WO2023051839A1 - 推挽式射频功率放大电路及推挽式射频功率放大器 - Google Patents

推挽式射频功率放大电路及推挽式射频功率放大器 Download PDF

Info

Publication number
WO2023051839A1
WO2023051839A1 PCT/CN2022/130765 CN2022130765W WO2023051839A1 WO 2023051839 A1 WO2023051839 A1 WO 2023051839A1 CN 2022130765 W CN2022130765 W CN 2022130765W WO 2023051839 A1 WO2023051839 A1 WO 2023051839A1
Authority
WO
WIPO (PCT)
Prior art keywords
primary coil
push
radio frequency
pull
power amplifier
Prior art date
Application number
PCT/CN2022/130765
Other languages
English (en)
French (fr)
Inventor
黄水根
吕彬彬
石宪青
闵鸣
张文达
李想
曹原
倪建兴
Original Assignee
锐磐微电子科技(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 锐磐微电子科技(上海)有限公司 filed Critical 锐磐微电子科技(上海)有限公司
Publication of WO2023051839A1 publication Critical patent/WO2023051839A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/213Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/26Push-pull amplifiers; Phase-splitters therefor

Definitions

  • the present application relates to the field of radio frequency technology, in particular to a push-pull radio frequency power amplifier circuit, a push-pull radio frequency power amplifier and a radio frequency front-end module.
  • 5G NR Fifth-Generation New Radio
  • OFDM Orthogonal Frequency Division Multiplexing
  • Embodiments of the present application provide a push-pull radio frequency power amplifier circuit, a push-pull radio frequency power amplifier and a radio frequency front-end module, to solve the problem of low linearity of the push-pull radio frequency power amplifier circuit.
  • a push-pull radio frequency power amplifier circuit comprising a first differential amplifier transistor, a second differential amplifier transistor, a first balun, a first LC resonant circuit, and a second LC resonant circuit;
  • the output terminal of the first differential amplifier transistor is coupled to the first terminal of the primary coil of the first balun, and the second differential amplifier transistor is coupled to the second terminal of the primary coil of the first balun;
  • the first end of the first LC resonant circuit is connected to the primary coil, and is located between the first end of the primary coil and the midpoint of the primary coil, and the second end is grounded;
  • the first end of the second LC resonant circuit is connected to the primary coil and located between the second end of the primary coil and the midpoint of the primary coil, and the second end is grounded.
  • first inductance and a second inductance
  • the first inductor is connected in series between the output end of the first differential amplifier transistor and the first end of the primary coil of the first balun;
  • the second inductor is connected in series between the output terminal of the second differential amplifier transistor and the second terminal of the primary coil of the first balun.
  • first end of the first LC resonant circuit is connected to the primary coil at a position close to the first end of the primary coil
  • first end of the second LC resonant circuit is connected to The primary coil is connected to a position close to the second end of the primary coil.
  • first end of the first LC resonant circuit is connected to the primary coil at a position close to the midpoint of the primary coil
  • first end of the second LC resonant circuit is connected to the on the primary coil and connected at a position close to the midpoint of the primary coil.
  • the first end of the first LC resonant circuit is connected to the primary coil and is located at a first point on the primary coil, and is connected to the first end of the second LC resonant circuit at the On the primary coil, and located at the second position point on the primary coil, the first position point and the second position point are symmetrically distributed with a virtual straight line as the axis of symmetry, wherein the virtual straight line passes through The midpoint of the primary coil perpendicularly bisects the virtual connecting line segment between the first position point and the second position point.
  • first end of the first LC resonant circuit is connected to the midpoint of the primary coil
  • first end of the second LC resonant circuit is connected to the midpoint of the primary coil
  • the primary coil of the first balun includes a first primary coil segment and a second primary coil segment connected in series, the first end of the first LC resonant circuit is connected to the first primary coil segment, A first end of the second LC resonant circuit is connected to the second primary coil segment.
  • a first capacitor is further included, and the first capacitor is connected in series between the output terminal of the first differential amplifier transistor and the output terminal of the second differential amplifier transistor.
  • a second capacitor is further included, one end of the second capacitor is connected between the first primary coil segment and the second primary coil segment, and the other end is grounded.
  • first LC resonance circuit and the second LC resonance circuit are configured to resonate at a second-order harmonic frequency point.
  • the first differential amplifier transistor is a BJT tube, including a base, a collector and an emitter, and the base of the first differential amplifier transistor receives the input first radio frequency input signal, and the first differential amplifier transistor
  • the collector of the first balun is coupled to the first end of the primary coil of the first balun, and the emitter of the first differential amplifier transistor is grounded;
  • the second differential amplifier transistor is a BJT tube, including a base, a collector and an emitter, the base of the second differential amplifier transistor receives the input second radio frequency input signal, and the collector of the second differential amplifier transistor Coupled to the second end of the primary coil of the first balun, the emitter of the second differential amplifier transistor is grounded.
  • the first end of the secondary coil of the first balun outputs an amplified first radio frequency output signal, and the second end of the secondary coil outputs an amplified second radio frequency output signal; or, the first balun The first end of the secondary coil outputs the amplified radio frequency output signal, and the second end of the secondary coil is grounded.
  • the present application also provides a push-pull radio frequency power amplifier, including: a substrate, a first balun arranged on the substrate, a push-pull power amplifier chip arranged on the substrate, and the push-pull power amplifier chip includes a first differential amplifier transistor, a second differential amplifier transistor, the output end of the first differential amplifier transistor is connected to the first end of the primary coil of the first balun, and the output end of the second differential amplifier transistor is connected to the first barun the second end of the primary coil of Lun;
  • a first LC resonant circuit the first end of the first LC resonant circuit is connected to the primary coil, and is located between the first end of the primary coil and the midpoint of the primary coil, and the second end is grounded ;
  • a second LC resonant circuit the first end of the second LC resonant circuit is connected to the primary coil, and is located between the second end of the primary coil and the midpoint of the primary coil, the second end grounded.
  • it also includes a fifth pad disposed between the first end of the primary coil and the midpoint of the primary coil, and a fifth pad disposed between the second end of the primary coil and the midpoint of the primary coil between the sixth pad; the first end of the first LC resonant circuit is connected to the fifth pad, the second end is grounded, the first end of the second LC resonant circuit is connected to the sixth pad plate connection, and the second terminal is grounded.
  • the output terminal of the first differential amplifier transistor is connected to the first pad of the push-pull power amplifier chip, and the first pad is bonded to the first pad of the primary coil of the first balun by wire bonding.
  • One end; the output end of the second differential amplifier transistor is connected to the second pad of the push-pull power amplifier chip, and the second pad is bonded to the second pad of the primary coil of the first balun by wire bonding. end.
  • first inductance and a second inductance are also included, the output end of the first differential amplifier transistor is connected to the first end of the primary coil of the first balun through the first inductance, and the second differential The output terminal of the amplifying transistor is connected to the second terminal of the primary coil of the first balun through the second inductor.
  • the present application also provides a push-pull radio frequency power amplifier, including: a substrate, a first balun arranged on the substrate; a push-pull power amplifier chip arranged on the substrate, and the push-pull power amplifier chip includes a first differential amplifier a transistor, a second differential amplifier transistor, a third capacitor and a fourth capacitor,
  • the output terminal of the first differential amplifier transistor is connected to the first terminal of the primary coil of the first balun, and the output terminal of the second differential amplifier transistor is connected to the second terminal of the primary coil of the first balun ;
  • the first end of the third capacitor is connected to the third pad of the push-pull power amplifier chip, the second end of the third capacitor is grounded, and the third pad is bonded to the primary coil by wire bonding.
  • the first end of the fourth capacitor is connected to the fourth pad of the push-pull power amplifier chip plate, the second end of the fourth capacitor is grounded, the fourth pad is bonded to the primary coil by wire bonding, and is located between the second end of the primary coil and the midpoint of the primary coil the sixth pad.
  • the output terminal of the first differential amplifier transistor is connected to the first pad of the push-pull power amplifier chip, and the first pad is bonded to the first pad of the primary coil of the first balun by wire bonding.
  • the output end of the second differential amplifier transistor is connected to the second pad of the push-pull power amplifier chip, and the second pad is bonded to the second pad of the primary coil of the first balun by wire bonding. end.
  • first inductance and a second inductance are also included, the output end of the first differential amplifier transistor is connected to the first end of the primary coil of the first balun through the first inductance, and the second differential The output terminal of the amplifying transistor is connected to the second terminal of the primary coil of the first balun through the second inductor.
  • the push-pull power amplifier chip further includes a first capacitor connected in series between the output terminal of the first differential amplifier transistor and the output terminal of the second differential amplifier transistor.
  • the primary coil includes a first primary coil segment and a second primary coil segment
  • the first pad is wire bonded to the second end of the first primary coil segment, and the second pad is wire bonded to the second end of the second primary coil segment;
  • the third pad is wire bonded to a fifth pad on the first primary coil segment, and the fourth pad is wire bonded to a sixth pad on the second primary coil segment.
  • the feed power terminal is coupled to the midpoint of the primary coil, and the second capacitor One end is connected to the feed power end, and the other end is grounded.
  • the present application also provides a radio frequency front-end module, including the above-mentioned push-pull radio frequency power amplifier circuit, or including the above-mentioned push-pull radio frequency power amplifier.
  • the present application provides a push-pull radio frequency power amplifier circuit, including a first differential amplifier transistor, a second differential amplifier transistor, a first balun, a first LC resonant circuit and a second LC resonant circuit; the first differential amplifier transistor The output terminal of the first balun is coupled to the first terminal of the primary coil of the first balun, and the output terminal of the second differential amplifier transistor is coupled to the second terminal of the primary coil of the first balun; the first LC The first end of the resonant circuit is connected to the primary coil, and is located between the first end of the primary coil and the midpoint of the primary coil, and the second end is grounded; the first end of the second LC resonant circuit The second end is connected to the primary coil and is located between the second end of the primary coil and the midpoint of the primary coil, and the second end is grounded.
  • the first end of the first LC resonant circuit is connected to the primary coil, and is located between the first end of the primary coil and the midpoint of the primary coil, and the second end is grounded; and
  • the first end of the second LC resonant circuit is connected to the primary coil, and is located between the second end of the primary coil and the midpoint of the primary coil, and the second end is grounded;
  • Fig. 1 is a schematic circuit diagram of a push-pull radio frequency power amplifier circuit in an embodiment of the present application
  • Fig. 2 is another schematic circuit diagram of a push-pull radio frequency power amplifier circuit in an embodiment of the present application
  • Fig. 3 is another schematic circuit diagram of a push-pull radio frequency power amplifier circuit in an embodiment of the present application
  • FIG. 4 is another schematic circuit diagram of a push-pull radio frequency power amplifier circuit in an embodiment of the present application.
  • FIG. 5 is another schematic circuit diagram of a push-pull radio frequency power amplifier circuit in an embodiment of the present application.
  • FIG. 6 is another schematic circuit diagram of a push-pull radio frequency power amplifier circuit in an embodiment of the present application.
  • FIG. 7 is another schematic circuit diagram of a push-pull radio frequency power amplifier in an embodiment of the present application.
  • FIG. 8 is another schematic circuit diagram of a push-pull radio frequency power amplifier in an embodiment of the present application.
  • FIG. 9 is another schematic circuit diagram of a push-pull radio frequency power amplifier in an embodiment of the present application.
  • FIG. 10 is another schematic circuit diagram of a push-pull radio frequency power amplifier in an embodiment of the present application.
  • FIG. 11 is another schematic circuit diagram of a push-pull radio frequency power amplifier in an embodiment of the present application.
  • FIG. 12 is another schematic circuit diagram of a push-pull radio frequency power amplifier in an embodiment of the present application.
  • FIG. 13 is another schematic circuit diagram of a push-pull radio frequency power amplifier in an embodiment of the present application.
  • Spatial terms such as “below”, “under”, “beneath”, “below”, “above”, “above”, etc., may be used herein for convenience of description The relationship of one element or feature to other elements or features shown in the figures is thus described. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use and operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements or features described as “below” or “beneath” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the exemplary terms “below” and “beneath” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatial descriptors used herein interpreted accordingly.
  • This embodiment provides a push-pull radio frequency power amplifier circuit, as shown in FIG. LC resonant circuit 501 .
  • the output end of the first differential amplifier transistor 10 is coupled to the first end of the primary coil of the first balun 30, and the output end 50 of the second differential amplifier transistor 20 is coupled to the first balun. Len 30 to the second end of the primary coil.
  • the first differential amplifier transistor 10 and the second differential amplifier transistor 20 may be BJT transistors or field effect transistors (FETs).
  • the first differential amplifier transistor 10 includes at least one BJT transistor (eg, HBT transistor) or at least one field effect transistor.
  • the first differential amplifier transistor 10 may be a plurality of BJT transistors connected in parallel.
  • the second differential amplifier transistor 20 includes at least one BJT transistor (eg, HBT transistor) or at least one field effect transistor.
  • the second differential amplifier transistor 20 may be a plurality of BJT transistors connected in parallel.
  • the first differential amplifier transistor 10 is configured to amplify the first radio frequency input signal to output a first radio frequency amplified signal, and the first radio frequency amplified signal is coupled to the first balun 30 through the first matching network 40
  • the second differential amplifier transistor 20 is configured to amplify the second radio frequency input signal to output a second radio frequency amplified signal, and the second radio frequency amplified signal is coupled to the first balun 30 through the second matching network 50
  • the first radio frequency input signal may be the radio frequency signal output after being amplified by the corresponding pre-amplification circuit, or may be one of the balanced radio frequency signals obtained by converting the unbalanced input radio frequency signal.
  • the second radio frequency input signal may also be the radio frequency signal output after being amplified by the corresponding pre-amplification circuit, or may be one of the balanced radio frequency signals obtained by converting the unbalanced input radio frequency signal.
  • first differential amplifier transistor 10 and the second differential amplifier transistor 20 are any amplifier stage in the push-pull radio frequency power amplifier circuit, and the amplifier stage can be any amplifier stage in the driver stage, intermediate stage or output stage. class.
  • the push-pull radio frequency power amplifier circuit further includes a pre-stage conversion circuit (not shown), for example, the pre-stage conversion circuit may be a pre-stage conversion balun.
  • the pre-stage conversion balun is used to convert the unbalanced radio frequency input signal into balanced first radio frequency input signal and second radio frequency input signal, and input the first radio frequency input signal to the input terminal of the first differential amplifier transistor 10, and The second radio frequency input signal is input to the input terminal of the second differential amplifier transistor 20 .
  • the first end of the first LC resonant circuit 401 is connected to the primary coil and located between the first end of the primary coil and the midpoint of the primary coil, and the second end is grounded.
  • the first LC resonant circuit 401 is a resonant circuit composed of a third capacitor C11 and a third inductor L11 connected in series.
  • the first end of the first LC resonant circuit 401 may be connected to the primary coil and located at any position between the first end of the primary coil and the midpoint of the primary coil.
  • the position where the first end of the first LC resonant circuit 401 is connected to the primary coil does not include the first end of the primary coil, that is, the first LC resonant circuit 401 in this application is connected to the The location on the primary coil is primarily on the coil itself rather than on the first end of said primary coil.
  • the midpoint of the primary coil is located at the center of the primary coil.
  • the lengths of the primary coil segments located on both sides of the midpoint of the primary coil are the same.
  • the midpoint of the primary coil is the position where the center tap of the primary coil is connected to the primary coil.
  • the push-pull radio frequency power amplifier circuit includes a first differential amplifier transistor, a second differential amplifier transistor, a first balun, a first LC resonant circuit, and a second LC resonant circuit;
  • the first differential amplifier transistor The output terminal of the first balun is coupled to the first terminal of the primary coil of the first balun, and the output terminal of the second differential amplifier transistor is coupled to the second terminal of the primary coil of the first balun;
  • the first end of the resonant circuit is connected to the primary coil, and is located between the first end of the primary coil and the midpoint of the primary coil, and the second end is grounded;
  • the first end of the second LC resonant circuit The second end is connected to the primary coil and is located between the second end of the primary coil and the midpoint of the primary coil, and the second end is grounded.
  • the first end of the first LC resonant circuit is connected to the primary coil, and is located between the first end of the primary coil and the midpoint of the primary coil, and the second end is grounded; and
  • the first end of the second LC resonant circuit is connected to the primary coil, and is located between the second end of the primary coil and the midpoint of the primary coil, and the second end is grounded;
  • the position where the first end of the first LC resonant circuit 401 is connected to the primary coil and the position where the first end of the second LC resonant circuit 501 is connected to the primary coil is closer to the position At the midpoint of the primary coil, the larger the real part of the harmonic impedance (for example: second-order harmonic impedance) of the push-pull RF power amplifier circuit is, the higher the power back-off efficiency and saturation power of the push-pull power amplifier circuit will be. high.
  • the harmonic impedance for example: second-order harmonic impedance
  • the first end of the first LC resonant circuit 401 is connected to the position on the primary coil, the closer to the first end of the primary coil, and the first end of the second LC resonant circuit 501 is connected to the position on the primary coil
  • the closer the position is to the second end of the primary coil the smaller the real part of the harmonic impedance (for example: second-order harmonic impedance) of the push-pull RF power amplifier circuit is, and the closer it is to the short circuit of the push-pull RF power amplifier circuit point, so that the suppression effect on the harmonic signal (for example: second-order harmonic) of the push-pull power amplifier circuit is better.
  • the first end of the first LC resonant circuit 401 is connected to the primary coil and located between the first end of the primary coil and the midpoint of the primary coil, and the second end is grounded.
  • the first LC resonant circuit 401 is a resonant circuit composed of a third capacitor C21 and a third inductor L11 connected in series.
  • the first end of the first LC resonant circuit 401 may be connected to any position between the second end of the primary coil and the midpoint of the primary coil.
  • the position where the first end of the first LC resonant circuit 401 is connected to the primary coil does not include the first end of the primary coil, that is, the first LC resonant circuit 401 in this application is connected to the The location on the primary coil is primarily on the coil itself rather than on the second end of said primary coil.
  • the first end of the second LC resonant circuit 501 is connected to the primary coil, and is located between the second end of the primary coil and the midpoint of the primary coil, and the second end is grounded.
  • the second LC resonant circuit 501 is a resonant circuit composed of a fourth capacitor C21 and a fourth inductor L21 connected in series.
  • the first end of the second LC resonant circuit 501 may be connected to any position between the second end of the primary coil and the midpoint of the primary coil.
  • the position where the first end of the second LC resonant circuit 501 is connected to the primary coil does not include the second end of the primary coil, that is, the second LC resonant circuit 501 in this application is connected to the The location on the primary coil is primarily on the coil itself rather than on the second end of said primary coil.
  • the first end of the first LC resonant circuit 401 is connected to the first point on the primary coil and the first end of the second LC resonant circuit 501 is connected to the primary coil.
