、酸性化合物Dの濃度を変えた溶液は、少なくともD1~D3の3種類作成して測定を行うのが好ましい。また、より検量線の精度を高めるため、各溶液Dの紫外可視吸収スペクトル測定を複数回行い、その平均値をAbsとして使用してもよい。
 用いる溶媒は、中性または塩基性で、酸発色体の吸収波長に吸収をもたないものであれば特に制限はされないが、好ましい溶媒としては、アセトニトリル、THFなどの非プロトン性極性溶媒、メタノールなどのプロトン性極性溶媒、塩化メチレンなどのハロゲン系溶媒が挙げられる。
(B)濃度Zの測定
 酸により発色する化合物Cを溶媒で溶解して溶液Aを作成する。塩(P)を含む生成物Wgを測り取り、溶液Aを加え、溶媒で希釈した溶液Fを作成する。ブランクとして、溶液Aのみを希釈した溶液Eを作成する。溶液Fと溶液Eの紫外可視吸収スペクトルを、上記の検量線作成時と同様に測定し、化合物Cの極大吸収波長における吸光度Abs及びAbsを得る。
 これらの差分AbsFE=Abs-Absを用いて、上記で作成した検量線から対応する化合物Dのモル濃度T(mol/l)を算出する。下記式(4)を用いて、塩(P)を含む生成物に含有される、化合物D換算の残存酸の濃度Z(ppm)を算出する。
 
Z=T×MT×LB×1000/W    (4)
 
