WO2023053955A1 - 樹脂組成物、ダウンホールツールまたはその部材、プラグおよび坑井処理方法 - Google Patents

樹脂組成物、ダウンホールツールまたはその部材、プラグおよび坑井処理方法 Download PDF

Info

Publication number
WO2023053955A1
WO2023053955A1 PCT/JP2022/034307 JP2022034307W WO2023053955A1 WO 2023053955 A1 WO2023053955 A1 WO 2023053955A1 JP 2022034307 W JP2022034307 W JP 2022034307W WO 2023053955 A1 WO2023053955 A1 WO 2023053955A1
Authority
WO
WIPO (PCT)
Prior art keywords
plug
mass
parts
downhole tool
opening
Prior art date
Application number
PCT/JP2022/034307
Other languages
English (en)
French (fr)
Inventor
卓磨 小林
崇大 菅
Original Assignee
株式会社クレハ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クレハ filed Critical 株式会社クレハ
Priority to CN202280061327.2A priority Critical patent/CN117916314A/zh
Priority to EP22875826.4A priority patent/EP4410892A1/en
Priority to CA3232295A priority patent/CA3232295A1/en
Publication of WO2023053955A1 publication Critical patent/WO2023053955A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/12Packers; Plugs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/12Packers; Plugs
    • E21B33/1208Packers; Plugs characterised by the construction of the sealing or packing means
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/13Methods or devices for cementing, for plugging holes, crevices or the like
    • E21B33/134Bridging plugs
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells

Definitions

  • the present invention relates to a resin composition, a downhole tool or its member, a plug, and a well treatment method.
  • Downholes underground drilling holes
  • hydrocarbon resources such as oil and gas from the ground
  • downhole tools and downhole tool components are used.
  • Downhole tools and downhole tool components are typically disposed of by collapsing in situ downhole or by dropping, and thus may be constructed of degradable polymers.
  • Downhole tool members made of such degradable polymers are known, for example, downhole tool members made of polyglycolic acid.
  • Polyglycolic acid has high strength and is hydrolyzable, so it is suitably used as a material for downhole tools or members thereof (see, for example, Patent Document 1).
  • the material of the downhole tool or its members is a resin composition that quickly decomposes after retaining the weight and shape of the resin for a certain period of time in hot water at a temperature higher than 135 ° C., which is required for oil field drilling technology. is known (see, for example, Patent Document 2).
  • a resin composition a resin composition containing a polyester and a cyclic carbodiimide compound is known (see, for example, Patent Document 3).
  • the resin composition as a material for the molded product includes 100 parts by mass of an aliphatic polyester containing 50% by mass or more of polyglycolic acid, and an aliphatic polyester resin composition containing 1 to 30 parts by mass of a carboxylic acid anhydride. Moldings formed from are known. The molded article is known to exhibit excellent degradability even in a downhole environment at a relatively low temperature of less than 66° C. (see, for example, Patent Document 4).
  • a resin composition containing polyglycolic acid is useful as a material for downhole tools or their members from the viewpoint of strength and hydrolyzability.
  • the higher the ambient temperature the more rapidly the thickness of the downhole tool or its members tends to decrease due to the hydrolysis of polyglycolic acid. Therefore, a downhole tool or a member thereof containing polyglycolic acid as its material may not be able to maintain its usage pattern for a desired period of time, especially in a well at high temperature (for example, 80° C.).
  • An object of one aspect of the present invention is to provide a technique capable of suppressing reduction in thickness of a downhole tool or its members in a high-temperature wellbore.
  • a resin composition according to an aspect of the present invention comprises 50 parts by mass or more and 97 parts by mass or less of polyglycolic acid, 3 parts by mass or more and 50 parts by mass or less of polybutylene terephthalate, 2 parts by mass or more and 15 parts by mass or less of a cyclic carbodiimide compound with respect to 100 parts by mass of the total amount of polyglycolic acid and the polybutylene terephthalate.
  • a downhaul tool or a member thereof includes a resin molded body formed by molding using the above resin composition as a raw material.
  • a plug according to one aspect of the present invention is a plug for temporarily blocking the flow of fluid in a well, and is the above downhole tool or its member.
  • a downhole tool includes a tubular member and the plug according to any one of claims 4 to 8, wherein the tubular member has an opening communicating between the inside and outside of the tubular member on the peripheral surface of the tubular member, and the plug is engaged with the tubular member so as to block the opening.
  • a well processing method uses the above plug to temporarily cut one or more regions of at least one of the well and the downhole tool. and removing the temporary sealing by the plug by decomposing the resin molding portion of the plug to change the flow path of the fluid in the region.
  • a well treatment method includes installing the plug in the well to impede the flow of fluid in the well, and disintegrating the shaped body to restore said fluid flow.
  • a well processing method includes a first opening at one end, a second opening at the other end, and a gap between the one end and the other end.
  • FIG. 4 is a schematic view of a cross-section of a downhole plug while plugging a wellbore according to an embodiment of the present invention; It is a figure for demonstrating the observation position of the microscopic structure of a resin molding.
  • FIG. 4 is a SEM photograph showing the state of dispersion of resin in the cross section of a resin molded article having a mass ratio of PGA:PBT of 90:10.
  • FIG. 10 is a SEM photograph showing the state of dispersion of resin in the cross section of a resin molding having a mass ratio of PGA:PBT of 70:30.
  • FIG. 4 is a SEM photograph showing the state of dispersion of resin in the cross section of a resin molding having a mass ratio of PGA:PBT of 70:30.
  • FIG. 10 is a SEM photograph showing the state of dispersion of resin in the cross section of a resin molding having a mass ratio of PGA:PBT:cyc-CDI of 70:30:5.
  • FIG. 10 is a SEM photograph showing the state of dispersion of resin in the cross section of a resin molding having a mass ratio of PGA:PET of 70:30.
  • FIG. 4 is a SEM photograph showing the state of dispersion of resin in the cross section of a resin molded article having a mass ratio of PGA:PET:cyc-CDI of 70:30:5.
  • a resin composition according to one embodiment of the present invention contains polyglycolic acid, polybutylene terephthalate, and a cyclic carbodiimide compound.
  • Polyglycolic acid (PGA) Polyglycolic acid in the present embodiment is a polymer containing repeating units represented by -(-O-CH 2 -CO-)-. Polyglycolic acid is preferably a homopolymer of glycolic acid, but may be a copolymer of glycolic acid and other monomer components.
  • polyglycolic acid When polyglycolic acid is a copolymer, other monomer components include, for example, L-lactic acid, D-lactic acid, hydroxycarboxylic acids such as 3-hydroxybutanoic acid and 1-hydroxyhexanoic acid, and 1,4-butane.
  • An ester compound composed of a diol and a dicarboxylic acid such as a condensate of a diol and succinic acid and a condensate of 1,4-butanediol and adipic acid, produced by intramolecular condensation of the above-mentioned other monomer components Cyclic esters and lactones, and cyclic carbonates such as trimethylene carbonate are included.
  • the constituent units derived from glycolic acid are 70 mol% or more, preferably 80 mol% or more, and more preferably 90 mol% or more.
  • the melt viscosity of the copolymer is preferably lower than that of a homopolymer of glycolic acid having the same molecular weight as the copolymer.
  • a copolymer having such a melt viscosity there is no need to raise the melting temperature of the resin composition. Therefore, it is possible to suppress the decrease in the molecular weight of polyglycolic acid due to the decomposition of the constituent units derived from glycolic acid. Therefore, it is preferable from the viewpoint of increasing the strength of a resin molded article obtained by molding the resin composition.
  • the molecular weight of polyglycolic acid may be determined as appropriate within the range in which the effects of the embodiments of the present invention can be obtained.
  • the molecular weight of polyglycolic acid is preferably more than 20,000 in terms of weight average molecular weight, from the viewpoint of exhibiting water vapor barrier properties due to polyglycolic acid in resin moldings.
  • the molecular weight of polyglycolic acid is more preferably 70,000 or more, and still more preferably 150,000 or more.
  • the upper limit of the molecular weight of polyglycolic acid is not particularly limited, but from the viewpoint of enabling solidification extrusion molding or injection molding, the weight average molecular weight is usually preferably 500,000 or less, more preferably 300,000 or less.
  • Polybutylene terephthalate (PBT) Polybutylene terephthalate in the embodiment of the present invention is polyester having a structure in which terephthalic acid units and 1,4-butanediol units are ester-bonded.
  • Polybutylene terephthalate is preferably a homopolymer (homopolymer) of polybutylene terephthalate obtained by polycondensation of terephthalic acid and 1,4-butanediol, but may be a copolymer or a mixture thereof. good.
  • polybutylene terephthalate may contain dicarboxylic acid units other than terephthalic acid.
  • dicarboxylic acids include aromatic dicarboxylic acids, alicyclic dicarboxylic acids and aliphatic dicarboxylic acids other than terephthalic acid.
  • aromatic dicarboxylic acids include isophthalic acid, orthophthalic acid, 1,5-naphthalenedicarboxylic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, biphenyl-2,2'-dicarboxylic acid, biphenyl -3,3′-dicarboxylic acid, biphenyl-4,4′-dicarboxylic acid, bis(4,4′-carboxyphenyl)methane, anthracene dicarboxylic acid and 4,4′-diphenyl ether dicarboxylic acid.
  • alicyclic dicarboxylic acids examples include 1,4-cyclohexanedicarboxylic acid and 4,4'-dicyclohexyldicarboxylic acid.
  • aliphatic dicarboxylic acids examples include adipic acid, sebacic acid, azelaic acid and dimer acid.
  • polybutylene terephthalate may contain other diol units in addition to 1,4-butanediol.
  • diol units include aliphatic or alicyclic diols having 2 to 20 carbon atoms, bisphenol derivatives, and the like. More specific examples of other diol units include ethylene glycol, propylene glycol, 1,5-pentanediol, 1,6-hexanediol, neopentyl glycol, decamethylene glycol, cyclohexanedimethanol, 4,4'. -dicyclohexylhydroxymethane, 4,4'-dicyclohexylhydroxypropane and ethylene oxide addition diols of bisphenol A.
  • polybutylene terephthalate is derived from a trifunctional monomer for introducing a branched structure, a monomer having four or more functional groups, or a monofunctional compound for molecular weight control, in addition to the above bifunctional monomers.
  • trifunctional monomers include trimellitic acid, trimesic acid, pyromellitic acid and trimethylolpropane.
  • tetrafunctional monomers include pentaerythritol.
  • hexafunctional monomers include dipentaerythritol.
  • the polybutylene terephthalate in the embodiment of the present invention may be polybutylene terephthalate modified by copolymerization.
  • modified polybutylene terephthalates include polyester ethers copolymerized with polyalkylene glycols, particularly polytetramethylene glycol, dimer acid-copolymerized polybutylene terephthalate, and isophthalic acid-copolymerized polybutylene terephthalate. included.
  • Modified polybutylene terephthalate refers to a polybutylene terephthalate in which the amount of copolymer is 1 mol % or more and less than 50 mol % of all segments of polybutylene terephthalate.
  • the amount of terminal carboxyl groups of polybutylene terephthalate may be selected and determined as appropriate.
  • the amount of terminal carboxyl groups of polybutylene terephthalate may be 60 eq/ton or less, preferably 50 eq/ton or less, more preferably 30 eq/ton or less, from the viewpoint of alkali resistance and hydrolysis resistance.
  • the terminal carboxyl group content of polybutylene terephthalate may be 10 eq/ton from the viewpoint of productivity in the production of polybutylene terephthalate.
  • the terminal carboxyl group content of polybutylene terephthalate can be measured by dissolving 0.5 g of polybutylene terephthalate resin in 25 mL of benzyl alcohol and titrating with a 0.01 mol/L benzyl alcohol solution of sodium hydroxide. .
  • the amount of terminal carboxyl groups can be appropriately adjusted according to conventionally known production conditions such as the charging ratio of raw materials at the time of polymerization.
  • the intrinsic viscosity of polybutylene terephthalate in the embodiment of the present invention is preferably 0.5 to 2 dL/g, more preferably 0.6 to 1.5 dL/g, from the viewpoint of moldability and mechanical properties. more preferred.
  • the intrinsic viscosity can be measured at 30° C. in a 1:1 (mass ratio) mixed solvent of tetrachloroethane and phenol.
  • the polybutylene terephthalate of the embodiment of the present invention may be a commercial product or a synthetic product.
  • commercially available products include "Novaduran” (registered trademark) manufactured by Mitsubishi Engineering-Plastics Corporation.
  • the synthetic product is produced by melt-polymerizing a dicarboxylic acid component or an ester derivative thereof containing terephthalic acid as a main component and a diol component containing 1,4-butanediol as a main component in a batchwise or continuous manner by a known method. It is possible to manufacture
  • the molecular weight of the polybutylene terephthalate in the embodiment of the invention may be appropriately determined within the range in which the effects of the embodiment of the invention can be obtained. If the molecular weight of the polybutylene terephthalate is too small, the effect of suppressing the entry of water into the resin molding may be insufficient, and if it is too large, the dispersibility in the resin molding may be poor. From the viewpoint of water intrusion suppression effect, the weight-average molecular weight of polybutylene terephthalate is preferably 5,000 or more, more preferably 8,000 or more, and even more preferably 10,000 or more.
  • the weight-average molecular weight of polybutylene terephthalate is preferably 50,000 or less, more preferably 30,000 or less. , is more preferably 20,000 or less.
  • the ratio M T /M A of the weight average molecular weight M T of polybutylene terephthalate to the weight average molecular weight M A of polyglycolic acid is preferably 0.01 or more from the viewpoint of further enhancing the effect of suppressing water intrusion. , is more preferably 0.02 or more, and more preferably 0.03 or more.
  • M T /M A is preferably 1.0 or less, more preferably 0.8 or less, and 0.3 or less. It is even more preferable to have When M T /M A is sufficiently small, polybutylene terephthalate tends to be sufficiently uniformly and finely dispersed in polyglycolic acid.
  • the weight average molecular weights of PGA and PBT can be measured by known methods such as gel permeation chromatography (GPC), but may be catalog values.
  • the cyclic carbodiimide compound contained in the polyglycolic acid resin composition of the present embodiment is a compound having a cyclic structure in which the first nitrogen and the second nitrogen of the carbodiimide group are linked by a linking group.
  • a cyclic carbodiimide compound can be represented, for example, by the following formula (I).
  • R represents one or more divalent bonding groups selected from the group consisting of aliphatic groups, alicyclic groups and aromatic groups. Moreover, in formula (I), R may contain a heteroatom. Examples of heteroatoms include oxygen (O), nitrogen (N), sulfur (S) and phosphorus (P). Furthermore, R may contain a ring structure, and the ring structure may contain a carbodiimide structure.
  • a cyclic carbodiimide compound has two cyclic structures in which the first nitrogen and the second nitrogen of the carbodiimide group are linked by a linking group, and these cyclic structures share some carbon atoms.
  • the type and number of atoms constituting the main chain of the cyclic structure can be appropriately determined within the range in which the effects of the present embodiment can be obtained.
  • the number of atoms directly constituting the cyclic structure is preferably 8 or more, more preferably 10 or more.
  • the number of atoms is preferably 50 or less, more preferably 20 or less.
  • R may further have a monovalent substituent as long as the effects of the present embodiment can be obtained. More specifically, R is a divalent to tetravalent aliphatic group having 1 to 20 carbon atoms, a divalent to tetravalent alicyclic group having 3 to 20 carbon atoms, a divalent to tetravalent aromatic group having 5 to 15 carbon atoms. groups or combinations thereof. Examples of such combinations include an alkylene-arylene group in which an alkylene group and an arylene group are bonded.
  • Examples of the aliphatic group for R include an alkylene group having 1 to 20 carbon atoms, an alkanetriyl group having 1 to 20 carbon atoms and an alkanetetrayl group having 1 to 20 carbon atoms.
  • alkylene groups include methylene, ethylene, propylene, butylene, pentylene, hexylene, heptylene, octylene, nonylene, decylene, dodecylene and hexadecylene groups.
  • alkanetriyl groups include methanetriyl, ethanetriyl, propanetriyl, butanetriyl, pentanetriyl, hexanetriyl, heptanetriyl, octanetriyl, nonanetriyl, decantriyl, dodecanetriyl yl and hexadecanetriyl groups are included.
  • alkanetetrayl groups include methantetrayl, ethanetetrayl, propanetetrayl, butanetetrayl, pentanetetrayl, hexanetetrayl, heptanetetrayl, octatetrayl, nonane Tetrayl, decantetrayl, dodecanetetrayl and hexadecanetetrayl groups are included.
  • Examples of the alicyclic group for R include a cycloalkylene group having 3 to 20 carbon atoms, a cycloalkanetriyl group having 3 to 20 carbon atoms and a cycloalkanetetrayl group having 3 to 20 carbon atoms.
  • cycloalkylene groups include cyclopropylene, cyclobutylene, cyclopentylene, cyclohexylene, cycloheptylene, cyclooctylene, cyclononylene, cyclodecylene, cyclododecylene and cyclohexadecylene groups.
  • cycloalkanetriyl groups include cyclopropanetriyl, cyclobutanetriyl, cyclopentanetriyl, cyclohexanetriyl, cycloheptanetriyl, cyclooctanetriyl, cyclononanetriyl, cyclo Included are decantriyl, cyclododecanetriyl and cyclohexadecanetriyl groups.
  • cycloalkanetetrayl groups include cyclopropanetetrayl, cyclobutanetetrayl, cyclopentanetetrayl, cyclohexanetetrayl, cycloheptanetetrayl, cyclooctanetetrayl, cyclononanetetrayl, Cyclodecanetetrayl, cyclododecanetetrayl and cyclohexadecanetetrayl groups are included.
  • Examples of the aromatic group for R include an arylene group having 5 to 15 carbon atoms, an arenetriyl group having 5 to 15 carbon atoms and an arenetetrayl group having 5 to 15 carbon atoms.
  • the aromatic group may contain heteroatoms.
  • arylene groups include phenylene groups and naphthalenediyl groups.
  • arenetriyl groups include benzenetriyl groups and naphthalenetriyl groups.
  • arenetetrayl groups examples include benzenetetrayl groups and naphthalenetetrayl groups.
  • R may have include an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 15 carbon atoms, a halogen atom, a nitro group, an amide group, a hydroxyl group, an ester group, and an ether group. and aldehyde groups.
  • cyclic carbodiimide compounds it is preferable to use a compound having only one carbodiimide group in one cyclic structure from the viewpoint of preventing deterioration of the working environment due to the peculiar odor of isocyanate compounds. This is because a cyclic carbodiimide having this structure does not liberate a compound having an isocyanate group even if it reacts with a carboxyl group at the terminal of polyglycolic acid.
  • Examples of the above cyclic carbodiimide compounds include compounds represented by the following formula (II) or the following formula (III).
  • the cyclic carbodiimide compound when the cyclic carbodiimide compound contains multiple carbodiimide groups in the same molecular structure, it may also function as a chain extender through reaction with the carboxyl group end of the polymer. Therefore, the cyclic carbodiimide compound is a compound containing a plurality of carbodiimide groups in the same molecular structure, such as formula (III), from the viewpoint of suppressing the molecular weight reduction of polyglycolic acid due to decomposition during melt kneading at high temperature. preferred.
  • the content of PGA in the resin composition of the embodiment of the present invention is 50 parts by mass or more and 97 parts by mass or less.
  • the PGA content of 50 parts by mass or more is preferable from the viewpoint of sufficiently imparting rapid decomposition properties derived from PGA to the resin molding, and from the viewpoint of improving the decomposition properties, it is 55 parts by mass or more. is more preferable, and 60 parts by mass or more is even more preferable.
  • the PGA content is 97 parts by mass or less from the viewpoint of sufficiently suppressing the thickness reduction rate of the resin molded body in water at 80 ° C., and from the viewpoint of suppressing the thickness reduction rate, 90 parts by mass is more preferably 80 parts by mass or less.
  • the content of PBT in the resin composition of the embodiment of the present invention is 3 parts by mass or more and 50 parts by mass or less. It is preferable that the content of PBT is 3 parts by mass or more from the viewpoint of sufficiently suppressing the thickness reduction rate of the resin molded body in water at 80 ° C., and from the viewpoint of suppressing the thickness reduction rate, it is 20 parts by mass or more. more preferably 25 parts by mass or more. In addition, it is preferable that the content of PBT is 50 parts by mass or less from the viewpoint of sufficiently expressing the decomposition characteristics of the resin molding, and from the viewpoint of improving the decomposition characteristics, it is more preferable that the content is 45 parts by mass or less. , 40 parts by mass or less.
  • the content of cyc-CDI in the resin composition of the embodiment of the present invention is 2 parts by mass or more and 15 parts by mass or less with respect to 100 parts by mass as the total amount of PGA and PBT. It is preferable that the content of cyc-CDI is 2 parts by mass or more with respect to 100 parts by mass of the total amount of PGA and PBT from the viewpoint of achieving both the expression of the decomposition characteristics and the effect of suppressing the thickness reduction rate. From the viewpoint of improving the inhibitory effect, it is more preferably 4 parts by mass or more, and even more preferably 5 parts by mass or more.
  • the content of cyc-CDI is 15 parts by mass or less from the viewpoint of achieving both the effect of adding cyc-CDI and economy, and from the viewpoint of economy, it is preferably 10 parts by mass or less. More preferably, it is 8 parts by mass or less.
  • the resin composition of the embodiment of the present invention has the above structure, so that it has a decomposition property due to PGA compared to the case where PGA is used alone without using PGA and PBT in combination, but It is possible to suppress the rate of thickness reduction in water at 80°C. This is probably because the cyc-CDI described above causes the PBT chain to be chain-extended during molding. As a result, the melt miscibility of PGA and PBT during molding is reduced, and a streak-like or network-like PBT phase is formed in the resin molded product. As a result, contact of water with the PGA phase in the resin molded product is suppressed. As a result, the decomposition delay effect as described above is considered to be exhibited.
  • the resin composition of the embodiment of the present invention contains a heat stabilizer, an antioxidant, an impact modifier, a cross-linking agent, an organic filler, an inorganic filler, and a coloring agent within the range where the effects of the embodiment of the present invention can be obtained.
  • Other additives such as agents may also be included.
  • the form of the resin composition of the embodiment of the present invention is not limited.
  • the resin composition may be a mixture of powdery raw materials, or may be a melt-kneaded product of these raw materials such as pellets.
  • the terminal of PGA may be capped with a cyclic carbodiimide compound
  • the terminal of PBT may be capped with a cyclic carbodiimide compound.
  • the “capped structure” means a structure obtained by reacting a terminal carboxyl group of PGA or PBT with a cyclic carbodiimide compound. A portion of the ends of PGA or PBT may be capped with a cyclic carbodiimide compound.
  • the resin composition of the present embodiment contains, in addition to PGA, PBT and the cyclic carbodiimide compound, for example, a cyclic carbodiimide at the terminal of PGA or PBT.
  • the compound may further include a derivative of the cyclic carbodiimide compound formed by reacting and bonding.
  • a resin molding is formed by molding using the resin composition of the embodiment of the present invention as a raw material.
  • the resin molding can be produced by mixing PGA, PBT and cyc-CDI and solidifying the mixture by extrusion molding or injection molding.
  • the mixture may be melt-kneaded and pelletized PGA, PBT and cyc-CDI.
  • the temperature is preferably 220 to 280° C., more preferably 230 to 260° C., from the viewpoint of suppressing thermal decomposition of PGA.
  • the temperature at which the resin molding is solidified, extruded or injection molded is preferably 220 to 280.degree. C., more preferably 230 to 260.degree.
  • the resin molded article is formed from the resin composition of the embodiment of the present invention, it is preferably decomposed even in fluid or water with a low salt concentration.
  • the molecular weight of PGA in the surface layer of the resin molding decreases due to hydrolysis.
  • the surface layer portion of the resin molding becomes brittle.
  • PGA with a reduced molecular weight is permeable to water, PGA is gradually hydrolyzed from the surface layer to the center of the resin molding. Thus, embrittlement of the resin molding progresses.
  • the rate at which embrittlement progresses in a resin molded body is defined as the thickness reduction rate.
  • the thickness reduction rate is the rate at which the thickness of the non-embrittled portion of the resin molding decreases. Embrittlement progresses from the surface of the resin molding toward the center, and the thickness of the non-embrittled portion decreases from the surface side. Therefore, the progress rate of embrittlement shows a positive correlation with the thickness reduction rate.
  • Decomposition lead time means the time from when the resin molded body is immersed in water to when the PGA in the surface layer of the molded body is hydrolyzed and the thickness of the molded body starts to decrease.
  • “embrittlement” means that the molecular weight of PGA is lowered by hydrolysis of PGA, and as a result, the resin molding becomes brittle.
  • a brittle portion of the resin molding is also referred to as a brittle layer.
  • the thickness reduction rate can be adjusted by the amount of PBT or the amount of cyc-CDI.
  • the thickness reduction rate of the resin molded body in water at 80°C may be appropriately determined according to the application of the resin molded body.
  • the thickness reduction rate in water at 80 ° C. is 0.1 ⁇ m / from the viewpoint of shape stability in a high temperature environment. hr or more is preferable, 1 ⁇ m/hr or more is more preferable, and 5 ⁇ m/hr or more is even more preferable.
  • the thickness reduction rate is preferably less than 60 ⁇ m/hr, more preferably less than 35 ⁇ m/hr, and even more preferably less than 30 ⁇ m/hr.
  • the resin molding in this embodiment is formed from a resin composition containing PGA, PBT and cyc-CDI as described above.
  • PGA has a high water vapor barrier property. Since hydrolysis and embrittlement of the center portion of the resin molding according to the present embodiment do not occur until the surface layer portion becomes embrittled, embrittlement does not progress rapidly.
  • the resin molding in this embodiment contains PBT.
  • PBT also has a sufficiently high water vapor barrier property and a sufficiently low hydrolyzability compared to PGA. As shown in the examples below, when PBT is 15 parts by mass or less with respect to 100 parts by mass of PGA and PBT in total, PBT tends to be finely dispersed in the PGA phase. Since water diffuses along the interface between the PGA phase and the PBT phase, the fine dispersion of the PBT phase in the PGA phase basically contributes to the acceleration of decomposition of the PGA phase. On the other hand, as the amount of PBT added increases further, the PBT aggregates in the PGA phase and the distance between the PBT phases increases, so the length of the path for water to reach the PGA phase becomes longer.
  • the resin composition of the resin molding in the present embodiment further contains cyc-CDI
  • the PBT phase dispersed in the PGA phase becomes larger than when it does not contain cyc-CDI, and is distributed in a streaky or network manner. Sometimes. Therefore, diffusion of water molecules in the resin molding is further suppressed. This slows down the progress of embrittlement.
  • the resin molding in this embodiment contains cyc-CDI or carbodiimide groups.
  • Water molecules passing through the embrittlement layer react with cyc-CDI or carbodiimide groups, so diffusion of water molecules is further suppressed. This further retards the progress of embrittlement.
  • the carbodiimide groups in the resin composition can be quantified, for example, by 1 H NMR measurement using dimethylsulfone as a standard substance.
  • the resin molding in the present embodiment can delay hydrolysis and embrittlement in high-temperature water even after the decomposition lead time has elapsed. Therefore, in applications of downhole tools or members thereof, which will be described later, it is possible to extend the sealing holding time even under high temperature conditions.
  • the resin molded body in the present embodiment preferably has a tensile strength of 80 MPa or more, and preferably 90 MPa or more, from the viewpoint of withstanding high pressure in the well and retaining sealing in the application of a downhole tool or a member thereof described later. and more preferably 100 MPa or more.
  • the tensile strength is preferably 400 MPa or less, more preferably 370 MPa or less, and even more preferably 350 MPa or less.
  • the tensile strength of the resin molding is measured by using a type 1A tensile test piece and pulling it at a speed of 50 mm/min under an environment of 23° C. in accordance with ISO527.
  • the resin composition according to the first embodiment of the present invention comprises 50 parts by mass or more and 97 parts by mass or less of PGA, 3 parts by mass or more and 50 parts by mass or less of PBT, and the total amount of PGA and PBT of 100 parts by mass 2 parts by mass or more and 15 parts by mass or less of cyc-CDI.
  • a downhole tool or a member thereof made of a resin composition having this composition can further suppress water intrusion in an 80° C. underwater environment compared to a composition that does not contain PBT. Therefore, the resin composition makes it possible to suppress reduction in the thickness of downhole tools or members thereof in high-temperature wellbore.
  • the content of cyc-CDI is 4 parts by mass or more with respect to the total amount of 100 parts by mass of PGA and PBT. good too.
  • This configuration is much more effective from the viewpoint of reducing the rate of thickness reduction in water at 80° C. of the resin molded article compared to a composition that does not contain PBT.
  • a downhole tool and a downhole tool member according to an embodiment of the present invention include a resin molded body formed by molding using the resin composition according to the embodiment of the present invention as a raw material.
  • a part of the downhole tool or its member according to the embodiment of the present invention may contain a resin molded body, or may be entirely formed of a resin molded body.
  • the part of the resin molded body may be an integral part in the downhaul tool or its member. However, it may be another part that is separately combined.
  • a downhole tool means a tool itself for forming or collecting downholes for recovering hydrocarbon resources such as oil and gas in the ground.
  • downhole tools include plugs, washpipes, cement retainers, perforation guns, ball sealers, filler plugs and packers.
  • the downhole tool member means a member that constitutes the coupling portion in the downhole tool.
  • the joint part is a part that joins a plurality of parts that constitute the downhole tool to form the downhole tool, or is directly or indirectly coupled to the downhole to realize the usage form in the downhole. means part.
  • plugs include plugs as downhole tools and plugs as downhole tool members.
  • a plug according to an embodiment of the present invention is a plug for temporarily obstructing the flow of fluid in a well, and is the above-described downhole tool or its member.
  • the plug can be both a downhole tool plug and a downhole tool member.
  • plugs as downhole tools include flack plugs and bridge plugs.
  • plugs as downhole tool members include balls, darts, discs, screws and packers.
  • Plug (First aspect of the plug)
  • a plug that is used by closing an opening that communicates the inside and outside of a tubular member inserted into a well provided on the peripheral surface of the tubular member will be described.
  • Such plugs can be, for example, balls, darts, discs, screws and packers applied to downhole tools.
  • downhole tools to which plugs of the first aspect are applied include wash pipes for cleaning wells and stimulating formations before fracturing.
  • FIG. 1 is a schematic cross-sectional view of a downhole tool to which a plug according to the first aspect of the invention is applied.
  • a downhole tool 1 shown in FIG. 1 is inserted into a well, and includes a tubular main body 14 as a tubular member.
  • the downhole tool 1 has a first opening 16 at the beginning and a second opening 17 at the end, and further has one or more third openings 18 between the beginning and the end.
  • "20" represents a well wall.
  • the third opening 18 is provided on the peripheral surface of the tubular main body 14 and is an opening that allows communication between the inside and the outside of the tubular main body 14 .
  • a screw-like plug 11 is inserted into the third opening 18 so as to block the third opening 18, and the plug 11 is engaged with the third opening.
  • the third opening 18 of the tubular body 14 is closed by the plug 11 .
  • the “beginning end” of the downhole tool refers to the end located on the entrance side of the well while the downhole tool is set in the well, and when inserting the downhole tool into the well, Refers to the end that is inserted last.
  • “Terminal” is the end on the opposite side from the start end, and in a wellbore, it refers to the end located on the far side when the wellbore is viewed from the entrance, and when the downhole tool is inserted into the wellbore refers to the end that is inserted first into the
  • the plug 11 is a screw-like plug that closes an opening provided on the peripheral surface of the tubular member that allows communication between the inside and the outside of the tubular member.
  • the plug 11 is configured by the resin molding according to this embodiment.
  • the plug 11 By inserting the plug 11 into the third opening 18 of the tubular body 14, the flow of fluid from the inside of the tubular body 14 to the outside through the third opening 18 is blocked.
  • the third opening 18 is released by disassembling the plug 11 made of a resin molded body, and as a result, the plug 11 is directed from the inside to the outside of the cylindrical main body 14 through the third opening 18 . Fluid flow or fluid flow from the outside to the inside of the tubular body 14 will occur.
  • the size of the plug 11 may vary depending on the thickness of the tubular body 14 to which it is applied.
  • the shortest distance L1 between the first surface 121 of the plug 11 and the second surface 122 of the plug 11 exposed inside the tubular body 14 may be 6 mm or more and 65 mm or less.
  • FIG. 2 is an enlarged schematic view of a part of a cross section of a downhole tool to which Modified Example 1 of the first aspect of the plug according to the embodiment of the present invention is applied.
  • the downhole tool 2 according to Modification 1 has a third opening 28 of a cylindrical main body 24 closed by a threaded plug 21 .
  • the plug 21 according to Modification 1 is, like the plug 11 described above, a plug that closes an opening that communicates the inside and outside of the tubular member provided on the peripheral surface of the tubular member.
  • the plug 21 according to Modification 1 is composed of a body portion 22 formed of the resin molded body according to the present embodiment and an annular molded body 23 formed of a non-degradable material. , the plug 11 is different.
  • the annular molded body 23 in Modification 1 is an annular member that covers the periphery of the body portion 22 and has threads on the outer peripheral surface.
  • the body portion 22 is arranged inside the ring of the annular molded body 23 .
  • the annular molded body 23 in Modification 1 is made of a non-degradable material such as SUS303 and SUS304.
  • non-degradable material refers to a material that does not readily lose weight or thickness in the wellbore environment.
  • the annular shaped body 23 is preferably formed of a material that does not substantially lose weight or thickness for 30 days or more in a wellbore.
  • the plug 21 is inserted into the third opening 28 of the tubular main body 24, so that the flow of fluid from the inside of the tubular main body 24 to the outside through the third opening 28 is prevented. flow is obstructed. Then, by disassembling the main body 22 of the plug 21 made of a resin molded body, the third opening 28 is released. A fluid flow from the inside to the outside of the tubular body 24 or from the outside to the inside of the tubular body 24 will occur through the inside of the ring of the body 23 .
  • the size of the body portion 22 may be set as appropriate by those skilled in the art in the same manner as the size of the plug 11 .
  • FIG. 3 is a schematic diagram showing an enlarged part of a cross section of a downhole tool to which modification 2 of the first aspect of the plug according to the embodiment of the present invention is applied.
  • a cylindrical main body 34 provided in the downhole tool 3 in FIG. The plug 31 is engaged inside the tubular body 34 .
  • the plug 31, which is the modification 2 of the first aspect, is applied to a cylindrical member having an opening on its peripheral surface for communicating the inside and the outside, like the plug 11 of the first aspect described above. However, it differs from the plug 11 in that it is not inserted into the opening.
  • the plug 31 of Modification 2 engages with the tubular member inside the peripheral surface of the tubular member so as to close the opening.
  • the third opening 38 is closed from the inside by the plug 31 engaging the inside of the tubular body 34 . This prevents the flow of fluid from the inside of the tubular body 34 to the outside through the third opening 38 .
  • the third opening 38 is exposed, and the fluid flowing from the inside to the outside of the cylindrical main body 34 through the third opening 38 is disassembled. or flow of fluid from the outside of the tubular body 34 to the inside.
  • a second aspect of the plug according to this embodiment includes a downhole plug (downhole tool) such as a frac plug or bridge plug that is inserted into a wellbore.
  • the resin molding according to the present embodiment is used as downhole tool members such as mandrels, load rings, cones, sockets, and bottoms, but is not limited to this.
  • a downhole plug, which is a second aspect of the plug according to the present embodiment will be described below with reference to FIG.
  • FIG. 4 is a cross-sectional schematic diagram of a downhole plug when in place in a wellbore, in accordance with an embodiment of the present invention; Note that FIG. 4 shows only one of the cross sections symmetrical with respect to the axis of the downhole plug.
  • the downhole plug 5 shown in FIG. 4 includes a mandrel 51 corresponding to a cylindrical member, a ball 53, a center element 52 attached around the outer peripheral surface of the mandrel 51, a socket 54, cones 55a and 55b, and a slip 56a. and 56b, equalizer rings 57a and 57b, load ring 58, and bottom 59.
  • the downhole plug 5 has a cylindrical shape as a whole.
  • the mandrel 51 functions as a central shaft that supports other members (hereinafter referred to as side parts) arranged on the outer periphery of the mandrel 51 and as a receiver for the balls 53 .
  • the center element 52 is an annular rubber member that fills the gap between the mandrel 51 and the well wall 20 in the downhole plug 5 to seal the well, and is deformed by a load.
  • the socket 54, the cone 55, the slip 56, the equalizer ring 57, and the load ring 58 directly or indirectly apply the load applied from the setting tool to the center element 52 when the downhole plug 5 is operated in the well. It is an element for transmission.
  • the load ring 58 is a pressing jig that transmits the load applied from the setting tool to other side parts.
  • the cone 55 has the function of promoting the diameter expansion of the slip 56 in the circumferential direction and compressing the center element 52 .
  • the socket 54 has a function of preventing the center element 52 from flowing out to the far side when the well is viewed from the entrance.
  • the bottom 59 prevents the downhole plug 5 from colliding with the well wall 20 and operating while the downhole plug 5 is being transported in the well, and also fixes other side parts during setting. have a function.
  • the plugs described above are plugs that temporarily block the flow of fluids in a wellbore and can be used in wellbore treatment.
  • the wellbore is preferably a cased well with a casing.
  • the well treatment is performed by temporarily blocking the flow path of the fluid in one or more regions of at least one of the well and the downhole tool using a plug, and decomposing the resin molding of the plug. Including removing the stop and altering the fluid flow path in the region.
  • the area where the plug temporarily blocks the flow path of the fluid is the downhole tool. corresponds to the downhole tool.
  • the flow path of the fluid is a third opening provided on the peripheral surface of the cylindrical member of the downhole tool, which communicates the inside and the outside.
  • the fluid flow is the flow of fluid from the inside of the tubular member, ie, the downhole tool, to the outside through the opening, or the flow of fluid from the outside of the downhole tool to the inside through the opening.
  • the fluid channel temporarily blocked by the plug is the well, and the fluid channel temporarily The area that fills in is part of the well.
  • Another aspect of well treatment is to install a plug in the well to impede the flow of fluid in the well, and to restore the flow of fluid by decomposing the resin molding that constitutes the plug.
  • the resin compact forming the plug is decomposed by the water contained in the fluid present in the well, so that the well is unblocked and the fluid flow is restored.
  • the downhole tool shown in FIG. As a more specific method of well treatment using the plug of the first aspect, the downhole tool shown in FIG.
  • the well processing method using the downhole tool shown in FIG. This is a well processing method for temporarily closing the opening 18 .
  • Well cleaning is performed in the following procedure before fracturing for the purpose of increasing the efficiency of recovering hydrocarbon resources.
  • the downhole tool 1 is introduced to an arbitrary position in the well using a fluid or the like.
  • a fluid such as water is injected into the tubular body 14 from the ground through the first opening 16 and jetted into the well through the second opening 17 to wash the well.
  • Liquids such as water, oil, and emulsions are generally used as fluids, and in some cases, these fluids contain salts from several ppm to several tens of percent.
  • the third opening 18 is closed by the plug 11 , the fluid injected through the first opening 16 is not ejected from the third opening 18 .
  • the fluid injected into the well from the second opening 17 passes through the gap between the outside of the downhole tool 1 and the well wall 20, and is accompanied by sand, scale, etc. deposited on the inner wall of the well, and is discharged on the ground. is recovered by
  • the plug 11 since the third opening 18 is blocked by the plug 11, the fluid accompanied by sand, scale, etc. after cleaning the wellbore flows through the third opening 18 into the downhole tool. can be prevented from entering. Therefore, it is possible to prevent a decrease in the efficiency of the cleaning work. Thus, it is important to maintain the plug 11 so as not to unblock the third opening during the cleaning operation.
  • the inside and outside of the cylindrical body 14 can be communicated through the third opening 18 . This enables circulation of the fluid inside and outside the downhole tool 1 via the third opening 18 .
  • the procedure for stimulating the stratum is as follows. First, a stimulating fluid for stimulating the stratum is injected into the tubular body 14 from the ground through the first opening 16 . The injected stimulation fluid is injected through the third opening 18 into the wellbore wall 20 to stimulate the formation. This stimulation increases the amount of hydrocarbon resources recovered from the formation, which can contribute to an increase in production efficiency.
  • the production fluid containing hydrocarbon resources that has flowed out of the formation into the well can be recovered to the surface via the third opening 18 and the first opening 16.
  • the plug it is possible to maintain the sealing function in a plurality of areas of the downhole tool in a well in a high-temperature environment for a desired period of time, and after the desired period of time has passed, the plug can be It is possible to obtain a plug that decomposes favorably even in As a result, it is possible to more reliably seal the sealant for a desired period of time, and further reduce the risk of clogging at the sealant position.
  • FIG. 4 is a cross-sectional schematic diagram of a downhole plug when in place in a wellbore, in accordance with an embodiment of the present invention
  • FIG. 5 is a schematic illustration of a cross-section of a downhole plug while plugging a well according to an embodiment of the present invention
  • 4 and 5 show only one of the cross sections symmetrical with respect to the axis of the downhole plug.
  • the downhole plug 5 is introduced from the ground to an arbitrary position inside the well using a fluid or the like. Thereafter, the setting tool is activated to deform the center element 52 as shown in FIG.
  • the starting end of the mandrel 51 of the downhole plug 5 is closed to complete the sealing.
  • a sealing method for example, as shown in FIG. 5, a ball 53 supplied toward the starting end of the downhole plug 5 is arranged at the starting end of the mandrel 51 to close one end of the mandrel 51. is mentioned.
  • the downhole plug 5 can be used as a boundary to separate the space on the entrance side and the depth side of the well.
  • the ball 53 may be placed at the beginning of the mandrel 51 by allowing it to flow in with the fluid from the ground.
  • hydraulic fracturing Such a method of enlarging fractures by injecting fluid is called hydraulic fracturing.
  • the downhole plug 5 After the fracturing is completed, the downhole plug 5 is brought into contact with a fluid containing water to decompose the resin molding that constitutes part or all of the downhole plug 5 . As a result, the downhole plug 5 loses its original shape and the well is unblocked.
  • the plug according to the present embodiment it is possible to maintain the sealing function in a plurality of regions of a well in a high temperature environment for a desired period of time, and after the desired period of time has passed, it is suitable even in fluids or water with a low salt concentration. It is possible to decompose. As a result, sealing can be reliably performed for a desired period of time, and the risk of clogging at the sealing position can be reduced.
  • a downhole tool or a member thereof according to a third embodiment of the present invention includes a resin molded body formed by molding using the resin composition according to the first embodiment or second embodiment described above as a raw material.
  • a plug according to a fourth embodiment of the present invention is a plug for temporarily obstructing the flow of fluid in a well, and is a downhole tool or a member thereof according to the third embodiment.
  • the downhole tool or its member or plug in the embodiment of the present invention includes a resin molded body made of the above-mentioned resin composition as a main part, the thickness of the downhole tool or its member in a high-temperature wellbore is reduced. It is possible to suppress the decrease.
  • the plug according to the fifth embodiment of the present invention may be a ball, dart, disk, screw or packer in the fourth embodiment described above.
  • a plug according to a sixth embodiment of the present invention is used to close an opening provided in the peripheral surface of a tubular member in the fourth embodiment described above and communicating between the inside and outside of the tubular member,
  • the portion of the resin molded body has a first surface exposed to the outside of the tubular member during use and a second surface exposed to the inside of the tubular member during use. and the second surface may be 6 mm or more and 65 mm or less.
  • a plug according to a seventh embodiment of the present invention is a plug according to any one of the fourth to sixth embodiments described above, wherein the portion of the resin molded body is replaced by another molded body made of a non-degradable material. At least a portion may be covered.
  • a plug according to an eighth embodiment of the present invention is, in the above-described seventh embodiment, wherein the another molded body is an annular molded body having a threaded outer peripheral surface, and the resin molded body The part may be arranged inside the ring of said annular shaped body.
  • the plug of the ninth embodiment of the present invention may be a flack plug or a bridge plug in the fourth embodiment described above.
  • a downhole tool of a tenth embodiment of the present invention may comprise a tubular member and the plug of any one of the fourth to eighth embodiments described above, the tubular member comprising:
  • the peripheral surface of the tubular member may have an opening communicating between the inside and the outside of the tubular member, and the plug may be engaged with the tubular member so as to block the opening.
  • any of the above downhole tools or members thereof includes a resin molded body made of the above-mentioned resin composition as a main part. Therefore, it is much more effective from the viewpoint of suppressing reduction in thickness when used in high-temperature wells in each of the forms and applications specified above.
  • a well processing method uses the plug according to any one of the fourth to ninth embodiments described above to perform at least one of a well and a downhole tool. Temporarily blocking one or more regions, and decomposing the resin molded body portion of the plug to eliminate the temporary blocking by the plug and change the flow path of the fluid in the region to do.
  • the plug according to any one of the fourth to ninth embodiments described above is installed in the well, and the fluid in the well is and decomposing the resin molding to restore the flow of the fluid.
  • the well processing method according to the thirteenth embodiment of the present invention includes (1) a first opening at one end, a second opening at the other end, and a second opening between the one end and the other end.
  • a downhole tool having three openings, the third opening being sealed by a plug as a downhole tool member according to any one of the fourth to eighth embodiments described above.
  • (2) pressurizing a fluid from the ground into the downhole tool through the first opening, and jetting the fluid into the wellbore from the second opening to clean the wellbore and (3) disassembling the resin molded body portion of the plug after cleaning to enable fluid flow inside and outside the downhole tool through the third opening. can contain.
  • a downhole tool or its member containing a resin molded body made of the resin composition described above is used. Therefore, it is possible to reduce the thickness reduction of the downhole tool or its members in hot wellbore in each of the applications identified above.
  • Example 1 Polyglycolic acid (PGA, "Kuredux 100R90” manufactured by Kureha Co., Ltd., weight average molecular weight (Mw): 210,000), polybutylene terephthalate (PBT, "Novaduran (registered trademark) 5010R5" manufactured by Mitsubishi Engineering-Plastics Corporation), polyethylene Terephthalate (PET, "RY518X” manufactured by Toyobo Co., Ltd.) and cyclic carbodiimide (cyc-CDI, "Carbosista (registered trademark)” manufactured by Teijin Limited, grade “TCC-NP”) were prepared.
  • PGA Polyglycolic acid
  • PBT polybutylene terephthalate
  • PET polyethylene Terephthalate
  • cyc-CDI cyclic carbodiimide
  • the resin composition 1 is put into an injection molding machine in which the temperature of the screw part is set to 210 to 255 ° C., injection molding is performed at a mold temperature of 100 ° C., and the resin is molded into a cube with a side width of 12.5 mm. Body 1A was produced. Further, under the same conditions, a resin molding 1B, which is a dumbbell-shaped tensile test piece (1A test piece), was produced.
  • Example 2 A pellet-shaped resin composition 2 was produced in the same manner as in Example 1 except that the amount of cyc-CDI was changed to 3 parts by mass, and a cubic resin molding 2A and a dumbbell-shaped resin molding 2B were produced. .
  • pellet-shaped resin composition 3 was produced in the same manner as in Example 1 except that the amount of cyc-CDI was changed to 10 parts by mass, and a cubic resin molded body 3A and a dumbbell-shaped resin molded body 3B were produced. made.
  • Example 4 A pellet-shaped resin composition 4 was produced in the same manner as in Example 1, except that the amount of PGA was changed to 55 parts by mass and the amount of PBT was changed to 45 parts by mass. A resin molding 4B was produced.
  • Example 2 In the same manner as in Example 1, except that the amount of PGA was changed to 95 parts by mass and the amount of PBT was changed to 5 parts by mass, a pellet-shaped resin composition 5 was produced, and a cubic resin molded body 5A and a dumbbell A mold resin molding 5B was produced.
  • Example 2 Furthermore, in the same manner as in Example 1, except that the amount of PGA was changed to 85 parts by mass and the amount of PBT was changed to 15 parts by mass, a pellet-shaped resin composition 6 was produced, and a cubic resin molded body 6A and a dumbbell A mold resin molding 6B was produced.
  • Example 1 A pellet-shaped resin composition C1 was produced in the same manner as in Example 1 except that the amount of cyc-CDI was changed to 1 part by mass, and a cubic resin molded product C1A and a dumbbell-shaped resin molded product C1B were produced. .
  • a pellet-shaped resin composition C2 was prepared in the same manner as in Example 1 except that polyethylene terephthalate (PET, "RY518X” manufactured by Toyobo Co., Ltd.) was used instead of PBT, and a cubic resin molded body C2A and a dumbbell-shaped A resin molding C2B was produced.
  • PET polyethylene terephthalate
  • RY518X manufactured by Toyobo Co., Ltd.
  • a pellet-shaped resin composition C3 was produced in the same manner as in Example 1 except that polylactic acid (PLA, “4032D” manufactured by Natureworks) was used instead of PBT, and a cubic resin molded product C3A and a dumbbell-shaped resin composition C3 were prepared.
  • a resin molding C3B was produced.
  • a pellet-shaped resin composition C4 was prepared in the same manner as in Example 1 except that 100 parts by mass of PGA was used instead of 70 parts by mass of PGA, 30 parts by mass of PBT and 5 parts by mass of cyc-CDI.
  • a cubic resin molded body C4A and a dumbbell-shaped resin molded body C4B were produced.
  • Pellets were prepared in the same manner as in Example 1 except that 70 parts by mass of PGA, 30 parts by mass of PBT and 5 parts by mass of cyc-CDI were replaced with 100 parts by mass of PGA and 3 parts by mass of cyc-CDI.
  • a resin composition C5 was prepared, and a cubic resin molded article C5A and a dumbbell-shaped resin molded article C5B were prepared.
  • Example 2 In the same manner as in Example 1, except that 100 parts by mass of PGA and 20 parts by mass of cyc-CDI were used instead of 70 parts by mass of PGA, 30 parts by mass of PBT and 5 parts by mass of cyc-CDI.
  • a cubic resin molded product C6A and a dumbbell-shaped resin molded product C6B were prepared.
  • Example 7 A pellet-shaped resin composition C7 was produced in the same manner as in Example 1 except that cyc-CDI was not used, and a cubic resin molded product C7A and a dumbbell-shaped resin molded product C7B were produced.
  • a graph was created by plotting the acquired data with time (hr) on the horizontal axis and the amount of thickness reduction on the vertical axis, and the slope of the straight line calculated by the least squares method was calculated.
  • the slope of the obtained straight line is the thickness reduction rate ( ⁇ m/hr).
  • the amount of reduction in thickness is the average of the differences in length, width and height of the resin molding A before and after immersion. Plots with a thickness reduction amount of 0.01 mm or less were excluded from the calculation because they could include length measurement errors.
  • compositions and evaluation results of Resin Compositions 1 to 6 are shown in Table 1 below.
  • compositions and evaluation results of resin compositions C1 to C7 are shown in Table 1 below.
  • R 80 represents the thickness reduction rate ( ⁇ m/hr) in water at 80° C.
  • S represents the stress (MPa) at the maximum tensile point.
  • FIG. 6 shows the observation positions of the microscopic structure of the resin molding.
  • a melt-kneaded resin composition was injected from a gate G in the injection direction Di to prepare a rod-shaped resin molding.
  • the resin molded body was cut at a position of 40 mm from the tip in the injection direction Di of the resin molded body to form a cross section So perpendicular to the injection direction Di.
  • the cross section So was observed with a scanning electron microscope (SEM).
  • FIG. 7 shows a SEM photograph of a cross section of the resin molding A having a mass ratio of PGA:PBT of 90:10.
  • the PBT phase is dispersed in the PGA phase.
  • Most of the PBT phases have a size of 500 nm or less, and even the largest ones are 1 ⁇ m or less.
  • PBT is well dispersed in PGA.
  • Fig. 8 shows an SEM photograph of the cross section of resin molding B (Comparative Example 7) having a mass ratio of PGA:PBT of 70:30.
  • the PBT phase is dispersed in the PGA phase, but the size of the PBT phase is larger than that of the resin composition A, and larger particles of 2 to 5 ⁇ m are increased.
  • the size of the PBT phase tends to be larger at the center of the cross section and smaller at the edges.
  • the dispersibility of the PBT phase is lowered. This is presumed to be due to poor cutting of the PBT phase during the molding process.
  • FIG. 9 shows an SEM photograph of the cross section of the resin molding C (Example 1) having a mass ratio of PGA:PBT:cyc-CDI of 70:30:5.
  • resin composition C poor dispersion of the PBT phase in the PGA phase is more pronounced.
  • a belt-like distribution of the PBT phase is observed, and the belt-like PTB phase is oriented in the injection direction. This is presumed to be due to poor cleavage of the PBT phase during the molding process, and further presumed to be due to the fact that the reaction with cyc-CDI further elongated the PBT, thereby aggravating the above-mentioned poor cleavage.
  • Fig. 10 shows an SEM photograph of the cross section of the resin molding D (Comparative Example 7) having a mass ratio of PGA:PET of 70:30.
  • the PET phase is dispersed in the PGA phase.
  • Most of the PET phases have a size of 1 to 5 ⁇ m.
  • PET is well dispersed in PGA.
  • FIG. 11 shows an SEM photograph of the cross section of the resin molding E (Comparative Example 2) having a mass ratio of PGA:PET:cyc-CDI of 70:30:5.
  • resin composition E the PET phase is finely dispersed in the PGA phase.
  • the size of most of the PET phases is 2 ⁇ m or less, which is smaller than that of resin composition D. Also, the shape of many PET phases is nearly circular.
  • the first reason is that the PBT phase exhibits a barrier function against the intrusion of water into the resin molding. That is, the PBT phase in the resin composition is initially finely dispersed in the PGA phase, and in the process of molding, the PBT are bonded to each other via the cyclic carbodiimide compound, resulting in longer molecular chains of PBT. As a result, the melt viscosity of PBT becomes sufficiently high relative to that of PGA, and the melt miscibility between PGA and PBT is reduced. Then, the PBT phase becomes larger and is distributed in the PGA phase in a streak-like or network-like manner.
  • the PBT phase which is distributed more roughly than at the beginning of kneading, prevents water from entering the resin molded body, suppresses contact of water with the PGA phase, and As a result, it is considered that the decomposition retarding effect for water at 80°C is exhibited.
  • the second reason is that unreacted cyc-CDI reacts with water that enters the resin molding. That is, it is thought that the smaller the amount of PBT, the more unreacted cyc-CDI remains. It is thought that this unreacted cyc-CDI consumes the water that has entered the resin molding, thereby suppressing the contact between PGA and water and slowing down the thickness reduction.
  • Example 5 This is inferred from, for example, a comparison between Example 5 and Example 6, or a comparison between Comparative Example 4 and Comparative Example 5 or Comparative Example 6. That is, in 5 parts by mass of PBT (Example 5), carbodiimide consumed in the reaction with COOH is less than in 15 parts by mass of PBT (Example 6), so unreacted carbodiimide remains more. It is believed that such a difference causes the difference in thickness reduction rate between Example 5 and Example 6.
  • the thickness reduction rate R80 of both Examples 5 and 6 is smaller than that of Comparative Example 4, which does not contain PBT and cyc-CDI. Therefore, until the amount of PBT is at least 15 parts by mass (15% by mass with respect to the total amount of the resin components), the effect of further retarding the thickness reduction rate R 80 is that the PBT phase is dispersed in the PGA phase in the resin molded body. It is considered that the presence of a large amount of unreacted cyc-CDI in the resin molding has a greater effect than the above.
  • the distance between the PBT phases in the resin molding is minimized when the PBT content is in the range of 10 to 15%.
  • the distance between the PBT phases in the resin molded body A is shorter than that in the resin molded body B.
  • the thickness reduction rate R 80 of the resin molding containing 100 parts by mass of PGA and 5 parts by mass of cyc-CDI is between Comparative Example 5 and Comparative Example 6 (actually over 40 ⁇ m/hr).
  • the amount of PBT is about 15% by mass of the resin component.
  • the rate of decrease R80 is highest, but thereafter it is believed that the R80 decreases as the amount of PBT increases. Therefore, when the amount of PBT is up to about 15% by mass in the resin component, the PBT phases do not aggregate and are finely dispersed even when cyc-CDI is contained.
  • Comparative Example 7 Comparative Example 1, and Examples 1 to 3, the R 80 of the resin molded body in which PGA/PBT is 70/30 by mass parts, the amount of cyc-CDI is up to 1 part by mass ( Comparative Example 7 and Comparative Example 1) are higher than that of the resin molded product of PGA and cyc-CDI, but when the amount of cyc-CDI is more than 3 parts by mass (Examples 1 to 3), PGA and cyc - Lower than that of resin moldings with CDI.
  • R 80 of Comparative Example 2 (PGA/PET/cyc-CDI is 70/30/5) is 61.7 ⁇ m/hr, and Comparative Example 3 (PGA/PLA/cyc-CDI is 70/30/5)
  • the R 80 of PBT is 66.0 ⁇ m /hr . This is considered to be an effect peculiar to the resin molding containing
  • the present invention can be used in various technical fields using resin materials that can be decomposed by hydrolysis in water while being able to suppress decomposition in water at high temperatures, and in such situations.

Landscapes

  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Fluid Mechanics (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Stored Programmes (AREA)

Abstract

高温の坑井内におけるダウンホールツールまたはその部材の厚みの減少を抑制可能な技術を提供する。上記の課題を解決する一手段として、本発明は、50質量部以上97質量部以下のポリグリコール酸と、3質量部以上50質量部以下のポリブチレンテレフタレートと、ポリグリコール酸およびポリブチレンテレフタレートの総量100質量部に対して2質量部以上15質量部以下の環状カルボジイミド化合物と、を含む樹脂組成物を提供する。

Description

樹脂組成物、ダウンホールツールまたはその部材、プラグおよび坑井処理方法
 本発明は、樹脂組成物、ダウンホールツールまたはその部材、プラグおよび坑井処理方法に関する。
 石油およびガスをはじめとする炭化水素資源を地中から回収するために、ダウンホール(地下掘削坑)が設けられ、ダウンホールツールおよびダウンホールツール部材が利用される。ダウンホールツールおよびダウンホールツール部材は、通常、そのままダウンホール中で崩壊させるか、あるいは落下させることにより処分されるため、分解性のポリマーで構成されることがある。
 このような分解性のポリマーで構成されるダウンホールツール部材には、例えば、ポリグリコール酸製のダウンホールツール部材が知られている。ポリグリコール酸は、高強度でありながらも加水分解性を示すことから、ダウンホールツールまたはその部材の材料に好適に用いられている(例えば、特許文献1参照)。
 また、ダウンホールツールまたはその部材の材料には、オイルフィールドの掘削技術に要求される、135℃よりも高温の熱水中で一定期間、樹脂の重量と形状を保持した後に素早く分解する樹脂組成物が知られている(例えば、特許文献2参照)。
 また、樹脂組成物としては、ポリエステルと環状カルボジイミド化合物とを含有する樹脂組成物が知られている(例えば、特許文献3参照)。
 また成形品の材料としての樹脂組成物には、ポリグリコール酸を50質量%以上含む脂肪族ポリエステル100質量部に対して、カルボン酸無水物1~30質量部を含有する脂肪族ポリエステル樹脂組成物から形成される成形品が知られている。当該成形品は、66℃未満のような比較的低温度のダウンホール環境においても優れた分解性を示すことが知られている(例えば、特許文献4参照)。
国際公開第2013/183363号 特開2015-160872号公報 国際公開第2010/071213号 特開2015-172106号公報
 前述したように、ポリグリコール酸を含む樹脂組成物は、強度および加水分解性の観点から、ダウンホールツールまたはその部材の材料として有用である。しかしながら、環境温度が高温であるほど、ダウンホールツールまたはその部材においてポリグリコール酸の加水分解による厚み減少が速やかに進む傾向にある。そのため、ポリグリコール酸をその材料として含むダウンホールツールまたはその部材には、特に高温(例えば80℃)の坑井内において、目的の期間、その使用形態を維持できないことがある。
 本発明の一態様は、高温の坑井内におけるダウンホールツールまたはその部材の厚みの減少を抑制可能な技術を提供することを目的とする。
 上記の課題を解決するために、本発明の一態様に係る樹脂組成物は、50質量部以上97質量部以下のポリグリコール酸と、3質量部以上50質量部以下のポリブチレンテレフタレートと、前記ポリグリコール酸および前記ポリブチレンテレフタレートの総量100質量部に対して2質量部以上15質量部以下の環状カルボジイミド化合物と、を含む。
 また、上記の課題を解決するために、本発明の一態様に係るダウンホールツールまたはその部材は、上記の樹脂組成物を原料とする成形によって形成された樹脂成形体を含む。
 また、上記の課題を解決するために、本発明の一態様に係るプラグは、坑井内の流体の流通を一時的に妨げるためのプラグであって上記のダウンホールツールまたはその部材である。
 また、上記の課題を解決するために、本発明の一態様に係るダウンホールツールは、筒状部材と、請求項4~8のいずれか一項に記載のプラグとを備え、前記筒状部材は、前記筒状部材の周面に前記筒状部材の内外を連通する開口部を有し、前記プラグは、前記開口部を塞ぐように前記筒状部材に係合されている。
 また、上記の課題を解決するために、本発明の一態様に係る坑井処理方法は、上記のプラグを用いて、坑井およびダウンホールツールの少なくとも一方の一つ以上の領域を一時的に目止めすること、および、プラグにおける前記樹脂成形体の部分を分解させることで前記プラグによる一時的な目止めを解消し、前記領域における流体の流路を変更すること、を含む。
 また、上記の課題を解決するために、本発明の一態様に係る坑井処理方法は、上記のプラグを坑井に設置して、前記坑井内の流体の流れを妨げること、および、前記樹脂成形体を分解させて前記流体の流れを回復すること、を含む。
 また、上記の課題を解決するために、本発明の一態様に係る坑井処理方法は、一端に第1の開口部、他端に第2の開口部、前記一端と前記他端との間に第3の開口部を有し、前記第3の開口部が請求項4~8のいずれか一項に記載のダウンホールツール部材としてのプラグによって目止めされたダウンホールツールを坑井に導入すること、前記第1の開口部を通じて地上から前記ダウンホールツールに流体を圧入して、前記第2の開口部から前記坑井内に前記流体を噴射させて前記坑井を洗浄すること、および、洗浄後、前記プラグにおける前記樹脂成形体の部分を分解させて、前記第3の開口部を介した前記ダウンホールツール内外の流体の流通を可能とすること、を含む。
 本発明の一態様によれば、高温の坑井内におけるダウンホールツールまたはその部材の厚みの減少を抑制可能な技術を提供することができる。
本発明の実施形態に係るプラグの第1の態様を適用したダウンホールツールの断面の概略図である。 本発明の実施形態に係るプラグの第1の態様の変形例1を適用したダウンホールツールの断面の一部を拡大した模式図である。 本発明の実施形態に係るプラグの第1の態様の変形例2を適用したダウンホールツールの断面の一部を拡大した模式図である。 本発明の実施形態に係る、坑井内の所定の位置にあるときの、ダウンホールプラグの断面の概略図である。 本発明の実施形態に係る、坑井を目止めしているときの、ダウンホールプラグの断面の概略図である。 樹脂成形体の微視的構造の観察位置を説明するための図である。 PGA:PBTの質量比が90:10である樹脂成形体の断面における樹脂の分散状態を示すSEM写真を示す図である。 PGA:PBTの質量比が70:30である樹脂成形体の断面における樹脂の分散状態を示すSEM写真を示す図である。 PGA:PBT:cyc-CDIの質量比が70:30:5である樹脂成形体の断面における樹脂の分散状態を示すSEM写真を示す図である。 PGA:PETの質量比が70:30である樹脂成形体の断面における樹脂の分散状態を示すSEM写真を示す図である。 PGA:PET:cyc-CDIの質量比が70:30:5である樹脂成形体の断面における樹脂の分散状態を示すSEM写真を示す図である。
 以下、本発明について、その実施の形態を説明する。本明細書中、断り書きがない限り、「~」はその両端の数値を含む以上以下の範囲を意味する。また、本明細書中、「ポリグリコール酸」を「PGA」とも言い、「ポリブチレンテレフタレート」を「PBT」とも言い、「環状カルボジイミド化合物」を「cyc-CDI」とも言う。
 〔樹脂組成物〕
 本発明の一実施形態に係る樹脂組成物は、ポリグリコール酸と、ポリブチレンテレフタレートと、環状カルボジイミド化合物とを含む。
 [ポリグリコール酸(PGA)]
 本実施形態におけるポリグリコール酸は、-(-O-CH-CO-)-で表される繰り返し単位を含有するポリマーである。ポリグリコール酸は、グリコール酸の単独重合体であることが好ましいが、グリコール酸と他のモノマー成分との共重合体でもよい。
 ポリグリコール酸が共重合体である場合の他のモノマー成分としては、例えば、L-乳酸、D-乳酸、3-ヒドロキシブタン酸および1-ヒドロキシヘキサン酸などのヒドロキシカルボン酸、1,4-ブタンジオールとコハク酸との縮合物および1,4-ブタンジオールとアジピン酸との縮合物などのジオールとジカルボン酸とから構成されるエステル化合物、上述の他のモノマー成分が分子内縮合して生成する環状エステルおよびラクトン、ならびにトリメチレンカーボネートなどの環状カーボネートが挙げられる。
 ポリグリコール酸が共重合体である場合、グリコール酸由来の構成単位は70モル%以上であり、好ましくは80モル%以上であり、より好ましくは90モル%以上である。
 ポリグリコール酸が共重合体である場合、当該共重合体の溶融粘度は、当該共重合体と同じ分子量を有するグリコール酸単独重合体の溶融粘度よりも低いことが好ましい。このような溶融粘度を有する共重合体であれば、樹脂組成物の溶融温度を高くする必要が生じない。このため、グリコール酸由来の構成単位の分解によるポリグリコール酸の分子量の低下を抑制できる。よって、当該樹脂組成物の成形によって得られる樹脂成形体の強度を高める観点から好ましい。
 ポリグリコール酸の分子量は、本発明の実施形態の効果が得られる範囲において、適宜に決められてよい。ポリグリコール酸の分子量は、樹脂成形物においてポリグリコール酸による水蒸気バリア性を発現させる観点から、重量平均分子量で、2万超であることが好ましい。さらにダウンホールツールまたはその部材としての所期の強度を発現させる観点から、ポリグリコール酸の分子量は、7万以上がより好ましく、15万以上がさらに好ましい。ポリグリコール酸の分子量の上限は特に限定されないが、固化押出成形または射出成形を可能とする観点から、通常、重量平均分子量で50万以下であることが好ましく、30万以下がより好ましい。
 [ポリブチレンテレフタレート(PBT)]
 本発明の実施形態におけるポリブチレンテレフタレートは、テレフタル酸単位及び1,4-ブタンジオール単位がエステル結合した構造を有するポリエステルである。ポリブチレンテレフタレートは、テレフタル酸と1,4-ブタンジオールとを重縮合させたポリブチレンテレフタレートの単独重合体(ホモポリマー)が好ましいが、コポリマーであってもよいし、それらの混合物であってもよい。
 たとえば、ポリブチレンテレフタレートは、テレフタル酸以外のジカルボン酸単位を含んでいてもよい。他のジカルボン酸の例には、テレフタル酸以外の芳香族ジカルボン酸類、脂環族ジカルボン酸類および脂肪族ジカルボン酸類が含まれる。芳香族ジカルボン酸類の例には、イソフタル酸、オルトフタル酸、1,5-ナフタレンジカルボン酸、2,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、ビフェニル-2,2’-ジカルボン酸、ビフェニル-3,3’-ジカルボン酸、ビフェニル-4,4’-ジカルボン酸、ビス(4,4’-カルボキシフェニル)メタン、アントラセンジカルボン酸および4,4’-ジフェニルエーテルジカルボン酸が含まれる。脂環族ジカルボン酸類の例には、1,4-シクロへキサンジカルボン酸および4,4’-ジシクロヘキシルジカルボン酸が含まれる。脂肪族ジカルボン酸類の例には、アジピン酸、セバシン酸、アゼライン酸およびダイマー酸が含まれる。
 また、ポリブチレンテレフタレートは、1,4-ブタンジオールの外に他のジオール単位を含んでいてもよい。他のジオール単位の例には、炭素原子数2~20の脂肪族または脂環族ジオール類およびビスフェノール誘導体類等が含まれる。他のジオール単位のより具体的な例には、エチレングリコール、プロピレングリコール、1,5-ペンタンジオール、1,6-へキサンジオール、ネオペンチルグリコール、デカメチレングリコール、シクロヘキサンジメタノール、4,4’-ジシクロヘキシルヒドロキシメタン、4,4’-ジシクロヘキシルヒドロキシプロパンおよびビスフェノールAのエチレンオキシド付加ジオールが含まれる。
 さらに、ポリブチレンテレフタレートは、上記のような二官能性モノマー以外に、分岐構造を導入するための三官能性モノマー、官能基を四個以上有するモノマー、あるいは分子量調節のための単官能性化合物由来の構造単位を少量含んでいてもよい。三官能性モノマーの例には、トリメリット酸、トリメシン酸、ピロメリット酸およびトリメチロールプロパンが含まれる。四官能性モノマーの例にはペンタエリスリトールが含まれる。六官能性モノマーの例にはジペンタエリスリトールが含まれる。
 本発明の実施形態におけるポリブチレンテレフタレートは、共重合により変性したポリブチレンテレフタレートであってもよい。そのような変性ポリブチレンテレフタレートの例には、ポリアルキレングリコール類、特にはポリテトラメチレングリコール、を共重合したポリエステルエーテル、ダイマー酸共重合ポリブチレンテレフタレート、および、イソフタル酸共重合ポリブチレンテレフタレート、が含まれる。なお、変性ポリブチレンテレフタレートとは、共重合体の量が、ポリブチレンテレフタレートの全セグメント中の1モル%以上、50モル%未満のものをいう。
 ポリブチレンテレフタレートの末端カルボキシル基量は、適宜選択して決定すればよい。ポリブチレンテレフタレートの末端カルボキシル基量は、60eq/ton以下であってよく、耐アルカリ性および耐加水分解性の観点から、50eq/ton以下であることが好ましく、30eq/ton以下であることがさらに好ましい。ポリブチレンテレフタレートの末端カルボキシル基量は、ポリブチレンテレフタレートの製造における生産性の観点から、10eq/tonであってよい。
 ポリブチレンテレフタレートの末端カルボキシル基量は、ベンジルアルコール25mLにポリブチレンテレフタレート樹脂0.5gを溶解し、水酸化ナトリウムの0.01モル/Lベンジルアルコール溶液を用いて滴定により測定することが可能である。なお、当該末端カルボキシル基量は、重合時の原料仕込み比などの従来公知の、製造条件によって適宜に調整することが可能である。
 本発明の実施形態におけるポリブチレンテレフタレートの固有粘度は、成形性および機械的特性の観点から、0.5~2dL/gであることが好ましく、0.6~1.5dL/gであることがより好ましい。当該固有粘度は、テトラクロロエタンとフェノールとの1:1(質量比)の混合溶媒中、30℃で測定することが可能である。
 本発明の実施形態のポリブチレンテレフタレートは、市販品であってもよいし、合成品であってもよい。市販品の例には、三菱エンジニアリングプラスチックス株式会社製の「ノバデュラン」(登録商標)が含まれる。合成品は、テレフタル酸を主成分とするジカルボン酸成分またはこれらのエステル誘導体と、1,4-ブタンジオールを主成分とするジオール成分とを、回分式または連続式で溶融重合させる公知の方法によって製造することが可能である。
 本発明の実施形態におけるポリブチレンテレフタレートの分子量は、本発明の実施形態の効果が得られる範囲において適宜に決められてよい。ポリブチレンテレフタレートの分子量は、小さすぎると樹脂成形体への水の侵入を抑制する効果が不十分になることがあり、大きすぎると樹脂成形体中における分散性が不良となることがある。水の侵入抑制効果の観点から、ポリブチレンテレフタレートの分子量は、重量平均分子量で5千以上であることが好ましく、8千以上であることがより好ましく、1万以上であることがさらに好ましい。また、樹脂成形体中におけるポリブチレンテレフタレートの良好な分散性を実現させる観点から、ポリブチレンテレフタレートの分子量は、重量平均分子量で5万以下であることが好ましく、3万以下であることがより好ましく、2万以下であることがさらに好ましい。
 また、ポリブチレンテレフタレートの重量平均分子量Mのポリグリコール酸の重量平均分子量Mに対する比M/Mは、水の侵入抑制効果をより高める観点から、0.01以上であることが好ましく、0.02以上であることがより好ましく、0.03以上であることがさらに好ましい。また、M/Mは、樹脂成形体中における良好な分散性を実現させる観点から、1.0以下であることが好ましく、0.8以下であることがより好ましく、0.3以下であることがさらに好ましい。M/Mが十分に小さいと、ポリブチレンテレフタレートがポリグリコール酸中に十分均一かつ微細に分散しやすい。M/Mが十分に大きいと、樹脂組成物または樹脂成形物中においてポリグリコール酸相中に十分大きなポリブチレンテレフタレート相が形成され、樹脂成形体中への水の侵入を抑制する効果がより高められやすい。
 なお、PGAおよびPBTの重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)などの公知の方法によって測定することが可能であるが、カタログ値であってもよい。
 [環状カルボジイミド化合物(cyc-CDI)]
 本実施形態におけるポリグリコール酸樹脂組成物に含まれる環状カルボジイミド化合物は、カルボジイミド基の第一窒素と第二窒素とが結合基により結合されている環状構造を有する化合物である。環状カルボジイミド化合物は、たとえば下記式(I)で表すことができる。
Figure JPOXMLDOC01-appb-C000001
 式(I)中、Rは、脂肪族基、脂環族基および芳香族基からなる群から選ばれる一以上の2価の結合基を表す。また、式(I)中、Rは、ヘテロ原子を含んでいてもよい。ヘテロ原子の例には、酸素(O)、窒素(N)、硫黄(S)およびリン(P)が含まれる。さらに、Rは、環構造を含んでいてもよく、当該環構造は、カルボジイミド構造を含んでいてもよい。
 たとえば、環状カルボジイミド化合物は、カルボジイミド基の第一窒素と第二窒素とが結合基により結合されている環状構造を二つ有し、かつこれらの環状構造が一部の炭素原子を共有する二価の二環式化合物であってもよい。当該二環式化合物の例には、二つの環状構造が二以上の炭素原子を共有するビシクロ化合物、および、二つの環状構造が一つの炭素原子を共有するスピロ化合物、が含まれる。二つの環状構造は、いずれもカルボジイミド基を含んでおり、互いに同じ構造を有していてもよいし、異なる構造を有していてもよい。
 環状構造の主鎖を構成する原子の種類および数は、本実施形態の効果が得られる範囲において適宜に決めることができる。たとえば、環状構造を直接構成する原子の数は、8以上であることが好ましく、10以上であることがより好ましい。また、当該原子の数は、50以下であることが好ましく、20以下であることがより好ましい。
 さらに、Rは、本実施形態の効果が得られる範囲において一価の置換基をさらに有していてもよい。より詳しくは、Rは、2~4価の炭素数1~20の脂肪族基、2~4価の炭素数3~20の脂環族基、2~4価の炭素数5~15の芳香族基またはこれらの組み合わせであってよい。当該組み合わせの例には、アルキレン基とアリーレン基とが結合したアルキレン-アリーレン基、が含まれる。
 Rにおける脂肪族基の例には、炭素数1~20のアルキレン基、炭素数1~20のアルカントリイル基および炭素数1~20のアルカンテトライル基が含まれる。
 アルキレン基の例には、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、へプチレン基、オクチレン基、ノニレン基、デシレン基、ドデシレン基およびへキサデシレン基が含まれる。
 アルカントリイル基の例には、メタントリイル基、エタントリイル基、プロパントリイル基、ブタントリイル基、ペンタントリイル基、ヘキサントリイル基、ヘプタントリイル基、オクタントリイル基、ノナントリイル基、デカントリイル基、ドデカントリイル基およびヘキサデカントリイル基が含まれる。
 アルカンテトライル基の例には、メタンテトライル基、エタンテトライル基、プロパンテトライル基、ブタンテトライル基、ペンタンテトライル基、ヘキサンテトライル基、ヘプタンテトライル基、オクタンテトライル基、ノナンテトライル基、デカンテトライル基、ドデカンテトライル基およびヘキサデカンテトライル基が含まれる。
 Rにおける脂環族基の例には、炭素数3~20のシクロアルキレン基、炭素数3~20のシクロアルカントリイル基および炭素数3~20のシクロアルカンテトライル基が含まれる。
 シクロアルキレン基の例には、シクロプロピレン基、シクロブチレン基、シクロペンチレン基、シクロヘキシレン基、シクロへプチレン基、シクロオクチレン基、シクロノニレン基、シクロデシレン基、シクロドデシレン基およびシクロへキサデシレン基が含まれる。
 シクロアルカントリイル基の例には、シクロプロパントリイル基、シクロブタントリイル基、シクロペンタントリイル基、シクロヘキサントリイル基、シクロヘプタントリイル基、シクロオクタントリイル基、シクロノナントリイル基、シクロデカントリイル基、シクロドデカントリイル基およびシクロヘキサデカントリイル基が含まれる。
 シクロアルカンテトライル基の例には、シクロプロパンテトライル基、シクロブタンテトライル基、シクロペンタンテトライル基、シクロヘキサンテトライル基、シクロヘプタンテトライル基、シクロオクタンテトライル基、シクロノナンテトライル基、シクロデカンテトライル基、シクロドデカンテトライル基およびシクロヘキサデカンテトライル基が含まれる。
 Rにおける芳香族基の例には、炭素数5~15のアリーレン基、炭素数5~15のアレーントリイル基および炭素数5~15のアレーンテトライル基が含まれる。当該芳香族基は、へテロ原子を含んでいてもよい。
 アリーレン基の例には、フェニレン基およびナフタレンジイル基が含まれる。
 アレーントリイル基(3価)の例には、ベンゼントリイル基およびナフタレントリイル基が含まれる。
 アレーンテトライル基(4価)の例には、ベンゼンテトライル基およびナフタレンテトライル基が含まれる。
 Rが有していてもよい置換基の例には、炭素数1~20のアルキル基、炭素数6~15のアリール基、ハロゲン原子、ニトロ基、アミド基、ヒドロキシル基、エステル基、エーテル基およびアルデヒド基が含まれる。
 上記の環状カルボジイミド化合物の中でも、1個の環状構造内にカルボジイミド基を1個のみ有する化合物を使用することは、イソシアネート化合物独特の臭いによる作業環境の悪化を防止する観点から好ましい。これは、当該構造の環状カルボジイミドであれば、ポリグリコール酸末端のカルボキシル基と反応してもイソシアネート基を有する化合物を遊離しないためである。
 上記の環状カルボジイミド化合物の例には、たとえば下記式(II)または下記式(III)で表される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000002
 また、環状カルボジイミド化合物が同一分子構造中に複数のカルボジイミド基を含む場合には、高分子のカルボキシル基末端との反応により、鎖延長剤としても機能することがある。したがって、環状カルボジイミド化合物は、高温での溶融混錬時の分解によるポリグリコール酸の分子量低下を抑制する観点から、例えば式(III)のような同一分子構造中に複数のカルボジイミド基を含む化合物が好適である。
 [含有量]
 本発明の実施形態の樹脂組成物におけるPGAの含有量は、50質量部以上97質量部以下である。PGAの含有量が50質量部以上であることは、樹脂成形体にPGA由来の速やかな分解特性を十分に付与する観点から好ましく、当該分解特性の向上の観点から、55質量部以上であることがより好ましく、60質量部以上であることがさらに好ましい。また、PGAの含有量が97質量部以下であることは、樹脂成形体の80℃の水中における厚み減少速度を十分に抑制する観点から好ましく、当該厚み減少速度の抑制の観点から、90質量部以下であることがより好ましく、80質量部以下であることがさらに好ましい。
 本発明の実施形態の樹脂組成物におけるPBTの含有量は、3質量部以上50質量部以下である。PBTの含有量が3質量部以上であることは、樹脂成形体の80℃の水中における厚み減少速度を十分に抑制する観点から好ましく、当該厚み減少速度の抑制の観点から、20質量部以上であることがより好ましく、25質量部以上であることがさらに好ましい。また、PBTの含有量が50質量部以下であることは、樹脂成形体の分解特性を十分に発現させる観点から好ましく、当該分解特性の向上の観点から、45質量部以下であることがより好ましく、40質量部以下であることがさらに好ましい。
 本発明の実施形態の樹脂組成物におけるcyc-CDIの含有量は、PGAおよびPBTの総量100質量部に対して2質量部以上15質量部以下である。PGAおよびPBTの総量100質量部に対するcyc-CDIの含有量が2質量部以上であることは、上述の分解特性の発現と厚み減少速度の抑制効果とを両立させる観点から好ましく、厚み減少速度の抑制効果の向上の観点から、4質量部以上であることがより好ましく、5質量部以上であることがさらに好ましい。また、cyc-CDIの含有量が15質量部以下であることは、cyc-CDIの添加による効果と経済性とを両立させる観点から好ましく、経済性の観点から、10質量部以下であることがより好ましく、8質量部以下であることがさらに好ましい。
 本発明の実施形態の樹脂組成物は、上記の構成を有することにより、PGAとPBTとを併用せずにPGAのみを単独で使用する場合に比べて、PGAによる分解特性を有しつつも、80℃の水中での厚み減少速度を抑制することが可能である。これは、前述のcyc-CDIによって、PBT鎖が成形時に鎖延長されるため、と考えられる。その結果、成形時におけるPGAとPBTとの溶融混和性が低下し、樹脂成形体において筋状あるいは網目状のPBT相が形成され、その結果、樹脂成形体におけるPGA相への水の接触が抑制されて前述のような分解遅延効果が発現される、と考えられる。
 [その他の成分]
 本発明の実施形態の樹脂組成物には、本発明の実施形態の効果が得られる範囲において、熱安定剤、酸化防止剤、耐衝撃改質剤、架橋剤、有機フィラー、無機フィラー、および着色剤等の他の添加剤が含まれていてもよい。
 [性状]
 本発明の実施形態の樹脂組成物の形態は限定されない。樹脂組成物は、粉末状の原料の混合物であってもよいし、ペレットなどの、これらの原料の溶融混練物であってもよい。たとえば、樹脂組成物において、PGAの末端が環状カルボジイミド化合物によってキャッピングされていてもよく、PBTの末端が環状カルボジイミド化合物によってキャッピングされていてもよい。ここで、「キャッピングされている構造」とは、PGAまたはPBTの末端のカルボキシル基と環状カルボジイミド化合物とが反応することによって得られる構造を意味する。PGAまたはPBTの末端の一部が、環状カルボジイミド化合物によってキャッピングされていてもよい。PGAまたはPBTの末端の一部が、環状カルボジイミド化合物によってキャッピングされている場合では、本実施形態の樹脂組成物は、PGA、PBTおよび環状カルボジイミド化合物に加えて、例えばPGAまたはPBTの末端に環状カルボジイミド化合物が反応、結合することで構成された、環状カルボジイミド化合物の誘導体をさらに含んでいてもよい。
 [樹脂成形体]
 (樹脂成形体の製造方法)
 本発明の実施形態の樹脂組成物を原料とする成形によって樹脂成形体が形成される。当該樹脂成形体は、PGA、PBTおよびcyc-CDIを混合し、該混合物の固化押出成形または射出成形によって製造することができる。該混合物は、PGA、PBTおよびcyc-CDIを溶融混錬し、ペレット化したものであり得る。溶融混錬する場合、PGAの熱分解抑制の観点から、温度は、220~280℃であることが好ましく、230~260℃であることがより好ましい。
 また、上述の温度でPGA、PBTおよびcyc-CDIを混合することにより、一部のcyc-CDIとPGAおよびPBTのそれぞれの末端のカルボキシル基とが反応する。その結果、PGAまたはPBTの末端がcyc-CDIによってキャッピングされることになる。樹脂成形体を固化押出成形または射出成形する際の温度は、220~280℃であることが好ましく、230~260℃であることがより好ましい。
 (樹脂成形体の分解)
 樹脂成形体は、本発明の実施形態の樹脂組成物から形成されるため、塩濃度の低い流体または水においても好適に分解する。当該樹脂成形体を水に浸漬すると、樹脂成形体の表層部におけるPGAは、加水分解によって分子量が低下する。この結果、樹脂成形体の表層部が脆くなる。分子量が低下したPGAは水を透過するので、樹脂成形体の表層部から中心部にかけて徐々にPGAが加水分解される。こうして、樹脂成形体の脆化が進行する。分子量が低下したPGAがさらなる加水分解によってさらに低分子量化すると、加水分解生成物として生成したオリゴマーまたはグリコール酸が水に溶出する。その結果、樹脂成形体は形状を失う。このようにして、樹脂成形体は最終的に分解される。樹脂成形体を後述するダウンホールツールまたはその部材に使用する場合では、樹脂成形体の分解により、樹脂成形体による目止めが解除される。
 本明細書では、樹脂成形体の脆化の進行速度を、厚み減少速度として規定する。厚み減少速度は、樹脂成形体の脆化していない部分の厚みが減少していく速度である。脆化は樹脂成形体の表面から中心に向かって進行し、脆化していない部分の厚みは表面側から減少していく。このため、脆化の進行速度は厚み減少速度と正の相関を示す。
 「分解リードタイム」とは、樹脂成形体を水に浸漬した時点から、当該成形体における表層部のPGAが加水分解され、当該成形体の厚みが減少し始める時点までの時間を意味する。また、「脆化」とは、PGAが加水分解されることでPGAの分子量が低下し、その結果、樹脂成形体が脆くなることをという。樹脂成形体において、脆くなった部分のことを脆化層とも称する。本発明の実施形態において、当該厚み減少速度は、PBTの量またはcyc-CDIの量によって調整することが可能である。
 当該樹脂成形体の80℃の水中における厚み減少速度は、樹脂成形体の用途に応じて適宜に決めてよい。樹脂成形体の用途が後述のダウンホールツールまたはその部材である場合には、樹脂成形体の80℃の水中における厚み減少速度は、高温環境での形状の安定性の観点から、0.1μm/hr以上であることが好ましく、1μm/hr以上であることがより好ましく、5μm/hr以上であることがさらに好ましい。また、該厚み減少速度は、上記の観点から、60μm/hr未満であることが好ましく、35μm/hr未満であることがより好ましく、30μm/hr未満であることがさらに好ましい。
 本実施形態における樹脂成形体は、前述したようにPGA、PBTおよびcyc-CDIを含む樹脂組成物から形成されている。PGAは水蒸気バリア性が高い。本実施形態に係る樹脂成形体は、表層部が脆化するまで中心部の加水分解および脆化が起こらないため、脆化は急速には進行しない。
 また、本実施形態における樹脂成形体は、PBTを含む。PBTも十分に高い水蒸気バリア性を有し、かつPGAに比べて十分に低い加水分解性を有する。後述の例で示されるように、PGAおよびPBTの総量100質量部に対してPBTが15質量部以下の場合には、PBTはPGA相中に微分散する傾向にある。水はPGA相とPBT相の界面を伝って拡散するため、PBT相がPGA相中に微分散することは、基本的にはPGA相の分解加速に寄与する。一方、PBTの添加量がそれ以上に増加するにつれ、PGA相中においてPBTが凝集し、PBT相間の距離が大きくなるため、水がPGA相に到達するまでの進路長さがより長くなる。また、本実施形態における樹脂成形体の樹脂組成物はさらにcyc-CDIを含むことでcyc-CDIを含まない場合よりPGA相中に分散するPBT相が大きくなり、筋状あるいは網目状に分布することもある。このため、樹脂成形体中における水分子の拡散がより抑制される。これにより、脆化の進行がより遅れる。
 さらに、本実施形態における樹脂成形体は、cyc-CDIまたはカルボジイミド基を含む。脆化層を通過した水分子はcyc-CDIまたはカルボジイミド基と反応するので、水分子の拡散はさらに抑制される。これにより、脆化の進行がさらに遅れる。なお、樹脂組成物中のカルボジイミド基は、例えば、ジメチルスルホンを標準物質としたH NMR測定により定量することが可能である。
 このように、本実施形態における樹脂成形体は、高温の水中において分解リードタイムの経過後も加水分解および脆化を遅らせることができる。そのため、後述のダウンホールツールまたはその部材の用途では、高温条件下であっても目止め保持時間を延ばすことができる。
 (樹脂成形体のその他の物性)
 本実施形態における樹脂成形体は、後述のダウンホールツールまたはその部材の用途において、坑井内の高い圧力に耐えて目止めを保持する観点から、引張強度が80MPa以上であることが好ましく、90MPa以上であることがより好ましく、100MPa以上であることがさらに好ましい。また、成形加工を容易にする観点から、引張強度は400MPa以下であることが好ましく、370MPa以下であることがより好ましく、350MPa以下であることがさらに好ましい。ここで、樹脂成形体の引張強度は、タイプ1Aの引張試験片を用いて、ISO527に準拠して23℃の環境下で50mm/minの速度で引っ張ることで測定される。
 [樹脂組成物のまとめ]
 本発明の第一の実施形態に係る樹脂組成物は、50質量部以上97質量部以下のPGAと、3質量部以上50質量部以下のPBTと、PGAおよびPBTの総量100質量部に対して2質量部以上15質量部以下のcyc-CDIとを含む。当該組成を有する樹脂組成物を材料としたダウンホールツールまたはその部材では、80℃水中の環境下において、PBTを含まない組成に比べて水の侵入をより抑制することが可能である。よって、当該樹脂組成物は、高温の坑井内におけるダウンホールツールまたはその部材の厚みの減少を抑制することを可能とする。
 本発明の第二の実施形態に係る樹脂組成物は、前述の第一の実施形態において、cyc-CDIの含有量は、PGAおよびPBTの総量100質量部に対して4質量部以上であってもよい。この構成は、PBTを含まない組成に比べて樹脂成形体における80℃の水中における厚み減少速度を低減させる観点からより一層効果的である。
 〔ダウンホールツールまたはその部材〕
 本発明の実施形態のダウンホールツールおよびダウンホールツール部材は、上記の本発明の実施形態の樹脂組成物を原料とする成形によって形成された樹脂成形体を含む。本発明の実施形態のダウンホールツールまたはその部材は、その一部が樹脂成形体を含んでいてもよいし、全部が樹脂成形体で形成されていてもよい。本発明の実施形態のダウンホールツールまたはその部材は、その一部が樹脂成形体を含む場合は、樹脂成形体の部分は、そのダウンホールツールまたはその部材において一体的な部分であってもよいし、別途組み合わされる別の部品であってもよい。
 本発明の実施形態において、ダウンホールツールは、地中にある石油およびガスなどの炭化水素資源を回収するためのダウンホールの形成または捕集のためのツールそのものを意味する。ダウンホールツールの例には、プラグ、ウォッシュパイプ、セメントリテイナー、パーフォレーションガン、ボールシーラー、目止めプラグおよびパッカーが含まれる。
 また、本発明の実施形態において、ダウンホールツール部材は、上記のダウンホールツールにおける結合部を構成する部材を意味する。当該結合部は、ダウンホールツールを形成するためにダウンホールツールを構成する複数の部品を結合する部分、あるいは、ダウンホール内における使用形態を実現するためにダウンホールに直接または間接的に結合する部分、を意味する。
 なお、上記の例示のツールは、その構成または用法に応じて、ダウンホールツールに分類されるものとダウンホールツール部材に分類されるものとがある。たとえば、プラグは、ダウンホールツールとしてのプラグと、ダウンホールツール部材としてのプラグとがある。
 〔プラグ〕
 本発明の実施形態のプラグは、坑井内の流体の流通を一時的に妨げるためのプラグであって上記のダウンホールツールまたはその部材である。プラグは、前述したように、ダウンホールツールであるプラグとダウンホールツール部材であるプラグとの両方があり得る。ダウンホールツールとしてのプラグの例には、フラックプラグおよびブリッジプラグが含まれる。ダウンホールツール部材としてのプラグの例には、ボール、ダート、ディスク、ネジおよびパッカーが含まれる。
 [プラグの具体的態様]
 (プラグの第1の態様)
 本発明の実施形態に係るプラグの第1の態様として、坑井に挿入された筒状部材の周面部に設けた該筒状部材の内外を連通させる開口部を塞いで使用するプラグについて説明する。このようなプラグは、例えば、ダウンホールツールに適用されるボール、ダート、ディスク、ネジおよびパッカーであり得る。また、これら第1の態様のプラグが適用されるダウンホールツールの例として、フラクチャリング前に坑井を洗浄したり地層を刺激したりするためのウォッシュパイプを挙げることができる。
 以下に、プラグがダウンホールツールに適用されるネジである場合の態様について、図1を用いて説明する。図1は、本発明の第1の態様に係るプラグを適用したダウンホールツールの断面の概略図である。
 図1に示すダウンホールツール1は、坑井内に挿入されており、筒状部材として筒状本体14を備える。ダウンホールツール1は、始端に第1の開口部16、および終端に第2の開口部17を有し、該始端と該終端との間に1つ以上の第3の開口部18をさらに有する。なお、「20」は坑井壁を表している。
 第3の開口部18は、筒状本体14の周面に設けられており、筒状本体14の内外を連通させる開口部である。第3の開口部18には、第3の開口部18を塞ぐようにネジ状のプラグ11が挿し込まれ、プラグ11は第3の開口部と係合している。このように、筒状本体14の第3の開口部18は、プラグ11によって目止めされている。
 ここで、ダウンホールツールの「始端」とは、ダウンホールツールが坑井内に設定された状態で、坑井の入口側に位置する端部を指し、ダウンホールツールを坑井に挿入する場合に最後に挿入される側の端部を指す。「終端」とは、始端とは逆側の端部であり、坑井内では、坑井を入口から見た場合の奥側に位置する端部を指し、ダウンホールツールを坑井に挿入する場合に先に挿入される側の端部を指す。
 図1に示す通り、プラグ11は、筒状部材の周面に設けられた筒状部材の内外を連通させる開口部を塞ぐ、ネジ状のプラグである。プラグ11は、本実施形態に係る樹脂成形体によって構成される。
 プラグ11が筒状本体14の第3の開口部18に挿し込まれていることにより、筒状本体14の内側から第3の開口部18を介して外側に向かう流体の流れが妨げられる。そして、樹脂成形体によって構成されたプラグ11が分解することにより、第3の開口部18が解放され、その結果、第3の開口部18を介した、筒状本体14の内側から外側に向かう流体の流れ、または筒状本体14の外側から内側に向かう流体の流れが生じることとなる。
 プラグ11の大きさは、適用対象となる筒状本体14の厚みによっても異なり得るが、一つの例としては、プラグ11を筒状本体14にはめ込んだ状態において、筒状本体14の外側に露出する、プラグ11の第1の面121と、筒状本体14の内側に露出する、プラグ11の第2の面122との最短距離L1が6mm以上、65mm以下であり得る。
 (第1の態様の変形例1)
 本実施形態に係るプラグの第1の態様の変形例1について図2を用いて説明する。図2は、本発明の実施形態に係るプラグの第1の態様の変形例1を適用したダウンホールツールの断面の一部を拡大した模式図である。変形例1に係るダウンホールツール2は、上述のダウンホールツール1と同じく、筒状本体24の第3の開口部28が、ネジ状のプラグ21によって目止めされている。
 図2に示す通り、変形例1に係るプラグ21は、上述のプラグ11と同じく、筒状部材の周面に設けられた筒状部材の内外を連通させる開口部を塞ぐプラグである。しかし、変形例1に係るプラグ21は、本実施形態に係る樹脂成形体によって形成されている本体部22と、非分解性材料によって形成されている環状成形体23とによって構成されている点で、プラグ11とは異なる。
 変形例1における環状成形体23は、本体部22の周囲を覆う、外周面にネジ山を有する環状の部材である。ここで、本体部22は、環状成形体23の環の内側に配置されている構成となっている。変形例1における環状成形体23は、SUS303およびSUS304などの非分解性材料によって形成されている。ここで、「非分解性材料」とは坑井環境において容易に重量または厚みが減少しない材料を指す。環状成形体23は、好ましくは坑井内において30日以上実質的に重量または厚みが減少しない材料で形成されている。
 変形例1においては、プラグ21が筒状本体24の第3の開口部28に挿し込まれていることにより、筒状本体24の内側から第3の開口部28を介して外側に向かう流体の流れが妨げられる。そして、樹脂成形体によって構成されたプラグ21の本体部22が分解することにより、第3の開口部28が解放され、その結果、第3の開口部28を介した、より詳細には環状成形体23の環の内側を介した、筒状本体24の内側から外側に向かう流体の流れ、または筒状本体24の外側から内側に向かう流体の流れが生じることとなる。
 本体部22の大きさは、プラグ11の大きさと同様にして、当業者が適宜設定すればよい。
 (第1の態様の変形例2)
 本実施形態に係るプラグの第1の態様の変形例2について図3を用いて説明する。図3は、本発明の実施形態に係るプラグの第1の態様の変形例2を適用したダウンホールツールの断面の一部を拡大した模式図である。図3におけるダウンホールツール3が備える筒状本体34には、その周面に、筒状本体34の内外を連通させる第3の開口部38が設けられている。筒状本体34の内側には、プラグ31が係合している。
 第1の態様の変形例2であるプラグ31は、上述の第1の態様のプラグ11と同じく、内外を連通させる開口部をその周面に有する筒状部材に対して適用されるものであるが、開口部に挿し込まれていない点でプラグ11とは異なる。変形例2のプラグ31は、筒状部材の周面の内側で、当該開口部を塞ぐようにして筒状部材と係合している。このように、第3の開口部38は、プラグ31が筒状本体34の内側に係合していることによって、内側から塞がれている。これにより、筒状本体34の内側から第3の開口部38を介して外側に向かう流体の流れが妨げられる。そして、プラグ21の樹脂成形体によって構成された部分が分解することにより、第3の開口部38が露出し、第3の開口部38を介した、筒状本体34の内側から外側に向かう流体の流れ、または筒状本体34の外側から内側に向かう流体の流れが生じることとなる。
 (プラグの第2の態様)
 本実施形態に係るプラグの第2の態様として、坑井に挿入されるフラックプラグまたはブリッジプラグなどのダウンホールプラグ(ダウンホールツール)が挙げられる。本態様のダウンホールプラグでは、マンドレル、ロードリング、コーン、ソケット、およびボトム等のダウンホールツール部材として本実施形態に係る樹脂成形体が使用されているが、これに限定されるものではない。以下、本実施形態に係るプラグの第2の態様であるダウンホールプラグについて、図4を用いて説明する。図4は、本発明の実施形態に係る、坑井内の所定の位置にあるときの、ダウンホールプラグの断面の概略図である。なお、図4では、ダウンホールプラグの軸に対して対称な断面のうち一方のみを示している。
 図4に示すダウンホールプラグ5は、筒状部材に対応するマンドレル51と、ボール53と、マンドレル51の外周面を囲んで取り付けられているセンターエレメント52、ソケット54、コーン55aおよび55b、スリップ56aおよび56b、イコライザーリング57aおよび57b、ロードリング58、ならびにボトム59とを有している。ダウンホールプラグ5は全体として円筒状の形態を有している。
 ここで、マンドレル51は、マンドレル51の外周に配置される他部材(以下、サイドパーツ)を支持する中軸、およびボール53の受容体として機能する。センターエレメント52は、ダウンホールプラグ5においてマンドレル51と坑井壁20との間隙を埋めて坑井を目止めするための環状のゴム部材であって、荷重によって変形する。
 ソケット54、コーン55、スリップ56、イコライザーリング57およびロードリング58は、いずれもダウンホールプラグ5を坑井内で作動させる際に、セッティングツールから加えられる荷重を、センターエレメント52に直接または間接的に伝達するための要素である。
 ロードリング58は、セッティングツールから加えられる荷重を他のサイドパーツに伝達する押し治具である。コーン55は、スリップ56の円周方向への拡径を促すとともに、センターエレメント52を圧縮する機能を有する。ソケット54は、センターエレメント52が坑井を入口から見た場合の奥側に流出するのを防ぐ機能を有する。
 ボトム59は、ダウンホールプラグ5を坑井内で搬送している間にダウンホールプラグ5が坑井壁20に衝突して作動してしまうことを防止するとともに、セット時に他のサイドパーツを固定する機能を有する。
 〔坑井処理方法〕
 先に説明したプラグは、坑井内の流体の流通を一時的に妨げるプラグであり、坑井処理に用いることができる。本実施形態において、坑井はケーシングを有するcased wellであることが好ましい。
 坑井処理は、プラグを用いて坑井およびダウンホールツールの少なくとも一方の一つ以上の領域において流体の流路を一時的に目止めすること、およびプラグの樹脂成形体を分解させることで目止めを解消し、該領域における流体の流路を変更することを含む。以下、プラグの第1の態様を坑井処理に適用した場合と、第2の態様を坑井処理に適用した場合とについて、別々に説明する。
 上述の「プラグの具体的態様」の第1の態様を坑井処理に適用した場合、プラグが流体の流路を一時的に目止めする領域はダウンホールツールであり、具体的には坑井に挿入される筒状部材が、ダウンホールツールに対応する。この場合、流体の流路はダウンホールツールの筒状部材の周面に設けられた、内外を連通させる第3の開口部である。流体の流れは、筒状部材、すなわちダウンホールツールの内側から開口部を介して外側に向かう流体の流れ、またはダウンホールツールの外側から開口部を介して内側に向かう流体の流れである。
 上述の「プラグの具体的態様」の第2の態様を坑井処理に適用した場合、プラグが一時的に目止めをする流体の流路は坑井であり、流体の流路のうち一時的に目止めする領域は坑井の一部である。
 また、坑井処理の他の態様は、プラグを坑井に設置して、坑井内の流体の流れを妨げること、およびプラグを構成する樹脂成形体を分解させて流体の流れを回復することを含む。坑井処理において、プラグを構成する樹脂成形体は、坑井に存在する流体に含まれる水によって分解されるので、坑井の目止めが解除されて流体の流れが回復する。
 [第1の態様の場合]
 第1の態様のプラグを用いた坑井処理のより具体的な方法として、図1に示すダウンホールツールを用いて、坑井を洗浄する処理および地層を刺激する処理を説明する。図1に示すダウンホールツールを用いた坑井処理方法は、第1の態様のプラグであるネジ状のプラグ11が、ダウンホールツール1の筒状本体14の周面に設けられた第3の開口部18を一時的に目止めする場合の坑井処理方法である。
 坑井の洗浄は、炭化水素資源の回収効率を高めることを目的として、フラクチャリングの前に、次のような手順で行われる。まず、ダウンホールツール1を、流体等を使用して坑井内の任意の位置に導入する。続いて、第1の開口部16を通じて地上から筒状本体14に水などの流体を圧入して、第2の開口部17から坑井内に流体を噴射させることで坑井を洗浄する。一般的な流体としては水、油、あるいはエマルジョン等の液体が用いられ、さらに、そこに数ppmから数十%の塩類が含まれる場合がある。このとき、第3の開口部18は、プラグ11によって目止めされているので、第1の開口部16から圧入された流体は第3の開口部18からは噴射されない。第2の開口部17から坑井内に噴射された流体は、その後、ダウンホールツール1の外側と坑井壁20との隙間を通り、坑井の内壁に堆積した砂およびスケール等を伴って地上で回収される。
 ここで、第3の開口部18がプラグ11によって目止めされていることで、坑井を洗浄した後の砂およびスケール等を伴う流体が第3の開口部18を介してダウンホールツールの内部に入り込むことを防ぐことができる。そのため、洗浄作業の効率低下を防ぐことができる。このように、洗浄作業中は第3の開口部の目止めが解除されないように、プラグ11を維持することが重要となる。
 洗浄後、第3の開口部18を目止めしているプラグ11の樹脂成形体が分解されると、第3の開口部18を介して筒状本体14の内外は連通可能になる。これにより、第3の開口部18を介してダウンホールツール1内外の流体の流通を可能とする。
 続いて、地層を刺激する処理について説明する。地層を刺激する処理は、地層から回収される炭化水素資源の回収効率を高める観点から、坑井を洗浄した後に行うことが好ましい。地層の刺激を行う際は、第3の開口部を介して、ダウンホールツール1内外の液体の流通が可能であることが好ましい。
 地層を刺激する処理の手順は次の通りである。まず、第1の開口部16を通じて地上から筒状本体14に、地層を刺激するための刺激流体を圧入する。圧入された刺激流体は、第3の開口部18を介して坑井壁20に噴射され、地層が刺激される。この刺激により地層から回収される炭化水素資源の量が増えるため、生産効率の増加に寄与できる。
 地層を刺激する処理の後、地層から坑井内に流れ出た炭化水素資源を含んだ生産流体を、第3の開口部18および第1の開口部16を介して地上へ回収することができる。
 本実施形態に係るプラグによれば、高温環境の坑井におけるダウンホールツールの複数の領域における目止め機能を所望の期間保持可能であり、かつ所望期間の経過後、塩濃度の低い流体または水中においても好適に分解するプラグが得られる。これにより所望期間における目止めをより確実にし、さらに目止め位置における目詰まりなどのリスク低減が可能となる。
 [第2の態様の場合]
 第2の態様のプラグを用いた坑井処理のより具体的な方法の一例として、図4および図5に示すダウンホールプラグを用いてフラクチャリング行う場合の方法を説明する。これは、第2の態様のプラグに対応するダウンホールプラグが坑井を一時的に目止めする場合の坑井処理方法である。図4は、本発明の実施形態に係る、坑井内の所定の位置にあるときの、ダウンホールプラグの断面の概略図である。図5は、本発明の実施形態に係る、坑井を目止めしているときの、ダウンホールプラグの断面の概略図である。なお、図4および図5は、ダウンホールプラグの軸に対して対称な断面のうち一方のみを示している。
 まず、ダウンホールプラグ5を、流体等を使用して地上から坑井内の任意の位置に導入する。その後、セッティングツールを稼働させ、図5に示すようにセンターエレメント52を変形させることによって、ダウンホールプラグ5を坑井壁20に設置および固定する。
 次に、ダウンホールプラグ5のマンドレル51の始端を塞いで、目止めを完成させる。目止めの方法としては、例えば図5に示すように、ダウンホールプラグ5の始端に向けて供給されたボール53を、当該マンドレル51の始端に配置することにより、マンドレル51の一端を閉塞する方法が挙げられる。これにより、ダウンホールプラグ5を境として、坑井の入口側と奥側との空間を隔てることができる。なお、ボール53は地上から流体と共に流入させることによって、マンドレル51の始端に配置してもよい。
 続いて、地上から水または水を含む流体を圧入し、ダウンホールプラグ5よりも入口側の坑井の空間に高圧力をかけ、坑井内のフラクチャーを拡大・伝播させる。このような、流体の圧入によるフラクチャーの拡大の方法は、水圧フラクチャリング(hydraulic fracturing)と呼ばれる。
 フラクチャリング終了後、ダウンホールプラグ5に水を含む流体を接触させることにより、ダウンホールプラグ5の一部または全部を構成する樹脂成形体が分解される。これにより、ダウンホールプラグ5は当初の形状を失い、坑井の目止めが解除される。
 本実施形態に係るプラグによれば、高温環境の坑井の複数の領域における目止め機能を所望の期間保持可能であり、かつ所望期間の経過後、塩濃度の低い流体または水中においても好適に分解することが可能である。これにより、目止めを所望期間より確実に行うことができ、さらに目止め位置における目詰まりなどのリスク低減が可能となる。
 〔ダウンホールツールに関するまとめ〕
 本発明の第三の実施形態に係るダウンホールツールまたはその部材は、前述した第一の実施形態または第二の実施形態に係る樹脂組成物を原料とする成形によって形成された樹脂成形体を含む。また、本発明の第四の実施形態に係るプラグは、坑井内の流体の流通を一時的に妨げるためのプラグであって、上記の第三の実施形態に係るダウンホールツールまたはその部材である。本発明の実施形態におけるダウンホールツールまたはその部材あるいはプラグは、前述の樹脂組成物を材料とする樹脂成形体を要部に含むことから、高温の坑井内におけるダウンホールツールまたはその部材の厚みの減少を抑制することが可能である。
 本発明の第五の実施形態に係るプラグは、前述した第四の実施形態において、ボール、ダート、ディスク、ネジまたはパッカーであってもよい。
 本発明の第六の実施形態のプラグは、前述した第四の実施形態において、筒状部材の周面部に設けられた、前記筒状部材の内外を連通する開口部を塞ぐのに使用され、前記樹脂成形体の部分は、使用時に前記筒状部材の外側に露出する第1の面と、使用時に前記筒状部材の内側に露出する第2の面とを有しており、前記第1の面と前記第2の面との最短距離が6mm以上65mm以下であってもよい。
 本発明の第七の実施形態のプラグは、前述した第四の実施形態から第六の実施形態のいずれかにおいて、上記の樹脂成形体の部分は、非分解性材料からなる別の成形体によって少なくとも一部が覆われていてもよい。
 本発明の第八の実施形態のプラグは、前述した第七の実施形態において、上記の別の成形体は、外周面がネジ山で形成されている環状成形体であり、前記樹脂成形体の部分は、前記環状成形体の環の内側に配置されていてもよい。
 本発明の第九の実施形態のプラグは、前述した第四の実施形態において、フラックプラグまたはブリッジプラグであってもよい。
 本発明の第十の実施形態のダウンホールツールは、筒状部材と、前述した第四の実施形態から第八の実施形態のいずれかのプラグとを備えていてよく、当該筒状部材は、前記筒状部材の周面に前記筒状部材の内外を連通する開口部を有し、当該プラグは、前記開口部を塞ぐように前記筒状部材に係合されていてもよい。
 上記のダウンホールツールまたはその部材は、いずれも、前述の樹脂組成物を材料とする樹脂成形体を要部に含む。したがって、上記のように特定されるそれぞれの形態および用途で高温の坑井内で使用される場合において、その厚みの減少を抑制する観点からより一層効果的である。
 本発明の第十一の実施形態に係る坑井処理方法は、前述した第四の実施形態から第九の実施形態のいずれかのプラグを用いて、坑井およびダウンホールツールの少なくとも一方の一つ以上の領域を一時的に目止めすること、および、前記プラグにおける前記樹脂成形体の部分を分解させることで前記プラグによる一時的な目止めを解消し、前記領域における流体の流路を変更すること、を含み得る。
 あるいは、本発明の第十二の実施形態に係る坑井処理方法は、前述した第四の実施形態から第九の実施形態のいずれかのプラグを坑井に設置して、前記坑井内の流体の流れを妨げること、および、前記樹脂成形体を分解させて前記流体の流れを回復すること、を含み得る。
 あるいは、本発明の第十三の実施形態に係る坑井処理方法は、(1)一端に第1の開口部、他端に第2の開口部、前記一端と前記他端との間に第3の開口部を有し、前記第3の開口部が前述した第四の実施形態から第八の実施形態のいずれかのダウンホールツール部材としてのプラグによって目止めされたダウンホールツールを坑井に導入すること、(2)前記第1の開口部を通じて地上から前記ダウンホールツールに流体を圧入して、前記第2の開口部から前記坑井内に前記流体を噴射させて前記坑井を洗浄すること、および、(3)洗浄後、前記プラグにおける前記樹脂成形体の部分を分解させて、前記第3の開口部を介した前記ダウンホールツール内外の流体の流通を可能とすること、を含み得る。
 いずれの坑井処理方法においても、前述の樹脂組成物を材料とする樹脂成形体を要部に含むダウンホールツールまたはその部材を用いる。したがって、上記のように特定されるそれぞれの用途において、高温の坑井内におけるダウンホールツールまたはその部材の厚みの減少を抑制することが可能である。
 本発明は、上述した各実施形態に限定されず、請求項に示した範囲で種々の変更が可能である。異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態も、本発明の技術的範囲に含まれる。
 なお、上記の本発明の実施形態によれば、ダウンホールによる地下資源の回収において、それに利用する装置および部材を高温の環境下でも所期の用途で確実に使用することが可能となる。また、上記の本発明の実施形態によれば、利用後にダウンホール中に分解物が放出されることによる環境への負荷が軽減される。よって、上記の本発明の実施形態によれば、陸または海の豊かさを守る持続可能な開発目標(SDGs)の達成への貢献が期待される。
 〔実施例1〕
 ポリグリコール酸(PGA、株式会社クレハ製「Kuredux 100R90」、重量平均分子量(Mw):21万)、ポリブチレンテレフタレート(PBT、三菱エンジニアリングプラスチックス株式会社製「ノバデュラン(登録商標) 5010R5」)、ポリエチレンテレフタレート(PET、東洋紡株式会社製「RY518X」)、および、環状カルボジイミド(cyc-CDI、帝人株式会社製「カルボジスタ(登録商標)」、グレード「TCC-NP」)を用意した。
 70質量部のPGA、30質量部のPBTおよび5質量部のcyc-CDIを混合した。得られた混合物を、スクリュー部の温度を210~250℃に設定した二軸押出混練機のフィード部に供給して溶融混練を行い、ペレット状の樹脂組成物1を作製した。
 樹脂組成物1を、スクリュー部の温度を210~255℃に設定した射出成形機に投入し、金型温度100℃の条件で射出成形し、一辺の幅が12.5mmの立方体である樹脂成形体1Aを作製した。また、同条件で、ダンベル型の引張試験片(1A試験片)である樹脂成形体1Bを作製した。
 〔実施例2、3〕
 cyc-CDIの量を3質量部に変更する以外は実施例1と同様にして、ペレット状の樹脂組成物2を作製し、立方体の樹脂成形体2Aおよびダンベル型の樹脂成形体2Bを作製した。
 また、cyc-CDIの量を10質量部に変更する以外は実施例1と同様にして、ペレット状の樹脂組成物3を作製し、立方体の樹脂成形体3Aおよびダンベル型の樹脂成形体3Bを作製した。
 〔実施例4~6〕
 PGAの量を55質量部、PBTの量を45質量部にそれぞれ変更する以外は実施例1と同様にして、ペレット状の樹脂組成物4を作製し、立方体の樹脂成形体4Aおよびダンベル型の樹脂成形体4Bを作製した。
 また、PGAの量を95質量部、PBTの量を5質量部にそれぞれ変更する以外は実施例1と同様にして、ペレット状の樹脂組成物5を作製し、立方体の樹脂成形体5Aおよびダンベル型の樹脂成形体5Bを作製した。
 さらに、PGAの量を85質量部、PBTの量を15質量部にそれぞれ変更する以外は実施例1と同様にして、ペレット状の樹脂組成物6を作製し、立方体の樹脂成形体6Aおよびダンベル型の樹脂成形体6Bを作製した。
 〔比較例1〕
 cyc-CDIの量を1質量部に変更する以外は実施例1と同様にして、ペレット状の樹脂組成物C1を作製し、立方体の樹脂成形体C1Aおよびダンベル型の樹脂成形体C1Bを作製した。
 〔比較例2、3〕
 PBTに代えてポリエチレンテレフタレート(PET、東洋紡株式会社製「RY518X」)を用いる以外は実施例1と同様にして、ペレット状の樹脂組成物C2を作製し、立方体の樹脂成形体C2Aおよびダンベル型の樹脂成形体C2Bを作製した。
 また、PBTに代えてポリ乳酸(PLA、Natureworks製「4032D」)を用いる以外は実施例1と同様にして、ペレット状の樹脂組成物C3を作製し、立方体の樹脂成形体C3Aおよびダンベル型の樹脂成形体C3Bを作製した。
 〔比較例4〕
 70質量部のPGA、30質量部のPBTおよび5質量部のcyc-CDIに代えて100質量部のPGAを用いる以外は実施例1と同様にして、ペレット状の樹脂組成物C4を作製し、立方体の樹脂成形体C4Aおよびダンベル型の樹脂成形体C4Bを作製した。
 〔比較例5、6〕
 70質量部のPGA、30質量部のPBTおよび5質量部のcyc-CDIに代えて100質量部のPGAおよび3質量部のcyc-CDIを用いる以外は実施例1と同様にして、ペレット状の樹脂組成物C5を作製し、立方体の樹脂成形体C5Aおよびダンベル型の樹脂成形体C5Bを作製した。
 また、70質量部のPGA、30質量部のPBTおよび5質量部のcyc-CDIに代えて100質量部のPGAおよび20質量部のcyc-CDIを用いる以外は実施例1と同様にして、ペレット状の樹脂組成物C6を作製し、立方体の樹脂成形体C6Aおよびダンベル型の樹脂成形体C6Bを作製した。
 〔比較例7〕
 cyc-CDIを用いない以外は実施例1と同様にして、ペレット状の樹脂組成物C7を作製し、立方体の樹脂成形体C7Aおよびダンベル型の樹脂成形体C7Bを作製した。
 〔評価〕
 [1]分解性試験
 立方体の樹脂成形体Aを用いて以下の(1)~(5)に従って分解性試験を実施し、厚み減少速度を算出した。
 (1)樹脂成形体Aを120℃で5時間アニール処理した後、樹脂成形体Aの縦、横、高さの長さを測定する。
 (2)50mLバイアル瓶に脱イオン水50mLを入れ、80℃の恒温槽に静置し、予め80℃の状態にしておく。
 (3)樹脂成形体Aを(2)で用意したバイアル瓶に投入し、80℃の脱イオン水50mLに浸漬させた後、80℃の恒温槽に静置し、所定の時間経過後に取り出す。
 (4)取り出した樹脂成形体Aを大気圧下、80℃のオーブン内に2時間静置して乾燥させた後、樹脂成形体Aの脆化層を削り落とし、残った部分の縦、横、高さの長さを測定する。脆化層の除去は、カッターを用いて削り取ることで行った。
 (5)取得したデータについて、横軸を時間(hr)、縦軸を厚み減少量としてプロットしたグラフを作成し、最小二乗法により算出した直線の傾きを算出した。得られた直線の傾きがを厚み減少速度(μm/hr)である。ここで、厚み減少量は、樹脂成形体Aの縦、横、高さの長さの浸漬前後での差の平均である。なお、厚み減少量が0.01mm以下であるプロットについては、長さの測定誤差を含み得るため、計算から除外した。
 [2]引張試験
 作製した樹脂成形体の引張最大点の応力を測定するため、引張試験を行った。引張試験は樹脂成形体B(タイプ1Aの引張試験片)を用いて、ISO527に準拠して23℃の環境下で50mm/minの速度で引っ張ることで測定した。
 樹脂組成物1~6の組成および評価結果を下記表1に示す。また、樹脂組成物C1~C7の組成および評価結果を下記表1に示す。表中「R80」は、80℃の水中における厚み減少速度(μm/hr)を表し、「S」は、引張最大点の応力(MPa)を表す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 〔樹脂成形体の微視的構造の観察〕
 [樹脂成形体の準備]
 樹脂成形体における樹脂の分散状態を観察する目的で、下記の樹脂成形体を、上記の条件で作製した。
 PGA:PBTの質量比が90:10である樹脂成形体A
 PGA:PBTの質量比が70:30である樹脂成形体B(比較例7)
 PGA:PBT:cyc-CDIの質量比が70:30:5である樹脂成形体C(実施例1)
 PGA:PETの質量比が70:30である樹脂成形体D
 PGA:PET:cyc-CDIの質量比が70:30:5である樹脂成形体E(比較例2)
 [観察位置]
 樹脂成形体の微視的構造の観察位置を図6に示す。まず、樹脂組成物の溶融混練物をゲートGから射出方向Diに射出して棒状の樹脂成形体を作製した。樹脂成形体の射出方向Diにおける先端から40mmの位置で樹脂成形体を切断し、射出方向Diに垂直な断面Soを形成した。断面Soを走査型電子顕微鏡(SEM)で観察した。
 [観察結果]
 PGA:PBTの質量比が90:10である樹脂成形体Aの断面のSEM写真を図7に示す。樹脂成形体Aでは、PBT相がPGA相中に分散している。PBT相の大きさは、そのほとんどが500nm以下であり、大きいものでも1μm以下である。このように、樹脂成形体Aでは、PBTはPGA中に良好に分散している。
 PGA:PBTの質量比が70:30である樹脂成形体B(比較例7)の断面のSEM写真を図8に示す。樹脂成形体Bでは、PBT相がPGA相中に分散しているが、PBT相の大きさは、樹脂組成物Aのものよりも大きく、2~5μmのより大きな粒子が増加している。また、ほぼ円形のPBT相が多い。また、PBT相の大きさは、断面の中心部でより大きく、縁部でより小さい傾向がみられる。このように、樹脂成形体Bでは、PBT相の分散性が低下している。これは、成形過程におけるPBT相の切断不良によるものと推定される。
 PGA:PBT:cyc-CDIの質量比が70:30:5である樹脂成形体C(実施例1)の断面のSEM写真を図9に示す。樹脂組成物Cでは、PGA相中のPBT相の分散不良がより顕著となっている。PBT相の帯状の分布が見られ、帯状のPTB相は、射出方向に配向している。これは、成形過程におけるPBT相の切断不良によるものと推定され、さらにcyc-CDIとの反応によってPBTがより伸張され、その結果上記の切断不良が助長されたため、と推定される。
 PGA:PETの質量比が70:30である樹脂成形体D(比較例7)の断面のSEM写真を図10に示す。樹脂成形体Dでは、PET相がPGA相中に分散している。PET相の大きさは、そのほとんどが1~5μmである。また、ほぼ円形のPET相が多い。このように、樹脂成形体Dでは、PETはPGA中に良好に分散している。
 PGA:PET:cyc-CDIの質量比が70:30:5である樹脂成形体E(比較例2)の断面のSEM写真を図11に示す。樹脂組成物Eでは、PET相は、PGA相中に微分散している。多くのPET相の大きさは2μm以下であり、樹脂組成物Dのものよりも小さい。また、多くのPET相の形状はほぼ円形である。
 〔考察〕
 実施例1~6の樹脂成形体は、いずれも、PBTを含有しない樹脂成形体、例えばPGAのみからなる樹脂成形体C4(比較例4)に比べて、80℃の水中での厚み減少速度がより小さかった。これは、主に二つの理由によって樹脂成形体におけるPGA相への水の接触が抑制されたため、と考えられる。
 第一の理由には、PBT相が樹脂成形体内への水の侵入に対してバリア機能を発現していることが挙げられる。すなわち、樹脂組成物中のPBT相は、当初はPGA相中に微分散しており、成形の過程において、環状カルボジイミド化合物を介してPBTが互いに結合し、PBTの分子鎖がより長くなる。その結果、PBTの溶融粘度がPGAの溶融粘度に対して十分に高くなり、PGAとPBTとの溶融混和性が低下する。そして、PBT相がより大きくなり、またPGA相中において筋状あるいは網目状に分布する。そのため、樹脂成形体となったときに、このように、混練当初に比べてより粗く分布するPBT相が樹脂成形体内への水の侵入を妨げ、PGA相への水の接触を抑制し、その結果、80℃の水に対する分解遅延効果が発現される、と考えらえる。
 第二の理由には、未反応のcyc-CDIが樹脂成形体中に侵入する水と反応することが挙げられる。すなわち、PBTの量が少ないほど、未反応のcyc-CDIがより多く残存すると考えられる。この未反応のcyc-CDIが、樹脂成形体中に侵入した水を消費することにより、PGAと水との接触が抑制され、厚み減少が遅くなる、と考えられる。
 これは、例えば実施例5と実施例6との対比、あるいは比較例4と比較例5または比較例6との対比、から推測される。すなわち、5質量部のPBT(実施例5)では、COOHとの反応で消費されるカルボジイミドが、15質量部のPBT(実施例6)よりも少ないため、樹脂成形体中には未反応のカルボジイミドがより多く残存する。このような差が、実施例5と実施例6との間における厚み減少速度の差を生じていると考えられる。
 なお、PBTおよびcyc-CDIを含有しない比較例4に比べて実施例5および実施例6のいずれもの厚み減少速度R80の方が小さい。したがって、PBTの量が少なくとも15質量部(樹脂成分の総量に対して15質量%)までは、厚み減少速度R80をより遅らせる効果については、樹脂成形体においてPBT相がPGA相内に分散すること、よりも、未反応のcyc-CDIが樹脂成形体により多く存在すること、の方がより大きく影響する、と考えらえる。
 ここで、樹脂成形体におけるPBT相間の距離は、PBTの含有量が10~15%の範囲内で最小となると考えられる。まず、cyc-CDIを含有しないPBT10質量部の樹脂成形体AのSEM写真(図7)と、cyc-CDIを含有しないPBT30質量部の樹脂成形体BのSEM写真(図8)との対比から、樹脂成形体AにおけるPBT相間の距離は、樹脂成形体Bのそれに比べて短い。そして、これらの80℃の水中における厚み減少速度R80を測定すると、樹脂成形体Aの厚み減少速度R80は、樹脂成形体Bの厚み減少速度R80に比べて速い。
 一方、PGA100質量部とcyc-CDI5質量部の樹脂成形体の厚み減少速度R80は、比較例5と比較例6との間の数値(実際には40μm/hr強)となる。この場合の厚み減少速度R80と、実施例5のR80、実施例6のR80および実施例1のR80との対比によれば、PBTの量が樹脂成分の15質量%付近で厚み減少速度R80は最も高くなるが、その後は、PBTの量が増えるに連れてR80は低減すると考えられる。よって、PBTの量が樹脂成分中の15質量%程度までの量では、cyc-CDIを含んでいてもPBT相同士は凝集せずに、微分散すると考えられる。
 次に、cyc-CDIの量と厚み減少速度との関係について検討する。比較例4~6および上記の説明から、PGAとcyc-CDIとの樹脂成形体のR80は、cyc-CDIの量が増えるにつれて、64.2μm/hrから40μm/hr強へ減少し、その後、cyc-CDIが20質量部までほぼ一定である。
 これに対して、比較例7、比較例1および実施例1~3から、PGA/PBTが質量部数で70/30の樹脂成形体のR80は、cyc-CDIの量が1質量部まで(比較例7、比較例1)はPGAとcyc-CDIとの樹脂成形体のそれよりも高いが、cyc-CDIの量が3質量部より多くなる(実施例1~3)と、PGAとcyc-CDIとの樹脂成形体のそれを下回る。比較例2(PGA/PET/cyc-CDIが70/30/5)のR80は61.7μm/hrであること、および比較例3(PGA/PLA/cyc-CDIが70/30/5)のR80は66.0μm/hrであることから、少なくとも樹脂成分中の3質量%以上の量でR80がPGAとcyc-CDIとの樹脂成形体のR80よりも低くなることは、PBTを含有する樹脂成形体に特有の効果であると考えられる。
 本発明は、高温の水中における分解を抑制可能でありつつも、水中での加水分解によって分解可能な樹脂材料、およびそのような状況で当該樹脂材料を用いる種々の技術分野において利用され得る。
 1、2、3 ダウンホールツール
 5 ダウンホールプラグ
 11、21、31 プラグ
 14、24、34 筒状本体
 16 第1の開口部
 17 第2の開口部
 18、28、38 第3の開口部
 20 坑井壁
 22 本体部
 23 環状成形体
 51 マンドレル
 52 センターエレメント
 53 ボール
 54 ソケット
 55、55a、55b コーン
 56、56a、56b スリップ
 57、57a、57b イコライザーリング
 58 ロードリング
 59 ボトム
 121 第1の面
 122 第2の面

 

Claims (13)

  1.  50質量部以上97質量部以下のポリグリコール酸と、
     3質量部以上50質量部以下のポリブチレンテレフタレートと、
     前記ポリグリコール酸および前記ポリブチレンテレフタレートの総量100質量部に対して2質量部以上15質量部以下の環状カルボジイミド化合物と、
    を含む樹脂組成物。
  2.  前記環状カルボジイミド化合物の含有量が、前記ポリグリコール酸および前記ポリブチレンテレフタレートの総量100質量部に対して4質量部以上である、請求項1に記載の樹脂組成物。
  3.  請求項1に記載の樹脂組成物を原料とする成形によって形成された樹脂成形体を含む、ダウンホールツールまたはその部材。
  4.  坑井内の流体の流通を一時的に妨げるためのプラグであって請求項3に記載のダウンホールツールまたはその部材である、プラグ。
  5.  ボール、ダート、ディスク、ネジまたはパッカーである、請求項4に記載のプラグ。
  6.  筒状部材の周面部に設けられた、前記筒状部材の内外を連通する開口部を塞ぐのに使用され、
     前記樹脂成形体の部分は、使用時に前記筒状部材の外側に露出する第1の面と、使用時に前記筒状部材の内側に露出する第2の面とを有しており、
     前記第1の面と前記第2の面との最短距離が6mm以上65mm以下である、請求項4に記載のプラグ。
  7.  前記樹脂成形体の部分は、非分解性材料からなる別の成形体によって少なくとも一部が覆われている、請求項4に記載のプラグ。
  8.  前記別の成形体は、外周面がネジ山で形成されている環状成形体であり、
     前記樹脂成形体の部分は、前記環状成形体の環の内側に配置されている、請求項7に記載のプラグ。
  9.  フラックプラグまたはブリッジプラグである、請求項4に記載のプラグ。
  10.  筒状部材と、請求項4~8のいずれか一項に記載のプラグとを備え、
     前記筒状部材は、前記筒状部材の周面に前記筒状部材の内外を連通する開口部を有し、
     前記プラグは、前記開口部を塞ぐように前記筒状部材に係合されている、ダウンホールツール。
  11.  請求項4~9のいずれか一項に記載のプラグを用いて、坑井およびダウンホールツールの少なくとも一方の一つ以上の領域を一時的に目止めすること、および、
     前記プラグにおける前記樹脂成形体の部分を分解させることで前記プラグによる一時的な目止めを解消し、前記領域における流体の流路を変更すること、を含む、坑井処理方法。
  12.  請求項4~9のいずれか一項に記載のプラグを坑井に設置して、前記坑井内の流体の流れを妨げること、および、
     前記樹脂成形体を分解させて前記流体の流れを回復すること、を含む、坑井処理方法。
  13.  一端に第1の開口部、他端に第2の開口部、前記一端と前記他端との間に第3の開口部を有し、前記第3の開口部が請求項4~8のいずれか一項に記載のダウンホールツール部材としてのプラグによって目止めされたダウンホールツールを坑井に導入すること、
     前記第1の開口部を通じて地上から前記ダウンホールツールに流体を圧入して、前記第2の開口部から前記坑井内に前記流体を噴射させて前記坑井を洗浄すること、および、
     洗浄後、前記プラグにおける前記樹脂成形体の部分を分解させて、前記第3の開口部を介した前記ダウンホールツール内外の流体の流通を可能とすること、を含む、坑井処理方法。
PCT/JP2022/034307 2021-09-29 2022-09-14 樹脂組成物、ダウンホールツールまたはその部材、プラグおよび坑井処理方法 WO2023053955A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280061327.2A CN117916314A (zh) 2021-09-29 2022-09-14 树脂组合物、井下工具或其构件、堵塞器以及坑井处理方法
EP22875826.4A EP4410892A1 (en) 2021-09-29 2022-09-14 Resin composition, downhole tool or member thereof, plug, and well treatment method
CA3232295A CA3232295A1 (en) 2021-09-29 2022-09-14 Resin composition, downhole tool or member thereof, plug, and well treatment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-159575 2021-09-29
JP2021159575 2021-09-29

Publications (1)

Publication Number Publication Date
WO2023053955A1 true WO2023053955A1 (ja) 2023-04-06

Family

ID=85782417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/034307 WO2023053955A1 (ja) 2021-09-29 2022-09-14 樹脂組成物、ダウンホールツールまたはその部材、プラグおよび坑井処理方法

Country Status (4)

Country Link
EP (1) EP4410892A1 (ja)
CN (1) CN117916314A (ja)
CA (1) CA3232295A1 (ja)
WO (1) WO2023053955A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010071213A1 (ja) 2008-12-15 2010-06-24 帝人株式会社 環状カルボジイミドを含有する樹脂組成物
JP2011143709A (ja) * 2009-12-16 2011-07-28 Toray Ind Inc 積層フィルム、それを用いた蒸着フィルム
JP2012001594A (ja) * 2010-06-15 2012-01-05 Teijin Ltd 樹脂組成物の製造方法
JP2012011776A (ja) * 2010-06-03 2012-01-19 Ube Industries Ltd フィルム
WO2013183363A1 (ja) 2012-06-07 2013-12-12 株式会社クレハ 炭化水素資源回収ダウンホールツール用部材
JP2015160872A (ja) 2014-02-26 2015-09-07 帝人株式会社 樹脂組成物
JP2015172106A (ja) 2014-03-11 2015-10-01 株式会社クレハ 脂肪族ポリエステル樹脂を含有する有効厚みが1mm以上である成形品、及び炭化水素資源回収用ダウンホールツール部材
JP2015172116A (ja) * 2014-03-11 2015-10-01 帝人株式会社 複合体用樹脂組成物および複合体
CN111690391A (zh) * 2020-07-03 2020-09-22 北京金圣奥能源技术有限公司 一种耐高温韧性可降解暂堵剂及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010071213A1 (ja) 2008-12-15 2010-06-24 帝人株式会社 環状カルボジイミドを含有する樹脂組成物
JP2011143709A (ja) * 2009-12-16 2011-07-28 Toray Ind Inc 積層フィルム、それを用いた蒸着フィルム
JP2012011776A (ja) * 2010-06-03 2012-01-19 Ube Industries Ltd フィルム
JP2012001594A (ja) * 2010-06-15 2012-01-05 Teijin Ltd 樹脂組成物の製造方法
WO2013183363A1 (ja) 2012-06-07 2013-12-12 株式会社クレハ 炭化水素資源回収ダウンホールツール用部材
JP2015160872A (ja) 2014-02-26 2015-09-07 帝人株式会社 樹脂組成物
JP2015172106A (ja) 2014-03-11 2015-10-01 株式会社クレハ 脂肪族ポリエステル樹脂を含有する有効厚みが1mm以上である成形品、及び炭化水素資源回収用ダウンホールツール部材
JP2015172116A (ja) * 2014-03-11 2015-10-01 帝人株式会社 複合体用樹脂組成物および複合体
CN111690391A (zh) * 2020-07-03 2020-09-22 北京金圣奥能源技术有限公司 一种耐高温韧性可降解暂堵剂及其制备方法

Also Published As

Publication number Publication date
CN117916314A (zh) 2024-04-19
EP4410892A1 (en) 2024-08-07
CA3232295A1 (en) 2023-04-06

Similar Documents

Publication Publication Date Title
JP6359888B2 (ja) ダウンホールツール用の拡径可能な環状の分解性シール部材、及び坑井掘削用プラグ、並びに坑井掘削方法
US8329621B2 (en) Degradable particulates and associated methods
EP2748275B1 (en) Methods of fluid loss control, diversion, and sealing using deformable particulates
JP6207529B2 (ja) ポリ−l−乳酸固化押出成形物の応用及びポリ−l−乳酸固化押出成形物の製造方法
US8598092B2 (en) Methods of preparing degradable materials and methods of use in subterranean formations
US20090062157A1 (en) Methods and compositions related to the degradation of degradable polymers involving dehydrated salts and other associated methods
RU2470141C2 (ru) Способ улучшения изоляции уплотняющими шариками
US20060172895A1 (en) Degradable particulate generation and associated methods
US20060169450A1 (en) Degradable particulate generation and associated methods
US20080026960A1 (en) Degradable particulates and associated methods
US20070298977A1 (en) Degradable particulate generation and associated methods
US20080026959A1 (en) Degradable particulates and associated methods
US20080026955A1 (en) Degradable particulates and associated methods
EA021092B1 (ru) Способ обработки подземных скважин с использованием изменяемых добавок
WO2015072317A1 (ja) 坑井掘削用一時目止め剤
CN106795750A (zh) 用于井处理操作的转向系统
MX2011008782A (es) Metodo para la desviacion de tratamientos de fractura hidraulica.
JPWO2015133545A1 (ja) ダウンホールツール用分解性ゴム部材、分解性シール部材、分解性保護部材、ダウンホールツール、及び坑井掘削方法
CA2889132A1 (en) Expanded wellbore servicing materials and methods of making and using same
WO2017110609A1 (ja) 組成物、ダウンホールツール用組成物、ダウンホールツール用分解性ゴム部材、ダウンホールツール、及び坑井掘削方法
US10920125B2 (en) Treatments in subterranean formations using degradable polymers in organic solvents
US10829614B2 (en) Composition, composition for downhole tools, degradable rubber member for downhole, downhole tool, and method for well drilling
WO2023053955A1 (ja) 樹脂組成物、ダウンホールツールまたはその部材、プラグおよび坑井処理方法
WO2022075484A1 (ja) プラグ、ダウンホールツールおよび坑井処理方法
CN112334632B (zh) 井下工具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22875826

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280061327.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 3232295

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 18693754

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022875826

Country of ref document: EP

Effective date: 20240429