  • the second position points on the coil may be distributed symmetrically with a virtual straight line as a symmetry axis, wherein the virtual straight line passes through the midpoint of the primary coil and perpendicularly bisects the first position point and the second position point The virtual connecting line segment between.
  • the first differential amplifier transistor can be a first end of an LC resonant circuit connected to the primary coil at a first point on the primary coil, and a first end of the second LC resonant circuit connected to the primary coil, and
  • the second position point located on the primary coil, the first position point and the second position point are symmetrically distributed with a virtual straight line as a symmetric axis, wherein the virtual straight line passes through the center of the primary coil point and vertically bisect the virtual connecting line segment between the first position point and the second position point, so as to realize the balanced setting of the first balun in the push-pull radio frequency power amplifier circuit, and ensure that the input to the first balun The balance between the signal at the first end and the signal at the second end; thus ensuring the balance of the entire push-pull RF power amplifier circuit.
  • the front-stage circuit of the first balun in the push-pull radio frequency power amplifier circuit (for example: the first differential amplifier transistor and the second differential amplifier transistor)
  • it can be By connecting the first end of the first LC resonant circuit 401 to the primary coil at a first position on the primary coil, and connecting the first end of the second LC resonant circuit 501 to the The second position point on the primary coil and located on the primary coil, the first position point and the second position point are symmetrically distributed with a virtual straight line as the axis of symmetry, wherein the virtual straight line passes through pass through the midpoint of the primary coil and vertically bisect the virtual connecting line segment between the first position point and the second position point to offset the unbalance problem caused by the pre-stage circuit, thereby ensuring that the entire push-pull The balance of the RF power amplifier circuit.
  • the push-pull radio frequency power amplifying circuit in this embodiment is in the first LC resonant circuit 401 Impedance matching is realized under the joint action of the second LC resonant circuit 501 and the first balun 30, which not only improves the fundamental wave impedance performance of the push-pull power amplifier circuit, but also further makes the push-pull radio frequency power amplifier circuit change with frequency , the variation of the second-order impedance is small, and the second-order harmonic impedance is more convergent, so that the second-order harmonic suppression performance is better in a wider frequency range.
  • this embodiment can further improve the bandwidth performance of the push-pull radio frequency power amplifier circuit by adjusting the resonance frequency points of the first LC resonance circuit 401 and the second LC resonance circuit 501, so that the push-pull radio frequency power Amplifying circuits can support greater bandwidth.
  • a first inductor L1 and a second inductor L2 are included.
  • the first inductor L1 is connected in series between the output terminal of the first differential amplifier transistor 10 and the first terminal of the primary coil of the first balun 30 .
  • One end of the first inductor L1 is connected to the output end of the first differential amplifier transistor 10 , and the other end is connected to the first end of the primary coil of the first balun 30 .
  • the second inductor L2 is connected in series between the output end of the second differential amplifier transistor 20 and the second end of the primary coil of the first balun 30 .
  • One end of the second inductor L2 is connected to the output end of the second differential amplifier transistor 20 , and the other end is connected to the second end of the primary coil of the first balun 30 .
  • the push-pull radio frequency power amplifying circuit in this embodiment is composed of the first inductor L1 and
  • the first matching network composed of the first LC resonant circuit 401 and the second matching network composed of the second inductance L2 and the second LC resonant circuit 501 work together with the first balun 30 to achieve impedance matching, which not only improves the push Pulling the fundamental wave impedance performance of the power amplifier circuit can further make the push-pull RF power amplifier circuit change with the frequency, the second-order impedance changes less, and the second-order harmonic impedance is more convergent, so as to achieve wider frequency range , the second-order harmonic suppression performance is better.
  • this embodiment can further improve the bandwidth performance of the push-pull radio frequency power amplifier circuit by adjusting the resonance frequency points of the first LC resonance circuit 401 and the second LC resonance circuit 501, so that the push-pull radio frequency power Amplifying circuits can support greater bandwidth.
  • the first inductance L1 is connected between the output end of the first differential amplifier transistor 10 and the first end of the primary coil of the first balun 30, and the first LC resonant circuit 401 is connected to terminal is connected on the primary coil, and is located between the first terminal of the primary coil and the midpoint of the primary coil, and the second terminal is grounded; and between the output terminal of the second differential amplifier transistor 10 and the first bar
  • the second inductance L2 is connected between the second ends of the primary coil of the len 30, and the first end of the second LC resonant circuit is connected to the primary coil, and is located between the second end of the primary coil and the primary coil.
  • the first matching network composed of the first inductance L1 and the first LC resonant circuit 401 and the second matching network composed of the second inductance L2 and the second LC resonant circuit 501 and
  • the first balun 30 jointly participates in the impedance conversion of the push-pull RF power amplifier circuit to achieve impedance matching, so that not only can the fundamental wave impedance performance of the push-pull power amplifier circuit be improved, but also by adjusting the first LC resonant circuit 401 and the second LC resonant circuit 401
  • the resonant frequency point of the 2LC resonant circuit 501 so that the RF push-pull power amplifier chip changes with the frequency, the impedance change is small, and the harmonic impedance is more convergent, so that the harmonic suppression performance is better in a wider frequency range.
  • the first end of the first LC resonant circuit is connected to the primary coil at a position close to the first end of the primary coil, and the first end of the second LC resonant circuit One end is connected to the primary coil and is connected to a position close to the second end of the primary coil.
  • the first end of the second LC resonant circuit by connecting the first end of the first LC resonant circuit to the primary coil at a position close to the first end of the primary coil, the first end of the second LC resonant circuit One end is connected to the primary coil and is connected to a position close to the second end of the primary coil; thereby reducing the real part of the harmonic impedance (for example: second-order harmonic impedance) of the push-pull radio frequency power amplifier circuit , making it close to the short-circuit point of the push-pull radio frequency power amplifying circuit, thereby improving the suppression effect on the harmonic signal (for example: second-order harmonic) of the push-pull power amplifying circuit.
  • the harmonic impedance for example: second-order harmonic impedance
  • the first end of the first LC resonant circuit is connected to the primary coil at a position close to the midpoint of the primary coil, and the first end of the second LC resonant circuit It is connected to the primary coil and is connected to a position close to the midpoint of the primary coil.
  • the first end of the first LC resonant circuit by connecting the first end of the first LC resonant circuit to the primary coil at a position close to the midpoint of the primary coil, the first end of the second LC resonant circuit Connected on the primary coil, and connected at a position close to the midpoint of the primary coil; thereby increasing the real part of the harmonic impedance (for example: second-order harmonic impedance) of the push-pull radio frequency power amplifier circuit; to improve The power back-off efficiency and saturation power of the push-pull power amplifier circuit; and then the linearity of the push-pull radio frequency power amplifier circuit is improved.
  • the harmonic impedance for example: second-order harmonic impedance
  • the first inductance L1 is connected between the output end of the first differential amplifier transistor 10 and the first end of the primary coil of the first balun 30, and the first LC resonant circuit 401 is connected to terminal is connected on the primary coil, and is located between the first terminal of the primary coil and the midpoint of the primary coil, and the second terminal is grounded; and between the output terminal of the second differential amplifier transistor 10 and the first bar
  • the second inductance L2 is connected between the second ends of the primary coil of the len 30, and the first end of the second LC resonant circuit is connected to the primary coil, and is located between the second end of the primary coil and the primary coil.
  • the first matching network composed of the first inductance L1 and the first LC resonant circuit 401 and the second matching network composed of the second inductance L2 and the second LC resonant circuit 501 and
  • the first balun 30 jointly participates in the impedance conversion of the push-pull RF power amplifier circuit to achieve impedance matching, so that not only can the fundamental wave impedance performance of the push-pull power amplifier circuit be improved, but also by adjusting the first LC resonant circuit 401 and the second LC resonant circuit 401
  • the resonant frequency point of the 2LC resonant circuit 501 so that the RF push-pull power amplifier chip changes with the frequency, the impedance change is small, and the harmonic impedance is more convergent, so that the harmonic suppression performance is better in a wider frequency range.
  • the push-pull radio frequency power amplifier circuit The real part of the harmonic impedance (for example: second-order harmonic impedance), thereby improving the bandwidth performance of the harmonic impedance of the push-pull RF power amplifier circuit, or improving the power back-off efficiency and saturation of the push-pull RF power amplifier circuit Power, and then improve the linearity of the push-pull RF power amplifier circuit.
  • the harmonic impedance for example: second-order harmonic impedance
  • the first end of the first LC resonant circuit 401 is connected to the primary coil, and is located at a first point on the primary coil, and is connected to the second LC resonant circuit 501
  • the first end is connected to the primary coil and is located at a second position point on the primary coil, the first position point and the second position point are symmetrically distributed with an imaginary straight line as a symmetry axis, wherein, The virtual straight line passes through the midpoint of the primary coil and perpendicularly bisects the virtual connecting line segment between the first position point and the second position point.
  • the first balun in order to realize the balanced setting of the first balun in the push-pull radio frequency power amplifier circuit, the balance between the signal input to the first end of the first balun and the signal at the second end is ensured; the first balun a first end of an LC resonant circuit connected to the primary coil at a first point on the primary coil, and a first end of the second LC resonant circuit connected to the primary coil, and The second position point located on the primary coil, the first position point and the second position point are symmetrically distributed with a virtual straight line as a symmetric axis, wherein the virtual straight line passes through the center of the primary coil point and perpendicularly bisect the virtual connecting line segment between the first location point and the second location point.
  • the first end of the first LC resonant circuit 401 is connected to the midpoint of the primary coil, and the first end of the second LC resonant circuit 401 is connected to the midpoint of the primary coil. Point.
  • both the first end of the first LC resonant circuit 401 and the first end of the second LC resonant circuit 401 can be connected to the At the midpoint of the above-mentioned primary coil, the harmonic impedance (for example: second-order harmonic impedance) of the push-pull RF power amplifier circuit is the largest at this time, and the power back-off efficiency and saturation power of the push-pull power amplifier circuit are the highest; to meet the push-pull RF power amplifier circuit The performance requirements of high power back-off efficiency and high saturation power of the power amplifier circuit.
  • the harmonic impedance for example: second-order harmonic impedance
  • the primary coil of the first balun 30 includes a first primary coil segment and a second primary coil segment connected in series, and the first end of the first LC resonant circuit 401 is connected to the first On a primary coil segment, the first end of the second LC resonant circuit 501 is connected to the second primary coil segment.
  • first primary coil segment and the second primary coil segment of the primary coil of the first balun 30 may be arranged separately, and the first primary coil segment and the second primary coil segment are connected in series.
  • first primary coil segment and the second primary coil segment of the primary coil of the first balun 30 may also be non-separated, that is, the first primary coil segment and the second primary coil segment are essentially still is a complete coil,
  • the output end of the first differential amplifier transistor 10 is coupled to the first end of the first primary coil segment through the first matching network 40, and the output end of the second differential amplifier transistor is coupled through the first Two matching networks 50 are coupled to the second end of the second primary coil segment.
  • the second end of the first primary coil segment is connected to the first end of the second primary coil end.
  • a first end of the first LC resonant circuit 401 is connected to the first primary coil segment, and a first end of the second LC resonant circuit 501 is connected to the first primary coil segment.
  • the push-pull radio frequency power amplifier if the first end of the first LC resonant circuit 401 is connected to the position on the first primary coil section, the closer to the second end of the first primary coil section, the push-pull radio frequency power amplifier The larger the real part of the harmonic impedance of the circuit (eg, the second-order harmonic impedance), the higher the power back-off efficiency and saturation power of the push-pull power amplifier circuit.
  • the harmonic impedance of the push-pull radio frequency power amplifier circuit (for example : The real part of the second-order harmonic impedance) is smaller and closer to the short-circuit point of the push-pull RF power amplifier circuit, so that the suppression effect on the harmonic signal (for example: second-order harmonic) of the push-pull power amplifier circuit is greater. the better.
  • the position where the first end of the first LC resonant circuit 401 is connected to the first primary coil segment can be set according to the actual requirements for circuit performance.
  • the harmonic impedance For example: the real part of the second-order harmonic impedance
  • the power back-off efficiency and saturation power of the push-pull power amplifier circuit are higher.
  • the harmonic impedance of the push-pull radio frequency power amplifier circuit (for example: second order harmonic Wave impedance) the smaller the real part, the closer to the short-circuit point of the push-pull RF power amplifier circuit, the better the suppression effect on the harmonic signal (for example: second-order harmonic) of the push-pull power amplifier circuit.
  • the position where the first end of the second LC resonant circuit 501 is connected to the second primary coil can be set according to the actual requirements for circuit performance.
  • the first end of the first LC resonant circuit 401 is connected to the position on the first primary coil and the first end of the second LC resonant circuit 501 is connected to the
  • the positions on the second primary coil can be distributed symmetrically or asymmetrically.
  • the first primary coil segment and the second primary coil segment may also be connected through a matching capacitor (not shown in the figure).
  • the first end of the matching capacitor is connected to the second end of the first primary coil segment, and the second end of the matching capacitor is connected to the first end of the second coil segment;
  • the primary coil of the first balun 30 is improved to a structure formed by interconnecting the first primary coil segment and the second primary coil segment, and the matching capacitor is connected to the connection between the first primary coil segment and the second primary coil segment,
  • the output end of the first differential amplifier transistor is coupled to the first end of the first primary coil segment through the first matching network, and the output end of the second differential amplifier transistor 20 is coupled through the second matching network 50 Coupled to the first end of the second primary coil segment;
  • the matching capacitor, the first matching network 40, the second matching network 50 and the first balun 30 jointly participate in the impedance matching of the push-pull radio frequency power amplifying circuit, thereby achieving improved The bandwidth performance of the push-pull power amplifier circuit, so that the
  • the first balun 30 can be arranged on the substrate, or can be integrated with the first differential amplifier transistor 10 and the second differential amplifier transistor 20 on the same chip, or can be separately arranged on an independent chip.
  • the first differential amplifier transistor 10 and the second differential amplifier transistor 20 are set on the first chip, and the first balun 30 is set on the second chip), which can be customized according to actual needs.
  • the push-pull radio frequency power amplifier circuit further includes an output terminal connected in series between the output terminal of the first differential amplifier transistor 10 and the output terminal of the second differential amplifier transistor 20 The first capacitor C1. That is, one end of the first capacitor C1 is coupled to the output end of the first differential amplifier transistor 10 , and the other end is coupled to the output end of the second differential amplifier transistor 20 .
  • the first matching network 40 composed of the first inductor L1 and the first LC resonant circuit 401 and the second inductor L2 and the first matching network 401
  • the bandwidth performance of the harmonic wave impedance of the push-pull power amplifier circuit may not be ideal.
  • the present application connects a first capacitor C1 in series between the output terminal of the first differential amplifier transistor 10 and the output terminal of the second differential amplifier transistor 20.
  • the first capacitor C1, the first The matching network 10 and the second matching network 20 cooperate with the first balun 30 to participate in the impedance matching of the push-pull radio frequency power amplifier circuit, so as to ensure that the fundamental wave impedance performance of the push-pull radio frequency power amplifier circuit is not affected
  • it can also make the push-pull radio frequency power amplifier circuit change with the frequency, its impedance change is small, and the harmonic impedance is more convergent, so as to achieve better harmonic suppression performance in a wider frequency band.
  • the push-pull radio frequency power amplifier circuit further includes a second capacitor C2, one end of the second capacitor C2 is coupled to the first primary coil section and the second Between the primary coil segments, the other end is grounded.
  • the other end is grounded; thereby ensuring the bandwidth of the push-pull radio frequency power amplifier chip While improving the performance, it can further improve the suppression degree of the even-order harmonics in the push-pull radio frequency power amplifier chip, so as to improve the even-order harmonic impedance of the push-pull radio frequency power amplifier chip.
  • the first LC resonant circuit and the second LC resonant circuit are configured to resonate at a second-order harmonic frequency point.
  • the present application uses the first LC resonant circuit 401 and the second LC resonant circuit resonator 501 in the The second harmonic frequency point; the first matching network 40 composed of the first inductance L1 and the first LC resonant circuit 401 and the second matching network 50 composed of the second inductance L2 and the second LC resonant circuit 501 and the first bar Lun 30 jointly participates in the impedance conversion of the push-pull RF power amplifier circuit to achieve impedance matching, so as to ensure the bandwidth performance of the fundamental wave impedance of the push-pull RF power amplifier circuit, and at the same time make the push-pull RF power amplifier circuit As the frequency changes, the second-order impedance changes less, and the second-order harmonic impedance is more convergent, so that the second-order harmonic suppression performance is better in a wider frequency range, and the first
  • the first differential amplifier transistor 10 is a BJT tube, including a base, a collector, and an emitter, and the base of the first differential amplifier transistor 10 receives the input first radio frequency input signal, so The collector of the first differential amplifier transistor 10 is coupled to the first end of the first coil segment, and the emitter of the first differential amplifier transistor 10 is grounded.
  • the first radio frequency input signal is input to the base of the first differential amplifier transistor 10, and after being amplified by the first differential amplifier transistor 10, the first radio frequency amplified signal is output from the collector of the first differential amplifier transistor 10 to the first differential amplifier transistor 10.
  • the first end of the first coil segment is input to the base of the first differential amplifier transistor 10, and after being amplified by the first differential amplifier transistor 10, the first radio frequency amplified signal is output from the collector of the first differential amplifier transistor 10 to the first differential amplifier transistor 10. The first end of the first coil segment.
  • the second differential amplifier transistor is a BJT tube, including a base, a collector and an emitter, the base of the second differential amplifier transistor receives the input second radio frequency input signal, and the collector of the second differential amplifier transistor Coupled to the second end of the first coil segment, the emitter of the second differential amplifier transistor is grounded.
  • the second radio frequency input signal is input to the base of the second differential amplifier transistor 20, and after being amplified by the second differential amplifier transistor 20, the second radio frequency amplified signal is output from the collector of the second differential amplifier transistor 20 to the second differential amplifier transistor 20.
  • the second end of the second coil segment is input to the base of the second differential amplifier transistor 20, and after being amplified by the second differential amplifier transistor 20, the second radio frequency amplified signal is output from the collector of the second differential amplifier transistor 20 to the second differential amplifier transistor 20.
  • the first balun 30 receives the first radio frequency amplified signal and the second radio frequency amplified signal, it converts the first radio frequency amplified signal and the second radio frequency amplified signal, and converts the first radio frequency