 式(4)中、MT(g/mol)は化合物Dの分子量を表す。LBは、溶液Fの全溶媒量(l)を表す。
 上記塩(P)を含む生成物に含有される残存酸の濃度Zは、化合物D換算の濃度である。
(工程(7))
 工程(7)は、上記残存酸の濃度Zが所定基準を満たすか否かを判定する工程である。
 所定基準は、塩(P)の製造方法において、適宜設定することができる。
 好ましい一態様として、Zは100ppm以下であることが好ましく、50ppm以下であることがより好ましい。
(工程(8))
 上記工程(7)において、上記残存酸の濃度Zが所定値を超過する場合、(8)上記残存酸の濃度Zの低減策を実施する工程を有することが好ましい。
 好ましい一態様として、上記濃度Zの低減策としては、塩基性化合物を適宜添加して精製、抽出することが挙げられる。精製、抽出は公知の方法を用いることができる。
 好ましい一態様として、上記濃度Zの低減策としては、有機溶剤(例えば塩化メチレン)を添加して、水または塩基性化合物(例えばアンモニア)を含む水を加えて有機層を洗浄することが挙げられる。洗浄回数は3回以上が好ましく、5回以上がより好ましい。
 好ましい一態様として、上記濃度Zの低減策としては、上記生成物において晶析を行うことが挙げられる。晶析に使用され得る溶剤としては、特に限定されないが、工程(4)と同様の溶剤が挙げられる。
 好ましい一態様として、上記濃度Zの低減策としては、シリカゲルカラムクロマトグラフィーなど各種クロマトグラフィー法が挙げられる。
 上記塩(P)が、感活性光線性又は感放射線性樹脂組成物用の活性光線又は放射線の照射によって酸を発生する化合物であることが好ましい。
 活性光線又は放射線の照射によって酸を発生する化合物としては、例えば、後述の光酸発生剤(B)、又は酸拡散制御剤を挙げることができる。
(感活性光線性又は感放射線性樹脂組成物の製造方法)
 本発明にかかる、感活性光線性又は感放射線性樹脂組成物の製造方法(以下、「本発明の組成物の製造方法」、「組成物の製造方法」ともいう)は、
 上記塩(P)の製造方法を含む、活性光線又は放射線の照射によって酸を発生する化合物として上記塩(P)を含有する感活性光線性又は感放射線性樹脂組成物の製造方法である。
 本発明の組成物の製造方法より得られた感活性光線性又は感放射線性樹脂組成物について、以下に記載する。
 感活性光線性又は感放射線性樹脂組成物は、好ましくはレジスト組成物であり、ポジ型のレジスト組成物であっても、ネガ型のレジスト組成物であってもよい。レジスト組成物は、アルカリ現像用のレジスト組成物であっても、有機溶剤現像用のレジスト組成物であってもよい。
 レジスト組成物は、化学増幅型のレジスト組成物であっても、非化学増幅型のレジスト組成物であってもよい。レジスト組成物は、典型的には、化学増幅型のレジスト組成物である。
 以下において、本発明の感活性光線性又は感放射線性樹脂組成物の製造方法における感活性光線性又は感放射線性樹脂組成物(以下、「本発明の組成物」ともいう)が有し得る各種成分について詳述する。
<酸分解性樹脂>
 本発明の組成物は、酸分解性樹脂(以下、「樹脂(A)」ともいう。)を含んでいても良い。
 樹脂(A)は、通常、酸の作用により分解し極性が増大する基(以下「酸分解性基」ともいう。)を含み、酸分解性基を有する繰り返し単位を含むことが好ましい。樹脂(A)が酸分解性基を有する場合、本明細書におけるパターン形成方法において、典型的には、現像液としてアルカリ現像液を採用した場合には、ポジ型パターンが好適に形成され、現像液として有機系現像液を採用した場合には、ネガ型パターンが好適に形成される。
 酸分解性基を有する繰り返し単位としては、後述する酸分解性基を有する繰り返し単位以外に、不飽和結合を含む酸分解性基を有する繰り返し単位が好ましい。
(酸分解性基を有する繰り返し単位)
 酸分解性基とは、酸の作用により分解して極性基を生じる基をいう。酸分解性基は、酸の作用により脱離する基(脱離基)で極性基が保護された構造を有することが好ましい。つまり、樹脂(A)は、酸の作用により分解し、極性基を生じる基を有する繰り返し単位を有する。この繰り返し単位を有する樹脂は、酸の作用により極性が増大してアルカリ現像液に対する溶解度が増大し、有機溶剤に対する溶解度が減少する。
 極性基としては、アルカリ可溶性基が好ましく、例えば、カルボキシル基、フェノール性水酸基、フッ素化アルコール基、スルホン酸基、リン酸基、スルホンアミド基、スルホニルイミド基、(アルキルスルホニル)(アルキルカルボニル)メチレン基、(アルキルスルホニル)(アルキルカルボニル)イミド基、ビス(アルキルカルボニル)メチレン基、ビス(アルキルカルボニル)イミド基、ビス(アルキルスルホニル)メチレン基、ビス(アルキルスルホニル)イミド基、トリス(アルキルカルボニル)メチレン基、及び、トリス(アルキルスルホニル)メチレン基等の酸性基、並びに、アルコール性水酸基が挙げられる。
 なかでも、極性基としては、カルボキシル基、フェノール性水酸基、フッ素化アルコール基(好ましくはヘキサフルオロイソプロパノール基)、又は、スルホン酸基が好ましい。
 酸の作用により脱離する基としては、例えば、式(Y1)~(Y4)で表される基が挙げられる。
式(Y1):-C(Rx)(Rx)(Rx
式(Y2):-C(=O)OC(Rx)(Rx)(Rx
式(Y3):-C(R36)(R37)(OR38
式(Y4):-C(Rn)(H)(Ar)
 式(Y1)及び式(Y2)中、Rx~Rxは、それぞれ独立に、アルキル基(直鎖状又は分岐鎖状)、シクロアルキル基(単環又は多環)、アルケニル基(直鎖状又は分岐鎖状)、又は、アリール基(単環又は多環)を表す。なお、Rx~Rxの全てがアルキル基(直鎖状又は分岐鎖状)である場合、Rx~Rxのうち少なくとも2つはメチル基であることが好ましい。
 なかでも、Rx~Rxは、それぞれ独立に、直鎖状又は分岐鎖状のアルキル基を表すことが好ましく、Rx~Rxは、それぞれ独立に、直鎖状のアルキル基を表すことがより好ましい。
 Rx~Rxの2つが結合して、単環又は多環を形成してもよい。
 Rx~Rxのアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、及び、t-ブチル基等の炭素数1~5のアルキル基が好ましい。
 Rx~Rxのシクロアルキル基としては、シクロペンチル基、及び、シクロヘキシル基等の単環のシクロアルキル基、並びに、ノルボルニル基、テトラシクロデカニル基、テトラシクロドデカニル基、及び、アダマンチル基等の多環のシクロアルキル基が好ましい。
 Rx~Rxのアリール基としては、炭素数6~10のアリール基が好ましく、例えば、フェニル基、ナフチル基、及び、アントリル基が挙げられる。
 Rx~Rxのアルケニル基としては、ビニル基が好ましい。
 Rx~Rxの2つが結合して形成される環としては、シクロアルキル基が好ましい。Rx~Rxの2つが結合して形成されるシクロアルキル基としては、シクロペンチル基、若しくは、シクロヘキシル基等の単環のシクロアルキル基、又は、ノルボルニル基、テトラシクロデカニル基、テトラシクロドデカニル基、若しくは、アダマンチル基等の多環のシクロアルキル基が好ましく、炭素数5~6の単環のシクロアルキル基がより好ましい。
 Rx~Rxの2つが結合して形成されるシクロアルキル基は、環を構成するメチレン基の1つが、酸素原子等のヘテロ原子、カルボニル基等のヘテロ原子を含む基、又は、ビニリデン基で置き換わっていてもよい。これらのシクロアルキル基は、シクロアルカン環を構成するエチレン基の1つ以上が、ビニレン基で置き換わっていてもよい。
 式(Y1)又は式(Y2)で表される基は、例えば、Rxがメチル基又はエチル基であり、RxとRxとが結合して上述のシクロアルキル基を形成している態様が好ましい。
 本発明の組成物が、例えば、EUV露光用レジスト組成物である場合、Rx~Rxで表されるアルキル基、シクロアルキル基、アルケニル基、アリール基、及び、Rx~Rxの2つが結合して形成される環は、更に、置換基として、フッ素原子又はヨウ素原子を有していることも好ましい。
 式(Y3)中、R36~R38は、それぞれ独立に、水素原子又は1価の有機基を表す。R37とR38とは、互いに結合して環を形成してもよい。1価の有機基としては、アルキル基、シクロアルキル基、アリール基、アラルキル基、及び、アルケニル基が挙げられる。R36は水素原子であることも好ましい。
 なお、上記アルキル基、シクロアルキル基、アリール基、及び、アラルキル基には、酸素原子等のヘテロ原子及び/又はカルボニル基等のヘテロ原子を含む基が含まれていてもよい。例えば、上記アルキル基、シクロアルキル基、アリール基、及び、アラルキル基において、メチレン基の1つ以上が、酸素原子等のヘテロ原子及び/又はカルボニル基等のヘテロ原子を含む基で置き換わっていてもよい。
 R38は、繰り返し単位の主鎖が有する別の置換基と互いに結合して、環を形成してもよい。R38と繰り返し単位の主鎖が有する別の置換基とが互いに結合して形成する基は、メチレン基等のアルキレン基が好ましい。
 本発明の組成物が、例えば、EUV露光用レジスト組成物である場合、R36~R38で表される1価の有機基、及び、R37とR38とが互いに結合して形成される環は、更に、置換基として、フッ素原子又はヨウ素原子を有していることも好ましい。
 式(Y3)としては、下記式(Y3-1)で表される基が好ましい。
Figure JPOXMLDOC01-appb-C000003
 ここで、L及びLは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基、又は、これらを組み合わせた基(例えば、アルキル基とアリール基とを組み合わせた基)を表す。
 Mは、単結合又は2価の連結基を表す。
 Qは、ヘテロ原子を含んでいてもよいアルキル基、ヘテロ原子を含んでいてもよいシクロアルキル基、ヘテロ原子を含んでいてもよいアリール基、アミノ基、アンモニウム基、メルカプト基、シアノ基、アルデヒド基、又は、これらを組み合わせた基(例えば、アルキル基とシクロアルキル基とを組み合わせた基)を表す。
 アルキル基及びシクロアルキル基は、例えば、メチレン基の1つが、酸素原子等のヘテロ原子、又は、カルボニル基等のヘテロ原子を含む基で置き換わっていてもよい。
 なお、L及びLのうち一方は水素原子であり、他方はアルキル基、シクロアルキル基、アリール基、又は、アルキレン基とアリール基とを組み合わせた基であることが好ましい。
 Q、M、及びLの少なくとも2つが結合して環(好ましくは、5員若しくは6員環)を形成してもよい。
 パターンの微細化の点では、Lが2級又は3級アルキル基であることが好ましく、3級アルキル基であることがより好ましい。2級アルキル基としては、イソプロピル基、シクロヘキシル基、及び、ノルボルニル基が挙げられ、3級アルキル基としては、tert-ブチル基、及び、アダマンタン基が挙げられる。これらの態様では、Tg(ガラス転移温度)及び活性化エネルギーが高くなるため、膜強度の担保に加え、かぶりの抑制ができる。
 本発明の組成物が、例えば、EUV露光用レジスト組成物である場合、L及びLで表される、アルキル基、シクロアルキル基、アリール基、及び、これらを組み合わせた基は、更に、置換基として、フッ素原子又はヨウ素原子を有していることも好ましい。上記アルキル基、シクロアルキル基、アリール基、及び、アラルキル基には、フッ素原子及びヨウ素原子以外に、酸素原子等のヘテロ原子が含まれていることも好ましい。具体的には、上記アルキル基、シクロアルキル基、アリール基、及び、アラルキル基は、例えば、メチレン基の1つが、酸素原子等のヘテロ原子、又は、カルボニル基等のヘテロ原子を含む基で置き換わっていてもよい。
 レジスト組成物が、例えば、EUV露光用レジスト組成物である場合、Qで表されるヘテロ原子を含んでいてもよいアルキル基、ヘテロ原子を含んでいてもよいシクロアルキル基、ヘテロ原子を含んでいてもよいアリール基、アミノ基、アンモニウム基、メルカプト基、シアノ基、アルデヒド基、及び、これらを組み合わせた基において、ヘテロ原子としては、フッ素原子、ヨウ素原子及び酸素原子からなる群から選択されるヘテロ原子であることも好ましい。
 式(Y4)中、Arは、芳香環基を表す。Rnは、アルキル基、シクロアルキル基、又は、アリール基を表す。RnとArとは互いに結合して非芳香族環を形成してもよい。Arとしては、アリール基が好ましい。
 レジスト組成物が、例えば、EUV露光用レジスト組成物である場合、Arで表される芳香環基、並びに、Rnで表されるアルキル基、シクロアルキル基、及び、アリール基は、置換基としてフッ素原子又はヨウ素原子を有していることも好ましい。
 繰り返し単位の酸分解性が優れる点から、極性基を保護する脱離基において、極性基(又はその残基)に非芳香族環が直接結合している場合、上記非芳香族環中の、上記極性基(又はその残基)と直接結合している環員原子に隣接する環員原子は、置換基としてフッ素原子等のハロゲン原子を有さないことも好ましい。
 酸の作用により脱離する基は、他にも、3-メチル-2-シクロペンテニル基のような置換基(アルキル基等)を有する2-シクロペンテニル基、及び、1,1,4,4-テトラメチルシクロヘキシル基のような置換基(アルキル基等)を有するシクロヘキシル基でもよい。
 酸分解性基を有する繰り返し単位としては、式(A)で表される繰り返し単位も好ましい。
Figure JPOXMLDOC01-appb-C000004
 Lは、フッ素原子又はヨウ素原子を有していてもよい2価の連結基を表し、Rは水素原子、フッ素原子、ヨウ素原子、フッ素原子若しくはヨウ素原子を有していてもよいアルキル基、又は、フッ素原子若しくはヨウ素原子を有していてもよいアリール基を表し、Rは酸の作用によって脱離し、フッ素原子又はヨウ素原子を有していてもよい脱離基を表す。ただし、L、R、及びRのうち少なくとも1つは、フッ素原子又はヨウ素原子を有する。
 Lで表される、フッ素原子又はヨウ素原子を有していてもよい2価の連結基としては、-CO-、-O-、-S-、-SO-、-SO-、フッ素原子又はヨウ素原子を有していてもよい炭化水素基(例えば、アルキレン基、シクロアルキレン基、アルケニレン基、及び、アリーレン基等)、及び、これらの複数が連結した連結基が挙げられる。なかでも、Lとしては、-CO-、アリーレン基、又は、-アリーレン基-フッ素原子若しくはヨウ素原子を有するアルキレン基-が好ましく、-CO-、又は、-アリーレン基-フッ素原子若しくはヨウ素原子を有するアルキレン基-がより好ましい。
 アリーレン基としては、フェニレン基が好ましい。
 アルキレン基は、直鎖状であっても、分岐鎖状であってもよい。アルキレン基の炭素数は特に制限されないが、1~10が好ましく、1~3がより好ましい。
 フッ素原子又はヨウ素原子を有するアルキレン基に含まれるフッ素原子及びヨウ素原子の合計数は特に制限されないが、2以上が好ましく、2~10がより好ましく、3~6が更に好ましい。
 Rで表されるアルキル基は、直鎖状であっても、分岐鎖状であってもよい。アルキル基の炭素数は特に制限されないが、1~10が好ましく、1~3がより好ましい。
 Rで表される、フッ素原子又はヨウ素原子を有するアルキル基に含まれる、フッ素原子及びヨウ素原子の合計数は特に制限されないが、1以上が好ましく、1~5がより好ましく、1~3が更に好ましい。
 Rで表されるアルキル基は、ハロゲン原子以外の酸素原子等のヘテロ原子を含んでいてもよい。
 Rで表される、フッ素原子又はヨウ素原子を有していてもよい脱離基としては、上述した式(Y1)~(Y4)で表され、かつ、フッ素原子又はヨウ素原子を有する脱離基が挙げられる。
 酸分解性基を有する繰り返し単位としては、式(AI)で表される繰り返し単位も好ましい。
Figure JPOXMLDOC01-appb-C000005
 式(AI)において、Xaは、水素原子、又は、置換基を有していてもよいアルキル基を表す。Tは、単結合、又は、2価の連結基を表す。Rx~Rxは、それぞれ独立に、アルキル基(直鎖状又は分岐鎖状)、シクロアルキル基(単環又は多環)、アルケニル基(直鎖状又は分岐鎖状)、又は、アリール(単環又は多環)基を表す。ただし、Rx~Rxの全てがアルキル基(直鎖状、又は分岐鎖状)である場合、Rx~Rxのうち少なくとも2つはメチル基であることが好ましい。
 Rx~Rxの2つが結合して、単環又は多環(単環又は多環のシクロアルキル基等)を形成してもよい。
 Xaにより表される、置換基を有していてもよいアルキル基としては、例えば、メチル基又は-CH-R11で表される基が挙げられる。R11は、ハロゲン原子(フッ素原子等)、水酸基、又は、1価の有機基を表す。R11で表される1価の有機基としては、例えば、ハロゲン原子が置換していてもよい炭素数5以下のアルキル基、ハロゲン原子が置換していてもよい炭素数5以下のアシル基、及び、ハロゲン原子が置換していてもよい炭素数5以下のアルコキシ基が挙げられ、炭素数3以下のアルキル基が好ましく、メチル基がより好ましい。Xaとしては、水素原子、メチル基、トリフルオロメチル基、又は、ヒドロキシメチル基が好ましい。
 Tの2価の連結基としては、アルキレン基、芳香環基、-COO-Rt-基、及び、-O-Rt-基が挙げられる。式中、Rtは、アルキレン基、又は、シクロアルキレン基を表す。
 Tは、単結合又は-COO-Rt-基が好ましい。Tが-COO-Rt-基を表す場合、Rtとしては、炭素数1~5のアルキレン基が好ましく、-CH-基、-(CH-基、又は、-(CH-基がより好ましい。
 Rx~Rxのアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、及び、t-ブチル基等の炭素数1~4のアルキル基が好ましい。
 Rx~Rxのシクロアルキル基としては、シクロペンチル基、及び、シクロヘキシル基等の単環のシクロアルキル基、又は、ノルボルニル基、テトラシクロデカニル基、テトラシクロドデカニル基、及び、アダマンチル基等の多環のシクロアルキル基が好ましい。
 Rx~Rxのアリール基としては、炭素数6~10のアリール基が好ましく、例えば、フェニル基、ナフチル基、及び、アントリル基が挙げられる。
 Rx~Rxのアルケニル基としては、ビニル基が好ましい。
 Rx~Rxの2つが結合して形成されるシクロアルキル基としては、シクロペンチル基、及び、シクロヘキシル基等の単環のシクロアルキル基が好ましい。また、ノルボルニル基、テトラシクロデカニル基、テトラシクロドデカニル基、及び、アダマンチル基等の多環のシクロアルキル基も好ましい。なかでも、炭素数5~6の単環のシクロアルキル基が好ましい。
 Rx~Rxの2つが結合して形成されるシクロアルキル基は、例えば、環を構成するメチレン基の1つが、酸素原子等のヘテロ原子、カルボニル基等のヘテロ原子を含む基、又は、ビニリデン基で置き換わっていてもよい。また、これらのシクロアルキル基は、シクロアルカン環を構成するエチレン基の1つ以上が、ビニレン基で置き換わっていてもよい。
 式(AI)で表される繰り返し単位は、例えば、Rxがメチル基又はエチル基であり、RxとRxとが結合して上述のシクロアルキル基を形成している態様が好ましい。
 上記各基が置換基を有する場合、置換基としては、例えば、アルキル基(炭素数1~4)、ハロゲン原子、水酸基、アルコキシ基(炭素数1~4)、カルボキシル基、及び、アルコキシカルボニル基(炭素数2~6)が挙げられる。置換基中の炭素数は、8以下が好ましい。
 式(AI)で表される繰り返し単位としては、酸分解性(メタ)アクリル酸3級アルキルエステル系繰り返し単位(Xaが水素原子又はメチル基を表し、かつ、Tが単結合を表す繰り返し単位)が好ましい。
 酸分解性基を有する繰り返し単位の具体例を以下に示すが、これに限定されない。なお、式中、Xaは、H、CH、CF、又は、CHOHを表し、Rxa及びRxbは、それぞれ独立に、炭素数1~5の直鎖状又は分岐鎖状のアルキル基を表す。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
 樹脂(A)は、酸分解性基を有する繰り返し単位として、不飽和結合を含む酸分解性基を有する繰り返し単位を有していてもよい。
 不飽和結合を含む酸分解性基を有する繰り返し単位としては、式(B)で表される繰り返し単位が好ましい。
Figure JPOXMLDOC01-appb-C000011
 式(B)において、Xbは、水素原子、ハロゲン原子、又は、置換基を有していてもよいアルキル基を表す。Lは、単結合、又は、置換基を有してもよい2価の連結基を表す。Ry~Ryは、それぞれ独立に、直鎖状若しくは分岐鎖状のアルキル基、単環状若しくは多環状のシクロアルキル基、アルケニル基、アルキニル基、又は、単環若しくは多環のアリール基を表す。ただし、Ry~Ryのうち少なくとも1つはアルケニル基、アルキニル基、単環若しくは多環のシクロアルケニル基、又は、単環若しくは多環のアリール基を表す。
 Ry~Ryの2つが結合して、単環又は多環(単環又は多環のシクロアルキル基、シクロアルケニル基等)を形成してもよい。
 Xbにより表される、置換基を有していてもよいアルキル基としては、例えば、メチル基又は-CH-R11で表される基が挙げられる。R11は、ハロゲン原子(フッ素原子等)、水酸基、又は、1価の有機基を表し、例えば、ハロゲン原子が置換していてもよい炭素数5以下のアルキル基、ハロゲン原子が置換していてもよい炭素数5以下のアシル基、及び、ハロゲン原子が置換していてもよい炭素数5以下のアルコキシ基が挙げられ、炭素数3以下のアルキル基が好ましく、メチル基がより好ましい。Xbとしては、水素原子、フッ素原子、メチル基、トリフルオロメチル基、又は、ヒドロキシメチル基が好ましい。
 Lの2価の連結基としては、-Rt-基、-CO-基、-COO-Rt-基、-COO-Rt-CO-基、-Rt-CO-基、及び、-O-Rt-基が挙げられる。式中、Rtは、アルキレン基、シクロアルキレン基、又は、芳香環基を表し、芳香環基が好ましい。
 Lとしては、-Rt-基、-CO-基、-COO-Rt-CO-基、又は、-Rt-CO-基が好ましい。Rtは、ハロゲン原子、水酸基、アルコキシ基等の置換基を有していてもよい。
 Ry~Ryのアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、及び、t-ブチル基等の炭素数1~4のアルキル基が好ましい。
 Ry~Ryのシクロアルキル基としては、シクロペンチル基、及び、シクロヘキシル基等の単環のシクロアルキル基、又はノルボルニル基、テトラシクロデカニル基、テトラシクロドデカニル基、及び、アダマンチル基等の多環のシクロアルキル基が好ましい。
 Ry~Ryのアリール基としては、炭素数6~10のアリール基が好ましく、例えば、フェニル基、ナフチル基、及び、アントリル基が挙げられる。
 Ry~Ryのアルケニル基としては、ビニル基が好ましい。
 Ry~Ryのアルキニル基としては、エチニル基が好ましい。
 Ry~Ryのシクロアルケニル基としては、シクロペンチル基、及び、シクロヘキシル基等の単環のシクロアルキル基の一部に二重結合を含む構造が好ましい。
 Ry~Ryの2つが結合して形成されるシクロアルキル基としては、シクロペンチル基、及び、シクロヘキシル基等の単環のシクロアルキル基、又は、ノルボルニル基、テトラシクロデカニル基、テトラシクロドデカニル基、及び、アダマンチル基等の多環のシクロアルキル基が好ましい。なかでも、炭素数5~6の単環のシクロアルキル基がより好ましい。
 Ry~Ryの2つが結合して形成されるシクロアルキル基、又は、シクロアルケニル基は、例えば、環を構成するメチレン基の1つが、酸素原子等のヘテロ原子、カルボニル基、-SO-基及び-SO-基等のヘテロ原子を含む基、ビニリデン基、又は、それらの組み合わせで置き換わっていてもよい。また、これらのシクロアルキル基又はシクロアルケニル基は、シクロアルカン環又はシクロアルケン環を構成するエチレン基の1つ以上が、ビニレン基で置き換わっていてもよい。
 式(B)で表される繰り返し単位は、例えば、Ryがメチル基、エチル基、ビニル基、アリル基、又は、アリール基であり、RyとRyとが結合して上述のシクロアルキル基又はシクロアルケニル基を形成している態様が好ましい。
 上記各基が置換基を有する場合、置換基としては、例えば、アルキル基(炭素数1~4)、ハロゲン原子、水酸基、アルコキシ基(炭素数1~4)、カルボキシル基、及び、アルコキシカルボニル基(炭素数2~6)が挙げられる。置換基中の炭素数は、8以下が好ましい。
 式(B)で表される繰り返し単位としては、好ましくは、酸分解性(メタ)アクリル酸3級エステル系繰り返し単位(Xbが水素原子又はメチル基を表し、かつ、Lが-CO-基を表す繰り返し単位)、酸分解性ヒドロキシスチレン3級アルキルエーテル系繰り返し単位(Xbが水素原子又はメチル基を表し、かつ、Lがフェニル基を表す繰り返し単位)、酸分解性スチレンカルボン酸3級エステル系繰り返し単位(Xbが水素原子又はメチル基を表し、かつ、Lが-Rt-CO-基(Rtは芳香族基)を表す繰り返し単位)である。
 不飽和結合を含む酸分解性基を有する繰り返し単位の含有量は、樹脂(A)中の全繰り返し単位に対して、15モル%以上が好ましく、20モル%以上がより好ましく、30モル%以上が更に好ましい。また、その上限値としては、樹脂(A)中の全繰り返し単位に対して、80モル%以下が好ましく、70モル%以下がより好ましく、60モル%以下が更に好ましい。
 不飽和結合を含む酸分解性基を有する繰り返し単位の具体例を以下に示すが、これに限定されない。なお、式中、Xb及びL1は上記記載の置換基、連結基のいずれかを表し、Arは芳香族基を表し、Rは、水素原子、アルキル基、シクロアルキル基、アリール基、アラルキル基、アルケニル基、水酸基、アルコキシ基、アシロキシ基、シアノ基、ニトロ基、アミノ基、ハロゲン原子、エステル基(-OCOR’’’又は-COOR’’’、R’’’は炭素数1~20のアルキル基又はフッ素化アルキル基)、又は、カルボキシル基等の置換基を表し、R’は直鎖状若しくは分岐鎖状のアルキル基、単環状若しくは多環状のシクロアルキル基、アルケニル基、アルキニル基、又は、単環若しくは多環のアリール基を表し、Qは酸素原子等のヘテロ原子、カルボニル基、-SO-基及び-SO-基等のヘテロ原子を含む基、ビニリデン基、又はそれらの組み合わせを表し、n、m及びlは0以上の整数を表す。
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
 酸分解性基を有する繰り返し単位の含有量は、樹脂(A)中の全繰り返し単位に対して、15モル%以上が好ましく、20モル%以上がより好ましく、30モル%以上が更に好ましい。また、その上限値としては、樹脂(A)中の全繰り返し単位に対して、90モル%以下が好ましく、80モル%以下がより好ましく、70モル%以下が更に好ましく、60モル%以下が特に好ましい。
 樹脂(A)は、以下のA群からなる群から選択される少なくとも1種の繰り返し単位、及び/又は、以下のB群からなる群から選択される少なくとも1種の繰り返し単位を含んでいてもよい。
A群:以下の(20)~(25)の繰り返し単位からなる群。
(20)後述する、酸基を有する繰り返し単位
(21)後述する、酸分解性基及び酸基のいずれも有さず、フッ素原子、臭素原子又はヨウ素原子を有する繰り返し単位
(22)後述する、ラクトン基、スルトン基、又はカーボネート基を有する繰り返し単位
(23)後述する、光酸発生基を有する繰り返し単位
(24)後述する、式(V-1)又は式(V-2)で表される繰り返し単位
(25)主鎖の運動性を低下させるための繰り返し単位
 尚、後述する、国際公開第2020/004306号の[0120]~[0151]に記載の式(A)~式(E)で表される繰り返し単位は、(25)主鎖の運動性を低下させるための繰り返し単位に相当する。
B群:以下の(30)~(32)の繰り返し単位からなる群。
(30)後述する、ラクトン基、スルトン基、カーボネート基、水酸基、シアノ基、及びアルカリ可溶性基から選ばれる少なくとも1種類の基を有する繰り返し単位
(31)後述する、脂環式炭化水素構造を有し、酸分解性を示さない繰り返し単位
(32)後述する、水酸基及びシアノ基のいずれも有さない、式(III)で表される繰り返し単位
 樹脂(A)は、酸基を有しているのが好ましく、後述するように、酸基を有する繰り返し単位を含むことが好ましい。なお、酸基の定義については、後段において酸基を有する繰り返し単位の好適態様と共に説明する。樹脂(A)が酸基を有する場合、樹脂(A)と光酸発生剤から発生する酸との相互作用性とがより優れる。この結果として、酸の拡散がより一層抑制されて、形成されるパターンの断面形状がより矩形化し得る。
 樹脂(A)は上記A群からなる群から選択される少なくとも1種の繰り返し単位を有してもよい。本発明の組成物がEUV露光用の感活性光線性又は感放射線性樹脂組成物として用いられる場合、樹脂(A)は上記A群からなる群から選択される少なくとも1種の繰り返し単位を有することが好ましい。
 樹脂(A)は、フッ素原子及びヨウ素原子の少なくとも一方を含んでもよい。本発明の組成物がEUV露光用の感活性光線性又は感放射線性樹脂組成物として用いられる場合、樹脂(A)は、フッ素原子及びヨウ素原子の少なくとも一方を含むことが好ましい。樹脂(A)がフッ素原子及びヨウ素原子の両方を含む場合、樹脂(A)は、フッ素原子及びヨウ素原子の両方を含む1つの繰り返し単位を有していてもよいし、樹脂(A)は、フッ素原子を有する繰り返し単位とヨウ素原子を含む繰り返し単位との2種を含んでいてもよい。
 樹脂(A)は、芳香族基を有する繰り返し単位を有してもよい。本発明の組成物がEUV露光用の感活性光線性又は感放射線性樹脂組成物として用いられる場合、樹脂(A)が、芳香族基を有する繰り返し単位を有することも好ましい。
 樹脂(A)は上記B群からなる群から選択される少なくとも1種の繰り返し単位を有してもよい。レジスト組成物がArF用の感活性光線性又は感放射線性樹脂組成物として用いられる場合、樹脂(A)は上記B群からなる群から選択される少なくとも1種の繰り返し単位を有することが好ましい。
 なお、レジスト組成物がArF用の感活性光線性又は感放射線性樹脂組成物として用いられる場合、樹脂(A)は、フッ素原子及び珪素原子のいずれも含まないことが好ましい。
 本発明の組成物がArF用の感活性光線性又は感放射線性樹脂組成物として用いられる場合、樹脂(A)は、芳香族基を有さないことが好ましい。
(酸基を有する繰り返し単位)
 樹脂(A)は、酸基を有する繰り返し単位を有していてもよい。
 酸基としては、pKaが13以下の酸基が好ましい。上記酸基の酸解離定数は、13以下が好ましく、3~13がより好ましく、5~10が更に好ましい。
 樹脂(A)が、pKaが13以下の酸基を有する場合、樹脂(A)中における酸基の含有量は特に制限されないが、0.2~6.0mmol/gの場合が多い。なかでも、0.8~6.0mmol/gが好ましく、1.2~5.0mmol/gがより好ましく、1.6~4.0mmol/gが更に好ましい。酸基の含有量が上記範囲内であれば、現像が良好に進行し、形成されるパターン形状に優れ、解像性にも優れる。
 酸基としては、例えば、カルボキシル基、フェノール性水酸基、フッ化アルコール基(好ましくはヘキサフルオロイソプロパノール基)、スルホン酸基、スルホンアミド基、又はイソプロパノール基が好ましい。
 上記ヘキサフルオロイソプロパノール基は、フッ素原子の1つ以上(好ましくは1~2つ)が、フッ素原子以外の基(アルコキシカルボニル基等)で置換されてもよい。酸基としては、このように形成された-C(CF)(OH)-CF-も好ましい。また、フッ素原子の1つ以上がフッ素原子以外の基に置換されて、-C(CF)(OH)-CF-を含む環を形成してもよい。
 酸基を有する繰り返し単位は、上述の酸の作用により脱離する基で極性基が保護された構造を有する繰り返し単位、及び後述するラクトン基、スルトン基、又はカーボネート基を有する繰り返し単位とは異なる繰り返し単位であることが好ましい。
 酸基を有する繰り返し単位は、フッ素原子又はヨウ素原子を有していてもよい。
 酸基を有する繰り返し単位としては、以下の繰り返し単位が挙げられる。
Figure JPOXMLDOC01-appb-C000016
 酸基を有する繰り返し単位としては、下記式(1)で表される繰り返し単位が好ましい。
Figure JPOXMLDOC01-appb-C000017
 式(1)中、Aは水素原子、アルキル基、シクロアルキル基、ハロゲン原子、又はシアノ基を表す。Rは、ハロゲン原子、アルキル基、シクロアルキル基、アリール基、アルケニル基、アラルキル基、アルコキシ基、アルキルカルボニルオキシ基、アルキルスルホニルオキシ基、アルキルオキシカルボニル基、又はアリールオキシカルボニル基を表し、複数個ある場合には同じであっても異なっていてもよい。複数のRを有する場合には、互いに共同して環を形成していてもよい。Rとしては水素原子が好ましい。aは1~3の整数を表す。bは0~(5-a)の整数を表す。
 以下、酸基を有する繰り返し単位を以下に例示する。式中、aは1又は2を表す。
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
 なお、上記繰り返し単位のなかでも、以下に具体的に記載する繰り返し単位が好ましい。式中、Rは水素原子又はメチル基を表し、aは2又は3を表す。
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
 酸基を有する繰り返し単位の含有量は、樹脂(A)中の全繰り返し単位に対して、10モル%以上が好ましく、15モル%以上がより好ましい。また、その上限値としては、樹脂(A)中の全繰り返し単位に対して、70モル%以下が好ましく、65モル%以下がより好ましく、60モル%以下が更に好ましい。
(酸分解性基及び酸基のいずれも有さず、フッ素原子、臭素原子又はヨウ素原子を有する繰り返し単位)
 樹脂(A)は、上述した<酸分解性基を有する繰り返し単位>及び<酸基を有する繰り返し単位>とは別に、酸分解性基及び酸基のいずれも有さず、フッ素原子、臭素原子又はヨウ素原子を有する繰り返し単位(以下、単位Xともいう。)を有していてもよい。ここで言う<酸分解性基及び酸基のいずれも有さず、フッ素原子、臭素原子又はヨウ素原子を有する繰り返し単位>は、後述の<ラクトン基、スルトン基、又はカーボネート基を有する繰り返し単位>、及び<光酸発生基を有する繰り返し単位>等の、A群に属する他の種類の繰り返し単位とは異なることが好ましい。
 単位Xとしては、式(C)で表される繰り返し単位が好ましい。
Figure JPOXMLDOC01-appb-C000024
 Lは、単結合、又はエステル基を表す。Rは、水素原子、又はフッ素原子若しくはヨウ素原子を有していてもよいアルキル基を表す。R10は、水素原子、フッ素原子若しくはヨウ素原子を有していてもよいアルキル基、フッ素原子若しくはヨウ素原子を有していてもよいシクロアルキル基、フッ素原子若しくはヨウ素原子を有していてもよいアリール基、又はこれらを組み合わせた基を表す。
 フッ素原子又はヨウ素原子を有する繰り返し単位を以下に例示する。
Figure JPOXMLDOC01-appb-C000025
 単位Xの含有量は、樹脂(A)中の全繰り返し単位に対して、0モル%以上が好ましく、5モル%以上がより好ましく、10モル%以上が更に好ましい。また、その上限値としては、樹脂(A)中の全繰り返し単位に対して、50モル%以下が好ましく、45モル%以下がより好ましく、40モル%以下が更に好ましい。
 樹脂(A)の繰り返し単位のうち、フッ素原子、臭素原子及びヨウ素原子の少なくとも1つを含む繰り返し単位の合計含有量は、樹脂(A)の全繰り返し単位に対して、10モル%以上が好ましく、20モル%以上がより好ましく、30モル%以上が更に好ましく、40モル%以上が特に好ましい。上限値は特に制限されないが、例えば、樹脂(A)の全繰り返し単位に対して、100モル%以下である。
 なお、フッ素原子、臭素原子及びヨウ素原子の少なくとも1つを含む繰り返し単位としては、例えば、フッ素原子、臭素原子又はヨウ素原子を有し、かつ、酸分解性基を有する繰り返し単位、フッ素原子、臭素原子又はヨウ素原子を有し、かつ、酸基を有する繰り返し単位、及びフッ素原子、臭素原子又はヨウ素原子を有する繰り返し単位が挙げられる。
(ラクトン基、スルトン基、又はカーボネート基を有する繰り返し単位)
 樹脂(A)は、ラクトン基、スルトン基、及びカーボネート基からなる群から選択される少なくとも1種を有する繰り返し単位(以下、「単位Y」ともいう。)を有していてもよい。
 単位Yは、水酸基、及びヘキサフルオロプロパノール基等の酸基を有さないことも好ましい。
 ラクトン基又はスルトン基としては、ラクトン構造又はスルトン構造を有していればよい。ラクトン構造又はスルトン構造は、5~7員環ラクトン構造又は5~7員環スルトン構造が好ましい。なかでも、ビシクロ構造若しくはスピロ構造を形成する形で5~7員環ラクトン構造に他の環構造が縮環しているもの、又はビシクロ構造若しくはスピロ構造を形成する形で5~7員環スルトン構造に他の環構造が縮環しているものがより好ましい。
 樹脂(A)は、下記式(LC1-1)~(LC1-21)のいずれかで表されるラクトン構造、又は下記式(SL1-1)~(SL1-3)のいずれかで表されるスルトン構造の環員原子から、水素原子を1つ以上引き抜いてなるラクトン基又はスルトン基を有する繰り返し単位を有することが好ましく、ラクトン基又はスルトン基が主鎖に直接結合していてもよい。例えば、ラクトン基又はスルトン基の環員原子が、樹脂(A)の主鎖を構成してもよい。
Figure JPOXMLDOC01-appb-C000026
 上記ラクトン構造又はスルトン構造は、置換基(Rb)を有していてもよい。好ましい置換基(Rb)としては、炭素数1~8のアルキル基、炭素数4~7のシクロアルキル基、炭素数1~8のアルコキシ基、炭素数1~8のアルコキシカルボニル基、カルボキシル基、ハロゲン原子、シアノ基、及び酸分解性基が挙げられる。n2は、0~4の整数を表す。n2が2以上の時、複数存在するRbは、異なっていてもよく、複数存在するRb同士が結合して環を形成してもよい。
 式(LC1-1)~(LC1-21)のいずれかで表されるラクトン構造、又は式(SL1-1)~(SL1-3)のいずれかで表されるスルトン構造を含む基を有する繰り返し単位としては、例えば、下記式(AI)で表される繰り返し単位が挙げられる。
Figure JPOXMLDOC01-appb-C000027
 式(AI)中、Rbは、水素原子、ハロゲン原子、又は炭素数1~4のアルキル基を表す。Rbのアルキル基が有していてもよい好ましい置換基としては、水酸基、及びハロゲン原子が挙げられる。
 Rbのハロゲン原子としては、フッ素原子、塩素原子、臭素原子、及びヨウ素原子が挙げられる。Rbは、水素原子又はメチル基が好ましい。
 Abは、単結合、アルキレン基、単環又は多環の脂環式炭化水素構造を有する2価の連結基、エーテル基、エステル基、カルボニル基、カルボキシル基、又はこれらを組み合わせた2価の連結基を表す。なかでも、Abとしては、単結合、又は-Ab-CO-で表される連結基が好ましい。Abは、直鎖状若しくは分岐鎖状のアルキレン基、又は単環若しくは多環のシクロアルキレン基であり、メチレン基、エチレン基、シクロヘキシレン基、アダマンチレン基、又はノルボルニレン基が好ましい。
 Vは、式(LC1-1)~(LC1-21)のいずれかで表されるラクトン構造の環員原子から水素原子を1つ引き抜いてなる基、又は式(SL1-1)~(SL1-3)のいずれかで表されるスルトン構造の環員原子から水素原子を1つ引き抜いてなる基を表す。
 ラクトン基又はスルトン基を有する繰り返し単位に、光学異性体が存在する場合、いずれの光学異性体を用いてもよい。また、1種の光学異性体を単独で用いても、複数の光学異性体を混合して用いてもよい。1種の光学異性体を主に用いる場合、その光学純度(ee)は90以上が好ましく、95以上がより好ましい。
 カーボネート基としては、環状炭酸エステル基が好ましい。
 環状炭酸エステル基を有する繰り返し単位としては、下記式(A-1)で表される繰り返し単位が好ましい。
Figure JPOXMLDOC01-appb-C000028
 式(A-1)中、R は、水素原子、ハロゲン原子、又は1価の有機基(好ましくはメチル基)を表す。nは0以上の整数を表す。R は、置換基を表す。nが2以上の場合、複数存在するR は、それぞれ同一でも異なっていてもよい。Aは、単結合又は2価の連結基を表す。上記2価の連結基としては、アルキレン基、単環又は多環の脂環式炭化水素構造を有する2価の連結基、エーテル基、エステル基、カルボニル基、カルボキシル基、又はこれらを組み合わせた2価の連結基が好ましい。Zは、式中の-O-CO-O-で表される基と共に単環又は多環を形成する原子団を表す。
 単位Yを以下に例示する。式中、Rxは、水素原子、-CH、-CHOHまたは-CFを表す。
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
 単位Yの含有量は、樹脂(A)中の全繰り返し単位に対して、1モル%以上が好ましく、10モル%以上がより好ましい。また、その上限値としては、樹脂(A)中の全繰り返し単位に対して、85モル%以下が好ましく、80モル%以下がより好ましく、70モル%以下が更に好ましく、60モル%以下が特に好ましい。
(光酸発生基を有する繰り返し単位)
 樹脂(A)は、上記以外の繰り返し単位として、活性光線又は放射線の照射により酸を発生する基(以下、「光酸発生基」ともいう)を有する繰り返し単位を有していてもよい。
 光酸発生基を有する繰り返し単位としては、国際公開第2020/004306号の段落[0109]~[0115]に記載のものが挙げられる。
(式(V-1)又は式(V-2)で表される繰り返し単位)
 樹脂(A)は、式(V-1)、又は式(V-2)で表される繰り返し単位を有していてもよい。
 式(V-1)又は式(V-2)で表される繰り返し単位としては、国際公開第2020/004306号の段落[0116]~[0119]に記載のものが挙げられる。
(主鎖の運動性を低下させるための繰り返し単位)
 主鎖の運動性を低下させるための繰り返し単位としては、国際公開第2020/004306号の段落[0120]~[0151]に記載のものが挙げられる。
(ラクトン基、スルトン基、カーボネート基、水酸基、シアノ基、及びアルカリ可溶性基から選ばれる少なくとも1種類の基を有する繰り返し単位)
 樹脂(A)は、ラクトン基、スルトン基、カーボネート基、水酸基、シアノ基、及びアルカリ可溶性基から選ばれる少なくとも1種類の基を有する繰り返し単位を有していてもよい。
 樹脂(A)が有するラクトン基、スルトン基、又はカーボネート基を有する繰り返し単位としては、上述した<ラクトン基、スルトン基、又はカーボネート基を有する繰り返し単位>で説明した繰り返し単位が挙げられる。好ましい含有量も上述した<ラクトン基、スルトン基、又はカーボネート基を有する繰り返し単位>で説明した通りである。
 樹脂(A)は、水酸基又はシアノ基を有する繰り返し単位を有していてもよい。これにより基板密着性、現像液親和性が向上する。
 水酸基又はシアノ基を有する繰り返し単位は、水酸基又はシアノ基で置換された脂環式炭化水素構造を有する繰り返し単位であることが好ましい。
 水酸基又はシアノ基を有する繰り返し単位は、酸分解性基を有さないことが好ましい。水酸基又はシアノ基を有する繰り返し単位としては、特開2014-098921号公報の段落[0081]~[0084]に記載のものが挙げられる。
 樹脂(A)は、アルカリ可溶性基を有する繰り返し単位を有していてもよい。
 アルカリ可溶性基としては、カルボキシル基、スルホンアミド基、スルホニルイミド基、ビススルホニルイミド基、及びα位が電子求引性基で置換された脂肪族アルコール基(例えば、ヘキサフルオロイソプロパノール基)が挙げられ、カルボキシル基が好ましい。樹脂(A)がアルカリ可溶性基を有する繰り返し単位を含むことにより、コンタクトホール用途での解像性が増す。アルカリ可溶性基を有する繰り返し単位としては、特開2014-098921号公報の段落[0085]及び[0086]に記載のものが挙げられる。
(脂環式炭化水素構造を有し、酸分解性を示さない繰り返し単位)
 樹脂(A)は、脂環式炭化水素構造を有し、酸分解性を示さない繰り返し単位を有してもよい。
 このような繰り返し単位としては、国際公開第2020/004306号の段落[0164]に記載のものが挙げられる。
(水酸基及びシアノ基のいずれも有さない、式(III)で表される繰り返し単位)
 樹脂(A)は、水酸基及びシアノ基のいずれも有さない、式(III)で表される繰り返し単位を有していてもよい。
 水酸基及びシアノ基のいずれも有さない、式(III)で表される繰り返し単位としては、国際公開第2020/004306号の段落[0165]~[0173]に記載のものが挙げられる。
(その他の繰り返し単位)
 更に、樹脂(A)は、上述した繰り返し単位以外のその他の繰り返し単位を有してもよい。
 例えば樹脂(A)は、オキサチアン環基を有する繰り返し単位、オキサゾロン環基を有する繰り返し単位、ジオキサン環基を有する繰り返し単位、及びヒダントイン環基を有する繰り返し単位からなる群から選択される繰り返し単位を有していてもよい。
 上述した繰り返し単位以外のその他の繰り返し単位の具体例を以下に例示する。
Figure JPOXMLDOC01-appb-C000032
 樹脂(A)は、上記の繰り返し構造単位以外に、ドライエッチング耐性、標準現像液適性、基板密着性、レジストプロファイル、解像性、耐熱性、及び感度等を調節する目的で様々な繰り返し構造単位を有していてもよい。
 樹脂(A)としては、特に、組成物がArF用の感活性光線性又は感放射線性樹脂組成物として用いられる場合、繰り返し単位の全てが、エチレン性不飽和結合を有する化合物に由来する繰り返し単位で構成されることが好ましい。特に、繰り返し単位の全てが(メタ)アクリレート系繰り返し単位で構成されることも好ましい。繰り返し単位の全てが(メタ)アクリレート系繰り返し単位で構成される場合、繰り返し単位の全てがメタクリレート系繰り返し単位であるもの、繰り返し単位の全てがアクリレート系繰り返し単位であるもの、繰り返し単位の全てがメタクリレート系繰り返し単位とアクリレート系繰り返し単位とによるもののいずれのものでも用いることができ、アクリレート系繰り返し単位が全繰り返し単位の50モル%以下であることが好ましい。
 樹脂(A)は、常法に従って(例えばラジカル重合)合成できる。
 GPC法によりポリスチレン換算値として、樹脂(A)の重量平均分子量は、30,000以下が好ましく、1,000~30,000がより好ましく、3,000~30,000が更に好ましく、5,000~15,000が特に好ましい。
 樹脂(A)の分散度(分子量分布)は、1~5が好ましく、1~3がより好ましく、1.2~3.0が更に好ましく、1.2~2.0が特に好ましい。分散度が小さいものほど、解像度、及びレジスト形状がより優れ、更に、レジストパターンの側壁がよりスムーズであり、ラフネス性にもより優れる。
 本発明の組成物において、樹脂(A)の含有量は、組成物の全固形分に対して、40.0~99.9質量%が好ましく、60.0~90.0質量%がより好ましい。
 樹脂(A)は、1種で使用してもよいし、複数併用してもよい。
<光酸発生剤>
 本発明の組成物は、活性光線又は放射線の照射によって酸を発生する化合物(以下、「光酸発生剤(B)」ともいう)を含んでいてもよい。
 光酸発生剤(B)は、低分子化合物の形態であってもよく、重合体(例えば、後述する樹脂(A))の一部に組み込まれた形態であってもよい。また、低分子化合物の形態と重合体(例えば、後述する樹脂(A))の一部に組み込まれた形態とを併用してもよい。
 光酸発生剤(B)が、低分子化合物の形態である場合、光酸発生剤の分子量は3000以下が好ましく、2000以下がより好ましく、1000以下が更に好ましい。下限は特に制限されないが、100以上が好ましい。
 光酸発生剤(B)が、重合体の一部に組み込まれた形態である場合、樹脂(A)の一部に組み込まれてもよく、樹脂(A)とは異なる樹脂に組み込まれてもよい。
 本明細書において、光酸発生剤(B)は、低分子化合物の形態であることが好ましい。
 光酸発生剤(B)としては、例えば、「M X」で表される化合物(オニウム塩)が挙げられ、露光により有機酸を発生する化合物であることが好ましい。
 上記有機酸として、例えば、スルホン酸(脂肪族スルホン酸、芳香族スルホン酸、及びカンファースルホン酸等)、カルボン酸(脂肪族カルボン酸、芳香族カルボン酸、及びアラルキルカルボン酸等)、カルボニルスルホニルイミド酸、ビス(アルキルスルホニル)イミド酸、及びトリス(アルキルスルホニル)メチド酸が挙げられる。
 「M X」で表される化合物において、Mは、有機カチオンを表す。
 有機カチオンとしては特に制限されない。有機カチオンの価数は、1又は2価以上であってもよい。
 なかでも、上記有機カチオンとしては、式(ZaI)で表されるカチオン(以下「カチオン(ZaI)」ともいう。)、又は、式(ZaII)で表されるカチオン(以下「カチオン(ZaII)」ともいう。)が好ましい。
Figure JPOXMLDOC01-appb-C000033
 上記式(ZaI)において、R201、R202、及びR203は、それぞれ独立に、有機基を表す。
 R201、R202、及びR203としての有機基の炭素数は、1~30が好ましく、1~20がより好ましい。R201~R203のうち2つが結合して環構造を形成してもよく、環内に酸素原子、硫黄原子、エステル基、アミド基、又はカルボニル基を含んでいてもよい。R201~R203の内の2つが結合して形成する基としては、例えば、アルキレン基(例えば、ブチレン基及びペンチレン基)、及び-CH-CH-O-CH-CH-が挙げられる。
 式(ZaI)における有機カチオンの好適な態様としては、後述する、カチオン(ZaI-1)、カチオン(ZaI-2)、カチオン(ZaI-3b)、カチオン(ZaI-4b)が挙げられる。
 まず、カチオン(ZaI-1)について説明する。
 カチオン(ZaI-1)は、上記式(ZaI)のR201~R203の少なくとも1つがアリール基である、アリールスルホニウムカチオンである。
 上記式(ZaI)のR201~R203の少なくとも1つがアリール基であることが好ましい。
 アリールスルホニウムカチオンは、R201~R203の全てがアリール基でもよいし、R201~R203の一部がアリール基であり、残りがアルキル基又はシクロアルキル基であってもよい。
 R201~R203のうちの1つがアリール基であり、R201~R203のうちの残りの2つが結合して環構造を形成してもよく、環内に酸素原子、硫黄原子、エステル基、アミド基、又はカルボニル基を含んでいてもよい。R201~R203のうちの2つが結合して形成する基としては、例えば、1つ以上のメチレン基が酸素原子、硫黄原子、エステル基、アミド基、及び/又はカルボニル基で置換されていてもよいアルキレン基(例えば、ブチレン基、ペンチレン基、及び-CH-CH-O-CH-CH-)が挙げられる。
 アリールスルホニウムカチオンとしては、トリアリールスルホニウムカチオン、ジアリールアルキルスルホニウムカチオン、アリールジアルキルスルホニウムカチオン、ジアリールシクロアルキルスルホニウムカチオン、及びアリールジシクロアルキルスルホニウムカチオンが挙げられる。
 アリールスルホニウムカチオンに含まれるアリール基としては、フェニル基又はナフチル基が好ましく、フェニル基がより好ましい。アリール基は、酸素原子、窒素原子、又は硫黄原子等を有するヘテロ環構造を有するアリール基であってもよい。ヘテロ環構造としては、ピロール残基、フラン残基、チオフェン残基、インドール残基、ベンゾフラン残基、及びベンゾチオフェン残基が挙げられる。アリールスルホニウムカチオンが2つ以上のアリール基を有する場合に、2つ以上あるアリール基は同一であっても異なっていてもよい。
 アリールスルホニウムカチオンが必要に応じて有しているアルキル基又はシクロアルキル基は、炭素数1~15の直鎖状アルキル基、炭素数3~15の分岐鎖状アルキル基、又は炭素数3~15のシクロアルキル基が好ましく、メチル基、エチル基、プロピル基、n-ブチル基、sec-ブチル基、t-ブチル基、シクロプロピル基、シクロブチル基、又はシクロヘキシル基がより好ましい。
 R201~R203のアリール基、アルキル基、及びシクロアルキル基が有していてもよい置換基としては、アルキル基(例えば、炭素数1~15)、シクロアルキル基(例えば、炭素数3~15)、アリール基(例えば、炭素数6~14)、アルコキシ基(例えば、炭素数1~15)、シクロアルキルアルコキシ基(例えば、炭素数1~15)、ハロゲン原子(例えば、フッ素及びヨウ素)、水酸基、カルボキシル基、エステル基、スルフィニル基、スルホニル基、アルキルチオ基、又はフェニルチオ基が好ましい。
 上記置換基は可能な場合更に置換基を有していてもよく、上記アルキル基が置換基としてハロゲン原子を有して、トリフルオロメチル基等のハロゲン化アルキル基となっていることも好ましい。
 上記置換基は任意の組み合わせにより、酸分解性基を形成することも好ましい。
 なお、酸分解性基とは、酸の作用により分解して極性基を生じる基を意図し、酸の作用により脱離する基で極性基が保護された構造であることが好ましい。上記の極性基及び脱離基としては、上述の通りである。
 上記式(ZaI)のR201~R203の少なくとも1つのアリール基が、置換基を有していることが好ましい。
 次に、カチオン(ZaI-2)について説明する。
 カチオン(ZaI-2)は、式(ZaI)におけるR201~R203が、それぞれ独立に、芳香環を有さない有機基を表すカチオンである。芳香環とは、ヘテロ原子を含む芳香族環も包含する。
 R201~R203としての芳香環を有さない有機基の炭素数は、1~30が好ましく、1~20がより好ましい。
 R201~R203としては、それぞれ独立に、アルキル基、シクロアルキル基、アリル基、又はビニル基が好ましく、直鎖状又は分岐鎖状の2-オキソアルキル基、2-オキソシクロアルキル基、又はアルコキシカルボニルメチル基がより好ましく、直鎖状又は分岐鎖状の2-オキソアルキル基が更に好ましい。
 R201~R203のアルキル基及びシクロアルキル基は、例えば、炭素数1~10の直鎖状アルキル基又は炭素数3~10の分岐鎖状アルキル基(例えば、メチル基、エチル基、プロピル基、ブチル基、及びペンチル基)、並びに、炭素数3~10のシクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基、及びノルボルニル基)が挙げられる。
 R201~R203は、ハロゲン原子、アルコキシ基(例えば、炭素数1~5)、水酸基、シアノ基、又はニトロ基によって更に置換されていてもよい。
 R201~R203の置換基は、それぞれ独立に、置換基の任意の組み合わせにより、酸分解性基を形成することも好ましい。
 次に、カチオン(ZaI-3b)について説明する。
 カチオン(ZaI-3b)は、下記式(ZaI-3b)で表されるカチオンである。
Figure JPOXMLDOC01-appb-C000034
 式(ZaI-3b)中、R1c~R5cは、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基、アルコキシ基、アリールオキシ基、アルコキシカルボニル基、アルキルカルボニルオキシ基、シクロアルキルカルボニルオキシ基、ハロゲン原子、水酸基、ニトロ基、アルキルチオ基、又はアリールチオ基を表す。
 R6c及びR7cは、それぞれ独立に、水素原子、アルキル基(例えば、t-ブチル基等)、シクロアルキル基、ハロゲン原子、シアノ基、又はアリール基を表す。
 R及びRは、それぞれ独立に、アルキル基、シクロアルキル基、2-オキソアルキル基、2-オキソシクロアルキル基、アルコキシカルボニルアルキル基、アリル基、又はビニル基を表す。
 R1c~R7c、並びに、R及びRの置換基は、それぞれ独立に、置換基の任意の組み合わせにより、酸分解性基を形成することも好ましい。
 R1c~R5c中のいずれか2つ以上、R5cとR6c、R6cとR7c、R5cとR、及びRとRは、それぞれ互いに結合して環を形成してもよく、この環は、それぞれ独立に、酸素原子、硫黄原子、ケトン基、エステル結合、又はアミド結合を含んでいてもよい。
 上記環としては、芳香族又は非芳香族の炭化水素環、芳香族又は非芳香族のヘテロ環、及びこれらの環が2つ以上組み合わされてなる多環縮合環が挙げられる。環としては、3~10員環が挙げられ、4~8員環が好ましく、5又は6員環がより好ましい。
 R1c~R5c中のいずれか2つ以上、R6cとR7c、及びRとRが結合して形成する基としては、ブチレン基及びペンチレン基等のアルキレン基が挙げられる。このアルキレン基中のメチレン基が酸素原子等のヘテロ原子で置換されていてもよい。
 R5cとR6c、及びR5cとRが結合して形成する基としては、単結合又はアルキレン基が好ましい。アルキレン基としては、メチレン基及びエチレン基が挙げられる。
 R1c~R5c、R6c、R7c、R、R、並びに、R1c~R5c中のいずれか2つ以上、R5cとR6c、R6cとR7c、R5cとR、及びRとRがそれぞれ互いに結合して形成する環は、置換基を有していてもよい。
 次に、カチオン(ZaI-4b)について説明する。
 カチオン(ZaI-4b)は、下記式(ZaI-4b)で表されるカチオンである。
Figure JPOXMLDOC01-appb-C000035
 式(ZaI-4b)中、lは0~2の整数を表し、rは0~8の整数を表す。
 R13は、水素原子、ハロゲン原子(例えば、フッ素原子及びヨウ素原子等)、水酸基、アルキル基、ハロゲン化アルキル基、アルコキシ基、カルボキシル基、アルコキシカルボニル基、又はシクロアルキル基を含む基(シクロアルキル基そのものであってもよく、シクロアルキル基を一部に含む基であってもよい)を表す。これらの基は置換基を有してもよい。
 R14は、水酸基、ハロゲン原子(例えば、フッ素原子及びヨウ素原子等)、アルキル基、ハロゲン化アルキル基、アルコキシ基、アルコキシカルボニル基、アルキルカルボニル基、アルキルスルホニル基、シクロアルキルスルホニル基、又はシクロアルキル基を含む基(シクロアルキル基そのものであってもよく、シクロアルキル基を一部に含む基であってもよい)を表す。これらの基は置換基を有してもよい。R14は、複数存在する場合は、それぞれ独立して、水酸基等の上記基を表す。
 R15は、それぞれ独立して、アルキル基、シクロアルキル基、又はナフチル基を表す。2つのR15が互いに結合して環を形成してもよい。2つのR15が互いに結合して環を形成するとき、環骨格内に、酸素原子、又は窒素原子等のヘテロ原子を含んでもよい。
 一態様において、2つのR15がアルキレン基であり、互いに結合して環構造を形成することが好ましい。なお、上記アルキル基、上記シクロアルキル基、及び上記ナフチル基、並びに、2つのR15が互いに結合して形成する環は置換基を有してもよい。
 式(ZaI-4b)において、R13、R14、及びR15のアルキル基は、直鎖状又は分岐鎖状であってもよい。アルキル基の炭素数は、1~10が好ましい。アルキル基は、メチル基、エチル基、n-ブチル基、又はt-ブチル基等が好ましい。
 R13~R15、並びに、R及びRの各置換基は、それぞれ独立に、置換基の任意の組み合わせにより、酸分解性基を形成することも好ましい。
 次に、式(ZaII)について説明する。
 式(ZaII)中、R204及びR205は、それぞれ独立に、アリール基、アルキル基又はシクロアルキル基を表す。
 R204及びR205のアリール基としては、フェニル基、又はナフチル基が好ましく、フェニル基がより好ましい。R204及びR205のアリール基は、酸素原子、窒素原子、又は硫黄原子等を有するヘテロ環を有するアリール基であってもよい。ヘテロ環を有するアリール基の骨格としては、例えば、ピロール、フラン、チオフェン、インドール、ベンゾフラン、及びベンゾチオフェンが挙げられる。
 R204及びR205のアルキル基及びシクロアルキル基としては、炭素数1~10の直鎖状アルキル基又は炭素数3~10の分岐鎖状アルキル基(例えば、メチル基、エチル基、プロピル基、ブチル基、又はペンチル基)、又は炭素数3~10のシクロアルキル基(例えばシクロペンチル基、シクロヘキシル基、又はノルボルニル基)が好ましい。
 R204及びR205のアリール基、アルキル基、及びシクロアルキル基は、それぞれ独立に、置換基を有していてもよい。R204及びR205のアリール基、アルキル基、及びシクロアルキル基が有していてもよい置換基としては、例えば、アルキル基(例えば、炭素数1~15)、シクロアルキル基(例えば、炭素数3~15)、アリール基(例えば、炭素数6~15)、アルコキシ基(例えば、炭素数1~15)、ハロゲン原子、水酸基、及びフェニルチオ基が挙げられる。また、R204及びR205の置換基は、それぞれ独立に、置換基の任意の組み合わせにより、酸分解性基を形成することも好ましい。
 以下に有機カチオンの具体例を示すが、本発明は、これに限定されない。
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
 「M X」で表される化合物において、Xは、有機アニオンを表す。
 有機アニオンとしては、特に制限されず、1又は2価以上の有機アニオンが挙げられる。
 有機アニオンとしては、求核反応を起こす能力が著しく低いアニオンが好ましく、非求核性アニオンがより好ましい。
 非求核性アニオンとしては、例えば、スルホン酸アニオン(脂肪族スルホン酸アニオン、芳香族スルホン酸アニオン、及びカンファースルホン酸アニオン等)、カルボン酸アニオン(脂肪族カルボン酸アニオン、芳香族カルボン酸アニオン、及びアラルキルカルボン酸アニオン等)、スルホニルイミドアニオン、ビス(アルキルスルホニル)イミドアニオン、及びトリス(アルキルスルホニル)メチドアニオンが挙げられる。
 脂肪族スルホン酸アニオン及び脂肪族カルボン酸アニオンにおける脂肪族部位は、直鎖状又は分岐鎖状のアルキル基であっても、シクロアルキル基であってもよく、炭素数1~30の直鎖状又は分岐鎖状のアルキル基、又は、炭素数3~30のシクロアルキル基が好ましい。
 上記アルキル基は、例えば、フルオロアルキル基(フッ素原子以外の置換基を有していてもよい。パーフルオロアルキル基であってもよい)であってもよい。
 芳香族スルホン酸アニオン及び芳香族カルボン酸アニオンにおけるアリール基としては、炭素数6~14のアリール基が好ましく、例えば、フェニル基、トリル基、及び、ナフチル基が挙げられる。
 上記で挙げたアルキル基、シクロアルキル基、及び、アリール基は、置換基を有していてもよい。置換基としては特に制限されないが、例えば、ニトロ基、フッ素原子及び塩素原子等のハロゲン原子、カルボキシル基、水酸基、アミノ基、シアノ基、アルコキシ基(炭素数1~15が好ましい)、アルキル基(炭素数1~10が好ましい)、シクロアルキル基(炭素数3~15が好ましい)、アリール基(炭素数6~14が好ましい)、アルコキシカルボニル基(炭素数2~7が好ましい)、アシル基(炭素数2~12が好ましい)、アルコキシカルボニルオキシ基(炭素数2~7が好ましい)、アルキルチオ基(炭素数1~15が好ましい)、アルキルスルホニル基(炭素数1~15が好ましい)、アルキルイミノスルホニル基(炭素数1~15が好ましい)、及び、アリールオキシスルホニル基(炭素数6~20が好ましい)が挙げられる。
 アラルキルカルボン酸アニオンにおけるアラルキル基としては、炭素数7~14のアラルキル基が好ましい。
 炭素数7~14のアラルキル基としては、例えば、ベンジル基、フェネチル基、ナフチルメチル基、ナフチルエチル基、及び、ナフチルブチル基が挙げられる。
 スルホニルイミドアニオンとしては、例えば、サッカリンアニオンが挙げられる。
 ビス(アルキルスルホニル)イミドアニオン、及び、トリス(アルキルスルホニル)メチドアニオンにおけるアルキル基としては、炭素数1~5のアルキル基が好ましい。これらのアルキル基の置換基としては、ハロゲン原子、ハロゲン原子で置換されたアルキル基、アルコキシ基、アルキルチオ基、アルキルオキシスルホニル基、アリールオキシスルホニル基、及び、シクロアルキルアリールオキシスルホニル基が挙げられ、フッ素原子又はフッ素原子で置換されたアルキル基が好ましい。
 また、ビス(アルキルスルホニル)イミドアニオンにおけるアルキル基は、互いに結合して環構造を形成してもよい。これにより、酸強度が増加する。
 その他の非求核性アニオンとしては、例えば、フッ素化燐(例えば、PF )、フッ素化ホウ素(例えば、BF )、及び、フッ素化アンチモン(例えば、SbF )が挙げられる。
 非求核性アニオンとしては、スルホン酸の少なくともα位がフッ素原子で置換された脂肪族スルホン酸アニオン、フッ素原子若しくはフッ素原子を有する基で置換された芳香族スルホン酸アニオン、アルキル基がフッ素原子で置換されたビス(アルキルスルホニル)イミドアニオン、又は、アルキル基がフッ素原子で置換されたトリス(アルキルスルホニル)メチドアニオンが好ましい。なかでも、パーフルオロ脂肪族スルホン酸アニオン(炭素数4~8が好ましい)、又は、フッ素原子を有するベンゼンスルホン酸アニオンがより好ましく、ノナフルオロブタンスルホン酸アニオン、パーフルオロオクタンスルホン酸アニオン、ペンタフルオロベンゼンスルホン酸アニオン、又は、3,5-ビス(トリフルオロメチル)ベンゼンスルホン酸アニオンが更に好ましい。
 非求核性アニオンとしては、下記式(AN1)で表されるアニオンも好ましい。
Figure JPOXMLDOC01-appb-C000039
 式(AN1)中、R及びRは、それぞれ独立に、水素原子、又は置換基を表す。
 置換基は特に制限されないが、電子求引性基ではない基が好ましい。電子求引性基ではない基としては、例えば、炭化水素基、水酸基、オキシ炭化水素基、オキシカルボニル炭化水素基、アミノ基、炭化水素置換アミノ基、及び、炭化水素置換アミド基が挙げられる。
 電子求引性基ではない基としては、それぞれ独立に、-R’、-OH、-OR’、-OCOR’、-NH、-NR’、-NHR’、又は、-NHCOR’が好ましい。R’は、1価の炭化水素基である。
 上記R’で表される1価の炭化水素基としては、例えば、メチル基、エチル基、プロピル基、及びブチル基等のアルキル基;エテニル基、プロペニル基、及びブテニル基等のアルケニル基;エチニル基、プロピニル基、及びブチニル基等のアルキニル基等の1価の直鎖状又は分岐鎖状の炭化水素基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、ノルボルニル基、及びアダマンチル基等のシクロアルキル基;シクロプロペニル基、シクロブテニル基、シクロペンテニル基、及びノルボルネニル基等のシクロアルケニル基等の1価の脂環炭化水素基;フェニル基、トリル基、キシリル基、メシチル基、ナフチル基、メチルナフチル基、アントリル基、及びメチルアントリル基等のアリール基;ベンジル基、フェネチル基、フェニルプロピル基、ナフチルメチル基、及びアントリルメチル基等のアラルキル基等の1価の芳香族炭化水素基が挙げられる。
 なかでも、R及びRは、それぞれ独立に、炭化水素基(シクロアルキル基が好ましい)又は水素原子が好ましい。
 Lは、2価の連結基を表す。
 Lが複数存在する場合、Lは、それぞれ同一でも異なっていてもよい。
 2価の連結基としては、例えば、-O-CO-O-、-COO-、-CONH-、-CO-、-O-、-S-、-SO-、-SO-、アルキレン基(炭素数1~6が好ましい)、シクロアルキレン基(炭素数3~15が好ましい)、アルケニレン基(炭素数2~6が好ましい)、及び、これらの複数を組み合わせた2価の連結基が挙げられる。なかでも、2価の連結基としては、-O-CO-O-、-COO-、-CONH-、-CO-、-O-、-SO-、-O-CO-O-アルキレン基-、-COO-アルキレン基-、又は、-CONH-アルキレン基-が好ましく、-O-CO-O-、-O-CO-O-アルキレン基-、-COO-、-CONH-、-SO-、又は、-COO-アルキレン基-がより好ましい。
 Lとしては、例えば、下記式(AN1-1)で表される基が好ましい。
 *-(CR2a -Q-(CR2b -*   (AN1-1)
 式(AN1-1)中、*は、式(AN1)におけるRとの結合位置を表す。
 *は、式(AN1)における-C(R)(R)-との結合位置を表す。
 X及びYは、それぞれ独立に、0~10の整数を表し、0~3の整数が好ましい。
 R2a及びR2bは、それぞれ独立に、水素原子又は置換基を表す。
 R2a及びR2bがそれぞれ複数存在する場合、複数存在するR2a及びR2bは、それぞれ同一でも異なっていてもよい。
 ただし、Yが1以上の場合、式(AN1)における-C(R)(R)-と直接結合するCR2b におけるR2bは、フッ素原子以外である。
 Qは、*-O-CO-O-*、*-CO-*、*-CO-O-*、*-O-CO-*、*-O-*、*-S-*、又は、*-SO-*を表す。
 ただし、式(AN1-1)中のX+Yが1以上、かつ、式(AN1-1)中のR2a及びR2bのいずれもが全て水素原子である場合、Qは、*-O-CO-O-*、*-CO-*、*-O-CO-*、*-O-*、*-S-*、又は、*-SO-*を表す。
 *は、式(AN1)におけるR側の結合位置を表し、*は、式(AN1)における-SO 側の結合位置を表す。
 式(AN1)中、Rは、有機基を表す。
 上記有機基は、炭素原子を1以上有していれば特に制限はなく、直鎖状の基(例えば、直鎖状のアルキル基)でも、分岐鎖状の基(例えば、t-ブチル基等の分岐鎖状のアルキル基)でもよく、環状の基であってもよい。上記有機基は、置換基を有していても、有していなくてもよい。上記有機基は、ヘテロ原子(酸素原子、硫黄原子、及び/又は、窒素原子等)を有していても、有してなくてもよい。
 なかでも、Rは、環状構造を有する有機基であることが好ましい。上記環状構造は、単環でも多環でもよく、置換基を有していてもよい。環状構造を含む有機基における環は、式(AN1)中のLと直接結合していることが好ましい。
 上記環状構造を有する有機基は、例えば、ヘテロ原子(酸素原子、硫黄原子、及び/又は、窒素原子等)を有していても、有してなくてもよい。ヘテロ原子は、環状構造を形成する炭素原子の1つ以上と置換していてもよい。
 上記環状構造を有する有機基は、例えば、環状構造の炭化水素基、ラクトン環基、及び、スルトン環基が好ましい。なかでも、上記環状構造を有する有機基は、環状構造の炭化水素基が好ましい。
 上記環状構造の炭化水素基は、単環又は多環のシクロアルキル基が好ましい。これらの基は、置換基を有していてもよい。
 上記シクロアルキル基は、単環(シクロヘキシル基等)でも多環(アダマンチル基等)でもよく、炭素数は5~12が好ましい。
 上記ラクトン基及びスルトン基としては、例えば、上述した式(LC1-1)~(LC1-21)で表される構造、及び、式(SL1-1)~(SL1-3)で表される構造のいずれかにおいて、ラクトン構造又はスルトン構造を構成する環員原子から、水素原子を1つ除いてなる基が好ましい。
 非求核性アニオンとしては、ベンゼンスルホン酸アニオンであってもよく、分岐鎖状のアルキル基又はシクロアルキル基によって置換されたベンゼンスルホン酸アニオンであることが好ましい。
 非求核性アニオンとしては、下記式(AN2)で表されるアニオンも好ましい。
Figure JPOXMLDOC01-appb-C000040
 式(AN2)中、oは、1~3の整数を表す。pは、0~10の整数を表す。qは、0~10の整数を表す。
 Xfは、水素原子、フッ素原子、少なくとも1つのフッ素原子で置換されたアルキル基、又はフッ素原子を有さない有機基を表す。このアルキル基の炭素数は、1~10が好ましく、1~4がより好ましい。少なくとも1つのフッ素原子で置換されたアルキル基としては、パーフルオロアルキル基が好ましい。
 Xfは、フッ素原子又は炭素数1~4のパーフルオロアルキル基であることが好ましく、フッ素原子又はCFであることがより好ましく、双方のXfがフッ素原子であることが更に好ましい。
 R及びRは、それぞれ独立に、水素原子、フッ素原子、アルキル基、又は、少なくとも1つのフッ素原子で置換されたアルキル基を表す。R及びRが複数存在する場合、R及びRは、それぞれ同一でも異なっていてもよい。
 R及びRで表されるアルキル基は、炭素数1~4が好ましい。上記アルキル基は置換基を有していてもよい。R及びRとしては、水素原子が好ましい。
 Lは、2価の連結基を表す。Lの定義は、式(AN1)中のLと同義である。
 Wは、環状構造を含む有機基を表す。なかでも、環状の有機基であることが好ましい。
 環状の有機基としては、例えば、脂環基、アリール基、及び、複素環基が挙げられる。
 脂環基は、単環であってもよく、多環であってもよい。単環の脂環基としては、例えば、シクロペンチル基、シクロヘキシル基、及び、シクロオクチル基等の単環のシクロアルキル基が挙げられる。多環の脂環基としては、例えば、ノルボルニル基、トリシクロデカニル基、テトラシクロデカニル基、テトラシクロドデカニル基、及び、アダマンチル基等の多環のシクロアルキル基が挙げられる。なかでも、ノルボルニル基、トリシクロデカニル基、テトラシクロデカニル基、テトラシクロドデカニル基、及び、アダマンチル基等の炭素数7以上の嵩高い構造を有する脂環基が好ましい。
 アリール基は、単環又は多環であってもよい。上記アリール基としては、例えば、フェニル基、ナフチル基、フェナントリル基、及び、アントリル基が挙げられる。
 複素環基は、単環又は多環であってもよい。なかでも、多環の複素環基である場合、より酸の拡散を抑制できる。複素環基は、芳香族性を有していてもよいし、芳香族性を有していなくてもよい。芳香族性を有している複素環としては、例えば、フラン環、チオフェン環、ベンゾフラン環、ベンゾチオフェン環、ジベンゾフラン環、ジベンゾチオフェン環、及び、ピリジン環が挙げられる。芳香族性を有していない複素環としては、例えば、テトラヒドロピラン環、ラクトン環、スルトン環、及び、デカヒドロイソキノリン環が挙げられる。複素環基における複素環としては、フラン環、チオフェン環、ピリジン環、又は、デカヒドロイソキノリン環が好ましい。
 上記環状の有機基は、置換基を有していてもよい。上記置換基としては、例えば、アルキル基(直鎖状及び分岐鎖状のいずれであってもよく、炭素数1~12が好ましい)、シクロアルキル基(単環、多環、及び、スピロ環のいずれであってもよく、炭素数3~20が好ましい)、アリール基(炭素数6~14が好ましい)、水酸基、アルコキシ基、エステル基、アミド基、ウレタン基、ウレイド基、チオエーテル基、スルホンアミド基、及び、スルホン酸エステル基が挙げられる。なお、環状の有機基を構成する炭素(環形成に寄与する炭素)はカルボニル炭素であってもよい。
 式(AN2)で表されるアニオンとしては、SO -CF-CH-OCO-(L)q’-W、SO -CF-CHF-CH-OCO-(L)q’-W、SO -CF-COO-(L)q’-W、SO -CF-CF-CH-CH-(L)-W、又は、SO -CF-CH(CF)-OCO-(L)q’-Wが好ましい。ここで、L、q及びWは、式(AN2)と同様である。q’は、0~10の整数を表す。
 非求核性アニオンとしては、下記式(AN3)で表される芳香族スルホン酸アニオンも好ましい。
Figure JPOXMLDOC01-appb-C000041
 式(AN3)中、Arは、アリール基(フェニル基等)を表し、スルホン酸アニオン、及び、-(D-B)基以外の置換基を更に有していてもよい。更に有してもよい置換基としては、例えば、フッ素原子及び水酸基が挙げられる。
 nは、0以上の整数を表す。nとしては、1~4が好ましく、2~3がより好ましく、3が更に好ましい。
 Dは、単結合又は2価の連結基を表す。2価の連結基としては、エーテル基、チオエーテル基、カルボニル基、スルホキシド基、スルホン基、スルホン酸エステル基、エステル基、及び、これらの2種以上の組み合わせからなる基が挙げられる。
 Bは、炭化水素基を表す。
 Bとしては、脂肪族炭化水素基が好ましく、イソプロピル基、シクロヘキシル基、又は更に置換基を有してもよいアリール基(トリシクロヘキシルフェニル基等)がより好ましい。
 非求核性アニオンとしては、ジスルホンアミドアニオンも好ましい。
 ジスルホンアミドアニオンは、例えば、N(SO-Rで表されるアニオンである。
 ここで、Rは置換基を有していてもよいアルキル基を表し、フルオロアルキル基が好ましく、パーフルオロアルキル基がより好ましい。2個のRは互いに結合して環を形成してもよい。2個のRが互いに結合して形成される基は、置換基を有していてもよいアルキレン基が好ましく、フルオロアルキレン基が好ましく、パーフルオロアルキレン基が更に好ましい。上記アルキレン基の炭素数は2~4が好ましい。
 また、非求核性アニオンとしては、下記式(d1-1)~(d1-4)で表されるアニオンも挙げられる。
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
 式(d1-1)中、R51は置換基(例えば、水酸基)を有していてもよい炭化水素基(例えば、フェニル基等のアリール基)を表す。
 式(d1-2)中、Z2cは置換基を有していてもよい炭素数1~30の炭化水素基(ただし、Sに隣接する炭素原子にはフッ素原子が置換されない)を表す。
 Z2cにおける上記炭化水素基は、直鎖状でも分岐鎖状でもよく、環状構造を有していてもよい。また、上記炭化水素基における炭素原子(好ましくは、上記炭化水素基が環状構造を有する場合における、環員原子である炭素原子)は、カルボニル炭素(-CO-)であってもよい。上記炭化水素基としては、例えば、置換基を有していてもよいノルボルニル基を有する基が挙げられる。上記ノルボルニル基を形成する炭素原子は、カルボニル炭素であってもよい。
 式(d1-2)中の「Z2c-SO 」は、上述の式(AN1)~(AN3)で表されるアニオンとは異なることが好ましい。例えば、Z2cは、アリール基以外が好ましい。例えば、Z2cにおける、-SO に対してα位及びβ位の原子は、置換基としてフッ素原子を有する炭素原子以外の原子が好ましい。例えば、Z2cは、-SO に対してα位の原子及び/又はβ位の原子は環状基中の環員原子であることが好ましい。
 式(d1-3)中、R52は有機基(好ましくはフッ素原子を有する炭化水素基)を表し、Yは直鎖状、分岐鎖状、若しくは、環状のアルキレン基、アリーレン基、又は、カルボニル基を表し、Rfは炭化水素基を表す。
 式(d1-4)中、R53及びR54は、それぞれ独立に、有機基(好ましくはフッ素原子を有する炭化水素基)を表す。R53及びR54は互いに結合して環を形成していてもよい。
 有機アニオンは、1種単独で使用してもよく、2種以上を使用してもよい。
 光酸発生剤は、化合物(I)~(II)からなる群から選択される少なくとも1つであることも好ましい。
(化合物(I))
 化合物(I)は、1つ以上の下記構造部位X及び1つ以上の下記構造部位Yを有する化合物であって、活性光線又は放射線の照射によって、下記構造部位Xに由来する下記第1の酸性部位と下記構造部位Yに由来する下記第2の酸性部位とを含む酸を発生する化合物である。
  構造部位X:アニオン部位A とカチオン部位M とからなり、且つ活性光線又は放射線の照射によって、HAで表される第1の酸性部位を形成する構造部位
  構造部位Y:アニオン部位A とカチオン部位M とからなり、且つ活性光線又は放射線の照射によって、HAで表される第2の酸性部位を形成する構造部位
 上記化合物(I)は、下記条件Iを満たす。
 条件I:上記化合物(I)において上記構造部位X中の上記カチオン部位M 及び上記構造部位Y中の上記カチオン部位M をHに置き換えてなる化合物PIが、上記構造部位X中の上記カチオン部位M をHに置き換えてなるHAで表される酸性部位に由来する酸解離定数a1と、上記構造部位Y中の上記カチオン部位M をHに置き換えてなるHAで表される酸性部位に由来する酸解離定数a2とを有し、且つ、上記酸解離定数a1よりも上記酸解離定数a2の方が大きい。
 以下において、条件Iをより具体的に説明する。
 化合物(I)が、例えば、上記構造部位Xに由来する上記第1の酸性部位を1つと、上記構造部位Yに由来する上記第2の酸性部位を1つ有する酸を発生する化合物である場合、化合物PIは「HAとHAとを有する化合物」に該当する。
 化合物PIの酸解離定数a1及び酸解離定数a2とは、より具体的に説明すると、化合物PIの酸解離定数を求めた場合において、化合物PIが「A とHAとを有する化合物」となる際のpKaが酸解離定数a1であり、上記「A とHAとを有する化合物」が「A とA とを有する化合物」となる際のpKaが酸解離定数a2である。
 化合物(I)が、例えば、上記構造部位Xに由来する上記第1の酸性部位を2つと、上記構造部位Yに由来する上記第2の酸性部位を1つと有する酸を発生する化合物である場合、化合物PIは「2つのHAと1つのHAとを有する化合物」に該当する。
 化合物PIの酸解離定数を求めた場合、化合物PIが「1つのA と1つのHAと1つのHAとを有する化合物」となる際の酸解離定数、及び「1つのA と1つのHAと1つのHAとを有する化合物」が「2つのA と1つのHAとを有する化合物」となる際の酸解離定数が、上述の酸解離定数a1に該当する。「2つのA と1つのHAとを有する化合物」が「2つのA とA を有する化合物」となる際の酸解離定数が酸解離定数a2に該当する。つまり、化合物PIの場合、上記構造部位X中の上記カチオン部位M をHに置き換えてなるHAで表される酸性部位に由来する酸解離定数を複数有する場合、複数の酸解離定数a1のうち最も大きい値よりも、酸解離定数a2の値の方が大きい。なお、化合物PIが「1つのA と1つのHAと1つのHAとを有する化合物」となる際の酸解離定数をaaとし、「1つのA と1つのHAと1つのHAとを有する化合物」が「2つのA と1つのHAとを有する化合物」となる際の酸解離定数をabとしたとき、aa及びabの関係は、aa<abを満たす。
 酸解離定数a1及び酸解離定数a2は、上述した酸解離定数の測定方法により求められる。
 上記化合物PIとは、化合物(I)に活性光線又は放射線を照射した場合に、発生する酸に該当する。
 化合物(I)が2つ以上の構造部位Xを有する場合、構造部位Xは、それぞれ同一であっても異なっていてもよい。また、2つ以上の上記A 、及び2つ以上の上記M は、それぞれ同一であっても異なっていてもよい。
 化合物(I)中、上記A 及び上記A 、並びに、上記M 及び上記M は、それぞれ同一であっても異なっていてもよいが、上記A 及び上記A は、それぞれ異なっていることが好ましい。
 上記化合物PIにおいて、酸解離定数a1(酸解離定数a1が複数存在する場合はその最大値)と酸解離定数a2との差(絶対値)は、0.1以上が好ましく、0.5以上がより好ましく、1.0以上が更に好ましい。なお、酸解離定数a1(酸解離定数a1が複数存在する場合はその最大値)と酸解離定数a2との差(絶対値)の上限値は特に制限されないが、例えば、16以下である。
 上記化合物PIにおいて、酸解離定数a2は、20以下が好ましく、15以下がより好ましい。なお、酸解離定数a2の下限値としては、-4.0以上が好ましい。
 上記化合物PIにおいて、酸解離定数a1は、2.0以下が好ましく、0以下がより好ましい。なお、酸解離定数a1の下限値としては、-20.0以上が好ましい。
 アニオン部位A 及びアニオン部位A は、負電荷を帯びた原子又は原子団を含む構造部位であり、例えば、以下に示す式(AA-1)~(AA-3)及び式(BB-1)~(BB-6)からなる群から選ばれる構造部位が挙げられる。
 アニオン部位A としては、酸解離定数の小さい酸性部位を形成し得るものが好ましく、なかでも、式(AA-1)~(AA-3)のいずれかであることがより好ましく、式(AA-1)及び(AA-3)のいずれかであることが更に好ましい。
 また、アニオン部位A としては、アニオン部位A よりも酸解離定数の大きい酸性部位を形成し得るものが好ましく、式(BB-1)~(BB-6)のいずれかであることがより好ましく、式(BB-1)及び(BB-4)のいずれかであることが更に好ましい。
 なお、以下の式(AA-1)~(AA-3)及び式(BB-1)~(BB-6)中、*は、結合位置を表す。
 式(AA-2)中、Rは、1価の有機基を表す。Rで表される1価の有機基は特に制限されないが、例えば、シアノ基、トリフルオロメチル基、及びメタンスルホニル基が挙げられる。
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000045
 カチオン部位M 及びカチオン部位M は、正電荷を帯びた原子又は原子団を含む構造部位であり、例えば、電荷が1価の有機カチオンが挙げられる。なお、有機カチオンとしては、例えば、上述したMで表される有機カチオンが挙げられる。
 化合物(I)の具体的な構造としては特に制限されないが、例えば、後述する式(Ia-1)~式(Ia-5)で表される化合物が挙げられる。
-式(Ia-1)で表される化合物-
 以下において、まず、式(Ia-1)で表される化合物について述べる。
 M11  A11 -L-A12  M12     (Ia-1)
 式(Ia-1)で表される化合物は、活性光線又は放射線の照射によって、HA11-L-A12Hで表される酸を発生する。
 式(Ia-1)中、M11 及びM12 は、それぞれ独立に、有機カチオンを表す。
 A11 及びA12 は、それぞれ独立に、1価のアニオン性官能基を表す。
 Lは、2価の連結基を表す。
 M11 及びM12 は、それぞれ同一であっても異なっていてもよい。
 A11 及びA12 は、それぞれ同一であっても異なっていてもよいが、互いに異なっていることが好ましい。
 但し、上記式(Ia-1)において、M11 及びM12 で表されるカチオンをHに置き換えてなる化合物PIa(HA11-L-A12H)において、A12Hで表される酸性部位に由来する酸解離定数a2は、HA11で表される酸性部位に由来する酸解離定数a1よりも大きい。なお、酸解離定数a1と酸解離定数a2との好適値については、上述した通りである。化合物PIaと、活性光線又は放射線の照射によって式(Ia-1)で表される化合物とから発生する酸は同じである。
 また、M11 、M12 、A11 、A12 、及びLの少なくとも1つが、置換基として、酸分解性基を有していてもよい。
 式(Ia-1)中、M11 及びM12 で表される有機カチオンとしては、それぞれ上述したMで表される有機カチオンが挙げられる。
 A11 で表される1価のアニオン性官能基とは、上述したアニオン部位A を含む1価の基を意図する。また、A12 で表される1価のアニオン性官能基とは、上述したアニオン部位A を含む1価の基を意図する。
 A11 及びA12 で表される1価のアニオン性官能基としては、上述した式(AA-1)~(AA-3)及び式(BB-1)~(BB-6)のいずれかのアニオン部位を含む1価のアニオン性官能基であるのが好ましく、式(AX-1)~(AX-3)、及び式(BX-1)~(BX-7)からなる群から選ばれる1価のアニオン性官能基であることがより好ましい。A11 で表される1価のアニオン性官能基としては、なかでも、式(AX-1)~(AX-3)のいずれかで表される1価のアニオン性官能基であることが好ましい。A12 で表される1価のアニオン性官能基としては、なかでも、式(BX-1)~(BX-7)のいずれかで表される1価のアニオン性官能基が好ましく、式(BX-1)~(BX-6)のいずれかで表される1価のアニオン性官能基がより好ましい。
Figure JPOXMLDOC01-appb-C000046
 式(AX-1)~(AX-3)中、RA1及びRA2は、それぞれ独立に、1価の有機基を表す。*は、結合位置を表す。
 RA1で表される1価の有機基は特に制限されないが、例えば、シアノ基、トリフルオロメチル基、及びメタンスルホニル基が挙げられる。
 RA2で表される1価の有機基としては、直鎖状、分岐鎖状、若しくは環状のアルキル基、又はアリール基が好ましい。
 上記アルキル基の炭素数は1~15が好ましく、1~10がより好ましく、1~6が更に好ましい。
 上記アルキル基は、置換基を有していてもよい。置換基としては、フッ素原子又はシアノ基が好ましく、フッ素原子がより好ましい。上記アルキル基が置換基としてフッ素原子を有する場合、パーフルオロアルキル基であってもよい。
 上記アリール基としては、フェニル基又はナフチル基が好ましく、フェニル基がより好ましい。
 上記アリール基は、置換基を有していてもよい。置換基としては、フッ素原子、ヨウ素原子、パーフルオロアルキル基(例えば、炭素数1~10が好ましく、炭素数1~6がより好ましい。)、又はシアノ基が好ましく、フッ素原子、ヨウ素原子、又は、パーフルオロアルキル基がより好ましい。
 式(BX-1)~(BX-4)及び式(BX-6)中、Rは、1価の有機基を表す。*は、結合位置を表す。
 Rで表される1価の有機基としては、直鎖状、分岐鎖状、若しくは環状のアルキル基、又はアリール基が好ましい。
 上記アルキル基の炭素数は1~15が好ましく、1~10がより好ましく、1~6が更に好ましい。
 上記アルキル基は、置換基を有していてもよい。置換基として特に制限されないが、置換基としては、フッ素原子又はシアノ基が好ましく、フッ素原子がより好ましい。上記アルキル基が置換基としてフッ素原子を有する場合、パーフルオロアルキル基であってもよい。
 なお、アルキル基において結合位置となる炭素原子が置換基を有する場合、フッ素原子又はシアノ基以外の置換基であることも好ましい。ここで、アルキル基において結合位置となる炭素原子とは、例えば、式(BX-1)及び(BX-4)の場合、アルキル基中の式中に明示される-CO-と直接結合する炭素原子が該当し、式(BX-2)及び(BX-3)の場合、アルキル基中の式中に明示される-SO-と直接結合する炭素原子が該当し、式(BX-6)の場合、アルキル基中の式中に明示されるNと直接結合する炭素原子が該当する。
 上記アルキル基は、炭素原子がカルボニル炭素で置換されていてもよい。
 上記アリール基としては、フェニル基又はナフチル基が好ましく、フェニル基がより好ましい。
 上記アリール基は、置換基を有していてもよい。置換基としては、フッ素原子、ヨウ素原子、パーフルオロアルキル基(例えば、炭素数1~10が好ましく、炭素数1~6がより好ましい。)、シアノ基、アルキル基(例えば、炭素数1~10が好ましく、炭素数1~6がより好ましい。)、アルコキシ基(例えば、炭素数1~10が好ましく、炭素数1~6がより好ましい。)、又はアルコキシカルボニル基(例えば、炭素数2~10が好ましく、炭素数2~6がより好ましい。)が好ましく、フッ素原子、ヨウ素原子、パーフルオロアルキル基、アルキル基、アルコキシ基、又はアルコキシカルボニル基がより好ましい。
 式(Ia-1)中、Lで表される2価の連結基としては特に制限されず、-CO-、-NR-、-O-、-S-、-SO-、-SO-、アルキレン基(好ましくは炭素数1~6、直鎖状でも分岐鎖状でもよい)、シクロアルキレン基(好ましくは炭素数3~15)、アルケニレン基(好ましくは炭素数2~6)、2価の脂肪族複素環基(少なくとも1つのN原子、O原子、S原子、又はSe原子を環構造内に有する5~10員環が好ましく、5~7員環がより好ましく、5~6員環が更に好ましい。)、2価の芳香族複素環基(少なくとも1つのN原子、O原子、S原子、又はSe原子を環構造内に有する5~10員環が好ましく、5~7員環がより好ましく、5~6員環が更に好ましい。)、2価の芳香族炭化水素環基(6~10員環が好ましく、6員環が更に好ましい。)、及びこれらの複数を組み合わせた2価の連結基が挙げられる。上記Rは、水素原子又は1価の有機基が挙げられる。1価の有機基としては特に制限されないが、例えば、アルキル基(好ましくは炭素数1~6)が好ましい。
 上記アルキレン基、上記シクロアルキレン基、上記アルケニレン基、上記2価の脂肪族複素環基、2価の芳香族複素環基、及び2価の芳香族炭化水素環基は、置換基を有していてもよい。置換基としては、例えば、ハロゲン原子(好ましくはフッ素原子)が挙げられる。
 なかでも、Lで表される2価の連結基としては、式(L1)で表される2価の連結基であることが好ましい。
Figure JPOXMLDOC01-appb-C000047
 式(L1)中、L111は、単結合又は2価の連結基を表す。
 L111で表される2価の連結基としては特に制限されず、例えば、-CO-、-NH-、-O-、-SO-、-SO-、置換基を有していてもよいアルキレン基(好ましくは炭素数1~6がより好ましい。直鎖状及び分岐鎖状のいずれでもよい)、置換基を有していてもよいシクロアルキレン基(好ましくは炭素数3~15)、置換基を有していてもよいアリール基(好ましくは炭素数6~10)、及びこれらの複数を組み合わせた2価の連結基が挙げられる。置換基としては特に制限されず、例えば、ハロゲン原子が挙げられる。
 pは、0~3の整数を表し、1~3の整数を表すことが好ましい。
 vは、0又は1の整数を表す。
 Xfは、それぞれ独立に、フッ素原子、又は少なくとも1つのフッ素原子で置換されたアルキル基を表す。このアルキル基の炭素数は、1~10が好ましく、1~4がより好ましい。少なくとも1つのフッ素原子で置換されたアルキル基としては、パーフルオロアルキル基が好ましい。
 Xfは、それぞれ独立に、水素原子、置換基としてフッ素原子を有していてもよいアルキル基、又はフッ素原子を表す。このアルキル基の炭素数は、1~10が好ましく、1~4がより好ましい。Xfとしては、なかでも、フッ素原子、又は少なくとも1つのフッ素原子で置換されたアルキル基を表すのが好ましく、フッ素原子、又はパーフルオロアルキル基がより好ましい。
 なかでも、Xf及びXfとしては、それぞれ独立に、フッ素原子又は炭素数1~4のパーフルオロアルキル基であることが好ましく、フッ素原子又はCFであることがより好ましい。特に、Xf及びXfが、いずれもフッ素原子であることが更に好ましい。
 *は結合位置を表す。
 式(Ia-1)中のL11が式(L1)で表される2価の連結基を表す場合、式(L1)中のL111側の結合手(*)が、式(Ia-1)中のA12 と結合することが好ましい。
-式(Ia-2)~(Ia-4)で表される化合物-
 次に、式(Ia-2)~(Ia-4)で表される化合物について説明する。
Figure JPOXMLDOC01-appb-C000048
 式(Ia-2)中、A21a 及びA21b は、それぞれ独立に、1価のアニオン性官能基を表す。ここで、A21a 及びA21b で表される1価のアニオン性官能基とは、上述したアニオン部位A を含む1価の基を意図する。A21a 及びA21b で表される1価のアニオン性官能基としては特に制限されないが、例えば、上述の式(AX-1)~(AX-3)からなる群から選ばれる1価のアニオン性官能基が挙げられる。
 A22 は、2価のアニオン性官能基を表す。ここで、A22 で表される2価のアニオン性官能基とは、上述したアニオン部位A を含む2価の連結基を意図する。A22 で表される2価のアニオン性官能基としては、例えば、以下に示す式(BX-8)~(BX-11)で表される2価のアニオン性官能基が挙げられる。
Figure JPOXMLDOC01-appb-C000049
 M21a 、M21b 、及びM22 は、それぞれ独立に、有機カチオンを表す。M21a 、M21b 、及びM22 で表される有機カチオンとしては、上述のM11 と同義であり、好適態様も同じである。
 L21及びL22は、それぞれ独立に、2価の有機基を表す。
 上記式(Ia-2)において、M21a 、M21b 、及びM22 で表される有機カチオンをHに置き換えてなる化合物PIa-2において、A22Hで表される酸性部位に由来する酸解離定数a2は、A21aHに由来する酸解離定数a1-1及びA21bHで表される酸性部位に由来する酸解離定数a1-2よりも大きい。なお、酸解離定数a1-1と酸解離定数a1-2とは、上述した酸解離定数a1に該当する。
 なお、A21a 及びA21b は、互いに同一であっても異なっていてもよい。M21a 、M21b 、及びM22 は、互いに同一であっても異なっていてもよい。
 M21a 、M21b 、M22 、A21a 、A21b 、L21、及びL22の少なくとも1つが、置換基として、酸分解性基を有していてもよい。
 式(Ia-3)中、A31a 及びA32 は、それぞれ独立に、1価のアニオン性官能基を表す。なお、A31a で表される1価のアニオン性官能基の定義は、上述した式(Ia-2)中のA21a 及びA21b と同義であり、好適態様も同じである。
 A32 で表される1価のアニオン性官能基は、上述したアニオン部位A を含む1価の基を意図する。A32 で表される1価のアニオン性官能基としては特に制限されないが、例えば、上述の式(BX-1)~(BX-7)からなる群から選ばれる1価のアニオン性官能基が挙げられる。
 A31b は、2価のアニオン性官能基を表す。ここで、A31b で表される2価のアニオン性官能基とは、上述したアニオン部位A を含む2価の連結基を意図する。A31b で表される2価のアニオン性官能基としては、例えば、以下に示す式(AX-4)で表される2価のアニオン性官能基が挙げられる。
Figure JPOXMLDOC01-appb-C000050
 M31a 、M31b 、及びM32 は、それぞれ独立に、1価の有機カチオンを表す。M31a 、M31b 、及びM32 で表される有機カチオンとしては、上述のM11 と同義であり、好適態様も同じである。
 L31及びL32は、それぞれ独立に、2価の有機基を表す。
 上記式(Ia-3)において、M31a 、M31b 、及びM32 で表される有機カチオンをHに置き換えてなる化合物PIa-3において、A32Hで表される酸性部位に由来する酸解離定数a2は、A31aHで表される酸性部位に由来する酸解離定数a1-3及びA31bHで表される酸性部位に由来する酸解離定数a1-4よりも大きい。なお、酸解離定数a1-3と酸解離定数a1-4とは、上述した酸解離定数a1に該当する。
 なお、A31a 及びA32 は、互いに同一であっても異なっていてもよい。また、M31a 、M31b 、及びM32 は、互いに同一であっても異なっていてもよい。
 M31a 、M31b 、M32 、A31a 、A32 、L31、及びL32の少なくとも1つが、置換基として、酸分解性基を有していてもよい。
 式(Ia-4)中、A41a 、A41b 、及びA42 は、それぞれ独立に、1価のアニオン性官能基を表す。なお、A41a 及びA41b で表される1価のアニオン性官能基の定義は、上述した式(Ia-2)中のA21a 及びA21b と同義である。A42 で表される1価のアニオン性官能基の定義は、上述した式(Ia-3)中のA32 と同義であり、好適態様も同じである。
 M41a 、M41b 、及びM42 は、それぞれ独立に、有機カチオンを表す。M41a 、M41b 、及びM42 で表される有機カチオンとしては、上述のM11 と同義であり、好適態様も同じである。
 L41は、3価の有機基を表す。
 上記式(Ia-4)において、M41a 、M41b 、及びM42 で表される有機カチオンをHに置き換えてなる化合物PIa-4において、A42Hで表される酸性部位に由来する酸解離定数a2は、A41aHで表される酸性部位に由来する酸解離定数a1-5及びA41bHで表される酸性部位に由来する酸解離定数a1-6よりも大きい。なお、酸解離定数a1-5と酸解離定数a1-6とは、上述した酸解離定数a1に該当する。
 なお、A41a 、A41b 、及びA42 は、互いに同一であっても異なっていてもよい。また、M41a 、M41b 、及びM42 は、互いに同一であっても異なっていてもよい。
 M41a 、M41b 、M42 、A41a 、A41b 、A42 、及びL41の少なくとも1つが、置換基として、酸分解性基を有していてもよい。
 式(Ia-2)中のL21及びL22、並びに、式(Ia-3)中のL31及びL32で表される2価の有機基としては特に制限されず、例えば、-CO-、-NR-、-O-、-S-、-SO-、-SO-、アルキレン基(好ましくは炭素数1~6、直鎖状でも分岐鎖状でもよい)、シクロアルキレン基(好ましくは炭素数3~15)、アルケニレン基(好ましくは炭素数2~6)、2価の脂肪族複素環基(少なくとも1つのN原子、O原子、S原子、又はSe原子を環構造内に有する5~10員環が好ましく、5~7員環がより好ましく、5~6員環が更に好ましい。)、2価の芳香族複素環基(少なくとも1つのN原子、O原子、S原子、又はSe原子を環構造内に有する5~10員環が好ましく、5~7員環がより好ましく、5~6員環が更に好ましい。)、2価の芳香族炭化水素環基(6~10員環が好ましく、6員環が更に好ましい。)、及びこれらの複数を組み合わせた2価の有機基が挙げられる。上記-NR-におけるRは、水素原子又は1価の有機基が挙げられる。1価の有機基としては特に制限されないが、例えば、アルキル基(好ましくは炭素数1~6)が好ましい。
 上記アルキレン基、上記シクロアルキレン基、上記アルケニレン基、上記2価の脂肪族複素環基、2価の芳香族複素環基、及び2価の芳香族炭化水素環基は、置換基を有していてもよい。置換基としては、例えば、ハロゲン原子(好ましくはフッ素原子)が挙げられる。
 式(Ia-2)中のL21及びL22、並びに、式(Ia-3)中のL31及びL32で表される2価の有機基としては、例えば、下記式(L2)で表される2価の有機基であることも好ましい。
Figure JPOXMLDOC01-appb-C000051
 式(L2)中、qは、1~3の整数を表す。*は結合位置を表す。
 Xfは、それぞれ独立に、フッ素原子、又は少なくとも1つのフッ素原子で置換されたアルキル基を表す。このアルキル基の炭素数は、1~10が好ましく、1~4がより好ましい。少なくとも1つのフッ素原子で置換されたアルキル基としては、パーフルオロアルキル基が好ましい。
 Xfは、フッ素原子又は炭素数1~4のパーフルオロアルキル基であることが好ましく、フッ素原子又はCFであることがより好ましい。特に、双方のXfがフッ素原子であることが更に好ましい。
 Lは、単結合又は2価の連結基を表す。
 Lで表される2価の連結基としては特に制限されず、例えば、-CO-、-O-、-SO-、-SO-、アルキレン基(好ましくは炭素数1~6。直鎖状でも分岐鎖状でもよい)、シクロアルキレン基(好ましくは炭素数3~15)、2価の芳香族炭化水素環基(6~10員環が好ましく、6員環が更に好ましい。)、及びこれらの複数を組み合わせた2価の連結基が挙げられる。
 上記アルキレン基、上記シクロアルキレン基、及び2価の芳香族炭化水素環基は、置換基を有していてもよい。置換基としては、例えば、ハロゲン原子(好ましくはフッ素原子)が挙げられる。
 式(L2)で表される2価の有機基としては、例えば、*-CF-*、*-CF-CF-*、*-CF-CF-CF-*、*-Ph-O-SO-CF-*、*-Ph-O-SO-CF-CF-*、*-Ph-O-SO-CF-CF-CF-*、及び、*-Ph-OCO-CF-*が挙げられる。なお、Phとは、置換基を有していてもよいフェニレン基であり、1,4-フェニレン基であることが好ましい。置換基としては特に制限されないが、アルキル基(例えば、炭素数1~10が好ましく、炭素数1~6がより好ましい。)、アルコキシ基(例えば、炭素数1~10が好ましく、炭素数1~6がより好ましい。)、又はアルコキシカルボニル基(例えば、炭素数2~10が好ましく、炭素数2~6がより好ましい。)が好ましい。
 式(Ia-2)中のL21及びL22が式(L2)で表される2価の有機基を表す場合、式(L2)中のL側の結合手(*)が、式(Ia-2)中のA21a 及びA21b と結合することが好ましい。
 式(Ia-3)中のL31及びL32が式(L2)で表される2価の有機基を表す場合、式(L2)中のL側の結合手(*)が、式(Ia-3)中のA31a 及びA32 と結合することが好ましい。
-式(Ia-5)で表される化合物-
 次に、式(Ia-5)について説明する。
Figure JPOXMLDOC01-appb-C000052
 式(Ia-5)中、A51a 、A51b 、及びA51c は、それぞれ独立に、1価のアニオン性官能基を表す。ここで、A51a 、A51b 、及びA51c で表される1価のアニオン性官能基とは、上述したアニオン部位A を含む1価の基を意図する。A51a 、A51b 、及びA51c で表される1価のアニオン性官能基としては特に制限されないが、例えば、上述の式(AX-1)~(AX-3)からなる群から選ばれる1価のアニオン性官能基が挙げられる。
 A52a 及びA52b は、2価のアニオン性官能基を表す。ここで、A52a 及びA52b で表される2価のアニオン性官能基とは、上述したアニオン部位A を含む2価の連結基を意図する。A22 で表される2価のアニオン性官能基としては、例えば、上述の式(BX-8)~(BX-11)からなる群から選ばれる2価のアニオン性官能基が挙げられる。
 M51a 、M51b 、M51c 、M52a 、及びM52b は、それぞれ独立に、有機カチオンを表す。M51a 、M51b 、M51c 、M52a 、及びM52b で表される有機カチオンとしては、上述のM11 と同義であり、好適態様も同じである。
 L51及びL53は、それぞれ独立に、2価の有機基を表す。L51及びL53で表される2価の有機基としては、上述した式(Ia-2)中のL21及びL22と同義であり、好適態様も同じである。
 L52は、3価の有機基を表す。L52で表される3価の有機基としては、上述した式(Ia-4)中のL41と同義であり、好適態様も同じである。
 上記式(Ia-5)において、M51a 、M51b 、M51c 、M52a 、及びM52b で表される有機カチオンをHに置き換えてなる化合物PIa-5において、A52aHで表される酸性部位に由来する酸解離定数a2-1及びA52bHで表される酸性部位に由来する酸解離定数a2-2は、A51aHに由来する酸解離定数a1-1、A51bHで表される酸性部位に由来する酸解離定数a1-2、及びA51cHで表される酸性部位に由来する酸解離定数a1-3よりも大きい。なお、酸解離定数a1-1~a1-3は、上述した酸解離定数a1に該当し、酸解離定数a2-1及びa2-2は、上述した酸解離定数a2に該当する。
 なお、A51a 、A51b 、及びA51c は、互いに同一であっても異なっていてもよい。また、A52a 及びA52b は、互いに同一であっても異なっていてもよい。M51a 、M51b 、M51c 、M52a 、及びM52b は、互いに同一であっても異なっていてもよい。
 M51b 、M51c 、M52a 、M52b 、A51a 、A51b 、A51c 、L51、L52、及びL53の少なくとも1つが、置換基として、酸分解性基を有していてもよい。
(化合物(II))
 化合物(II)は、2つ以上の上記構造部位X及び1つ以上の下記構造部位Zを有する化合物であって、活性光線又は放射線の照射によって、上記構造部位Xに由来する上記第1の酸性部位を2つ以上と上記構造部位Zとを含む酸を発生する化合物である。
 構造部位Z:酸を中和可能な非イオン性の部位
 化合物(II)中、構造部位Xの定義、並びに、A 及びM の定義は、上述した化合物(I)中の構造部位Xの定義、並びに、A 及びM の定義と同義であり、好適態様も同じである。
 上記化合物(II)において上記構造部位X中の上記カチオン部位M をHに置き換えてなる化合物PIIにおいて、上記構造部位X中の上記カチオン部位M をHに置き換えてなるHAで表される酸性部位に由来する酸解離定数a1の好適範囲については、上記化合物PIにおける酸解離定数a1と同じである。
 なお、化合物(II)が、例えば、上記構造部位Xに由来する上記第1の酸性部位を2つと上記構造部位Zとを有する酸を発生する化合物である場合、化合物PIIは「2つのHAを有する化合物」に該当する。この化合物PIIの酸解離定数を求めた場合、化合物PIIが「1つのA と1つのHAとを有する化合物」となる際の酸解離定数、及び「1つのA と1つのHAとを有する化合物」が「2つのA を有する化合物」となる際の酸解離定数が、酸解離定数a1に該当する。
 酸解離定数a1は、上述した酸解離定数の測定方法により求められる。
 上記化合物PIIとは、化合物(II)に活性光線又は放射線を照射した場合に、発生する酸に該当する。
 なお、上記2つ以上の構造部位Xは、それぞれ同一であっても異なっていてもよい。2つ以上の上記A 、及び2つ以上の上記M は、それぞれ同一であっても異なっていてもよい。
 構造部位Z中の酸を中和可能な非イオン性の部位としては特に制限されず、例えば、プロトンと静電的に相互作用し得る基、又は、電子を有する官能基を含む部位であることが好ましい。
 プロトンと静電的に相互作用し得る基、又は、電子を有する官能基としては、環状ポリエーテル等のマクロサイクリック構造を有する官能基、又は、π共役に寄与しない非共有電子対をもった窒素原子を有する官能基が挙げられる。π共役に寄与しない非共有電子対を有する窒素原子とは、例えば、下記式に示す部分構造を有する窒素原子である。
Figure JPOXMLDOC01-appb-C000053
 プロトンと静電的に相互作用し得る基又は電子を有する官能基の部分構造としては、例えば、クラウンエーテル構造、アザクラウンエーテル構造、1~3級アミン構造、ピリジン構造、イミダゾール構造、及びピラジン構造が挙げられ、なかでも、1~3級アミン構造が好ましい。
 化合物(II)としては特に制限されないが、例えば、下記式(IIa-1)及び下記式(IIa-2)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000054
 上記式(IIa-1)中、A61a 及びA61b は、それぞれ上述した式(Ia-1)中のA11 と同義であり、好適態様も同じである。また、M61a 及びM61b は、それぞれ上述した式(Ia-1)中のM11 と同義であり、好適態様も同じである。
 上記式(IIa-1)中、L61及びL62は、それぞれ上述した式(Ia-1)中のLと同義であり、好適態様も同じである。
 式(IIa-1)中、R2Xは、1価の有機基を表す。R2Xで表される1価の有機基としては特に制限されず、アルキル基(好ましくは炭素数1~10、直鎖状でも分岐鎖状でもよい)、シクロアルキル基(好ましくは炭素数3~15)、又はアルケニル基(好ましくは炭素数2~6)が挙げられる。R2Xで表される1価の有機基におけるアルキル基、シクロアルキル基、及びアルケニル基に含まれる-CH-は、-CO-、-NH-、-O-、-S-、-SO-、及び-SO-からなる群より選ばれる1種又は2種以上の組み合わせで置換されていてもよい。
 上記アルキレン基、上記シクロアルキレン基、及び上記アルケニレン基は、置換基を有していてもよい。置換基としては、特に制限されないが、例えば、ハロゲン原子(好ましくはフッ素原子)が挙げられる。
 上記式(IIa-1)において、M61a 及びM61b で表される有機カチオンをHに置き換えてなる化合物PIIa-1において、A61aHで表される酸性部位に由来する酸解離定数a1-7及びA61bHで表される酸性部位に由来する酸解離定数a1-8は、上述した酸解離定数a1に該当する。
 なお、上記化合物(IIa-1)において上記構造部位X中の上記カチオン部位M61a 及びM61b をHに置き換えてなる化合物PIIa-1は、HA61a-L61-N(R2X)-L62-A61bHが該当する。また、化合物PIIa-1と、活性光線又は放射線の照射によって式(IIa-1)で表される化合物から発生する酸は同じである。
 M61a 、M61b 、A61a 、A61b 、L61、L62、及びR2Xの少なくとも1つが、置換基として、酸分解性基を有していてもよい。
 上記式(IIa-2)中、A71a 、A71b 、及びA71c は、それぞれ上述した式(Ia-1)中のA11 と同義であり、好適態様も同じである。M71a 、M71b 、及び、M71c は、それぞれ上述した式(Ia-1)中のM11 と同義であり、好適態様も同じである。
 上記式(IIa-2)中、L71、L72、及びL73は、それぞれ上述した式(Ia-1)中のLと同義であり、好適態様も同じである。
 上記式(IIa-2)において、M71a 、M71b 、及び、M71c で表される有機カチオンをHに置き換えてなる化合物PIIa-2において、A71aHで表される酸性部位に由来する酸解離定数a1-9、A71bHで表される酸性部位に由来する酸解離定数a1-10、及びA71cHで表される酸性部位に由来する酸解離定数a1-11は、上述した酸解離定数a1に該当する。
 なお、上記化合物(IIa-1)において上記構造部位X中の上記カチオン部位M71a 、M71b 、及び、M71c をHに置き換えてなる化合物PIIa-2は、HA71a-L71-N(L73-A71cH)-L72-A71bHが該当する。また、化合物PIIa-2と、活性光線又は放射線の照射によって式(IIa-2)で表される化合物から発生する酸は同じである。
 M71a 、M71b 、M71c 、A71a 、A71b 、A71c 、L71、L72、及びL73の少なくとも1つが、置換基として、酸分解性基を有していてもよい。
 化合物(I)及び化合物(II)が有し得る、カチオン以外の部位を例示する。
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000056
 以下に光酸発生剤の具体例を示すが、これに限定されない。Meはメチル基を表す。
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000061
 本発明の組成物が光酸発生剤(B)を含む場合、その含有量は特に制限されないが、形成されるパターンの断面形状がより矩形化する点で、組成物の全固形分に対して、0.5質量%以上が好ましく、1.0質量%以上がより好ましい。上記含有量は、組成物の全固形分に対して、50.0質量%以下が好ましく、30.0質量%以下がより好ましく、25.0質量%以下が更に好ましい。
 光酸発生剤(B)は、1種単独で使用してもよく、2種以上を使用してもよい。
<酸拡散制御剤(C)>
 本発明の組成物は、酸拡散制御剤を含んでいてもよい。
 酸拡散制御剤は、露光時に光酸発生剤等から発生する酸をトラップし、余分な発生酸による、未露光部における酸分解性樹脂の反応を抑制するクエンチャーとして作用する。
 酸拡散制御剤の種類は特に制限されず、例えば、塩基性化合物(CA)、窒素原子を有し、酸の作用により脱離する基を有する低分子化合物(CB)、及び、活性光線又は放射線の照射により酸拡散制御能が低下又は消失する化合物(CC)が挙げられる。
 化合物(CC)としては、光酸発生剤に対して相対的に弱酸となるオニウム塩化合物(CD)、及び、活性光線又は放射線の照射により塩基性が低下又は消失する塩基性化合物(CE)が挙げられる。
 塩基性化合物(CA)の具体例としては、例えば、国際公開第2020/066824号の段落[0132]~[0136]に記載のものが挙げられ、活性光線又は放射線の照射により塩基性が低下又は消失する塩基性化合物(CE)の具体例としては、国際公開第2020/066824号の段落[0137]~[0155]に記載のものが挙げられ、窒素原子を有し、酸の作用により脱離する基を有する低分子化合物(CB)の具体例としては、国際公開第2020/066824号の段落[0156]~[0163]に記載のものが挙げられ、活性光線又は放射線の照射により塩基性が低下又は消失する塩基性化合物(CE)の具体例としては、国際公開第2020/066824号公報の段落[0164]に記載のものが挙げられる。
 光酸発生剤に対して相対的に弱酸となるオニウム塩化合物(CD)の具体例としては、例えば、国際公開第2020/158337号の段落[0305]~[0314]に記載のものが挙げられる。
 上記以外にも、例えば、米国特許出願公開2016/0070167A1号の段落[0627]~[0664]、米国特許出願公開2015/0004544A1号の段落[0095]~[0187]、米国特許出願公開2016/0237190A1号の段落[0403]~[0423]、及び米国特許出願公開2016/0274458A1号の段落[0259]~[0328]に開示された公知の化合物を酸拡散制御剤として好適に使用できる。
 本発明の組成物に酸拡散制御剤が含まれる場合、酸拡散制御剤の含有量(複数種存在する場合はその合計)は、レジスト組成物の全固形分に対して、0.1~15.0質量%が好ましく、1.0~15.0質量%がより好ましい。
 レジスト組成物において、酸拡散制御剤は1種単独で使用してもよいし、2種以上を併用してもよい。
<疎水性樹脂(D)>
 本発明の組成物は、更に、樹脂(A)とは異なる疎水性樹脂を含んでいてもよい。
 疎水性樹脂はレジスト膜の表面に偏在するように設計されることが好ましいが、界面活性剤とは異なり、必ずしも分子内に親水基を有する必要はなく、極性物質及び非極性物質の均一な混合に寄与しなくてもよい。
 疎水性樹脂の添加による効果として、水に対するレジスト膜表面の静的及び動的な接触角の制御、並びに、アウトガスの抑制が挙げられる。
 疎水性樹脂は、膜表層への偏在化の点から、フッ素原子、珪素原子、及び、樹脂の側鎖部分に含まれたCH部分構造のいずれか1種以上を有するのが好ましく、2種以上を有することがより好ましい。上記疎水性樹脂は、炭素数5以上の炭化水素基を有することが好ましい。これらの基は樹脂の主鎖中に有していても、側鎖に置換していてもよい。
 疎水性樹脂としては、国際公開第2020/004306号の段落[0275]~[0279]に記載される化合物が挙げられる。
 本発明の組成物が疎水性樹脂を含む場合、疎水性樹脂の含有量は、組成物の全固形分に対して、0.01~20.0質量%が好ましく、0.1~15.0質量%がより好ましい。
<界面活性剤(E)>
 本発明の組成物は、界面活性剤を含んでいてもよい。界面活性剤を含むと、密着性により優れ、現像欠陥のより少ないパターンを形成することができる。
 界面活性剤は、フッ素系及び/又はシリコン系界面活性剤が好ましい。
 フッ素系及び/又はシリコン系界面活性剤としては、国際公開第2018/193954号の段落[0218]及び[0219]に開示された界面活性剤が挙げられる。
 これら界面活性剤は、1種を単独で用いてもよく、2種以上を使用してもよい。
 本発明の組成物が界面活性剤を含む場合、界面活性剤の含有量は、組成物の全固形分に対して、0.0001~2.0質量%が好ましく、0.0005~1.0質量%がより好ましく、0.1~1.0質量%が更に好ましい。
<溶剤(F)>
 本発明の組成物は、溶剤を含むことが好ましい。
 溶剤は、(M1)プロピレングリコールモノアルキルエーテルカルボキシレート、並びに、(M2)プロピレングリコールモノアルキルエーテル、乳酸エステル、酢酸エステル、アルコキシプロピオン酸エステル、鎖状ケトン、環状ケトン、ラクトン、及びアルキレンカーボネートからなる群より選択される少なくとも1つの少なくとも一方を含んでいることが好ましい。なお、上記溶剤は、成分(M1)及び(M2)以外の成分を更に含んでいてもよい。
 上述した溶剤と上述した樹脂とを組み合わせると、レジスト組成物の塗布性の向上、及び、パターンの現像欠陥数の低減の観点で好ましい。上述した溶剤は、上述した樹脂の溶解性、沸点及び粘度のバランスが良いため、レジスト膜の膜厚のムラ及びスピンコート中の析出物の発生等を抑制することができる。
 成分(M1)及び成分(M2)の詳細は、国際公開第2020/004306号の段落[0218]~[0226]に記載され、これらの内容は本明細書に組み込まれる。
 溶剤が成分(M1)及び(M2)以外の成分を更に含む場合、成分(M1)及び(M2)以外の成分の含有量は、溶剤の全量に対して、5~30質量%が好ましい。
 本発明の組成物中の溶剤の含有量は、固形分濃度が0.5~30質量%となるように定めるのが好ましく、1~20質量%となるように定めることがより好ましい。こうすると、レジスト組成物の塗布性を更に向上させられる。
 なお、固形分とは、溶剤以外の全ての成分を意味するものであり、上述の通り、感活性光線性又は感放射線性膜を形成する成分を意味する。
 固形分濃度とは、本発明の組成物の総質量に対する、溶剤を除く他の成分の質量の質量百分率である。
 「全固形分」とは、本発明の組成物の全組成から溶剤を除いた成分の総質量をいう。また、「固形分」とは、上述のように、溶剤を除いた成分であり、例えば、25℃において固体であっても、液体であってもよい。
<その他の添加剤>
 本発明の組成物は、溶解阻止化合物、染料、可塑剤、光増感剤、光吸収剤、及び/又は、現像液に対する溶解性を促進させる化合物(例えば、分子量1000以下のフェノール化合物、又は、カルボキシル基を含んだ脂環族若しくは脂肪族化合物)を更に含んでいてもよい。
 上記「溶解阻止化合物」とは、酸の作用により分解して有機系現像液中での溶解度が減少する、分子量3000以下の化合物である。
 本明細書の組成物は、EUV露光用感光性組成物として好適に用いられる。
 EUV光は波長13.5nmであり、ArF(波長193nm)光等に比べて、より短波長であるため、同じ感度で露光された際の入射フォトン数が少ない。そのため、確率的にフォトンの数がばらつく“フォトンショットノイズ”の影響が大きく、LERの悪化及びブリッジ欠陥を招く。フォトンショットノイズを減らすには、露光量を大きくして入射フォトン数を増やす方法があるが、高感度化の要求とトレードオフとなる。
 本発明にかかる、感活性光線性又は感放射線性樹脂組成物の製造方法(以下、「本発明の組成物の製造方法」、「組成物の製造方法」ともいう)は、上述の通り、上記塩(P)の製造方法を含む、活性光線又は放射線の照射によって酸を発生する化合物として上記塩(P)を含有する感活性光線性又は感放射線性樹脂組成物の製造方法である。
 組成物の製造方法は、例えば、上記塩(P)の製造方法により製造され、感活性光線性又は感放射線性樹脂組成物における活性光線又は放射線の照射によって酸を発生する化合物と、感活性光線性又は感放射線性樹脂組成物が含み得る各成分を混合することにより製造することができる。
 下記式(1)で求められるA値が高い場合は、レジスト組成物より形成されるレジスト膜のEUV光及び電子線の吸収効率が高くなるなり、フォトンショットノイズの低減に有効である。A値は、レジスト膜の質量割合のEUV光及び電子線の吸収効率を表す。
 式(1):A=([H]×0.04+[C]×1.0+[N]×2.1+[O]×3.6+[F]×5.6+[S]×1.5+[I]×39.5)/([H]×1+[C]×12+[N]×14+[O]×16+[F]×19+[S]×32+[I]×127)
 A値は0.120以上が好ましい。上限は特に制限されないが、A値が大きすぎる場合、レジスト膜のEUV光及び電子線透過率が低下し、レジスト膜中の光学像プロファイルが劣化し、結果として良好なパターン形状が得られにくくなるため、0.240以下が好ましく、0.220以下がより好ましい。
 なお、式(1)中、[H]は、感活性光線性又は感放射線性樹脂組成物中の全固形分の全原子に対する、全固形分由来の水素原子のモル比率を表し、[C]は、感活性光線性又は感放射線性樹脂組成物中の全固形分の全原子に対する、全固形分由来の炭素原子のモル比率を表し、[N]は、感活性光線性又は感放射線性樹脂組成物中の全固形分の全原子に対する、全固形分由来の窒素原子のモル比率を表し、[O]は、感活性光線性又は感放射線性樹脂組成物中の全固形分の全原子に対する、全固形分由来の酸素原子のモル比率を表し、[F]は、感活性光線性又は感放射線性樹脂組成物中の全固形分の全原子に対する、全固形分由来のフッ素原子のモル比率を表し、[S]は、感活性光線性又は感放射線性樹脂組成物中の全固形分の全原子に対する、全固形分由来の硫黄原子のモル比率を表し、[I]は、感活性光線性又は感放射線性樹脂組成物中の全固形分の全原子に対する、全固形分由来のヨウ素原子のモル比率を表す。
 例えば、レジスト組成物が酸分解性樹脂、光酸発生剤、酸拡散制御剤、及び溶剤を含む場合、上記酸分解性樹脂、上記光酸発生剤、及び上記酸拡散制御剤が固形分に該当する。つまり、全固形分の全原子とは、上記樹脂由来の全原子、上記光酸発生剤由来の全原子、及び、上記酸拡散制御剤由来の全原子の合計に該当する。例えば、[H]は、全固形分の全原子に対する、全固形分由来の水素原子のモル比率を表し、上記例に基づいて説明すると、[H]は、上記酸分解性樹脂由来の全原子、上記光酸発生剤由来の全原子、及び、上記酸拡散制御剤由来の全原子の合計に対する、上記酸分解性樹脂由来の水素原子、上記光酸発生剤由来の水素原子、及び、上記酸拡散制御剤由来の水素原子の合計のモル比率を表すことになる。
 A値の算出は、レジスト組成物中の全固形分の構成成分の構造、及び、含有量が既知の場合には、含有される原子数比を計算し、算出できる。また、構成成分が未知の場合であっても、レジスト組成物の溶剤成分を蒸発させて得られたレジスト膜に対して、元素分析等の解析的な手法によって構成原子数比を算出可能である。
<感活性光線性又は感放射線性膜、パターン形成方法>
 上記組成物を用いたパターン形成方法の手順は特に制限されないが、以下の工程を有することが好ましい。
工程1:感活性光線性又は感放射線性樹脂組成物の製造方法により製造された上記感活性光線性又は感放射線性樹脂組成物により基板上に感活性光線性又は感放射線性膜を形成する工程
工程2:上記感活性光線性又は感放射線性膜を露光する工程
工程3:露光された感活性光線性又は感放射線性膜を現像液を用いて現像する工程
 以下、上記それぞれの工程の手順について詳述する。
(工程1:感活性光線性又は感放射線性膜形成工程)
 工程1は、感活性光線性又は感放射線性樹脂組成物の製造方法により製造された上記感活性光線性又は感放射線性樹脂組成物により基板上に感活性光線性又は感放射線性膜を形成する工程である。
 感活性光線性又は感放射線性樹脂組成物の製造方法により製造された感活性光線性又は感放射線性樹脂組成物により基板上に感活性光線性又は感放射線性膜(好ましくは、レジスト膜)を形成する方法としては、例えば、本発明の組成物を基板上に塗布する方法が挙げられる。
 なお、塗布前に本発明の組成物を必要に応じてフィルター濾過することが好ましい。フィルターのポアサイズは、0.1μm以下が好ましく、0.05μm以下がより好ましく、0.03μm以下が更に好ましい。フィルターは、ポリテトラフルオロエチレン製、ポリエチレン製、又は、ナイロン製が好ましい。
 本発明の組成物は、集積回路素子の製造に使用されるような基板(例:シリコン、二酸化シリコン被覆)上に、スピナー又はコーター等の適当な塗布方法により塗布できる。塗布方法は、スピナーを用いたスピン塗布が好ましい。スピナーを用いたスピン塗布をする際の回転数は、1000~3000rpmが好ましい。
 本発明の組成物の塗布後、基板を乾燥し、感活性光線性又は感放射線性膜を形成してもよい。なお、必要により、感活性光線性又は感放射線性膜の下層に、各種下地膜(無機膜、有機膜、反射防止膜)を形成してもよい。
 乾燥方法としては、例えば、加熱して乾燥する方法が挙げられる。加熱は通常の露光機、及び/又は、現像機に備わっている手段で実施でき、ホットプレート等を用いて実施してもよい。加熱温度は80~150℃が好ましく、80~140℃がより好ましく、80~130℃が更に好ましい。加熱時間は30~1000秒が好ましく、60~800秒がより好ましく、60~600秒が更に好ましい。
 感活性光線性又は感放射線性膜の膜厚は特に制限されないが、より高精度な微細パターンを形成できる点から、10~120nmが好ましい。なかでも、EUV露光とする場合、感活性光線性又は感放射線性膜の膜厚としては、10~65nmがより好ましく、15~50nmが更に好ましい。ArF液浸露光とする場合、感活性光線性又は感放射線性膜の膜厚としては、10~120nmがより好ましく、15~90nmが更に好ましい。
 なお、感活性光線性又は感放射線性膜の上層にトップコート組成物を用いてトップコートを形成してもよい。
 トップコート組成物は、感活性光線性又は感放射線性膜と混合せず、更に感活性光線性又は感放射線性膜上層に均一に塗布できることが好ましい。トップコートは、特に限定されず、従来公知のトップコートを、従来公知の方法によって形成でき、例えば、特開2014-059543号公報の段落[0072]~[0082]の記載に基づいてトップコートを形成できる。
 例えば、特開2013-61648号公報に記載されたような塩基性化合物を含むトップコートを、感活性光線性又は感放射線性膜上に形成することが好ましい。トップコートが含み得る塩基性化合物の具体的な例は、レジスト組成物が含んでいてもよい塩基性化合物が挙げられる。
 トップコートは、エーテル結合、チオエーテル結合、水酸基、チオール基、カルボニル結合、及びエステル結合からなる群より選択される基又は結合を少なくとも1つ含む化合物を含むことも好ましい。
(工程2:露光工程)
 工程2は、感活性光線性又は感放射線性膜を露光する工程である。
 露光の方法としては、形成した感活性光線性又は感放射線性膜に所定のマスクを通して活性光線又は放射線を照射する方法が挙げられる。
 活性光線又は放射線としては、赤外光、可視光、紫外光、遠紫外光、極紫外光、X線、及び電子線が挙げられ、250nm以下が好ましく、220nm以下がより好ましく、1~200nmの波長の遠紫外光、具体的には、KrFエキシマレーザー(248nm)、ArFエキシマレーザー(193nm)、Fエキシマレーザー(157nm)、EUV(13.5nm)、X線、及び電子ビームが特に好ましい。
 露光後、現像を行う前にベーク(加熱)を行うことが好ましい。ベークにより露光部の反応が促進され、感度及びパターン形状がより良好となる。
 加熱温度は80~150℃が好ましく、80~140℃がより好ましく、80~130℃が更に好ましい。
 加熱時間は10~1000秒が好ましく、10~180秒がより好ましく、30~120秒が更に好ましい。
 加熱は通常の露光機及び/又は現像機に備わっている手段で実施でき、ホットプレート等を用いて行ってもよい。
 この工程は露光後ベークともいう。
(工程3:現像工程)
 工程3は、現像液を用いて、露光された感活性光線性又は感放射線性膜を現像し、パターンを形成する工程である。
 現像液は、アルカリ現像液であっても、有機溶剤を含有する現像液(以下、有機系現像液ともいう)であってもよい。
 現像方法としては、例えば、現像液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、基板表面に現像液を表面張力によって盛り上げて一定時間静置して現像する方法(パドル法)、基板表面に現像液を噴霧する方法(スプレー法)、及び一定速度で回転している基板上に一定速度で現像液吐出ノズルをスキャンしながら現像液を吐出しつづける方法(ダイナミックディスペンス法)が挙げられる。
 また、現像を行う工程の後に、他の溶剤に置換しながら、現像を停止する工程を実施してもよい。
 現像時間は未露光部の樹脂が十分に溶解する時間であれば特に制限はなく、10~300秒が好ましく、20~120秒がより好ましい。
 現像液の温度は0~50℃が好ましく、15~35℃がより好ましい。
 アルカリ現像液は、アルカリを含むアルカリ水溶液を用いることが好ましい。アルカリ水溶液の種類は特に制限されないが、例えば、テトラメチルアンモニウムヒドロキシドに代表される4級アンモニウム塩、無機アルカリ、1級アミン、2級アミン、3級アミン、アルコールアミン、又は、環状アミン等を含むアルカリ水溶液が挙げられる。中でも、アルカリ現像液は、テトラメチルアンモニウムヒドロキシド(TMAH)に代表される4級アンモニウム塩の水溶液であることが好ましい。アルカリ現像液には、アルコール類、界面活性剤等を適当量添加してもよい。アルカリ現像液のアルカリ濃度は、通常、0.1~20質量%であることが好ましい。アルカリ現像液のpHは、通常、10.0~15.0であることが好ましい。
 有機系現像液は、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤、エーテル系溶剤、及び炭化水素系溶剤からなる群より選択される少なくとも1種の有機溶剤を含有する現像液であることが好ましい。
 上記の溶剤は、複数混合してもよいし、上記以外の溶剤又は水と混合してもよい。現像液全体としての含水率は、50質量%未満が好ましく、20質量%未満がより好ましく、10質量%未満が更に好ましく、実質的に水分を含有しないのが特に好ましい。
 有機系現像液に対する有機溶剤の含有量は、現像液の全量に対して、50質量%以上100質量%以下が好ましく、80質量%以上100質量%以下がより好ましく、90質量%以上100質量%以下が更に好ましく、95質量%以上100質量%以下が特に好ましい。
(他の工程)
 上記パターン形成方法は、工程3の後に、リンス液を用いて洗浄する工程を含むことが好ましい。
 アルカリ現像液を用いて現像する工程の後のリンス工程に用いるリンス液としては、例えば、純水が挙げられる。なお、純水には、界面活性剤を適当量添加してもよい。
 リンス液には、界面活性剤を適当量添加してもよい。
 有機系現像液を用いた現像工程の後のリンス工程に用いるリンス液は、パターンを溶解しないものであれば特に制限はなく、一般的な有機溶剤を含む溶液を使用できる。リンス液は、炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤、及びエーテル系溶剤からなる群より選択される少なくとも1種の有機溶剤を含有するリンス液を用いることが好ましい。
 リンス工程の方法は特に限定されず、例えば、一定速度で回転している基板上にリンス液を吐出しつづける方法(回転塗布法)、リンス液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、及び基板表面にリンス液を噴霧する方法(スプレー法)が挙げられる。
 また、パターン形成方法は、リンス工程の後に加熱工程(Post Bake)を含んでいてもよい。本工程により、ベークによりパターン間及びパターン内部に残留した現像液及びリンス液が除去される。また、本工程により、レジストパターンがなまされ、パターンの表面荒れが改善される効果もある。リンス工程の後の加熱工程は、通常40~250℃(好ましくは90~200℃)で、通常10秒間~3分間(好ましくは30秒間~120秒間)行う。
 また、形成されたパターンをマスクとして、基板のエッチング処理を実施してもよい。つまり、工程3にて形成されたパターンをマスクとして、基板(又は、下層膜及び基板)を加工して、基板にパターンを形成してもよい。
 基板(又は、下層膜及び基板)の加工方法は特に限定されないが、工程3で形成されたパターンをマスクとして、基板(又は、下層膜及び基板)に対してドライエッチングを行うことにより、基板にパターンを形成する方法が好ましい。ドライエッチングは、酸素プラズマエッチングが好ましい。
 本発明の組成物、及び本明細書のパターン形成方法において使用される各種材料(例えば、溶剤、現像液、リンス液、反射防止膜形成用組成物、トップコート形成用組成物等)は、金属等の不純物を含まないことが好ましい。これら材料に含まれる不純物の含有量は、1質量ppm以下が好ましく、10質量ppb以下がより好ましく、100質量ppt以下が更に好ましく、10質量ppt以下が特に好ましく、1質量ppt以下が最も好ましい。下限は特に制限させず、0質量ppt以上が好ましい。ここで、金属不純物としては、例えば、Na、K、Ca、Fe、Cu、Mg、Al、Li、Cr、Ni、Sn、Ag、As、Au、Ba、Cd、Co、Pb、Ti、V、W、及びZnが挙げられる。
 各種材料から金属等の不純物を除去する方法としては、例えば、フィルターを用いた濾過が挙げられる。フィルターを用いた濾過の詳細は、国際公開第2020/004306号の段落[0321]に記載される。
 各種材料に含まれる金属等の不純物を低減する方法としては、例えば、各種材料を構成する原料として金属含有量が少ない原料を選択する方法、各種材料を構成する原料に対してフィルター濾過を行う方法、及び装置内をテフロン(登録商標)でライニングする等してコンタミネーションを可能な限り抑制した条件下で蒸留を行う方法が挙げられる。
 フィルター濾過の他、吸着材による不純物の除去を行ってもよく、フィルター濾過と吸着材とを組み合わせて使用してもよい。吸着材としては、公知の吸着材を使用でき、例えば、シリカゲル及びゼオライト等の無機系吸着材、並びに、活性炭等の有機系吸着材を使用できる。上記各種材料に含まれる金属等の不純物を低減するためには、製造工程における金属不純物の混入を防止する必要がある。製造装置から金属不純物が十分に除去されたかどうかは、製造装置の洗浄に使用された洗浄液中に含まれる金属成分の含有量を測定して確認できる。使用後の洗浄液に含まれる金属成分の含有量は、100質量ppt(parts per trillion)以下が好ましく、10質量ppt以下がより好ましく、1質量ppt以下が更に好ましい。下限は特に制限させず、0質量ppt以上が好ましい。
 リンス液等の有機系処理液には、静電気の帯電、引き続き生じる静電気放電に伴う、薬液配管及び各種パーツ(フィルター、O-リング、及び、チューブ等)の故障を防止するため、導電性の化合物を添加してもよい。導電性の化合物は特に制限されないが、例えば、メタノールが挙げられる。添加量は特に制限されないが、好ましい現像特性又はリンス特性を維持する点で、10質量%以下が好ましく、5質量%以下がより好ましい。下限は特に制限させず、0.01質量%以上が好ましい。
 薬液配管としては、例えば、SUS(ステンレス鋼)、又は、帯電防止処理の施されたポリエチレン、ポリプロピレン、若しくは、フッ素樹脂(ポリテトラフルオロエチレン、又は、パーフルオロアルコキシ樹脂等)で被膜された各種配管を使用できる。フィルター及びO-リングに関しても同様に、帯電防止処理の施されたポリエチレン、ポリプロピレン、又は、フッ素樹脂(ポリテトラフルオロエチレン、又は、パーフルオロアルコキシ樹脂等)を使用できる。
<電子デバイスの製造方法>
 本明細書は、上記したパターン形成方法を含む、電子デバイスの製造方法、及びこの製造方法により製造された電子デバイスにも関する。
 本明細書の電子デバイスの好適態様としては、電気電子機器(家電、OA(Office Automation)、メディア関連機器、光学用機器及び通信機器等)に搭載される態様が挙げられる。
 以下に実施例に基づいて本発明を更に詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、及び処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。
 以下の合成例で合成した塩(P)について、Xは以下のように測定した。
(電位差滴定法)
 市販の0.01N硝酸銀水溶液をイオン交換水で10倍に希釈して0.001N硝酸銀水溶液を準備する。塩(P)を含む生成物を100mg測り取り、THFと水の混合溶媒(THF/水=54/6体積比)60mlに溶解し試料溶液とする。上記で準備した0.001N硝酸銀水溶液を用いて、上記混合溶媒のみの空溶液と上記試料溶液について、自動滴定装置(ATー510京都電子工業(株))にて滴定量を測定する。得られた滴定量の結果から、上記式(1)、及び式(2)を用いて、塩(P)に対する塩(I)のモル比率X(mol%)を算出した。
 上記モル比率Xは、塩(P)1molに対する塩(I)の残存率(mol%)を示すものである。
 Xの所定基準(所定量)を0.5mol%とした。上記硝酸銀水溶液の力価としては、上記方法にて測定して得られた1を使用した。
 以下の合成例で合成した塩(P)について、濃度Yは以下のように測定した。
(濃度Yの測定方法)
(A)検量線作成
 内部標準物質1,3,5-トリメトキシベンゼン1.6gをアセトニトリル100mlで溶解した溶液Aを作成する。塩(P)の基準ロット0.07gに、溶液A10mlを加え、アセトニトリルで20mlまで希釈し溶液B1を作成する。塩(P)の量をそれぞれ0.08g、0.09gに変えて、同様に溶液B2、B3を作成する。溶液B1~B3を下記条件でHPLC測定を行い、それぞれに対し、内部標準物質のピーク面積値に対する、塩(P)のカチオンのピーク面積値S1~S3を算出する。同測定を3回繰り返し、それぞれの平均値S1AVE~S3AVEを算出する。各溶液の試料濃度(g/ml)とS1AVE~S3AVEとから検量線を作成する。
<HPLC測定条件>
測定装置:Waters HPLCシステム 2695(Waters社製)
カラム:Shim-pack CLC-ODS(6.0×150mm)
溶離液:アセトニトリル/0.05M酢酸アンモニウム水溶液
カラム温度:40℃
流速:1ml/min
試料注入量:5μl
検出波長:254nm
 以下の合成例1~20の各塩(P)において、それぞれ後述の通り、基準ロットを作製した。
(B)濃度Y測定
 内部標準物質1,3,5-トリメトキシベンゼン1.6gをアセトニトリル100mlで溶解した溶液Aを作成する。塩(P)を含む生成物の測定対象ロット0.08gに、溶液A10mlを加え、アセトニトリルで20mlまで希釈し溶液C1を作成する。溶液C1を上記と同じ条件でHPLC測定を行い、内部標準物質のピーク面積値に対する、塩(P)のカチオンのピーク面積値SCを算出する。同じ試料溶液の測定をあと2回繰り返し、SCの平均値SCAVEを算出する。上記SCAVEと上記検量線から、対応する試料濃度KC(g/ml)を算出する。塩(P)を含む生成物における塩(P)の測定対象ロットの濃度Y(質量%)を、上記式(3)から算出した。
 以下の合成例で合成した塩(P)について、濃度Zは以下のように測定した。
(濃度Zの測定方法)
(A)検量線作成
 ローダミンベース(シグマアルドリッチ社製)(化合物C)12mgをアセトニトリル200mlで溶解した溶液Aを作成する。トシル酸(化合物D)50mgをアセトニトリル200mlで溶解した溶液Bを作成する。溶液B5mlをアセトニトリルで40倍希釈した溶液Cを作成する。溶液A2mlと溶液C2mlを10mlメスフラスコに取り、アセトニトリルで10mlまで希釈した溶液D1を作成する。溶液D1について、紫外可視吸収スペクトルを「UV-1800(島津製作所社製)」にて測定し、極大吸収波長556nmの吸光度AbsD1を得る。溶液Aと混合する溶液Cの量を変え、同様に溶液D2、D3、D4を作成する。
 得られたD2、D3、D4の紫外可視吸収スペクトルを同様に測定し、AbsD2、AbsD3、AbsD4を得る。ブランクとして、溶液A2mlを10mlメスフラスコに取り、アセトニトリルで10mlまで希釈した溶液Eを作成する。同様に溶液Eの紫外可視吸収スペクトルを測定し、波長556nmの吸光度Absを得る。
 上記で得られたAbsD1~AbsD4について、Absとの差分を求め、得られた結果をそれぞれAbsDE1~AbsDE4とする。D1、D2、D3及びD4中のトシル酸の各モル濃度と、得られたAbsDE1~AbsDE4からトシル酸のモル濃度と波長556nmにおける吸光度との検量線を作成する。
(B)濃度Zの測定
 ローダミンベース(シグマアルドリッチ社製)(化合物C)12mgをアセトニトリル200mlで溶解した溶液Aを作成する。塩(P)を含む生成物0.05gを測り取り、溶液A2mlを加え、さらにアセトニトリルを加えて10mlまで希釈した溶液Fを作成する。ブランクとして、溶液A2mlを10mlメスフラスコに取り、アセトニトリルで10mlまで希釈した溶液Eを作成する。溶液Fと溶液Eの紫外可視吸収スペクトルを、上記の検量線作成時と同様に測定し、波長556nmの吸光度Abs及びAbsを得る。これらの差分AbsFE=Abs-Absを用いて、上記で作成した検量線から対応するトシル酸のモル濃度T(mol/l)を算出する。上記式(4)を用いて、塩(P)を含む生成物に含有される、トシル酸換算の残存酸の濃度Z(ppm)を算出した。
 式(4)中、MT(g/mol)はトシル酸の分子量172.20を用い、LBは、溶液Fの溶媒量0.01(l)を用いた。
 上記塩(P)を含む生成物に含有される残存酸の濃度Zは、トシル酸(化合物D)換算の濃度である。
 Zの所定基準(所定量)を100ppmとした。
[合成例]
 下記の各合成例において、1種の塩(P)に対して、X、Y、及びZの全てを評価するシリーズ3ロット(a-1~a-3)、X及びZのみ評価するシリーズ3ロット(b-1~b-3)、X及びYのみ評価するシリーズ3ロット(c-1~c-3)、比較例として、X、Y、及びZの全てを評価しないシリーズ3ロット(R-1~R-3)を作製した。
<合成例1 塩(P)(塩B1)の合成>
Figure JPOXMLDOC01-appb-C000062
<基準ロットの作製(濃度Y測定)>
 塩C1(5.9g)、塩化メチレン100g、水100gを混合してから塩A1(6.5g)を添加し、室温(25℃)で30分撹拌した。水層を除去した後、0.1N塩酸100gで1回、水100gで5回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体に対して、上記の手法でXを算出したところ、0.32mol%であった。粗体にメタノール105gを加えて溶解し、撹拌しながら水35gを添加し、析出した固体をろ過して採取した。得られた固体にtert-ブチルメチルエーテル30gとヘキサン30gを加えて撹拌し、ろ過した。得られた固体を8時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、ヘキサンピークは見られなかったため、残存tert-ブチルメチルエーテルとの積分比から固形分値を求めると、99.4%であった。乾燥後の固体に対して、X、Zの測定を行ったところ、Xは0.09mol%、Zは6ppmであった。得られた固体をロット1-a-0とする。基準ロットの濃度は上記99.4%とした。
<a-1の合成(ロット1-a-1)>
 塩C1(5.9g)、塩化メチレン100g、水100gを混合してから塩A1(6.5g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸100gで1回、水100gで3回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体の一部を重アセトンに溶解して、H NMR測定を行ったところ、カチオン/アニオン比は1.02/1.00であった。得られた粗体に対して、上記の手法でXを算出したところ、1.8mol%であった。純度向上策として、粗体にメタノール105gを加えて溶解し、撹拌しながら水35gを添加すると結晶が析出した。ろ過して結晶を採取し、5時間減圧乾燥を行った。得られた結晶の一部を重アセトンに溶解してH NMR測定を行い、残存メタノールとの積分比から固形分値を求めると、99.8%であった。乾燥後の結晶に対して、X、Y、Zの測定を行ったところ、Xは0.18mol%、Yは98.0%、Zは9ppmであった。得られた結晶をロット1-a-1とする。
 後述の表1において、合成例1、塩B1、「a」の項において、ロット1のX、Y、Zの欄に上記値(Xは0.18mol%、Yは98.0%、Zは9ppm)をそれぞれ記載する。
<a-2の合成(ロット1-a-2)>
 塩C1(5.9g)、塩化メチレン100g、水100gを混合してから塩A1(6.5g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸で1回、水で3回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体の一部を重アセトンに溶解して、H NMR測定を行ったところ、カチオン/アニオン比は1.02/1.00であった。得られた粗体に対して、上記の手法でXを算出したところ、0.28mol%であった。Xが十分低かったため、粗体にジイソプロピルエーテル100gを加えて撹拌し、ろ過した固体を5時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存ジイソプロピルエーテルとの積分比から固形分値を求めると、97.5%であった。乾燥後の固体に対して、X、Y、Zの測定を行ったところ、Xは0.28mol%、Yは96.4%、Zは10ppmであった。得られた固体をロット1-a-2とする。
 後述の表1において、合成例1、塩B1、「a」の項において、ロット2のX、Y、Zの欄に上記値(Xは0.28mol%、Yは96.4%、Zは10ppm)をそれぞれ記載する。
<a-3の合成(ロット1-a-3)>
 ロット1-a-1と同様の手法により、ロット1-a-3を合成した。ロット1-a-3について、X、Y、Zの測定を行ったところ、Xは0.20mol%、Yは98.2%、Zは12ppmであった。
 後述の表1において、合成例1、塩B1、「a」の項において、ロット3のX、Y、Zの欄に上記値(Xは0.20mol%、Yは98.2%、Zは12ppm)をそれぞれ記載する。
 合成例2~20についても同様にして、表1にX、Y、Zをそれぞれ記載する。
<b-1の合成(ロット1-b-1)>
 上記と同様の手法によりロット1-b-1を合成した。乾燥後の固体(ロット1-b-1)のXは0.23mol%、Zは12ppmであった。Yは算出せず、H NMR測定から算出された99.7%を固形分とした。
 後述の表1において、合成例1、塩B1、「b」の項において、ロット1のX、Zの欄に上記値(Xは0.23mol%、Zは12ppm)をそれぞれ記載する。
<b-2の合成(ロット1-b-2)、及びb-3の合成(ロット1-b-3)>
 上記と同様の手法によりロット1-b-2とロット1-b-3をそれぞれ合成した。
 ロット1-b-2のXは0.15mol%、Zは21ppmであった。
 後述の表1において、合成例1、塩B1、「b」の項において、ロット2のX、Zの欄に上記値(Xは0.15mol%、Zは21ppm)をそれぞれ記載する。
 ロット1-b-3のXは0.29mol%、Zは16ppmであった。
 後述の表1において、合成例1、塩B1、「b」の項において、ロット3のX、Zの欄に上記値(Xは0.29mol%、Zは16ppm)をそれぞれ記載する。
 合成例2~20についても同様にして、表1にX、Zをそれぞれ記載する。
 ロット1-b-2は、H NMR測定から算出された99.1%を固形分とし、ロット1-b-3も同様に、98.2%を固形分とした。
<c-1の合成(ロット1-c-1)>
 上記と同様の手法によりロット1-c-1を合成した。乾燥後の固体(ロット1-c-1)のXは0.24mol%、Yは98.4%であった。Zは算出しなかった。
 後述の表1において、合成例1、塩B1、「c」の項において、ロット1のX、Yの欄に上記値(Xは0.24mol%、Yは98.4%)をそれぞれ記載する。
<c-2の合成(ロット1-c-2)、及びc-3の合成(ロット1-c-3)>
 上記と同様の手法によりロット1-c-2とロット1-c-3をそれぞれ合成した。
 ロット1-c-2のXは0.16mol%、Yは99.0%であった。
 後述の表1において、合成例1、塩B1、「c」の項において、ロット2のX、Yの欄に上記値(Xは0.16mol%、Yは99.0%)をそれぞれ記載する。
 ロット1-c-3のXは0.12mol%、Yは98.5%であった。
 後述の表1において、合成例1、塩B1、「c」の項において、ロット3のX、Yの欄に上記値(Xは0.12mol%、Yは98.5%)をそれぞれ記載する。
 合成例2~20についても同様にして、表1にX、Yをそれぞれ記載する。
<R-1の合成(ロット1-R-1)、R-2の合成(ロット1-R-2)、及びR-3の合成(ロット1-R-3)>
 塩C1(5.9g)、塩化メチレン100g、水100gを混合してから塩A1(6.5g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸100gで1回、水100gで3回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体の一部を重アセトンに溶解して、H NMR測定を行ったところ、カチオン/アニオン比は1.01/1.00であった。粗体にジイソプロピルエーテル100gを加えて撹拌した後、ろ過して固体を採取し、5時間減圧乾燥を行った。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存ジイソプロピルエーテルとの積分比から固形分値を求めると、96.6%であった。X、Y、Zは算出しなかった。得られた固体をロット1-R-1とする。
 上記と同様の手法によりロット1-R-2とロット1-R-3をそれぞれ合成した。
 ロット1-R-2は、H NMR測定から算出された97.6%を固形分とし、ロット1-R-3も同様に、98.8%を固形分とした。
<合成例2 塩(P)(塩B2)の合成>
Figure JPOXMLDOC01-appb-C000063
<基準ロットの作製(濃度Y測定)>
 塩C2(4.9g)、塩化メチレン100g、水100gを混合してから塩A2(4.8g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸100gで1回、水100gで5回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体に対して、上記の手法でXを算出したところ、0.10mol%であった。粗体にジイソプロピルエーテル100gを加えて撹拌し、ろ過した。これを3回繰り返して得られた固体を8時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存ジイソプロピルエーテルとの積分比から固形分値を求めると、99.3%であった。乾燥後の固体に対して、X、Zの測定を行ったところ、Xは0.09mol%、Zは10ppmであった。得られた固体をロット2-a-0とする。基準ロットの濃度は上記99.3%とした。
<a-1の合成(ロット2-a-1)>
 塩C2(4.5g)、塩化メチレン100g、水100gを混合してから塩A2(4.8g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸100gで1回、水100gで3回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体の一部を重アセトンに溶解して、H NMR測定を行ったところ、カチオン/アニオン比は1.01/1.00であった。得られた粗体に対して、上記の手法でXを算出したところ、1.0mol%であった。純度向上策として、粗体と塩C2(0.045g)、塩化メチレン80g、水80gを混合し、室温で30分撹拌した。水層を除去した後、0.1N塩酸80gで1回、水80gで5回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体に対して、再度Xを算出したところ、0.18mol%であった。粗体にジイソプロピルエーテル100gを加えて撹拌し、ろ過した固体を5時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存ジイソプロピルエーテルとの積分比から固形分値を求めると、98.5%であった。乾燥後の固体に対して、X、Y、Zの測定を行ったところ、Xは0.18mol%、Yは99.2%、Zは20ppmであった。得られた固体をロット2-a-1とする。
<a-2の合成(ロット2-a-2)>
 塩C2(4.5g)、塩化メチレン100g、水100gを混合してから塩A2(4.8g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸100gで1回、水100gで3回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体の一部を重アセトンに溶解して、H NMR測定を行ったところ、カチオン/アニオン比は1.01/1.00であった。得られた粗体に対して、上記の手法でXを算出したところ、0.13mol%であった。Xが十分低かったため、粗体にジイソプロピルエーテル100gを加えて撹拌し、ろ過した固体を5時間減圧乾燥した。乾燥後の固体に対して、X、Y、Zの測定を行ったところ、Xは0.12mol%、Yは98.8%、Zは650ppmであった。固体を塩化メチレン80gに溶解し、水80gで5回有機層を洗浄し、有機層を減圧濃縮した。残留物にジイソプロピルエーテル80gを加えて撹拌し、ろ過した固体を5時間減圧乾燥した。乾燥後の固体に対して、X、Y、Zの測定を行ったところ、Xは0.11mol%、Yは98.5%、Zは14ppmであった。得られた固体をロット2-a-2とする。
<a-3の合成(ロット2-a-3)>
 ロット2-a-1と同様の手法により、ロット2-a-3を合成した。ロット2-a-3について、X、Y、Zの測定を行ったところ、Xは0.24mol%、Yは98.2%、Zは31ppmであった。
<b-1の合成(ロット2-b-1)>
 上記と同様の手法によりロット2-b-1を合成した。乾燥後の固体(ロット2-b-1)のXは0.23mol%、Zは24ppmであった。Yは算出せず、H NMR測定から算出された98.6%を固形分とした。
<b-2の合成(ロット2-b-2)、及びb-3の合成(ロット2-b-3)>
 上記と同様の手法によりロット2-b-2とロット2-b-3をそれぞれ合成した。
 ロット2-b-2のXは0.14mol%、Zは44ppmであった。
 ロット2-b-3のXは0.28mol%、Zは11ppmであった。
 ロット2-b-2は、H NMR測定から算出された97.5%を固形分とし、ロット2-b-3も同様に、98.8%を固形分とした。
<c-1の合成(ロット2-c-1)>
 上記と同様の手法によりロット2-c-1を合成した。乾燥後の固体(ロット2-c-1)のXは0.13mol%、Yは99.1%であった。Zは算出しなかった。
<c-2の合成(ロット2-c-2)、及びc-3の合成(ロット2-c-3)>
 上記と同様の手法によりロット2-c-2とロット2-c-3をそれぞれ合成した。
 ロット2-c-2のXは0.18mol%、Yは98.5%であった。
 ロット2-c-3のXは0.21mol%、Yは99.0%であった。
<R-1の合成(ロット2-R-1)、R-2の合成(ロット2-R-2)、及びR-3の合成(ロット2-R-3)>
 塩C2(4.5g)、塩化メチレン100g、水100gを混合してから塩A2(4.8g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸100gで1回、水100gで3回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体の一部を重アセトンに溶解して、H NMR測定を行ったところ、カチオン/アニオン比は1.01/1.00であった。粗体にジイソプロピルエーテル100gを加えて撹拌し、ろ過した固体を5時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存ジイソプロピルエーテルとの積分比から固形分値を求めると、98.1%であった。X、Y、Zは算出しなかった。得られた固体をロット2-R-1とする。
 上記と同様の手法によりロット2-R-2とロット2-R-3をそれぞれ合成した。
 ロット2-R-2は、H NMR測定から算出された99.3%を固形分とし、ロット2-R-3も同様に、98.0%を固形分とした。
<合成例3 塩(P)(塩B3)の合成>
Figure JPOXMLDOC01-appb-C000064
<基準ロットの作製(濃度Y測定)>
 塩C3(5.6g)、塩化メチレン120g、水120gを混合してから塩A3(8.1g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸120gで1回、水120gで5回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体に対して、上記の手法でXを算出したところ、0.14mol%であった。粗体にイソプロピルアルコール120gを加えて撹拌し、ろ過した。これを2回繰り返して得られた固体を8時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存ジイソプロピルエーテルとの積分比から固形分値を求めると、99.1%であった。乾燥後の固体に対して、X、Zの測定を行ったところ、Xは0.08mol%、Zは4ppmであった。得られた固体をロット3-a-0とする。基準ロットの濃度は上記99.1%とした。
<a-1の合成(ロット3-a-1)>
 塩C3(5.6g)、塩化メチレン120g、水120gを混合してから塩A3(8.1g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸120gで1回、水120gで3回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体の一部を重アセトンに溶解して、H NMR測定を行ったところ、カチオン/アニオン比は2.05/1.00であった。得られた粗体に対して、上記の手法でXを算出したところ、2.1mol%であった。純度向上策として、粗体と塩C3(0.11g)、塩化メチレン100g、水100gを混合し、室温で30分撹拌した。水層を除去した後、0.1N塩酸100gで1回、水100gで3回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体に対して、再度Xを算出したところ、0.22mol%であった。粗体にジイソプロピルエーテル120gを加えて撹拌し、ろ過した固体を5時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存ジイソプロピルエーテルとの積分比から固形分値を求めると、95.4%であった。乾燥後の固体に対して、X、Y、Zの測定を行ったところ、Xは0.22mol%、Yは96.8%、Zは10ppmであった。得られた固体をロット3-a-1とする。
<a-2の合成(ロット3-a-2)>
 塩C3(5.6g)、塩化メチレン120g、水120gを混合してから塩A3(8.1g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸120gで1回、水120gで3回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体の一部を重アセトンに溶解して、H NMR測定を行ったところ、カチオン/アニオン比は2.04/1.00であった。得られた粗体に対して、上記の手法でXを算出したところ、0.16mol%であった。Xが十分低かったため、粗体にジイソプロピルエーテル120gを加えて撹拌し、ろ過した固体を5時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存ジイソプロピルエーテルとの積分比から固形分値を求めると、97.7%であった。乾燥後の固体に対して、X、Y、Zの測定を行ったところ、Xは0.16mol%、Yは95.2%、Zは11ppmであった。得られた固体をロット3-a-2とする。
<a-3の合成(ロット3-a-3)>
 ロット3-a-2と同様の手法により、ロット3-a-3を合成した。ロット3-a-3について、X、Y、Zの測定を行ったところ、Xは0.19mol%、Yは95.7%、Zは19ppmであった。
<b-1の合成(ロット3-b-1)>
 上記と同様の手法によりロット3-b-1を合成した。乾燥後の固体(ロット3-b-1)のXは0.15mol%、Zは11ppmであった。Yは算出せず、H NMR測定から算出された96.1%を固形分とした。
<b-2の合成(ロット3-b-2)、及びb-3の合成(ロット3-b-3)>
 上記と同様の手法によりロット3-b-2とロット3-b-3をそれぞれ合成した。
 ロット3-b-2のXは0.11mol%、Zは10ppmであった。
 ロット3-b-3のXは0.20mol%、Zは16ppmであった。
 ロット3-b-2は、H NMR測定から算出された97.5%を固形分とし、ロット3-b-3も同様に、99.0%を固形分とした。
<c-1の合成(ロット3-c-1)>
 上記と同様の手法によりロット3-c-1を合成した。乾燥後の固体(ロット3-c-1)のXは0.20mol%、Yは97.4%であった。Zは算出しなかった。
<c-2の合成(ロット3-c-2)、及びc-3の合成(ロット3-c-3)>
 上記と同様の手法によりロット3-c-2とロット3-c-3をそれぞれ合成した。
 ロット3-c-2のXは0.17mol%、Yは95.8%であった。
 ロット3-c-3のXは0.12mol%、Yは96.9%であった。
<R-1の合成(ロット3-R-1)、R-2の合成(ロット3-R-2)、及びR-3の合成(ロット3-R-3)>
 塩C3(5.6g)、塩化メチレン120g、水120gを混合してから塩A3(8.1g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸120gで1回、水120gで3回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体の一部を重アセトンに溶解して、H NMR測定を行ったところ、カチオン/アニオン比は2.05/1.00であった。粗体にジイソプロピルエーテル120gを加えて撹拌し、ろ過した固体を5時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存ジイソプロピルエーテルとの積分比から固形分値を求めると、97.5%であった。X、Y、Zは算出しなかった。得られた固体をロット3-R-1とする。
 上記と同様の手法によりロット3-R-2とロット3-R-3をそれぞれ合成した。
 ロット3-R-2は、H NMR測定から算出された98.7%を固形分とし、ロット3-R-3も同様に、96.8%を固形分とした。
<合成例4 塩(P)(塩B4)の合成>
Figure JPOXMLDOC01-appb-C000065
<基準ロットの作製(濃度Y測定)>
 塩C4(8.0g)、塩化メチレン200g、水200gを混合してから塩A4(20.0g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸200gで1回、水200gで10回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体に対して、上記の手法でXを算出したところ、0.11mol%であった。粗体にジイソプロピルエーテル120gを加えて撹拌し、ろ過した。これを3回繰り返して得られた固体を8時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存ジイソプロピルエーテルとの積分比から固形分値を求めると、99.2%であった。乾燥後の固体に対して、X、Zの測定を行ったところ、Xは0.10mol%、Zは5ppmであった。得られた固体をロット4-a-0とする。基準ロットの濃度は上記99.2%とした。
<a-1の合成(ロット4-a-1)>
 塩C4(7.4g)、塩化メチレン200g、水200gを混合してから塩A4(20.0g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸200gで1回、水200gで3回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体の一部を重アセトンに溶解して、H NMR測定を行ったところ、カチオン/アニオン比は2.96/1.00であった。得られた粗体に対して、上記の手法でXを算出したところ、0.14mol%であった。Xが十分低かったため、粗体にジイソプロピルエーテル200gを加えて撹拌し、ろ過した固体を5時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存ジイソプロピルエーテルとの積分比から固形分値を求めると、97.3%であった。乾燥後の固体に対して、X、Y、Zの測定を行ったところ、Xは0.12mol%、Yは96.9%、Zは18ppmであった。得られた固体をロット4-a-1とする。
<a-2の合成(ロット4-a-2)>
 塩C4(7.4g)、塩化メチレン200g、水200gを混合してから塩A4(20.0g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸200gで1回、水200gで3回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体の一部を重アセトンに溶解して、H NMR測定を行ったところ、カチオン/アニオン比は3.10/1.00であった。得られた粗体に対して、上記の手法でXを算出したところ、0.93mol%であった。純度向上策として、粗体と塩C4(0.070g)、塩化メチレン160g、水160gを混合し、室温で30分撹拌した。水層を除去した後、0.1N塩酸160gで1回、水160gで5回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体に対して、再度Xを算出したところ、0.10mol%であった。粗体にジイソプロピルエーテル200gを加えて撹拌し、ろ過した固体を5時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存ジイソプロピルエーテルとの積分比から固形分値を求めると、97.6%であった。乾燥後の固体に対して、X、Y、Zの測定を行ったところ、Xは0.10mol%、Yは97.2%、Zは10ppmであった。得られた固体をロット4-a-2とする。
<a-3の合成(ロット4-a-3)>
 ロット4-a-1と同様の手法により、ロット4-a-3を合成した。ロット4-a-3について、X、Y、Zの測定を行ったところ、Xは0.24mol%、Yは96.6%、Zは9ppmであった。
<b-1の合成(ロット4-b-1)>
 上記と同様の手法によりロット4-b-1を合成した。乾燥後の固体(ロット4-b-1)のXは0.13mol%、Zは18ppmであった。Yは算出せず、H NMR測定から算出された97.7%を固形分とした。
<b-2の合成(ロット4-b-2)、及びb-3の合成(ロット4-b-3)>
 上記と同様の手法によりロット4-b-2とロット4-b-3をそれぞれ合成した。
 ロット4-b-2のXは0.17mol%、Zは35ppmであった。
 ロット4-b-3のXは0.14mol%、Zは10ppmであった。
 ロット4-b-2は、H NMR測定から算出された97.5%を固形分とし、ロット4-b-3も同様に、98.1%を固形分とした。
<c-1の合成(ロット4-c-1)>
 上記と同様の手法によりロット4-c-1を合成した。乾燥後の固体(ロット4-c-1)のXは0.19mol%、Yは95.9%であった。Zは算出しなかった。
<c-2の合成(ロット4-c-2)、及びc-3の合成(ロット4-c-3)>
 上記と同様の手法によりロット4-c-2とロット4-c-3をそれぞれ合成した。
 ロット4-c-2のXは0.14mol%、Yは96.7%であった。
 ロット4-c-3のXは0.14mol%、Yは97.2%であった。
<R-1の合成(ロット4-R-1)、R-2の合成(ロット4-R-2)、及びR-3の合成(ロット4-R-3)>
 塩C4(7.4g)、塩化メチレン200g、水200gを混合してから塩A4(20.0g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸200gで1回、水200gで3回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体の一部を重アセトンに溶解して、H NMR測定を行ったところ、カチオン/アニオン比は3.08/1.00であった。粗体にジイソプロピルエーテル200gを加えて撹拌し、ろ過した固体を5時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存ジイソプロピルエーテルとの積分比から固形分値を求めると、97.6%であった。X、Y、Zは算出しなかった。得られた固体をロット4-R-1とする。
 上記と同様の手法によりロット4-R-2とロット4-R-3をそれぞれ合成した。
 ロット4-R-2は、H NMR測定から算出された98.5%を固形分とし、ロット4-R-3も同様に、97.1%を固形分とした。
<合成例5 塩(P)(塩B5)の合成>
Figure JPOXMLDOC01-appb-C000066
<基準ロットの作製(濃度Y測定)>
 塩C5(5.0g)、塩化メチレン100g、水100gを混合してから塩A5(6.9g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸100gで1回、水100gで5回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体に対して、上記の手法でXを算出したところ、0.11mol%であった。粗体にジイソプロピルエーテル100gを加えて撹拌し、ろ過した。これを3回繰り返して得られた固体を8時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存ジイソプロピルエーテルとの積分比から固形分値を求めると、99.0%であった。乾燥後の固体に対して、X、Zの測定を行ったところ、Xは0.09mol%、Zは4ppmであった。得られた固体をロット5-a-0とする。基準ロットの濃度は上記99.0%とした。
<a-1の合成(ロット5-a-1)>
 塩C5(5.0g)、塩化メチレン100g、水100gを混合してから塩A5(6.9g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸100gで1回、水100gで3回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体の一部を重アセトンに溶解して、H NMR測定を行ったところ、カチオン/アニオン比は1.99/1.00であった。得られた粗体に対して、上記の手法でXを算出したところ、0.12mol%であった。Xが十分低かったため、粗体にジイソプロピルエーテル100gを加えて撹拌し、ろ過した固体を5時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存ジイソプロピルエーテルとの積分比から固形分値を求めると、96.6%であった。乾燥後の固体に対して、X、Y、Zの測定を行ったところ、Xは0.11mol%、Yは97.8%、Zは13ppmであった。得られた固体をロット5-a-1とする。
<a-2の合成(ロット5-a-2)>
 塩C5(5.0g)、塩化メチレン100g、水100gを混合してから塩A5(6.9g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸200gで1回、水200gで3回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体の一部を重アセトンに溶解して、H NMR測定を行ったところ、カチオン/アニオン比は2.05/1.00であった。得られた粗体に対して、上記の手法でXを算出したところ、1.02mol%であった。純度向上策として、粗体と塩C5(0.050g)、塩化メチレン80g、水80gを混合し、室温で30分撹拌した。水層を除去した後、0.1N塩酸80gで1回、水80gで5回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体に対して、再度Xを算出したところ、0.25mol%であった。粗体にジイソプロピルエーテル100gを加えて撹拌し、ろ過した固体を5時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存ジイソプロピルエーテルとの積分比から固形分値を求めると、96.8%であった。乾燥後の固体に対して、X、Y、Zの測定を行ったところ、Xは0.23mol%、Yは96.4%、Zは10ppmであった。得られた固体をロット5-a-2とする。
<a-3の合成(ロット5-a-3)>
 ロット5-a-1と同様の手法により、ロット5-a-3を合成した。ロット5-a-3について、X、Y、Zの測定を行ったところ、Xは0.13mol%、Yは96.0%、Zは21ppmであった。
<b-1の合成(ロット5-b-1)>
 上記と同様の手法によりロット5-b-1を合成した。乾燥後の固体(ロット5-b-1)のXは0.27mol%、Zは10ppmであった。Yは算出せず、H NMR測定から算出された97.3%を固形分とした。
<b-2の合成(ロット5-b-2)、及びb-3の合成(ロット5-b-3)>
 上記と同様の手法によりロット5-b-2とロット5-b-3をそれぞれ合成した。
 ロット5-b-2のXは0.13mol%、Zは18ppmであった。
 ロット5-b-3のXは0.15mol%、Zは33ppmであった。
 ロット5-b-2は、H NMR測定から算出された96.6%を固形分とし、ロット5-b-3も同様に、96.7%を固形分とした。
<c-1の合成(ロット5-c-1)>
 上記と同様の手法によりロット5-c-1を合成した。乾燥後の固体(ロット5-c-1)のXは0.19mol%、Yは96.6%であった。Zは算出しなかった。
<c-2の合成(ロット5-c-2)、及びc-3の合成(ロット5-c-3)>
 上記と同様の手法によりロット5-c-2とロット5-c-3をそれぞれ合成した。
 ロット5-c-2のXは0.18mol%、Yは97.3%であった。
 ロット5-c-3のXは0.22mol%、Yは97.4%であった。
<R-1の合成(ロット5-R-1)、R-2の合成(ロット5-R-2)、及びR-3の合成(ロット5-R-3)>
 塩C5(5.0g)、塩化メチレン100g、水100gを混合してから塩A5(6.9g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸100gで1回、水100gで3回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体の一部を重アセトンに溶解して、H NMR測定を行ったところ、カチオン/アニオン比は2.04/1.00であった。粗体にジイソプロピルエーテル100gを加えて撹拌し、ろ過した固体を5時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存ジイソプロピルエーテルとの積分比から固形分値を求めると、96.2%であった。X、Y、Zは算出しなかった。得られた固体をロット5-R-1とする。
 上記と同様の手法によりロット5-R-2とロット5-R-3をそれぞれ合成した。
 ロット5-R-2は、H NMR測定から算出された97.4%を固形分とし、ロット5-R-3も同様に、95.4%を固形分とした。
<合成例6 塩(P)(塩B6)の合成>
Figure JPOXMLDOC01-appb-C000067
<基準ロットの作製(濃度Y測定)>
 塩C6(4.0g)、塩化メチレン100g、水100gを混合してから塩A6(4.3g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸100gで1回、水100gで5回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体に対して、上記の手法でXを算出したところ、0.10mol%であった。粗体にジイソプロピルエーテル100gを加えて撹拌し、ろ過した。これを3回繰り返して得られた固体を8時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存ジイソプロピルエーテルとの積分比から固形分値を求めると、99.5%であった。乾燥後の固体に対して、X、Zの測定を行ったところ、Xは0.09mol%、Zは6ppmであった。得られた固体をロット6-a-0とする。基準ロットの濃度は上記99.5%とした。
<a-1の合成(ロット6-a-1)>
 C6(4.0g)、塩化メチレン100g、水100gを混合してから塩A6(4.3g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸100gで1回、水100gで3回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体の一部を重アセトンに溶解して、H NMR測定を行ったところ、カチオン/アニオン比は0.99/1.00であった。得られた粗体に対して、上記の手法でXを算出したところ、0.11mol%であった。Xが十分低かったため、粗体にジイソプロピルエーテル100gを加えて撹拌し、ろ過した固体を5時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存ジイソプロピルエーテルとの積分比から固形分値を求めると、98.8%であった。乾燥後の固体に対して、X、Y、Zの測定を行ったところ、Xは0.11mol%、Yは99.6%、Zは16ppmであった。得られた固体をロット6-a-1とする。
<a-2の合成(ロット6-a-2)、及びa-3の合成(ロット6-a-3)>
 ロット6-a-1と同様の手法によりロット6-a-2とロット6-a-3をそれぞれ合成した。
 ロット6-a-2のXは0.09mol%、Yは98.9%、Zは13ppmであった。
 ロット6-a-3のXは0.14mol%、Yは99.4%、Zは22ppmであった。
<b-1の合成(ロット6-b-1)>
 上記と同様の手法によりロット6-b-1を合成した。乾燥後の固体(ロット6-b-1)のXは0.13mol%、Zは8ppmであった。Yは算出せず、H NMR測定から算出された99.0%を固形分とした。
<b-2の合成(ロット6-b-2)、及びb-3の合成(ロット6-b-3)>
 上記と同様の手法によりロット6-b-2とロット6-b-3をそれぞれ合成した。
 ロット6-b-2のXは0.13mol%、Zは14ppmであった。
 ロット6-b-3のXは0.10mol%、Zは10ppmであった。
 ロット6-b-2は、H NMR測定から算出された98.8%を固形分とし、ロット6-b-3も同様に、96.8%を固形分とした。
<c-1の合成(ロット6-c-1)>
 上記と同様の手法によりロット6-c-1を合成した。乾燥後の固体(ロット6-c-1)のXは0.10mol%、Yは99.1%であった。Zは算出しなかった。
<c-2の合成(ロット6-c-2)、及びc-3の合成(ロット6-c-3)>
 上記と同様の手法によりロット6-c-2とロット6-c-3をそれぞれ合成した。
 ロット6-c-2のXは0.15mol%、Yは97.7%であった。
 ロット6-c-3のXは0.11mol%、Yは99.5%であった。
<R-1の合成(ロット6-R-1)、R-2の合成(ロット6-R-2)、及びR-3の合成(ロット6-R-3)>
 塩C6(4.0g)、塩化メチレン100g、水100gを混合してから塩A6(4.3g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸100gで1回、水100gで3回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体の一部を重アセトンに溶解して、H NMR測定を行ったところ、カチオン/アニオン比は1.01/1.00であった。粗体にジイソプロピルエーテル100gを加えて撹拌し、ろ過した固体を5時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存ジイソプロピルエーテルとの積分比から固形分値を求めると、99.5%であった。X、Y、Zは算出しなかった。得られた固体をロット6-R-1とする。
 上記と同様の手法によりロット6-R-2とロット6-R-3をそれぞれ合成した。
 ロット6-R-2は、H NMR測定から算出された99.9%を固形分とし、ロット6-R-3も同様に、98.5%を固形分とした。
<合成例7 塩(P)(塩B7)の合成>
Figure JPOXMLDOC01-appb-C000068
<基準ロットの作製(濃度Y測定)>
 塩C7(3.6g)、塩化メチレン100g、水100gを混合してから塩A7(5.2g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸100gで1回、水100gで5回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体に対して、上記の手法でXを算出したところ、0.35mol%であった。粗体にイソプロピルアルコール100gとジイソプロピルエーテル20gを加えて撹拌し、ろ過した。これを3回繰り返して得られた固体を8時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、ジイソプロピルエーテルのピークは見られなかったので、残存イソプロピルアルコールとの積分比から固形分値を求めると、99.7%であった。乾燥後の固体に対して、X、Zの測定を行ったところ、Xは0.10mol%、Zは5ppmであった。得られた固体をロット7-a-0とする。基準ロットの濃度は上記99.7%とした。
<a-1の合成(ロット7-a-1)>
 塩C7(3.6g)、塩化メチレン100g、水100gを混合してから塩A7(5.2g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸100gで1回、水100gで3回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体の一部を重アセトンに溶解して、H NMR測定を行ったところ、カチオン/アニオン比は1.01/1.00であった。得られた粗体に対して、上記の手法でXを算出したところ、0.20mol%であった。Xが十分低かったため、粗体にジイソプロピルエーテル100gを加えて撹拌し、ろ過した固体を5時間減圧乾燥した。乾燥後の固体に対して、X、Y、Zの測定を行ったところ、Xは0.18mol%、Yは98.2%、Zは310ppmであった。固体を塩化メチレン80gに溶解し、水80gで5回有機層を洗浄し、有機層を減圧濃縮した。残留物にジイソプロピルエーテル80gを加えて撹拌し、ろ過した固体を5時間減圧乾燥した。乾燥後の固体に対して、X、Y、Zの測定を行ったところ、Xは0.18mol%、Yは98.8%、Zは10ppmであった。得られた固体をロット7-a-1とする。
<a-2の合成(ロット7-a-2)>
 塩C7(3.6g)、塩化メチレン100g、水100gを混合してから塩A7(5.2g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸100gで1回、水100gで3回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体の一部を重アセトンに溶解して、H NMR測定を行ったところ、カチオン/アニオン比は1.02/1.00であった。得られた粗体に対して、上記の手法でXを算出したところ、1.0mol%であった。純度向上策として、粗体にイソプロパノール75gを加えて溶解し、撹拌しながらヘキサン25gを添加した。析出した固体をろ過して採取し、5時間減圧乾燥を行った。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存イソプロパノール及びヘキサンとの積分比から固形分値を求めると、98.4%であった。乾燥後の結晶に対して、X、Y、Zの測定を行ったところ、Xは0.14mol%、Yは99.2%、Zは13ppmであった。得られた結晶をロット7-a-2とする。
<a-3の合成(ロット7-a-3)>
 ロット7-a-2と同様の手法により、ロット7-a-3を合成した。ロット7-a-3について、X、Y、Zの測定を行ったところ、Xは0.21mol%、Yは98.1%、Zは21ppmであった。
<b-1の合成(ロット7-b-1)>
 上記と同様の手法によりロット7-b-1を合成した。乾燥後の固体(ロット7-b-1)のXは0.10mol%、Zは28ppmであった。Yは算出せず、H NMR測定から算出された99.5%を固形分とした。
<b-2の合成(ロット7-b-2)、及びb-3の合成(ロット7-b-3)>
 上記と同様の手法によりロット7-b-2とロット7-b-3をそれぞれ合成した。
 ロット7-b-2のXは0.25mol%、Zは14ppmであった。
 ロット7-b-3のXは0.11mol%、Zは10ppmであった。
 ロット7-b-2は、H NMR測定から算出された95.8%を固形分とし、ロット7-b-3も同様に、98.3%を固形分とした。
<c-1の合成(ロット7-c-1)>
 上記と同様の手法によりロット7-c-1を合成した。乾燥後の固体(ロット7-c-1)のXは0.10mol%、Yは99.1%であった。Zは算出しなかった。
<c-2の合成(ロット7-c-2)、及びc-3の合成(ロット7-c-3)>
 上記と同様の手法によりロット7-c-2とロット7-c-3をそれぞれ合成した。
 ロット7-c-2のXは0.15mol%、Yは97.4%であった。
 ロット7-c-3のXは0.28mol%、Yは98.6%であった。
<R-1の合成(ロット7-R-1)、R-2の合成(ロット7-R-2)、及びR-3の合成(ロット7-R-3)>
 塩C7(3.6g)、塩化メチレン100g、水100gを混合してから塩A7(5.2g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸100gで1回、水100gで3回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体の一部を重アセトンに溶解して、H NMR測定を行ったところ、カチオン/アニオン比は0.98/1.00であった。粗体にジイソプロピルエーテル100gを加えて撹拌し、ろ過した固体を5時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存ジイソプロピルエーテルとの積分比から固形分値を求めると、97.8%であった。X、Y、Zは算出しなかった。得られた固体をロット7-R-1とする。
 上記と同様の手法によりロット7-R-2とロット7-R-3をそれぞれ合成した。
 ロット7-R-2は、H NMR測定から算出された97.1%を固形分とし、ロット7-R-3も同様に、97.6%を固形分とした。
<合成例8 塩(P)(塩B8)の合成>
Figure JPOXMLDOC01-appb-C000069
 Meはメチル基を表す。
<基準ロットの作製(濃度Y測定)>
 塩C8(4.3g)、塩化メチレン100g、水100gを混合してから塩A8(4.5g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸100gで1回、水100gで5回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体に対して、上記の手法でXを算出したところ、0.21mol%であった。粗体にイソプロピルアルコール100gを加えて撹拌し、ろ過した。これを3回繰り返して得られた固体を8時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存イソプロピルアルコールとの積分比から固形分値を求めると、99.7%であった。乾燥後の固体に対して、X、Zの測定を行ったところ、Xは0.08mol%、Zは7ppmであった。得られた固体をロット8-a-0とする。基準ロットの濃度は上記99.7%とした。
<a-1の合成(ロット8-a-1)>
 塩C8(4.3g)、塩化メチレン100g、水100gを混合してから塩A8(4.5g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸100gで1回、水100gで3回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体の一部を重アセトンに溶解して、H NMR測定を行ったところ、カチオン/アニオン比は1.00/1.00であった。得られた粗体に対して、上記の手法でXを算出したところ、0.22mol%であった。Xが十分低かったため、粗体にジイソプロピルエーテル100gを加えて撹拌し、ろ過した固体を5時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存ジイソプロピルエーテルとの積分比から固形分値を求めると、98.6%であった。乾燥後の固体に対して、X、Y、Zの測定を行ったところ、Xは0.22mol%、Yは99.6%、Zは9ppmであった。得られた固体をロット8-a-1とする。
<a-2の合成(ロット8-a-2)>
 塩C8(4.3g)、塩化メチレン100g、水100gを混合してから塩A8(4.5g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸100gで1回、水100gで3回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体の一部を重アセトンに溶解して、H NMR測定を行ったところ、カチオン/アニオン比は1.01/1.00であった。得られた粗体に対して、上記の手法でXを算出したところ、0.66mol%であった。純度向上策として、粗体にイソプロパノール75gを加えて溶解し、撹拌しながらヘキサン25gを添加した。析出した固体をろ過して採取し、5時間減圧乾燥を行った。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存イソプロパノール及びヘキサンとの積分比から固形分値を求めると、98.7%であった。乾燥後の結晶に対して、X、Y、Zの測定を行ったところ、Xは0.12mol%、Yは99.6%、Zは13ppmであった。得られた結晶をロット8-a-2とする。
<a-3の合成(ロット8-a-3)>
 ロット8-a-1と同様の手法により、ロット8-a-3を合成した。ロット8-a-3について、X、Y、Zの測定を行ったところ、Xは0.13mol%、Yは99.1%、Zは10ppmであった。
<b-1の合成(ロット8-b-1)>
 上記と同様の手法によりロット8-b-1を合成した。乾燥後の固体(ロット8-b-1)のXは0.28mol%、Zは17ppmであった。Yは算出せず、H NMR測定から算出された99.1%を固形分とした。
<b-2の合成(ロット8-b-2)、及びb-3の合成(ロット8-b-3)>
 上記と同様の手法によりロット8-b-2とロット8-b-3をそれぞれ合成した。
 ロット8-b-2のXは0.15mol%、Zは31ppmであった。
 ロット8-b-3のXは0.12mol%、Zは13ppmであった。
 ロット8-b-2は、H NMR測定から算出された99.2%を固形分とし、ロット8-b-3も同様に、98.9%を固形分とした。
<c-1の合成(ロット8-c-1)>
 上記と同様の手法によりロット8-c-1を合成した。乾燥後の固体(ロット8-c-1)のXは0.12mol%、Yは98.2%であった。Zは算出しなかった。
<c-2の合成(ロット8-c-2)、及びc-3の合成(ロット8-c-3)>
 上記と同様の手法によりロット8-c-2とロット8-c-3をそれぞれ合成した。
 ロット8-c-2のXは0.12mol%、Yは98.8%であった。
 ロット8-c-3のXは0.13mol%、Yは99.4%であった。
<R-1の合成(ロット8-R-1)、R-2の合成(ロット8-R-2)、及びR-3の合成(ロット8-R-3)>
 塩C8(4.3g)、塩化メチレン100g、水100gを混合してから塩A8(4.5g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸100gで1回、水100gで3回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体の一部を重アセトンに溶解して、H NMR測定を行ったところ、カチオン/アニオン比は1.02/1.00であった。粗体にジイソプロピルエーテル100gを加えて撹拌し、ろ過した固体を5時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存ジイソプロピルエーテルとの積分比から固形分値を求めると、98.9%であった。X、Y、Zは算出しなかった。得られた固体をロット8-R-1とする。
 上記と同様の手法によりロット8-R-2とロット8-R-3をそれぞれ合成した。
 ロット8-R-2は、H NMR測定から算出された98.5%を固形分とし、ロット8-R-3も同様に、99.8%を固形分とした。
<合成例9 塩(P)(塩B9)の合成>
Figure JPOXMLDOC01-appb-C000070
<基準ロットの作製(濃度Y測定)>
 塩C1(5.9g)、塩化メチレン100g、水100gを混合してから塩A9(4.8g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸100gで1回、水100gで3回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体にtert-ブチルメチルエーテル100gとアセトン50gを加えて溶解してから、有機層を水150gで10回洗浄し、減圧濃縮した。得られた粗体に対して、上記の手法でXを算出したところ、0.11mol%であった。粗体にジイソプロピルエーテル100gを加えて撹拌し、ろ過した。これを3回繰り返して得られた固体を8時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存ジイソプロピルエーテルとの積分比から固形分値を求めると、99.6%であった。乾燥後の固体に対して、X、Zの測定を行ったところ、Xは0.09mol%、Zは6ppmであった。得られた固体をロット9-a-0とする。基準ロットの濃度は上記99.6%とした。
<a-1の合成(ロット9-a-1)>
 塩C1(5.9g)、塩化メチレン100g、水100gを混合してから塩A9(4.4g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸100gで1回、水100gで3回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体の一部を重アセトンに溶解して、H NMR測定を行ったところ、カチオン/アニオン比は1.02/1.00であった。得られた粗体に対して、上記の手法でXを算出したところ、0.13mol%であった。Xが十分低かったため、粗体にジイソプロピルエーテル100gを加えて撹拌し、ろ過した固体を5時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存ジイソプロピルエーテルとの積分比から固形分値を求めると、99.1%であった。乾燥後の固体に対して、X、Y、Zの測定を行ったところ、Xは0.13mol%、Yは99.8%、Zは14ppmであった。得られた固体をロット9-a-1とする。
<a-2の合成(ロット9-a-2)>
 塩C1(5.9g)、塩化メチレン100g、水100gを混合してから塩A9(4.4g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸100gで1回、水100gで3回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体の一部を重アセトンに溶解して、H NMR測定を行ったところ、カチオン/アニオン比は1.02/1.00であった。得られた粗体に対して、上記の手法でXを算出したところ、0.74mol%であった。純度向上策として、粗体にイソプロパノール75gを加えて溶解し、撹拌しながらヘキサン25gを添加した。析出した固体をろ過して採取し、5時間減圧乾燥を行った。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存イソプロパノール及びヘキサンとの積分比から固形分値を求めると、98.3%であった。乾燥後の結晶に対して、X、Y、Zの測定を行ったところ、Xは0.09mol%、Yは99.5%、Zは10ppmであった。得られた結晶をロット9-a-2とする。
<a-3の合成(ロット9-a-3)>
 ロット9-a-1と同様の手法により、ロット9-a-3を合成した。ロット9-a-3について、X、Y、Zの測定を行ったところ、Xは0.11mol%、Yは99.2%、Zは11ppmであった。
<b-1の合成(ロット9-b-1)>
 上記と同様の手法によりロット9-b-1を合成した。乾燥後の固体(ロット9-b-1)のXは0.13mol%、Zは21ppmであった。Yは算出せず、H NMR測定から算出された98.9%を固形分とした。
<b-2の合成(ロット9-b-2)、及びb-3の合成(ロット9-b-3)>
 上記と同様の手法によりロット9-b-2とロット9-b-3をそれぞれ合成した。
 ロット9-b-2のXは0.16mol%、Zは9ppmであった。
 ロット9-b-3のXは0.16mol%、Zは14ppmであった。
 ロット9-b-2は、H NMR測定から算出された98.6%を固形分とし、ロット9-b-3も同様に、99.2%を固形分とした。
<c-1の合成(ロット9-c-1)>
 上記と同様の手法によりロット9-c-1を合成した。乾燥後の固体(ロット9-c-1)のXは0.18mol%、Yは99.2%であった。Zは算出しなかった。
<c-2の合成(ロット9-c-2)、及びc-3の合成(ロット9-c-3)>
 上記と同様の手法によりロット9-c-2とロット9-c-3をそれぞれ合成した。
 ロット9-c-2のXは0.16mol%、Yは98.6%であった。
 ロット9-c-3のXは0.10mol%、Yは99.2%であった。
<R-1の合成(ロット9-R-1)、R-2の合成(ロット9-R-2)、及びR-3の合成(ロット9-R-3)>
 塩C1(5.9g)、塩化メチレン100g、水100gを混合してから塩A9(4.4g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸100gで1回、水100gで3回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体の一部を重アセトンに溶解して、H NMR測定を行ったところ、カチオン/アニオン比は1.01/1.00であった。粗体にジイソプロピルエーテル100gを加えて撹拌し、ろ過した固体を5時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存ジイソプロピルエーテルとの積分比から固形分値を求めると、98.8%であった。X、Y、Zは算出しなかった。得られた固体をロット9-R-1とする。
 上記と同様の手法によりロット9-R-2とロット9-R-3をそれぞれ合成した。
 ロット9-R-2は、H NMR測定から算出された99.9%を固形分とし、ロット9-R-3も同様に、99.8%を固形分とした。
<合成例10 塩(P)(塩B10)の合成>
Figure JPOXMLDOC01-appb-C000071
<基準ロットの作製(濃度Y測定)>
 塩C9(9.0g)、塩化メチレン200g、水200gを混合してから塩A1(19.2g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸200gで1回、水200gで7回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体に対して、上記の手法でXを算出したところ、0.10mol%であった。上記の手法でXを算出したところ、0.10mol%であった。粗体にジイソプロピルエーテル100gを加えて撹拌し、ろ過した。これを3回繰り返して得られた固体を8時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存ジイソプロピルエーテルとの積分比から固形分値を求めると、99.3%であった。乾燥後の固体に対して、X、Zの測定を行ったところ、Xは0.09mol%、Zは8ppmであった。得られた固体をロット10-a-0とする。基準ロットの濃度は上記99.3%とした。
<a-1の合成(ロット10-a-1)>
 塩C9(8.4g)、塩化メチレン200g、水200gを混合してから塩A1(19.2g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸200gで1回、水200gで3回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体の一部を重アセトンに溶解して、H NMR測定を行ったところ、カチオン/アニオン比は2.99/1.00であった。得られた粗体に対して、上記の手法でXを算出したところ、0.14mol%であった。Xが十分低かったため、粗体にジイソプロピルエーテル200gを加えて撹拌し、ろ過した固体を5時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存ジイソプロピルエーテルとの積分比から固形分値を求めると、97.5%であった。乾燥後の固体に対して、X、Y、Zの測定を行ったところ、Xは0.14mol%、Yは96.2%、Zは14ppmであった。得られた固体をロット10-a-1とする。
<a-2の合成(ロット10-a-2)、及びa-3の合成(ロット10-a-3)>
 ロット10-a-1と同様の手法によりロット10-a-2とロット10-a-3をそれぞれ合成した。
 ロット10-a-2のXは0.16mol%、Yは97.2%、Zは24ppmであった。
 ロット10-a-3のXは0.19mol%、Yは95.8%、Zは17ppmであった。
<b-1の合成(ロット10-b-1)>
 上記と同様の手法によりロット10-b-1を合成した。乾燥後の固体(ロット10-b-1)のXは0.20mol%、Zは20ppmであった。Yは算出せず、H NMR測定から算出された98.0%を固形分とした。
<b-2の合成(ロット10-b-2)、及びb-3の合成(ロット10-b-3)>
 上記と同様の手法によりロット10-b-2とロット10-b-3をそれぞれ合成した。
 ロット10-b-2のXは0.15mol%、Zは11ppmであった。
 ロット10-b-3のXは0.13mol%、Zは12ppmであった。
 ロット10-b-2は、H NMR測定から算出された95.8%を固形分とし、ロット10-b-3も同様に、97.1%を固形分とした。
<c-1の合成(ロット10-c-1)>
 上記と同様の手法によりロット10-c-1を合成した。乾燥後の固体(ロット10-c-1)のXは0.12mol%、Yは96.6%であった。Zは算出しなかった。
<c-2の合成(ロット10-c-2)、及びc-3の合成(ロット10-c-3)>
 上記と同様の手法によりロット10-c-2とロット10-c-3をそれぞれ合成した。
 ロット10-c-2のXは0.18mol%、Yは96.9%であった。
 ロット10-c-3のXは0.22mol%、Yは95.5%であった。
<R-1の合成(ロット10-R-1)、R-2の合成(ロット10-R-2)、及びR-3の合成(ロット10-R-3)>
 塩C9(8.4g)、塩化メチレン200g、水200gを混合してから塩A1(19.2g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸200gで1回、水200gで3回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体の一部を重アセトンに溶解して、H NMR測定を行ったところ、カチオン/アニオン比は3.02/1.00であった。粗体にジイソプロピルエーテル200gを加えて撹拌し、ろ過した固体を5時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存ジイソプロピルエーテルとの積分比から固形分値を求めると、95.6%であった。X、Y、Zは算出しなかった。得られた固体をロット10-R-1とする。
 上記と同様の手法によりロット10-R-2とロット10-R-3をそれぞれ合成した。
 ロット10-R-2は、H NMR測定から算出された96.0%を固形分とし、ロット10-R-3も同様に、97.3%を固形分とした。
<合成例11 塩(P)(塩B11)の合成>
Figure JPOXMLDOC01-appb-C000072
<基準ロットの作製(濃度Y測定)>
 塩C10(5.2g)、塩化メチレン100g、水100gを混合してから塩A10(4.0g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸100gで1回、水100gで5回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体に対して、上記の手法でXを算出したところ、0.13mol%であった。粗体をシリカゲルクロマトグラフィー(溶媒クロロホルム)で精製し、得られた固体を8時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存クロロホルムとの積分比から固形分値を求めると、99.8%であった。乾燥後の固体に対して、X、Zの測定を行ったところ、Xは0.08mol%、Zは4ppmであった。得られた固体をロット11-a-0とする。基準ロットの濃度は上記99.8%とした。
<a-1の合成(ロット11-a-1)>
 塩C10(5.2g)、塩化メチレン100g、水100gを混合してから塩A10(4.0g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸100gで1回、水100gで3回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体の一部を重アセトンに溶解して、H NMR測定を行ったところ、カチオン/アニオン比は0.99/1.00であった。得られた粗体に対して、上記の手法でXを算出したところ、0.17mol%であった。Xが十分低かったため、粗体にジイソプロピルエーテル100gを加えて撹拌し、ろ過した固体を5時間減圧乾燥した。乾燥後の固体に対して、X、Y、Zの測定を行ったところ、Xは0.17mol%、Yは98.1%、Zは540ppmであった。固体を塩化メチレン80gに溶解し、水80gで5回有機層を洗浄し、有機層を減圧濃縮した。残留物にジイソプロピルエーテル80gを加えて撹拌し、ろ過した固体を5時間減圧乾燥した。乾燥後の固体に対して、X、Y、Zの測定を行ったところ、Xは0.16mol%、Yは97.2%、Zは20ppmであった。得られた固体をロット11-a-1とする。
<a-2の合成(ロット11-a-2)>
 塩C10(5.2g)、塩化メチレン100g、水100gを混合してから塩A10(4.0g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸100gで1回、水100gで3回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体の一部を重アセトンに溶解して、H NMR測定を行ったところ、カチオン/アニオン比は1.01/1.00であった。得られた粗体に対して、上記の手法でXを算出したところ、0.81mol%であった。純度向上策として、粗体と塩C10(0.044g)、塩化メチレン80g、水80gを混合し、室温で30分撹拌した。水層を除去した後、0.1N塩酸80gで1回、水80gで5回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体に対して、再度Xを算出したところ、0.11mol%であった。粗体にジイソプロピルエーテル100gを加えて撹拌し、ろ過した固体を5時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存ジイソプロピルエーテルとの積分比から固形分値を求めると、97.7%であった。乾燥後の固体に対して、X、Y、Zの測定を行ったところ、Xは0.11mol%、Yは98.6%、Zは11ppmであった。得られた固体をロット11-a-2とする。
<a-3の合成(ロット11-a-3)>
 ロット11-a-1と同様の手法により、ロット11-a-3を合成した。ロット11-a-3について、X、Y、Zの測定を行ったところ、Xは0.15mol%、Yは99.2%、Zは12ppmであった。
<b-1の合成(ロット11-b-1)>
 上記と同様の手法によりロット11-b-1を合成した。乾燥後の固体(ロット11-b-1)のXは0.12mol%、Zは9ppmであった。Yは算出せず、H NMR測定から算出された98.8%を固形分とした。
<b-2の合成(ロット11-b-2)、及びb-3の合成(ロット11-b-3)>
 上記と同様の手法によりロット11-b-2とロット11-b-3をそれぞれ合成した。
 ロット11-b-2のXは0.19mol%、Zは9ppmであった。
 ロット11-b-3のXは0.12mol%、Zは14ppmであった。
 ロット11-b-2は、H NMR測定から算出された98.8%を固形分とし、ロット11-b-3も同様に、98.0%を固形分とした。
<c-1の合成(ロット11-c-1)>
 上記と同様の手法によりロット11-c-1を合成した。乾燥後の固体(ロット11-c-1)のXは0.18mol%、Yは98.4%であった。Zは算出しなかった。
<c-2の合成(ロット11-c-2)、及びc-3の合成(ロット11-c-3)>
 上記と同様の手法によりロット11-c-2とロット11-c-3をそれぞれ合成した。
 ロット11-c-2のXは0.12mol%、Yは98.2%であった。
 ロット11-c-3のXは0.16mol%、Yは98.4%であった。
<R-1の合成(ロット11-R-1)、R-2の合成(ロット11-R-2)、及びR-3の合成(ロット11-R-3)>
 塩C10(5.2g)、塩化メチレン100g、水100gを混合してから塩A10(4.0g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸100gで1回、水100gで3回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体の一部を重アセトンに溶解して、H NMR測定を行ったところ、カチオン/アニオン比は1.02/1.00であった。粗体にジイソプロピルエーテル100gを加えて撹拌し、ろ過した固体を5時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存ジイソプロピルエーテルとの積分比から固形分値を求めると、97.4%であった。X、Y、Zは算出しなかった。得られた固体をロット11-R-1とする。
 上記と同様の手法によりロット11-R-2とロット11-R-3をそれぞれ合成した。
 ロット11-R-2は、H NMR測定から算出された98.0%を固形分とし、ロット11-R-3も同様に、97.7%を固形分とした。
<合成例12 塩(P)(塩B12)の合成>
Figure JPOXMLDOC01-appb-C000073
<基準ロットの作製(濃度Y測定)>
 塩C11(3.5g)、塩化メチレン100g、水100gを混合してから塩A11(3.6g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸100gで1回、水100gで5回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体に対して、上記の手法でXを算出したところ、0.10mol%であった。粗体にジイソプロピルエーテル100gを加えて撹拌し、ろ過した。これを3回繰り返して得られた固体を8時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存ジイソプロピルエーテルとの積分比から固形分値を求めると、99.5%であった。乾燥後の固体に対して、X、Zの測定を行ったところ、Xは0.09mol%、Zは7ppmであった。得られた固体をロット12-a-0とする。基準ロットの濃度は上記99.5%とした。
<a-1の合成(ロット12-a-1)>
 塩C11(3.5g)、塩化メチレン100g、水100gを混合してから塩A11(3.6g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸100gで1回、水100gで3回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体の一部を重アセトンに溶解して、H NMR測定を行ったところ、カチオン/アニオン比は1.00/1.00であった。得られた粗体に対して、上記の手法でXを算出したところ、0.20mol%であった。Xが十分低かったため、粗体にジイソプロピルエーテル100gを加えて撹拌し、ろ過した固体を5時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存ジイソプロピルエーテルとの積分比から固形分値を求めると、99.3%であった。乾燥後の固体に対して、X、Y、Zの測定を行ったところ、Xは0.20mol%、Yは98.9%、Zは19ppmであった。得られた固体をロット12-a-1とする。
<a-2の合成(ロット12-a-2)、及びa-3の合成(ロット12-a-3)>
 ロット12-a-1と同様の手法によりロット12-a-2とロット12-a-3をそれぞれ合成した。
 ロット12-a-2のXは0.18mol%、Yは99.4%、Zは15ppmであった。
 ロット12-a-3のXは0.25mol%、Yは98.2%、Zは14ppmであった。
<b-1の合成(ロット12-b-1)>
 上記と同様の手法によりロット12-b-1を合成した。乾燥後の固体(ロット12-b-1)のXは0.11mol%、Zは16ppmであった。Yは算出せず、H NMR測定から算出された98.5%を固形分とした。
<b-2の合成(ロット12-b-2)、及びb-3の合成(ロット12-b-3)>
 上記と同様の手法によりロット12-b-2とロット12-b-3をそれぞれ合成した。
 ロット12-b-2のXは0.18mol%、Zは30ppmであった。
 ロット12-b-3のXは0.16mol%、Zは10ppmであった。
 ロット12-b-2は、H NMR測定から算出された99.2%を固形分とし、ロット12-b-3も同様に、98.5%を固形分とした。
<c-1の合成(ロット12-c-1)>
 上記と同様の手法によりロット12-c-1を合成した。乾燥後の固体(ロット12-c-1)のXは0.17mol%、Yは98.7%であった。Zは算出しなかった。
<c-2の合成(ロット12-c-2)、及びc-3の合成(ロット12-c-3)>
 上記と同様の手法によりロット12-c-2とロット12-c-3をそれぞれ合成した。
 ロット12-c-2のXは0.19mol%、Yは99.3%であった。
 ロット12-c-3のXは0.16mol%、Yは99.2%であった。
<R-1の合成(ロット12-R-1)、R-2の合成(ロット12-R-2)、及びR-3の合成(ロット12-R-3)>
 塩C11(3.5g)、塩化メチレン100g、水100gを混合してから塩A11(3.6g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸100gで1回、水100gで3回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体の一部を重アセトンに溶解して、H NMR測定を行ったところ、カチオン/アニオン比は1.01/1.00であった。粗体にジイソプロピルエーテル100gを加えて撹拌し、ろ過した固体を5時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存ジイソプロピルエーテルとの積分比から固形分値を求めると、98.3%であった。X、Y、Zは算出しなかった。得られた固体をロット12-R-1とする。
 上記と同様の手法によりロット12-R-2とロット12-R-3をそれぞれ合成した。
 ロット12-R-2は、H NMR測定から算出された98.2%を固形分とし、ロット12-R-3も同様に、99.0%を固形分とした。
<合成例13 塩(P)(塩B13)の合成>
Figure JPOXMLDOC01-appb-C000074
<基準ロットの作製(濃度Y測定)>
 塩C12(4.9g)、塩化メチレン100g、水100gを混合してから塩A12(4.9g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸100gで1回、水100gで5回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体に対して、上記の手法でXを算出したところ、0.12mol%であった。粗体にジイソプロピルエーテル100gを加えて撹拌し、ろ過した。これを3回繰り返して得られた固体を8時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存ジイソプロピルエーテルとの積分比から固形分値を求めると、99.4%であった。乾燥後の固体に対して、X、Zの測定を行ったところ、Xは0.10mol%、Zは8ppmであった。得られた固体をロット13-a-0とする。基準ロットの濃度は上記99.4%とした。
<a-1の合成(ロット13-a-1)>
 塩C12(4.9g)、塩化メチレン100g、水100gを混合してから塩A12(4.9g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸100gで1回、水100gで3回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体の一部を重アセトンに溶解して、H NMR測定を行ったところ、カチオン/アニオン比は1.02/1.00であった。得られた粗体に対して、上記の手法でXを算出したところ、0.94mol%であった。純度向上策として、粗体と塩C12(0.046g)、塩化メチレン80g、水80gを混合し、室温で30分撹拌した。水層を除去した後、0.1N塩酸80gで1回、水80gで5回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体に対して、再度Xを算出したところ、0.12mol%であった。粗体にジイソプロピルエーテル100gを加えて撹拌し、ろ過した固体を5時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存ジイソプロピルエーテルとの積分比から固形分値を求めると、98.8%であった。乾燥後の固体に対して、X、Y、Zの測定を行ったところ、Xは0.12mol%、Yは99.5%、Zは9ppmであった。得られた固体をロット13-a-1とする。
<a-2の合成(ロット13-a-2)>
 塩C12(4.9g)、塩化メチレン100g、水100gを混合してから塩A12(4.9g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸100gで1回、水100gで3回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体の一部を重アセトンに溶解して、H NMR測定を行ったところ、カチオン/アニオン比は1.01/1.00であった。得られた粗体に対して、上記の手法でXを算出したところ、0.14mol%であった。Xが十分低かったため、粗体にジイソプロピルエーテル100gを加えて撹拌し、ろ過した固体を5時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存ジイソプロピルエーテルとの積分比から固形分値を求めると、98.7%であった。乾燥後の固体に対して、X、Y、Zの測定を行ったところ、Xは0.14mol%、Yは99.3%、Zは15ppmであった。得られた固体をロット13-a-2とする。
<a-3の合成(ロット13-a-3)>
 ロット13-a-1と同様の手法により、ロット13-a-3を合成した。ロット13-a-3について、X、Y、Zの測定を行ったところ、Xは0.18mol%、Yは99.0%、Zは11ppmであった。
<b-1の合成(ロット13-b-1)>
 上記と同様の手法によりロット13-b-1を合成した。乾燥後の固体(ロット13-b-1)のXは0.16mol%、Zは18ppmであった。Yは算出せず、H NMR測定から算出された98.1%を固形分とした。
<b-2の合成(ロット13-b-2)、及びb-3の合成(ロット13-b-3)>
 上記と同様の手法によりロット13-b-2とロット13-b-3をそれぞれ合成した。
 ロット13-b-2のXは0.10mol%、Zは29ppmであった。
 ロット13-b-3のXは0.13mol%、Zは28ppmであった。
 ロット13-b-2は、H NMR測定から算出された96.8%を固形分とし、ロット13-b-3も同様に、98.1%を固形分とした。
<c-1の合成(ロット13-c-1)>
 上記と同様の手法によりロット13-c-1を合成した。乾燥後の固体(ロット13-c-1)のXは0.26mol%、Yは99.1%であった。Zは算出しなかった。
<c-2の合成(ロット13-c-2)、及びc-3の合成(ロット13-c-3)>
 上記と同様の手法によりロット13-c-2とロット13-c-3をそれぞれ合成した。
 ロット13-c-2のXは0.12mol%、Yは99.5%であった。
 ロット13-c-3のXは0.13mol%、Yは98.8%であった。
<R-1の合成(ロット13-R-1)、R-2の合成(ロット13-R-2)、及びR-3の合成(ロット13-R-3)>
 塩C12(4.9g)、塩化メチレン100g、水100gを混合してから塩A12(4.9g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸100gで1回、水100gで3回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体の一部を重アセトンに溶解して、H NMR測定を行ったところ、カチオン/アニオン比は1.02/1.00であった。粗体にジイソプロピルエーテル100gを加えて撹拌し、ろ過した固体を5時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存ジイソプロピルエーテルとの積分比から固形分値を求めると、98.2%であった。X、Y、Zは算出しなかった。得られた固体をロット13-R-1とする。
 上記と同様の手法によりロット13-R-2とロット13-R-3をそれぞれ合成した。
 ロット13-R-2は、H NMR測定から算出された97.6%を固形分とし、ロット13-R-3も同様に、98.4%を固形分とした。
<合成例14 塩(P)(塩B14)の合成>
Figure JPOXMLDOC01-appb-C000075
<基準ロットの作製(濃度Y測定)>
 塩C13(4.5g)、塩化メチレン100g、水100gを混合してから塩A13(3.7g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸100gで1回、水100gで5回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体に対して、上記の手法でXを算出したところ、0.19mol%であった。粗体にイソプロピルアルコール100gとヘキサン20gを加えて撹拌し、ろ過した。これを3回繰り返して得られた固体を8時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、ヘキサンのピークは見られなかったので、残存ジイソプロピルエーテルとの積分比から固形分値を求めると、99.6%であった。乾燥後の固体に対して、X、Zの測定を行ったところ、Xは0.09mol%、Zは7ppmであった。得られた固体をロット13-a-0とする。基準ロットの濃度は上記99.6%とした。
<a-1の合成(ロット14-a-1)>
 塩C13(4.5g)、塩化メチレン100g、水100gを混合してから塩A13(3.7g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸100gで1回、水100gで3回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体の一部を重アセトンに溶解して、H NMR測定を行ったところ、カチオン/アニオン比は1.03/1.00であった。得られた粗体に対して、上記の手法でXを算出したところ、1.13mol%であった。純度向上策として、粗体と塩C13(0.051g)、塩化メチレン80g、水80gを混合し、室温で30分撹拌した。水層を除去した後、0.1N塩酸80gで1回、水80gで5回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体に対して、再度Xを算出したところ、0.19mol%であった。粗体にジイソプロピルエーテル100gを加えて撹拌し、ろ過した固体を5時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存ジイソプロピルエーテルとの積分比から固形分値を求めると、98.9%であった。乾燥後の固体に対して、X、Y、Zの測定を行ったところ、Xは0.19mol%、Yは98.1%、Zは21ppmであった。得られた固体をロット14-a-1とする。
<a-2の合成(ロット14-a-2)>
 塩C13(4.5g)、塩化メチレン100g、水100gを混合してから塩A13(3.7g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸100gで1回、水100gで3回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体の一部を重アセトンに溶解して、H NMR測定を行ったところ、カチオン/アニオン比は1.02/1.00であった。得られた粗体に対して、上記の手法でXを算出したところ、0.11mol%であった。Xが十分低かったため、粗体にジイソプロピルエーテル100gを加えて撹拌し、ろ過した固体を5時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存ジイソプロピルエーテルとの積分比から固形分値を求めると、98.4%であった。乾燥後の固体に対して、X、Y、Zの測定を行ったところ、Xは0.10mol%、Yは99.0%、Zは10ppmであった。得られた固体をロット14-a-2とする。
<a-3の合成(ロット14-a-3)>
 ロット14-a-1と同様の手法により、ロット14-a-3を合成した。ロット14-a-3について、X、Y、Zの測定を行ったところ、Xは0.19mol%、Yは99.1%、Zは12ppmであった。
<b-1の合成(ロット14-b-1)>
 上記と同様の手法によりロット14-b-1を合成した。乾燥後の固体(ロット14-b-1)のXは0.16mol%、Zは13ppmであった。Yは算出せず、H NMR測定から算出された98.0%を固形分とした。
<b-2の合成(ロット14-b-2)、及びb-3の合成(ロット14-b-3)>
 上記と同様の手法によりロット14-b-2とロット14-b-3をそれぞれ合成した。
 ロット14-b-2のXは0.26mol%、Zは19ppmであった。
 ロット14-b-3のXは0.12mol%、Zは18ppmであった。
 ロット14-b-2は、H NMR測定から算出された98.7%を固形分とし、ロット14-b-3も同様に、98.3%を固形分とした。
<c-1の合成(ロット14-c-1)>
 上記と同様の手法によりロット14-c-1を合成した。乾燥後の固体(ロット14-c-1)のXは0.12mol%、Yは98.8%であった。Zは算出しなかった。
<c-2の合成(ロット14-c-2)、及びc-3の合成(ロット14-c-3)>
 上記と同様の手法によりロット14-c-2とロット14-c-3をそれぞれ合成した。
 ロット14-c-2のXは0.19mol%、Yは99.4%であった。
 ロット14-c-3のXは0.15mol%、Yは98.0%であった。
<R-1の合成(ロット14-R-1)、R-2の合成(ロット14-R-2)、及びR-3の合成(ロット14-R-3)>
 塩C13(4.5g)、塩化メチレン100g、水100gを混合してから塩A13(3.7g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸100gで1回、水100gで3回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体の一部を重アセトンに溶解して、H NMR測定を行ったところ、カチオン/アニオン比は1.01/1.00であった。粗体にジイソプロピルエーテル100gを加えて撹拌し、ろ過した固体を5時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存ジイソプロピルエーテルとの積分比から固形分値を求めると、99.1%であった。X、Y、Zは算出しなかった。得られた固体をロット14-R-1とする。
 上記と同様の手法によりロット14-R-2とロット14-R-3をそれぞれ合成した。
 ロット14-R-2は、H NMR測定から算出された97.9%を固形分とし、ロット14-R-3も同様に、98.6%を固形分とした。
<合成例15 塩(P)(塩B15)の合成>
Figure JPOXMLDOC01-appb-C000076
<基準ロットの作製(濃度Y測定)>
 塩C14(6.3g)、塩化メチレン120g、水120gを混合してから塩A2(9.7g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸120gで1回、水120gで5回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体に対して、上記の手法でXを算出したところ、0.20mol%であった。粗体にイソプロピルアルコール120gを加えて撹拌し、ろ過した。これを3回繰り返して得られた固体を8時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存イソプロピルアルコールとの積分比から固形分値を求めると、99.3%であった。乾燥後の固体に対して、X、Zの測定を行ったところ、Xは0.08mol%、Zは8ppmであった。得られた固体をロット15-a-0とする。基準ロットの濃度は上記99.3%とした。
<a-1の合成(ロット15-a-1)>
 塩C14(6.3g)、塩化メチレン120g、水120gを混合してから塩A2(9.7g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸120gで1回、水120gで3回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体の一部を重アセトンに溶解して、H NMR測定を行ったところ、カチオン/アニオン比は2.04/1.00であった。得られた粗体に対して、上記の手法でXを算出したところ、0.79mol%であった。純度向上策として、粗体と塩C14(0.050g)、塩化メチレン100g、水100gを混合し、室温で30分撹拌した。水層を除去した後、0.1N塩酸100gで1回、水100gで5回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体に対して、再度Xを算出したところ、0.11mol%であった。粗体にジイソプロピルエーテル120gを加えて撹拌し、ろ過した固体を5時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存ジイソプロピルエーテルとの積分比から固形分値を求めると、96.9%であった。乾燥後の固体に対して、X、Y、Zの測定を行ったところ、Xは0.11mol%、Yは97.0%、Zは9ppmであった。得られた固体をロット15-a-1とする。
<a-2の合成(ロット15-a-2)>
 塩C14(6.3g)、塩化メチレン120g、水120gを混合してから塩A2(9.7g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸120gで1回、水120gで3回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体の一部を重アセトンに溶解して、H NMR測定を行ったところ、カチオン/アニオン比は2.03/1.00であった。得られた粗体に対して、上記の手法でXを算出したところ、0.17mol%であった。Xが十分低かったため、粗体にジイソプロピルエーテル120gを加えて撹拌し、ろ過した固体を5時間減圧乾燥した。乾燥後の固体に対して、X、Y、Zの測定を行ったところ、Xは0.17mol%、Yは98.5%、Zは510ppmであった。固体を塩化メチレン100gに溶解し、水100gで5回有機層を洗浄し、有機層を減圧濃縮した。残留物にジイソプロピルエーテル100gを加えて撹拌し、ろ過した固体を5時間減圧乾燥した。乾燥後の固体に対して、X、Y、Zの測定を行ったところ、Xは0.16mol%、Yは98.0%、Zは12ppmであった。得られた固体をロット15-a-2とする。
<a-3の合成(ロット15-a-3)>
 塩C14(6.3g)、塩化メチレン120g、水120gを混合してから塩A2(9.7g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸120gで1回、水120gで3回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体の一部を重アセトンに溶解して、H NMR測定を行ったところ、カチオン/アニオン比は2.04/1.00であった。得られた粗体に対して、上記の手法でXを算出したところ、0.17mol%であった。Xが十分低かったため、粗体にジイソプロピルエーテル120gを加えて撹拌し、ろ過した固体を5時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存ジイソプロピルエーテルとの積分比から固形分値を求めると、97.2%であった。乾燥後の固体に対して、X、Y、Zの測定を行ったところ、Xは0.17mol%、Yは98.1%、Zは13ppmであった。得られた固体をロット15-a-3とする。
<b-1の合成(ロット15-b-1)>
 上記と同様の手法によりロット15-b-1を合成した。乾燥後の固体(ロット15-b-1)のXは0.28mol%、Zは14ppmであった。Yは算出せず、H NMR測定から算出された97.2%を固形分とした。
<b-2の合成(ロット15-b-2)、及びb-3の合成(ロット15-b-3)>
 上記と同様の手法によりロット15-b-2とロット15-b-3をそれぞれ合成した。
 ロット15-b-2のXは0.16mol%、Zは12ppmであった。
 ロット15-b-3のXは0.16mol%、Zは20ppmであった。
 ロット15-b-2は、H NMR測定から算出された98.5%を固形分とし、ロット15-b-3も同様に、96.9%を固形分とした。
<c-1の合成(ロット15-c-1)>
 上記と同様の手法によりロット15-c-1を合成した。乾燥後の固体(ロット15-c-1)のXは0.22mol%、Yは96.5%であった。Zは算出しなかった。
<c-2の合成(ロット15-c-2)、及びc-3の合成(ロット15-c-3)>
 上記と同様の手法によりロット15-c-2とロット15-c-3をそれぞれ合成した。
 ロット15-c-2のXは0.16mol%、Yは96.9%であった。
 ロット15-c-3のXは0.11mol%、Yは97.5%であった。
<R-1の合成(ロット15-R-1)、R-2の合成(ロット15-R-2)、及びR-3の合成(ロット15-R-3)>
 塩C14(6.3g)、塩化メチレン120g、水120gを混合してから塩A2(9.7g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸120gで1回、水120gで3回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体の一部を重アセトンに溶解して、H NMR測定を行ったところ、カチオン/アニオン比は2.03/1.00であった。粗体にジイソプロピルエーテル120gを加えて撹拌し、ろ過した固体を5時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存ジイソプロピルエーテルとの積分比から固形分値を求めると、98.4%であった。X、Y、Zは算出しなかった。得られた固体をロット15-R-1とする。
 上記と同様の手法によりロット15-R-2とロット15-R-3をそれぞれ合成した。
 ロット15-R-2は、H NMR測定から算出された98.3%を固形分とし、ロット15-R-3も同様に、98.6%を固形分とした。
<合成例16 塩(P)(塩B16)の合成>
Figure JPOXMLDOC01-appb-C000077
<基準ロットの作製(濃度Y測定)>
 塩C15(5.4g)、塩化メチレン100g、水100gを混合してから塩A5(3.6g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸100gで1回、水100gで5回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体に対して、上記の手法でXを算出したところ、0.11mol%であった。粗体にジイソプロピルエーテル100gを加えて撹拌し、ろ過した。これを3回繰り返して得られた固体を8時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存ジイソプロピルエーテルとの積分比から固形分値を求めると、99.4%であった。乾燥後の固体に対して、X、Zの測定を行ったところ、Xは0.09mol%、Zは6ppmであった。得られた固体をロット16-a-0とする。基準ロットの濃度は上記99.4%とした。
<a-1の合成(ロット16-a-1)>
 塩C15(5.4g)、塩化メチレン100g、水100gを混合してから塩A5(3.6g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸100gで1回、水100gで3回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体の一部を重アセトンに溶解して、H NMR測定を行ったところ、カチオン/アニオン比は0.99/1.00であった。得られた粗体に対して、上記の手法でXを算出したところ、0.12mol%であった。Xが十分低かったため、粗体にジイソプロピルエーテル100gを加えて撹拌し、ろ過した固体を5時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存ジイソプロピルエーテルとの積分比から固形分値を求めると、99.0%であった。乾燥後の固体に対して、X、Y、Zの測定を行ったところ、Xは0.12mol%、Yは99.6%、Zは9ppmであった。得られた固体をロット16-a-1とする。
<a-2の合成(ロット16-a-2)、及びa-3の合成(ロット16-a-3)>
 ロット16-a-1と同様の手法によりロット16-a-2とロット16-a-3をそれぞれ合成した。
 ロット16-a-2のXは0.15mol%、Yは98.7%、Zは11ppmであった。
 ロット16-a-3のXは0.14mol%、Yは99.2%、Zは11ppmであった。
<b-1の合成(ロット16-b-1)>
 上記と同様の手法によりロット16-b-1を合成した。乾燥後の固体(ロット16-b-1)のXは0.18mol%、Zは13ppmであった。Yは算出せず、H NMR測定から算出された98.4%を固形分とした。
<b-2の合成(ロット16-b-2)、及びb-3の合成(ロット16-b-3)>
 上記と同様の手法によりロット16-b-2とロット16-b-3をそれぞれ合成した。
 ロット16-b-2のXは0.19mol%、Zは12ppmであった。
 ロット16-b-3のXは0.12mol%、Zは21ppmであった。
 ロット16-b-2は、H NMR測定から算出された99.4%を固形分とし、ロット16-b-3も同様に、99.8%を固形分とした。
<c-1の合成(ロット16-c-1)>
 上記と同様の手法によりロット16-c-1を合成した。乾燥後の固体(ロット16-c-1)のXは0.13mol%、Yは98.6%であった。Zは算出しなかった。
<c-2の合成(ロット16-c-2)、及びc-3の合成(ロット16-c-3)>
 上記と同様の手法によりロット16-c-2とロット16-c-3をそれぞれ合成した。
 ロット16-c-2のXは0.21mol%、Yは99.4%であった。
 ロット16-c-3のXは0.10mol%、Yは99.4%であった。
<R-1の合成(ロット16-R-1)、R-2の合成(ロット16-R-2)、及びR-3の合成(ロット16-R-3)>
 塩C15(5.4g)、塩化メチレン100g、水100gを混合してから塩A5(3.6g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸100gで1回、水100gで3回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体の一部を重アセトンに溶解して、H NMR測定を行ったところ、カチオン/アニオン比は1.01/1.00であった。粗体にジイソプロピルエーテル100gを加えて撹拌し、ろ過した固体を5時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存ジイソプロピルエーテルとの積分比から固形分値を求めると、99.9%であった。X、Y、Zは算出しなかった。得られた固体をロット16-R-1とする。
 上記と同様の手法によりロット16-R-2とロット16-R-3をそれぞれ合成した。
 ロット16-R-2は、H NMR測定から算出された99.5%を固形分とし、ロット16-R-3も同様に、98.8%を固形分とした。
<合成例17 塩(P)(塩B17)の合成>
Figure JPOXMLDOC01-appb-C000078
<基準ロットの作製(濃度Y測定)>
 塩C16(3.5g)、塩化メチレン100g、水100gを混合してから塩A5(3.5g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸100gで1回、水100gで5回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体に対して、上記の手法でXを算出したところ、0.14mol%であった。粗体に酢酸エチル100gとヘキサン10gを加えて撹拌し、ろ過した。これを3回繰り返して得られた固体を8時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、ヘキサンのピークは見られなかったので、残存酢酸エチルとの積分比から固形分値を求めると、99.7%であった。乾燥後の固体に対して、X、Zの測定を行ったところ、Xは0.08mol%、Zは8ppmであった。得られた固体をロット17-a-0とする。基準ロットの濃度は上記99.7%とした。
<a-1の合成(ロット17-a-1)>
 塩C16(3.5g)、塩化メチレン100g、水100gを混合してから塩A5(3.5g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸100gで1回、水100gで3回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体の一部を重アセトンに溶解して、H NMR測定を行ったところ、カチオン/アニオン比は0.98/1.00であった。得られた粗体に対して、上記の手法でXを算出したところ、0.21mol%であった。Xが十分低かったため、粗体にジイソプロピルエーテル100gを加えて撹拌し、ろ過した固体を5時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存ジイソプロピルエーテルとの積分比から固形分値を求めると、99.2%であった。乾燥後の固体に対して、X、Y、Zの測定を行ったところ、Xは0.21mol%、Yは98.2%、Zは9ppmであった。得られた固体をロット17-a-1とする。
<a-2の合成(ロット17-a-2)>
 塩C16(3.5g)、塩化メチレン100g、水100gを混合してから塩A5(3.5g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸100gで1回、水100gで3回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体の一部を重アセトンに溶解して、H NMR測定を行ったところ、カチオン/アニオン比は1.02/1.00であった。得られた粗体に対して、上記の手法でXを算出したところ、0.66mol%であった。純度向上策として、粗体と塩C16(0.020g)、塩化メチレン80g、水80gを混合し、室温で30分撹拌した。水層を除去した後、0.1N塩酸80gで1回、水80gで5回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体に対して、再度Xを算出したところ、0.27mol%であった。粗体にジイソプロピルエーテル100gを加えて撹拌し、ろ過した固体を5時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存ジイソプロピルエーテルとの積分比から固形分値を求めると、98.1%であった。乾燥後の固体に対して、X、Y、Zの測定を行ったところ、Xは0.27mol%、Yは98.8%、Zは18ppmであった。得られた固体をロット17-a-2とする。
<a-3の合成(ロット17-a-3)>
 ロット17-a-1と同様の手法により、ロット17-a-3を合成した。ロット17-a-3について、X、Y、Zの測定を行ったところ、Xは0.14mol%、Yは99.1%、Zは13ppmであった。
<b-1の合成(ロット17-b-1)>
 上記と同様の手法によりロット17-b-1を合成した。乾燥後の固体(ロット17-b-1)のXは0.13mol%、Zは35ppmであった。Yは算出せず、H NMR測定から算出された98.9%を固形分とした。
<b-2の合成(ロット17-b-2)、及びb-3の合成(ロット17-b-3)>
 上記と同様の手法によりロット17-b-2とロット17-b-3をそれぞれ合成した。
 ロット17-b-2のXは0.15mol%、Zは10ppmであった。
 ロット17-b-3のXは0.13mol%、Zは13ppmであった。
 ロット17-b-2は、H NMR測定から算出された98.2%を固形分とし、ロット17-b-3も同様に、97.2%を固形分とした。
<c-1の合成(ロット17-c-1)>
 上記と同様の手法によりロット17-c-1を合成した。乾燥後の固体(ロット17-c-1)のXは0.17mol%、Yは98.6%であった。Zは算出しなかった。
<c-2の合成(ロット17-c-2)、及びc-3の合成(ロット17-c-3)>
 上記と同様の手法によりロット17-c-2とロット17-c-3をそれぞれ合成した。
 ロット17-c-2のXは0.16mol%、Yは99.0%であった。
 ロット17-c-3のXは0.15mol%、Yは98.6%であった。
<R-1の合成(ロット17-R-1)、R-2の合成(ロット17-R-2)、及びR-3の合成(ロット17-R-3)>
 塩C16(3.5g)、塩化メチレン100g、水100gを混合してから塩A5(3.5g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸100gで1回、水100gで3回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体の一部を重アセトンに溶解して、H NMR測定を行ったところ、カチオン/アニオン比は1.01/1.00であった。粗体にジイソプロピルエーテル100gを加えて撹拌し、ろ過した固体を5時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存ジイソプロピルエーテルとの積分比から固形分値を求めると、98.8%であった。X、Y、Zは算出しなかった。得られた固体をロット17-R-1とする。
 上記と同様の手法によりロット17-R-2とロット17-R-3をそれぞれ合成した。
 ロット17-R-2は、H NMR測定から算出された98.1%を固形分とし、ロット17-R-3も同様に、97.5%を固形分とした。
<合成例18 塩(P)(塩B18)の合成>
Figure JPOXMLDOC01-appb-C000079
<基準ロットの作製(濃度Y測定)>
 塩C17(4.1g)、塩化メチレン100g、水100gを混合してから塩A14(3.4g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸100gで1回、水100gで5回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体に対して、上記の手法でXを算出したところ、0.10mol%であった。粗体にジイソプロピルエーテル100gを加えて撹拌し、ろ過した。これを3回繰り返して得られた固体を8時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存ジイソプロピルエーテルとの積分比から固形分値を求めると、99.6%であった。乾燥後の固体に対して、X、Zの測定を行ったところ、Xは0.09mol%、Zは7ppmであった。得られた固体をロット18-a-0とする。基準ロットの濃度は上記99.6%とした。
<a-1の合成(ロット18-a-1)>
 塩C17(4.1g)、塩化メチレン100g、水100gを混合してから塩A14(3.4g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸100gで1回、水100gで3回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体の一部を重アセトンに溶解して、H NMR測定を行ったところ、カチオン/アニオン比は0.99/1.00であった。得られた粗体に対して、上記の手法でXを算出したところ、0.72mol%であった。純度向上策として、粗体と塩C17(0.030g)、塩化メチレン80g、水80gを混合し、室温で30分撹拌した。水層を除去した後、0.1N塩酸80gで1回、水80gで5回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体に対して、再度Xを算出したところ、0.12mol%であった。粗体にジイソプロピルエーテル100gを加えて撹拌し、ろ過した固体を5時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存ジイソプロピルエーテルとの積分比から固形分値を求めると、98.4%であった。乾燥後の固体に対して、X、Y、Zの測定を行ったところ、Xは0.12mol%、Yは99.2%、Zは19ppmであった。得られた固体をロット18-a-1とする。
<a-2の合成(ロット18-a-2)>
 塩C17(4.1g)、塩化メチレン100g、水100gを混合してから塩A14(3.4g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸100gで1回、水100gで3回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体の一部を重アセトンに溶解して、H NMR測定を行ったところ、カチオン/アニオン比は1.00/1.00であった。得られた粗体に対して、上記の手法でXを算出したところ、0.29mol%であった。Xが十分低かったため、粗体にジイソプロピルエーテル100gを加えて撹拌し、ろ過した固体を5時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存ジイソプロピルエーテルとの積分比から固形分値を求めると、99.3%であった。乾燥後の固体に対して、X、Y、Zの測定を行ったところ、Xは0.29mol%、Yは99.1%、Zは18ppmであった。得られた固体をロット18-a-2とする。
<a-3の合成(ロット18-a-3)>
 ロット18-a-2と同様の手法により、ロット18-a-3を合成した。ロット18-a-3について、X、Y、Zの測定を行ったところ、Xは0.12mol%、Yは98.3%、Zは11ppmであった。
<b-1の合成(ロット18-b-1)>
 上記と同様の手法によりロット18-b-1を合成した。乾燥後の固体(ロット18-b-1)のXは0.19mol%、Zは14ppmであった。Yは算出せず、H NMR測定から算出された98.5%を固形分とした。
<b-2の合成(ロット18-b-2)、及びb-3の合成(ロット18-b-3)>
 上記と同様の手法によりロット18-b-2とロット18-b-3をそれぞれ合成した。
 ロット18-b-2のXは0.14mol%、Zは14ppmであった。
 ロット18-b-3のXは0.14mol%、Zは9ppmであった。
 ロット18-b-2は、H NMR測定から算出された98.5%を固形分とし、ロット18-b-3も同様に、99.0%を固形分とした。
<c-1の合成(ロット18-c-1)>
 上記と同様の手法によりロット18-c-1を合成した。乾燥後の固体(ロット18-c-1)のXは0.11mol%、Yは98.1%であった。Zは算出しなかった。
<c-2の合成(ロット18-c-2)、及びc-3の合成(ロット18-c-3)>
 上記と同様の手法によりロット18-c-2とロット18-c-3をそれぞれ合成した。
 ロット18-c-2のXは0.17mol%、Yは98.3%であった。
 ロット18-c-3のXは0.12mol%、Yは99.0%であった。
<R-1の合成(ロット18-R-1)、R-2の合成(ロット18-R-2)、及びR-3の合成(ロット18-R-3)>
 塩C17(4.1g)、塩化メチレン100g、水100gを混合してから塩A14(3.4g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸100gで1回、水100gで3回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体の一部を重アセトンに溶解して、H NMR測定を行ったところ、カチオン/アニオン比は1.01/1.00であった。粗体にジイソプロピルエーテル100gを加えて撹拌し、ろ過した固体を5時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存ジイソプロピルエーテルとの積分比から固形分値を求めると、98.0%であった。X、Y、Zは算出しなかった。得られた固体をロット18-R-1とする。
 上記と同様の手法によりロット18-R-2とロット18-R-3をそれぞれ合成した。
 ロット18-R-2は、H NMR測定から算出された98.2%を固形分とし、ロット18-R-3も同様に、98.1%を固形分とした。
<合成例19 塩(P)(塩B19)の合成>
Figure JPOXMLDOC01-appb-C000080
<基準ロットの作製(濃度Y測定)>
 塩C18(3.1g)、塩化メチレン100g、水100gを混合してから塩A15(3.6g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸100gで1回、水100gで5回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体に対して、上記の手法でXを算出したところ、0.13mol%であった。粗体にイソプロピルアルコール100gとヘキサン10gを加えて撹拌し、ろ過した。これを3回繰り返して得られた固体を8時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、ヘキサンのピークは見られなかったので、残存イソプロピルアルコールとの積分比から固形分値を求めると、99.2%であった。乾燥後の固体に対して、X、Zの測定を行ったところ、Xは0.08mol%、Zは6ppmであった。得られた固体をロット19-a-0とする。基準ロットの濃度は上記99.2%とした。
<a-1の合成(ロット19-a-1)>
 塩C18(3.1g)、塩化メチレン100g、水100gを混合してから塩A15(3.6g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸100gで1回、水100gで3回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体の一部を重アセトンに溶解して、H NMR測定を行ったところ、カチオン/アニオン比は0.99/1.00であった。得られた粗体に対して、上記の手法でXを算出したところ、0.13mol%であった。Xが十分低かったため、粗体にジイソプロピルエーテル100gを加えて撹拌し、ろ過した固体を5時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存ジイソプロピルエーテルとの積分比から固形分値を求めると、98.3%であった。乾燥後の固体に対して、X、Y、Zの測定を行ったところ、Xは0.13mol%、Yは99.2%、Zは13ppmであった。得られた固体をロット19-a-1とする。
<a-2の合成(ロット19-a-2)>
 塩C18(3.1g)、塩化メチレン100g、水100gを混合してから塩A15(3.6g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸100gで1回、水100gで3回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体の一部を重アセトンに溶解して、H NMR測定を行ったところ、カチオン/アニオン比は1.01/1.00であった。得られた粗体に対して、上記の手法でXを算出したところ、0.84mol%であった。純度向上策として、粗体と塩C18(0.026g)、塩化メチレン80g、水80gを混合し、室温で30分撹拌した。水層を除去した後、0.1N塩酸80gで1回、水80gで5回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体に対して、再度Xを算出したところ、0.19mol%であった。粗体にジイソプロピルエーテル100gを加えて撹拌し、ろ過した固体を5時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存ジイソプロピルエーテルとの積分比から固形分値を求めると、98.7%であった。乾燥後の固体に対して、X、Y、Zの測定を行ったところ、Xは0.19mol%、Yは98.5%、Zは10ppmであった。得られた固体をロット19-a-2とする。
<a-3の合成(ロット19-a-3)>
 ロット19-a-1と同様の手法により、ロット19-a-3を合成した。ロット19-a-3について、X、Y、Zの測定を行ったところ、Xは0.18mol%、Yは99.0%、Zは12ppmであった。
<b-1の合成(ロット19-b-1)>
 上記と同様の手法によりロット19-b-1を合成した。乾燥後の固体(ロット19-b-1)のXは0.24mol%、Zは11ppmであった。Yは算出せず、H NMR測定から算出された98.1%を固形分とした。
<b-2の合成(ロット19-b-2)、及びb-3の合成(ロット19-b-3)>
 上記と同様の手法によりロット19-b-2とロット19-b-3をそれぞれ合成した。
 ロット19-b-2のXは0.10mol%、Zは24ppmであった。
 ロット19-b-3のXは0.19mol%、Zは11ppmであった。
 ロット19-b-2は、H NMR測定から算出された97.4%を固形分とし、ロット19-b-3も同様に、98.6%を固形分とした。
<c-1の合成(ロット19-c-1)>
 上記と同様の手法によりロット19-c-1を合成した。乾燥後の固体(ロット19-c-1)のXは0.14mol%、Yは99.1%であった。Zは算出しなかった。
<c-2の合成(ロット19-c-2)、及びc-3の合成(ロット19-c-3)>
 上記と同様の手法によりロット19-c-2とロット19-c-3をそれぞれ合成した。
 ロット19-c-2のXは0.17mol%、Yは98.8%であった。
 ロット19-c-3のXは0.19mol%、Yは98.3%であった。
<R-1の合成(ロット19-R-1)、R-2の合成(ロット19-R-2)、及びR-3の合成(ロット19-R-3)>
 塩C18(3.1g)、塩化メチレン100g、水100gを混合してから塩A15(3.6g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸100gで1回、水100gで3回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体の一部を重アセトンに溶解して、H NMR測定を行ったところ、カチオン/アニオン比は1.01/1.00であった。粗体にジイソプロピルエーテル100gを加えて撹拌し、ろ過した固体を5時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存ジイソプロピルエーテルとの積分比から固形分値を求めると、98.6%であった。X、Y、Zは算出しなかった。得られた固体をロット19-R-1とする。
 上記と同様の手法によりロット19-R-2とロット19-R-3をそれぞれ合成した。
 ロット19-R-2は、H NMR測定から算出された96.2%を固形分とし、ロット19-R-3も同様に、98.5%を固形分とした。
<合成例20 塩(P)(塩B20)の合成>
Figure JPOXMLDOC01-appb-C000081
<基準ロットの作製(濃度Y測定)>
 塩C19(3.1g)、塩化メチレン100g、水100gを混合してから塩A5(3.4g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸100gで1回、水100gで5回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体に対して、上記の手法でXを算出したところ、0.14mol%であった。粗体にイソプロピルアルコール100gとヘキサン10gを加えて撹拌し、ろ過した。これを3回繰り返して得られた固体を8時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、ヘキサンのピークは見られなかったので、残存イソプロピルアルコールとの積分比から固形分値を求めると、99.3%であった。乾燥後の固体に対して、X、Zの測定を行ったところ、Xは0.09mol%、Zは8ppmであった。得られた固体をロット20-a-0とする。基準ロットの濃度は上記99.3%とした。
<a-1の合成(ロット20-a-1)>
 塩C19(3.1g)、塩化メチレン100g、水100gを混合してから塩A5(3.4g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸100gで1回、水100gで3回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体の一部を重アセトンに溶解して、H NMR測定を行ったところ、カチオン/アニオン比は0.98/1.00であった。得られた粗体に対して、上記の手法でXを算出したところ、0.10mol%であった。Xが十分低かったため、粗体にジイソプロピルエーテル100gを加えて撹拌し、ろ過した固体を5時間減圧乾燥した。乾燥後の固体に対して、X、Y、Zの測定を行ったところ、Xは0.10mol%、Yは99.8%、Zは467ppmであった。固体を塩化メチレン80gに溶解し、水80gで5回有機層を洗浄し、有機層を減圧濃縮した。残留物にジイソプロピルエーテル80gを加えて撹拌し、ろ過した固体を5時間減圧乾燥した。乾燥後の固体に対して、X、Y、Zの測定を行ったところ、Xは0.10mol%、Yは99.3%、Zは21ppmであった。得られた固体をロット20-a-1とする。
<a-2の合成(ロット20-a-2)>
 塩C19(3.1g)、塩化メチレン100g、水100gを混合してから塩A5(3.4g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸100gで1回、水100gで3回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体の一部を重アセトンに溶解して、H NMR測定を行ったところ、カチオン/アニオン比は1.00/1.00であった。得られた粗体に対して、上記の手法でXを算出したところ、0.15mol%であった。Xが十分低かったため、粗体にジイソプロピルエーテル100gを加えて撹拌し、ろ過した固体を5時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存ジイソプロピルエーテルとの積分比から固形分値を求めると、98.9%であった。乾燥後の固体に対して、X、Y、Zの測定を行ったところ、Xは0.15mol%、Yは99.5%、Zは28ppmであった。得られた固体をロット20-a-2とする。
<a-3の合成(ロット20-a-3)>
 ロット20-a-2と同様の手法により、ロット20-a-3を合成した。ロット20-a-3について、X、Y、Zの測定を行ったところ、Xは0.14mol%、Yは98.8%、Zは15ppmであった。
<b-1の合成(ロット20-b-1)>
 上記と同様の手法によりロット20-b-1を合成した。乾燥後の固体(ロット20-b-1)のXは0.20mol%、Zは12ppmであった。Yは算出せず、H NMR測定から算出された98.5%を固形分とした。
<b-2の合成(ロット20-b-2)、及びb-3の合成(ロット20-b-3)>
 上記と同様の手法によりロット20-b-2とロット20-b-3をそれぞれ合成した。
 ロット20-b-2のXは0.11mol%、Zは10ppmであった。
 ロット20-b-3のXは0.11mol%、Zは23ppmであった。
 ロット20-b-2は、H NMR測定から算出された98.3%を固形分とし、ロット20-b-3も同様に、99.9%を固形分とした。
<c-1の合成(ロット20-c-1)>
 上記と同様の手法によりロット20-c-1を合成した。乾燥後の固体(ロット20-c-1)のXは0.16mol%、Yは98.7%であった。Zは算出しなかった。
<c-2の合成(ロット20-c-2)、及びc-3の合成(ロット20-c-3)>
 上記と同様の手法によりロット20-c-2とロット20-c-3をそれぞれ合成した。
 ロット20-c-2のXは0.16mol%、Yは99.4%であった。
 ロット20-c-3のXは0.21mol%、Yは98.5%であった。
<R-1の合成(ロット20-R-1)、R-2の合成(ロット20-R-2)、及びR-3の合成(ロット20-R-3)>
 塩C19(3.1g)、塩化メチレン100g、水100gを混合してから塩A5(3.4g)を添加し、室温で30分撹拌した。水層を除去した後、0.1N塩酸100gで1回、水100gで3回有機層を洗浄し、有機層を減圧濃縮した。得られた粗体の一部を重アセトンに溶解して、H NMR測定を行ったところ、カチオン/アニオン比は1.01/1.00であった。粗体にジイソプロピルエーテル100gを加えて撹拌し、ろ過した固体を5時間減圧乾燥した。得られた固体の一部を重アセトンに溶解してH NMR測定を行い、残存ジイソプロピルエーテルとの積分比から固形分値を求めると、98.3%であった。X、Y、Zは算出しなかった。得られた固体をロット20-R-1とする。
 上記と同様の手法によりロット20-R-2とロット20-R-3をそれぞれ合成した。
 ロット20-R-2は、H NMR測定から算出された98.8%を固形分とし、ロット20-R-3も同様に、98.0%を固形分とした。
 各合成例における各ロットのX、Y、Zの結果を表1に示す。
Figure JPOXMLDOC01-appb-T000082
Figure JPOXMLDOC01-appb-T000083
 表2における各化合物を以下に記載する。
Figure JPOXMLDOC01-appb-C000084
 光酸発生剤Bと酸拡散制御剤Cは、使用した全ての実施例、比較例において同一ロットを用いた。
 表2における溶剤を以下に示す。
 S-1:プロピレングリコールモノメチルエーテルアセテート(PGMEA)
 S-2:プロピレングリコールモノメチルエーテル(PGME)
 S-3:γ-ブチロラクトン
 S-4:乳酸エチル
 S-5:シクロヘキサノン
 S-6:2-ヘプタノン
実施例1~20、及び比較例1~20
〔感活性光線性又は感放射線性樹脂組成物の調製〕
 表2に示す各成分を固形分濃度が2.0質量%となるように混合した。次いで、得られた混合液を、最初に孔径50nmのポリエチレン製フィルター、次に孔径10nmのナイロン製フィルター、最後に孔径5nmのポリエチレン製フィルターの順番で濾過することにより、感活性光線性又は感放射線性樹脂組成物(レジスト組成物)を調製した。
 塩(P)の量は、表2に示す量となるように、固形分値から計算して秤量した。各ロットにおいてYを測定した場合は、Yを固形分値とした。
 また、表中、「質量%」欄は、各成分の、レジスト組成物中の全固形分に対する含有量(質量%)を示す。また、表には用いた溶剤の使用量(質量部)を記載した。
〔パターン形成:EUV露光、アルカリ水溶液現像〕
 シリコンウエハ上に下層膜形成用組成物AL412(Brewer Science社製)を塗布し、205℃で60秒間ベークして、膜厚20nmの下地膜を形成した。その上に、表に示すレジスト組成物を塗布し、100℃で60秒間ベークして、膜厚30nmのレジスト膜を形成した。
 EUV露光装置(Exitech社製、Micro Exposure Tool、NA0.3、Quadrupol、アウターシグマ0.68、インナーシグマ0.36)を用いて、得られたレジスト膜を有するシリコンウエハに対してパターン照射(露光量30mJ/cm)を行った。なお、レクチルとしては、ラインサイズ=25nmであり、且つ、ライン:スペース=1:1であるマスクを用いた。
 露光後のレジスト膜を90℃で60秒間ベークした後、テトラメチルアンモニウムハイドロオキサイド水溶液(2.38質量%)で30秒間現像し、次いで純水で30秒間リンスした。その後、これをスピン乾燥してポジ型のパターンを得た。
<感度変動評価>
 各塩(P)の各ロットのパターン線幅と目標パターンサイズの25nmとの差ΔCD(nm)を算出し、各ロット間のΔCDの平均値ΔCDAVEを算出した。
 本実施例の場合、ΔCDが正の値を示すと低感度側に、ΔCDが負の値を示すと高感度側にずれていることを意味する。ΔCDAVEの絶対値は低いほど好ましく、ΔCDAVEの絶対値が0.5nm以下が好ましく、ΔCDAVEの絶対値が0.2nm以下がより好ましい。
 具体的には、実施例1について、塩B1に係る(a-1)~(a-3)の各ロット((1-a-1)~(1-a-3))の一つを選択して、線幅25nmの1:1ラインアンドスペースパターンを解像する時の照射エネルギーを感度(Eop)とした。選択したロット以外の2つについて、上記Eopにて露光して、得られるパターンサイズの線幅を測定して、25nmとの差ΔCD(nm)を算出した。各ロット間のΔCDの平均値ΔCDAVEを算出した。得られた値を表3の実施例1におけるロットaでの「ΔCDAVE」として記載する。
 同様にして、実施例1について、塩B1に係る(b-1)~(b-3)の各ロット((1-b-1)~(1-b-3))の一つを選択して、線幅25nmの1:1ラインアンドスペースパターンを解像する時の照射エネルギーを感度(Eop)とした。選択したロット以外の2つについて、上記Eopにて露光して、得られるパターンサイズの線幅を測定して、25nmとの差ΔCD(nm)を算出した。各ロット間のΔCDの平均値ΔCDAVEを算出した。得られた値を表3の実施例1におけるロットbでの「ΔCDAVE」として記載する。
 同様にして、実施例1について、塩B1に係る(c-1)~(c-3)の各ロット((1-c-1)~(1-c-3))の一つを選択して、線幅25nmの1:1ラインアンドスペースパターンを解像する時の照射エネルギーを感度(Eop)とした。選択したロット以外の2つについて、上記Eopにて露光して、得られるパターンサイズの線幅を測定して、25nmとの差ΔCD(nm)を算出した。各ロット間のΔCDの平均値ΔCDAVEを算出した。得られた値を表3の実施例1におけるロットcでの「ΔCDAVE」として記載する。
 実施例1のロットa~cの各ロットにおいて、「ΔCDAVE」の絶対値が小さいほど、感度の変動が抑えられることを意味し、好ましい。
 実施例1と同様にして、実施例2~20についても評価した。
 また、比較例1について、塩B1に係る(R-1)~(R-3)の各ロット((1-R-1)~(1-R-3))の一つを選択して、線幅25nmの1:1ラインアンドスペースパターンを解像する時の照射エネルギーを感度(Eop)とした。選択したロット以外の2つについて、上記Eopにて露光して、得られるパターンサイズの線幅を測定して、25nmとの差ΔCD(nm)を算出した。各ロット間のΔCDの平均値ΔCDAVEを算出した。得られた値を表3の比較例1におけるロットRでの「ΔCDAVE」として記載する。
 比較例1と同様にして、比較例2~20について評価した。
 評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000085
Figure JPOXMLDOC01-appb-T000086
Figure JPOXMLDOC01-appb-T000087
Figure JPOXMLDOC01-appb-T000088
Figure JPOXMLDOC01-appb-T000089
Figure JPOXMLDOC01-appb-T000090
Figure JPOXMLDOC01-appb-T000091
Figure JPOXMLDOC01-appb-T000092
 表3より明らかであるが、本発明の塩(P)の製造方法により製造された塩を含有する感活性光線性又は感放射線性樹脂組成物の製品ロットの違いによる感度の変動を抑制できることがわかる。
 中でも、各実施例において、X、Y、Zの全てについて測定した塩のロットを含む態様により、上記感度の変動をより抑制できることがわかる。
 本発明によれば、感活性光線性又は感放射線性樹脂組成物の製品ロットの違いによる感度の変動を抑制できる、塩の製造方法を提供することができる。
 また、本発明によれば、上記感活性光線性又は感放射線性樹脂組成物の製造方法、パターン形成方法、及び電子デバイスの製造方法を提供することができる。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2021年9月28日出願の日本特許出願(特願2021-158498)に基づくものであり、その内容はここに参照として取り込まれる。

Claims (13)

  1.  下記工程を有する、有機カチオンと有機アニオンとの塩(P)の製造方法。
    (1)前記有機カチオンとハロゲン化物イオンとの塩(I)に対してアニオン交換を行うことで、前記塩(P)を含む生成物を得る工程
    (2)前記生成物に対して、硝酸銀水溶液を用いた電位差滴定法を適用することにより、前記塩(P)に対する前記塩(I)のモル比率Xを得る工程
    (3)前記モル比率Xに基づき、前記塩(P)の純度が所定基準を満たすか否かを判定する工程
  2.  更に、(4)前記工程(3)において前記モル比率Xが所定値を超える場合には前記塩(P)を含む生成物に対して純度向上策を適用することで、前記モル比率Xが前記所定値以下の塩(P)を含む生成物を得る工程を有する、請求項1に記載の塩(P)の製造方法。
  3.  前記工程(4)における前記塩(P)を含む生成物に対する純度向上策が、前記塩(P)を含む生成物に対する前記塩(I)の除去による精製である、請求項2に記載の塩(P)の製造方法。
  4.  前記工程(1)におけるアニオン交換が、前記塩(I)と前記有機アニオンの金属塩(M)とのイオン交換によるものであり、
     前記工程(4)における前記塩(P)を含む生成物に対する純度向上策が、前記生成物に対して前記有機アニオンの金属塩(M)を添加して、前記アニオン交換を実施することである、
     請求項2に記載の塩(P)の製造方法。
  5.  更に、(5)前記モル比率Xが前記所定値以下の塩(P)を含む生成物の全量を基準とした前記塩(P)の濃度Yを、高速液体クロマトグラフィー法により求める工程を有する、請求項1~4のいずれか1項に記載の塩(P)の製造方法。
  6.  更に、(6)前記塩(P)を含む生成物に含有される残存酸の濃度Zを、紫外可視吸収スペクトル法により得る工程、及び、(7)前記残存酸の濃度Zが所定基準を満たすか否かを判定する工程を有する、請求項1~4のいずれか1項に記載の塩(P)の製造方法。
  7.  前記工程(7)において、前記残存酸の濃度Zが所定値を超過する場合、(8)前記残存酸の濃度Zの低減策を実施する工程を有する、請求項6に記載の塩(P)の製造方法。
  8.  前記塩(P)が、感活性光線性又は感放射線性樹脂組成物用の活性光線又は放射線の照射によって酸を発生する化合物である、請求項1~4のいずれか1項に記載の塩(P)の製造方法。
  9.  前記塩(P)におけるカチオンが下記式(ZaI)で表されるカチオンである、請求項1~4のいずれか1項に記載の塩(P)の製造方法。
    Figure JPOXMLDOC01-appb-C000001

     式(ZaI)中、
     R201、R202、及びR203は、それぞれ独立に、有機基を表す。
  10.  前記式(ZaI)中のR201~R203の少なくとも一つが、アリール基である、請求項9に記載の塩(P)の製造方法。
  11.  請求項1~4のいずれか1項に記載の塩(P)の製造方法を含む、活性光線又は放射線の照射によって酸を発生する化合物として前記塩(P)を含有する感活性光線性又は感放射線性樹脂組成物の製造方法。
  12.  請求項11に記載の感活性光線性又は感放射線性樹脂組成物の製造方法により製造された前記感活性光線性又は感放射線性樹脂組成物により基板上に感活性光線性又は感放射線性膜を形成する工程、
     前記感活性光線性又は感放射線性膜を露光する工程、及び
     前記露光された感活性光線性又は感放射線性膜を現像液を用いて現像する工程
    を有する、パターン形成方法。
  13.  請求項12に記載のパターン形成方法を含む、電子デバイスの製造方法。
PCT/JP2022/034485 2021-09-28 2022-09-14 塩の製造方法、感活性光線性又は感放射線性樹脂組成物の製造方法、パターン形成方法、及び電子デバイスの製造方法 WO2023053977A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021158498 2021-09-28
JP2021-158498 2021-09-28

Publications (1)

Publication Number Publication Date
WO2023053977A1 true WO2023053977A1 (ja) 2023-04-06

Family

ID=85782457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034485 WO2023053977A1 (ja) 2021-09-28 2022-09-14 塩の製造方法、感活性光線性又は感放射線性樹脂組成物の製造方法、パターン形成方法、及び電子デバイスの製造方法

Country Status (2)

Country Link
TW (1) TW202323226A (ja)
WO (1) WO2023053977A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0912537A (ja) * 1995-06-29 1997-01-14 Shin Etsu Chem Co Ltd スルホニウム塩
WO2000008525A1 (fr) * 1998-08-07 2000-02-17 Clariant International Ltd. Composition radiosensible du type a amplification chimique
JP2002167340A (ja) * 1999-12-03 2002-06-11 Toyo Gosei Kogyo Kk オニウム塩誘導体の製造方法及び新規オニウム塩誘導体
WO2011052327A1 (ja) * 2009-10-26 2011-05-05 株式会社Adeka 芳香族スルホニウム塩化合物
WO2021039331A1 (ja) * 2019-08-29 2021-03-04 Jsr株式会社 感放射線性樹脂組成物及びレジストパターンの形成方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0912537A (ja) * 1995-06-29 1997-01-14 Shin Etsu Chem Co Ltd スルホニウム塩
WO2000008525A1 (fr) * 1998-08-07 2000-02-17 Clariant International Ltd. Composition radiosensible du type a amplification chimique
JP2002167340A (ja) * 1999-12-03 2002-06-11 Toyo Gosei Kogyo Kk オニウム塩誘導体の製造方法及び新規オニウム塩誘導体
WO2011052327A1 (ja) * 2009-10-26 2011-05-05 株式会社Adeka 芳香族スルホニウム塩化合物
WO2021039331A1 (ja) * 2019-08-29 2021-03-04 Jsr株式会社 感放射線性樹脂組成物及びレジストパターンの形成方法

Also Published As

Publication number Publication date
TW202323226A (zh) 2023-06-16

Similar Documents

Publication Publication Date Title
JP7318129B2 (ja) 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法
WO2023286764A1 (ja) パターン形成方法、電子デバイスの製造方法、感活性光線性又は感放射線性樹脂組成物、レジスト膜
WO2022209733A1 (ja) 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法
WO2023286763A1 (ja) 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法
WO2022172689A1 (ja) 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法
WO2023145564A1 (ja) 感活性光線性又は感放射線性樹脂組成物、感活性光線性又は感放射線性膜、パターン形成方法、及び電子デバイスの製造方法
WO2023032794A1 (ja) 感活性光線性又は感放射線性樹脂組成物、感活性光線性又は感放射線性膜、パターン形成方法、電子デバイスの製造方法、及び化合物
WO2023054127A1 (ja) 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法及び電子デバイスの製造方法
JP7434592B2 (ja) 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法
WO2023145488A1 (ja) 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法及び電子デバイスの製造方法
WO2023002869A1 (ja) 感活性光線性又は感放射線性樹脂組成物、感活性光線性又は感放射線性樹脂組成物の製造方法、感活性光線性又は感放射線性膜、パターン形成方法、電子デバイスの製造方法、樹脂、及び樹脂の製造方法
WO2022158323A1 (ja) パターン形成方法、及び電子デバイスの製造方法
KR20230131889A (ko) 감활성광선성 또는 감방사선성 수지 조성물, 레지스트막,포지티브형 패턴 형성 방법, 전자 디바이스의 제조 방법
WO2023053977A1 (ja) 塩の製造方法、感活性光線性又は感放射線性樹脂組成物の製造方法、パターン形成方法、及び電子デバイスの製造方法
WO2022215423A1 (ja) 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法、重合性化合物、樹脂
WO2023120250A1 (ja) 感活性光線性又は感放射線性樹脂組成物、感活性光線性又は感放射線性膜、パターン形成方法、電子デバイスの製造方法、及び化合物
WO2023008127A1 (ja) 感活性光線性又は感放射線性樹脂組成物、感活性光線性又は感放射線性膜、パターン形成方法、及び電子デバイスの製造方法
WO2023157635A1 (ja) 感活性光線性又は感放射線性樹脂組成物、感活性光線性又は感放射線性膜、パターン形成方法、電子デバイスの製造方法、及び化合物
WO2022220201A1 (ja) 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法、及び化合物
WO2022220189A1 (ja) 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、電子デバイスの製造方法
WO2023162762A1 (ja) 感活性光線性又は感放射線性樹脂組成物、レジスト膜、パターン形成方法、及び電子デバイスの製造方法
WO2023047992A1 (ja) 感活性光線性又は感放射線性樹脂組成物、感活性光線性又は感放射線性膜、パターン形成方法、及び電子デバイスの製造方法
JP2023035836A (ja) 感活性光線性又は感放射線性樹脂組成物の製造方法、パターン形成方法、電子デバイスの製造方法、及びオニウム塩の製造方法
WO2023140191A1 (ja) 感活性光線性又は感放射線性樹脂組成物、感活性光線性又は感放射線性膜、パターン形成方法及び電子デバイスの製造方法
WO2022202345A1 (ja) 感活性光線性又は感放射線性樹脂組成物、感活性光線性又は感放射線性膜、パターン形成方法、及び電子デバイスの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22875848

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023551298

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE