WO2023053241A1 - 回転電機の短絡検知装置および短絡検知方法 - Google Patents

回転電機の短絡検知装置および短絡検知方法 Download PDF

Info

Publication number
WO2023053241A1
WO2023053241A1 PCT/JP2021/035762 JP2021035762W WO2023053241A1 WO 2023053241 A1 WO2023053241 A1 WO 2023053241A1 JP 2021035762 W JP2021035762 W JP 2021035762W WO 2023053241 A1 WO2023053241 A1 WO 2023053241A1
Authority
WO
WIPO (PCT)
Prior art keywords
short
frequency components
short circuit
signal
voltage
Prior art date
Application number
PCT/JP2021/035762
Other languages
English (en)
French (fr)
Inventor
勇二 滝澤
篤史 山本
進 前田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/035762 priority Critical patent/WO2023053241A1/ja
Priority to JP2023550822A priority patent/JP7558422B2/ja
Publication of WO2023053241A1 publication Critical patent/WO2023053241A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load

Definitions

  • This application relates to a short-circuit detection device and a short-circuit detection method for rotating electric machines.
  • a conventional short-circuit detection device for a rotating electrical machine uses a search coil to detect changes in the field magnetic flux due to a short circuit in the field winding of the rotor. It also includes a signal acquisition unit, a signal decomposition unit, a specific frequency component reduction unit, a signal conversion unit, a short circuit detection unit, and an estimation accuracy determination unit that process the voltage signal from the search coil.
  • the signal decomposing unit decomposes the voltage signal acquired by the signal acquiring unit into a plurality of frequency components of different orders.
  • the specific frequency component reduction unit reduces odd-order frequency components and even-order frequency components higher than the threshold, among the plurality of frequency components, using an order lower than the fundamental order of the slot harmonic as a threshold.
  • the signal conversion section converts the plurality of frequency components output from the specific frequency component reduction section into voltage signals.
  • the short-circuit detection unit generates a differential waveform of each voltage signal corresponding to adjacent magnetic poles, detects a short-circuit of the field winding based on the shape of the differential waveform, and estimates the short-circuit position of the field winding. .
  • the estimation accuracy determination unit determines the estimation accuracy of the short-circuited position of the field winding based on the degree of symmetry of the waveform of the maximum wave around the peak angle of the differential waveform (for example, Patent Document 1).
  • the slot position of the rotor which is the short circuit position, is estimated based on the peak voltage generated by the occurrence of the short circuit in the differential waveform obtained by the short circuit detection unit. At that time, if multiple short-circuits occur in different adjacent slots, multiple peak voltages caused by the multiple short-circuits overlap each other, degrading the accuracy of estimating the short-circuit position.
  • the present application discloses a technique for solving the above-described problems. It is an object of the present invention to provide a short-circuit detection device and a method for detecting a short-circuit of a rotating electric machine, which can reliably estimate the short-circuit position of windings.
  • a short-circuit detection device for a rotating electrical machine disclosed in the present application processes a voltage signal from a magnetic detector disposed facing a field winding provided in a plurality of slots of a rotor of a rotating electrical machine to detect the field. Detects short circuits in magnetic windings.
  • This short-circuit detection device for a rotating electric machine includes a signal acquisition unit that acquires a voltage signal from the magnetic detector, and a signal decomposition that resolves the voltage signal acquired by the signal acquisition unit into a plurality of frequency components of different orders.
  • a specific frequency component reduction unit that reduces even-order frequency components
  • a signal conversion unit that converts a plurality of frequency components output from the specific frequency component reduction unit into a voltage signal; and a voltage converted by the signal conversion unit.
  • the short-circuit detection unit for detecting a short-circuit in the field winding based on the shape of the differential waveform and estimating at which position in the circumferential direction of the rotor the short-circuit occurs.
  • the short-circuit detection unit generates, as the differential waveform, a plurality of differential waveforms obtained by integrating specific frequency components, detects a common peak voltage position for the plurality of differential waveforms, and Assume the common peak voltage location as the short circuit location.
  • the method for detecting a short circuit in a rotating electric machine disclosed in the present application is a signal for acquiring a voltage signal from a magnetic detector arranged facing a field winding provided in a plurality of slots of a rotor of a rotating electric machine.
  • an acquisition step a signal decomposition step of decomposing the voltage signal acquired by the signal acquisition step into a plurality of frequency components of different orders, and a fundamental order of slot harmonics, which are harmonics correlated with the pitches of the plurality of slots.
  • a specific frequency component reduction step of reducing odd-order frequency components and even-order frequency components higher than the threshold among the plurality of frequency components, using a lower order as a threshold; and the specific frequency component reduction step a signal conversion step of converting a plurality of frequency components output from a voltage signal into a voltage signal; to generate a differential waveform of each divided voltage signal corresponding to adjacent magnetic poles among the plurality of magnetic poles, detect a short circuit of the field winding based on the shape of the differential waveform, and and a short-circuit detection step of estimating at which position in the circumferential direction the short-circuit of the field winding has occurred.
  • a plurality of differential waveforms obtained by integrating specific frequency components are generated as the differential waveform, and a common peak voltage position is detected for the plurality of generated differential waveforms, Assume the common peak voltage location as the short circuit location.
  • each slot position that becomes a short-circuit position can be easily separated, and the field winding can reliably estimate the short-circuit position of
  • FIG. 1 is a configuration diagram showing a rotating electric machine and a short-circuit detection device according to Embodiment 1;
  • FIG. 4 is a waveform diagram showing voltage signals acquired by a signal acquisition unit according to Embodiment 1.
  • FIG. 4 is a spectrum diagram showing the frequency spectrum of the amplitude component of the voltage signal frequency-analyzed by the signal decomposing unit according to Embodiment 1;
  • FIG. 4 is a spectrum diagram showing a frequency spectrum of an amplitude component after reduction processing by a specific frequency component reduction section according to Embodiment 1;
  • FIG. 4 is a diagram showing a first voltage signal converted by a signal converter according to Embodiment 1;
  • FIG. 4 is a diagram showing a second voltage signal converted by a signal converter according to Embodiment 1;
  • FIG. 4 is a diagram showing a third voltage signal converted by a signal converter according to Embodiment 1;
  • FIG. 10 is a diagram showing a fourth voltage signal converted by the signal converter according to Embodiment 1;
  • 4 is a diagram showing a first differential waveform generated by the short-circuit detection section according to Embodiment 1;
  • FIG. 10 is a diagram showing a second differential waveform generated by the short-circuit detector according to Embodiment 1;
  • FIG. 10 is a diagram showing a third differential waveform generated by the short-circuit detector according to Embodiment 1;
  • FIG. 10 is a diagram showing a fourth differential waveform generated by the short-circuit detector according to Embodiment 1; 4 is a diagram showing a flowchart for explaining a short-circuit detection method according to Embodiment 1;
  • FIG. 2 is a configuration diagram showing an example of hardware that implements each function of the signal processing device according to Embodiment 1;
  • FIG. 4 is a configuration diagram showing another example of hardware that implements each function of the signal processing device according to the first embodiment;
  • FIG. FIG. 10 is a diagram showing a first difference waveform generated by a short-circuit detector according to Embodiment 2;
  • FIG. 10 is a diagram showing a second difference waveform generated by the short-circuit detector according to the second embodiment;
  • FIG. 10 is a diagram showing a third differential waveform generated by the short-circuit detector according to the second embodiment;
  • FIG. 10 is a diagram showing a fourth differential waveform generated by the short-circuit detector according to the second embodiment;
  • FIG. 1 is a configuration diagram showing a rotating electric machine and a short-circuit detection device according to Embodiment 1.
  • a turbine generator 10 is employed as the rotating electric machine.
  • FIG. 1 shows a cross section of the turbogenerator 10 perpendicular to the axial direction of the turbogenerator 10 .
  • the turbine generator 10 includes a stator 20 as an armature and a rotor 30 as a magnetic field.
  • the stator 20 has a cylindrical stator core 21 and multiphase windings 22 .
  • the stator 20 is provided outside the rotor 30 .
  • the axial direction of the stator core 21 is the direction along the axis of the stator core 21 and the direction perpendicular to the paper surface of FIG.
  • the radial direction of the stator core 21 is the radial direction of a circle centered on the axis of the stator core 21 .
  • the circumferential direction of the stator core 21 is a direction along an arc around the axial center of the stator core 21 .
  • a plurality of stator slots 23 are formed in the inner peripheral portion of the stator core 21 .
  • Each stator slot 23 is formed along the radial direction of the stator core 21 .
  • the plurality of stator slots 23 are arranged at equal pitches in the circumferential direction of the stator core 21 .
  • the total number of stator slots 23 is 84.
  • Multiphase windings 22 are wound around the plurality of stator slots 23 .
  • the rotor 30 has a rotor core 31, a field winding 32, and a rotating shaft (not shown).
  • the rotor core 31 and the rotating shaft are arranged coaxially with the stator core 21 .
  • the rotor 30 is rotatable around the rotation axis.
  • the axial direction of the rotor core 31 is the direction along the axis O of the rotor core 31 and the direction perpendicular to the paper surface of FIG.
  • the radial direction of the rotor core 31 is the radial direction of a circle centered on the axis O of the rotor core 31 .
  • the circumferential direction of the rotor core 31 is a direction along an arc centered on the axis O of the rotor core 31 .
  • a plurality of rotor slots 33 are formed in the outer peripheral portion of the rotor core 31 .
  • Each rotor slot 33 is formed along the radial direction of the rotor core 31 .
  • the multiple rotor slots 33 are divided into a first slot group 34 and a second slot group 35 .
  • the first slot group 34 and the second slot group 35 each include 16 rotor slots 33 . That is, the total number of rotor slots 33 is 32.
  • the plurality of rotor slots 33 are arranged in the circumferential direction of the rotor core 31 at equal pitches.
  • the pitch of the rotor slots 33 is the distance between the centers in the width direction of two adjacent rotor slots 33 in the circumferential direction of the rotor core 31 .
  • the pitch of the rotor slots 33 in Embodiment 1 is 7.42° when represented by the circumferential angle of the rotor core 31 .
  • the pitch of each rotor slot 33 will be referred to as rotor slot pitch Sp.
  • a first magnetic pole 36 and a second magnetic pole 37 are formed between the first slot group 34 and the second slot group 35 .
  • a dashed line passing through the axis O of the rotor core 31, the center of the first magnetic pole 36 in the circumferential direction of the rotor 30, and the center of the second magnetic pole 37 is hereinafter referred to as the magnetic pole center line C1.
  • the first slot group 34 and the second slot group 35 are arranged symmetrically about the magnetic pole center line C1.
  • the dashed-dotted line passing through the axial center O of the rotor core 31, the center of the first slot group 34 in the circumferential direction of the rotor core 31, and the center of the second slot group 35 is hereinafter referred to as the inter-polar center line C2. called.
  • Each of the plurality of rotor slots 33 is called a first slot, a second slot, .
  • each of the plurality of rotor slots 33 is called a first slot, a second slot, .
  • a field winding 32 is wound around the plurality of rotor slots 33 so as to reciprocate between the first slot group 34 and the second slot group 35 with the magnetic pole center line C1 interposed therebetween. Portions of the field winding 32 located in adjacent rotor slots 33 are connected in series with each other.
  • the field winding 32 is DC-excited by an external power supply (not shown). As a result, one of the first magnetic pole 36 and the second magnetic pole 37 becomes the N pole, and the other becomes the S pole. That is, the turbogenerator 10 is a two-pole generator.
  • a gap 40 is formed between the stator core 21 and the rotor core 31 .
  • the multiphase winding 22 is AC-excited by an external power source (not shown). A rotating magnetic field is thereby generated in the air gap 40 .
  • the short-circuit detection device 100 detects a short-circuit in the field winding 32 of the turbine generator 10, and includes a search coil 50 as a magnetic detector, a signal processing device 60 that processes detection signals from the search coil 50, and a display device 70 .
  • a search coil 50 is arranged in the air gap 40 and faces the field winding 32 .
  • the search coil 50 is interlinked with the main magnetic flux and the leakage magnetic flux.
  • the main magnetic flux is the magnetic flux generated in the air gap 40
  • the leakage magnetic flux is the magnetic flux leaking from each rotor slot 33 .
  • the magnetic flux that links the search coil 50 is called flux linkage.
  • the search coil 50 has a first terminal 51 and a second terminal 52 .
  • a voltage signal which is a detection signal
  • the distribution of the interlinkage magnetic flux within the search coil 50 varies as the rotor 30 rotates.
  • the short circuit detection device 100 is provided with the search coil 50 as the magnetic detector, but the search coil 50 may be configured separately from the short circuit detection device 100 .
  • the signal processing device 60 includes a signal acquisition unit 61, a signal decomposition unit 62, a specific frequency component reduction unit 63, a signal conversion unit 64, and a short circuit detection unit 65 as functional blocks.
  • the signal acquisition unit 61 acquires the voltage signal induced in the search coil 50.
  • the signal decomposing unit 62 decomposes the voltage signal acquired by the signal acquiring unit 61 into a plurality of frequency components of different orders. Further, the signal decomposing unit 62 separates each decomposed frequency component into amplitude and phase.
  • the specific frequency component reduction unit 63 sets the order of the frequency component lower than the fundamental order of the slot harmonic as the threshold.
  • Slot harmonics are harmonics that are correlated to the rotor slot pitch Sp.
  • the specific frequency component reduction unit 63 reduces odd-order frequency components and even-order frequency components higher than the threshold, among the separated amplitudes.
  • the signal conversion unit 64 integrates the phase and the amplitude obtained after the reduction processing by the specific frequency component reduction unit 63 for each order of the frequency component, thereby converting it into a voltage signal after reduction of the specific frequency component. At that time, a plurality of voltage signals obtained by integrating specific frequency components are generated. In this case, a first voltage signal, a second voltage signal, a third voltage signal and a fourth voltage signal, which are four voltage signals to be described later, are generated.
  • the short-circuit detection unit 65 detects each of the converted first to fourth voltage signals after the reduction of the specific frequency component for each circumferential angle of the rotor 30 corresponding to the first magnetic pole 36 and the second magnetic pole 37 of the rotor 30. split into Furthermore, the short-circuit detector 65 generates differential waveforms of the divided voltage signals corresponding to the first magnetic pole 36 and the second magnetic pole 37 . That is, first to fourth differential waveforms, which are differential waveforms, are generated for each of the first to fourth voltage signals.
  • the short-circuit detection unit 65 Based on the shapes of the plurality of differential waveforms (first to fourth differential waveforms), the short-circuit detection unit 65 detects short-circuiting of the field winding 32, and detects the short-circuiting of the field winding 32. It is estimated at which position in the circumferential direction of the child 30 the occurrence occurs.
  • a peak voltage corresponding to the slot position of the rotor where the short circuit occurs appears in the differential waveform. That is, peak voltages corresponding to the slot positions of the rotor where the short circuit occurs are generated in the plurality of differential waveforms. This is because each order of the frequency component includes a phase that is aligned with the slot position of the rotor where the short circuit occurs, and peak voltages occur at common positions in multiple differential waveforms obtained by combining these orders. do.
  • the short-circuit detector 65 can estimate the slot position of the rotor where the short-circuit has occurred by detecting peak voltages at common positions in a plurality of differential waveforms. At positions other than the peak voltage at the common position, since the phases of the frequency components are not aligned, the peak voltage due to the occurrence of the short circuit does not appear.
  • the short-circuit detection unit 65 outputs to the display device 70 information regarding whether or not a short-circuit has occurred in the field winding 32 and the position of the rotor slot 33 in which the short-circuit has occurred.
  • the display device 70 is provided outside the signal processing device 60 .
  • the display device 70 displays the presence or absence of a short circuit in the field winding 32 and the position of the rotor slot 33 where the short circuit occurs based on the information from the short circuit detector 65 . Note that the display device 70 may be provided outside the short circuit detection device 100 .
  • FIG. 2 is a waveform diagram showing an example of the voltage signal acquired by the signal acquisition section 61. As shown in FIG. This waveform diagram was obtained by simulating the no-load operation state of the turbine generator 10 of FIG. 1 using an electromagnetic field analysis program.
  • the voltage signal acquired by the signal acquisition unit 61 is a voltage signal induced in the search coil 50 , and the search coil 50 faces the field winding 32 within the air gap 40 and the surface of the stator core 21 . are placed in
  • the simulation is performed under the condition that, for example, the field winding 32 is short-circuited by one turn in two different slots on the second magnetic pole 37 side, namely, the first slot and the third slot. Therefore, in the example described below based on the waveform diagram of FIG. 2, the field winding 32 is short-circuited by one turn in each of the first and third slots on the second magnetic pole 37 side. be.
  • the signal processing device 60 uses the voltage signal acquired by the signal acquisition unit 61 to determine that a short circuit has occurred at each of the positions of the first slot and the third slot, and furthermore, It is assumed that no short circuit occurs in the second slot sandwiched between the two slots. This will be explained below.
  • the voltage waveform shown in FIG. 2 corresponds to the first magnetic pole 36 from 0° to 180° in the circumferential direction, and corresponds to the second magnetic pole 37 from 180° to 360° in the circumferential direction. Therefore, the center of the first magnetic pole 36 is closest to the search coil 50 at a circumferential angle of 90°, and the center of the second magnetic pole 37 is closest to the search coil 50 at a circumferential angle of 270°.
  • 32 fine voltage fluctuations occur every rotor slot pitch Sp, that is, 7.42°.
  • the absolute value of the voltage is smaller than that in the first magnetic pole 36 in which a short circuit does not occur.
  • the signal decomposing unit 62 decomposes the voltage signal acquired by the signal acquiring unit 61 into a plurality of frequency components of different orders, and further separates each decomposed frequency component into amplitude and phase. do.
  • FIG. 3 is a spectral diagram showing the frequency spectrum of the amplitude component of the voltage signal frequency-analyzed by the signal decomposing section 62. As shown in FIG. The horizontal axis is the order of harmonics, and one peak of the bar graph in the figure is the first order. The vertical axis indicates the voltage intensity of harmonics of each order. In FIG. 3, the harmonics of the 80th order and below are shown for explanation, and the display of the harmonics of the 81st order and above is omitted.
  • the voltage intensity of the odd harmonics is greater than the voltage intensity of the even harmonics.
  • the first-order harmonic is the fundamental wave component corresponding to the main magnetic flux of the magnetic flux generated in the air gap 40 and has the largest amplitude.
  • the 47th harmonic has a higher voltage intensity than the surrounding harmonics.
  • the 47th harmonic is a slot harmonic and has a correlation with the rotor slot pitch Sp.
  • the 47th order is the fundamental order of slot harmonics.
  • Slot harmonics are generated by the difference between the primary magnetomotive force in the rotor 30 and the permeance change of the rotor slot pitch Sp. Permeance is the conversion factor from magnetomotive force to magnetic flux density. In this case, the difference 47 between the magnetomotive force order and the permeance order is the slot harmonic order.
  • Odd-order components other than the first order are harmonic components other than the main magnetic flux caused by pulsation causes such as the number of slots of the rotor 30 or the stator 20 among the magnetic flux generated in the air gap 40. regardless of whether there is a short circuit on or not. Since the rotor core 31 does not have a rotor slot 33 around the entire circumference and has two magnetic poles 36 and 37, there are also odd-numbered orders in addition to the 47th order. An order sufficiently higher than the 47th order, for example, an order higher than the 53rd order becomes a pulsation component of the magnetic flux smaller than the slot pitch Sp, so that the magnitude of the amplitude is sufficiently smaller than the amplitude of the component of the 47th order or lower. On the other hand, even harmonics are generated when the field winding 32 is short-circuited.
  • the 48th and higher harmonics correspond to pitches narrower than the rotor slot pitch Sp, that is, to angles smaller than the rotor slot pitch Sp in the circumferential direction.
  • Frequency components corresponding to angles smaller than the rotor slot pitch Sp are not necessary components for estimating the short-circuit position of the field winding 32 .
  • odd-order frequency components are a factor that hinders detection of even-order frequency components.
  • the odd-order frequency components contain the information necessary to specify the circumferential angle. Specifically, by including odd-numbered frequency components, it is possible to determine on which magnetic pole side the short circuit has occurred.
  • FIG. 4 is a spectrum diagram showing the frequency spectrum of the amplitude component after reduction processing by the specific frequency component reduction section 63.
  • the specific frequency component reduction unit 63 sets the threshold to 46, and removes frequency components of even-numbered orders higher than the 46th order, that is, the 48th order and higher. Further, the specific frequency component reduction unit 63 attenuates all odd-order frequency components. In this case, odd-order frequency components lower than the threshold value of 46th order are reduced in amplitude to 1/1000, and odd-order frequency components of 47th order or higher are attenuated or eliminated to almost zero.
  • reducing frequency components includes removing frequency components and attenuating frequency components.
  • the specific frequency component reduction unit 63 reduces even-order frequency components higher than the threshold, which are orders lower than the fundamental order of the slot harmonics, and odd-order frequency components. Factors that hinder short-circuit detection can be reduced. Thereby, the detection accuracy of a short circuit can be improved.
  • FIG. 5 to 8 are diagrams showing voltage signals converted by the signal converter 64.
  • the signal conversion unit 64 integrates the phase and the amplitude obtained after the reduction processing by the specific frequency component reduction unit 63 for each order of the frequency component, thereby converting it into a voltage signal after reduction of the specific frequency component.
  • first to fourth voltage signals which are a plurality of voltage signals obtained by integrating specific frequency components, are generated.
  • each converted voltage signal does not contain a slot harmonic component, so that a fine waveform of the rotor slot pitch Sp does not appear.
  • the first voltage signal shown in FIG. 5 is generated by integrating frequency components of all orders.
  • the second voltage signal shown in FIG. 6 is generated by integrating frequency components of orders that are multiples of four.
  • the third voltage signal shown in FIG. 7 is generated by integrating frequency components of orders that are multiples of eight.
  • the fourth voltage signal shown in FIG. 8 is generated by integrating frequency components of orders that are multiples of twelve.
  • the second to fourth voltage signals, other than the first voltage signal obtained by integrating frequency components of all orders, are generated by integrating frequency components whose orders are specific even numbers, in this case, multiples of each of 4, 8 and 12. be done.
  • FIG. 9 to 12 are diagrams showing difference waveforms generated by the short-circuit detection section 65.
  • FIG. The first to fourth voltage signals converted by the signal converter 64 are input to the short circuit detector 65 .
  • the short-circuit detection unit 65 divides each input voltage signal for each angle in the circumferential direction of the rotor 30 corresponding to the first magnetic pole 36 and the second magnetic pole 37 of the rotor 30 . Since the first magnetic pole 36 and the second magnetic pole 37 have different polarities, the waveform from 0° to 180° corresponding to the first magnetic pole 36 and the waveform from 180° to 360° corresponding to the second magnetic pole 37 to generate a differential waveform of each divided voltage signal corresponding to the first magnetic pole 36 and the second magnetic pole 37 .
  • the first differential waveform shown in FIG. 9 is a differential waveform generated from the first voltage signal and based on frequency components of all orders.
  • the second differential waveform shown in FIG. 10 is a differential waveform generated from the second voltage signal and based on frequency components of orders that are multiples of four.
  • the third differential waveform shown in FIG. 11 is a differential waveform generated from the third voltage signal and based on frequency components of orders that are multiples of eight.
  • the fourth differential waveform shown in FIG. 12 is a differential waveform generated from the fourth voltage signal and based on frequency components of orders that are multiples of twelve.
  • Each difference waveform shown in FIGS. 9 to 12 is obtained by dividing the waveform of each voltage signal shown in FIGS.
  • the angles corresponding to the slot positions of the rotor 30 are clearly indicated by vertical lines.
  • Vertical lines in the figure, other than 0°, 90° and 180°, represent circumferential angles from the first slot to the eighth slot. Among them, the vertical line closest to 90° corresponding to the center of the magnetic pole is the first slot, and the vertical line closest to 0° and 180° is the eighth slot.
  • the interval between adjacent vertical lines corresponds to the rotor slot pitch Sp.
  • positive peak voltages P1 and P2 appear at the angular positions ⁇ and ⁇ of the first and third slots, respectively.
  • the short circuit detection unit 65 detects the common peak voltage position in the first to fourth difference waveforms, thereby estimating the slot position of the rotor 30 where the short circuit has occurred. In this case, it is estimated that a short circuit occurs at the positions of the first slot and the third slot, and that no common peak voltage occurs and no short circuit occurs at the other slot positions. That is, it is estimated that a short circuit does not occur in the second slot sandwiched between the first slot and the third slot.
  • the position of the slot where the short circuit occurs is estimated using only the first differential waveform based on the frequency components of all orders, it becomes difficult to estimate whether or not the short circuit has occurred in the second slot, as described below.
  • the two peak waveforms of positive peak voltages P1 and P2 interfere, and even at the angular position of the second slot between the first and third slots, zero A significant voltage is generated that is not Therefore, based on the peak voltages P1 and P2, it can be estimated that a short circuit has occurred in the first and third slots, but it is difficult to estimate that a short circuit has not occurred in the second slot. is.
  • FIG. 13 is a diagram showing a flowchart for explaining the short-circuit detection method according to the first embodiment.
  • the signal processing device 60 executes a short-circuit detection routine shown in the flowchart of FIG. 13 at predetermined intervals.
  • the signal acquisition section 61 acquires a voltage signal from the search coil 50 (step S105).
  • the signal decomposition unit 62 performs frequency analysis on the amplitude and phase of the acquired voltage signal (step S110).
  • the specific frequency component reduction unit 63 reduces the specific frequency component of the frequency-analyzed amplitude. In this case, the specific frequency component reduction unit 63 removes all frequency components larger than the threshold from the amplitude, and attenuates odd-order frequency components smaller than the threshold to 1/1000 (step S115).
  • the signal conversion section 64 converts the amplitude and phase processed by the specific frequency component reduction section 63 into a voltage signal.
  • four voltage signals (first to fourth voltage signals) obtained by integrating frequency components of all orders and orders of multiples of 4, 8, and 12 are obtained (step S120).
  • the short-circuit detection unit 65 divides each converted voltage signal by an electrical angle corresponding to each magnetic pole, that is, by 180°, and compares the divided voltage signals of adjacent 180° electrical angles. That is, four differential waveforms (first to fourth differential waveforms) of adjacent electrical angles of 180° are generated (step S125).
  • the short-circuit detector 65 determines whether or not there is a peak voltage at an angular position common to the four generated differential waveforms (step S130). In step S130, if there is a peak voltage at a common angular position, the short-circuit detector 65 detects peak voltage positions ⁇ and ⁇ ( ⁇ A, ⁇ A) that are common angular positions, It is estimated that a short circuit occurs in the slot corresponding to ( ⁇ A, ⁇ A) (step S135).
  • step S140 the short-circuit detection unit 65 outputs information indicating "no short-circuit occurrence" to the display device 70, and once terminates the short-circuit detection routine (step S140).
  • the short-circuit detection method includes a signal acquisition step shown in step S105, a signal decomposition step shown in step S110, a specific frequency component reduction step shown in step S115, and steps It includes a signal conversion step indicated by S120 and a short-circuit detection step indicated by steps S130 to S150.
  • the voltage signal from the search coil 50 arranged facing the field winding 32 is acquired.
  • the signal decomposition step decomposes the voltage signal acquired by the signal acquisition step into a plurality of frequency components of different orders.
  • the specific frequency component reduction step using an order lower than the fundamental order of the slot harmonic as a threshold, odd-order frequency components and even-order frequency components higher than the threshold are reduced among the plurality of frequency components.
  • the signal conversion step the plurality of frequency components output from the specific frequency component reduction step are converted into voltage signals. At that time, a plurality of voltage signals obtained by integrating specific frequency components are generated.
  • the voltage signal converted in the signal conversion step is divided for each angle in the circumferential direction of the rotor 30 corresponding to the plurality of magnetic poles 36 and 37 of the rotor 30, and the adjacent magnetic poles are divided.
  • a differential waveform is generated for each divided voltage signal. That is, a differential waveform is generated for each of a plurality of voltage signals to generate a plurality of differential waveforms.
  • the short-circuit of the field winding 32 is detected based on the shapes of the plurality of differential waveforms generated, and the short-circuit of the field winding 32 occurs at any position in the circumferential direction. Estimate whether or not At that time, a common peak voltage position is detected for a plurality of differential waveforms, and the common peak voltage position is estimated as the short-circuit position.
  • the occurrence of a short circuit is estimated based on a plurality of differential waveforms obtained by integrating specific frequency components. Therefore, even if a plurality of short circuits occur, It is possible to estimate the position of each short circuit and to highly accurately estimate that no short circuit has occurred in slots close to these short circuit positions. That is, when a plurality of short-circuits occur in different slots, the short-circuited positions of the field winding 32 can be estimated with high reliability by easily separating the respective slot positions that are short-circuited positions.
  • the specific frequency component reduction unit 63 reduces high-order even-numbered frequency components, when short circuits occur in different slots, multiple peak voltages appear separately in each differential waveform. Therefore, even if a short circuit occurs in a plurality of adjacent slots, it is possible to separate the position of the slot where the short circuit has occurred from the positions of nearby healthy slots.
  • the specific frequency component reduction section 63 reduces specific frequency components to increase the proportion of even-order frequency components.
  • the ratio of even-order frequency components can be increased, and similar estimation accuracy can be obtained.
  • the signal conversion unit 64 generates four voltage signals, but the number is not limited to four.
  • the second, third and fourth voltage signals are generated by integrating frequency components whose orders are multiples of 4, 8 and 12, the voltage signals obtained by integrating other even-order frequency components are also generated. good.
  • the signal converter 64 generates a plurality of voltage signals
  • the short circuit detector 65 generates a plurality of differential waveforms based on the plurality of voltage signals.
  • the unit 64 may generate only the first voltage signal in which the frequency components of all orders are integrated.
  • the short-circuit detector 65 generates the first difference waveform based on the first voltage signal, and then generates the second, third, and fourth difference waveforms based on the first difference waveform. That is, the voltage of the first difference waveform is frequency-decomposed, and the frequency components whose orders are multiples of 4, 8, and 12 are integrated to generate the second, third, and fourth difference waveforms.
  • the first to fourth difference waveforms can be generated in the same manner as in the above embodiment, the slot position of the rotor 30 in which the short circuit has occurred can be estimated, and similar effects can be obtained.
  • the number of stator slots 23, the number of rotor slots 33, the number of magnetic poles 36 and 37, and the rotor slot pitch Sp are not limited to the above examples.
  • the short-circuit detector 65 should generate a differential waveform as follows. The short-circuit detection unit 65 first divides the voltage signal converted by the signal conversion unit 64 for each angle in the circumferential direction of the rotor 30 corresponding to each of the plurality of magnetic poles of the rotor 30 . Furthermore, the short-circuit detection unit 65 may generate differential waveforms of voltage signals corresponding to adjacent magnetic poles among the plurality of magnetic poles.
  • the rotor 30 is arranged on the inner peripheral side of the stator 20 in the above embodiment, the rotor 30 may be arranged on the outer peripheral side of the stator 20 .
  • the turbine generator 10 is used as the rotating electrical machine, but the rotating electrical machine may be a generator other than the turbine generator 10 or an electric motor.
  • the search coil 50 is used as the magnetic detector, the magnetic detector is not limited to this.
  • FIG. 14 is a configuration diagram showing an example of hardware that implements each function of the signal processing device 60.
  • the signal processing device 60 is configured with a processing circuit 60A that is dedicated hardware.
  • the processing circuit 60A is, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination thereof. Applicable.
  • FIG. 15 is a configuration diagram showing another example of hardware that implements each function of the signal processing device 60 according to the first embodiment.
  • the processing circuit 60B comprises a processor 201 and a memory 202.
  • FIG. 15 is a configuration diagram showing another example of hardware that implements each function of the signal processing device 60 according to the first embodiment.
  • the processing circuit 60B comprises a processor 201 and a memory 202.
  • FIG. 15 is a configuration diagram showing another example of hardware that implements each function of the signal processing device 60 according to the first embodiment.
  • the processing circuit 60B comprises a processor 201 and a memory 202.
  • the functions of the signal processing device 60 are realized by software, firmware, or a combination of software and firmware.
  • Software and firmware are written as programs and stored in memory 202 .
  • the processor 201 implements each function by reading and executing a program stored in the memory 202 .
  • the program stored in the memory 202 causes the computer to execute the procedure or method of each unit described above.
  • the memory 202 is, for example, RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable and volatile or volatile semiconductor memory.
  • the memory 202 also includes magnetic disks, flexible disks, optical disks, compact disks, mini disks, DVDs, and the like.
  • the processing circuit can realize the functions of the signal processing device 60 described above by hardware, software, firmware, or a combination thereof.
  • Embodiment 2 after generating the first differential waveform based on the first voltage signal, the short-circuit detection unit 65 detects the peak voltages according to the angular intervals of the plurality of peak voltages detected based on the first differential waveform. , to generate second to fourth difference waveforms.
  • the signal converter 64 generates only the first voltage signal in which the frequency components of all orders are integrated.
  • Other configurations are the same as those of the first embodiment, and the points different from the first embodiment will be mainly described below.
  • FIG. 16 is a diagram showing the first difference waveform generated by the short-circuit detector 65.
  • the first differential waveform shown in FIG. 16 is a differential waveform generated from the first voltage signal and based on frequency components of all orders.
  • the first voltage signal converted by the signal conversion unit 64 is input to the short-circuit detection unit 65, and a first differential waveform of each divided voltage signal corresponding to the first magnetic pole 36 and the second magnetic pole 37 is generated. Note that the first differential waveform shown in FIG. 16 is the same waveform as the first differential waveform shown in FIG.
  • the short-circuit detection unit 65 After generating the first difference waveform, the short-circuit detection unit 65 detects frequency components unnecessary for separating the plurality of peak voltages based on the angular intervals of the plurality of peak voltages detected based on the first difference waveform. to generate the second to fourth differential waveforms except for .
  • positive peak voltages P1 and P2 appear at the angular positions ⁇ and ⁇ of the first and third slots, respectively.
  • peak voltages are formed at two angular positions of the first slot and the third slot, the angular interval corresponding to twice the slot pitch Sp.
  • the short-circuit detection unit 65 detects a component of the order of 360/2Sp or higher, that is, the frequency component of the 25th order or higher, with respect to 360° for one revolution of the rotor, and detects a plurality of (in this case, two) peak voltages. are removed as unnecessary frequency components for separation to generate second to fourth differential waveforms. That is, the voltage of the first difference waveform is subjected to frequency decomposition, and after removing frequency components of 25th order or higher, the frequency components having orders of multiples of 4, 8, and 12 are integrated to obtain the second, third, and second frequency components. Generate a 4-difference waveform.
  • FIG. 17 is a diagram showing the second differential waveform generated by the short circuit detection section 65. As shown in FIG. This second difference waveform is generated by integrating the frequency components of orders that are multiples of 4 within the 1st to 24th orders based on the first difference waveform.
  • FIG. 18 is a diagram showing the third difference waveform generated by the short-circuit detector 65. As shown in FIG. This third differential waveform is generated by integrating the frequency components of orders that are multiples of 8 within the 1st to 24th orders based on the first differential waveform.
  • FIG. 19 is a diagram showing a fourth difference waveform generated by the short circuit detection section 65. As shown in FIG. This fourth difference waveform is generated by integrating the frequency components of orders that are multiples of 12 within the 1st to 24th orders based on the first difference waveform.
  • P2Ba) and (P1Ca, P2Ca) appear
  • negative peak voltages (P3, P4), (P3Aa, P4Aa), (P3Ba, P4Ba), and (P3Ca, P4Ca) appear at the angular positions ⁇ A and ⁇ A, respectively.
  • the angular positions ⁇ , ⁇ ( ⁇ A, ⁇ A) of the first and third slots are common peak voltage positions.
  • the peak voltage detection accuracy corresponding to the angular positions ⁇ , ⁇ ( ⁇ A, ⁇ A) of the first slot and the third slot is sufficient, and the short circuit of two different angular positions ⁇ , ⁇ ( ⁇ A, ⁇ A) can be separated detectable.
  • the occurrence of a short circuit is estimated based on a plurality of differential waveforms obtained by accumulating specific frequency components. Moreover, it can be estimated with high accuracy that a short circuit does not occur in the slots close to the position where the short circuit occurs. That is, when a plurality of short-circuits occur in different slots, the short-circuited positions of the field winding 32 can be estimated with high reliability by easily separating the respective slot positions that are short-circuited positions.
  • the second to fourth difference waveforms other than the first difference waveform in which the frequency components of all the orders are integrated are divided into a plurality of peak voltages based on the angular intervals of the plurality of peak voltages detected in the first difference waveform. is generated by removing unnecessary frequency components to isolate the peak voltage of . Therefore, it is possible to reduce the calculation load and effectively separate each slot position that becomes a short-circuit position.
  • the signal converting section 64 generates only the first voltage signal in which the frequency components of all orders are integrated, but it may generate four voltage signals.
  • the signal conversion unit 64 detects the plurality of peak voltages based on the angular intervals of the plurality of peak voltages detected based on the first difference waveform. to generate second to fourth voltage signals by removing unnecessary frequency components for separating .
  • the short-circuit detector 65 generates second to fourth difference waveforms based on the second to fourth voltage signals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Abstract

回転電機(10)の短絡検知装置(100)は、信号取得部(61)、信号分解部(62)、特定周波数成分低減部(63)、信号変換部(64)および短絡検知部(65)をを備えて、界磁巻線(32)の短絡を検知する。信号分解部(62)は、信号取得部(61)からの電圧信号を、次数の異なる複数の周波数成分に分解し、特定周波数成分低減部(63)は、奇数次の周波数成分と、スロット高調波の基本次数未満の閾値よりも高い偶数次の周波数成分とを低減させ、信号変換部(64)は、電圧信号に変換する。短絡検知部(65)は、各磁極に対応する電圧信号から、それぞれ特定の周波数成分を積算した複数個の差分波形を生成し、生成された複数個の差分波形について、共通するピーク電圧位置(α、β)を検出して、該共通のピーク電圧位置(α、β)を短絡位置として推定する。

Description

回転電機の短絡検知装置および短絡検知方法
 本願は、回転電機の短絡検知装置および短絡検知方法に関するものである。
 回転電機の界磁巻線で発生する短絡を検知するため、従来の回転電機の短絡検知装置は、回転子の界磁巻線の短絡による界磁磁束の変化をサーチコイルによって検知する。また、サーチコイルからの電圧信号を処理する、信号取得部、信号分解部、特定周波数成分低減部、信号変換部、短絡検知部、及び推定精度判定部を備える。信号分解部は、信号取得部によって取得された電圧信号を、互いに次数の異なる複数の周波数成分に分解する。特定周波数成分低減部は、スロット高調波の基本次数よりも低い次数を閾値として、複数の周波数成分のうち、奇数次の周波数成分と、閾値よりも高い偶数次の周波数成分とを低減させる。信号変換部は、特定周波数成分低減部から出力された複数の周波数成分を電圧信号に変換する。短絡検知部は、隣り合う磁極に対応する各電圧信号の差分波形を生成し、差分波形の形状に基づいて、界磁巻線の短絡を検知するとともに、界磁巻線の短絡位置を推定する。推定精度判定部は、差分波形のピーク角度を中心とした最大波の波形の対称度合いに基づいて、界磁巻線の短絡位置の推定精度を判定する(例えば、特許文献1)。
特許第6837619号公報
 上記特許文献1記載の従来の技術では、短絡検知部で得られた差分波形において、短絡発生で生じるピーク電圧に基づいて短絡位置となる回転子のスロット位置を推定する。その際、異なる近接したスロットにて複数個の短絡が発生した場合には、複数個の短絡に起因した複数個のピーク電圧が互いに重なり合い、短絡位置の推定精度が低下する。
 本願は、上記のような課題を解決するための技術を開示するものであり、複数個の短絡が異なるスロットで発生した場合に、短絡位置となる各スロット位置を容易に分離して、界磁巻線の短絡位置を信頼性良く推定できる、回転電機の短絡検知装置および短絡検知方法を提供することを目的とする。
 本願に開示される回転電機の短絡検知装置は、回転電機の回転子の複数スロットに設けられている界磁巻線に対向して配置された磁気検出器からの電圧信号を処理して前記界磁巻線の短絡を検知する。この回転電機の短絡検知装置は、前記磁気検出器からの電圧信号を取得する信号取得部と、前記信号取得部によって取得された電圧信号を、互いに次数の異なる複数の周波数成分に分解する信号分解部と、前記複数スロットのピッチに相関を有する高調波であるスロット高調波の基本次数よりも低い次数を閾値として、前記複数の周波数成分のうち、奇数次の周波数成分と、前記閾値よりも高い偶数次の周波数成分とを低減させる特定周波数成分低減部と、前記特定周波数成分低減部から出力された複数の周波数成分を電圧信号に変換する信号変換部と、前記信号変換部により変換された電圧信号を、前記回転子の複数の磁極にそれぞれ対応する前記回転子の周方向角度ごとに分割し、前記複数の磁極のうち、隣り合う磁極に対応する各分割電圧信号の差分波形を生成し、前記差分波形の形状に基づいて、前記界磁巻線の短絡を検知するとともに、該短絡が前記回転子の周方向のいずれの位置で発生しているかを推定する短絡検知部とを備える。そして、前記短絡検知部は、前記差分波形として、それぞれ特定の周波数成分を積算した複数個の差分波形を生成し、生成された複数個の差分波形について、共通するピーク電圧位置を検出して、該共通のピーク電圧位置を短絡位置として推定する。
 また、本願に開示される回転電機の短絡検知方法は、回転電機の回転子の複数スロットに設けられている界磁巻線に対向して配置された磁気検出器からの電圧信号を取得する信号取得ステップと、前記信号取得ステップによって取得された電圧信号を互いに次数の異なる複数の周波数成分に分解する信号分解ステップと、前記複数スロットのピッチに相関を有する高調波であるスロット高調波の基本次数よりも低い次数を閾値として、前記複数の周波数成分のうち、奇数次の周波数成分と、前記閾値よりも高い偶数次の周波数成分とを低減させる特定周波数成分低減ステップと、前記特定周波数成分低減ステップから出力された複数の周波数成分を電圧信号に変換する信号変換ステップと、前記信号変換ステップにより変換された電圧信号を、前記回転子の複数の磁極にそれぞれ対応する前記回転子の周方向角度ごとに分割し、前記複数の磁極のうち、隣り合う磁極に対応する各分割電圧信号の差分波形を生成し、前記差分波形の形状に基づいて、前記界磁巻線の短絡を検知するとともに、前記界磁巻線の短絡が、周方向のいずれの位置で発生しているかを推定する短絡検知ステップ、とを備える。そして、前記短絡検知ステップは、前記差分波形として、それぞれ特定の周波数成分を積算した複数個の差分波形を生成し、生成された複数個の差分波形について、共通するピーク電圧位置を検出して、該共通のピーク電圧位置を短絡位置として推定する。
 本願に開示される回転電機の短絡検知装置および短絡検知方法によれば、複数個の短絡が異なるスロットで発生した場合に、短絡位置となる各スロット位置を容易に分離して、界磁巻線の短絡位置を信頼性良く推定できる。
実施の形態1による回転電機および短絡検知装置を示す構成図である。 実施の形態1による信号取得部によって取得される電圧信号を示す波形図である。 実施の形態1による信号分解部によって周波数分析された電圧信号の振幅成分の周波数スペクトルを示すスペクトル図である。 実施の形態1による特定周波数成分低減部による低減処理後の振幅成分の周波数スペクトルを示すスペクトル図である。 実施の形態1による信号変換部によって変換された第1電圧信号を示す図である。 実施の形態1による信号変換部によって変換された第2電圧信号を示す図である。 実施の形態1による信号変換部によって変換された第3電圧信号を示す図である。 実施の形態1による信号変換部によって変換された第4電圧信号を示す図である。 実施の形態1による短絡検知部にて生成される第1差分波形を示す図である。 実施の形態1による短絡検知部にて生成される第2差分波形を示す図である。 実施の形態1による短絡検知部にて生成される第3差分波形を示す図である。 実施の形態1による短絡検知部にて生成される第4差分波形を示す図である。 実施の形態1による短絡検知方法を説明するフローチャートを示す図である。 実施の形態1による信号処理装置の各機能を実現するハードウェアの例を示す構成図である。 実施の形態1による信号処理装置の各機能を実現するハードウェアの別例を示す構成図である。 実施の形態2による短絡検知部にて生成される第1差分波形を示す図である。 実施の形態2による短絡検知部にて生成される第2差分波形を示す図である。 実施の形態2による短絡検知部にて生成される第3差分波形を示す図である。 実施の形態2による短絡検知部にて生成される第4差分波形を示す図である。
実施の形態1.
 以下、実施の形態について、図面を参照して説明する。
 図1は、実施の形態1による回転電機及び短絡検知装置を示す構成図である。実施の形態1では、回転電機としてタービン発電機10が採用されている。図1において、タービン発電機10については、タービン発電機10の軸方向に垂直な断面が示されている。
 図1に示したように、タービン発電機10は、電機子としての固定子20及び界磁としての回転子30を備えている。固定子20は、円筒状の固定子コア21と、多相巻線22とを有している。固定子20は、回転子30の外側に設けられている。
 固定子コア21の軸方向は、固定子コア21の軸心に沿う方向であり、図1の紙面に垂直な方向である。固定子コア21の径方向は、固定子コア21の軸心を中心とする円の径方向である。固定子コア21の周方向は、固定子コア21の軸心を中心とする円弧に沿う方向である。
 固定子コア21の内周部には、複数の固定子スロット23が形成されている。各固定子スロット23は、固定子コア21の径方向に沿って形成されている。また、複数の固定子スロット23は、固定子コア21の周方向に等ピッチで配置されている。実施の形態1では、固定子スロット23の総数は84である。複数の固定子スロット23には、多相巻線22が巻かれている。
 回転子30は、回転子コア31、界磁巻線32、及び図示しない回転軸を有している。回転子コア31及び回転軸は、固定子コア21と同軸に配置されている。回転子30は、回転軸を中心に回転可能である。
 回転子コア31の軸方向は、回転子コア31の軸心Oに沿う方向であり、図1の紙面に垂直な方向である。回転子コア31の径方向は、回転子コア31の軸心Oを中心とする円の径方向である。回転子コア31の周方向は、回転子コア31の軸心Oを中心とする円弧に沿う方向である。
 回転子コア31の外周部には、複数の回転子スロット33が形成されている。各回転子スロット33は、回転子コア31の径方向に沿って形成されている。
 実施の形態1では、複数の回転子スロット33は、第1スロット群34と第2スロット群35とに分かれている。第1スロット群34及び第2スロット群35には、それぞれ16個の回転子スロット33が含まれている。即ち、回転子スロット33の総数は、32である。
 第1スロット群34及び第2スロット群35において、複数の回転子スロット33は、回転子コア31の周方向に等ピッチで配置されている。回転子スロット33のピッチは、回転子コア31の周方向に隣り合う2つの回転子スロット33の幅方向中心間の距離である。実施の形態1における回転子スロット33のピッチは、回転子コア31の周方向角度によって表すと7.42°である。以下、各回転子スロット33のピッチは、回転子スロットピッチSpと呼ばれる。
 第1スロット群34と第2スロット群35との間には、第1磁極36及び第2磁極37が形成されている。図1において、回転子コア31の軸心Oと、回転子30の周方向における第1磁極36の中心と、第2磁極37の中心とを通る一点鎖線は、以下、磁極中心線C1と呼ばれる。第1スロット群34と第2スロット群35とは、磁極中心線C1を中心として対称に配置されている。
 また、回転子コア31の軸心Oと、回転子コア31の周方向における第1スロット群34の中心と、第2スロット群35の中心とを通る一点鎖線は、以下、極間中心線C2と呼ばれる。
 複数の回転子スロット33のそれぞれは、磁極中心線C1に近い方から順に第1スロット、第2スロット、・・・、第8スロットと呼ばれる。言い換えると、複数の回転子スロット33のそれぞれは、極間中心線C2に遠い方から順に第1スロット、第2スロット、・・・、第8スロットと呼ばれる。
 複数の回転子スロット33には、磁極中心線C1を挟んで、第1スロット群34と第2スロット群35とを往復するように界磁巻線32が巻かれている。界磁巻線32において、隣り合う回転子スロット33に配置されている部分は、互いに直列に接続されている。
 界磁巻線32は、図示しない外部電源によって直流励磁される。これにより、第1磁極36及び第2磁極37の一方がN極となり、他方がS極となる。つまり、タービン発電機10は2極の発電機である。
 固定子コア21と回転子コア31との間には空隙40が形成されている。多相巻線22は、図示しない外部電源によって交流励磁される。これにより、空隙40内に回転磁界が発生する。
 短絡検知装置100は、タービン発電機10の界磁巻線32の短絡を検知するもので、磁気検出器としてのサーチコイル50と、サーチコイル50からの検出信号を処理する信号処理装置60と、表示装置70とを備える。サーチコイル50は、空隙40に配置され、界磁巻線32に対向している。
 サーチコイル50には、主磁束及び漏れ磁束が鎖交する。主磁束は、空隙40に発生する磁束であり、漏れ磁束は、各回転子スロット33から漏出する磁束である。サーチコイル50に鎖交する磁束は、鎖交磁束と呼ばれる。
 サーチコイル50は、第1端子51及び第2端子52を有している。サーチコイル50に磁束が鎖交すると、第1端子51と第2端子52との間に検出信号である電圧信号が誘起される。サーチコイル50内の鎖交磁束の分布は、回転子30の回転に伴って変動する。
 なお、この場合、短絡検知装置100が磁気検出器としてのサーチコイル50を備えるものとしたが、サーチコイル50を、短絡検知装置100と別構成としても良い。
 信号処理装置60は、機能ブロックとして、信号取得部61、信号分解部62、特定周波数成分低減部63、信号変換部64、及び短絡検知部65を備えている。
 信号取得部61は、サーチコイル50に誘起される電圧信号を取得する。信号分解部62は、信号取得部61によって取得された電圧信号を、互いに次数の異なる複数の周波数成分に分解する。さらに、信号分解部62は、分解された各周波数成分を振幅と位相とに分離する。
 特定周波数成分低減部63は、スロット高調波の基本次数よりも低い周波数成分の次数を閾値として設定する。スロット高調波は、回転子スロットピッチSpに相関を有する高調波である。
 さらに、特定周波数成分低減部63は、分離された振幅のうち、奇数次の周波数成分と、閾値よりも高い偶数次の周波数成分とを低減させる。
 信号変換部64は、位相と、特定周波数成分低減部63による低減処理後に得られた振幅とを、周波数成分の次数ごとに積算することにより特定周波数成分の低減後の電圧信号に変換する。その際、それぞれ特定の周波数成分を積算した複数個の電圧信号が生成される。この場合、後述する4個の電圧信号である第1電圧信号、第2電圧信号、第3電圧信号および第4電圧信号が生成される。
 短絡検知部65は、変換された特定周波数成分低減後の各第1~第4電圧信号を、回転子30の第1磁極36及び第2磁極37にそれぞれ対応する回転子30の周方向角度ごとに分割する。さらに、短絡検知部65は、第1磁極36及び第2磁極37に対応する各分割電圧信号の差分波形を生成する。即ち、各第1~第4電圧信号について、それぞれの差分波形である各第1~第4差分波形が生成される。
 そして、短絡検知部65は、複数個の差分波形(第1~第4差分波形)の形状に基づいて、界磁巻線32の短絡を検知するとともに、界磁巻線32の短絡が、回転子30の周方向のいずれの位置で発生しているかを推定する。
 界磁巻線32に短絡が発生すると、短絡が発生した回転子のスロット位置に対応するピーク電圧が差分波形に現れる。即ち、複数個の差分波形には、それぞれ短絡が発生した回転子のスロット位置に対応するピーク電圧が発生する。
 これは短絡が発生した回転子のスロット位置に揃った位相が周波数成分の各次数に含まれるためであり、これら次数を組み合わせて得られる複数個の差分波形には共通した位置にピーク電圧が発生する。短絡検知部65は、複数個の差分波形において、共通した位置のピーク電圧を検出することで、短絡の発生した回転子のスロット位置を推定することができる。
 なお、共通した位置のピーク電圧以外の位置では、周波数成分の位相は揃わないので、短絡発生によるピーク電圧は現れない。
 複数個の短絡が異なるスロットで発生した場合も、複数個の差分波形には、短絡毎に共通した位置にピーク電圧が発生することとなり、これら共通した位置のピーク電圧を検出することで、複数個の短絡の発生した回転子のスロット位置を推定することができる。
 複数個の差分波形(第1~第4差分波形)を用いた短絡検知の詳細については、後述する。
 さらに、短絡検知部65は、界磁巻線32の短絡の発生有無、及び短絡が発生している回転子スロット33の位置に関する情報を表示装置70へ出力する。
 表示装置70は、信号処理装置60の外部に設けられている。表示装置70は、短絡検知部65からの情報に基づいて、界磁巻線32の短絡の有無、及び短絡が発生している回転子スロット33の位置を表示する。
 なお、表示装置70は、短絡検知装置100の外部に設けられても良い。
 次に、短絡検知装置100の信号処理装置60について、図面を参照しながら、より詳細に説明する。
 図2は、信号取得部61によって取得される電圧信号の一例を示す波形図である。この波形図は、電磁界解析プログラムを用いて、図1のタービン発電機10の無負荷運転状態をシミュレーションすることにより得られたものである。
 なお、信号取得部61が取得する電圧信号は、サーチコイル50に誘起される電圧信号であり、サーチコイル50は、空隙40内で界磁巻線32に対向して、固定子コア21の表面に配置されている。
 シミュレーションは、例えば、第2磁極37側の異なる2個所のスロットである第1スロットおよび第3スロットにおいて、界磁巻線32がそれぞれ1ターン分だけ短絡しているという条件で実行されている。このため、図2の波形図に基づいて以下に説明する例は、第2磁極37側の第1スロットと第3スロットにおいて、界磁巻線32がそれぞれ1ターン分だけ短絡している場合である。
 この例では、信号処理装置60は、信号取得部61で取得した電圧信号を用いて、第1スロットおよび第3スロットの位置においてそれぞれ短絡が発生していること、さらに、第1スロットと第3スロットとに挟まれた第2スロットで短絡が発生していないことを、推定する。これについて、以下に説明する。
 図2に示す電圧波形は、周方向角度0°から180°までが第1磁極36に対応し、周方向角度180°から360°までが第2磁極37に対応している。従って、周方向角度90°では、第1磁極36の中心がサーチコイル50に最も近付いており、周方向角度270°では、第2磁極37の中心がサーチコイル50に最も近付いている。図2の波形図において、32個の細かな電圧変動は、回転子スロットピッチSp、即ち、7.42°ごとに発生している。短絡が発生している第2磁極37の第1スロットと第3スロットでは、短絡の発生していない第1磁極36に比べて電圧の絶対値が小さくなる。
 上述したように、信号分解部62は、信号取得部61によって取得された電圧信号を、互いに次数の異なる複数の周波数成分に分解し、さらに、分解された各周波数成分を振幅と位相とに分離する。
 図3は、信号分解部62によって周波数分析された電圧信号の振幅成分の周波数スペクトルを示すスペクトル図である。横軸は、高調波の次数であり、図中の棒グラフの一山を1次とする。縦軸は、各次数の高調波の電圧強度を示している。
 なお、図3では、説明のために80次以下の高調波を示し、81次以上の次数の高調波の表示を割愛する。
 図3に示すように、奇数次の高調波の電圧強度は、偶数次の高調波の電圧強度よりも大きい。奇数次の高調波のうち、1次の高調波は、空隙40に発生する磁束のうち、主磁束に相当する基本波成分であり振幅が一番大きい。
 また、奇数次の高調波のうち、47次の高調波は、その周辺の高調波に比べて電圧強度が大きい。47次の高調波は、スロット高調波であり、回転子スロットピッチSpに相関を有する高調波である。47次は、スロット高調波の基本次数である。スロット高調波は、回転子30における1次の起磁力と、回転子スロットピッチSpのパーミアンス変化との差分によって発生する。パーミアンスは、起磁力から磁束密度への変換係数である。この場合、起磁力次数と、パーミアンス次数との差分47がスロット高調波の次数となる。
 1次以外の奇数次の成分は、空隙40に発生する磁束のうち、回転子30あるいは固定子20のスロット数など脈動原因に起因する主磁束以外の高調波成分であり、界磁巻線32に短絡が発生しているか否かにかかわりなく発生する。回転子コア31には回転子スロット33が全周にわたって存在せずに2つの磁極36、37も存在するため、47次以外にも、奇数次の次数も存在している。47次より十分大きい次数、例えば53次より大きい次数では、スロットピッチSpよりも小さい磁束の脈動成分となるので、振幅の大きさは47次以下の成分の振幅と比べて十分小さくなる。
 一方、偶数次の高調波は、界磁巻線32に短絡が発生している場合に発生する。
 48次以上の高調波は、回転子スロットピッチSpよりも狭いピッチ、つまり、周方向において回転子スロットピッチSpよりも小さい角度に相当する高調波である。回転子スロットピッチSpよりも小さい角度に対応する周波数成分は、界磁巻線32の短絡位置を推定するために必要な成分ではない。
 また、奇数次の周波数成分は、偶数次の周波数成分を検知することを阻害する要因となる。一方で、奇数次の周波数成分は、周方向角度を特定するために必要な情報を含んでいる。具体的には、奇数次の周波数成分を含むことにより、どちらの磁極側で短絡が発生したかを判別できる。
 特定周波数成分低減部63では、スロット高調波の基本次数である47よりも低い周波数成分の次数である46を閾値として設定され、分離された振幅のうち、奇数次の周波数成分と、閾値よりも高い偶数次の周波数成分とを低減させる。
 図4は、特定周波数成分低減部63による低減処理後の振幅成分の周波数スペクトルを示すスペクトル図である。
 この実施の形態では、特定周波数成分低減部63は、閾値を46に設定し、46次よりも高い偶数次、即ち48次以上の周波数成分を除去する。また、特定周波数成分低減部63は、すべての奇数次の周波数成分を減衰させる。この場合、閾値である46次よりも低い奇数次の周波数成分は、振幅を1/1000に低減し、47次以上の奇数次の周波数成分については、ほぼゼロに減衰あるいは除去する。
 このように、この実施の形態において、周波数成分を低減させることには、周波数成分を除去すること、及び周波数成分を減衰させることが含まれる。
 特定周波数成分低減部63が、スロット高調波の基本次数よりも低い次数である閾値よりも高い偶数次の周波数成分と、奇数次の周波数成分とを低減させることにより、界磁巻線32での短絡検知の妨げとなる要因を小さくすることができる。これにより、短絡の検知精度を向上することができる。
 図5~図8は、信号変換部64によって変換された電圧信号を示す図である。
 信号変換部64は、位相と、特定周波数成分低減部63による低減処理後に得られた振幅とを、周波数成分の次数ごとに積算することにより特定周波数成分の低減後の電圧信号に変換する。その際、それぞれ特定の周波数成分を積算した複数個の電圧信号である第1~第4電圧信号が生成される。
 この場合、変換された各電圧信号には、スロット高調波の成分が含まれていないので、回転子スロットピッチSpの細かな波形が現れない。
 図5に示す第1電圧信号は、全ての次数の周波数成分を積算して生成される。図6に示す第2電圧信号は、4の倍数である次数の周波数成分を積算して生成される。図7に示す第3電圧信号は、8の倍数である次数の周波数成分を積算して生成される。図8に示す第4電圧信号は、12の倍数である次数の周波数成分を積算して生成される。
 全ての次数の周波数成分を積算した第1電圧信号以外の第2~第4電圧信号は、特定偶数、この場合、4、8および12の各々の倍数を次数とする周波数成分を積算して生成される。
 図9~図12は、短絡検知部65にて生成される差分波形を示す図である。
 短絡検知部65には、信号変換部64にて変換された第1~第4電圧信号が入力される。そして、短絡検知部65は、入力された各電圧信号を、回転子30の第1磁極36及び第2磁極37にそれぞれ対応する回転子30の周方向角度ごとに分割する。第1磁極36と第2磁極37とは互いに極性が異なるため、第1磁極36に対応する0°から180°までの波形と、第2磁極37に対応する180°から360°までの波形とを足し合わせることで、第1磁極36及び第2磁極37に対応する各分割電圧信号の差分波形を生成する。
 図9に示す第1差分波形は、第1電圧信号から生成され、全ての次数の周波数成分に基づく差分波形である。図10に示す第2差分波形は、第2電圧信号から生成され、4の倍数である次数の周波数成分に基づく差分波形である。図11に示す第3差分波形は、第3電圧信号から生成され、8の倍数である次数の周波数成分に基づく差分波形である。図12に示す第4差分波形は、第4電圧信号から生成され、12の倍数である次数の周波数成分に基づく差分波形である。
 図9~図12に示した各差分波形は、上述したように、図5~図8に示した各電圧信号の波形を左右に分割し、互いに足し合わせることにより得られる。
 図9~図12では、回転子30のスロット位置に対応する角度を縦線で明示している。図中の縦線で、0°、90°及び180°以外の箇所は、第1スロットから第8スロットまでの周方向角度を表している。その中で、磁極の中心に対応する90°に最も近い縦線が第1スロットであり、0°及び180°に最も近い縦線が第8スロットである。隣り合う縦線同士の間隔は、回転子スロットピッチSpに相当する。
 図9に示す第1差分波形では、第1スロットおよび第3スロットの角度位置α、βに、それぞれ正方向のピーク電圧P1、P2が現れる。また、負方向においても、同様に第1スロットおよび第3スロットの角度位置αA(=180-α)、βA(=180-β)に、それぞれ負方向のピーク電圧P3、P4が現れる。
 そして、図9~図12の各図を参照すると、第1~第4差分波形において、いずれも角度位置α、βに、それぞれ正方向のピーク電圧(P1、P2)、(P1A、P2A)、(P1B、P2B)、(P1C、P2C)が現れ、角度位置αA、βAに、それぞれ負方向のピーク電圧(P3、P4)、(P3A、P4A)、(P3B、P4B)、(P3C、P4C)が現れる。
 第1~第4差分波形において、第1スロットおよび第3スロットの角度位置α、β(αA、βA)が、共通するピーク電圧位置となる。
 第1スロットおよび第3スロットの角度位置α、β(αA、βA)以外のスロット位置では、全ての差分波形(第1~第4差分波形)に共通して現れるピーク電圧の発生はない。
 共通するピーク電圧位置でピーク電圧が形成されるのは、短絡の発生によって空隙40の磁束に偶数次の周波数成分が発生し、偶数次の周波数成分の位相が、短絡した回転子スロット33の位置情報を含んでいるためである。即ち、第1~第4差分波形において、短絡が発生した回転子スロット位置で、ピーク電圧の位相が揃うためである。
 短絡検知部65は、第1~第4差分波形において、共通のピーク電圧位置を検出することで、短絡が発生した回転子30のスロット位置を推定する。この場合、第1スロットおよび第3スロットの位置においてそれぞれ短絡が発生していることを推定すると共に、その他のスロット位置では、共通するピーク電圧の発生がなく、短絡発生無しと、推定する。即ち、第1スロットと第3スロットとに挟まれた第2スロットで短絡が発生していないことを、推定する。
 仮に、全ての次数の周波数成分に基づく第1差分波形のみで、短絡が発生したスロット位置を推定すると仮定すると、以下に示すように、第2スロットでの短絡発生の有無が推定困難になる。
 図9に示すように、第1差分波形では、正方向のピーク電圧P1、P2の2つのピーク波形は干渉し、第1スロットと第3スロットの間の第2スロットの角度位置においても、ゼロではない有意な電圧が発生している。このため、各ピーク電圧P1、P2に基づいて、第1スロットおよび第3スロットで短絡が発生している事が推定できるが、第2スロットで短絡が発生していない事を推定することは困難である。あるいは、有意な電圧が差分電圧の波形で発生している第2スロットでも短絡が発生していると誤検知する可能性もある。
 次に、この実施の形態による短絡検知方法を図に基づいて、以下に説明する。
 図13は、実施の形態1による短絡検知方法を説明するフローチャートを示す図である。短絡検知装置100が起動すると、信号処理装置60は、所定期間毎に、図13のフローチャートに示す短絡検知ルーチンを実行する。
 短絡検知ルーチンが開始されると、まず、信号取得部61は、サーチコイル50から電圧信号を取得する(ステップS105)。
 次いで、信号分解部62は、取得された電圧信号の振幅および位相について周波数分析を行う(ステップS110)。
 次いで、特定周波数成分低減部63は、周波数分析された振幅のうち、特定周波数成分の低減を行う。この場合、特定周波数成分低減部63は、振幅のうち、閾値よりも大きいすべての周波数成分を除去するとともに、閾値よりも小さい奇数次の周波数成分を1/1000に減衰させる(ステップS115)。
 次いで、信号変換部64は、特定周波数成分低減部63により処理された振幅および位相から電圧信号に変換する。この時、全ての次数、および4、8、12の各々の倍数による次数の周波数成分をそれぞれ積算した4個の電圧信号(第1~第4電圧信号)を得る(ステップS120)。
 次いで、短絡検知部65は、変換された各電圧信号を、各磁極に対応する電気角、即ち、180°ずつに分割し、隣り合う180°の電気角の分割電圧信号同士を比較する。即ち、隣り合う180°の電気角の4個の差分波形(第1~第4差分波形)を生成する(ステップS125)。
 続いて、短絡検知部65は、生成された4個の差分波形に共通する角度位置にピーク電圧があるか否かを判定する(ステップS130)。
 ステップS130において、共通する角度位置にピーク電圧がある場合、短絡検知部65は、共通する角度位置であるピーク電圧位置α、β(αA、βA)を検出し、共通するピーク電圧位置α、β(αA、βA)に対応するスロットにおいて短絡が発生していることを推定する(ステップS135)。そして、例えば、「第1スロット」と「第3スロット」のように、短絡が発生している回転子スロット33の呼称によって短絡位置を表して、「短絡発生あり」を示す情報と共に、表示装置70に出力して短絡検知ルーチンを一旦終了する(ステップS140)。
 また、ステップS130において、共通する角度位置にピーク電圧がない場合、短絡検知部65は、「短絡発生なし」を示す情報を表示装置70に出力して短絡検知ルーチンを一旦終了する(ステップS140)。
 このように、この実施の形態による短絡検知方法は、ステップS105にて示される信号取得ステップと、ステップS110にて示される信号分解ステップと、ステップS115にて示される特定周波数成分低減ステップと、ステップS120にて示される信号変換ステップ、ステップS130~S150にて示される短絡検知ステップを含んでいる。
 信号取得ステップでは、界磁巻線32に対向して配置されたサーチコイル50からの電圧信号を取得する。信号分解ステップでは、信号取得ステップによって取得された電圧信号を互いに次数の異なる複数の周波数成分に分解する。特定周波数成分低減ステップでは、スロット高調波の基本次数よりも低い次数を閾値として、複数の周波数成分のうち、奇数次の周波数成分と、閾値よりも高い偶数次の周波数成分とを低減させる。信号変換ステップでは、特定周波数成分低減ステップから出力された複数の周波数成分を電圧信号に変換する。その際、それぞれ特定の周波数成分を積算した複数個の電圧信号を生成する。
 そして、短絡検知ステップでは、信号変換ステップにより変換された電圧信号を、回転子30の複数の磁極36、37にそれぞれ対応する回転子30の周方向角度ごとに分割し、隣り合う磁極に対応する各分割電圧信号の差分波形を生成する。即ち、複数個の電圧信号毎にそれぞれ差分波形を生成して、複数個の差分波形を生成する。さらに、短絡検知ステップでは、生成された複数個の差分波形の形状に基づいて、界磁巻線32の短絡を検知するとともに、界磁巻線32の短絡が、周方向のいずれの位置で発生しているかを推定する。その際、複数個の差分波形について、共通するピーク電圧位置を検出して、該共通のピーク電圧位置を短絡位置として推定する。
 以上のように、この実施の形態では、上述したように、それぞれ特定の周波数成分を積算した複数個の差分波形に基づいて短絡発生を推定するため、複数個の短絡が発生した場合においても、各短絡の発生位置を推定でき、しかも、これら短絡の発生位置に近接したスロットにおいて短絡が発生していないことを高精度に推定できる。即ち、複数個の短絡が異なるスロットで発生した場合に、短絡位置となる各スロット位置を容易に分離して、界磁巻線32の短絡位置を信頼性良く推定できる。
 また、特定周波数成分低減部63は、次数の高い偶数次の周波数成分を低減するので、異なる複数のスロットで短絡発生する場合、各差分波形において、複数個のピーク電圧は分離して現れる。このため、近接した複数のスロットで短絡が発生した場合においても、短絡が発生したスロット位置を、近傍の健全スロットの位置と分離することが可能になる。
 なお、上記実施の形態では、特定周波数成分低減部63において、特定の周波数成分を低減させることによって、偶数次の周波数の成分の割合を大きくしているが、偶数次の周波数成分を増幅することでも、偶数次の周波数の成分の割合を大きくできることは言うまでもなく、同様の推定精度が得られる。
 また、上記実施の形態では、信号変換部64において、4つの電圧信号を生成したが、4つに限定するものでは無い。また、4、8、12の各々の倍数を次数とする周波数成分を積算した第2、第3、第4電圧信号を生成しているが、その他の偶数次の周波数成分を積算した電圧信号でも良い。
 さらに、上記実施の形態では、信号変換部64にて複数個の電圧信号を作成し、この複数個の電圧信号に基づいて短絡検知部65にて複数個の差分波形を生成したが、信号変換部64では、全ての次数の周波数成分が積算された第1電圧信号のみを生成しても良い。その場合、短絡検知部65は、第1電圧信号に基づいて第1差分波形を生成した後、第1差分波形に基づいて第2、第3、第4差分波形を生成する。即ち、第1差分波形による電圧を周波数分解し、4、8、12の各々の倍数を次数とする周波数成分を積算して第2、第3、第4差分波形を生成する。これにより、上記実施の形態と同様に第1~第4差分波形を生成でき、短絡が発生した回転子30のスロット位置を推定でき、同様の効果が得られる。
 また、上記実施の形態において、固定子スロット23の数、回転子スロット33の数、磁極36、37の数、回転子スロットピッチSpは、上記の例に限定されない。
 例えば、磁極の数が2よりも多い場合、短絡検知部65は、次のように差分波形を生成すればよい。短絡検知部65は、まず、信号変換部64により変換された電圧信号を、回転子30の複数の磁極にそれぞれ対応する回転子30の周方向角度ごとに分割する。さらに、短絡検知部65は、複数の磁極のうち、隣り合う磁極に対応する各電圧信号の差分波形を生成すればよい。
 また、上記実施の形態において、回転子30は、固定子20の内周側に配置されていたが、回転子30は、固定子20の外周側に配置されてもよい。
 また、上記実施の形態において、回転電機としてタービン発電機10が採用されていたが、回転電機は、タービン発電機10以外の発電機であってもよいし、電動機であってもよい。
 また、磁気検出器としてサーチコイル50を用いたが、これに限るものでは無い。
 ところで、実施の形態1の信号処理装置60の機能は、処理回路によって実現される。
 図14は、信号処理装置60の各機能を実現するハードウェアの例を示す構成図である。この場合、専用のハードウェアである処理回路60Aにて信号処理装置60が構成される。
 また、処理回路60Aは、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、又はこれらを組み合わせたものが該当する。
 また、図15は、実施の形態1による信号処理装置60の各機能を実現するハードウェアの別例を示す構成図である。この場合、処理回路60Bは、プロセッサ201及びメモリ202を備えている。
 処理回路60Bでは、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより、信号処理装置60の機能が実現される。ソフトウェア及びファームウェアは、プログラムとして記述され、メモリ202に格納される。プロセッサ201は、メモリ202に記憶されたプログラムを読み出して実行することにより、各機能を実現する。
 メモリ202に格納されたプログラムは、上述した各部の手順又は方法をコンピュータに実行させるものであるとも言える。ここで、メモリ202とは、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable and Programmable Read Only Memory)等の、不揮発性又は揮発性の半導体メモリである。また、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD等も、メモリ202に該当する。
 なお、上述した信号処理装置60の機能について、一部を専用のハードウェアで実現し、一部をソフトウェア又はファームウェアで実現するようにしてもよい。
 このように、処理回路は、ハードウェア、ソフトウェア、ファームウェア、又はこれらの組み合わせによって、上述した信号処理装置60の機能を実現することができる。
実施の形態2.
 この実施の形態2では、短絡検知部65は、第1電圧信号に基づいて第1差分波形を生成した後、第1差分波形に基づいて検出される複数個のピーク電圧の角度間隔に応じて、第2~第4差分波形を生成する。この場合、信号変換部64は、全ての次数の周波数成分が積算された第1電圧信号のみを生成する。
 その他の構成は上記実施の形態1と同様であり、実施の形態1と異なる点を中心にして以下に説明する。
 この実施の形態2においても、上記実施の形態1と同様に、第2磁極37側の第1スロットと第3スロットにおいて、界磁巻線32がそれぞれ1ターン分だけ短絡している場合について説明する。
 図16は、短絡検知部65にて生成される第1差分波形を示す図である。
 図16に示す第1差分波形は、第1電圧信号から生成され、全ての次数の周波数成分に基づく差分波形である。短絡検知部65には、信号変換部64にて変換された第1電圧信号が入力され、第1磁極36及び第2磁極37に対応する各分割電圧信号の第1差分波形を生成する。なお、図16に示す第1差分波形は、図9に示す第1差分波形と同じ波形である。
 短絡検知部65は、第1差分波形を生成した後、第1差分波形に基づいて検出される複数個のピーク電圧の角度間隔に基づき、複数個のピーク電圧を分離するのに不要な周波数成分を除いて第2~第4差分波形を生成する。
 図16に示す第1差分波形において、第1スロットおよび第3スロットの角度位置α、βに、それぞれ正方向のピーク電圧P1、P2が現れる。また、負方向においても、同様に第1スロットおよび第3スロットの角度位置αA(=180-α)、βA(=180-β)に、それぞれ負方向のピーク電圧P3、P4が現れる。
 このように、第1スロットと第3スロットとの2つの角度位置にピーク電圧が形成され、その角度間隔はスロットピッチSpの2倍に相当する。
 短絡検知部65は、回転子一周分360°に対して、360/2Spで表される次数以上の成分、即ち、25次以上の周波数成分を、複数個(この場合、2個)のピーク電圧を分離するのに不要な周波数成分として除いて、第2~第4差分波形を生成する。
 即ち、第1差分波形よる電圧を周波数分解し、25次以上の周波数成分を除去した後、4、8、12の各々の倍数を次数とする周波数成分を積算して第2、第3、第4差分波形を生成する。
 図17は、短絡検知部65にて生成される第2差分波形を示す図である。この第2差分波形は、第1差分波形に基づいて、1次~24次内で4の倍数である次数の周波数成分を積算して生成される。
 図18は、短絡検知部65にて生成される第3差分波形を示す図である。この第3差分波形は、第1差分波形に基づいて、1次~24次内で8の倍数である次数の周波数成分を積算して生成される。
 図19は、短絡検知部65にて生成される第4差分波形を示す図である。この第4差分波形は、第1差分波形に基づいて、1次~24次内で12の倍数である次数の周波数成分を積算して生成される。
 図16~図19の各図を参照すると、第1~第4差分波形において、いずれも角度位置α、βに、それぞれ正方向のピーク電圧(P1、P2)、(P1Aa、P2Aa)、(P1Ba、P2Ba)、(P1Ca、P2Ca)が現れ、角度位置αA、βAに、それぞれ負方向のピーク電圧(P3、P4)、(P3Aa、P4Aa)、(P3Ba、P4Ba)、(P3Ca、P4Ca)が現れる。
 第1~第4差分波形において、第1スロットおよび第3スロットの角度位置α、β(αA、βA)が、共通するピーク電圧位置となる。第1スロットおよび第3スロットの角度位置α、β(αA、βA)に対応するピーク電圧の検出精度は十分であり、2つの異なる角度位置α、β(αA、βA)の短絡を分離して検出できる。
 第1スロットおよび第3スロットの角度位置α、β(αA、βA)以外のスロット位置では、全ての差分波形(第1~第4差分波形)に共通して現れるピーク電圧の発生はない。また、第2~第4差分波形において、共通するピーク電圧位置のピーク電圧(P1Aa、P2Aa)、(P1Ba、P2Ba)、(P1Ca、P2Ca)の絶対値がほとんど同じである。このため、25次以上の次数、すなわち、スロットピッチSp=1に相当する短絡による電圧変化がなく、第1スロットと第3スロットとに挟まれた第2スロットで短絡が発生していないことが推定できる。
 この実施の形態においても、それぞれ特定の周波数成分を積算した複数個の差分波形に基づいて短絡発生を推定するため、複数個の短絡が発生した場合においても、各短絡の発生位置を推定でき、しかも、これら短絡の発生位置に近接したスロットにおいて短絡が発生していないことを高精度に推定できる。即ち、複数個の短絡が異なるスロットで発生した場合に、短絡位置となる各スロット位置を容易に分離して、界磁巻線32の短絡位置を信頼性良く推定できる。
 また、全ての次数の周波数成分が積算された第1差分波形以外の第2~第4差分波形は、第1差分波形にて検出される複数個のピーク電圧の角度間隔に基づいて、複数個のピーク電圧を分離するのに不要な周波数成分を除いて生成される。このため、演算負荷を軽減して効果的に短絡位置となる各スロット位置を分離することができる。
 なお、上記実施の形態2では、信号変換部64は、全ての次数の周波数成分が積算された第1電圧信号のみを生成したが、4つの電圧信号を生成しても良い。
 その場合、短絡検知部65が第1差分波形を生成した後、第1差分波形に基づいて検出される複数個のピーク電圧の角度間隔に基づいて、信号変換部64が、複数個のピーク電圧を分離するのに不要な周波数成分を除いて第2~第4電圧信号を生成する。その後、短絡検知部65が、第2~第4電圧信号に基づいて、第2~第4差分波形を生成する。
 本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
 従って、例示されていない無数の変形例が、本願に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
 10 タービン発電機(回転電機)、30 回転子、32 界磁巻線、33 回転子スロット、36 第1磁極、37 第2磁極、50 サーチコイル(磁気検出器)、60 信号処理装置、61 信号取得部、62 信号分解部、63 特定周波数成分低減部、64 信号変換部、65 短絡検知部、100 短絡検知装置、Sp 回転子スロットピッチ、α,β 角度位置、αA,βA 角度位置。

Claims (7)

  1.  回転電機の回転子の複数スロットに設けられている界磁巻線に対向して配置された磁気検出器からの電圧信号を処理して前記界磁巻線の短絡を検知する回転電機の短絡検知装置において、
      前記磁気検出器からの電圧信号を取得する信号取得部と、
      前記信号取得部によって取得された電圧信号を、互いに次数の異なる複数の周波数成分に分解する信号分解部と、
      前記複数スロットのピッチに相関を有する高調波であるスロット高調波の基本次数よりも低い次数を閾値として、前記複数の周波数成分のうち、奇数次の周波数成分と、前記閾値よりも高い偶数次の周波数成分とを低減させる特定周波数成分低減部と、
      前記特定周波数成分低減部から出力された複数の周波数成分を電圧信号に変換する信号変換部と、
      前記信号変換部により変換された電圧信号を、前記回転子の複数の磁極にそれぞれ対応する前記回転子の周方向角度ごとに分割し、前記複数の磁極のうち、隣り合う磁極に対応する各分割電圧信号の差分波形を生成し、前記差分波形の形状に基づいて、前記界磁巻線の短絡を検知するとともに、該短絡が前記回転子の周方向のいずれの位置で発生しているかを推定する短絡検知部とを備え、
     前記短絡検知部は、前記差分波形として、それぞれ特定の周波数成分を積算した複数個の差分波形を生成し、生成された複数個の差分波形について、共通するピーク電圧位置を検出して、該共通のピーク電圧位置を短絡位置として推定する、
    回転電機の短絡検知装置。
  2.  前記信号変換部は、前記複数の周波数成分から、それぞれ特定の周波数成分を積算した複数個の電圧信号を作成し、
     前記短絡検知部は、前記複数個の電圧信号毎にそれぞれ前記差分波形を生成して、前記複数個の差分波形を生成する、
    請求項1に記載の回転電機の短絡検知装置。
  3.  前記短絡検知部が生成する前記複数個の差分波形は、全ての周波数成分を積算した第1差分波形を含む、
    請求項1または請求項2に記載の回転電機の短絡検知装置。
  4.  前記短絡検知部は、前記複数個の差分波形の内、前記第1差分波形に基づいて、隣接するピーク電圧位置の角度間隔を検出し、該角度間隔に対応する周波数成分の次数以上を除いて、他の差分波形を生成する、
    請求項3に記載の回転電機の短絡検知装置。
  5.  前記複数個の差分波形の内、前記第1差分波形を除く差分波形は、特定偶数の倍数を次数とする周波数成分を積算したものである、
    請求項3または請求項4に記載の回転電機の短絡検知装置。
  6.  回転電機の回転子の複数スロットに設けられている界磁巻線に対向して配置された磁気検出器からの電圧信号を取得する信号取得ステップと、
     前記信号取得ステップによって取得された電圧信号を互いに次数の異なる複数の周波数成分に分解する信号分解ステップと、
     前記複数スロットのピッチに相関を有する高調波であるスロット高調波の基本次数よりも低い次数を閾値として、前記複数の周波数成分のうち、奇数次の周波数成分と、前記閾値よりも高い偶数次の周波数成分とを低減させる特定周波数成分低減ステップと、
     前記特定周波数成分低減ステップから出力された複数の周波数成分を電圧信号に変換する信号変換ステップと、
     前記信号変換ステップにより変換された電圧信号を、前記回転子の複数の磁極にそれぞれ対応する前記回転子の周方向角度ごとに分割し、前記複数の磁極のうち、隣り合う磁極に対応する各分割電圧信号の差分波形を生成し、前記差分波形の形状に基づいて、前記界磁巻線の短絡を検知するとともに、前記界磁巻線の短絡が、周方向のいずれの位置で発生しているかを推定する短絡検知ステップ、とを備え、
     前記短絡検知ステップは、前記差分波形として、それぞれ特定の周波数成分を積算した複数個の差分波形を生成し、生成された複数個の差分波形について、共通するピーク電圧位置を検出して、該共通のピーク電圧位置を短絡位置として推定する、
    回転電機の短絡検知方法。
  7.  前記信号変換ステップは、前記複数の周波数成分から、それぞれ特定の周波数成分を積算した複数個の電圧信号を作成し、
     前記短絡検知ステップは、前記複数個の電圧信号毎にそれぞれ前記差分波形を生成して、前記複数個の差分波形を生成する、
    請求項6に記載の回転電機の短絡検知方法。
PCT/JP2021/035762 2021-09-29 2021-09-29 回転電機の短絡検知装置および短絡検知方法 WO2023053241A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/035762 WO2023053241A1 (ja) 2021-09-29 2021-09-29 回転電機の短絡検知装置および短絡検知方法
JP2023550822A JP7558422B2 (ja) 2021-09-29 2021-09-29 回転電機の短絡検知装置および短絡検知方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/035762 WO2023053241A1 (ja) 2021-09-29 2021-09-29 回転電機の短絡検知装置および短絡検知方法

Publications (1)

Publication Number Publication Date
WO2023053241A1 true WO2023053241A1 (ja) 2023-04-06

Family

ID=85781531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/035762 WO2023053241A1 (ja) 2021-09-29 2021-09-29 回転電機の短絡検知装置および短絡検知方法

Country Status (2)

Country Link
JP (1) JP7558422B2 (ja)
WO (1) WO2023053241A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS585682A (ja) * 1981-07-01 1983-01-13 Hitachi Ltd 回転電機の回転子巻線異常検出装置
CN103713235A (zh) * 2014-01-07 2014-04-09 华北电力大学(保定) 基于端部畸变效应的汽轮发电机转子匝间短路故障诊断方法
JP6837619B1 (ja) * 2020-07-08 2021-03-03 三菱電機株式会社 回転電機の短絡検知装置及び短絡検知方法
JP6949287B1 (ja) * 2021-03-10 2021-10-13 三菱電機株式会社 回転電機の短絡検知装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS585682A (ja) * 1981-07-01 1983-01-13 Hitachi Ltd 回転電機の回転子巻線異常検出装置
CN103713235A (zh) * 2014-01-07 2014-04-09 华北电力大学(保定) 基于端部畸变效应的汽轮发电机转子匝间短路故障诊断方法
JP6837619B1 (ja) * 2020-07-08 2021-03-03 三菱電機株式会社 回転電機の短絡検知装置及び短絡検知方法
JP6949287B1 (ja) * 2021-03-10 2021-10-13 三菱電機株式会社 回転電機の短絡検知装置

Also Published As

Publication number Publication date
JPWO2023053241A1 (ja) 2023-04-06
JP7558422B2 (ja) 2024-09-30

Similar Documents

Publication Publication Date Title
Urresty et al. Diagnosis of interturn faults in PMSMs operating under nonstationary conditions by applying order tracking filtering
Lamim Filho et al. Detection of stator winding faults in induction machines using flux and vibration analysis
CN104823064B (zh) 用于检测电动机器中的故障状态的方法
US8947075B2 (en) Variable reluctance type angle sensor
Climente-Alarcon et al. Diagnosis of induction motors under varying speed operation by principal slot harmonic tracking
WO2022009330A1 (ja) 回転電機の短絡検知装置及び短絡検知方法
CN113557436B (zh) 短路探测装置以及短路探测方法
JP2004304999A (ja) 発電機界磁巻線における短絡巻きのオンライン検出
CN113686237A (zh) 一种基于线性霍尔的永磁电机偏心诊断方法及其检测系统
Alimardani et al. Mixed eccentricity fault detection for induction motors based on time synchronous averaging of vibration signals
Noureddine et al. Rolling bearing failure detection in induction motors using stator current, vibration and stray flux analysis techniques
JP4397788B2 (ja) 回転角度検出装置
WO2023053241A1 (ja) 回転電機の短絡検知装置および短絡検知方法
Ehya et al. Comprehensive broken damper bar fault detection of synchronous generators
JP6949287B1 (ja) 回転電機の短絡検知装置
Ehya et al. Static, dynamic and mixed eccentricity faults detection of synchronous generators based on advanced pattern recognition algorithm
WO2024089788A1 (ja) 回転電機の短絡検知装置および短絡検知方法
EP4037164A1 (en) Rotary electric machine and diagnostic device
Yeolekar et al. Outer race bearing fault identification of induction motor based on stator current signature by wavelet transform
JP6725765B1 (ja) 短絡検知装置および短絡検知方法
JP3719244B2 (ja) 同軸多重位置検出器およびそれを用いた回転電機
Sinha et al. ANN-Based Pattern Recognition for Induction Motor Broken Rotor Bar Monitoring under Supply Frequency Regulation. Machines 2021, 9, 87
Radwan-Pragłowska et al. Diagnostics of interior PM machine rotor faults based on EMF harmonics
Li et al. Induction motor fault detection using vibration and stator current methods
Rodríguez et al. Notice of Violation of IEEE Publication Principles: Bearing Damage Detection of the Induction Motors using Current Analysis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21959289

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023550822

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21959289

Country of ref document: EP

Kind code of ref document: A1