  • the amplified signal and the second radio frequency amplified signal are input to the subsequent stage circuit.
  • the first end of the secondary coil of the first balun 30 outputs an amplified first radio frequency output signal, and the second end of the secondary coil outputs an amplified second radio frequency output signal; or, the The first end of the secondary coil of the first balun 30 outputs an amplified radio frequency output signal, and the second end of the secondary coil is grounded.
  • the first balun 30 is an input stage balun or an intermediate stage balun, that is, after the first balun 30 receives the first radio frequency amplified signal and the second radio frequency amplified signal, it only A radio frequency amplified signal and a second radio frequency amplified signal are converted and processed without signal synthesis, then the first end of the secondary coil of the first balun 30 outputs the amplified first radio frequency output signal to the subsequent circuit, and the secondary The second end of the coil outputs the amplified second radio frequency output signal to the subsequent circuit.
  • the first balun 30 is an output stage balun, that is, after the first balun 30 receives the first radio frequency amplified signal and the second radio frequency amplified signal, the first radio frequency amplified signal and the second radio frequency amplified signal
  • the two radio frequency amplified signals are converted and processed and signal synthesized, and the amplified radio frequency output signal is output to the signal output terminal through the first end of the secondary coil; then the first end of the secondary coil of the first balun 30 outputs an amplified
  • the RF output signal of the secondary coil is grounded.
  • the present application also provides a push-pull radio frequency power amplifier, including a substrate 100, a first balun 30 disposed on the substrate 100, and a push-pull power amplifier chip 200 disposed on the substrate.
  • the push-pull power amplifier chip 200 includes a first differential amplifier transistor 10 and a second differential amplifier transistor 20 , the output end of the first differential amplifier transistor 10 is connected to the first end of the primary coil of the first balun 30 .
  • the output end of the second differential amplifier transistor 20 is connected to the second end of the primary coil of the first balun 30 .
  • the output end of the first differential amplifier transistor 10 is connected to the first pad a of the push-pull power amplifier chip 200, and the first pad a Disk a is bonded to the first end of the primary coil of the first balun 30 by wire bonding, and the output end of the second differential amplifier transistor 20 is connected to the second pad b of the push-pull power amplifier chip 200, so The second pad b is bonded to the second end of the primary coil of the first balun 30 by wire bonding.
  • a first inductance L1 and a second inductance L2 are further included, the output terminal of the first differential amplifier transistor 10 is connected to the first balun 30 through the first inductance L1
  • the output terminal of the second differential amplifier transistor 20 is connected to the second terminal of the primary coil of the first balun 30 through the second inductor L2.
  • wires can be used bonded connections.
  • wires can be used bonded connections.
  • the first pad a of 200 is bonded to the first end of the primary coil of the first balun 30 through the wire S1.
  • the first pad a may be bonded to the first end of the primary coil of the first balun 30 through one or more wires.
  • the second pad b is bonded to the first balun 30 through the wire S2 The second end of the primary coil; wherein, the second pad b can be bonded to the second end of the primary coil of the first balun 30 by one or more wires; thereby realizing the Electrical connections between the first differential amplifier transistor 10 and the second differential amplifier transistor 20 on the chip and the first balun 30 provided on the substrate.
  • a first LC resonant circuit the first end of the first LC resonant circuit is connected to the primary coil, and is located between the first end of the primary coil and the midpoint of the primary coil, and the second end is grounded a second LC resonant circuit, the first end of the second LC resonant circuit is connected to the primary coil, and is located between the second end of the primary coil and the midpoint of the primary coil, the second end grounded.
  • the first LC resonant circuit 401 is a resonant circuit composed of a third capacitor C11 and a third inductor L11 connected in series.
  • the second LC resonant circuit 501 is a resonant circuit composed of a fourth capacitor C21 and a fourth inductor L21 connected in series.
  • the lead wire is substantially equivalent to an inductor in practical applications, in order to avoid the problem of increased transmission loss caused by the lead wire, it is usually necessary to ensure that the lead wire is not too long when the wire bonding method is used for connection. If the length of the lead wire is too long, there will be a problem of increased transmission loss.
  • the present application forms the first matching circuit by using the inductance equivalent to the lead S1 and the first LC resonant circuit 401, and forms the second matching circuit by using the inductance equivalent to the lead S2 and the second LC resonant circuit 501;
  • the first matching network composed of the lead wire S1 and the first LC resonant circuit 401 and the second matching network composed of the lead wire S2 and the second LC resonant circuit 501 and the first balun 30 jointly participate in the impedance of the push-pull radio frequency power amplifying circuit conversion to achieve impedance matching, so that not only can the bandwidth performance of the fundamental wave impedance of the push-pull power amplifier circuit be improved, but also by adjusting the resonance frequency points of the first LC resonant circuit 401 and the second LC resonant circuit 501, the push-pull type
  • the RF power amplifier circuit changes with frequency, its impedance changes less, and the harmonic impedance is more convergent, so that the harmonic suppression performance is better
  • the harmonic impedance for example: second-order harmonic impedance
  • the first end of the second LC resonant circuit 501 is connected to The closer the position to the sixth pad on the primary coil is to the second end of the primary coil, the smaller the real part of the harmonic impedance (for example: second-order harmonic impedance) of the push-pull radio frequency power amplifier circuit , the closer to the short-circuit point of the push-pull radio frequency power amplifier circuit, the better the suppression effect on the harmonic signal (for example: second-order harmonic) of the push-pull power amplifier circuit.
  • the harmonic impedance for example: second-order harmonic impedance
  • the first end of the first LC resonant circuit 401 and the first end of the second LC resonant circuit 501 can be set to be connected to the fifth pad on the primary coil position and the position of the sixth pad.
  • the first end of the first LC resonant circuit 401 is connected to the position of the fifth pad on the primary coil and the first end of the second LC resonant circuit 501 is connected to the
  • the positions of the sixth welding pads on the primary coil may be distributed symmetrically or asymmetrically with the midpoint of the primary coil as the axis of symmetry.
  • the inductance equivalent to the lead S1 and the first LC resonant circuit 401 are used to form the first matching circuit
  • the inductance equivalent to the lead S2 and the second LC resonant circuit 501 are used to form the second matching circuit
  • the first matching network composed of the lead wire S1 and the first LC resonant circuit 401 and the second matching network composed of the lead wire S2 and the second LC resonant circuit 501 and the first balun 30 jointly participate in the impedance of the push-pull radio frequency power amplifying circuit Transformation to achieve impedance matching, to solve the problem of increased transmission loss caused by lead wires during radio frequency signal transmission, and also by adjusting the first end of the first LC resonant circuit 401 and the The first end of the second LC resonant circuit is connected to the position of the fifth pad and the sixth pad on the primary coil to change the harmonic impedance of the push-pull radio frequency power amplifier circuit (for example: second order Harmonic impedance), so as to improve the bandwidth
  • the present application also provides a push-pull radio frequency power amplifier, a substrate 100, a first balun 30 arranged on the substrate; a push-pull power amplifier chip 200 arranged on the substrate, the push-pull
  • the power amplifier chip 200 includes a first differential amplifier transistor 10, a second differential amplifier transistor 20, a third capacitor C11 and a fourth capacitor C21, the first end of the third capacitor C11 is connected to the push-pull power amplifier chip 200
  • the third pad c, the second end of the third capacitor C11 is grounded, the third pad c is bonded to the primary coil through a wire, and is located at the first end of the primary coil and the primary
  • the fifth pad between the midpoints of the coil, the first end of the fourth capacitor C21 is connected to the fourth pad d of the push-pull power amplifier chip 200, and the second end of the fourth capacitor C21 is grounded , the fourth pad d is wire-bonded on the primary coil, and the sixth pad is located between the second end of the primary coil and the midpoint of the
  • the output terminal of the first differential amplifier transistor 10 is connected to the first terminal of the primary coil of the first balun 30, and the output terminal of the second differential amplifier transistor 20 is connected to the primary coil of the first balun 30 the second end of .
  • the output terminal of the first differential amplifier transistor 10 is connected to the first pad a of the push-pull power amplifier chip 200, and the first pad a is bonded to The first end of the primary coil of the first balun 30, the output end of the second differential amplifier transistor 20 is connected to the second pad b of the push-pull power amplifier chip 200, and the second pad b passes through A wire is bonded to the second end of the primary coil of the first balun 30 .
  • the output end of the first differential amplifier transistor 10 is connected to the first end of the primary coil of the first balun 30 through the first inductor L1, and the second differential amplifier transistor The output terminal 20 is connected to the second terminal of the primary coil of the first balun 30 through the second inductor L2.
  • the present application sets the third pad c and the fourth pad d on the push-pull power amplifier chip 200, and the third pad c
  • One end of the capacitor C11 is connected to the third pad c of the push-pull power amplifier chip 200
  • the third pad c is bonded to the primary coil through the wire S3, and is located at the first end of the primary coil and the fifth pad between the midpoint of the primary coil.
  • the third pad c can be bonded to the primary coil through one or more wires, and the fifth pad located between the first end of the primary coil and the midpoint of the primary coil .
  • the fourth pad d is bonded to the primary coil through the wire S4, and is located in the a sixth pad between the second end of the primary coil and the midpoint of said primary coil; wherein.
  • the fourth pad d may be bonded to the primary coil via one or more wires, and is located between the second end of the primary coil and the sixth pad between the midpoint of the primary coil.
  • the present application forms the first LC resonant circuit through the inductance equivalent to the lead S3 and the third capacitor C11, and forms the second LC resonant circuit using the inductance equivalent to the lead S4 and the fourth capacitor C21, thereby reducing radio frequency
  • the area of the push-pull power amplifier chip forms the first LC resonant circuit through the inductance equivalent to the lead S3 and the third capacitor C11, and forms the second LC resonant circuit using the inductance equivalent to the lead S4 and the fourth capacitor C21, thereby reducing radio frequency The area of the push-pull power amplifier chip.
  • the first LC resonant circuit is formed by using the inductance equivalent to the lead S3 and the third capacitor C11
  • the second LC resonant circuit is formed by using the inductance equivalent to the lead S4 and the fourth capacitor C21, and by using the first
  • the inductance L1 and the first LC resonant circuit form a first matching network
  • the second inductance L2 and the second LC resonant circuit form a second matching network
  • the first matching network, the second matching network and the first balun 30 Participate in the impedance conversion of the push-pull RF power amplifier circuit to achieve impedance matching, which can not only improve the bandwidth performance of the fundamental wave impedance of the push-pull power amplifier circuit, but also adjust the equivalent inductance value of the lead S3 or the third capacitor
  • the capacitance value of C11 is used to adjust the resonant frequency point of the first LC resonant circuit
  • the resonant frequency point of the second LC resonant circuit 501 is
  • the present application also provides a push-pull radio frequency power amplifier, including: a substrate 100, a first balun 30 disposed on the substrate 100; a push-pull power amplifier chip 200 disposed on the substrate 100,
  • the push-pull power amplifier chip 200 includes a first differential amplifier transistor 10, a second differential amplifier transistor 20, a third capacitor C11 and a fourth capacitor C21, the output terminal of the first differential amplifier transistor 10 is connected to the first The first terminal of the primary coil of the balun 30 and the output terminal of the second differential amplifier transistor 20 are connected to the second terminal of the primary coil of the first balun 30 .
  • the output terminal of the first differential amplifier transistor 10 is connected to the first pad a of the push-pull power amplifier chip 200, and the first pad a is bonded to The first end of the primary coil of the first balun 30, the output end of the second differential amplifier transistor 20 is connected to the second pad b of the push-pull power amplifier chip 200, and the second pad b The second end of the primary coil of the first balun 30 is wire bonded.
  • the output end of the first differential amplifier transistor 10 is connected to the first end of the primary coil of the first balun 30 through the first inductor L1, and the second differential amplifier transistor The output terminal 20 is connected to the second terminal of the primary coil of the first balun 30 through the second inductor L2.
  • the first end of the third capacitor C11 is connected to the third pad c of the push-pull power amplifier chip 200, the second end of the third capacitor C11 is grounded, and the third pad c is bonded by a wire.
  • the first end of the fourth capacitor C21 is connected to the push-pull power
  • the fourth pad d of the amplifier chip 200, the second end of the fourth capacitor C21 is grounded, the fourth pad d is bonded to the primary coil by wire bonding, and is located at the second end of the primary coil and the sixth pad between the midpoint of the primary coil.
  • wires can be used bonded connections.
  • wires can be used bonded connections.
  • the first pad a of 200 is bonded to the first end of the primary coil of the first balun 30 through the wire S1.
  • the first pad a may be bonded to the first end of the primary coil of the first balun 30 through one or more wires.
  • the second pad b is bonded to the first balun 30 through the wire S2 The second end of the primary coil; wherein, the second pad b can be bonded to the second end of the primary coil of the first balun 30 by one or more wires; thereby realizing the Electrical connections between the first differential amplifier transistor 10 and the second differential amplifier transistor 20 on the chip and the first balun 30 provided on the substrate.
  • the present application provides the third pad c and the fourth pad d on the push-pull power amplifier chip 200, and the One end of the third capacitor C11 is connected to the third pad c of the push-pull power amplifier chip 200, the third pad c is bonded to the primary coil through the wire S3, and is located on the primary coil The fifth pad between the first end and the midpoint of the primary coil.
  • the third pad c can be bonded to the primary coil through one or more wires, and the fifth pad located between the first end of the primary coil and the midpoint of the primary coil .
  • the fourth pad d is bonded to the primary coil through the wire S4, and is located in the The sixth pad between the second end of the primary coil and the midpoint of the primary coil; wherein, the fourth pad d can be bonded to the primary coil by one or more wires, and is located at the The sixth pad between the second end of the primary coil and the midpoint of the primary coil.
  • the inductance equivalent to the lead S3 and the third capacitor C11 form the first LC resonant circuit
  • the inductance equivalent to the lead S4 and the fourth capacitor C21 form the second LC resonant circuit, thereby reducing the radio frequency push-pull The area of the power amplifier chip.
  • the first LC resonant circuit is formed by using the inductance equivalent to the lead S3 and the third capacitor C11
  • the second LC resonant circuit is formed by using the inductance equivalent to the lead S4 and the fourth capacitor C21, and by using the lead S1
  • the equivalent inductance and the first LC resonant circuit form a first matching network
  • the equivalent inductance of the lead S1 and the second LC resonant circuit form a second matching network
  • the first matching network, the second matching network and the first balun 30 jointly participate in the impedance conversion of the push-pull radio frequency power amplifier circuit to achieve impedance matching, thereby not only improving the bandwidth performance of the fundamental wave impedance of the push-pull power amplifier circuit, It is also possible to adjust the resonance frequency point of the first LC resonant circuit by adjusting the equivalent inductance value of the lead wire S3 or the capacitance value of the third capacitor C11, and by adjusting the equivalent inductance value of the lead wire S4 or the capacitance of the fourth capacitor C211 value to adjust the resonant frequency point of the second LC resonant circuit 501, so that the push-pull radio frequency power amplifying circuit changes with the frequency, its impedance change is small, and the harmonic impedance is more convergent, so that within a wider frequency band, the harmonic The suppression performance is better; in turn, the push-pull radio frequency power amplifier circuit can support a larger bandwidth, and it also solves the problem of increased transmission loss caused by
  • the push-pull power amplifier chip further includes a first capacitor C1 connected in series between the output terminal of the first differential amplifier transistor and the output terminal of the second differential amplifier transistor.
  • one end of the first capacitor C1 is coupled to the output end of the first differential amplifier transistor 10 , and the other end is coupled to the output end of the second differential amplifier transistor 20 .
  • the first matching network composed of the third capacitor C11, the lead S1 and the lead S3 and the fourth capacitor C21 lead S2 and the lead S4
  • the bandwidth performance of the harmonic wave impedance of the push-pull power amplifier circuit may not be ideal.
  • the present application By connecting a first capacitor C1 in series between the output terminal of the first differential amplifier transistor 10 and the output terminal of the second differential amplifier transistor 20, at this time, the first capacitor C1, the first matching network and the second matching
  • the network and the first balun 30 work together to participate in the impedance matching of the push-pull radio frequency power amplifier circuit, so as to ensure that the bandwidth performance of the fundamental wave impedance of the push-pull radio frequency power amplifier circuit is not affected, and the push-pull radio frequency power amplifier circuit can also be pushed
  • the pull-type RF power amplifier circuit changes with frequency, and its impedance changes less, and the harmonic impedance is more convergent, so as to achieve better harmonic suppression performance in a wider frequency range.
  • the primary coil includes a first primary coil segment and a second primary coil segment; the first pad is bonded to the second end of the first primary coil segment by wire bonding, and the second The pad is bonded to the second end of the second primary coil segment by wire; the third pad is bonded to the fifth pad of the first primary coil segment by wire, and the fourth pad Bonded to the sixth pad of the second primary coil segment by wire bonding.
  • the push-pull radio frequency power amplifier further includes a feed power terminal VCC disposed on the substrate and a second capacitor C2 disposed on the substrate;
  • the feed power supply terminal VCC is coupled to the midpoint of the primary coil, one end of the second capacitor C2 is connected to the feed power supply terminal VCC, and the other end is grounded.
  • the feed power terminal VCC is a port connected to the feed power.
  • the feed signal provided by the feed power supply is transmitted to the output end of the first differential amplifier transistor 10 and the output end of the second differential amplifier transistor 20 through the feed power supply terminal VCC to ensure that the first differential amplifier transistor 10 and the second differential amplifier transistor 20 works fine.
  • the feed power supply terminal VCC is arranged on the substrate, and the feed power supply terminal VCC is coupled to the midpoint of the primary coil to realize the power supply for the first coil.
  • a differential amplifier transistor 10 and a second differential amplifier transistor 20 are fed.
  • the present application connects a decoupling capacitor C1 and connects the decoupling capacitor C12 One end is connected to the feed power terminal VCC, and the other end is grounded.
  • the existing ones that provide feed signals to the first differential amplifier transistor 10 and the second differential amplifier transistor 20 through different feed power supply terminals VCC and respectively connect two different decoupling capacitors C12 to ensure the feed signal stability.
  • This application uses a feed power supply terminal VCC to provide a feed signal to the first differential amplifier transistor 10 and the second differential amplifier transistor 20, and connect the decoupling capacitor C12 to the feed power supply terminal VCC to realize The stability of the feed signal provided to the first differential amplifier transistor 10 and the second differential amplifier transistor 20 can be ensured by a coupling capacitor C12, thereby ensuring that the overall performance of the push-pull radio frequency power amplifier module remains unchanged , and further reduces the occupied area of the push-pull radio frequency power amplifier module.
  • the present application also provides a radio frequency front-end module, including the push-pull radio frequency power amplifier circuit in any of the above embodiments, or including the push-pull radio frequency power amplifier in any of the above embodiments.
  • a radio frequency front-end module including the push-pull radio frequency power amplifier circuit in any of the above embodiments, or including the push-pull radio frequency power amplifier in any of the above embodiments.
  • the specific implementation manner and principle of the push-pull radio frequency power amplifying circuit are described in the above embodiments, and redundant descriptions are not repeated here.
  • the specific implementation manner and principle of the push-pull radio frequency power amplifier are described in the above embodiments, and redundant descriptions are not repeated here.
  • the above-mentioned push-pull power amplifier chip may be a chip manufactured by using a GaAs or GaN process.
  • connection methods using wire bonding in the embodiment of the present application, one or more wire bonding methods may be used for connection, and details are not repeated here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Amplifiers (AREA)

Abstract

本申请公开了一种推挽式射频功率放大电路,将第一LC谐振电路的第一端连接在所述初级线圈上,且位于初级线圈的第一端和初级线圈的中点之间,第二端接地;以及将第二LC谐振电路的第一端连接在所述初级线圈上,且位于初级线圈的第二端和初级线圈的中点之间,第二端接地;从而达到提高推挽式射频功率放大电路的功率回退效率和饱和功率的目的,进而实现提高推挽式射频功率放大电路的线性度。

Description

推挽式射频功率放大电路及推挽式射频功率放大器
本申请以2021年09月30日提交的申请号为202111160504.6,名称为“一种推挽式射频功率放大电路、推挽式射频功率放大器及射频前端模组”的中国发明申请为基础,要求其优先权。
技术领域
本申请涉及射频技术领域,尤其涉及一种推挽式射频功率放大电路、推挽式射频功率放大器及射频前端模组。
背景技术
移动通信技术已经演进至第五代,5G NR(5th-Generation New Radio)作为基于正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)的全新空口设计的全球性5G标准,也是下一代非常重要的蜂窝移动技术基础。由于电磁波在空气中的传输衰减随频率增大而明显增高,所以一方面通信设备需要提供更大的发射功率以保证信号传输距离,另一方面,更高的数据传输速率要求更大的信号带宽、更复杂的调制方式,这些都对射频功率放大器提出了越来越高的技术要求,包括在高频段提供更高的线性度等等。因此,实现功率放大器的高线性度是一个重要且有价值的工程问题。
申请内容
本申请实施例提供一种推挽式射频功率放大电路、推挽式射频功率放大器及射频前端模组,解决推挽式射频功率放大电路的线性度较低问题。
一种推挽式射频功率放大电路,包括第一差分放大晶体管、第二差分放大晶体管、第一巴伦、第一LC谐振电路和第二LC谐振电路;
所述第一差分放大晶体管的输出端耦合至所述第一巴伦的初级线圈的第一端,所述第二差分放大晶体管耦合至所述第一巴伦的初级线圈的第二端;
所述第一LC谐振电路的第一端连接在所述初级线圈上,且位于所述初级线圈的第一端和所述初级线圈的中点之间,第二端接地;
所述第二LC谐振电路的第一端连接在所述初级线圈上,且位于所述初级线圈的第二端和所述初级线圈的中点之间,第二端接地。
进一步地,还包括第一电感和第二电感;
所述第一电感串联在所述第一差分放大晶体管的输出端和所述第一巴伦的初级线圈的第一端之间;
所述第二电感串联在所述第二差分放大晶体管的输出端和所述第一巴伦的初级线圈的第二端之间。
进一步地,所述第一LC谐振电路的第一端连接在所述初级线圈上,且连接在靠近所述初级线圈的第一端的位置,所述第二LC谐振电路的第一端连接在所述初级线圈上,且连接在靠近所述初级线圈的第二端的位置。
进一步地,所述第一LC谐振电路的第一端连接在所述初级线圈上,且连接在靠近所述初级线圈中点的位置,所述第二LC谐振电路的第一端连接在所述初级线圈上,且连接在靠近所述初级线圈中点的位置。
进一步地,所述第一LC谐振电路的第一端连接在所述初级线圈上,且位于所述初级线圈上的第一位置点,与所述第二LC谐振电路的第一端连接在所述初级线圈上,且位于所述初级线圈上的第二位置点,所述第一位置点和所述第二位置点以一虚拟直线为对称轴呈对称分布,其中,所述虚拟直线穿过所述初级线圈的中点且垂直平分所述第一位置点和所述第二位置点之间的虚拟连接线段。
进一步地,所述第一LC谐振电路的第一端连接至所述初级线圈的中点上,所述第二LC谐振电路 的第一端连接至所述初级线圈的中点上。
进一步地,所述第一巴伦的初级线圈包括串联连接的第一初级线圈段和第二初级线圈段,所述第一LC谐振电路的第一端连接至所述第一初级线圈段上,所述第二LC谐振电路的第一端连接至所述第二初级线圈段上。
进一步地,还包括第一电容,所述第一电容串联在所述第一差分放大晶体管的输出端和所述第二差分放大晶体管的输出端之间。
进一步地,还包括第二电容,所述第二电容的一端连接至所述第一初级线圈段和所述第二初级线圈段之间,另一端接地。
进一步地,所述第一LC谐振电路和所述第二LC谐振电路被配置为谐振在二阶谐波频率点。
进一步地,所述第一差分放大晶体管为BJT管,包括基极、集电极和发射极,所述第一差分放大晶体管的基极接收输入的第一射频输入信号,所述第一差分放大晶体管的集电极耦合至所述第一巴伦的初级线圈的第一端,所述第一差分放大晶体管的发射极接地;
所述第二差分放大晶体管为BJT管,包括基极、集电极和发射极,所述第二差分放大晶体管的基极接收输入的第二射频输入信号,所述第二差分放大晶体管的集电极耦合至所述第一巴伦的初级线圈的第二端,所述第二差分放大晶体管的发射极接地。
进一步地,所述第一巴伦的次级线圈的第一端输出放大的第一射频输出信号,次级线圈的第二端输出放大的第二射频输出信号;或者,所述第一巴伦的次级线圈的第一端输出放大的射频输出信号,次级线圈的第二端接地。
本申请还提供一种推挽式射频功率放大器,包括:基板、设置在基板上的第一巴伦,设置在基板上的推挽功率放大器芯片,所述推挽功率放大器芯片包括第一差分放大晶体管、第二差分放大晶体管,所述第一差分放大晶体管的输出端连接至所述第一巴伦的初级线圈的第一端,所述第二差分放大晶体管输出端连接至所述第一巴伦的初级线圈的第二端;
第一LC谐振电路,所述第一LC谐振电路的第一端连接在所述初级线圈上,且位于所述初级线圈的第一端和所述初级线圈的中点之间,第二端接地;
第二LC谐振电路,所述第二LC谐振电路的第一端连接在所述初级线圈上,且位于所述所述初级线圈的第二端和所述初级线圈的中点之间,第二端接地。
进一步地,还包括设置在所述初级线圈的第一端和所述初级线圈的中点之间的第五焊盘,和设置在所述初级线圈的第二端和所述初级线圈的中点之间的第六焊盘;所述第一LC谐振电路的第一端与所述第五焊盘连接,第二端接地,所述第二LC谐振电路的第一端与所述第六焊盘连接,第二端接地。
进一步地,所述第一差分放大晶体管的输出端连接至所述推挽功率放大器芯片的第一焊盘,所述第一焊盘通过引线键合至所述第一巴伦的初级线圈的第一端;所述第二差分放大晶体管输出端连接至所述推挽功率放大器芯片的第二焊盘,所述第二焊盘通过引线键合至所述第一巴伦的初级线圈的第二端。
进一步地,还包括第一电感和第二电感,所述第一差分放大晶体管的输出端通过所述第一电感连接至所述第一巴伦的初级线圈的第一端,所述第二差分放大晶体管输出端通过所述第二电感连接至所述第一巴伦的初级线圈的第二端。
本申请还提供一种推挽式射频功率放大器,包括:基板、设置在基板上的第一巴伦;设置在基板上的推挽功率放大器芯片,所述推挽功率放大器芯片包括第一差分放大晶体管、第二差分放大晶体管、第三电容和第四电容,
所述第一差分放大晶体管的输出端连接至所述第一巴伦的初级线圈的第一端,所述第二差分放大晶体管输出端连接至所述第一巴伦的初级线圈的第二端;
所述第三电容的第一端连接至所述推挽功率放大器芯片的第三焊盘,所述第三电容的第二端接地,所述第三焊盘通过引线键合在所述初级线圈上,且位于所述初级线圈的第一端和所述初级线圈的中点之间的第五焊盘,所述第四电容的第一端连接至所述推挽功率放大器芯片的第四焊盘,所述第四电容的第二端接地,所述第四焊盘通过引线键合在所述初级线圈上,且位于所述初级线圈的第二端和所述初级线圈的中点之间的第六焊盘。
进一步地,所述第一差分放大晶体管的输出端连接至所述推挽功率放大器芯片的第一焊盘,所述第一焊盘通过引线键合至所述第一巴伦的初级线圈的第一端,所述第二差分放大晶体管输出端连接至所述推挽功率放大器芯片的第二焊盘,所述第二焊盘通过引线键合至所述第一巴伦的初级线圈的第二端。
进一步地,还包括第一电感和第二电感,所述第一差分放大晶体管的输出端通过所述第一电感连接至所述第一巴伦的初级线圈的第一端,所述第二差分放大晶体管输出端通过所述第二电感连接至所述第一巴伦的初级线圈的第二端。
进一步地,所述推挽功率放大器芯片还包括串联在所述第一差分放大晶体管的输出端和所述第二差分放大晶体管的输出端之间的第一电容。
进一步地,所述初级线圈包括第一初级线圈段和第二初级线圈段;
所述第一焊盘通过引线键合至所述第一初级线圈段的第二端,所述第二焊盘通过引线键合至所述第二初级线圈段的第二端;
所述第三焊盘通过引线键合至所述第一初级线圈段上的第五焊盘,所述第四焊盘通过引线键合至所述第二初级线圈段上的第六焊盘。
进一步地,还包括设置在所述基板上的馈电电源端以及设置在所述基板上的第二电容;所述馈电电源端耦合至所述初级线圈的中点上,所述第二电容的一端连接至所述馈电电源端,另一端接地。
本申请还提供一种射频前端模组,包括上述的推挽式射频功率放大电路,或者,包括上述的推挽式射频功率放大器。
本申请提供一种推挽式射频功率放大电路,包括第一差分放大晶体管、第二差分放大晶体管、第一巴伦、第一LC谐振电路和第二LC谐振电路;所述第一差分放大晶体管的输出端耦合至所述第一巴伦的初级线圈的第一端,所述第二差分放大晶体管的输出端耦合至所述第一巴伦的初级线圈的第二端;所述第一LC谐振电路的第一端连接在所述初级线圈上,且位于所述初级线圈的第一端和所述初级线圈的中点之间,第二端接地;所述第二LC谐振电路的第一端连接在所述初级线圈上,且位于所述初级线圈的第二端和所述初级线圈的中点之间,第二端接地。本申请通过将所述第一LC谐振电路的第一端连接在所述初级线圈上,且位于所述初级线圈的第一端和所述初级线圈的中点之间,第二端接地;以及将所述第二LC谐振电路的第一端连接在所述初级线圈上,且位于所述初级线圈的第二端和所述初级线圈的中点之间,第二端接地;从而达到提高推挽式射频功率放大电路的功率回退效率和饱和功率的目的,进而实现提高推挽式射频功率放大电路的线性度。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本申请一实施例中推挽式射频功率放大电路的一电路示意图;
图2是本申请一实施例中推挽式射频功率放大电路的另一电路示意图;
图3是本申请一实施例中推挽式射频功率放大电路的另一电路示意图;
图4是本申请一实施例中推挽式射频功率放大电路的另一电路示意图;
图5是本申请一实施例中推挽式射频功率放大电路的另一电路示意图;
图6是本申请一实施例中推挽式射频功率放大电路的另一电路示意图;
图7是本申请一实施例中推挽式射频功率放大器的另一电路示意图;
图8是本申请一实施例中推挽式射频功率放大器的另一电路示意图;
图9是本申请一实施例中推挽式射频功率放大器的另一电路示意图;
图10是本申请一实施例中推挽式射频功率放大器的另一电路示意图;
图11是本申请一实施例中推挽式射频功率放大器的另一电路示意图;
图12是本申请一实施例中推挽式射频功率放大器的另一电路示意图;
图13是本申请一实施例中推挽式射频功率放大器的另一电路示意图。
图中:10、第一差分放大晶体管;20、第二差分放大晶体管;30、第一巴伦;401、第一LC谐振电路;501、第二LC谐振电路;L1、第一电感;L2、第二电感;C1、第一电容;C2、第二电容;C11、第三电容;C21、第四电容;C5、第五电容;L11、第三电感;L21、第四电感;100、基板;200、推挽功率放大器芯片;a、第一焊盘;b、第二焊盘;c、第三焊盘;d、第四焊盘;e、第五焊盘;f、第六焊盘。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
应当理解的是,本申请能够以不同形式实施,而不应当解释为局限于这里提出的实施例。相反地,提供这些实施例将使公开彻底和完全,并且将本申请的范围完全地传递给本领域技术人员。在附图中,为了清楚,层和区的尺寸以及相对尺寸可能被夸大自始至终相同附图标记表示相同的元件。
应当明白,当元件或层被称为“在…上”、“与…相邻”、“连接到”或“耦合到”其它元件或层时,其可以直接地在其它元件或层上、与之相邻、连接或耦合到其它元件或层,或者可以存在居间的元件或层。相反,当元件被称为“直接在…上”、“与…直接相邻”、“直接连接到”或“直接耦合到”其它元件或层时,则不存在居间的元件或层。应当明白,尽管可使用术语第一、第二、第三等描述各种元件、部件、区、层和/或部分,这些元件、部件、区、层和/或部分不应当被这些术语限制。这些术语仅仅用来区分一个元件、部件、区、层或部分与另一个元件、部件、区、层或部分。因此,在不脱离本申请教导之下,下面讨论的第一元件、部件、区、层或部分可表示为第二元件、部件、区、层或部分。
空间关系术语例如“在…下”、“在…下面”、“下面的”、“在…之下”、“在…之上”、“上面的”等,在这里可为了方便描述而被使用从而描述图中所示的一个元件或特征与其它元件或特征的关系。应当明白,除了图中所示的取向以外,空间关系术语意图还包括使用和操作中的器件的不同取向。例如,如果附图中的器件翻转,然后,描述为“在其它元件下面”或“在其之下”或“在其下”元件或特征将取向为在其它元件或特征“上”。因此,示例性术语“在…下面”和“在…下”可包括上和下两个取向。器件可以另外地取向(旋转90度或其它取向)并且在此使用的空间描述语相应地被解释。
在此使用的术语的目的仅在于描述具体实施例并且不作为本申请的限制。在此使用时,单数形式的“一”、“一个”和“/该”也意图包括复数形式,除非上下文清楚指出另外的方式。还应明白术语“组成”和/或“包括”,当在该说明书中使用时,确定特征、整数、步骤、操作、元件和/或部件的存在,但不排除一个或更多其它的特征、整数、步骤、操作、元件、部件和/或组的存在或添加。在此使用时,术语“和/或”包括相关所列项目的任何及所有组合。
为了彻底理解本申请,将在下列的描述中提出详细的结构及步骤,以便阐释本申请提出的技术方案。本申请的较佳实施例详细描述如下,然而除了这些详细描述外,本申请还可以具有其他实施方式。
本实施例提供一种推挽式射频功率放大电路,如图1所示,包括第一差分放大晶体管10、第二差分放大晶体管20、第一巴伦30、第一LC谐振电路401和第二LC谐振电路501。
具体地,所述第一差分放大晶体管10的输出端耦合至所述第一巴伦30的初级线圈的第一端,所述第二差分放大晶体管20的输出端50耦合至所述第一巴伦30的初级线圈的第二端。
其中,第一差分放大晶体管10和第二差分放大晶体管20可以为BJT晶体管,也可以为场效应晶体管(FET)。可选地,第一差分放大晶体管10包括至少一个BJT晶体管(例如,HBT晶体管)或至少一个场效应晶体管。示例性地,第一差分放大晶体管10可以为多个BJT晶体管并联而成。第二差分放大晶体管20包括至少一个BJT晶体管(例如,HBT晶体管)或至少一个场效应晶体管。示例性地,第二差分放大晶体管20可以为多个BJT晶体管并联而成。
在一具体实施例中,第一差分放大晶体管10被配置为放大第一射频输入信号输出第一射频放大信 号,第一射频放大信号通过所述第一匹配网络40耦合至第一巴伦30的初级线圈的第一端,第二差分放大晶体管20被配置为放大第二射频输入信号输出第二射频放大信号,第二射频放大信号通过所述第二匹配网络50耦合至第一巴伦30的初级线圈的第二端。其中,第一射频输入信号可以为对应的前级放大电路放大之后输出的射频信号,也可以为将不平衡的输入射频信号进行转换后得到的其中一个平衡的射频信号。同理,第二射频输入信号也可以为对应的前级放大电路放大之后输出的射频信号,也可以为将不平衡的输入射频信号进行转换后得到的其中一个平衡的射频信号。
可以理解地,第一差分放大晶体管10和第二差分放大晶体管20为推挽式射频功率放大电路中的任一放大级,该放大级可以为驱动级、中间级或者输出级中的任一放大级。
在一具体实施例中,推挽式射频功率放大电路还包括前级转换电路(未示出),例如:前级转换电路可以为前级转换巴伦。前级转换巴伦用于将不平衡的射频输入信号转换为平衡的第一射频输入信号和第二射频输入信号,并将第一射频输入信号输入至第一差分放大晶体管10的输入端,以及将第二射频输入信号输入至第二差分放大晶体管20的输入端。
所述第一LC谐振电路401的第一端连接在所述初级线圈上,且位于所述初级线圈的第一端和所述初级线圈的中点之间,第二端接地。其中,第一LC谐振电路401为由第三电容C11和第三电感L11串联组成的谐振电路。在本实施例中,第一LC谐振电路401的第一端可以连接在初级线圈上,且位于所述初级线圈的第一端和所述初级线圈的中点之间的任意一个位置上。需要说明的是,第一LC谐振电路401的第一端连接在所述初级线圈上的位置不包括所述初级线圈的第一端,即本申请中的第一LC谐振电路401连接在所述初级线圈上的位置主要是在线圈本身上,而非在所述初级线圈的第一端上。其中,所述初级线圈的中点位于初级线圈的中心位置。位于所述初级线圈的中点两侧的初级线圈段的长度相同。进一步地,所述初级线圈的中点为所述初级线圈的中心抽头接入在初级线圈上的位置。
在本实施例中,推挽式射频功率放大电路包括第一差分放大晶体管、第二差分放大晶体管、第一巴伦、第一LC谐振电路和第二LC谐振电路;所述第一差分放大晶体管的输出端耦合至所述第一巴伦的初级线圈的第一端,所述第二差分放大晶体管的输出端耦合至所述第一巴伦的初级线圈的第二端;所述第一LC谐振电路的第一端连接在所述初级线圈上,且位于所述初级线圈的第一端和所述初级线圈的中点之间,第二端接地;所述第二LC谐振电路的第一端连接在所述初级线圈上,且位于所述初级线圈的第二端和所述初级线圈的中点之间,第二端接地。本申请通过将所述第一LC谐振电路的第一端连接在所述初级线圈上,且位于所述初级线圈的第一端和所述初级线圈的中点之间,第二端接地;以及将所述第二LC谐振电路的第一端连接在所述初级线圈上,且位于所述初级线圈的第二端和所述初级线圈的中点之间,第二端接地;从而达到提高推挽式射频功率放大电路的功率回退效率和饱和功率的目的,进而实现提高推挽式射频功率放大电路的线性度。
在一具体实施例中,若第一LC谐振电路401的第一端连接至所述初级线圈上的位置和第二LC谐振电路501的第一端连接至所述初级线圈上的位置越靠近所述初级线圈的中点处,推挽式射频功率放大电路的谐波阻抗(例如:二阶谐波阻抗)的实部就越大,推挽功率放大电路的功率回退效率和饱和功率就越高。若第一LC谐振电路401的第一端连接至所述初级线圈上的位置越靠近所述初级线圈的第一端,以及第二LC谐振电路501的第一端连接至所述初级线圈上的位置越靠近所述初级线圈的第二端,推挽式射频功率放大电路的谐波阻抗(例如:二阶谐波阻抗)的实部就越小,越接近推挽式射频功率放大电路的短路点,从而对推挽功率放大电路的谐波信号(例如:二阶谐波)的抑制效果就越好。在实际应用过程中,可根据对电路性能的实际需求,设定第一LC谐振电路401的第一端连接在所述初级线圈上的位置,以及第二LC谐振电路501的第一端连接至所述初级线圈上的位置。
所述第一LC谐振电路401的第一端连接在初级线圈上,且位于所述初级线圈的第一端和所述初级线圈的中点之间,第二端接地。其中,第一LC谐振电路401为由第三电容C21和第三电感L11串联组成的谐振电路。在本实施例中,第一LC谐振电路401的第一端可以连接至所述初级线圈的第二端和所述初级线圈的中点之间的任意一个位置上。需要说明的是,第一LC谐振电路401的第一端连接在所述初级线圈上的位置不包括所述初级线圈的第一端,即本申请中的第一LC谐振电路401连接在所述初级线圈上的位置主要是在线圈本身上,而非在所述初级线圈的第二端上。
所述第二LC谐振电路501的第一端连接在初级线圈上,且位于所述初级线圈的第二端和所述初级线圈的中点之间,第二端接地。其中,第二LC谐振电路501为由第四电容C21和第四电感L21串联组成的谐振电路。在本实施例中,第二LC谐振电路501的第一端可以连接至所述初级线圈的第二端和所述初级线圈的中点之间的任意一个位置上。需要说明的是,第二LC谐振电路501的第一端连接在所述初级线圈上的位置不包括所述初级线圈的第二端,即本申请中的第二LC谐振电路501连接在所述初级线圈上的位置主要是在线圈本身上,而非在所述初级线圈的第二端上。
需要说明的是,在一具体实施例中,第一LC谐振电路401的第一端连接至所述初级线圈上的第一位置点和第二LC谐振电路501的第一端连接至所述初级线圈上的第二位置点可以以一虚拟直线为对称轴呈对称分布,其中,所述虚拟直线穿过所述初级线圈的中点且垂直平分所述第一位置点和所述第二位置点之间的虚拟连接线段。
在一具体实施例中,若在推挽式射频功率放大电路中第一巴伦的前级电路(比如:第一差分放大晶体管和第二差分放大晶体管)处于平衡状态,则可以将所述第一LC谐振电路的第一端连接在所述初级线圈上,且位于所述初级线圈上的第一位置点,与所述第二LC谐振电路的第一端连接在所述初级线圈上,且位于所述初级线圈上的第二位置点,所述第一位置点和所述第二位置点以一虚拟直线为对称轴呈对称分布,其中,所述虚拟直线穿过所述初级线圈的中点且垂直平分所述第一位置点和所述第二位置点之间的虚拟连接线段,以实现第一巴伦在推挽式射频功率放大电路中的平衡设置,保证输入至第一巴伦的第一端的信号和第二端的信号之间的平衡;进而保证整个推挽式射频功率放大电路的平衡性。
在一具体实施例中,若在推挽式射频功率放大电路中第一巴伦的前级电路(比如:第一差分放大晶体管和第二差分放大晶体管)之间存在不平衡的现象,则可以通过将所述第一LC谐振电路401的第一端连接在所述初级线圈上,且位于所述初级线圈上的第一位置点,与所述第二LC谐振电路501的第一端连接在所述初级线圈上,且位于所述初级线圈上的第二位置点,所述第一位置点和所述第二位置点以一虚拟直线为对称轴呈对称分布,其中,所述虚拟直线穿过所述初级线圈的中点且垂直平分所述第一位置点和所述第二位置点之间的虚拟连接线段,以抵消前级电路所带来的不平衡问题,进而保证整个推挽式射频功率放大电路的平衡性。
作为一示例性地,若第一LC谐振电路和第二LC谐振电路被配置为谐振在二阶谐波频率点,则本实施例中的推挽式射频功率放大电路在第一LC谐振电路401和第二LC谐振电路501与第一巴伦30的共同作用下实现阻抗匹配,从而不但可以改善推挽功率放大电路的基波阻抗性能,还能进一步使得推挽式射频功率放大电路随频率变化,其二阶阻抗变化量较小,二阶谐波阻抗更收敛,从而实现在更宽频带范围内,二阶谐波抑制性能更好。需要说明的是,本实施例可通过调整第一LC谐振电路401和第二LC谐振电路501的谐振频率点,以进一步改善推挽式射频功率放大电路的带宽性能,而使得推挽式射频功率放大电路可支持更大的带宽。
参照图2所示,进一步地,还包括第一电感L1和第二电感L2。具体地,所述第一电感L1串联在所述第一差分放大晶体管10的输出端和所述第一巴伦30的初级线圈的第一端之间。第一电感L1的一端与所述第一差分放大晶体管10的输出端连接,另一端与所述第一巴伦30的初级线圈的第一端连接。所述第二电感L2串联在所述第二差分放大晶体管20的输出端和所述第一巴伦30的初级线圈的第二端之间。第二电感L2的一端与所述第二差分放大晶体管20的输出端连接,另一端与所述第一巴伦30的初级线圈的第二端连接。
作为一示例性地,若第一LC谐振电路和第二LC谐振电路被配置为谐振在二阶谐波频率点,则本实施例中的推挽式射频功率放大电路在由第一电感L1和第一LC谐振电路401组成的第一匹配网络和由第二电感L2和第二LC谐振电路501组成的第二匹配网络与第一巴伦30的共同作用下实现阻抗匹配,从而不但可以改善推挽功率放大电路的基波阻抗性能,还能进一步使得推挽式射频功率放大电路随频率变化,其二阶阻抗变化量较小,二阶谐波阻抗更收敛,从而实现在更宽频带范围内,二阶谐波抑制性能更好。需要说明的是,本实施例可通过调整第一LC谐振电路401和第二LC谐振电路501的谐振频率点,以进一步改善推挽式射频功率放大电路的带宽性能,而使得推挽式射频功率放大电路可支持更大的带宽。
本实施例通过在第一差分放大晶体管10的输出端和所述第一巴伦30的初级线圈的第一端之间接入第一电感L1,以及将所述第一LC谐振电路401的第一端连接在初级线圈上,且位于所述初级线圈的第一端和所述初级线圈的中点之间,第二端接地;和在第二差分放大晶体管10的输出端和所述第一巴伦30的初级线圈的第二端之间接入第二电感L2,以及将所述第二LC谐振电路的第一端连接在初级线圈上,且位于所述初级线圈的第二端和所述初级线圈的中点之间,第二端接地;由第一电感L1和第一LC谐振电路401组成的第一匹配网络和由第二电感L2和第二LC谐振电路501组成的第二匹配网络与第一巴伦30共同参与推挽式射频功率放大电路的阻抗转换,以实现阻抗匹配,从而不但可以改善推挽功率放大电路的基波阻抗性能,还能通过调整第一LC谐振电路401和第二LC谐振电路501的谐振频率点,从而使得射频推挽功率放大器芯片随频率变化,其阻抗变化量较小,谐波阻抗更收敛,从而实现在更宽频带范围内,谐波抑制性能更好。
在一具体实施例中,所述第一LC谐振电路的第一端连接在所述初级线圈上,且连接在靠近所述初级线圈的第一端的位置,所述第二LC谐振电路的第一端连接在所述初级线圈上,且连接在靠近所述初级线圈的第二端的位置。
本实施例中,通过将所述第一LC谐振电路的第一端连接在所述初级线圈上,且连接在靠近所述初级线圈的第一端的位置,所述第二LC谐振电路的第一端连接在所述初级线圈上,且连接在靠近所述初级线圈的第二端的位置;从而减小推挽式射频功率放大电路的谐波阻抗(例如:二阶谐波阻抗)的实部,使得接近推挽式射频功率放大电路的短路点,从而提高对推挽功率放大电路的谐波信号(例如:二阶谐波)的抑制效果。
在一具体实施例中,所述第一LC谐振电路的第一端连接在所述初级线圈上,且连接在靠近所述初级线圈中点的位置,所述第二LC谐振电路的第一端连接在所述初级线圈上,且连接在靠近所述初级线圈中点的位置。
本实施例中,通过将所述第一LC谐振电路的第一端连接在所述初级线圈上,且连接在靠近所述初级线圈中点的位置,所述第二LC谐振电路的第一端连接在所述初级线圈上,且连接在靠近所述初级线圈中点的位置;从而增大推挽式射频功率放大电路的谐波阻抗(例如:二阶谐波阻抗)的实部;以提高推挽功率放大电路的功率回退效率和饱和功率;进而提高推挽式射频功率放大电路的线性度。
本实施例通过在第一差分放大晶体管10的输出端和所述第一巴伦30的初级线圈的第一端之间接入第一电感L1,以及将所述第一LC谐振电路401的第一端连接在初级线圈上,且位于所述初级线圈的第一端和所述初级线圈的中点之间,第二端接地;和在第二差分放大晶体管10的输出端和所述第一巴伦30的初级线圈的第二端之间接入第二电感L2,以及将所述第二LC谐振电路的第一端连接在初级线圈上,且位于所述初级线圈的第二端和所述初级线圈的中点之间,第二端接地;由第一电感L1和第一LC谐振电路401组成的第一匹配网络和由第二电感L2和第二LC谐振电路501组成的第二匹配网络与第一巴伦30共同参与推挽式射频功率放大电路的阻抗转换,以实现阻抗匹配,从而不但可以改善推挽功率放大电路的基波阻抗性能,还能通过调整第一LC谐振电路401和第二LC谐振电路501的谐振频率点,从而使得射频推挽功率放大器芯片随频率变化,其阻抗变化量较小,谐波阻抗更收敛,从而实现在更宽频带范围内,谐波抑制性能更好;且还能通过调整所述第一LC谐振电路401的第一端和所述第二LC谐振电路的第一端连接在所述初级线圈上的位置,以改变推挽式射频功率放大电路的谐波阻抗(例如:二阶谐波阻抗)的实部大小,从而改善推挽式射频功率放大电路的谐波阻抗的带宽性能,或者提高推挽式射频功率放大电路的功率回退效率和饱和功率,进而提高推挽式射频功率放大电路的线性度。
在一具体实施例中,所述第一LC谐振电路401的第一端连接在所述初级线圈上,且位于所述初级线圈上的第一位置点,与所述第二LC谐振电路501的第一端连接在所述初级线圈上,且位于所述初级线圈上的第二位置点,所述第一位置点和所述第二位置点以一虚拟直线为对称轴呈对称分布,其中,所述虚拟直线穿过所述初级线圈的中点且垂直平分所述第一位置点和所述第二位置点之间的虚拟连接线段。
本实施例中,为了实现第一巴伦在推挽式射频功率放大电路中的平衡设置,保证输入至第一巴伦的第一端的信号和第二端的信号之间的平衡;所述第一LC谐振电路的第一端连接在所述初级线圈上,且 位于所述初级线圈上的第一位置点,与所述第二LC谐振电路的第一端连接在所述初级线圈上,且位于所述初级线圈上的第二位置点,所述第一位置点和所述第二位置点以一虚拟直线为对称轴呈对称分布,其中,所述虚拟直线穿过所述初级线圈的中点且垂直平分所述第一位置点和所述第二位置点之间的虚拟连接线段。
在一具体实施例中,所述第一LC谐振电路401的第一端连接至所述初级线圈的中点上,所述第二LC谐振电路401的第一端连接至所述初级线圈的中点上。
本实施例中,为了提高推挽功率放大电路的功率回退效率和饱和功率,可以将第一LC谐振电路401的第一端和所述第二LC谐振电路401的第一端均连接至所述初级线圈的中点上,此时推挽式射频功率放大电路的谐波阻抗(例如:二阶谐波阻抗)最大,推挽功率放大电路的功率回退效率和饱和功率最高;以满足推挽功率放大电路的高功率回退效率和高饱和功率的性能需求。
参照下图3所示,所述第一巴伦30的初级线圈包括串联连接的第一初级线圈段和第二初级线圈段,所述第一LC谐振电路401的第一端连接至所述第一初级线圈段上,所述第二LC谐振电路501的第一端连接至所述第二初级线圈段上。
其中,所述第一巴伦30的初级线圈的第一初级线圈段和第二初级线圈段为可以为分离式设置,第一初级线圈段和第二初级线圈段之间串联连接。或者,所述第一巴伦30的初级线圈的所述第一初级线圈段和第二初级线圈段也可以为非分离式设置,也即第一初级线圈段与第二初级线圈段本质上仍是一个完整的线圈,
具体地,所述第一差分放大晶体管10的输出端通过所述第一匹配网络40耦合至所述第一初级线圈段的第一端,所述第二差分放大晶体管的输出端通过所述第二匹配网络50耦合至所述第二初级线圈段的第二端。所述第一初级线圈段的第二端和所述第二初级线圈端的第一端相连。所述第一LC谐振电路401的第一端连接至所述第一初级线圈段上,所述第二LC谐振电路501的第一端连接至所述第一初级线圈段上。
在一具体实施例中,若第一LC谐振电路401的第一端连接至所述第一初级线圈段上的位置越靠近所述第一初级线圈段的第二端,推挽式射频功率放大电路的谐波阻抗(例如:二阶谐波阻抗)的实部就越大,推挽功率放大电路的功率回退效率和饱和功率就越高。若第一LC谐振电路401的第一端连接至所述第一初级线圈段上的位置越靠近所述第一初级线圈段的第一端,推挽式射频功率放大电路的谐波阻抗(例如:二阶谐波阻抗)的实部就越小,越接近推挽式射频功率放大电路的短路点,从而对推挽功率放大电路的谐波信号(例如:二阶谐波)的抑制效果就越好。在实际应用过程中,可根据对电路性能的实际需求,设定第一LC谐振电路401的第一端连接在所述第一初级线圈段上的位置。
同样地,若第二LC谐振电路501的第一端连接至所述第二初级线圈上的位置越靠近所述第二初级线圈的第一端,推挽式射频功率放大电路的谐波阻抗(例如:二阶谐波阻抗)的实部就越大;推挽功率放大电路的功率回退效率和饱和功率就越高。若第二LC谐振电路501的第一端连接至所述初级线圈上的位置越靠近所述第二初级线圈的第二端,推挽式射频功率放大电路的谐波阻抗(例如:二阶谐波阻抗)的实部就越小,越接近推挽式射频功率放大电路的短路点,从而对推挽功率放大电路的谐波信号(例如:二阶谐波)的抑制效果就越好。在实际应用过程中,可根据对电路性能的实际需求,设定第二LC谐振电路501的第一端连接在所述第二初级线圈上的位置。
需要说明的是,在一具体实施例中,第一LC谐振电路401的第一端连接至所述第一初级线圈上的位置和所述第二LC谐振电路501的第一端连接至所述第二初级线圈上的位置可以呈对称分布或者非呈对称分布。
进一步地,在一具体实施例中,第一初级线圈段和第二初级线圈段之间还可以通过匹配电容(图中未示中)连接。具体地,所述匹配电容的第一端与所述第一初级线圈段的第二端连接,所述匹配电容的第二端与所述第二线圈段的第一端连接;本申请通过将第一巴伦30的初级线圈改进为由第一初级线圈段与第二初级线圈段相互连接而成的结构,将匹配电容接入在第一初级线圈段与第二初级线圈段的连接处,所述第一差分放大晶体管的输出端通过所述第一匹配网络耦合至所述第一初级线圈段的第一端,所述第二差分放大晶体管20的输出端通过所述第二匹配网络50耦合至所述第二初级线圈段的第一端;匹 配电容、第一匹配网络40、第二匹配网络50和第一巴伦30共同参与推挽式射频功率放大电路的阻抗匹配,从而实现改善推挽功率放大电路的带宽性能,进而使得推挽式射频功率放大电路可支持更大的带宽,且由于匹配电容接入在第一初级线圈段与第二初级线圈段的连接处,而不需要在第一差分放大晶体管的输出端和第一巴伦的第一输入端之间,以及在第二差分放大晶体管的输出端和和第一巴伦的第二输入端之间分别接入电容;从而实现在改善推挽式射频功率放大电路的带宽性能的情况下,还能进一步减小了推挽式射频功率放大电路的占用面积。
在本实施例中,第一巴伦30可以设置在基板上,也可以与第一差分放大晶体管10和第二差分放大晶体管20集成在同一颗芯片上,还可以单独设置在独立的一颗芯片上(例如:第一差分放大晶体管10和第二差分放大晶体管20设置在第一芯片上,第一巴伦30设置在第二芯片上),可根据实际需求自定义设定。
参照下图4所示,在一具体实施例中,推挽式射频功率放大电路还包括串联在所述第一差分放大晶体管10的输出端和所述第二差分放大晶体管20的输出端之间的第一电容C1。即第一电容C1的一端耦合至第一差分放大晶体管10的输出端,另一端耦合至第二差分放大晶体管20的输出端。
在一具体实施例中,当推挽式射频功率放大电路工作在某一特定频段时,由第一电感L1和第一LC谐振电路401组成的第一匹配网络40和由第二电感L2和第二LC谐振电路501组成的第二匹配网络50与第一巴伦30在参与推挽式射频功率放大电路的阻抗匹配时,推挽功率放大电路的谐波波阻抗的带宽性能可能还不够理想。针对于此,本申请通过在所述第一差分放大晶体管10的输出端和所述第二差分放大晶体管20的输出端之间串联一个第一电容C1,此时,第一电容C1、第一匹配网络10和第二匹配网络20与与第一巴伦30共同作用参与推挽式射频功率放大电路的阻抗匹配,从而实现在保证推挽式射频功率放大电路的基波阻抗性能不受影响的同时,还能使得推挽式射频功率放大电路随频率变化,其阻抗变化量较小,谐波阻抗更收敛,从而实现在更宽频带范围内,谐波抑制性能更好。
参照下图5所示,在一具体实施例中,推挽式射频功率放大电路还包括第二电容C2,所述第二电容C2的一端耦合至所述第一初级线圈段和所述第二初级线圈段之间,另一端接地。
在本实施例中,通过将第二电容C2的一端耦合至所述第一初级线圈段和所述第二初级线圈段之间,另一端接地;从而在保证推挽式射频功率放大器芯片的带宽性能的同时,还能进一步提高对推挽式射频功率放大器芯片中偶次谐波的抑制度,以改善推挽式射频功率放大器芯片的偶次谐波阻抗。
在一具体实施例中,所述第一LC谐振电路和所述第二LC谐振电路被配置为谐振在二阶谐波频率点。
在一具体实施例中,由于二阶谐波阻抗对推挽式射频功率放大电路的整体性能影响最大,因此,本申请通过将第一LC谐振电路401和所述第二LC谐振电路谐振501在二阶谐波频率点;由第一电感L1和第一LC谐振电路401组成的第一匹配网络40和由第二电感L2和第二LC谐振电路501组成的第二匹配网络50与第一巴伦30共同参与推挽式射频功率放大电路的阻抗转换,以实现阻抗匹配,从而实现在保证推挽式射频功率放大电路的基波阻抗的带宽性能同时,还能使得推挽式射频功率放大电路随频率变化,其二阶阻抗变化量较小,二阶谐波阻抗更收敛,从而实现在更宽频带范围内,二阶谐波抑制性能更好,且还能通过调整所述第一LC谐振电路401的第一端和所述第二LC谐振电路的第一端连接在所述初级线圈上的位置,以改变推挽式射频功率放大电路的二阶谐波阻抗的实部大小,从而实现在改善推挽式射频功率放大电路的带宽性能的同时,进一步提高推挽式射频功率放大电路的功率回退效率和饱和功率。
参照下图6所示,所述第一差分放大晶体管10为BJT管,包括基极、集电极和发射极,所述第一差分放大晶体管10的基极接收输入的第一射频输入信号,所述第一差分放大晶体管10的集电极耦合至所述第一线圈段的第一端,所述第一差分放大晶体管10的发射极接地。
具体地,第一射频输入信号输入至第一差分放大晶体管10的基极,经过第一差分放大晶体管10进行放大处理后,从第一差分放大晶体管10的集电极输出第一射频放大信号至所述第一线圈段的第一端。
所述第二差分放大晶体管为BJT管,包括基极、集电极和发射极,所述第二差分放大晶体管的基极接收输入的第二射频输入信号,所述第二差分放大晶体管的集电极耦合至所述第一线圈段的第二端, 所述第二差分放大晶体管的发射极接地。
具体地,第二射频输入信号输入至第二差分放大晶体管20的基极,经过第二差分放大晶体管20进行放大处理后,从第二差分放大晶体管20的集电极输出第二射频放大信号至所述第二线圈段的第二端。
进一步地,第一巴伦30在接收到第一射频放大信号和第二射频放大信号之后,对该第一射频放大信号和第二射频放大信号进行转换处理,并将转换处理后的第一射频放大信号和第二射频放大信号输入至后级电路。
在一具体实施例中,所述第一巴伦30的次级线圈的第一端输出放大的第一射频输出信号,次级线圈的第二端输出放大的第二射频输出信号;或者,所述第一巴伦30的次级线圈的第一端输出放大的射频输出信号,次级线圈的第二端接地。
在一实际应用过程中,若第一巴伦30为输入级巴伦或者中间级巴伦,即第一巴伦30在接收到第一射频放大信号和第二射频放大信号之后,只对该第一射频放大信号和第二射频放大信号进行转换处理,而不需要进行信号合成,则第一巴伦30的次级线圈的第一端输出放大的第一射频输出信号至后级电路,次级线圈的第二端输出放大的第二射频输出信号至后级电路。
在一实际应用过程中,若第一巴伦30为输出级巴伦,即第一巴伦30在接收到第一射频放大信号和第二射频放大信号之后,对该第一射频放大信号和第二射频放大信号进行转换处理且进行信号合成,并通过次级线圈的第一端输出放大的射频输出信号至信号输出端;则所述第一巴伦30的次级线圈的第一端输出放大的射频输出信号,次级线圈的第二端接地。
参照下图7所示,本申请还提供一种推挽式射频功率放大器,包括基板100、设置在基板100上的第一巴伦30,设置在基板上的推挽功率放大器芯片200,所述推挽功率放大器芯片200包括第一差分放大晶体管10、第二差分放大晶体管20,所述第一差分放大晶体管10的输出端连接至所述第一巴伦30的初级线圈的第一端。所述第二差分放大晶体管20输出端连接至所述第一巴伦30的初级线圈的第二端。
优选地,参照下图8所示,在一具体实施例中,所述第一差分放大晶体管10的输出端连接至所述推挽功率放大器芯片200的第一焊盘a,所述第一焊盘a通过引线键合至所述第一巴伦30的初级线圈的第一端,所述第二差分放大晶体管20输出端连接至所述推挽功率放大器芯片200的第二焊盘b,所述第二焊盘b通过引线键合至所述第一巴伦30的初级线圈的第二端。
优选地,在一具体实施例中,还包括第一电感L1和第二电感L2,所述第一差分放大晶体管10的输出端通过所述第一电感L1连接至所述第一巴伦30的初级线圈的第一端,所述第二差分放大晶体管20输出端通过所述第二电感L2连接至所述第一巴伦30的初级线圈的第二端。
在一具体实施例中,为了实现设置在推挽功率放大器芯片200上的第一差分放大晶体管10和第二差分放大晶体管20与设置在基板上的第一巴伦30的电连接,可采用引线键合的连接方式进行连接。具体地,可通过在所述推挽功率放大器芯片200上设置第一焊盘a和第二焊盘b,以及将所述第一差分放大晶体管10的输出端连接至所述推挽功率放大器芯片200的第一焊盘a,所述第一焊盘a通过引线S1键合至第一巴伦30的初级线圈的第一端。其中,所述第一焊盘a可通过一条或者多条引线键合至所述第一巴伦30的初级线圈的第一端。以及将所述第二差分放大晶体管20输出端连接至所述推挽功率放大器芯片200的第二焊盘b,所述第二焊盘b通过引线S2键合至所述第一巴伦30的初级线圈的第二端;其中,所述第二焊盘b可通过一条或者多条引线键合至所述第一巴伦30的初级线圈的第二端;从而实现将设置在推挽功率放大器芯片上的第一差分放大晶体管10和第二差分放大晶体管20与设置在基板上的第一巴伦30之间的电连接。
第一LC谐振电路,所述第一LC谐振电路的第一端连接在所述初级线圈上,且位于所述初级线圈的第一端和所述初级线圈的中点之间,第二端接地;第二LC谐振电路,所述第二LC谐振电路的第一端连接在所述初级线圈上,且位于所述初级线圈的第二端和所述初级线圈的中点之间,第二端接地。
进一步地,还包括设置在所述初级线圈的第一端和所述初级线圈的中点之间的第五焊盘,和设置在所述初级线圈的第二端和所述初级线圈的中点之间的第六焊盘;所述第一LC谐振电路的第一端与所述第五焊盘连接,第二端接地,所述第二LC谐振电路的第一端与所述第六焊盘连接,第二端接地。其中,第一LC谐振电路401为由第三电容C11和第三电感L11串联组成的谐振电路。第二LC谐振电路501 为由第四电容C21和第四电感L21串联组成的谐振电路。
在一实际应用中,由于引线在实际应用中实质等效为电感,因此,为了避免因引线而带来传输损耗增加的问题,通常需要保证采用引线键合方式进行连接时的引线不能太长。若线引线的长度过长,就会出现传输损耗增加的问题。
针对于此,本申请通过利用引线S1所等效的电感和第一LC谐振电路401组成第一匹配电路,以及利用引线S2所等效的电感和第二LC谐振电路501组成第二匹配电路;由引线S1和第一LC谐振电路401组成的第一匹配网络和由引线S2和第二LC谐振电路501组成的第二匹配网络与第一巴伦30共同参与推挽式射频功率放大电路的阻抗转换,以实现阻抗匹配,从而不但可以改善推挽功率放大电路的基波阻抗的带宽性能,还能通过调整第一LC谐振电路401和第二LC谐振电路501的谐振频率点,使得推挽式射频功率放大电路随频率变化,其阻抗变化量较小,谐波阻抗更收敛,从而实现在更宽频带范围内,谐波抑制性能更好,进而使得推挽式射频功率放大电路可支持更大的带宽,且还解决了在进行射频信号传输过程中,因引线所带来的传输损耗增大的问题。
在一具体实施例中,若第一LC谐振电路401的第一端连接在所述初级线圈上的位置和第二LC谐振电路501连接至在所述初级线圈上的位置越靠近所述初级线圈的中点处,推挽式射频功率放大电路的谐波阻抗(例如:二阶谐波阻抗)的实部就越大,推挽功率放大电路的功率回退效率和饱和功率就越高。进一步地,若第一LC谐振电路401的第一端连接至所述初级线圈上的第五焊盘的位置越靠近所述初级线圈的第一端,第二LC谐振电路501的第一端连接至所述初级线圈上的第六焊盘的位置越靠近所述初级线圈的第二端,推挽式射频功率放大电路的谐波阻抗(例如:二阶谐波阻抗)的实部就越小,越接近推挽式射频功率放大电路的短路点,从而对推挽功率放大电路的谐波信号(例如:二阶谐波)的抑制效果就越好。在实际应用过程中,可根据对电路性能的实际需求,设定第一LC谐振电路401的第一端和第二LC谐振电路501的第一端连接在所述初级线圈上的第五焊盘的位置和第六焊盘的位置。
要说明的是,在一具体实施例中,第一LC谐振电路401的第一端连接至所述初级线圈上的第五焊盘的位置和第二LC谐振电路501的第一端连接至所述初级线圈上的第六焊盘的位置可以以所述初级线圈的中点为对称轴呈对称分布或者非呈对称分布。
在本实施例中,通过利用引线S1所等效的电感和第一LC谐振电路401组成第一匹配电路,以及利用引线S2所等效的电感和第二LC谐振电路501组成第二匹配电路;由引线S1和第一LC谐振电路401组成的第一匹配网络和由引线S2和第二LC谐振电路501组成的第二匹配网络与第一巴伦30共同参与推挽式射频功率放大电路的阻抗转换,以实现阻抗匹配,以解决了在进行射频信号传输过程中,因引线所带来的传输损耗增大的问题,且还能通过调整所述第一LC谐振电路401的第一端和所述第二LC谐振电路的第一端连接在所述初级线圈上的第五焊盘的位置和第六焊盘的位置,以改变推挽式射频功率放大电路的谐波阻抗(例如:二阶谐波阻抗)的实部大小,从而实现在改善推挽式射频功率放大电路的带宽性能的同时,进一步提高推挽式射频功率放大电路的功率回退效率和饱和功率。
参照下图9所示,本申请还提供一种推挽式射频功率放大器,基板100、设置在基板上的第一巴伦30;设置在基板上的推挽功率放大器芯片200,所述推挽功率放大器芯片200包括第一差分放大晶体管10、第二差分放大晶体管20、第三电容C11和第四电容C21,所述第三电容C11的第一端连接至所述推挽功率放大器芯片200的第三焊盘c,所述第三电容C11的第二端接地,所述第三焊盘c通过引线键合在所述初级线圈上,且位于所述初级线圈的第一端和所述初级线圈的中点之间的第五焊盘,所述第四电容C21的第一端连接至所述推挽功率放大器芯片200的第四焊盘d,所述第四电容C21的第二端接地,所述第四焊盘d通过引线键合在所述初级线圈上,且位于所述初级线圈的第二端和所述初级线圈的中点之间的第六焊盘。
所述第一差分放大晶体管10的输出端连接至所述第一巴伦30的初级线圈的第一端,所述第二差分放大晶体管20输出端连接至所述第一巴伦30的初级线圈的第二端。
优选地,在一具体实施例中,所述第一差分放大晶体管10的输出端连接至所述推挽功率放大器芯片200的第一焊盘a,所述第一焊盘a通过引线键合至所述第一巴伦30的初级线圈的第一端,所述第二差分放大晶体管20输出端连接至所述推挽功率放大器芯片200的第二焊盘b,所述第二焊盘b通过引 线键合至所述第一巴伦30的初级线圈的第二端。
优选地,在一具体实施例中,所述第一差分放大晶体管10的输出端通过第一电感L1连接至所述第一巴伦30的初级线圈的第一端,所述第二差分放大晶体管20输出端通过第二电感L2连接至所述第一巴伦30的初级线圈的第二端。
由于电感在射频推挽功率放大芯片的占用面积往往很大,因此,本申请通过在所述推挽功率放大器芯片200上设置第三焊盘c和第四焊盘d,以及将所述第三电容C11的一端连接至所述推挽功率放大器芯片200的第三焊盘c,所述第三焊盘c通过引线S3键合在所述初级线圈上,且位于所述初级线圈的第一端和所述初级线圈的中点之间的第五焊盘。其中,所述第三焊盘c可通过一条或者多条引线键合在所述初级线圈上,且位于所述初级线圈的第一端和所述初级线圈的中点之间的第五焊盘。以及将所述第四电容C21的一端连接至所述推挽功率放大器芯片200的第四焊盘d,所述第四焊盘d通过引线S4键合在所述初级线圈上,且位于所述初级线圈的第二端和所述初级线圈的中点之间的第六焊盘;其中。所述第四焊盘d可通过一条或者多条引线键合在所述初级线圈上,且位于所述初级线圈的第二端和所述初级线圈的中点之间的第六焊盘。其中;本申请通过引线S3所等效的电感和第三电容C11组成第一LC谐振电路,以及利用引线S4所等效的电感和第四电容C21组成第二LC谐振电路,从而可减小射频推挽功率放大芯片的面积。
本实施例通过利用引线S3所等效的电感和第三电容C11组成第一LC谐振电路,以及利用引线S4所等效的电感和第四电容C21组成第二LC谐振电路,且通过利用第一电感L1和该第一LC谐振电路组成第一匹配网络,以及利用第二电感L2和该第二LC谐振电路组成第二匹配网络,第一匹配网络、第二匹配网络与第一巴伦30共同参与推挽式射频功率放大电路的阻抗转换,以实现阻抗匹配,从而不但可以改善推挽功率放大电路的基波阻抗的带宽性能,还能通过调整引线S3所等效的电感值或第三电容C11的电容值以调整第一LC谐振电路的谐振频率点,以及通过调整引线S4所等效的电感值或第四电容C211的电容值以调整第二LC谐振电路501的谐振频率点,使得推挽式射频功率放大电路随频率变化,其阻抗变化量较小,谐波阻抗更收敛,从而实现在更宽频带范围内,谐波抑制性能更好;进而使得推挽式射频功率放大电路可支持更大的带宽,且还解决了在进行射频信号传输过程中,因引线所带来的传输损耗增大的问题。且还能通过调整第三焊盘c通过引线键合至所述初级线圈上的位置和第四焊盘d通过引线键合至所述初级线圈上的位置,以改变推挽式射频功率放大电路的二阶谐波阻抗的实部大小,从而实现在改善推挽式射频功率放大电路的二阶谐波阻抗的带宽性能的同时,进一步提高推挽式射频功率放大电路的功率回退效率和饱和功率。
参照下图10所示,本申请还提供一种推挽式射频功率放大器,包括:基板100、设置在基板100上的第一巴伦30;设置在基板100上的推挽功率放大器芯片200,所述推挽功率放大器芯片200包括第一差分放大晶体管10、第二差分放大晶体管20、第三电容C11和第四电容C21,所述第一差分放大晶体管10的输出端连接至所述第一巴伦30的初级线圈的第一端,所述第二差分放大晶体管20的输出端连接所述第一巴伦30的初级线圈的第二端。
优选地,在一具体实施例中,所述第一差分放大晶体管10的输出端连接至所述推挽功率放大器芯片200的第一焊盘a,所述第一焊盘a通过引线键合至所述第一巴伦30的初级线圈的第一端,所述第二差分放大晶体管20的输出端连接至所述推挽功率放大器芯片200的第二焊盘b,所述第二焊盘b通过引线键合至所述第一巴伦30的初级线圈的第二端。
优选地,在一具体实施例中,所述第一差分放大晶体管10的输出端通过第一电感L1连接至所述第一巴伦30的初级线圈的第一端,所述第二差分放大晶体管20输出端通过第二电感L2连接至所述第一巴伦30的初级线圈的第二端。
所述第三电容C11的第一端连接至所述推挽功率放大器芯片200的第三焊盘c,所述第三电容C11的第二端接地,所述第三焊盘c通过引线键合在所述初级线圈上,且位于所述初级线圈的第一端和所述初级线圈的中点之间的第五焊盘,所述第四电容C21的第一端连接至所述推挽功率放大器芯片200的第四焊盘d,所述第四电容C21的第二端接地,所述第四焊盘d通过引线键合在所述初级线圈上,且位于所述初级线圈的第二端和所述初级线圈的中点之间的第六焊盘。
在一具体实施例中,为了实现设置在推挽功率放大器芯片200上的第一差分放大晶体管10和第二差分放大晶体管20与设置在基板上的第一巴伦30的电连接,可采用引线键合的连接方式进行连接。具体地,可通过在所述推挽功率放大器芯片200上设置第一焊盘a和第二焊盘b,以及将所述第一差分放大晶体管10的输出端连接至所述推挽功率放大器芯片200的第一焊盘a,所述第一焊盘a通过引线S1键合至第一巴伦30的初级线圈的第一端。其中,所述第一焊盘a可通过一条或者多条引线键合至所述第一巴伦30的初级线圈的第一端。以及将所述第二差分放大晶体管20输出端连接至所述推挽功率放大器芯片200的第二焊盘b,所述第二焊盘b通过引线S2键合至所述第一巴伦30的初级线圈的第二端;其中,所述第二焊盘b可通过一条或者多条引线键合至所述第一巴伦30的初级线圈的第二端;从而实现将设置在推挽功率放大器芯片上的第一差分放大晶体管10和第二差分放大晶体管20与设置在基板上的第一巴伦30之间的电连接。
进一步地,由于电感在射频推挽功率放大芯片的占用面积往往很大,因此,本申请通过在所述推挽功率放大器芯片200上设置第三焊盘c和第四焊盘d,以及将所述第三电容C11的一端连接至所述推挽功率放大器芯片200的第三焊盘c,所述第三焊盘c通过引线S3键合在所述初级线圈上,且位于所述初级线圈的第一端和所述初级线圈的中点之间的第五焊盘。其中,所述第三焊盘c可通过一条或者多条引线键合在所述初级线圈上,且位于所述初级线圈的第一端和所述初级线圈的中点之间的第五焊盘。以及将所述第四电容C21的一端连接至所述推挽功率放大器芯片200的第四焊盘d,所述第四焊盘d通过引线S4键合在所述初级线圈上,且位于所述初级线圈的第二端和所述初级线圈的中点之间的第六焊盘;其中,所述第四焊盘d可通过一条或者多条引线键合在所述初级线圈上,且位于所述初级线圈的第二端和所述初级线圈的中点之间的第六焊盘。本申请通过引线S3所等效的电感和第三电容C11组成第一LC谐振电路,以及利用引线S4所等效的电感和第四电容C21组成第二LC谐振电路,从而可减小射频推挽功率放大芯片的面积。
本实施例通过利用引线S3所等效的电感和第三电容C11组成第一LC谐振电路,以及利用引线S4所等效的电感和第四电容C21组成第二LC谐振电路,且通过利用引线S1所等效的电感和该第一LC谐振电路组成第一匹配网络,以及利用引线S1所等效的电感和该第二LC谐振电路组成第二匹配网络,
第一匹配网络、第二匹配网络与第一巴伦30共同参与推挽式射频功率放大电路的阻抗转换,以实现阻抗匹配,从而不但可以改善推挽功率放大电路的基波阻抗的带宽性能,还能通过调整引线S3所等效的电感值或第三电容C11的电容值以调整第一LC谐振电路的谐振频率点,以及通过调整引线S4所等效的电感值或第四电容C211的电容值以调整第二LC谐振电路501的谐振频率点,使得推挽式射频功率放大电路随频率变化,其阻抗变化量较小,谐波阻抗更收敛,从而实现在更宽频带范围内,谐波抑制性能更好;进而使得推挽式射频功率放大电路可支持更大的带宽,且还解决了在进行射频信号传输过程中,因引线所带来的传输损耗增大的问题。且还能通过调整第三焊盘c通过引线键合至所述初级线圈上的位置和第四焊盘d通过引线键合至所述初级线圈上的位置,以改变推挽式射频功率放大电路的二阶谐波阻抗的实部大小,从而实现在改善推挽式射频功率放大电路的二阶谐波阻抗的带宽性能的同时,进一步提高推挽式射频功率放大电路的功率回退效率和饱和功率。
进一步地,参照下图11所示,所述推挽功率放大器芯片还包括串联在所述第一差分放大晶体管的输出端和所述第二差分放大晶体管的输出端之间的第一电容C1。
即第一电容C1的一端耦合至第一差分放大晶体管10的输出端,另一端耦合至第二差分放大晶体管20的输出端。
在一具体实施例中,当射频推挽功率放器工作在某一特定频段时,由第三电容C11、引线S1和引线S3组成的第一匹配网络和由第四电容C21引线S2和引线S4组成的第二匹配网络与第一巴伦30在参与推挽式射频功率放大电路的阻抗匹配时,推挽功率放大电路的谐波波阻抗的带宽性能可能还不够理想,针对于此,本申请通过在所述第一差分放大晶体管10的输出端和所述第二差分放大晶体管20的输出端之间串联一个第一电容C1,此时,第一电容C1、第一匹配网络和第二匹配网络与第一巴伦30共同作用参与推挽式射频功率放大电路的阻抗匹配,从而实现在保证推挽式射频功率放大电路的基波阻抗的的带宽性能不受影响的同时,还能使得推挽式射频功率放大电路随频率变化,其阻抗变化量较小,谐 波阻抗更收敛,从而实现在更宽频带范围内,谐波抑制性能更好。
参照图12所示,所述初级线圈包括第一初级线圈段和第二初级线圈段;所述第一焊盘通过引线键合至所述第一初级线圈段的第二端,所述第二焊盘通过引线键合至所述第二初级线圈段的第二端;所述第三焊盘通过引线键合至所述第一初级线圈段的第五焊盘上,所述第四焊盘通过引线键合至所述第二初级线圈段的第六焊盘上。本实施例中的具体实现方式和原理和上述实施例中的具体实现方式和原理相同,在此不做冗余赘述。
参照图13所示,在一具体实施例中,推挽式射频功率放大器,其中,还包括设置在所述基板上的馈电电源端VCC以及设置在所述基板上的第二电容C2;所述馈电电源端VCC耦合至所述初级线圈的中点上,所述第二电容C2的一端连接至所述馈电电源端VCC,另一端接地。
其中,馈电电源端VCC为与馈电电源连接的端口。馈电电源提供的馈电信号通过馈电电源端VCC传输至第一差分放大晶体管10的输出端和第二差分放大晶体管20的输出端,以保证第一差分放大晶体管10和第二差分放大晶体管20可正常工作。在本实施例中,由于推挽式射频功率放大器芯片的面积有限,因此将馈电电源端VCC设置在基板上,馈电电源端VCC耦合至所述初级线圈的中点上,以实现给第一差分放大晶体管10和第二差分放大晶体管20馈电。
进一步地,为了进一步保证馈电电源端VCC提供至第一差分放大晶体管10和第二差分放大晶体管20的馈电信号的稳定性,本申请通过接入一个去耦电容C1,将去耦电容C12的一端连接至所述馈电电源端VCC,另一端接地。相比较于现有的分别通过不同的馈电电源端VCC提供馈电信号至第一差分放大晶体管10和第二差分放大晶体管20,以及分别接入两个不同的去耦电容C12保证馈电信号的稳定性。本申请采用一个馈电电源端VCC即可实现提供馈电信号至第一差分放大晶体管10和第二差分放大晶体管20,以及通过将去耦电容C12连接至所述馈电电源端VCC,以实现通过一个耦电容C12即可保证提供至第一差分放大晶体管10和第二差分放大晶体管20的馈电信号的稳定性,从而在保证推挽式射频功率放大器模组的整体性能不变的情况下,还进一步减小了推挽式射频功率放大器模组的占用面积。
本申请还提供一种射频前端模组,包括上述任一实施例中的推挽式射频功率放大电路,或者,包括上述任一实施例中的的推挽式射频功率放大器。其中,推挽式射频功率放大电路的具体实现方式和原理在上述实施例说明,在此不做冗余赘述。同样地,推挽式射频功率放大器的具体实现方式和原理在上述实施例说明,在此不做冗余赘述。
在一个实施例中,上述推挽功率放大器芯片可以为采用GaAs或GaN等工艺制造的芯片。
可以理解地,本申请实施例中采用引线键合的连接方式中,均可以采用一条或者多条引线键合的方式进行连接,在此不再赘述。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (22)

  1. 一种推挽式射频功率放大电路,其中,包括第一差分放大晶体管、第二差分放大晶体管、第一巴伦、第一LC谐振电路和第二LC谐振电路;
    所述第一差分放大晶体管的输出端耦合至所述第一巴伦的初级线圈的第一端,所述第二差分放大晶体管耦合至所述第一巴伦的初级线圈的第二端;
    所述第一LC谐振电路的第一端连接在所述初级线圈上,且位于所述初级线圈的第一端和所述初级线圈的中点之间,第二端接地;
    所述第二LC谐振电路的第一端连接在所述初级线圈上,且位于所述初级线圈的第二端和所述初级线圈的中点之间,第二端接地。
  2. 如权利要求1所述的推挽式射频功率放大电路,其中,还包括第一电感和第二电感;
    所述第一电感串联在所述第一差分放大晶体管的输出端和所述第一巴伦的初级线圈的第一端之间;
    所述第二电感串联在所述第二差分放大晶体管的输出端和所述第一巴伦的初级线圈的第二端之间。
  3. 如权利要求1所述的推挽式射频功率放大电路,其中,所述第一LC谐振电路的第一端连接在所述初级线圈上,且连接在靠近所述初级线圈的第一端的位置,所述第二LC谐振电路的第一端连接在所述初级线圈上,且连接在靠近所述初级线圈的第二端的位置。
  4. 如权利要求1所述的推挽式射频功率放大电路,其中,所述第一LC谐振电路的第一端连接在所述初级线圈上,且连接在靠近所述初级线圈中点的位置,所述第二LC谐振电路的第一端连接在所述初级线圈上,且连接在靠近所述初级线圈中点的位置。
  5. 如权利要求1所述的推挽式射频功率放大电路,其中,所述第一LC谐振电路的第一端连接在所述初级线圈上,且位于所述初级线圈上的第一位置点,与所述第二LC谐振电路的第一端连接在所述初级线圈上,且位于所述初级线圈上的第二位置点,所述第一位置点和所述第二位置点以一虚拟直线为对称轴呈对称分布,其中,所述虚拟直线穿过所述初级线圈的中点且垂直平分所述第一位置点和所述第二位置点之间的虚拟连接线段。
  6. 如权利要求1所述的推挽式射频功率放大电路,其中,所述第一巴伦的初级线圈包括串联连接的第一初级线圈段和第二初级线圈段,所述第一LC谐振电路的第一端连接至所述第一初级线圈段上,所述第二LC谐振电路的第一端连接至所述第二初级线圈段上。
  7. 如权利要求1所述的推挽式射频功率放大电路,其中,还包括第一电容,所述第一电容串联在所述第一差分放大晶体管的输出端和所述第二差分放大晶体管的输出端之间。
  8. 如权利要求7所述的推挽式射频功率放大电路,其中,还包括第二电容,所述第二电容的一端连接至所述第一初级线圈段和所述第二初级线圈段之间,另一端接地。
  9. 如权利要求1所述的推挽式射频功率放大电路,其中,所述第一LC谐振电路和所述第二LC谐振电路被配置为谐振在二阶谐波频率点。
  10. 如权利要求1所述的推挽式射频功率放大电路,其中,所述第一差分放大晶体管为BJT管,包括基极、集电极和发射极,所述第一差分放大晶体管的基极接收输入的第一射频输入信号,所述第一差分放大晶体管的集电极耦合至所述第一巴伦的初级线圈的第一端,所述第一差分放大晶体管的发射极接地;
    所述第二差分放大晶体管为BJT管,包括基极、集电极和发射极,所述第二差分放大晶体管的基极接收输入的第二射频输入信号,所述第二差分放大晶体管的集电极耦合至所述第一巴伦的初级线圈的第二端,所述第二差分放大晶体管的发射极接地。
  11. 如权利要求1所述的推挽式射频功率放大电路,其中,所述第一巴伦的次级线圈的第一端输出放大的第一射频输出信号,次级线圈的第二端输出放大的第二射频输出信号;或者,所述第一巴伦的次级线圈的第一端输出放大的射频输出信号,次级线圈的第二端接地。
  12. 一种推挽式射频功率放大器,其中,包括:基板、设置在基板上的第一巴伦,设置在基板上的推挽功率放大器芯片,所述推挽功率放大器芯片包括第一差分放大晶体管、第二差分放大晶体管,所述第一差分放大晶体管的输出端连接至所述第一巴伦的初级线圈的第一端,所述第二差分放大晶体管输出 端连接至所述第一巴伦的初级线圈的第二端;
    第一LC谐振电路,所述第一LC谐振电路的第一端连接在所述初级线圈上,且位于所述初级线圈的第一端和所述初级线圈的中点之间,第二端接地;
    第二LC谐振电路,所述第二LC谐振电路的第一端连接在所述初级线圈上,且位于所述初级线圈的第二端和所述初级线圈的中点之间,第二端接地。
  13. 如权利要求12所述的推挽式射频功率放大器,还包括设置在所述初级线圈的第一端和所述初级线圈的中点之间的第五焊盘,和设置在所述初级线圈的第二端和所述初级线圈的中点之间的第六焊盘;所述第一LC谐振电路的第一端与所述第五焊盘连接,第二端接地,所述第二LC谐振电路的第一端与所述第六焊盘连接,第二端接地。
  14. 如权利要求12所述的推挽式射频功率放大器,其中,所述第一差分放大晶体管的输出端连接至所述推挽功率放大器芯片的第一焊盘,所述第一焊盘通过引线键合至所述第一巴伦的初级线圈的第一端;所述第二差分放大晶体管输出端连接至所述推挽功率放大器芯片的第二焊盘,所述第二焊盘通过引线键合至所述第一巴伦的初级线圈的第二端。
  15. 如权利要求12所述的推挽式射频功率放大器,其中,还包括第一电感和第二电感,所述第一差分放大晶体管的输出端通过所述第一电感连接至所述第一巴伦的初级线圈的第一端,所述第二差分放大晶体管输出端通过所述第二电感连接至所述第一巴伦的初级线圈的第二端。
  16. 一种推挽式射频功率放大器,其中,包括:基板、设置在基板上的第一巴伦;设置在基板上的推挽功率放大器芯片,所述推挽功率放大器芯片包括第一差分放大晶体管、第二差分放大晶体管、第三电容和第四电容,
    所述第一差分放大晶体管的输出端连接至所述第一巴伦的初级线圈的第一端,所述第二差分放大晶体管输出端连接至所述第一巴伦的初级线圈的第二端;
    所述第三电容的第一端连接至所述推挽功率放大器芯片的第三焊盘,所述第三电容的第二端接地,所述第三焊盘通过引线键合在所述初级线圈上,且位于所述初级线圈的第一端和所述初级线圈的中点之间的第五焊盘,所述第四电容的第一端连接至所述推挽功率放大器芯片的第四焊盘,所述第四电容的第二端接地,所述第四焊盘通过引线键合在所述初级线圈上,且位于所述初级线圈的第二端和所述初级线圈的中点之间的第六焊盘。
  17. 如权利要求16所述的推挽式射频功率放大器,其中,所述第一差分放大晶体管的输出端连接至所述推挽功率放大器芯片的第一焊盘,所述第一焊盘通过引线键合至所述第一巴伦的初级线圈的第一端,所述第二差分放大晶体管输出端连接至所述推挽功率放大器芯片的第二焊盘,所述第二焊盘通过引线键合至所述第一巴伦的初级线圈的第二端。
  18. 如权利要求16所述的推挽式射频功率放大器,其中,还包括第一电感和第二电感,所述第一差分放大晶体管的输出端通过所述第一电感连接至所述第一巴伦的初级线圈的第一端,所述第二差分放大晶体管输出端通过所述第二电感连接至所述第一巴伦的初级线圈的第二端。
  19. 如权利要求16所述的推挽式射频功率放大器,其中,所述推挽功率放大器芯片还包括串联在所述第一差分放大晶体管的输出端和所述第二差分放大晶体管的输出端之间的第一电容。
  20. 如权利要求16所述的推挽式射频功率放大器,其中,所述初级线圈包括第一初级线圈段和第二初级线圈段;
    所述第一焊盘通过引线键合至所述第一初级线圈段的第二端,所述第二焊盘通过引线键合至所述第二初级线圈段的第二端;
    所述第三焊盘通过引线键合至所述第一初级线圈段上的第五焊盘,所述第四焊盘通过引线键合至所述第二初级线圈段上的第六焊盘。
  21. 如权利要求16所述的推挽式射频功率放大器,其中,还包括设置在所述基板上的馈电电源端以及设置在所述基板上的第二电容;所述馈电电源端耦合至所述初级线圈的中点上,所述第二电容的一端连接至所述馈电电源端,另一端接地。
  22. 一种射频前端模组,其中,包括如权利要求1-11任一项所述的推挽式射频功率放大电路,或者, 包括如权利要求12-21任一项所述的推挽式射频功率放大器。
PCT/CN2022/130765 2021-09-30 2022-11-09 推挽式射频功率放大电路及推挽式射频功率放大器 WO2023051839A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111160504.6A CN115913139A (zh) 2021-09-30 2021-09-30 推挽式射频功率放大电路及推挽式射频功率放大器
CN202111160504.6 2021-09-30

Publications (1)

Publication Number Publication Date
WO2023051839A1 true WO2023051839A1 (zh) 2023-04-06

Family

ID=85739460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/130765 WO2023051839A1 (zh) 2021-09-30 2022-11-09 推挽式射频功率放大电路及推挽式射频功率放大器

Country Status (2)

Country Link
CN (1) CN115913139A (zh)
WO (1) WO2023051839A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117749116A (zh) * 2023-12-04 2024-03-22 锐磐微电子科技(上海)有限公司 射频前端模组

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116192060B (zh) * 2023-04-27 2023-09-05 四川省华盾防务科技股份有限公司 一种面向大功率载板功放的谐波抑制结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060284685A1 (en) * 2005-06-15 2006-12-21 Nokia Corporation Power amplifier of a transmitter
CN102124645A (zh) * 2008-05-05 2011-07-13 贾弗林半导体公司 使用输出网络控制功率
CN102983821A (zh) * 2011-09-06 2013-03-20 瑞萨电子株式会社 高频功率放大装置
CN109462411A (zh) * 2018-11-26 2019-03-12 锐石创芯(深圳)科技有限公司 射频放大模块及通信终端
CN111600559A (zh) * 2020-06-16 2020-08-28 锐石创芯(深圳)科技有限公司 功放输出匹配电路、射频前端模组和无线装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013085179A (ja) * 2011-10-12 2013-05-09 Toshiba Corp 電力増幅回路、および無線通信装置
US9330832B2 (en) * 2013-02-13 2016-05-03 Nokia Technologies Oy Integrated transformer balun with enhanced common-mode rejection for radio frequency, microwave, and millimeter-wave integrated circuits
JP5989578B2 (ja) * 2013-03-14 2016-09-07 株式会社東芝 高周波広帯域増幅回路
CN104953961B (zh) * 2015-06-17 2018-05-25 深圳市华讯方舟微电子科技有限公司 一种双级逆d类功率放大电路及射频功率放大器
CN107592085B (zh) * 2017-09-18 2018-09-07 深圳锐越微技术有限公司 功率放大器和电子设备
US11005433B2 (en) * 2018-02-12 2021-05-11 Georgia Tech Research Corporation Continuous-mode harmonically tuned power amplifier output networks and systems including same
CN111431488B (zh) * 2020-05-13 2022-07-15 展讯通信(上海)有限公司 射频功率放大器及通信设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060284685A1 (en) * 2005-06-15 2006-12-21 Nokia Corporation Power amplifier of a transmitter
CN102124645A (zh) * 2008-05-05 2011-07-13 贾弗林半导体公司 使用输出网络控制功率
CN102983821A (zh) * 2011-09-06 2013-03-20 瑞萨电子株式会社 高频功率放大装置
CN109462411A (zh) * 2018-11-26 2019-03-12 锐石创芯(深圳)科技有限公司 射频放大模块及通信终端
CN111600559A (zh) * 2020-06-16 2020-08-28 锐石创芯(深圳)科技有限公司 功放输出匹配电路、射频前端模组和无线装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117749116A (zh) * 2023-12-04 2024-03-22 锐磐微电子科技(上海)有限公司 射频前端模组

Also Published As

Publication number Publication date
CN115913139A (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
WO2023051839A1 (zh) 推挽式射频功率放大电路及推挽式射频功率放大器
WO2023130843A1 (zh) 一种新型宽带多赫蒂射频功率放大器
WO2023051840A1 (zh) 射频推挽功率放大器芯片及射频前端模组
WO2023051837A1 (zh) 射频推挽功率放大电路及射频推挽功率放大器
WO2022253161A1 (zh) 推挽功率放大系统及射频前端模组
WO2002073794A2 (en) Switchless multi-resonant, multi-band power amplifier
CN102480272A (zh) 射频放大器
JP2009088770A (ja) Rf増幅装置
CN112910417B (zh) 一种宽带高效率微波功率放大器
CN113258242B (zh) 一种基于变压器的八路正交功率合成器
WO2022166651A1 (zh) 射频前端模组和无线通信装置
WO2023082940A1 (zh) 射频功率放大器、芯片及电子设备
WO2023020096A1 (zh) 一种适用于巴伦的谐波抑制匹配电路结构及功率放大器
WO2024087853A1 (zh) 变压器耦合式巴伦结构及射频模组
WO2023082565A1 (zh) Mmic微波功率放大器及射频前端模组
CN110932687A (zh) 一种交流堆叠功率放大器
CN111030621A (zh) 一种用于无线终端的交流堆叠功率放大器
CN112865717B (zh) 一种基于自适应线性化技术的高增益功率放大器
CN216794945U (zh) 推挽功率放大电路及射频前端模组
CN218124668U (zh) 射频前端模组
CN110417357B (zh) 一种紧凑型集成多赫蒂放大器
WO2023020097A1 (zh) 一种适用于巴伦的谐波抑制匹配电路结构及功率放大器
CN110601668A (zh) 一种面向车联网通信的高效功率放大器
CN115913141A (zh) 射频推挽功率放大器、电路及射频前端模组
WO2023051838A1 (zh) 推挽式射频功率放大电路及推挽式射频功率放大器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22875219

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE