WO2023053751A1 - 圧電素子および電気音響変換器 - Google Patents
圧電素子および電気音響変換器 Download PDFInfo
- Publication number
- WO2023053751A1 WO2023053751A1 PCT/JP2022/030857 JP2022030857W WO2023053751A1 WO 2023053751 A1 WO2023053751 A1 WO 2023053751A1 JP 2022030857 W JP2022030857 W JP 2022030857W WO 2023053751 A1 WO2023053751 A1 WO 2023053751A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- piezoelectric
- layer
- piezoelectric element
- piezoelectric film
- adhesive
- Prior art date
Links
- 239000010410 layer Substances 0.000 claims abstract description 282
- 239000011241 protective layer Substances 0.000 claims abstract description 77
- 239000012790 adhesive layer Substances 0.000 claims abstract description 66
- 239000000463 material Substances 0.000 claims description 60
- 239000000853 adhesive Substances 0.000 claims description 58
- 230000001070 adhesive effect Effects 0.000 claims description 58
- 239000002245 particle Substances 0.000 claims description 43
- 239000011159 matrix material Substances 0.000 claims description 36
- 239000002131 composite material Substances 0.000 claims description 24
- 238000003475 lamination Methods 0.000 claims description 10
- 239000010408 film Substances 0.000 description 162
- 238000000034 method Methods 0.000 description 37
- 239000002861 polymer material Substances 0.000 description 33
- 229920000642 polymer Polymers 0.000 description 20
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 16
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 13
- 229910052802 copper Inorganic materials 0.000 description 12
- 239000010949 copper Substances 0.000 description 12
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- 238000005259 measurement Methods 0.000 description 10
- 230000010287 polarization Effects 0.000 description 10
- 239000010409 thin film Substances 0.000 description 10
- 230000008602 contraction Effects 0.000 description 9
- 230000007423 decrease Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 239000002390 adhesive tape Substances 0.000 description 8
- 239000003973 paint Substances 0.000 description 8
- -1 polyethylene Polymers 0.000 description 8
- 229920000139 polyethylene terephthalate Polymers 0.000 description 8
- 239000005020 polyethylene terephthalate Substances 0.000 description 8
- 238000005452 bending Methods 0.000 description 7
- 229920001577 copolymer Polymers 0.000 description 7
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- 125000001731 2-cyanoethyl group Chemical group [H]C([H])(*)C([H])([H])C#N 0.000 description 6
- 238000010030 laminating Methods 0.000 description 6
- 239000000523 sample Substances 0.000 description 6
- 238000003860 storage Methods 0.000 description 6
- 239000002033 PVDF binder Substances 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 238000003490 calendering Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 230000005684 electric field Effects 0.000 description 5
- 230000002349 favourable effect Effects 0.000 description 5
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 238000001771 vacuum deposition Methods 0.000 description 5
- 229920002284 Cellulose triacetate Polymers 0.000 description 4
- 239000004697 Polyetherimide Substances 0.000 description 4
- 239000004642 Polyimide Substances 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 4
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 230000009477 glass transition Effects 0.000 description 4
- 239000003960 organic solvent Substances 0.000 description 4
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 4
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 4
- 229920001601 polyetherimide Polymers 0.000 description 4
- 229920001721 polyimide Polymers 0.000 description 4
- 239000004926 polymethyl methacrylate Substances 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 229920002799 BoPET Polymers 0.000 description 3
- 239000004793 Polystyrene Substances 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 239000011800 void material Substances 0.000 description 3
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 229910002113 barium titanate Inorganic materials 0.000 description 2
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005401 electroluminescence Methods 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 239000011112 polyethylene naphthalate Substances 0.000 description 2
- 229920005672 polyolefin resin Polymers 0.000 description 2
- 229920000131 polyvinylidene Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 150000003505 terpenes Chemical class 0.000 description 2
- 235000007586 terpenes Nutrition 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 2
- KXJGSNRAQWDDJT-UHFFFAOYSA-N 1-acetyl-5-bromo-2h-indol-3-one Chemical compound BrC1=CC=C2N(C(=O)C)CC(=O)C2=C1 KXJGSNRAQWDDJT-UHFFFAOYSA-N 0.000 description 1
- VKNASXZDGZNEDA-UHFFFAOYSA-N 2-cyanoethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCC#N VKNASXZDGZNEDA-UHFFFAOYSA-N 0.000 description 1
- AEPWOCLBLLCOGZ-UHFFFAOYSA-N 2-cyanoethyl prop-2-enoate Chemical compound C=CC(=O)OCCC#N AEPWOCLBLLCOGZ-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- UZELHCAPQBLLSH-HFYYSOHNSA-N C(#N)CCC(O)[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO Chemical compound C(#N)CCC(O)[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO UZELHCAPQBLLSH-HFYYSOHNSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- JVTAAEKCZFNVCJ-UWTATZPHSA-N D-lactic acid Chemical compound C[C@@H](O)C(O)=O JVTAAEKCZFNVCJ-UWTATZPHSA-N 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical group Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical group CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229920000459 Nitrile rubber Polymers 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229920001807 Urea-formaldehyde Polymers 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 238000005537 brownian motion Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 229940022769 d- lactic acid Drugs 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000004794 expanded polystyrene Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 229920005570 flexible polymer Polymers 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 239000000113 methacrylic resin Substances 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000011087 paperboard Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920001432 poly(L-lactide) Polymers 0.000 description 1
- 229920001490 poly(butyl methacrylate) polymer Polymers 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 description 1
- 229920001083 polybutene Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229940005642 polystyrene sulfonic acid Drugs 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 238000001947 vapour-phase growth Methods 0.000 description 1
- 239000003190 viscoelastic substance Substances 0.000 description 1
- 210000001260 vocal cord Anatomy 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R17/00—Piezoelectric transducers; Electrostrictive transducers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R17/00—Piezoelectric transducers; Electrostrictive transducers
- H04R17/02—Microphones
Definitions
- the present invention relates to piezoelectric elements and electroacoustic transducers.
- Piezoelectric elements are used for various purposes as so-called exciters, which vibrate and produce sound by attaching them to various items. For example, by attaching an exciter to an image display panel, a screen, or the like and vibrating them, sound can be produced instead of a speaker.
- piezoelectric element As a piezoelectric element, it has been proposed to use a piezoelectric film in which a piezoelectric layer is sandwiched between electrode layers and protective layers. It is also proposed to laminate a plurality of piezoelectric films and use them as a piezoelectric element.
- Patent Document 1 discloses a polymer composite piezoelectric body in which piezoelectric particles are dispersed in a matrix containing a polymer material, and electrode layers formed on both sides of the polymer composite piezoelectric body, The loss tangent at a frequency of 1 kHz by dynamic viscoelasticity measurement has a maximum value of 0.1 or more in the temperature range of more than 50 ° C. and 150 ° C. or less, and the value at 50 ° C. is 0.08 or more.
- a piezoelectric film is described.
- Patent Document 1 describes a piezoelectric element in which a piezoelectric film is folded one or more times to laminate a plurality of piezoelectric films.
- the piezoelectric element When a piezoelectric film is used as a piezoelectric element, the piezoelectric element is attached to a diaphragm and causes the diaphragm to vibrate, thereby generating sound from the diaphragm. cannot vibrate properly, resulting in low sound pressure. Therefore, as described above, by folding the piezoelectric film into multiple layers, the output of the piezoelectric element can be increased, and the diaphragm can be sufficiently vibrated to obtain high sound pressure.
- the piezoelectric film When the piezoelectric film is multi-layered, it is necessary to bond the layers of the piezoelectric film with an adhesive layer so that the stress generated from each layer propagates to the diaphragm.
- the larger the bonding area of the adhesive layer the smaller the loss of stress propagation between the layers, so that a higher sound pressure can be obtained.
- the bonding area of the adhesive layer is too large, the adhesive protrudes from the laminated portion when the piezoelectric film is laminated, which causes a problem that the surface of the pressing machine becomes dirty, resulting in a decrease in productivity. .
- An object of the present invention is to solve such problems of the prior art. To provide a converter.
- a piezoelectric film having a piezoelectric layer, electrode layers provided on both sides of the piezoelectric layer, and protective layers provided on the electrode layers is folded once or more to form a piezoelectric film having a plurality of layers, A piezoelectric element formed by lamination, Having an adhesive layer that bonds between layers of the laminated piezoelectric film, A piezoelectric element, wherein the ratio of the adhesion area of the adhesive layer to the area of the laminated portion of the piezoelectric film when viewed from the lamination direction of the piezoelectric film is in the range of 0.85 to 0.99.
- a piezoelectric element and an electroacoustic transducer that can achieve both high sound pressure and productivity in a piezoelectric element formed by laminating piezoelectric films.
- FIG. 2 is a perspective view of the piezoelectric element shown in FIG. 1;
- FIG. 2 is a plan view of the piezoelectric element shown in FIG. 1;
- It is a figure which shows an example of the state of an adhesion layer typically.
- It is a figure which shows an example of the state of an adhesion layer typically.
- FIG. 5 is a diagram for explaining a method of calculating a ratio of the bonding area of the bonding layer to the area of the laminated portion of the piezoelectric film;
- FIG. 5 is a diagram for explaining a method of calculating a ratio of the bonding area of the bonding layer to the area of the laminated portion of the piezoelectric film;
- a numerical range represented by "-" means a range including the numerical values before and after "-" as lower and upper limits.
- the piezoelectric element of the present invention is A piezoelectric film having a piezoelectric layer, electrode layers provided on both sides of the piezoelectric layer, and protective layers provided on the electrode layers is folded one or more times to laminate a plurality of piezoelectric films.
- FIG. 1 shows a side view schematically showing an example of the piezoelectric element of the present invention.
- FIG. 2 shows a perspective view of the piezoelectric element of FIG.
- FIG. 3 shows a plan view of the piezoelectric element of FIG. Note that the plan view is a view of the piezoelectric film 10 laminated in a plurality of layers and viewed from the lamination direction.
- the piezoelectric element 50 shown in FIGS. 1 to 3 is obtained by laminating five layers of the piezoelectric film 10 by folding one rectangular piezoelectric film 10 four times in one direction. That is, this piezoelectric element 50 is a laminated piezoelectric element in which five layers of piezoelectric films 10 are laminated.
- FIG. 2 omits the drawing to simplify the drawing and clearly show the configuration of the piezoelectric element 50
- the piezoelectric film 10 has electrode layers on both sides of the piezoelectric layer 20, covering both electrode layers, It has a protective layer. This point applies to FIGS. 7 and 14 as well. Further, in the following description, the direction in which the piezoelectric film 10 is folded back (horizontal direction in FIG. 1) is referred to as the folding direction.
- the piezoelectric element 50 has a projecting portion 10a projecting outward in the plane direction from a laminated portion 10b where five layers of piezoelectric films 10 are stacked. That is, in the piezoelectric element 50, when one piezoelectric film 10 is folded back four times, the four layers from the bottom side in FIG. By making the length of the piezoelectric film 10, which is the side layer, longer than the piezoelectric films 10 of the other layers so that one end in the folding direction does not overlap the piezoelectric films 10 of the other layers, the projecting portion 10a is formed. It was established.
- Adjacent layers of the piezoelectric film 10 in the laminated portion 10b are adhered by an adhesive layer 14.
- the laminated portion 10b is a region in which two or more layers of piezoelectric films overlap in plan view, ie, when the piezoelectric element is viewed from above (or below) in FIG. That is, as shown in FIG. 3, the area where five layers of the piezoelectric film 10 overlap is the laminated portion 10b.
- the protruding portion 10a is a region that protrudes in the plane direction from the laminated portion 10b, and is a region that does not overlap with other layers in plan view.
- the right end of the uppermost layer is the projecting portion 10a.
- the projecting portion 10a is formed with a connection portion 40 for connecting the first electrode layer 24 and the second electrode layer 26 (hereinafter collectively referred to as electrode layers) to an external electrode. It is In the illustrated example, through holes are formed in the protective layers (the first protective layer 28 and the second protective layer 30) of the protrusion 10a to expose the electrode layer and provide the connecting section 40. As shown in FIG.
- the method for forming the through-holes is not limited, and known methods such as laser processing, removal by dissolution using a solvent, and mechanical processing such as mechanical polishing may be used depending on the material for forming the protective layer. .
- the connecting portion 40 is connected to a wiring that is filled with a known conductive material such as a conductive metal paste such as silver paste, a conductive carbon paste, and a conductive nanoink and is connected to an external power supply.
- a known conductive material such as a conductive metal paste such as silver paste, a conductive carbon paste, and a conductive nanoink.
- the piezoelectric element 50 of the present invention drives the piezoelectric element 50 by applying a voltage to the electrode layer using an external power source via the connecting portion 40 provided on the protruding portion 10a.
- the piezoelectric element 50 expands and contracts in the plane direction, bending the diaphragm to which the piezoelectric element 50 is adhered, and as a result vibrating the diaphragm to generate sound.
- the diaphragm vibrates according to the magnitude of the driving voltage applied to the piezoelectric element 50 and generates sound according to the driving voltage applied to the piezoelectric element 50 . That is, the piezoelectric element 50 can be used as an exciter.
- FIG. 4 is a diagram schematically showing a plan view of the piezoelectric film 10 and the adhesive layer 14 in the laminated portion 10b.
- the adhesive layer 14 has an area smaller than that of the piezoelectric film 10 of the laminated portion 10b, and the adhesive layer 14 extends along the edges of the piezoelectric film 10 on the three sides excluding the folded portion. formed inside the In FIG. 4, each side of the adhesive layer 14 is illustrated as a straight line, but the present invention is not limited to this. good.
- the piezoelectric films are attached to each other with an adhesive layer.
- the adhesion of the piezoelectric films is performed using a laminator or the like.
- the bonding area of the bonding layer is large.
- the adhesive protrudes from the laminated portion when the piezoelectric film is folded back and the piezoelectric films are bonded to each other by the adhesive layer during fabrication of the piezoelectric element.
- the ratio of the bonding area of the bonding layer 14 to the area of the laminated portion 10b is set to 0.85 or more, so that the bonding area of the bonding layer is small and the transmission loss of vibration is reduced. It is possible to suppress the decrease in the output due to the increase in the output.
- the ratio of the adhesion area is set to 0.99 or less, when the piezoelectric films are adhered to each other with the adhesive layer, the adhesive is prevented from protruding from the laminated portion. can be suppressed.
- a method for measuring the ratio of the bonding area of the bonding layer 14 to the area of the laminated portion 10b is as follows. First, as indicated by broken lines in FIG. 6, 10 sections of the rectangular laminated portion 10b are cut obliquely with respect to a certain side. At that time, each cut surface should be parallel and evenly spaced. Also, each of the four sides of the laminated portion 10b is cut at one location.
- the cutting method is not particularly limited, it is preferable to use a method that allows observation of the cross section after cutting and that does not cause deformation or breakage of the electrode layer, deformation or breakage of the piezoelectric layer, deformation or breakage of the protective layer, or the like. For example, a method can be used in which an observation site is dried with an EB curable resin and then cut with a single-edged razor.
- FIG. 7 shows a diagram schematically showing a BB line cross section of FIG.
- the voids include a void 17 generated at the end (open end) opposite to the folded portion, a void 18 generated inside, and a void 19 generated at the folded portion.
- the length of these voids is measured, and from the ratio to the length of the adhesive layer 14, the ratio of the adhesive area to the area of the laminated portion 10b is calculated.
- the lengths of the gaps 17 to 19 are measured on the bottom surface side of the first layer.
- the lower surface of the first layer has an open-ended gap 17a and an internal gap 18a with lengths S 1 and S 2 , respectively.
- the length L 1 to the folded end of the first layer of the laminated portion 10b is defined as the length of the laminated portion 10b. Since the value obtained by subtracting the length of the gap from the length of the laminated portion 10b is the length of the bonded portion, the value obtained by dividing this by the length of the laminated portion 10b is regarded as the ratio of the bonded area. That is, (L 1 -(S 1 +S 2 ))/L 1 is calculated as the bonding area ratio on the lower surface of the first layer in the illustrated example.
- the lengths of the gaps 17 to 19 are measured on the upper surface side of the second layer.
- the upper surface of the second layer has an open end gap 17a and an internal gap 18b with lengths S1 and S3 , respectively.
- the length L 1 to the folded end of the first layer of the laminated portion 10b is the length of the laminated portion 10b. Therefore, (L 1 -(S 1 +S 3 ))/L 1 is calculated as the bonding area ratio on the upper surface of the second layer in the illustrated example.
- the lengths of the gaps 17 to 19 were measured on the lower surface of the second layer, the upper and lower surfaces of the third layer, the upper and lower surfaces of the fourth layer, and the upper surface of the fifth layer, Calculate the bonding area ratio.
- the respective lengths are S 4 , S 5 and S 6 , then (L 1 ⁇ (S 4 +S 5 +S 6 ))/L 1 is calculated as the ratio of the bonded area.
- the ratio of the bonding area on the upper surface and the lower surface of each layer of the piezoelectric film of each cross section is calculated, and the average value of the values of all 10 cross sections is calculated as the "piezoelectric film when viewed from the stacking direction of the piezoelectric film" in the present invention.
- the ratio of the bonding area of the bonding layer 14 to the area of the laminated portion 10b is preferably 0.8 to 0.99, more preferably 0.9 to 0.99.
- the adhesive force between the adhesive layer 14 and the piezoelectric film 10 is preferably more than 0.1 N/cm, more preferably 0.2 N/cm or more, and more preferably 0.5 N/cm or more. More preferred. There is no particular upper limit to the adhesive strength.
- the method for measuring the adhesive force between the adhesive layer 14 and the piezoelectric film 10 is as follows.
- a sample of 1 cm ⁇ 5 cm is cut out from the laminated portion 10b of the piezoelectric element 50b.
- one surface of the sample of the piezoelectric element 50 cut out is attached to a smooth base B via double-sided adhesive tape TP2 .
- the surface of the base B is preferably made of stainless steel, metal, glass, or the like.
- a single-sided adhesive tape TP1 is attached to the other side of the sample, the single-sided adhesive tape TP1 is folded back, and the folded portion is chucked with a Strograph P (eg No260 Strograph manufactured by Toyo Seiki Co., Ltd.).
- a peeling test is performed by pulling in a direction parallel to the base B, a graph of the distance and the peeling force is obtained (see FIG. 9), and the peak value of the peeling force is read from the graph.
- peeling occurs between the double-sided adhesive tape or the single-sided adhesive tape, it is determined that the adhesive strength between the adhesive layer 14 and the piezoelectric film 10 is greater than the adhesive strength of the adhesive tape.
- the value obtained by dividing the peak value of the peeling force by the width of the measured sample is defined as the adhesive force (N/cm) between the adhesive layer 14 and the piezoelectric film 10 .
- the ratio of the cross-sectional area of the clearance of the folded portion to the cross-sectional area of the laminated portion 10b is preferably 0.04 or less, more preferably 0.03 or less, and 0.02. More preferred are:
- the ratio of the cross-sectional area of the folded portion gap to the cross-sectional area of the laminated portion 10b is obtained by dividing the length of the folded portion gap 19 measured in the measurement of the adhesion area ratio of the adhesive layer 14 described above by the length of the laminated portion 10b. value.
- the length ratio of the folded portion gap 19 is calculated on the upper surface and the lower surface of each layer of the piezoelectric film of each cross section, and the average value of the values of all 10 cross sections is obtained.
- the configuration is such that the projecting portion 10a projects outward in the plane direction from the laminated portion 10b.
- the shape of the projecting portion 10a is not limited to a rectangular shape, and may be a polygonal shape such as a hexagonal shape, or various shapes such as a substantially circular shape, a semicircular shape, an elliptical shape, and an irregular shape.
- the protruding portion 10a is configured to protrude from the laminated portion 10b in the folding direction, but the present invention is not limited to this.
- the protruding portion 10a may be configured to protrude from the laminated portion 10b in the width direction orthogonal to the folding direction.
- the piezoelectric element is configured to have one projecting portion, but is not limited to this, and may be configured to have two or more projecting portions.
- the piezoelectric element 50 shown in FIG. 1 is obtained by laminating five layers of piezoelectric films 10, but the present invention is not limited to this. That is, the piezoelectric element may have two to four layers of the piezoelectric film 10, or may have six or more layers.
- FIG. 10 shows an enlarged view of a portion of the piezoelectric film 10.
- the piezoelectric film 10 shown in FIG. 10 includes a piezoelectric layer 20 which is a sheet-like material having piezoelectricity, a second electrode layer 26 laminated on one surface of the piezoelectric layer 20, and a piezoelectric layer 26 of the second electrode layer 26.
- the piezoelectric layer 20 is preferably a polymeric composite piezoelectric body containing piezoelectric particles 36 in a matrix 34 containing a polymeric material, as conceptually shown in FIG.
- the material of the polymer composite piezoelectric matrix 34 (matrix and binder) that constitutes the piezoelectric layer 20 it is preferable to use a polymer material that has viscoelasticity at room temperature.
- "ordinary temperature” refers to a temperature range of about 0 to 50.degree.
- the polymer composite piezoelectric body preferably satisfies the following requirements.
- Flexibility For example, when gripping a loosely bent state like a document like a newspaper or magazine for portable use, it is constantly subjected to a relatively slow and large bending deformation of several Hz or less from the outside. become. At this time, if the polymer composite piezoelectric material is hard, a correspondingly large bending stress is generated, and cracks occur at the interface between the polymer matrix and the piezoelectric particles, which may eventually lead to destruction. Therefore, the polymer composite piezoelectric body is required to have appropriate softness. Moreover, stress can be relieved if strain energy can be diffused to the outside as heat. Therefore, it is required that the loss tangent of the polymer composite piezoelectric material is appropriately large.
- the flexible polymer composite piezoelectric material used as an exciter is required to behave hard against vibrations of 20 Hz to 20 kHz and softly against vibrations of several Hz or less.
- the loss tangent of the polymer composite piezoelectric body is required to be moderately large with respect to vibrations of all frequencies of 20 kHz or less.
- the spring constant can be easily adjusted by laminating according to the rigidity (hardness, stiffness, spring constant) of the mating material (diaphragm) to which the adhesive layer 104 is attached. The thinner it is, the more energy efficient it can be.
- polymer solids have a viscoelastic relaxation mechanism, and as the temperature rises or the frequency decreases, large-scale molecular motion causes a decrease (relaxation) in the storage elastic modulus (Young's modulus) or a maximum loss elastic modulus (absorption). is observed as Among them, the relaxation caused by the micro-Brownian motion of the molecular chains in the amorphous region is called principal dispersion, and a very large relaxation phenomenon is observed.
- the temperature at which this primary dispersion occurs is the glass transition point (Tg), and the viscoelastic relaxation mechanism appears most prominently.
- the polymer composite piezoelectric body (piezoelectric layer 20), by using a polymer material having a glass transition point at room temperature, in other words, a polymer material having viscoelasticity at room temperature as a matrix, it is possible to suppress vibrations of 20 Hz to 20 kHz. This realizes a polymer composite piezoelectric material that is hard at first and behaves softly with respect to slow vibrations of several Hz or less.
- a polymer material having a glass transition point at room temperature ie, 0 to 50° C. at a frequency of 1 Hz, for the matrix of the polymer composite piezoelectric material, because this behavior is favorably expressed.
- the polymer material having viscoelasticity at room temperature Preferably, a polymer material having a maximum value of 0.5 or more in loss tangent Tan ⁇ at a frequency of 1 Hz in a dynamic viscoelasticity test at normal temperature, ie, 0 to 50° C., is used.
- a polymer material having a maximum value of 0.5 or more in loss tangent Tan ⁇ at a frequency of 1 Hz in a dynamic viscoelasticity test at normal temperature, ie, 0 to 50° C. is used.
- the polymer material having viscoelasticity at room temperature preferably has a storage elastic modulus (E') at a frequency of 1 Hz measured by dynamic viscoelasticity of 100 MPa or more at 0°C and 10 MPa or less at 50°C.
- E' storage elastic modulus
- the polymer material having viscoelasticity at room temperature has a dielectric constant of 10 or more at 25°C.
- a voltage is applied to the polymer composite piezoelectric material, a higher electric field is applied to the piezoelectric particles in the matrix, so a large amount of deformation can be expected.
- the polymer material in consideration of ensuring good moisture resistance and the like, it is also suitable for the polymer material to have a dielectric constant of 10 or less at 25°C.
- polymeric materials having viscoelasticity at room temperature examples include cyanoethylated polyvinyl alcohol (cyanoethylated PVA), polyvinyl acetate, polyvinylidene chloride core acrylonitrile, polystyrene-vinylpolyisoprene block copolymer, and polyvinylmethyl. Examples include ketones and polybutyl methacrylate. Commercially available products such as Hybler 5127 (manufactured by Kuraray Co., Ltd.) can also be suitably used as these polymer materials. Among them, as the polymer material, it is preferable to use a material having a cyanoethyl group, and it is particularly preferable to use cyanoethylated PVA.
- the piezoelectric layer 20 preferably uses a polymer material having a cyanoethyl group as the matrix 34, and particularly preferably uses cyanoethylated PVA.
- the above-mentioned polymeric materials represented by cyanoethylated PVA are collectively referred to as "polymeric materials having viscoelasticity at room temperature”.
- These polymer materials having viscoelasticity at room temperature may be used alone or in combination (mixed).
- the matrix 34 using such a polymer material having viscoelasticity at room temperature may use a plurality of polymer materials together, if necessary. That is, in addition to a viscoelastic material such as cyanoethylated PVA, other dielectric polymer materials may be added to the matrix 34 as necessary for the purpose of adjusting dielectric properties and mechanical properties.
- a viscoelastic material such as cyanoethylated PVA
- other dielectric polymer materials may be added to the matrix 34 as necessary for the purpose of adjusting dielectric properties and mechanical properties.
- dielectric polymer materials examples include polyvinylidene fluoride, vinylidene fluoride-tetrafluoroethylene copolymer, vinylidene fluoride-trifluoroethylene copolymer, and polyvinylidene fluoride-trifluoroethylene copolymer.
- fluorine-based polymers such as polyvinylidene fluoride-tetrafluoroethylene copolymer, vinylidene cyanide-vinyl acetate copolymer, cyanoethylcellulose, cyanoethylhydroxysaccharose, cyanoethylhydroxycellulose, cyanoethylhydroxypullulan, cyanoethylmethacrylate, cyanoethylacrylate, cyanoethyl Cyano groups such as hydroxyethylcellulose, cyanoethylamylose, cyanoethylhydroxypropylcellulose, cyanoethyldihydroxypropylcellulose, cyanoethylhydroxypropylamylose, cyanoethylpolyacrylamide, cyanoethylpolyacrylate, cyanoethylpullulan, cyanoethylpolyhydroxymethylene, cyanoethylglycidolpullul
- polymers having cyanoethyl groups and synthetic rubbers such as nitrile rubber and chloroprene rubber are exemplified. Among them, polymer materials having cyanoethyl groups are preferably used. Moreover, in the matrix 34 of the piezoelectric layer 20, these dielectric polymer materials are not limited to one type, and a plurality of types may be added.
- the matrix 34 may also include thermoplastic resins such as vinyl chloride resin, polyethylene, polystyrene, methacrylic resin, polybutene, and isobutylene for the purpose of adjusting the glass transition point Tg, and Thermosetting resins such as phenolic resins, urea resins, melamine resins, alkyd resins, and mica may be added. Furthermore, a tackifier such as rosin ester, rosin, terpene, terpene phenol, and petroleum resin may be added for the purpose of improving adhesiveness.
- thermoplastic resins such as vinyl chloride resin, polyethylene, polystyrene, methacrylic resin, polybutene, and isobutylene for the purpose of adjusting the glass transition point Tg
- Thermosetting resins such as phenolic resins, urea resins, melamine resins, alkyd resins, and mica may be added.
- a tackifier such as rosin ester, ros
- the addition amount is not particularly limited, but the ratio of the material to the matrix 34 is 30% by mass or less. is preferable.
- the characteristics of the polymer material to be added can be expressed without impairing the viscoelastic relaxation mechanism in the matrix 34, so that the dielectric constant can be increased, the heat resistance can be improved, and the adhesion between the piezoelectric particles 36 and the electrode layer can be improved. favorable results can be obtained in terms of
- the piezoelectric layer 20 is a layer made of a polymeric composite piezoelectric material containing piezoelectric particles 36 in such a matrix 34 .
- Piezoelectric particles 36 are dispersed in the matrix 34 .
- the piezoelectric particles 36 are uniformly (substantially uniformly) dispersed in the matrix 34 .
- the piezoelectric particles 36 are made of ceramic particles having a perovskite or wurtzite crystal structure.
- Ceramic particles constituting the piezoelectric particles 36 include lead zirconate titanate (PZT), lead zirconate lanthanate titanate (PLZT), barium titanate (BaTiO 3 ), zinc oxide (ZnO), and A solid solution (BFBT) of barium titanate and bismuth ferrite (BiFe 3 ) is exemplified.
- PZT lead zirconate titanate
- PLAT lead zirconate lanthanate titanate
- BaTiO 3 barium titanate
- ZnO zinc oxide
- BFBT solid solution
- the particle size of the piezoelectric particles 36 is not limited, and may be appropriately selected according to the size of the piezoelectric film 10, the application of the piezoelectric element 50, and the like.
- the particle size of the piezoelectric particles 36 is preferably 1 to 10 ⁇ m. By setting the particle size of the piezoelectric particles 36 within this range, favorable results can be obtained in that the piezoelectric film 10 can achieve both high piezoelectric characteristics and flexibility.
- the piezoelectric particles 36 in the piezoelectric layer 20 may be uniformly and regularly dispersed in the matrix 34, or if they are uniformly dispersed, they may be dispersed irregularly in the matrix 34. may have been
- the quantitative ratio of the matrix 34 and the piezoelectric particles 36 in the piezoelectric layer 20 is not limited, and the size and thickness of the piezoelectric film 10 in the plane direction, the application of the piezoelectric element 50, and It may be appropriately set according to the characteristics required for the piezoelectric element 50 .
- the volume fraction of the piezoelectric particles 36 in the piezoelectric layer 20 is preferably 30% to 80%, more preferably 50% or more, and therefore more preferably 50% to 80%.
- the thickness of the piezoelectric layer 20 is not particularly limited, and may be appropriately determined according to the application of the piezoelectric element 50 , the number of layers of the piezoelectric film in the piezoelectric element 50 , the properties required of the piezoelectric film 10 , and the like. , should be set.
- the thickness of the piezoelectric layer 20 is preferably 10 to 300 ⁇ m, more preferably 20 to 200 ⁇ m, even more preferably 30 to 150 ⁇ m.
- the piezoelectric layer 20 is preferably polarized (poled) in the thickness direction.
- the piezoelectric layer 20 is a polymeric composite piezoelectric body containing piezoelectric particles 36 in a matrix 34 made of a polymer material having viscoelasticity at room temperature, such as cyanoethylated PVA, as described above. No restrictions. That is, in the piezoelectric film 10 of the present invention, various known piezoelectric layers can be used as the piezoelectric layer.
- a high-performance dielectric material containing similar piezoelectric particles 36 in a matrix containing a dielectric polymer material such as the polyvinylidene fluoride, vinylidene fluoride-tetrafluoroethylene copolymer, and vinylidene fluoride-trifluoroethylene copolymer described above may be used.
- Molecular composite piezoelectric material, piezoelectric layer made of polyvinylidene fluoride, piezoelectric layer made of fluorine resin other than polyvinylidene fluoride, piezoelectric layer made by laminating a film made of poly-L-lactic acid and a film made of poly-D-lactic acid, etc. is also available.
- the piezoelectric film 10 has a second electrode layer 26 on one surface of the piezoelectric layer 20, and a second protective layer 30 thereon. has a first electrode layer 24 on the surface thereof, and a first protective layer 28 thereon.
- the first electrode layer 24 and the second electrode layer 26 form an electrode pair.
- both surfaces of the piezoelectric layer 20 are sandwiched between electrode pairs, that is, the second electrode layer 26 and the first electrode layer 24 , and this laminate is formed into the second protective layer 30 and the first protective layer 28 . It has a configuration sandwiched between.
- the region sandwiched between the second electrode layer 26 and the first electrode layer 24 expands and contracts according to the applied voltage.
- the second electrode layer 26 and the second protective layer 30 as well as the first electrode layer 24 and the first protective layer 28 are attached for the sake of convenience in describing the piezoelectric film 10 . Therefore, the first and second aspects of the present invention have no technical significance and are irrelevant to the actual usage conditions.
- the piezoelectric film 10 includes, in addition to these layers, an adhesive layer for attaching the electrode layer and the piezoelectric layer 20 and an adhesive layer for attaching the electrode layer and the protective layer. It may have a layer.
- the adhesive may be an adhesive or an adhesive.
- the same material as the matrix 34 that is, the polymer material obtained by removing the piezoelectric particles 36 from the piezoelectric layer 20, can be preferably used as the adhesive.
- the adhesive layer may be provided on both the first electrode layer 24 side and the second electrode layer 26 side, or may be provided on only one of the first electrode layer 24 side and the second electrode layer 26 side. good.
- the second protective layer 30 and the first protective layer 28 cover the first electrode layer 24 and the second electrode layer 26, and provide the piezoelectric layer 20 with appropriate rigidity and mechanical strength. is responsible for That is, in the piezoelectric film 10, the piezoelectric layer 20 made up of the matrix 34 and the piezoelectric particles 36 exhibits excellent flexibility against slow bending deformation, but depending on the application, the rigidity may increase. and mechanical strength may be insufficient.
- the piezoelectric film 10 is provided with a second protective layer 30 and a first protective layer 28 to compensate.
- the first protective layer 28 and the second protective layer 30 have the same configuration, except for the arrangement position. Therefore, in the following description, when there is no need to distinguish between the first protective layer 28 and the second protective layer 30, both members are collectively referred to as protective layers.
- Various sheet materials can be used for the second protective layer 30 and the first protective layer 28 without limitation, and various resin films are preferably exemplified as examples.
- various resin films are preferably exemplified as examples.
- PET polyethylene terephthalate
- PP polypropylene
- PS polystyrene
- PC polycarbonate
- PPS polyphenylene sulfite
- PMMA polymethyl methacrylate
- PET polyethylene terephthalate
- PET polypropylene
- PS polystyrene
- PC polycarbonate
- PPS polyphenylene sulfite
- PMMA polymethyl methacrylate
- PET polyethylene terephthalate
- PEI polyetherimide
- PI polyimide
- PEN polyethylene naphthalate
- TAC triacetyl cellulose
- cyclic olefin resins and the like are preferably used.
- the thicknesses of the second protective layer 30 and the first protective layer 28 are also not limited. Also, the thicknesses of the second protective layer 30 and the first protective layer 28 are basically the same, but may be different. Here, if the rigidity of the second protective layer 30 and the first protective layer 28 is too high, not only will the expansion and contraction of the piezoelectric layer 20 be constrained, but also the flexibility will be impaired. Therefore, the thinner the second protective layer 30 and the first protective layer 28, the better, except when mechanical strength and good handling properties as a sheet-like article are required.
- the thicknesses of the second protective layer 30 and the first protective layer 28 are not more than twice the thickness of the piezoelectric layer 20, it is possible to ensure both rigidity and appropriate flexibility. favorable results can be obtained.
- the thickness of the piezoelectric layer 20 is 50 ⁇ m and the second protective layer 30 and the first protective layer 28 are made of PET, the thicknesses of the second protective layer 30 and the first protective layer 28 are preferably 100 ⁇ m or less. 50 ⁇ m or less is more preferable, and 25 ⁇ m or less is even more preferable.
- the second electrode layer 26 is provided between the piezoelectric layer 20 and the second protective layer 30, and the first electrode layer 24 is provided between the piezoelectric layer 20 and the first protective layer 28. It is formed.
- the second electrode layer 26 and the first electrode layer 24 are provided for applying voltage to the piezoelectric layer 20 (piezoelectric film 10).
- the first electrode layer 24 and the second electrode layer 26 are basically the same except for their positions. Therefore, in the following description, when there is no need to distinguish between the first electrode layer 24 and the second electrode layer 26, both members are collectively referred to as electrode layers.
- the materials for forming the second electrode layer 26 and the first electrode layer 24 are not limited, and various conductors can be used. Specifically, metals such as carbon, palladium, iron, tin, aluminum, nickel, platinum, gold, silver, copper, titanium, chromium and molybdenum, alloys thereof, laminates and composites of these metals and alloys, Also, indium tin oxide and the like are exemplified. Alternatively, conductive polymers such as PEDOT/PPS (polyethylenedioxythiophene-polystyrenesulfonic acid) are also exemplified.
- PEDOT/PPS polyethylenedioxythiophene-polystyrenesulfonic acid
- copper, aluminum, gold, silver, platinum, and indium tin oxide are preferably exemplified as the second electrode layer 26 and the first electrode layer 24 .
- copper is more preferable from the viewpoint of conductivity, cost, flexibility, and the like.
- the method of forming the second electrode layer 26 and the first electrode layer 24 is not limited, and may be a vapor phase deposition method (vacuum film formation method) such as vacuum deposition or sputtering, a film formation by plating, or the formation of the above materials.
- a vapor phase deposition method vacuum film formation method
- sputtering a film formation by plating
- a variety of known methods are available, such as affixing the foils.
- thin films of copper, aluminum, or the like formed by vacuum deposition are preferably used as the second electrode layer 26 and the first electrode layer 24 because the flexibility of the piezoelectric film 10 can be ensured.
- a copper thin film formed by vacuum deposition is particularly preferably used.
- the thicknesses of the second electrode layer 26 and the first electrode layer 24 are not limited. Also, the thicknesses of the second electrode layer 26 and the first electrode layer 24 are basically the same, but may be different.
- the second protective layer 30 and the first protective layer 28 if the rigidity of the second electrode layer 26 and the first electrode layer 24 is too high, not only will the expansion and contraction of the piezoelectric layer 20 be restricted, Flexibility is also impaired. Therefore, the thinner the second electrode layer 26 and the first electrode layer 24, the better, as long as the electrical resistance does not become too high.
- the product of the thickness of the second electrode layer 26 and the first electrode layer 24 and the Young's modulus is less than the product of the thickness of the second protective layer 30 and the first protective layer 28 and the Young's modulus , is preferred because it does not significantly impair flexibility.
- the second protective layer 30 and the first protective layer 28 are made of PET (Young's modulus: about 6.2 GPa), and the second electrode layer 26 and the first electrode layer 24 are made of copper (Young's modulus: about 130 GPa).
- the thickness of the second protective layer 30 and the first protective layer 28 is 25 ⁇ m
- the thickness of the second electrode layer 26 and the first electrode layer 24 is preferably 1.2 ⁇ m or less, more preferably 0.3 ⁇ m or less. , it is preferably 0.1 ⁇ m or less.
- the piezoelectric film 10 includes the piezoelectric layer 20 formed by dispersing the piezoelectric particles 36 in the matrix 34 containing a polymer material, sandwiched between the second electrode layer 26 and the first electrode layer 24, and This laminate has a structure in which the second protective layer 30 and the first protective layer 28 are sandwiched.
- the maximum value of the loss tangent (Tan ⁇ ) at a frequency of 1 Hz by dynamic viscoelasticity measurement preferably exists at room temperature, and the maximum value of 0.1 or more exists at room temperature. more preferred.
- the piezoelectric film 10 preferably has a storage elastic modulus (E') at a frequency of 1 Hz measured by dynamic viscoelasticity measurement of 10 to 30 GPa at 0°C and 1 to 10 GPa at 50°C. Note that this condition applies to the piezoelectric layer 20 as well. Accordingly, the piezoelectric film 10 can have a large frequency dispersion in the storage elastic modulus (E') at room temperature. That is, it can act hard against vibrations of 20 Hz to 20 kHz and soft against vibrations of several Hz or less.
- E' storage elastic modulus
- the piezoelectric film 10 has a product of thickness and storage elastic modulus (E′) at a frequency of 1 Hz determined by dynamic viscoelasticity measurement of 1.0 ⁇ 10 5 to 2.0 ⁇ 10 6 N/m at 0° C. , 1.0 ⁇ 10 5 to 1.0 ⁇ 10 6 N/m at 50°C. Note that this condition applies to the piezoelectric layer 20 as well. As a result, the piezoelectric film 10 can have appropriate rigidity and mechanical strength within a range that does not impair flexibility and acoustic properties.
- E′ thickness and storage elastic modulus
- the piezoelectric film 10 preferably has a loss tangent (Tan ⁇ ) of 0.05 or more at 25° C. and a frequency of 1 kHz in a master curve obtained from dynamic viscoelasticity measurement. This condition applies to the piezoelectric layer 20 as well. As a result, the frequency characteristics of the speaker using the piezoelectric film 10 are smoothed, and the amount of change in sound quality when the lowest resonance frequency f0 changes as the curvature of the speaker changes can be reduced.
- Tan ⁇ loss tangent
- the storage elastic modulus (Young's modulus) and loss tangent of the piezoelectric film 10, piezoelectric layer 20, etc. may be measured by known methods.
- the dynamic viscoelasticity measuring device DMS6100 manufactured by SII Nanotechnology Co., Ltd. manufactured by SII Nanotechnology Co., Ltd. (manufactured by SII Nanotechnology Co., Ltd.) may be used for measurement.
- the measurement frequency is 0.1 Hz to 20 Hz (0.1 Hz, 0.2 Hz, 0.5 Hz, 1 Hz, 2 Hz, 5 Hz, 10 Hz and 20 Hz)
- the measurement temperature is -50 to 150 ° C.
- a heating rate of 2° C./min in a nitrogen atmosphere
- a sample size of 40 mm ⁇ 10 mm including the clamping area
- a distance between chucks of 20 mm may be measured by known methods.
- a power source (external power source) is connected to the second electrode layer 26 and the first electrode layer 24 of the piezoelectric film 10 to apply a drive voltage for expanding and contracting the piezoelectric film 10 , that is, to supply drive power.
- the power source may be a DC power source or an AC power source.
- the driving voltage may be appropriately set according to the thickness of the piezoelectric layer 20 of the piezoelectric film 10, the forming material, and the like, so that the piezoelectric film 10 can be properly driven.
- electrodes are led out from the second electrode layer 26 and the first electrode layer 24 at the projecting portion 10a.
- the method of extracting electrodes from the second electrode layer 26 and the first electrode layer 24 there are no restrictions on the method of extracting electrodes from the second electrode layer 26 and the first electrode layer 24, and various known methods can be used.
- a method of connecting a conductor such as a copper foil to the second electrode layer 26 and the first electrode layer 24 to lead the electrodes to the outside and a method of penetrating the second protective layer 30 and the first protective layer 28 by a laser or the like.
- Examples include a method of forming a hole, filling the through hole with a conductive material, and leading an electrode to the outside.
- suitable methods for extracting electrodes include the method described in Japanese Patent Application Laid-Open No. 2014-209724 and the method described in Japanese Patent Application Laid-Open No. 2016-015354.
- FIG. 11 An example of a method for manufacturing the piezoelectric film 10 will be described below with reference to FIGS. 11 to 13.
- FIG. 11 An example of a method for manufacturing the piezoelectric film 10 will be described below with reference to FIGS. 11 to 13.
- FIG. 11 An example of a method for manufacturing the piezoelectric film 10 will be described below with reference to FIGS. 11 to 13.
- FIG. 11 An example of a method for manufacturing the piezoelectric film 10 will be described below with reference to FIGS. 11 to 13.
- a sheet-like object 12a having a second electrode layer 26 formed on the surface of a second protective layer 30 shown in FIG. 11 is prepared. Further, a sheet-like object 12c having the first electrode layer 24 formed on the surface of the first protective layer 28 conceptually shown in FIG. 13 is prepared.
- the sheet 12a may be produced by forming a copper thin film or the like as the second electrode layer 26 on the surface of the second protective layer 30 by vacuum deposition, sputtering, plating, or the like.
- the sheet 12c may be produced by forming a copper thin film or the like as the first electrode layer 24 on the surface of the first protective layer 28 by vacuum deposition, sputtering, plating, or the like.
- a commercially available sheet having a copper thin film or the like formed on a protective layer may be used as the sheet 12a and/or the sheet 12c.
- the sheet-like material 12a and the sheet-like material 12c may be the same or different.
- a protective layer with a separator temporary support
- PET or the like having a thickness of 25 to 100 ⁇ m can be used as the separator.
- the separator may be removed after the electrode layer and protective layer are thermocompression bonded.
- a paint (coating composition) that will form the piezoelectric layer 20 is applied onto the second electrode layer 26 of the sheet 12a, and then cured to form the piezoelectric layer 20.
- a piezoelectric laminate 12b in which the sheet-like material 12a and the piezoelectric layer 20 are laminated is produced.
- a piezoelectric layer 20 depending on the material forming the piezoelectric layer 20 .
- a polymer material such as cyanoethylated PVA is dissolved in an organic solvent, and piezoelectric particles 36 such as PZT particles are added and stirred to prepare a coating material.
- Organic solvents are not limited, and various organic solvents such as dimethylformamide (DMF), methyl ethyl ketone (MEK), and cyclohexanone can be used.
- the paint is cast (applied) on the sheet-like material 12a and dried by evaporating the organic solvent.
- a piezoelectric laminate 12b having the second electrode layer 26 on the second protective layer 30 and the piezoelectric layer 20 laminated on the second electrode layer 26 is produced. do.
- a piezoelectric layered body 12b as shown in FIG. 12 may be produced by extruding a sheet onto the shaped object 12a and cooling it.
- the matrix 34 may be added with a polymeric piezoelectric material such as PVDF, in addition to the polymeric material having viscoelasticity at room temperature.
- a polymeric piezoelectric material such as PVDF
- the polymeric piezoelectric materials to be added to the paint may be dissolved.
- the polymer piezoelectric material to be added may be added to a polymer material that has been melted by heating and has viscoelasticity at room temperature, and then melted by heating.
- the piezoelectric layer 20 After the piezoelectric layer 20 is formed, it may be calendered, if desired. Calendering may be performed once or multiple times. As is well known, calendering is a process in which a surface to be treated is heated and pressed by a hot press, hot rollers, or the like to flatten the surface.
- the piezoelectric layer 20 of the piezoelectric laminate 12b having the second electrode layer 26 on the second protective layer 30 and the piezoelectric layer 20 formed on the second electrode layer 26 is subjected to a polarization treatment ( polling).
- the polarization treatment of the piezoelectric layer 20 may be performed before calendering, but is preferably performed after calendering.
- the method of polarization treatment of the piezoelectric layer 20 is not limited, and known methods can be used. For example, electric field poling, in which a DC electric field is directly applied to an object to be polarized, is exemplified.
- the first electrode layer 24 may be formed before the polarization treatment, and the electric field poling treatment may be performed using the first electrode layer 24 and the second electrode layer 26. .
- the polarization treatment is preferably performed in the thickness direction of the piezoelectric layer 20, not in the plane direction.
- the previously prepared sheet-like material 12c is laminated on the piezoelectric layer 20 side of the piezoelectric layered body 12b subjected to the polarization treatment, with the first electrode layer 24 facing the piezoelectric layer 20. .
- this laminate is thermocompression bonded using a hot press device, a heating roller, etc., with the first protective layer 28 and the second protective layer 30 sandwiched between them, thereby forming the piezoelectric laminate 12b and the sheet-like material 12c. are bonded together to produce a piezoelectric film 10 as shown in FIG.
- the piezoelectric film 10 may be produced by bonding the piezoelectric laminate 12b and the sheet-like material 12c together using an adhesive and preferably further pressing them together.
- the piezoelectric film 10 may be manufactured using the cut-sheet-like sheet-like material 12a and the sheet-like material 12c, etc., or may be manufactured using a roll-to-roll process. good too.
- the produced piezoelectric film may be cut into a desired shape according to various uses.
- the piezoelectric film 10 produced in this manner is polarized in the thickness direction rather than in the plane direction, and excellent piezoelectric properties can be obtained without stretching after the polarization treatment. Therefore, the piezoelectric film 10 has no in-plane anisotropy in piezoelectric properties, and expands and contracts isotropically in all directions in the plane direction when a driving voltage is applied.
- One end of the piezoelectric film 10 is bent so that the length in the folding direction is the length of the laminated portion 10b.
- An adhesive sheet serving as an adhesive layer is inserted between the bent piezoelectric films 10 . Or apply glue.
- the adhesive layer 14 for adhering the piezoelectric films to each other various known adhesive layers can be used as long as the adjacent piezoelectric films 10 can be adhered. Materials similar to the deposition layer 104 can be used.
- an adhesive sheet that is a sheet-like solid body and exhibits fluidity when heated may be used.
- the ratio of the adhesive area of the adhesive layer to the area of the laminated portion can be adjusted more appropriately.
- the adhesive sheet for example, TSU0041SI manufactured by Toyochem Co., Ltd. can be used.
- the laminated portion of the piezoelectric film 10 is sandwiched between metal plates from above and below, and the metal plates are heat-pressed together with a laminator.
- the metal plate is not particularly limited, but a metal plate made of titanium, stainless steel, or the like can be used. Moreover, the thickness of the metal plate is preferably 0.2 mm to 0.4 mm.
- the temperature when heat-pressing with a laminator is preferably 100°C to 120°C. Also, the roller speed of the laminator is preferably 0.04 m/s to 0.08 m/s.
- the piezoelectric film is folded so that the folds form a bellows shape, and an adhesive sheet is inserted between the folded piezoelectric films 10 in the same manner as described above, and hot-pressed with a laminator.
- a bellows-shaped piezoelectric element is produced by repeating the above steps until the predetermined number of layers is reached.
- the electroacoustic transducer of the present invention is This is an electroacoustic transducer in which the piezoelectric element described above is attached to a diaphragm.
- FIG. 14 shows a diagram schematically showing an example of the electroacoustic transducer of the present invention having the piezoelectric element of the present invention.
- An electroacoustic transducer 100 shown in FIG. 14 has the piezoelectric element 50 described above, a diaphragm 102 , and an adhesive layer 104 for bonding the piezoelectric element 50 to the diaphragm 102 .
- the vibrating plate 102 is attached to the laminated portion 10b on the side of the piezoelectric element 50 having the projecting portion 10a.
- the diaphragm 102 has flexibility as a preferred embodiment.
- having flexibility is synonymous with having flexibility in general interpretation, and indicates that it is possible to bend and bend, specifically , indicating that it can be bent and stretched without fracture and damage.
- Diaphragm 102 is not limited as long as it preferably has flexibility, and various sheet-like materials (plate-like material, film) can be used.
- sheet-like materials plate-like material, film
- Examples include polyethylene terephthalate (PET), polypropylene (PP), polystyrene (PS), polycarbonate (PC), polyphenylene sulfite (PPS), polymethyl methacrylate (PMMA), polyetherimide (PEI), polyimide (PI), Resin films composed of polyethylene naphthalate (PEN), triacetyl cellulose (TAC), cyclic olefin resins, etc.; expanded polystyrene, expanded plastics composed of expanded styrene, expanded polyethylene, etc.; Examples include various corrugated cardboard materials made by pasting paperboards of the above.
- the diaphragm 102 may be an organic electroluminescence (OLED (Organic Light Emitting Diode)) display, a liquid crystal display, a micro LED (Light Emitting Diode) display, as long as it has flexibility. , and display devices such as inorganic electroluminescence displays can also be suitably used.
- OLED Organic Light Emitting Diode
- liquid crystal display a liquid crystal display
- micro LED Light Emitting Diode
- display devices such as inorganic electroluminescence displays can also be suitably used.
- the diaphragm 102 and the piezoelectric element 50 are adhered by the adhesion layer 104 .
- the adhesive layer 104 has fluidity at the time of bonding and then becomes a solid. Even a layer made of an adhesive, which is a gel-like (rubber-like) soft solid at the time of bonding, remains gel-like after that. It may be a layer made of an adhesive that does not change its shape, or a layer made of a material that has the characteristics of both an adhesive and an adhesive.
- the diaphragm 102 is bent and vibrated to generate sound. Therefore, in the electroacoustic transducer 100 , it is preferable that the expansion and contraction of the piezoelectric element 50 is directly transmitted to the diaphragm 102 . If a substance having a viscosity that reduces vibration is present between the diaphragm 102 and the piezoelectric element 50, the efficiency of transmission of the expansion and contraction energy of the piezoelectric element 50 to the diaphragm 102 is lowered, resulting in electroacoustic conversion. The driving efficiency of the device 100 is lowered.
- the sticking layer 104 is preferably an adhesive layer made of an adhesive that provides a solid and hard sticking layer 104 rather than a sticky layer made of an adhesive.
- an adhesive layer made of a thermoplastic type adhesive such as a polyester adhesive and a styrene-butadiene rubber (SBR) adhesive is exemplified. Adhesion, unlike sticking, is useful in seeking high adhesion temperatures. Further, a thermoplastic type adhesive is suitable because it has "relatively low temperature, short time, and strong adhesion".
- the thickness of the adhesive layer 104 is not limited, and the thickness that provides sufficient adhesive strength (adhesive strength, cohesive strength) may be appropriately set according to the material of the adhesive layer 104 .
- the thinner the adhesive layer 104 the higher the effect of transmitting the stretching energy (vibrational energy) of the piezoelectric element 50 to the diaphragm 102, and the higher the energy efficiency.
- the adhesive layer 104 is thick and rigid, it may restrict expansion and contraction of the piezoelectric element 50 .
- the adhesive layer 104 is preferably thinner.
- the thickness of the adhesive layer 104 is preferably 0.1 to 50 ⁇ m, more preferably 0.1 to 30 ⁇ m, and even more preferably 0.1 to 10 ⁇ m after being attached.
- the adhesive layer 104 is provided as a preferred embodiment and is not an essential component. Therefore, the electroacoustic transducer 100 does not have the adhesive layer 104, and the diaphragm 102 and the piezoelectric element 50 may be fixed using known crimping means, fastening means, fixing means, or the like.
- the shape of the piezoelectric element 50 is rectangular in plan view, the four corners may be fastened with members such as bolts and nuts to form an electroacoustic transducer, or the four corners and the central portion may be bolted together.
- the electroacoustic transducer may be configured by fastening with a member such as a nut.
- the piezoelectric element 50 expands and contracts independently of the diaphragm 102 when a drive voltage is applied from the power supply. is not transmitted to the diaphragm 102. In this way, when the piezoelectric element 50 expands and contracts independently of the diaphragm 102, the efficiency of vibration of the diaphragm 102 by the piezoelectric element 50 decreases. There is a possibility that the diaphragm 102 cannot be sufficiently vibrated. Considering this point, it is preferable that the vibration plate 102 and the piezoelectric element 50 are adhered with an adhesion layer 104 as shown in FIG.
- the piezoelectric layer 20 contains the piezoelectric particles 36 in the matrix 34 .
- a second electrode layer 26 and a first electrode layer 24 are provided so as to sandwich the piezoelectric layer 20 in the thickness direction.
- the piezoelectric particles 36 expand and contract in the polarization direction according to the applied voltage.
- the piezoelectric film 10 shrinks in the thickness direction.
- the piezoelectric film 10 also expands and contracts in the in-plane direction. This expansion and contraction is about 0.01 to 0.1%.
- the thickness of the piezoelectric layer 20 is preferably about 10-300 ⁇ m. Therefore, the expansion and contraction in the thickness direction is as small as about 0.3 ⁇ m at maximum.
- the piezoelectric film 10, that is, the piezoelectric layer 20 has a size much larger than its thickness in the planar direction. Therefore, for example, if the length of the piezoelectric film 10 is 20 cm, the piezoelectric film 10 expands and contracts by about 0.2 mm at maximum due to voltage application.
- the diaphragm 102 is attached to the piezoelectric film 10 with an adhesive layer 104 . Therefore, the expansion and contraction of the piezoelectric film 10 bends the diaphragm 102, and as a result, the diaphragm 102 vibrates in the thickness direction. Due to this vibration in the thickness direction, the diaphragm 102 generates sound. That is, the diaphragm 102 vibrates according to the magnitude of the voltage (driving voltage) applied to the piezoelectric film 10 and generates sound according to the driving voltage applied to the piezoelectric film 10 .
- the sound pressure level can be improved. If the mass of the piezoelectric film 10 is large, the diaphragm 102 will be bent, which may suppress vibration of the diaphragm 102 during driving. On the other hand, if the mass of the piezoelectric film 10 is small, the resonance frequency will be high, possibly suppressing the vibration of the diaphragm 102 at low frequencies. Considering these points, it is preferable to appropriately adjust the mass of the piezoelectric film 10 according to the spring constant of the diaphragm 102 .
- a piezoelectric film was produced by the method shown in FIGS. 11 to 13 described above. First, cyanoethylated PVA (CR-V, manufactured by Shin-Etsu Chemical Co., Ltd.) was dissolved in dimethylformamide (DMF) at the following compositional ratio. After that, PZT particles as piezoelectric particles were added to this solution at the following composition ratio, and the mixture was stirred with a propeller mixer (rotation speed: 2000 rpm) to prepare a paint for forming a piezoelectric layer.
- DMF dimethylformamide
- ⁇ PZT particles ⁇ 300 parts by mass ⁇ Cyanoethylated PVA ⁇ 30 parts by mass ⁇ DMF ⁇ 70 parts by mass
- the PZT particles used were obtained by sintering a commercially available PZT raw material powder at 1000 to 1200° C. and then pulverizing and classifying the sintered particles to an average particle size of 5 ⁇ m.
- a sheet-like material was prepared by vacuum-depositing a copper thin film with a thickness of 0.3 ⁇ m on a PET film with a thickness of 4 ⁇ m. That is, in this example, the first electrode layer and the second electrode layer are 0.3 ⁇ m thick copper-deposited thin films, and the first protective layer and the second protective layer are 4 ⁇ m thick PET films. Using a slide coater, the previously prepared paint for forming the piezoelectric layer was applied onto the second electrode layer (copper-deposited thin film) of the sheet-like material. In addition, the paint was applied so that the thickness of the coating film after drying was 50 ⁇ m. Next, the sheet-like material coated with the paint was dried by heating on a hot plate at 120° C.
- a piezoelectric laminate having a second electrode layer made of copper on a second protective layer made of PET and a piezoelectric layer (polymer composite piezoelectric layer) having a thickness of 50 ⁇ m thereon is produced. bottom.
- the produced piezoelectric layer was subjected to polarization treatment in the thickness direction.
- a sheet-like material obtained by vapor-depositing the same thin film on a PET film was laminated on the piezoelectric laminate that had been subjected to the polarization treatment, with the first electrode layer (copper thin film side) facing the piezoelectric layer.
- the laminate of the piezoelectric laminate and the sheet-like material is thermocompression bonded at a temperature of 120° C. using a laminator device, thereby adhering and bonding the piezoelectric layer and the first electrode layer.
- a film was produced.
- Example 1 The produced piezoelectric film was cut into a size of 170 mm ⁇ 150 mm and folded four times in the direction of the 170 mm side to produce a piezoelectric element having a laminate portion of length 30 mm ⁇ width 150 mm and a protrusion portion of length 20 mm ⁇ width 150 mm.
- an adhesive sheet (TSU0041SI manufactured by Toyochem Co., Ltd.) is placed between the laminated piezoelectric films each time the film is folded, and metal plates (made of Ti, thickness 0) are placed above and below the piezoelectric film to be stuck.
- the piezoelectric films were adhered to each other by applying heat and pressure together with the metal plate using a laminator.
- the heating temperature during lamination was 120° C., and the heating time was 0.08 m/min.
- the clearance difference (T 2 -T 1 ) between both ends of the laminator roller pair (R 1 , R 2 in FIG. 15) was set to 5 ⁇ m or less.
- the area of the adhesive sheet before lamination was 0.91 times the area of the laminated portion.
- the ratio of the bonding area of the bonding layer to the area of the laminated portion of the manufactured piezoelectric element was measured by the method described above, it was 0.99. Further, when the adhesive force between the piezoelectric film and the adhesive layer was measured by the method described above, the piezoelectric element and the support B were peeled off. Since the adhesive strength for adhering the piezoelectric element and the support B is about 10 N/cm, the adhesive strength between the piezoelectric film and the adhesive layer is more than 10 N/cm. Further, the ratio of the cross-sectional area of the clearance in the folded portion was found to be 0 when obtained by the method described above.
- Example 2 A piezoelectric element was produced in the same manner as in Example 1, except that the clearance difference between both ends of the laminator roller was set to 75 ⁇ m. The ratio of the bonding area of the bonding layer to the area of the laminated portion of the manufactured piezoelectric element was 0.85. Moreover, the adhesive strength of the adhesive layer was more than 10 N/cm. Also, the cross-sectional area ratio of the gap in the folded portion was zero.
- Example 3 A piezoelectric element was produced in the same manner as in Example 1, except that the area ratio of the adhesive sheet was 0.88. The ratio of the bonding area of the bonding layer to the area of the laminated portion of the manufactured piezoelectric element was 0.97. Moreover, the adhesive strength of the adhesive layer was more than 10 N/cm. Also, the ratio of the cross-sectional area of the gap in the folded portion was 0.04.
- Example 4 A piezoelectric element was produced in the same manner as in Example 1, except that the heating temperature during lamination was 80°C. The ratio of the bonding area of the bonding layer to the area of the laminated portion of the manufactured piezoelectric element was 0.99. Moreover, the adhesive strength of the adhesive layer was 0.2 N/cm. Also, the cross-sectional area ratio of the gap in the folded portion was zero.
- Example 5 A piezoelectric element was produced in the same manner as in Example 1, except that the heating temperature during lamination was 70°C.
- the ratio of the bonding area of the bonding layer to the area of the laminated portion of the manufactured piezoelectric element was 0.99.
- the adhesive strength of the adhesive layer was 0.1 N/cm.
- the cross-sectional area ratio of the gap in the folded portion was zero.
- Example 6 A piezoelectric element was produced in the same manner as in Example 1, except that the area ratio of the adhesive sheet was 0.87. The ratio of the bonding area of the bonding layer to the area of the laminated portion of the manufactured piezoelectric element was 0.97. Moreover, the adhesive strength of the adhesive layer was more than 10 N/cm. Also, the cross-sectional area ratio of the gap in the folded portion was 0.05.
- Example 1 A piezoelectric element was produced in the same manner as in Example 1, except that the area ratio of the adhesive sheet was set to 1. The ratio of the bonding area of the bonding layer to the area of the laminated portion of the manufactured piezoelectric element was 1. Moreover, the adhesive strength of the adhesive layer was more than 10 N/cm. Also, the cross-sectional area ratio of the gap in the folded portion was zero.
- Example 2 A piezoelectric element was produced in the same manner as in Example 1, except that the clearance difference between both ends of the laminator roller was 150 ⁇ m. The ratio of the bonding area of the bonding layer to the area of the laminated portion of the manufactured piezoelectric element was 0.84. Moreover, the adhesive strength of the adhesive layer was more than 10 N/cm. Also, the cross-sectional area ratio of the gap in the folded portion was zero.
- An electroacoustic transducer was produced by attaching the surface of the produced piezoelectric element opposite to the projecting portion to a diaphragm.
- a diaphragm a plate member having a size of 500 mm ⁇ 450 mm, a thickness of 0.8 mm, and material: aluminum (A5052) was used.
- the horizontal direction of the diaphragm and the longitudinal direction of the piezoelectric element were matched, and the center of the laminated part of the piezoelectric element was aligned with the center of the diaphragm and attached.
- An acrylic pressure-sensitive adhesive was used as a bonding layer for bonding the piezoelectric element and the diaphragm.
- a sine sweep signal with a frequency of 1 kHz to 20 kHz and an applied voltage of 50 Vrms was inputted to the piezoelectric element, and the sound pressure was measured with a microphone placed at a distance of 1 m from the center of the diaphragm. If the sound pressure at 3 kHz was 84 dB or more, it was evaluated that the desired characteristics were satisfied. Table 1 shows the results.
- the adhesive strength of the adhesive layer is preferably more than 0.1 N/cm.
- the cross-sectional area ratio of the clearance of the folded portion is preferably 0.04 or less. From the above, the effect of the present invention is clear.
- the piezoelectric element of the present invention can be used, for example, in various sensors such as sound wave sensors, ultrasonic sensors, pressure sensors, tactile sensors, strain sensors and vibration sensors (especially for infrastructure inspection such as crack detection and manufacturing site inspection such as foreign matter contamination detection). useful), acoustic devices such as microphones, pickups, speakers and exciters (specific applications include noise cancellers (used in cars, trains, airplanes, robots, etc.), artificial vocal cords, buzzers for preventing insects and vermin from entering , furniture, wallpaper, photographs, helmets, goggles, headrests, signage, robots, etc.), automobiles, smartphones, smart watches, haptics used for games, etc.
- sensors such as sound wave sensors, ultrasonic sensors, pressure sensors, tactile sensors, strain sensors and vibration sensors (especially for infrastructure inspection such as crack detection and manufacturing site inspection such as foreign matter contamination detection).
- acoustic devices such as microphones, pickups, speakers and exciters (specific applications include noise cancellers (used in cars, trains, airplanes, robots,
- Piezoelectric film 10a Protruding portion 10b Laminated portion 12a, 12c Sheet-like object 12b Piezoelectric laminate 14 Adhesive layer 17 Open end gap 18 Internal gap 19 Folded portion gap 20 Piezoelectric layer 24 First electrode layer 26 Second electrode layer 28 First first Protective layer 30 Second protective layer 34 Matrix 36 Piezoelectric particles 40 Connection part 50 Piezoelectric element 100 Electroacoustic transducer 102 Diaphragm 104 Adhesion layer
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Piezo-Electric Transducers For Audible Bands (AREA)
Abstract
Description
[1] 圧電体層と、圧電体層の両面に設けられる電極層と、電極層上に設けられる保護層と、を有する圧電フィルムを1回以上、折り返すことにより、圧電フィルムを、複数層、積層してなる圧電素子であって、
積層された圧電フィルムの層間を接着する接着層を有し、
圧電フィルムの積層方向から見た際の圧電フィルムの積層部の面積に対する、接着層の接着面積の比率が0.85~0.99の範囲である、圧電素子。
[2] 接着層と圧電フィルムとの接着力が0.1N/cm超である、[1]に記載の圧電素子。
[3] 積層部の面積に対する、圧電フィルムの折り返し部に形成される隙間の断面積の比率が、0.04以下である、[1]または[2]に記載の圧電素子。
[4] 圧電体層は、高分子材料を含むマトリックス中に圧電体粒子を含む高分子複合圧電体からなる、[1]~[3]のいずれかに記載の圧電素子。
[5] [1]~[4]のいずれかに記載の圧電素子を、振動板に貼り付けてなる、電気音響変換器。
なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
本発明の圧電素子は、
圧電体層と、圧電体層の両面に設けられる電極層と、電極層上に設けられる保護層と、を有する圧電フィルムを1回以上、折り返すことにより、圧電フィルムを、複数層、積層してなる圧電素子であって、
積層された圧電フィルムの層間を接着する接着層を有し、
圧電フィルムの積層方向から見た際の圧電フィルムの積層部の面積に対する、接着層の接着面積の比率が0.85~0.99の範囲である、圧電素子である。
図2では、図面を簡略化して、圧電素子50の構成を明瞭に示すために省略するが、圧電フィルム10は、圧電体層20の両面に電極層を有し、両電極層を覆って、保護層を有するものである。この点については、図7、図14も同様である。
また、以下の説明では、圧電フィルム10を折り返す方向(図1中左右方向)を折り返し方向という。
なお、突出部10aにおける電極と配線との接続方法には、制限はなく、公知の各種の方法が利用可能である。
すなわち、圧電素子50は、エキサイターとして用いることができる。
まず、図6に破線で示すように、矩形状の積層部10bをある辺に対して斜めに10断面、切断する。その際、各切断面は平行で、等間隔になるようにする。また、積層部10bの4辺をそれぞれ1か所は切断するようにする。
切断方法としては特に制限はないが、切断後の断面を観察でき、かつ、電極層の変形、破断、圧電層の変形、破断、保護層の変形および破断等がない手法が好ましい。例えば、観察箇所を、EB硬化樹脂を用いて乾固させた後、片刃カミソリで切創する方法が利用できる。
図7に図6のB-B線断面を模式的に表す図を示す。
図7に示すように、圧電フィルム10と接着層14との間には、空隙が生じている。具体的には、空隙として、折り返し部とは反対側の端部(開放端)に生じる空隙17、内部に生じる空隙18、および、折り返し部に生じる空隙19がある。これらの空隙の長さを測長し、接着層14の長さに対する比率から、積層部10bの面積に対する接着面積の比率を算出する。
圧電素子50bの積層部10b部分から1cm×5cmのサンプルを切り出す。図8に示すように、切り出した圧電素子50のサンプルの一方の面を両面粘着テープTP2を介して平滑な土台Bに貼り付ける。土台Bの表面はステンレス、金属およびガラス等からなることが好ましい。また、両面粘着テープTP2との間に気泡が入らないように設置する、両面粘着テープTP2の接着力は10N/cm以上のものを用いることが好ましい。
引き剥がし力のピーク値を、測定したサンプルの幅で割った値を、接着層14と圧電フィルム10との接着力(N/cm)とする。
突出部10aの形状は矩形状に限定はされず、六角形状等の多角形状であってもよいし、あるいは、略円形状、半円形状、楕円形状、および、不定形状等種々の形状であってもよい。
図10に示す圧電フィルム10は、圧電性を有するシート状物である圧電体層20と、圧電体層20の一方の面に積層される第2電極層26と、第2電極層26の圧電体層20と反対側の面に積層される第2保護層30と、圧電体層20の他方の面に積層される第1電極層24と、第1電極層24の圧電体層20と反対側の面に積層される第1保護層28と、を有する。すなわち、圧電フィルム10は、圧電体層20を電極層で挟持し、電極層の圧電体層が接触していない面に保護層が積層された構成を有する。
本発明において、圧電体層20は、図10に概念的に示すように、高分子材料を含むマトリックス34中に、圧電体粒子36を含む、高分子複合圧電体であるのが好ましい。
(i) 可撓性
例えば、携帯用として新聞や雑誌のように書類感覚で緩く撓めた状態で把持する場合、絶えず外部から、数Hz以下の比較的ゆっくりとした、大きな曲げ変形を受けることになる。この時、高分子複合圧電体が硬いと、その分大きな曲げ応力が発生し、高分子マトリックスと圧電体粒子との界面で亀裂が発生し、やがて破壊に繋がる恐れがある。従って、高分子複合圧電体には適度な柔らかさが求められる。また、歪みエネルギーを熱として外部へ拡散できれば応力を緩和することができる。従って、高分子複合圧電体の損失正接が適度に大きいことが求められる。
さらに、貼り付ける相手材(振動板)の剛性(硬さ、コシ、バネ定数)に合わせて、積層することで、簡便にバネ定数を調節できるのが好ましく、その際、貼着層104は薄ければ薄いほど、エネルギー効率を高めることができる。
高分子複合圧電体(圧電体層20)において、ガラス転移点が常温にある高分子材料、言い換えると、常温で粘弾性を有する高分子材料をマトリックスに用いることで、20Hz~20kHzの振動に対しては硬く、数Hz以下の遅い振動に対しては柔らかく振舞う高分子複合圧電体が実現する。特に、この振舞いが好適に発現する等の点で、周波数1Hzでのガラス転移点が常温、すなわち、0~50℃にある高分子材料を、高分子複合圧電体のマトリックスに用いるのが好ましい。
これにより、高分子複合圧電体が外力によってゆっくりと曲げられた際に、最大曲げモーメント部における高分子マトリックスと圧電体粒子との界面の応力集中が緩和され、高い可撓性が期待できる。
これにより、高分子複合圧電体が外力によってゆっくりと曲げられた際に発生する曲げモーメントが低減できると同時に、20Hz~20kHzの音響振動に対しては硬く振る舞うことができる。
しかしながら、その反面、良好な耐湿性の確保等を考慮すると、高分子材料は、比誘電率が25℃において10以下であるのも、好適である。
以下の説明では、シアノエチル化PVAを代表とする上述の高分子材料を、まとめて『常温で粘弾性を有する高分子材料』とも言う。
すなわち、マトリックス34には、誘電特性や機械特性の調節等を目的として、シアノエチル化PVA等の粘弾性材料に加え、必要に応じて、その他の誘電性高分子材料を添加しても良い。
中でも、シアノエチル基を有する高分子材料は、好適に利用される。
また、圧電体層20のマトリックス34において、これらの誘電性高分子材料は、1種に限定はされず、複数種を添加してもよい。
さらに、粘着性を向上する目的で、ロジンエステル、ロジン、テルペン、テルペンフェノール、および、石油樹脂等の粘着付与剤を添加しても良い。
これにより、マトリックス34における粘弾性緩和機構を損なうことなく、添加する高分子材料の特性を発現できるため、高誘電率化、耐熱性の向上、圧電体粒子36および電極層との密着性向上等の点で好ましい結果を得ることができる。
圧電体粒子36は、ペロブスカイト型またはウルツ鉱型の結晶構造を有するセラミックス粒子からなるものである。
圧電体粒子36を構成するセラミックス粒子としては、例えば、チタン酸ジルコン酸鉛(PZT)、チタン酸ジルコン酸ランタン酸鉛(PLZT)、チタン酸バリウム(BaTiO3)、酸化亜鉛(ZnO)、および、チタン酸バリウムとビスマスフェライト(BiFe3)との固溶体(BFBT)等が例示される。
圧電体粒子36の粒径をこの範囲とすることにより、圧電フィルム10が高い圧電特性とフレキシビリティとを両立できる等の点で好ましい結果を得ることができる。
圧電体層20中における圧電体粒子36の体積分率は、30~80%が好ましく、50%以上がより好ましく、従って、50~80%とするのが、さらに好ましい。
マトリックス34と圧電体粒子36との量比を上記範囲とすることにより、高い圧電特性とフレキシビリティとを両立できる等の点で好ましい結果を得ることができる。
圧電体層20が厚いほど、いわゆるシート状物のコシの強さなどの剛性等の点では有利であるが、同じ量だけ圧電フィルム10を伸縮させるために必要な電圧(電位差)は大きくなる。
圧電体層20の厚さは、10~300μmが好ましく、20~200μmがより好ましく、30~150μmがさらに好ましい。
圧電体層20の厚さを、上記範囲とすることにより、剛性の確保と適度な柔軟性との両立等の点で好ましい結果を得ることができる。
すなわち、本発明の圧電フィルム10において、圧電体層は、公知の圧電体層が、各種、利用可能である。
しかしながら、上述のように、20Hz~20kHzの振動に対しては硬く、数Hz以下の遅い振動に対しては柔らかく振舞うことができ、優れた音響特性が得られる、可撓性に優れる等の点で、上述したシアノエチル化PVAのような常温で粘弾性を有する高分子材料からなるマトリックス34に、圧電体粒子36を含む高分子複合圧電体が、好適に利用される。
このように、圧電フィルム10において、第2電極層26および第1電極層24で挾持された領域は、印加された電圧に応じて伸縮される。
なお、第2電極層26および第2保護層30、ならびに、第1電極層24および第1保護層28は、圧電フィルム10を説明するために、便宜的に付しているものである。従って、本発明における第1および第2には、技術的な意味は無く、また、実際の使用状態とは無関係である。
貼着剤は、接着剤でも粘着剤でもよい。また、貼着剤は、圧電体層20から圧電体粒子36を除いた高分子材料すなわちマトリックス34と同じ材料も、好適に利用可能である。なお、貼着層は、第1電極層24側および第2電極層26側の両方に有してもよく、第1電極層24側および第2電極層26側の一方のみに有してもよい。
第1保護層28と第2保護層30とは、配置位置が異なるのみで、構成は同じである。従って、以下の説明においては、第1保護層28および第2保護層30を区別する必要がない場合には、両部材をまとめて、保護層ともいう。
中でも、優れた機械的特性および耐熱性を有するなどの理由により、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ポリスチレン(PS)、ポリカーボネート(PC)、ポリフェニレンサルファイト(PPS)、ポリメチルメタクリレート(PMMA)、ポリエーテルイミド(PEI)、ポリイミド(PI)、ポリエチレンナフタレート(PEN)、トリアセチルセルロース(TAC)、および、環状オレフィン系樹脂等からなる樹脂フィルムが、好適に利用される。
ここで、第2保護層30および第1保護層28の剛性が高過ぎると、圧電体層20の伸縮を拘束するばかりか、可撓性も損なわれる。そのため、機械的強度やシート状物としての良好なハンドリング性が要求される場合を除けば、第2保護層30および第1保護層28は、薄いほど有利である。
例えば、圧電体層20の厚さが50μmで第2保護層30および第1保護層28がPETからなる場合、第2保護層30および第1保護層28の厚さは、100μm以下が好ましく、50μm以下がより好ましく、25μm以下がさらに好ましい。
ここで、前述の第2保護層30および第1保護層28と同様に、第2電極層26および第1電極層24の剛性が高過ぎると、圧電体層20の伸縮を拘束するばかりか、可撓性も損なわれる。そのため、第2電極層26および第1電極層24は、電気抵抗が高くなり過ぎない範囲であれば、薄いほど有利である。
例えば、第2保護層30および第1保護層28がPET(ヤング率:約6.2GPa)で、第2電極層26および第1電極層24が銅(ヤング率:約130GPa)からなる組み合わせの場合、第2保護層30および第1保護層28の厚さが25μmだとすると、第2電極層26および第1電極層24の厚さは、1.2μm以下が好ましく、0.3μm以下がより好ましく、中でも0.1μm以下とするのが好ましい。
このような圧電フィルム10は、動的粘弾性測定による周波数1Hzでの損失正接(Tanδ)の極大値が常温に存在するのが好ましく、0.1以上となる極大値が常温に存在するのがより好ましい。
これにより、圧電フィルム10が外部から数Hz以下の比較的ゆっくりとした、大きな曲げ変形を受けたとしても、歪みエネルギーを効果的に熱として外部へ拡散できるため、高分子マトリックスと圧電体粒子との界面で亀裂が発生するのを防ぐことができる。
これにより、常温で圧電フィルム10が貯蔵弾性率(E’)に大きな周波数分散を有することができる。すなわち、20Hz~20kHzの振動に対しては硬く、数Hz以下の振動に対しては柔らかく振る舞うことができる。
これにより、圧電フィルム10が可撓性および音響特性を損なわない範囲で、適度な剛性と機械的強度を備えることができる。
これにより、圧電フィルム10を用いたスピーカの周波数特性が平滑になり、スピーカの曲率の変化に伴い最低共振周波数f0が変化した際の音質の変化量も小さくできる。
測定条件としては、一例として、測定周波数は0.1Hz~20Hz(0.1Hz、0.2Hz、0.5Hz、1Hz、2Hz、5Hz、10Hzおよび20Hz)が、測定温度は-50~150℃が、昇温速度は2℃/分(窒素雰囲気中)が、サンプルサイズは40mm×10mm(クランプ領域込み)が、チャック間距離は20mmが、それぞれ、例示される。
電源には、制限はなく、直流電源でも交流電源でもよい。また、駆動電圧も、圧電フィルム10の圧電体層20の厚さおよび形成材料等に応じて、圧電フィルム10を適正に駆動できる駆動電圧を、適宜、設定すればよい。
一例として、第2電極層26および第1電極層24に銅箔等の導電体を接続して外部に電極を引き出す方法、および、レーザ等によって第2保護層30および第1保護層28に貫通孔を形成して、この貫通孔に導電性材料を充填して外部に電極を引き出す方法、等が例示される。
好適な電極の引き出し方法として、特開2014-209724号公報に記載される方法、および、特開2016-015354号公報に記載される方法等が例示される。
あるいは、保護層の上に銅薄膜等が形成された市販品をシート状物を、シート状物12aおよび/またはシート状物12cとして利用してもよい。
シート状物12aおよびシート状物12cは、同じものでもよく、異なるものでもよい。
一例として、まず、有機溶媒に、上述したシアノエチル化PVA等の高分子材料を溶解し、さらに、PZT粒子等の圧電体粒子36を添加し、攪拌して塗料を調製する。
有機溶媒には制限はなく、ジメチルホルムアミド(DMF)、メチルエチルケトン(MEK)、および、シクロヘキサノン等の各種の有機溶媒が利用可能である。
シート状物12aを準備し、かつ、塗料を調製したら、この塗料をシート状物12aにキャスティング(塗布)して、有機溶媒を蒸発して乾燥する。これにより、図12に示すように、第2保護層30の上に第2電極層26を有し、第2電極層26の上に圧電体層20を積層してなる圧電積層体12bを作製する。
あるいは高分子材料が加熱溶融可能な物であれば、高分子材料を加熱溶融して、これに圧電体粒子36を添加してなる溶融物を作製し、押し出し成形等によって、図11に示すシート状物12aの上にシート状に押し出し、冷却することにより、図12に示すような、圧電積層体12bを作製してもよい。
マトリックス34に、これらの高分子圧電材料を添加する際には、上記塗料に添加する高分子圧電材料を溶解すればよい。あるいは、加熱溶融した常温で粘弾性を有する高分子材料に、添加する高分子圧電材料を添加して加熱溶融すればよい。
周知のように、カレンダ処理とは、加熱プレスや加熱ローラ等によって、被処理面を加熱しつつ押圧して、平坦化等を施す処理である。
圧電体層20の分極処理の方法には制限はなく、公知の方法が利用可能である。例えば、分極処理を行う対象に、直接、直流電界を印加する、電界ポーリングが例示される。なお、電界ポーリングを行う場合には、分極処理の前に、第1電極層24を形成して、第1電極層24および第2電極層26を利用して、電界ポーリング処理を行ってもよい。
また、本発明の圧電フィルム10においては、分極処理は、圧電体層20の面方向ではなく、厚さ方向に分極を行うのが好ましい。
さらに、この積層体を、第1保護層28および第2保護層30を挟持するようにして、加熱プレス装置および加熱ローラ等を用いて熱圧着して、圧電積層体12bとシート状物12cとを貼り合わせ、図10に示すような、圧電フィルム10を作製する。
あるいは、圧電積層体12bとシート状物12cとを、接着剤を用いて貼り合わせて、好ましくは、さらに圧着して、圧電フィルム10を作製してもよい。
このようにして作製される圧電フィルム10は、面方向ではなく厚さ方向に分極されており、かつ、分極処理後に延伸処理をしなくても大きな圧電特性が得られる。そのため、圧電フィルム10は、圧電特性に面内異方性がなく、駆動電圧を印加すると、面方向では全方向に等方的に伸縮する。
圧電フィルム10の一端を、折り返し方向の長さが積層部10bの長さとなるように圧電フィルム10を折り曲げる。折り曲げた圧電フィルム10の間に接着層となる接着シートを挿入する。あるいは、接着剤を塗布する。
本発明の電気音響変換器は、
上述した圧電素子を、振動板に貼り付けてなる、電気音響変換器である。
この圧電素子50の面方向の伸縮によって、振動板102が撓み、その結果、振動板102が、厚さ方向に振動する。この厚さ方向の振動によって、振動板102は、音を発生する。振動板102は、圧電フィルム10に印加した駆動電圧の大きさに応じて振動して、圧電フィルム10に印加した駆動電圧に応じた音を発生する。
一例として、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ポリスチレン(PS)、ポリカーボネート(PC)、ポリフェニレンサルファイト(PPS)、ポリメチルメタクリレート(PMMA)、ポリエーテルイミド(PEI)、ポリイミド(PI)、ポリエチレンナフタレート(PEN)、トリアセチルセルロース(TAC)および環状オレフィン系樹脂等からなる樹脂フィルム、発泡ポリスチレン、発泡スチレンおよび発泡ポリエチレン等からなる発泡プラスチック、ならびに、波状にした板紙の片面または両面に他の板紙をはりつけてなる各種の段ボール材等が例示される。
従って、貼着層104は、貼り合わせる際には流動性を有し、その後、固体になる、接着剤からなる層でも、貼り合わせる際にゲル状(ゴム状)の柔らかい固体で、その後もゲル状の状態が変化しない、粘着剤からなる層でも、接着剤と粘着剤との両方の特徴を持った材料からなる層でもよい。
この点を考慮すると、貼着層104は、粘着剤からなる粘着剤層よりも、固体で硬い貼着層104が得られる、接着剤からなる接着剤層であるのが好ましい。より好ましい貼着層104としては、具体的には、ポリエステル系接着剤およびスチレン・ブタジエンゴム(SBR)系接着剤等の熱可塑タイプの接着剤からなる貼着層が例示される。
接着は、粘着とは異なり、高い接着温度を求める際に有用である。また、熱可塑タイプの接着剤は『比較的低温、短時間、および、強接着』を兼ね備えており、好適である。
ここで、電気音響変換器100においては、貼着層104が薄い方が、振動板102に伝達する圧電素子50の伸縮エネルギー(振動エネルギー)の伝達効果を高くして、エネルギー効率を高くできる。また、貼着層104が厚く剛性が高いと、圧電素子50の伸縮を拘束する可能性もある。
この点を考慮すると、貼着層104は、薄い方が好ましい。具体的には、貼着層104の厚さは、貼着後の厚さで0.1~50μmが好ましく、0.1~30μmがより好ましく、0.1~10μmがさらに好ましい。
従って、電気音響変換器100は、貼着層104を有さず、公知の圧着手段、締結手段、および、固定手段等を用いて、振動板102と圧電素子50とを固定してもよい。例えば、圧電素子50の平面視の形状が矩形である場合には、四隅をボルトナットのような部材で締結して電気音響変換器を構成してもよく、または、四隅と中心部とをボルトナットのような部材で締結して電気音響変換器を構成してもよい。
この点を考慮すると、振動板102と圧電素子50とは、図14に示すように、貼着層104で貼着するのが好ましい。
このような圧電体層20を有する圧電フィルム10の第2電極層26および第1電極層24に電圧を印加すると、印加した電圧に応じて圧電体粒子36が分極方向に伸縮する。その結果、圧電フィルム10(圧電体層20)が厚さ方向に収縮する。同時に、ポアゾン比の関係で、圧電フィルム10は、面内方向にも伸縮する。この伸縮は、0.01~0.1%程度である。
これに対して、圧電フィルム10すなわち圧電体層20は、面方向には、厚さよりもはるかに大きなサイズを有する。従って、例えば、圧電フィルム10の長さが20cmであれば、電圧の印加によって、最大で0.2mm程度、圧電フィルム10は伸縮する。
この厚さ方向の振動によって、振動板102は、音を発生する。すなわち、振動板102は、圧電フィルム10に印加した電圧(駆動電圧)の大きさに応じて振動して、圧電フィルム10に印加した駆動電圧に応じた音を発生する。
上述した図11~図13に示す方法によって、圧電フィルムを作製した。
まず、下記の組成比で、シアノエチル化PVA(CR-V 信越化学工業社製)をジメチルホルムアミド(DMF)に溶解した。その後、この溶液に、圧電体粒子としてPZT粒子を下記の組成比で添加して、プロペラミキサー(回転数2000rpm)で攪拌して、圧電体層を形成するための塗料を調製した。
・PZT粒子・・・・・・・・・・・300質量部
・シアノエチル化PVA・・・・・・・30質量部
・DMF・・・・・・・・・・・・・・70質量部
なお、PZT粒子は、市販のPZT原料粉を1000~1200℃で焼結した後、これを平均粒径5μmになるように解砕および分級処理したものを用いた。
シート状物の第2電極層(銅蒸着薄膜)の上に、スライドコーターを用いて、先に調製した圧電体層を形成するための塗料を塗布した。なお、塗料は、乾燥後の塗膜の膜厚が50μmになるように、塗布した。
次いで、シート状物に塗料を塗布した物を、120℃のホットプレート上で加熱乾燥することでDMFを蒸発させた。これにより、PET製の第2保護層の上に銅製の第2電極層を有し、その上に、厚さが50μmの圧電体層(高分子複合圧電体層)を有する圧電積層体を作製した。
次いで、圧電積層体とシート状物との積層体を、ラミネータ装置を用いて、温度120℃で熱圧着することで、圧電体層と第1電極層とを貼着して接着して、圧電フィルムを作製した。
作製した圧電フィルムを170mm×150mmに切り出し、170mmの辺の方向に4回折り返して、長さ30mm×幅150mmの積層部と、長さ20mm×幅150mmの突出部を有する圧電素子を作製した。
折り返しの際には、1回折り返すごとに、積層される圧電フィルムの間に、接着シート(トーヨーケム株式会社製 TSU0041SI)を配置し、貼着する圧電フィルムの上下を金属板(Ti製、厚み0.3mm)で挟み、金属板ごとラミネーターで熱加圧して圧電フィルム同士を接着した。ラミネート時の加熱温度は120℃、加熱時間は0.08m/minとした。また、ラミネーターのローラ対(図15のR1、R2)の両端のクリアランスの差(T2-T1)は、5μm以下とした。また、ラミネート前の接着シートの面積は、積層部の面積の0.91倍の大きさとした。
同様の折り返しを4回繰り返すことにより、圧電フィルムが5層の圧電素子を作製した。
ラミネーターのローラー両端におけるクリアランスの差を75μmとした以外は実施例1と同様にして圧電素子を作製した。
作製した圧電素子の積層部の面積に対する接着層の接着面積の比率は、0.85であった。また、接着層の接着力は10N/cm超であった。また、折り返し部における隙間の断面積の比率は0であった。
接着シートの面積比率を0.88とした以外は実施例1と同様にして圧電素子を作製した。
作製した圧電素子の積層部の面積に対する接着層の接着面積の比率は、0.97であった。また、接着層の接着力は10N/cm超であった。また、折り返し部における隙間の断面積の比率は0.04であった。
ラミネー時の加熱温度を80℃とした以外は実施例1と同様にして圧電素子を作製した。
作製した圧電素子の積層部の面積に対する接着層の接着面積の比率は、0.99であった。また、接着層の接着力は0.2N/cmであった。また、折り返し部における隙間の断面積の比率は0であった。
ラミネー時の加熱温度を70℃とした以外は実施例1と同様にして圧電素子を作製した。
作製した圧電素子の積層部の面積に対する接着層の接着面積の比率は、0.99であった。また、接着層の接着力は0.1N/cmであった。また、折り返し部における隙間の断面積の比率は0であった。
接着シートの面積比率を0.87とした以外は実施例1と同様にして圧電素子を作製した。
作製した圧電素子の積層部の面積に対する接着層の接着面積の比率は、0.97であった。また、接着層の接着力は10N/cm超であった。また、折り返し部における隙間の断面積の比率は0.05であった。
接着シートの面積比率を1とした以外は実施例1と同様にして圧電素子を作製した。
作製した圧電素子の積層部の面積に対する接着層の接着面積の比率は、1であった。また、接着層の接着力は10N/cm超であった。また、折り返し部における隙間の断面積の比率は0であった。
[比較例2]
ラミネーターのローラー両端におけるクリアランスの差を150μmとした以外は実施例1と同様にして圧電素子を作製した。
作製した圧電素子の積層部の面積に対する接着層の接着面積の比率は、0.84であった。また、接着層の接着力は10N/cm超であった。また、折り返し部における隙間の断面積の比率は0であった。
作製した各実施例および比較例の電気音響変換器について、ラミネーター表面の汚れの有無、および、音圧を評価した。
圧電素子の作製時に折り返した圧電フィルムをラミネートした後のラミネーター表面に接着剤が付着しているか否かを目視で確認した。
作製した圧電素子の、突出部とは反対側の面を振動板に貼着し、電気音響変換器を作製した。振動板としては、大きさ500mm×450mm、厚さ0.8mm、材質:アルミニウム(A5052)の板状部材を用いた。振動板の横方向と圧電素子の長手方向を一致させて、振動板の中央に圧電素子の積層部の中心を合わせて貼着した。圧電素子と振動板とを貼着する貼着層としては、アクリル系粘着剤を用いた。
3kHzにおける音圧が84dB以上であれば、所望の特性を満たすと評価した。
結果を表1に示す。
また、実施例1,3および6の対比から、折り返し部の隙間の断面積の比率は0.04以下が好ましいことがわかる。
以上から本発明の効果は明らかである。
10a 突出部
10b 積層部
12a、12c シート状物
12b 圧電積層体
14 粘着層
17 開放端空隙
18 内部空隙
19 折り返し部空隙
20 圧電体層
24 第1電極層
26 第2電極層
28 第1保護層
30 第2保護層
34 マトリックス
36 圧電体粒子
40 接続部
50 圧電素子
100 電気音響変換器
102 振動板
104 貼着層
Claims (5)
- 圧電体層と、前記圧電体層の両面に設けられる電極層と、前記電極層上に設けられる保護層と、を有する圧電フィルムを1回以上、折り返すことにより、前記圧電フィルムを、複数層、積層してなる圧電素子であって、
積層された前記圧電フィルムの層間を接着する接着層を有し、
前記圧電フィルムの積層方向から見た際の前記圧電フィルムの積層部の面積に対する、前記接着層の接着面積の比率が0.85~0.99の範囲である、圧電素子。 - 前記接着層と前記圧電フィルムとの接着力が0.1N/cm超である、請求項1に記載の圧電素子。
- 前記積層部の面積に対する、前記圧電フィルムの折り返し部に形成される隙間の断面積の比率が、0.04以下である、請求項1に記載の圧電素子。
- 前記圧電体層は、高分子材料を含むマトリックス中に圧電体粒子を含む高分子複合圧電体からなる、請求項1に記載の圧電素子。
- 請求項1~4のいずれか一項に記載の圧電素子を、振動板に貼り付けてなる、電気音響変換器。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023550438A JPWO2023053751A1 (ja) | 2021-09-29 | 2022-08-15 | |
CN202280065364.0A CN118044228A (zh) | 2021-09-29 | 2022-08-15 | 压电元件及电声转换器 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-158576 | 2021-09-29 | ||
JP2021158576 | 2021-09-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023053751A1 true WO2023053751A1 (ja) | 2023-04-06 |
Family
ID=85782341
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/030857 WO2023053751A1 (ja) | 2021-09-29 | 2022-08-15 | 圧電素子および電気音響変換器 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JPWO2023053751A1 (ja) |
CN (1) | CN118044228A (ja) |
TW (1) | TW202315173A (ja) |
WO (1) | WO2023053751A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6054486A (ja) * | 1983-09-05 | 1985-03-28 | Toshiba Corp | 高分子素子のリ−ド線接続部 |
WO2021100428A1 (ja) * | 2019-11-22 | 2021-05-27 | 富士フイルム株式会社 | 電気音響変換器 |
-
2022
- 2022-08-15 JP JP2023550438A patent/JPWO2023053751A1/ja active Pending
- 2022-08-15 CN CN202280065364.0A patent/CN118044228A/zh active Pending
- 2022-08-15 WO PCT/JP2022/030857 patent/WO2023053751A1/ja active Application Filing
- 2022-08-25 TW TW111132044A patent/TW202315173A/zh unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6054486A (ja) * | 1983-09-05 | 1985-03-28 | Toshiba Corp | 高分子素子のリ−ド線接続部 |
WO2021100428A1 (ja) * | 2019-11-22 | 2021-05-27 | 富士フイルム株式会社 | 電気音響変換器 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023053751A1 (ja) | 2023-04-06 |
CN118044228A (zh) | 2024-05-14 |
TW202315173A (zh) | 2023-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2023033366A (ja) | 積層圧電素子および電気音響変換器 | |
JP7265625B2 (ja) | 電気音響変換フィルムおよび電気音響変換器 | |
JP7166428B2 (ja) | 電気音響変換器 | |
JP7143524B2 (ja) | 高分子複合圧電体および圧電フィルム | |
JP7386324B2 (ja) | 積層圧電素子および電気音響変換器 | |
JP7177268B2 (ja) | 高分子複合圧電体および圧電フィルム | |
WO2023047958A1 (ja) | 積層圧電素子および電気音響変換器 | |
WO2022190715A1 (ja) | 圧電フィルム | |
WO2023053751A1 (ja) | 圧電素子および電気音響変換器 | |
WO2023053750A1 (ja) | 圧電素子および電気音響変換器 | |
WO2023166892A1 (ja) | 電気音響変換器 | |
WO2023153126A1 (ja) | 圧電素子および電気音響変換器 | |
WO2024180931A1 (ja) | 積層圧電素子および電気音響変換器 | |
WO2022196202A1 (ja) | 圧電素子 | |
WO2023157532A1 (ja) | 圧電素子および電気音響変換器 | |
WO2023248696A1 (ja) | 圧電フィルム、圧電素子および電気音響変換器、ならびに、圧電フィルムの製造方法 | |
WO2023188966A1 (ja) | 圧電フィルム、圧電素子、および、電気音響変換器 | |
WO2023042542A1 (ja) | 圧電素子および電気音響変換器 | |
WO2023181699A1 (ja) | 電気音響変換器 | |
WO2023188929A1 (ja) | 圧電フィルム、圧電素子、および、電気音響変換器 | |
WO2023048022A1 (ja) | 圧電素子および圧電スピーカー | |
WO2024062863A1 (ja) | 圧電フィルム | |
WO2023286544A1 (ja) | 圧電フィルム | |
WO2023021944A1 (ja) | 圧電素子および圧電スピーカー | |
WO2023053931A1 (ja) | 圧電素子および圧電スピーカー |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22875625 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023550438 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280065364.0 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22875625 Country of ref document: EP Kind code of ref document: A1 |