WO2023051744A1 - 通信方法和通信装置 - Google Patents

通信方法和通信装置 Download PDF

Info

Publication number
WO2023051744A1
WO2023051744A1 PCT/CN2022/122931 CN2022122931W WO2023051744A1 WO 2023051744 A1 WO2023051744 A1 WO 2023051744A1 CN 2022122931 W CN2022122931 W CN 2022122931W WO 2023051744 A1 WO2023051744 A1 WO 2023051744A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
time slot
time slots
effective time
repetition
Prior art date
Application number
PCT/CN2022/122931
Other languages
English (en)
French (fr)
Inventor
花梦
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023051744A1 publication Critical patent/WO2023051744A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/231Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the layers above the physical layer, e.g. RRC or MAC-CE signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling

Definitions

  • the embodiments of the present application relate to the communication field, and more specifically, relate to a communication method and a communication device.
  • one time slot carries one PUSCH repetition, and one time slot carries one transmission block cyclic redundancy check code.
  • the configured authorized physical PUSCH can start PUSCH transmission from the time slot where the redundancy version (redundancy version, RV) is 0.
  • RV redundancy version
  • PUSCH transmission mode is applied to problems that need to be solved in configuring authorized resources.
  • Embodiments of the present application provide a communication method and a communication device, in order to reduce the complexity of blind detection of network equipment.
  • a communication method receives a first parameter and a second parameter sent by the network device; and the terminal device determines and configures authorized physical uplink sharing according to the first parameter and the second parameter.
  • the network device sends the first parameter and the second parameter to the terminal device, and the terminal device can determine and configure the initial time slot for PUSCH transmission authorization according to the first parameter and the second parameter, and perform configuration according to the initial time slot
  • the PUSCH transmission is authorized, thereby helping to reduce the complexity of blind detection of network equipment.
  • the first parameter and the second parameter are carried in radio resource control RRC signaling; or, the first parameter and the second parameter Carried in the activated downlink control information DCI; or, the first parameter is carried in RRC signaling, and the second parameter is carried in the activated DCI; or, the first parameter is carried in the activated DCI, and the second parameter is carried in the activated DCI.
  • the two parameters are carried in the RRC signaling.
  • the first parameter is the number of valid time slots P in the one configuration grant period
  • the second parameter is the number of repetitions K
  • the number of effective time slots P in the one configuration authorization period is an integer multiple of the number of repetitions K
  • the number of effective time slots P in the one configuration grant period is an integer multiple of the number of effective time slots N in each repetition .
  • the number of valid time slots P in a configuration authorization period may be an integer multiple of the number of repetitions K or the number of valid time slots N, thereby reducing the complexity of determining the initial time slot for the terminal device.
  • the first parameter and the second parameter are the number of repetitions K and the number of effective time slots N in each repetition, then The number of valid time slots in the one configuration grant period is K*N.
  • M is an integer greater than or equal to 1
  • the first parameter or the second parameter is the number of effective time slots N for each repetition
  • the other is when the number K of repetitions in a
  • the first parameter and the second parameter are the number of repetitions K in a configuration grant period and the number of valid time slots N in each repetition, Or, when the first parameter is the number of effective time slots P in a configured grant period, and the first parameter is an integer multiple of the second parameter,
  • the reference effective time slot is the first one of the effective time slots in the one configuration authorization period, and the initial time slot is the effective time slot with a distance of M*N1 effective time slots from the reference effective time slot in one configuration authorization period. time slot.
  • the position of the initial time slot can be determined, which can help reduce the complexity of blind detection by the network device.
  • the first parameter is the number of valid time slots P in a configured grant period, and the first parameter is not an integer of the second parameter times,
  • the reference effective time slot is the first one of the effective time slots in the one configuration authorization period, and the initial time slot is the effective time slot with a distance of M*N1 effective time slots from the reference effective time slot in one configuration authorization period.
  • time slot wherein, M is an integer; or, the reference effective time slot is the last one of the effective time slots in the one configuration authorization period, and the initial time slot is the same as the reference effective time slot in a configuration authorization period
  • the position of the initial time slot can be determined, which can help reduce the complexity of blind detection by the network device.
  • the reference valid time slot is preset; or the reference valid time slot is received by the terminal device from the network device.
  • the reference effective time slot is preset, and it can be understood that the reference effective time slot is stipulated by a protocol.
  • the terminal device determines and configures an initial time slot for authorizing physical uplink shared channel PUSCH transmission according to the first parameter and the second parameter, including:
  • the terminal device determines an initial time slot for configuring authorized physical uplink shared channel PUSCH transmission according to the redundancy version RV sequence and the first parameter and the second parameter, and the redundancy version RV sequence is obtained by the terminal device from the Received by the above network device.
  • the terminal device can determine the initial time slot according to the first parameter and the second parameter, and can determine the RV used on the initial time slot according to the RV sequence.
  • the M A1*N2, where A1 is an integer greater than or equal to 0, and N2 is the minimum period of the RV.
  • one RV is used for one repetition, and all repetitions of the configured authorized PUSCH transmission use the RV in the RV sequence.
  • the repeated RV carried on the initial time slot is 0.
  • RV0 basically includes all systematic bits, so that the possibility of successful early decoding can be improved.
  • the M when the first parameter or the second parameter is the number K of repetitions within a configuration authorization period, the M is greater than or equal to 0 and less than Or equal to K-1, M is an integer; or, when the first parameter and the second parameter are the number of valid time slots P in a configuration grant period and the number of valid time slots N in each repetition, the Said M is greater than or equal to 0 and less than or equal to floor(P/N)-1, and M is an integer.
  • the performing the configuration authorization PUSCH transmission according to the initial time slot includes: starting from the repetition of the initial time slot bearing, authorizing the PUSCH according to the configuration Each repeated RV for transmission performs encoding of the configuration authorization PUSCH; performs repeated transmission of the configuration authorization PUSCH according to the encoding result.
  • the repeated RV carried on the initial time slot is 0.
  • This technical solution can determine the RV used in the initial time slot.
  • the repeated RV carried by the initial time slot when the repeated RV carried by the initial time slot is not 0, at least one repeated RV exists in all repetitions of the configured authorized PUSCH transmission is 0.
  • RV0 basically includes all systematic bits, while other RVs may only include some systematic bits. If only other RVs are sent, decoding may not be possible. This technical solution can improve the possibility of decoding in advance.
  • the method further includes: performing the encoding of the configuration authorized PUSCH according to the first RV sequence and the number of effective time slots N, the first One RV is the repeated RV carried on the last P-floor(P/N)*N effective time slots; the result of the encoding is from front to back in the last P-floor(P/N)*N effective time slots in transmission.
  • the first parameter is the number of valid time slots P in a configuration authorization period
  • the second parameter is the number of repetitions K in a configuration authorization period
  • the first parameter is not an integer multiple of the second parameter
  • the reference valid time slot is the first one of the valid time slots in the one configuration grant period
  • the last P-floor(P/K)* The PUSCH is not transmitted in the K effective time slots; or, the method further includes: encoding the configured authorized PUSCH according to the first RV sequence and the repetition number K; The PUSCH is transmitted in one repeated effective time slot.
  • a communication device including:
  • a transceiver unit configured to receive the first parameter and the second parameter sent by the network device
  • a processing unit configured to determine an initial time slot for configuring authorized physical uplink shared channel PUSCH transmission according to the first parameter and the second parameter;
  • the processing unit is further configured to perform the configuration authorization PUSCH transmission according to the initial time slot.
  • the first parameter and the second parameter are carried in radio resource control RRC signaling; or, the first parameter and the second parameter Carried in the activated downlink control information DCI; or, the first parameter is carried in RRC signaling, and the second parameter is carried in the activated DCI; or, the first parameter is carried in the activated DCI, and the second parameter is carried in the activated DCI.
  • the two parameters are carried in the RRC signaling.
  • the first parameter is the number of valid time slots P in the one configuration grant period
  • the second parameter is the number of repetitions K
  • the number of effective time slots P in the one configuration authorization period is an integer multiple of the number of repetitions K
  • the number of effective time slots P in the one configuration grant period is an integer multiple of the number of effective time slots N in each repetition .
  • the first parameter and the second parameter are the number of repetitions K and the number of effective time slots N in each repetition, then The number of valid time slots in the one configuration grant period is K*N.
  • M is an integer greater than or equal to 1
  • the first parameter or the second parameter is the number of effective time slots N for each repetition
  • the other is when the number K of repetitions in a
  • the first parameter and the second parameter are the number of repetitions K in a configuration grant period and the number of valid time slots N in each repetition, Or, when the first parameter is the number of effective time slots P in a configured grant period, and the first parameter is an integer multiple of the second parameter,
  • the reference effective time slot is the first one of the effective time slots in the one configuration authorization period, and the initial time slot is the effective time slot with a distance of M*N1 effective time slots from the reference effective time slot in one configuration authorization period. time slot.
  • the first parameter is the number of valid time slots P in a configured grant period, and the first parameter is not an integer of the second parameter times
  • the reference effective time slot is the first one of the effective time slots in the one configuration authorization period, and the initial time slot is the effective time slot with a distance of M*N1 effective time slots from the reference effective time slot in one configuration authorization period.
  • time slot, M is an integer; or, the reference effective time slot is the last one of the effective time slots in the one configuration authorization period, and the initial time slot is the distance M from the reference effective time slot in one configuration authorization period *N1-1 effective time slots, M is an integer greater than or equal to 1.
  • the reference valid time slot is preset; or the reference valid time slot is received by the terminal device from the network device.
  • the processing unit is specifically configured to: determine and configure the authorized physical uplink shared channel PUSCH according to the redundancy version RV sequence and the first parameter and the second parameter In an initial time slot of transmission, the redundancy version RV sequence is received by the terminal device from the network device.
  • the M A1*N2, where A1 is an integer greater than or equal to 0, and N2 is the minimum period of the RV.
  • one RV is used for one repetition, and all repetitions of the configuration authorization PUSCH transmission use the RV in the RV sequence.
  • the repeated RV carried on the initial time slot is 0.
  • the M when the first parameter or the second parameter is the number K of repetitions within a configuration authorization period, the M is greater than or equal to 0 and less than Or equal to K-1, M is an integer; or, when the first parameter and the second parameter are the number of valid time slots P in a configuration grant period and the number of valid time slots N in each repetition, the Said M is greater than or equal to 0 and less than or equal to floor(P/N)-1, and M is an integer.
  • the processing unit is specifically configured to: start from the repetition carried by the initial time slot, and perform the RV for each repetition of PUSCH transmission authorized according to the configuration. Encoding the configuration authorization PUSCH; performing the configuration authorization PUSCH transmission according to the encoding result.
  • the repeated RV carried on the initial time slot is 0.
  • the repeated RV carried by the initial time slot when the repeated RV carried by the initial time slot is not 0, there is at least one repeated RV for all repetitions of the configured authorized PUSCH transmission is 0.
  • the first parameter is the number of valid time slots P in a configured grant period
  • the second parameter is the number of valid time slots P in each repetition
  • the number of slots is N
  • the first parameter is not an integer multiple of the second parameter
  • the reference effective time slot is the first of the effective time slots in the one configuration authorization period
  • the last P-floor( The PUSCH is not transmitted in P/N)*N effective time slots; or the processing unit is also used for:
  • Encoding the configuration authorization PUSCH is performed according to the first RV sequence and the number of effective time slots N, the first RV is the repeated RV carried on the last P-floor(P/N)*N effective time slots;
  • the encoding result is transmitted in the last P-floor(P/N)*N effective time slots from front to back.
  • the second parameter when the first parameter is the number of effective time slots P in a configuration authorization period, the second parameter is the number of repetitions K in a configuration authorization period, and
  • the first parameter is not an integer multiple of the second parameter, and the reference valid time slot is the first one of the valid time slots in the one configuration grant period, the last P-floor(P/K)*
  • the PUSCH is not transmitted in the K effective time slots; or the processing unit is also used for:
  • Encoding of the configuration authorization PUSCH is performed according to the first RV sequence and the number of effective time slots N, where the first RV is the repeated RV carried on the last P-floor(P/K)*K effective time slots;
  • the result of the encoding is transmitted to the PUSCH in the last P-floor(P/K)*K effective time slots from front to back.
  • a communication device including at least one processor, the at least one processor is coupled to at least one memory, and the at least one processor is configured to execute computer programs or instructions stored in the at least one memory, The communication method described in the above first aspect and any possible implementation manner thereof is executed.
  • a chip in a fourth aspect, includes a processor and an interface circuit, the processor and the interface circuit are coupled to each other, the interface circuit is used to communicate with other devices, and the processor The signal is processed, so that the communication method described in the above first aspect and any possible implementation manner thereof is executed.
  • a computer-readable storage medium where computer instructions are stored in the computer-readable storage medium, and when the computer instructions are run on a computer, the above-mentioned first aspect and any possible implementation thereof The communication method described in is implemented.
  • a computer program product including computer program code.
  • the computer program code When the computer program code is run on a computer, the communication method described in the above first aspect and any possible implementation thereof is implemented by implement.
  • FIG. 1 is a schematic structural diagram of a communication system in an embodiment of the present application.
  • Fig. 2 is a schematic diagram of a repetition type in the embodiment of the present application.
  • Fig. 3 is a schematic diagram of another repetition type in the embodiment of the present application.
  • Fig. 4 is a schematic diagram of a multi-slot transmission block in an embodiment of the present application.
  • Fig. 5 is a schematic diagram of time domain resource configuration in the embodiment of the present application.
  • Fig. 6 is a schematic diagram of a redundant version sequence in the embodiment of the present application.
  • Fig. 7 is a schematic diagram of another redundancy version sequence in the embodiment of the present application.
  • Fig. 8 is a schematic diagram of another redundancy version sequence in the embodiment of the present application.
  • Fig. 9 is a schematic interaction diagram of a communication method provided by an embodiment of the present application.
  • Fig. 10 is a schematic diagram of a possibility of transmitting a PUSCH provided by an embodiment of the present application.
  • Fig. 11 is a schematic diagram of another possibility of transmitting the PUSCH provided by the embodiment of the present application.
  • Fig. 12 is a schematic diagram of another possibility of transmitting the PUSCH provided by the embodiment of the present application.
  • Fig. 13 is a schematic diagram of another possibility of transmitting the PUSCH provided by the embodiment of the present application.
  • Fig. 14 is a schematic diagram of another possibility of transmitting the PUSCH provided by the embodiment of the present application.
  • Fig. 15 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA broadband code division multiple access
  • general packet radio service general packet radio service, GPRS
  • long term evolution long term evolution
  • LTE long term evolution
  • LTE frequency division duplex frequency division duplex
  • FDD frequency division duplex
  • UMTS Universal Mobile Telecommunications System
  • WiMAX Worldwide Interoperability for Microwave Access
  • 5G Fifth Generation
  • NR new radio
  • the terminal equipment in the embodiment of the present application may refer to a user equipment (user equipment, UE), an access terminal, a subscriber unit, a user station, a mobile station, a mobile station (mobile station, MS), a remote station, a remote terminal, a mobile device, User terminal, terminal, mobile terminal (mobile terminal, MT), wireless communication equipment, user agent or user device, etc.
  • UE user equipment
  • UE user equipment
  • MS mobile station
  • remote station a remote terminal
  • a mobile device User terminal, terminal, mobile terminal (mobile terminal, MT), wireless communication equipment, user agent or user device, etc.
  • the terminal device may also be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), a Functional handheld devices, computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in future 5G networks or future evolutions of public land mobile networks (public land mobile network, PLMN) terminal equipment, etc.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • Functional handheld devices computing devices or other processing devices connected to wireless modems, vehicle-mounted devices, wearable devices, terminal devices in future 5G networks or future evolutions of public land mobile networks (public land mobile network, PLMN) terminal equipment, etc.
  • PLMN public land mobile network
  • Terminal equipment can be mobile phone, tablet computer (Pad), computer with wireless transceiver function, virtual reality (virtual reality, VR) terminal equipment, augmented reality (augmented reality, AR) terminal equipment, industrial control (industrial control) ), wireless terminals in self driving, wireless terminals in remote medical surgery, wireless terminals in smart grid, wireless terminals in transportation safety Terminals, wireless terminals in a smart city (smart city), wireless terminals in a smart home (smart home), etc., are not limited in this embodiment of the present application.
  • VR virtual reality
  • AR augmented reality
  • industrial control industrial control
  • the network device in the embodiment of the present application may be a device for communicating with a terminal device, and the network device may be a global system of mobile communication (GSM) system or a code division multiple access (CDMA)
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • the base transceiver station (BTS) in the system can also be the base station (nodeB, NB) in the wideband code division multiple access (WCDMA) system, or the evolved base station (evolutionary base station) in the LTE system.
  • NB base station
  • WCDMA wideband code division multiple access
  • evolutionary base station evolved base station
  • nodeB can also be a wireless controller in a cloud radio access network (cloud radio access network, CRAN) scenario, or the network device can be a relay station, an access point, or an access point in a Wi-Fi system
  • cloud radio access network CRAN
  • Nodes, vehicle-mounted devices, wearable devices, and network devices in 5G and 6G networks, or network devices in future evolved PLMN networks, etc., are not limited by the embodiments of the present application.
  • FIG. 1 is a schematic structural diagram of a communication system in an embodiment of the present application.
  • the communication system may include a core network device 110 , a radio access network device 120 and at least one terminal device 131 , 132 .
  • the terminal devices 131 and 132 are connected to the radio access network device 120 in a wireless manner, and the radio access network device 120 is connected to the core network device 110 in a wireless or wired manner.
  • the core network device 110 and the radio access network device 120 may be independent and different physical devices, or the functions of the core network device and the logical functions of the radio access network device may be integrated on the same physical device, or they may be one Part of the functions of the core network device and part of the functions of the radio access network device are integrated on the physical device.
  • the terminal devices 131 and 132 may be fixed or movable. FIG.
  • the communication system may also include other network devices, such as wireless relay devices and wireless backhaul devices (not shown in FIG. 1 ).
  • the embodiments of the present application do not limit the number of core network equipment, radio access network equipment, and terminal equipment included in the mobile communication system.
  • Radio access network equipment and terminal equipment can be deployed on land, including indoor or outdoor, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons and satellites in the air.
  • the embodiments of the present application do not limit the application scenarios of the wireless access network device and the terminal device.
  • the embodiments of the present application may be applicable to downlink signal transmission, uplink signal transmission, or device-to-device (device to device, D2D) signal transmission.
  • the sending device is a wireless access network device
  • the corresponding receiving device is a terminal device.
  • the sending device is a terminal device
  • the corresponding receiving device is a wireless access network device.
  • D2D signal transmission the sending device is a terminal device, and the corresponding receiving device is also a terminal device.
  • the transmission direction of the signal in the embodiments of the present application is not limited.
  • Communications between wireless access network devices and terminal devices and between terminal devices can be performed through licensed spectrum (licensed spectrum), or through unlicensed spectrum (unlicensed spectrum), or both through licensed spectrum and unlicensed spectrum.
  • Licensed spectrum for communication Communication between wireless access network equipment and terminal equipment and between terminal equipment and terminal equipment can be carried out through the spectrum below 6G, or through the spectrum above 6G, and can also use the spectrum below 6G and above 6G spectrum at the same time to communicate.
  • the embodiments of the present application do not limit the frequency spectrum resources used between the radio access network device and the terminal device.
  • PUSCH physical uplink shared channel
  • An uplink grant in a downlink control information is used to dynamically schedule the PUSCH, wherein the DCI is physical layer information.
  • the terminal device performs a PUSCH transmission once receiving an uplink scheduling.
  • Configured grant (configured grant, CG) type 1: semi-persistently configured by the high-level information unit configuredGrantConfig containing rrc-ConfiguredUplinkGrant, and does not need to receive the uplink grant in the DCI.
  • the upper layer configures some semi-persistent resources. If the terminal device has uplink data to send, it can use these resources to send PUSCH. If there is no uplink data to send, it will not send it.
  • Configuration grant type 2 first receive the configuredGrantConfig high-level information unit that does not include rrc-ConfiguredUplinkGrant, and then effectively activate the semi-persistent scheduling of the uplink grant in the DCI.
  • some semi-persistent resources are configured by the upper layer, and then deactivated by physical layer signaling.
  • the terminal device When activated, if the terminal device has uplink data to send, it can use these resources for PUSCH transmission. If not activated, these resources cannot in use.
  • a PUSCH can contain multiple repetitions, each repetition transmits the same transport block (TB), the redundancy version can be the same or different, and one repetition carries a transport block cyclic redundancy check code (transport block cyclic redundancy check, TB CRC), and the unit of rate matching is also a repetition.
  • transport block cyclic redundancy check transport block cyclic redundancy check, TB CRC
  • Fig. 2 is a schematic diagram of a repetition type in the embodiment of the present application.
  • k transmission opportunities correspond to consecutive k time slots (slots), and one transmission opportunity in each time slot can be used
  • a repetition of PUSCH is transmitted, and the start symbol and duration of each transmission opportunity (pattern filling part in FIG. 2 ) in each time slot are the same.
  • TDD time-division duplexing
  • K repetitions of a PUSCH transmission are nominal repetitions, that is to say, a PUSCH transmission corresponds to k time slots, regardless of whether each of the k time slots can be actually used. to send PUSCH repetitions.
  • K effective time slots may be determined based on radio resource control (radio resource control, RRC) configuration and scheduling DCI.
  • RRC radio resource control
  • K effective time slots may be determined based on RRC configuration.
  • K effective time slots can be determined based on RRC configuration and activated DCI.
  • One type is determined according to the RRC configuration, and the second type is determined according to a dynamic indication, that is, caused by a physical layer indication, such as CI.
  • the determination of the effective time slot may only consider the RRC signaling, without considering other physical layer indications other than the DCI for this PUSCH scheduling.
  • Fig. 3 is a schematic diagram of another repetition type in the embodiment of the present application. As shown in (a) in FIG. 3 , if there is an RRC-configured high-priority uplink channel/signal transmission overlapping with the PUSCH resource in the second repeated time slot, then the time slot is not a valid time slot.
  • each repetition corresponds to N consecutive time slots
  • K transmission opportunities correspond to N*K consecutive time slots
  • the available resources in each time slot The start symbol and duration are the same.
  • One repetition bears one TB CRC, that is, up to N time slots bears one TB CRC, thereby reducing the signaling overhead of the TB CRC.
  • rate matching can also be performed in units of N time slots. It should be noted that the time slots here may be all time slots or valid time slots.
  • Fig. 5 is a schematic diagram of time domain resource configuration in the embodiment of the present application.
  • high-level configuration resources may include the following parameters:
  • Period (periodicity): It means the distance between two adjacent groups of transmission opportunities.
  • the minimum value of periodicity is 2 symbols, and the maximum value can be 5120 time slots.
  • the number of repetitions repK that is, the number of transmission opportunities included in each group of transmission opportunities, that is, the number of repetitions, which may also be the number of time slots or the number of effective time slots.
  • repK may be referred to as K for short, and the value of K may include ⁇ 1, 2, 4, 8 ⁇ , and the values that may be supported in the future may include ⁇ 1, 2, 3, 4, 7, 8, 12, 16, 20, 24, 28, 32 ⁇ , K may also take other values, which are not limited in this embodiment of the present application.
  • repK-RV repK-RV
  • a transmission block can only be transmitted from the first transmission opportunity of K repetitions, otherwise, a transmission block is transmitted as described below:
  • ConfiguredGrantConfig does not configure the parameter repK-RV, and the transmitted RV version is set to 0.
  • the initial transmission can only be on the first transmission opportunity of K repetitions, as shown in Figure 6, which is a redundant transmission in the embodiment of this application Schematic diagram of the remaining version sequence.
  • each repetition includes N time slots, the RVs used by the N time slots are all the same.
  • an RV of 0 was used in the first replicate
  • an RV of 3 was used in the second replicate
  • an RV of 3 was used in the third replicate
  • an RV of 1 was used in the fourth replicate.
  • each repetition includes N time slots, the RVs used by the N time slots are all the same.
  • the RV used in the first repetition was 0, the RV used in the second repetition was 3, the RV used in the third repetition was 2, and the RV used in the fourth repetition was 1,
  • the RV used in the fifth replicate was 0, the RV used in the sixth replicate was 3, the RV used in the seventh replicate was 2, and the RV used in the eighth replicate was 1.
  • each repetition includes N time slots, the RVs used by the N time slots are all the same.
  • the 16 repetitions can be used cyclically according to the RV sequence ⁇ 0, 2, 3, 1 ⁇ .
  • each repetition includes N time slots, the RVs used by the N time slots are all the same.
  • the other is that the first repetition and the second repetition do not transmit PUSCH, and the initial transmission starts from the third repetition, then the RV used in the third repetition is 0, and the RV used in the fourth repetition is 3.
  • the repeated transmission situations may include the following four types:
  • the first is that the initial transmission starts from the first repetition, then the RV used in the first repetition is 0, the RV used in the second repetition is 3, the RV used in the third repetition is 0, and the fourth The RV used in the replicate was 3, the RV used in the fifth replicate was 0, the RV used in the sixth replicate was 3, the RV used in the seventh replicate was 0, and the RV used in the eighth replicate was 3.
  • the second is that the first repetition and the second repetition do not transmit PUSCH, and the initial transmission starts from the third repetition, then the RV used by the third repetition is 0, the RV used by the fourth repetition is 3, and the fifth repetition An RV of 0 was used in the replicates, an RV of 3 was used in the sixth replicate, an RV of 0 was used in the seventh replicate, and an RV of 3 was used in the eighth replicate.
  • the third is that PUSCH is not transmitted from the first repetition to the fourth repetition, and the initial transmission starts from the fifth repetition, then the RV used in the fifth repetition is 0, the RV used in the sixth repetition is 3, and the RV used in the sixth repetition is 3.
  • An RV of 0 was used in seven replicates and an RV of 3 was used in the eighth replicate.
  • the fourth type is that the PUSCH is not transmitted from the first repetition to the sixth repetition, the initial transmission starts from the seventh repetition, the RV used in the seventh repetition is 0, and the RV used in the eighth repetition is 3.
  • FIG. 8 is a schematic diagram of another redundancy version sequence in the embodiment of the present application.
  • repeated transmission situations may include the following two types:
  • the other is that the PUSCH is not transmitted in the first repetition, and the RV used in the second repetition is 0.
  • the repeated transmission situations may include the following four types:
  • the first is that the initial transmission starts from the first repetition, and the RVs used from the first repetition to the fourth repetition are all 0.
  • the second type is that the first repetition does not transmit the PUSCH, and the initial transmission starts from the second repetition, then the RVs used in the second repetition to the fourth repetition are all 0.
  • the third type is that the PUSCH is not transmitted in the first repetition and the second repetition, and the initial transmission starts from the third repetition, and the RVs used in the third repetition to the fourth repetition are all 0.
  • the fourth type is that the PUSCH is not transmitted from the first repetition to the third repetition, and the initial transmission starts from the fourth repetition, so the RVs used in the fourth repetition are all 0.
  • the repeated transmission situations may include the following seven types:
  • the first is that the initial transmission starts from the first repetition, and the RVs used from the first repetition to the eighth repetition are all 0.
  • the second type is that the first repetition does not transmit the PUSCH, and the initial transmission starts from the second repetition, then the RVs used in the second repetition to the eighth repetition are all 0.
  • the third type is that the PUSCH is not transmitted in the first repetition and the second repetition, and the initial transmission starts from the third repetition, and the RVs used in the third repetition to the eighth repetition are all 0.
  • the fourth type is that the PUSCH is not transmitted from the first repetition to the third repetition, and the initial transmission starts from the fourth repetition, so the RVs used in the fourth repetition to the eighth repetition are all 0.
  • the fifth is that the PUSCH is not transmitted from the first repetition to the fourth repetition, and the initial transmission starts from the fifth repetition, so the RVs used in the fifth repetition to the eighth repetition are all 0.
  • the sixth type is that the PUSCH is not transmitted from the first repetition to the fifth repetition, and the initial transmission starts from the sixth repetition, so the RVs used in the sixth repetition to the eighth repetition are all 0.
  • the seventh is that the PUSCH is not transmitted from the first repetition to the sixth repetition, and the initial transmission starts from the seventh repetition, so the RVs used in the seventh repetition to the eighth repetition are all 0.
  • the terminal device can send it on the configured resources; if the terminal device has no data to send, it does not need to send it. Whether the terminal device has sent data or not, the network device needs to perform blind detection.
  • the network device can configure different demodulation reference signal (demodulation reference signal, DMRS) parameters for different terminal devices, so that the network device can monitor different DMRSs of different terminal devices, and detect whether the terminal device has data sent.
  • DMRS demodulation reference signal
  • configuring authorized PUSCH can start PUSCH transmission from the repetition with RV of 0.
  • the network device needs to determine which repetition of RV is 0 for the terminal device to start sending. Therefore, the complexity of blind detection performed by the network device is increased.
  • the network device uses DMRS to judge whether there is data transmission on the transmission opportunity, and it may also cause no PUSCH transmission on a transmission opportunity, and the result of blind detection is that there is a PUSCH transmission; or, when there is a PUSCH transmission on a transmission opportunity, The result of the blind detection is that no PUSCH is sent, which leads to a decrease in PUSCH reception performance.
  • PUSCH transmission mode is applied to problems that need to be solved in configuring authorized resources.
  • the embodiment of the present application provides a communication method, in order to reduce the complexity of blind detection performed by network equipment and improve the performance of PUSCH reception.
  • Fig. 9 is a schematic interaction diagram of a communication method provided by an embodiment of the present application. As shown in FIG. 9 , the method may include steps 910 to 940 .
  • the network device sends a first parameter and a second parameter to the terminal device, where the first parameter and the second parameter are any two of the following parameters: the number of valid time slots P in a configuration authorization period; The number of repetitions K in a configuration authorization cycle; the number of effective time slots N for each repetition, N is an integer greater than or equal to 2, and each repetition carries a transport block cyclic redundancy check code TB CRC.
  • time slots in the full text can be replaced by time slots, that is, it does not distinguish whether they are valid or not.
  • N the number of effective time slots for each repetition.
  • the first parameter is the number of valid time slots P in a configuration authorization period
  • the second parameter is the number of repetitions K in a configuration authorization period
  • the first parameter is the effective time slots in a configuration authorization period
  • the number of time slots P, the second parameter is the number of effective time slots N for each repetition; or, the first parameter is the number of effective time slots P in a configuration authorization period, and the second parameter is the effective time slots for each repetition Number of slots N.
  • the first parameter and the second parameter may be carried in the radio resource control RRC signaling; or, the first parameter and the second parameter are carried in the activation downlink control information DCI; or, the first parameter is carried in the RRC signaling , the second parameter is carried in the activated DCI; or, the first parameter is carried in the activated DCI, and the second parameter is carried in the RRC signaling, which is not limited in this embodiment of the present application.
  • the network device can adjust the parameters according to the real-time transmission situation, thereby increasing the flexibility of network device scheduling, and further reducing the physical layer. Signaling overhead.
  • the activated downlink control information DCI here refers to the activated downlink control information for configuring the PUSCH transmission of the grant type 2.
  • the first parameter is the number of effective time slots P in the one configuration authorization period
  • the second parameter is the number of repetitions K
  • the number of valid time slots in the one configuration authorization period is an integer multiple of the number of repetitions K
  • the number of effective time slots P in the one configuration grant period is an integer multiple of the number of effective time slots N in each repetition .
  • the number of effective time slots P in a configuration authorization cycle is an integer multiple of the number of repetitions K in a configuration authorization cycle or the number of effective time slots N included in each repetition, it is beneficial to reduce the complexity of calculating the initial time slot .
  • the protocol can stipulate that the number of effective time slots P in a configuration authorization period is an integer multiple of the number of repetitions K in a configuration authorization period or the number of effective time slots N included in each repetition.
  • the terminal device may consider the configuration to be invalid.
  • the effective time slots in the one configuration grant period The number of time slots is K*N.
  • the terminal device determines an initial time slot for configuring authorized PUSCH transmission according to the first parameter and the second parameter.
  • the initial time slot refers to a time slot at which the terminal device starts to transmit the PUSCH.
  • the initial time slot can be the first of the valid time slots in a configuration grant period, or the last valid time slot in a configuration grant period, or the valid time slot in a configuration grant period Other time slots, which are not limited in this embodiment of the present application.
  • the initial time slot is M*N1 distance away from the reference effective time slot.
  • the effective time slot means that the sequence number of the effective time slot differs by M*N1. It can be that the sequence number of the initial time slot is larger than the sequence number of the reference effective time slot. M*N1, it may also be that the sequence number of the reference effective time slot is M*N1 greater than the sequence number of the initial time slot.
  • the terminal device determines and configures an initial time slot for authorizing physical uplink shared channel PUSCH transmission according to the first parameter and the second parameter, including:
  • the terminal device determines an initial time slot for configuring authorized physical uplink shared channel PUSCH transmission according to the redundancy version RV sequence and the first parameter and the second parameter, and the redundancy version RV sequence is obtained by the terminal device from the Received by the above network device.
  • the terminal device may determine the initial time slot according to the first parameter and the second parameter, and determine the reused RV carried by the initial time slot according to the RV sequence.
  • the RV sequence may be received by the terminal device from the network device.
  • the RV sequence may be ⁇ 0, 0, 0, 0 ⁇ , ⁇ 0, 2, 3, 1 ⁇ , ⁇ 0, 3, 0, 3 ⁇ , etc. as mentioned above.
  • the terminal device performs the configuration authorization PUSCH transmission according to the initial time slot.
  • the terminal device performs configuration authorization PUSCH transmission from the initial time slot according to the initial time slot.
  • the terminal device starts from the repetition carried on the initial time slot, the terminal device performs encoding of the configuration authorization PUSCH according to each repeated RV of the configuration authorization PUSCH transmission; and performs configuration authorization PUSCH transmission according to the encoding result .
  • the repeated RV carried on the initial time slot is 0.
  • FIG. 10 is a schematic diagram of a possibility of transmitting a PUSCH provided by an embodiment of the present application.
  • the initial time slot is the first of the valid time slots in the configuration authorization period
  • the first repetition that is, the RV used for encoding the first time slot to the fourth time slot
  • the second repetitions that is, the RV used for coding the fifth to eighth time slots is 3
  • the terminal device can configure the coded repetitions to authorize PUSCH transmission.
  • the initial time slot is the fifth of the valid time slots in the configuration grant period, that is, the PUSCH is not repeatedly transmitted in the first time slot, and the RV used for coding from the fifth time slot to the eighth time slot is 0 , the terminal device can configure and authorize PUSCH transmission for the encoded second repetition.
  • one RV is used for one repetition, and the RV in the RV sequence is used cyclically for all repetitions of the configuration authorization PUSCH transmission.
  • the number of effective time slots P in a configuration authorization period is 16, and the number N of effective time slots included in each repetition is 4. It can be seen that the repetition in the configuration authorization period
  • the number K is 4 and the RV sequence is ⁇ 0, 3, 0, 3 ⁇ .
  • the initial time slot is the first of the valid time slots in the configuration grant period
  • the first valid time slot to the fourth valid time slot included in the first repetition use the same RV, That is, the RV is 0, the second reuse has an RV of 3, the third reuse has an RV of 0, and the fourth reuse has an RV of 3. It should be understood that if the configuration authorization period has more iterations, the remaining iterations may use RVs in a circular manner according to the RV sequence.
  • the network device may start from various possible initial time slots, and use the DMRS to judge whether there is data transmission on a configuration grant schedule.
  • the repetition carried on the initial time slot may be decoded according to the RV sequence.
  • RV0 when there is data to be sent on an initial time slot, and the network device determines that the repeated RV carried on the initial time slot is 0, RV0 may be directly used for decoding.
  • the network device may determine the initial time slot for PUSCH transmission after receiving the configuration authorization PUSCH, thereby reducing the complexity of blind detection of the network device.
  • the network device sends the first parameter and the second parameter to the terminal device, and the terminal device can determine and configure the initial time slot for PUSCH transmission authorization according to the first parameter and the second parameter, and perform configuration according to the initial time slot
  • the PUSCH transmission is authorized, thereby helping to reduce the complexity of blind detection of network equipment.
  • the first parameter and the second parameter are the number K of repetitions in a configuration authorization cycle and the number of valid time slots N in each repetition, or the first parameter is a configuration authorization
  • the number of effective time slots P in the cycle, and the first parameter is an integer multiple of the second parameter
  • the reference effective time slot is the first one of the effective time slots in the one configuration authorization period, and the initial time slot is the effective time slot with a distance of M*N1 effective time slots from the reference effective time slot in one configuration authorization period. time slot.
  • the reference valid time slot is the first one of the valid time slots in a configuration grant period
  • the initial time slot is 0*4 effective time slots away from the reference valid time slot
  • the effective time slot of the time slot, that is, the initial time slot is the reference effective time slot, that is, the first one of the effective time slots in a configuration grant period.
  • the reference valid time slot is the first one of the valid time slots in the configuration authorization period
  • the initial time slot is 1*4 valid time slots away from the reference valid time slot effective time slot, that is, the initial time slot is the fifth effective time slot.
  • the second parameter may be the number of time slots included in each repetition.
  • the reference effective time slot is the first one of the effective time slots in a configuration grant period
  • the initial time slot is 0*4 effective hours away from the reference effective time slot
  • the effective time slot of the slot, that is, the initial time slot is also the reference effective time slot, that is, the first one of the effective time slots in a configuration grant period.
  • the reference valid time slot is the first one of the valid time slots within a configuration grant period, and the initial time slot is 1*4 effective hours away from the reference valid time slot
  • the effective time slot of the current slot, that is, the initial time slot is the fifth effective time slot.
  • the reference valid time slot is the first one of the valid time slots in a configuration grant period, and the initial time slot is 2*4 effective hours away from the reference valid time slot
  • the effective time slot of the slot, that is, the initial time slot is the ninth effective time slot.
  • the reference effective time slot is the first one of the effective time slots in a configuration grant period, and the initial time slot is 3*4 effective hours away from the reference effective time slot
  • the effective time slot of the slot, that is, the initial time slot is the thirteenth effective time slot.
  • the first parameter is the number of effective time slots P in a configuration authorization period, and the first parameter is not an integer multiple of the second parameter
  • the reference effective time slot is the first one of the effective time slots in the one configuration authorization period, and the initial time slot is the effective time slot with a distance of M*N1 effective time slots from the reference effective time slot in one configuration authorization period.
  • time slot, M is an integer; or, the reference effective time slot is the last one of the effective time slots in the one configuration authorization period, and the initial time slot is the distance M from the reference effective time slot in one configuration authorization period *N1-1 effective time slots, M is an integer greater than or equal to 1.
  • the initial time slot is M*N1-1 distance from the reference effective time slot.
  • the effective time slot means that the sequence number of the effective time slot differs by M*N1-1. It can be that the sequence number of the initial time slot is more effective than the reference
  • the sequence number of the slot is M*N1-1 greater than that of the initial time slot, or the sequence number of the reference effective time slot is M*N1-1 greater than the sequence number of the initial time slot.
  • FIG. 11 is a schematic diagram of another possibility of PUSCH transmission provided by the embodiment of the present application.
  • the reference valid time slot is the valid time slot in the one configuration grant period
  • the first one of the slots, the initial time slot is an effective time slot that is M*N effective time slots away from the reference effective time slot within the configuration grant period.
  • the initial time slot is an effective time slot with a distance of 0*3 effective time slots from the reference effective time slot within a configuration authorization period, that is, the initial time slot is the first effective time slot Gap.
  • the initial time slot is an effective time slot that is 1*3 effective time slots away from the reference effective time slot within a configuration authorization period, that is, the initial time slot is the fourth effective time slot Gap.
  • the initial time slot is an effective time slot that is 2*3 effective time slots away from the reference effective time slot within a configuration authorization period, that is, the initial time slot is the seventh effective time slot Gap.
  • the initial time slot is an effective time slot that is 3*3 effective time slots away from the reference effective time slot within a configuration authorization period, that is, the initial time slot is the tenth effective time slot Gap.
  • the initial time slot is an effective time slot that is 4*3 effective time slots away from the reference effective time slot within a configuration authorization period, that is, the initial time slot is the thirteenth effective time slot time slot.
  • FIG. 12 is a schematic diagram of another possibility of PUSCH transmission provided by the embodiment of the present application.
  • the reference effective time slot is the effective time slot in the one configuration authorization period
  • the initial time slot is an effective time slot with a distance of M*N-1 effective time slots from the reference effective time slot within a configuration authorization period, and M is greater than or An integer equal to 1.
  • the initial time slot is an effective time slot with a distance of 1*3-1 effective time slots from the reference effective time slot within a configuration authorization period, that is, the initial time slot is the fourteenth valid time slots.
  • the initial time slot is an effective time slot that is 2*3-1 effective time slots away from the reference effective time slot within a configuration authorization period, that is, the initial time slot is the eleventh valid time slots.
  • the initial time slot is an effective time slot that is 3*3-1 effective time slots away from the reference effective time slot within a configuration authorization period, that is, the initial time slot is the eighth Valid time slot.
  • the initial time slot is an effective time slot that is 4*3-1 effective time slots away from the reference effective time slot within a configuration authorization period, that is, the initial time slot is the fifth Valid time slot.
  • the initial time slot is an effective time slot that is 5*3-1 effective time slots away from the reference effective time slot within a configuration authorization period, that is, the initial time slot is the second Valid time slot.
  • the reference valid time slot is preset; or the reference valid time slot is received by the terminal device from the network device.
  • reference effective time slot is preset, and it can be understood that the reference effective time slot is stipulated by a protocol.
  • the M A1*N2, wherein, A1 is an integer greater than or equal to 0, and N2 is the minimum period of the RV.
  • N2 is the minimum period of the RV, and the minimum period refers to the distance between two adjacent identical RVs in the RV sequence.
  • the minimum period of the RV is 1, when the RV sequence is ⁇ 0, 3, 0, 3 ⁇ , the minimum period of the RV is 2, when When the RV sequence is ⁇ 0, 3, 2, 1 ⁇ , the minimum period of the RV is 4.
  • the initial time slot is an effective time slot that is 2*4 effective time slots away from the reference time slot, that is, the ninth effective time slot in a configuration grant period, corresponding to the possible Sex B.
  • the M is greater than or equal to 0 and less than or equal to K-1, and M is an integer; or, when the first parameter and the second parameter are the number of valid time slots P in a configuration grant period and the number of valid time slots N in each repetition, the M is greater than or equal to 0 and less than or equal to floor (P/N)-1, M is an integer.
  • the repeated RV carried on the initial time slot is 0.
  • the reused RV carried on the initial time slot is 0.
  • S may start from 0 and T may start from 1. All valid time slots in a configuration authorization period are numbered starting from 0, and all valid time slots mentioned here refer to all P valid time slots or all N*K valid time slots.
  • FIG. 13 is a schematic diagram of another possibility of PUSCH transmission provided by the embodiment of the present application.
  • the third repeated RV where the initial time slot is located is the third RV in the RV sequence, that is, the RV is 0 .
  • FIG. 14 is a schematic diagram of another possibility of PUSCH transmission provided by the embodiment of the present application.
  • the first repeated RV is the second RV in the RV sequence, that is, the RV is 3.
  • the third repeated RV where the initial time slot is located is the third RV in the RV sequence, that is, the RV is 0.
  • the fourth repeated RV where the initial time slot is located is the fourth RV in the RV sequence, that is, the RV is 3.
  • the fifth repeated RV where the initial time slot is located is the first RV in the RV sequence, that is, the RV is 0.
  • This technical solution can determine the repeated RV where the initial time slot is located according to the position of the initial time slot, thereby simplifying the complexity of PUSCH transmission by the terminal equipment.
  • At least one of the repeated RVs used in all repetitions of the PUSCH transmission authorized by the configuration is 0.
  • RV0 basically contains all systematic bits, and other RVs except RV0 may only contain some systematic bits. If only other RVs are sent, decoding may not be possible. This technical solution can improve the possibility of decoding in advance.
  • the repeated RV carried on the initial time slot is not 0, it can be guaranteed that the RV used to transmit the PUSCH in the same effective time slot is the same in different possibilities, thereby reducing the blindness of the network equipment. Check the complexity.
  • the second parameter is the number of valid time slots N in each repetition, and the first parameter is not Integer multiple of the second parameter, and when the reference valid time slot is the first one of the valid time slots in the one configured authorization period, no one of the last P-floor(P/N)*N valid time slots transmitting the PUSCH; or the method further includes:
  • Encoding is performed according to the first RV and the number of effective time slots N, where the first RV is the repeated RV carried on the last P-floor(P/N)*N effective time slots;
  • the encoding result is transmitted in the last P-floor(P/N)*N effective time slots from front to back.
  • the encoding result is transmitted in the last P-floor(P/N)*N effective time slots from the front to the back here, which means that from the last P-floor(P/N)* The first valid time slot among the N valid time slots starts transmission.
  • the second parameter may be the number of valid time slots in each repetition
  • the first parameter is not an integer multiple of the second parameter
  • the reference valid time slot is the first valid time slot in the configuration grant period.
  • the repeated RV carried on the time slot is 3, that is, the first RV is 3, then the last effective time slot is also configured to encode the authorized PUSCH, and the encoded result is also transmitted in the last effective time slot, At this time, part of the content may be transmitted, so that resources can be effectively used and resource utilization can be improved.
  • the first parameter is the number of effective time slots P in a configuration authorization period
  • the second parameter is the number K of repetitions in a configuration authorization period
  • the first parameter is not the second Integer multiple of the parameter
  • the reference effective time slot is the first of the effective time slots in the one configured grant period
  • the PUSCH is not transmitted in the last P-floor(P/K)*K effective time slots , or the method further includes:
  • Encoding of the configuration authorization PUSCH is performed according to the first RV and the number of effective time slots N, where the first RV is the repeated RV carried on the last P-floor(P/K)*K effective time slots;
  • the encoding result is transmitted in the last P-floor(P/K)*K effective time slots from front to back.
  • Fig. 15 is a schematic block diagram of a communication device provided by an embodiment of the present application.
  • the communication device 1500 may include a transceiver unit 1510 and a processing unit 1520 .
  • the transceiving unit 1510 is configured to receive the first parameter and the second parameter sent by the network device; the processing unit 1520 is configured to determine the initial configuration of the authorized physical uplink shared channel PUSCH transmission according to the first parameter and the second parameter time slot; the processing unit 1520 is further configured to perform the configuration authorization PUSCH transmission according to the initial time slot, wherein the first parameter and the second parameter are any two of the following parameters: a configuration The number of valid time slots P in the authorization period; the number K of repetitions in a configured authorization period; the number of effective time slots N in each repetition, N is an integer greater than or equal to 2, and each repetition carries a transport block Cyclic redundancy check code. .
  • the first parameter and the second parameter are carried in radio resource control RRC signaling; or, the first parameter and the second parameter are carried in activation downlink control information DCI; or, the The first parameter is carried in the RRC signaling, and the second parameter is carried in the activated DCI; or, the first parameter is carried in the activated DCI, and the second parameter is carried in the RRC signaling.
  • the effective time slots in the one configuration authorization period is an integer multiple of the number of repetitions K;
  • the number of effective time slots P in the one configuration grant period is an integer multiple of the number of effective time slots N in each repetition .
  • the number of valid time slots in the one configuration grant period It is K*N.
  • the initial time slot is an effective time slot with a distance of M*N1 effective time slots from the reference effective time slot within the configuration authorization period
  • M is an integer
  • the initial time slot is an effective time slot with a distance of M*N1-1 effective time slots from the reference effective time slot within a configuration grant period
  • M is an integer greater than or equal to 1
  • N1 floor(P/K) or N
  • the first parameter and the second parameter are the number of repetitions K in a configuration authorization period and the number of valid time slots N in each repetition, or the first parameter is a configuration authorization period
  • the number of effective time slots P in and the first parameter is an integer multiple of the second parameter
  • the reference effective time slot is the first one of the effective time slots in the one configuration authorization period, and the initial time slot is the effective time slot with a distance of M*N1 effective time slots from the reference effective time slot in one configuration authorization period. time slot.
  • the first parameter is the number of effective time slots P in a configuration authorization period, and the first parameter is not an integer multiple of the second parameter
  • the reference effective time slot is the first one of the effective time slots in the one configuration authorization period, and the initial time slot is the effective time slot with a distance of M*N1 effective time slots from the reference effective time slot in one configuration authorization period.
  • time slot, M is an integer; or, the reference effective time slot is the last one of the effective time slots in the one configuration authorization period, and the initial time slot is the distance M from the reference effective time slot in one configuration authorization period *N1-1 effective time slots, M is an integer greater than or equal to 1.
  • the reference valid time slot is preset; or the reference valid time slot is received by the terminal device from the network device.
  • the processing unit 1520 is specifically configured to: determine and configure an initial time slot for authorizing physical uplink shared channel PUSCH transmission according to a redundancy version RV sequence and the first parameter and the second parameter, the redundancy version The RV sequence is received by the terminal device from the network device.
  • the M A1*N2, wherein, A1 is an integer greater than or equal to 0, and N2 is the minimum period of the RV.
  • one RV is used for one repetition, and the RV in the RV sequence is used cyclically for all repetitions of the configuration authorization PUSCH transmission.
  • the repeated RV carried on the initial time slot is 0.
  • the M is greater than or equal to 0 and less than or equal to K-1, and M is an integer; or, when the first parameter and the second parameter are the number of valid time slots P in a configuration grant period and the number of valid time slots N in each repetition, the M is greater than or equal to 0 and less than or equal to floor (P/N)-1, M is an integer.
  • the processing unit 1520 is specifically configured to: start from the repetition of the initial time slot bearer, perform encoding of the configured authorized PUSCH according to each repeated RV of the configured authorized PUSCH transmission; As a result, the authorized PUSCH transmission is performed.
  • the repeated RV carried on the initial time slot is 0.
  • the processing unit 1520 is further configured to:
  • Encoding the configuration authorization PUSCH is performed according to the first RV and the number of effective time slots N, where the first RV is the repeated RV carried on the last P-floor(P/N)*N effective time slots;
  • the encoding result is transmitted in the last P-floor(P/N)*N effective time slots from front to back.
  • the processing unit 1520 is also used to:
  • Encoding of the configuration authorization PUSCH is performed according to the first RV and the number of effective time slots N, where the first RV is the repeated RV carried on the last P-floor(P/K)*K effective time slots;
  • the encoding result is transmitted in the last P-floor(P/K)*K effective time slots from front to back.
  • An embodiment of the present application also provides a communication device, including at least one processor, the at least one processor is coupled to at least one memory, and the at least one processor is configured to execute computer programs or instructions stored in the at least one memory, The communication method described in any one of the foregoing embodiments is executed.
  • the embodiment of the present application also provides a chip, the chip includes a processor and an interface circuit, the processor and the interface circuit are coupled to each other, the interface circuit is used to communicate with other devices, and the processor The signal is processed such that the communication method as described in any one of the preceding embodiments is performed.
  • the embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium stores computer instructions, and when the computer instructions are run on the computer, the communication method as described in any one of the preceding embodiments be executed.
  • An embodiment of the present application further provides a computer program product, including computer program code, when the computer program code is run on a computer, the communication method described in any one of the foregoing embodiments is executed.
  • an embodiment of the present application also provides a device, which may specifically be a chip, a component or a module, and the device may include a connected processor and a memory; wherein the memory is used to store computer-executable instructions, and when the device is running, The processor can execute the computer-executable instructions stored in the memory, so that the chip executes the permission checking method in the above method embodiments.
  • the communication device, computer-readable storage medium, computer program product or chip provided in this embodiment is all used to execute the corresponding method provided above, therefore, the beneficial effects it can achieve can refer to the above-mentioned The beneficial effects of the corresponding method will not be repeated here.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种通信方法和通信装置,该通信方法包括:终端设备接收所述网络设备发送的第一参数和第二参数;所述终端设备根据所述第一参数和所述第二参数确定配置授权物理上行共享信道PUSCH传输的初始时隙;所述终端设备根据所述初始时隙,进行所述配置授权PUSCH传输;其中,所述第一参数和所述第二参数为如下参数中的任意两个:一个配置授权周期内的有效时隙数P;一个配置授权周期内的重复数量K;每个重复的有效时隙数N,N为大于或等于2的整数,所述每个重复中承载一个传输块循环冗余校验码。该技术方案可以在一定程度上降低网络设备进行盲检的复杂度。

Description

通信方法和通信装置
本申请要求申请日2021年09月30日递交中国国家知识产权局的,申请号为CN202111160969.1的中国专利申请的优先权,其通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,并且更具体地,涉及一种通信方法和通信装置。
背景技术
目前,在配置授权物理上行共享信道(physical uplink shared channel,PUSCH)的传输中,一个时隙承载一个PUSCH重复,一个时隙承载一个传输块循环冗余校验码。在一个传输周期内,配置授权物理PUSCH可以从冗余版本(redundancy version,RV)为0的重复所在的时隙开始PUSCH传输,这种情况下,网络设备在接收PUSCH时,需要判断终端设备从哪个RV为0的重复所在的时隙开始发送。
为了增强上行覆盖,可以考虑在多个时隙上承载一个PUSCH重复,在多个时隙上承载一个传输块循环冗余校验码。在这种新的传输方式下,在考虑资源利用效率和网络侧设备的盲检复杂度的情况下,如何确定PUSCH传输的初始时隙,如何设定每个PUSCH重复的RV,成为了新的PUSCH传输方式应用于配置授权资源需要解决的问题。
发明内容
本申请实施例提供一种通信方法和通信装置,以期降低网络设备盲检的复杂度。
第一方面,提供了一种通信方法,终端设备接收所述网络设备发送的第一参数和第二参数;所述终端设备根据所述第一参数和所述第二参数确定配置授权物理上行共享信道PUSCH传输的初始时隙;所述终端设备根据所述初始时隙,进行所述配置授权PUSCH传输;其中,所述第一参数和所述第二参数为如下参数中的任意两个:一个配置授权周期内的有效时隙数P;一个配置授权周期内的重复数量K;每个重复的有效时隙数N,N为大于或等于2的整数,所述每个重复中承载一个传输块循环冗余校验码。
基于本申请实施例,网络设备向终端设备发送第一参数和第二参数,终端设备可以根据该第一参数和第二参数确定配置授权PUSCH传输的初始时隙,并根据该初始时隙进行配置授权PUSCH传输,从而有利于降低网络设备盲检的复杂度。
结合第一方面,在第一方面的某些实现方式中,所述第一参数和所述第二参数承载在无线资源控制RRC信令中;或者,所述第一参数和所述第二参数承载 在激活下行控制信息DCI中;或者,所述第一参数承载在RRC信令中,所述第二参数承载在激活DCI中;或者,所述第一参数承载在激活DCI中,所述第二参数承载在RRC信令中。
结合第一方面,在第一方面的某些实现方式中,当所述第一参数为所述一个配置授权周期内的有效时隙数P时,若所述第二参数为所述重复数量K,则所述一个配置授权周期内的有效时隙数P为所述重复数量K的整数倍;
若所述第二参数为所述每个重复中的有效时隙数N,则所述一个配置授权周期内的有效时隙数P为所述每个重复中的有效时隙数N的整数倍。
基于本申请实施例,一个配置授权周期内的有效时隙数P可以为重复数量K、或有效时隙数N的整数倍,从而可以降低终端设备确定初始时隙的复杂度。
结合第一方面,在第一方面的某些实现方式中,当所述第一参数和所述第二参数为所述重复数量K和所述每个重复中的有效时隙数N时,则所述一个配置授权周期内的有效时隙数为K*N。
结合第一方面,在第一方面的某些实现方式中,所述初始时隙为一个配置授权周期内与参考有效时隙距离M*N1个有效时隙的有效时隙,其中,M为整数,当第一参数或第二参数为每个重复的有效时隙数N时,N1=N,当第一参数和第二参数中一个是一个配置授权周期内的有效时隙数P,另一个是一个配置授权周期内的重复的数量K时,N1=floor(P/K)或者N1=ceiling(P/K);或者,所述初始时隙为一个配置授权周期内与参考有效时隙距离M*N1-1个有效时隙的有效时隙,其中,M为大于或等于1的整数,当第一参数或第二参数为每个重复的有效时隙数N时,N1=N,当第一参数和第二参数中一个是一个配置授权周期内的有效时隙数P,另一个是一个配置授权周期内的重复的数量K时,N1=floor(P/K)或者N1=ceiling(P/K)。基于本申请实施例,可以确定初始时隙的位置,从而可以有利于降低网络设备进行盲检的复杂度。
结合第一方面,在第一方面的某些实现方式中,当所述第一参数和所述第二参数为一个配置授权周期内的重复数量K和每个重复中的有效时隙数N,或者,所述第一参数为一个配置授权周期内的有效时隙数P,且所述第一参数为所述第二参数的整数倍时,
所述参考有效时隙为所述一个配置授权周期内的有效时隙中的第一个,所述初始时隙为一个配置授权周期内与参考有效时隙距离M*N1个有效时隙的有效时隙。
基于本申请实施例,可以确定初始时隙的位置,从而可以有利于降低网络设备进行盲检的复杂度。
结合第一方面,在第一方面的某些实现方式中,当所述第一参数为一个配置授权周期内的有效时隙数P,且所述第一参数不为所述第二参数的整数倍时,
所述参考有效时隙为所述一个配置授权周期内的有效时隙中的第一个,所述初始时隙为一个配置授权周期内与参考有效时隙距离M*N1个有效时隙的有效时隙,其中,M为整数;或者,所述参考有效时隙为所述一个配置授权周期内 的有效时隙中的最后一个,所述初始时隙为一个配置授权周期内与参考有效时隙距离M*N1-1个有效时隙的有效时隙,M为大于或等于1的整数。
基于本申请实施例,可以确定初始时隙的位置,从而可以有利于降低网络设备进行盲检的复杂度。
结合第一方面,在第一方面的某些实现方式中,所述参考有效时隙为预设的;或者所述参考有效时隙是所述终端设备从所述网络设备接收的。
应理解,本申请实施例中参考有效时隙为预设的,可以理解为该参考有效时隙为协议规定的。
结合第一方面,在第一方面的某些实现方式中,所述终端设备根据所述第一参数和所述第二参数确定配置授权物理上行共享信道PUSCH传输的初始时隙,包括:
所述终端设备根据冗余版本RV序列和所述第一参数和所述第二参数确定配置授权物理上行共享信道PUSCH传输的初始时隙,所述冗余版本RV序列是所述终端设备从所述网络设备接收的。
基于本申请实施例,终端设备根据第一参数和第二参数可以确定初始时隙,并可以根据RV序列确定该初始时隙上使用的RV。
结合第一方面,在第一方面的某些实现方式中,所述M=A1*N2,其中,A1为大于或等于0的整数,N2为所述RV的最小周期。
结合第一方面,在第一方面的某些实现方式中,一个重复使用一个RV,所述配置授权PUSCH传输的所有重复循环使用所述RV序列中的RV。
结合第一方面,在第一方面的某些实现方式中,所述初始时隙上承载的重复的RV为0。
基于本申请实施例,RV0中基本包括全部系统比特,从而可以提升提前译码成功的可能性。
结合第一方面,在第一方面的某些实现方式中,当所述第一参数或所述第二参数为一个配置授权周期内的重复数量K时,所述M大于或等于0,且小于或等于K-1,M为整数;或者,当所述第一参数和所述第二参数为一个配置授权周期内的有效时隙数P和每个重复中的有效时隙数N时,所述M大于或等于0,且小于或等于floor(P/N)-1,M为整数。
结合第一方面,在第一方面的某些实现方式中,所述根据所述初始时隙,进行配置授权PUSCH传输,包括:从所述初始时隙承载的重复开始,根据所述配置授权PUSCH传输的每个重复的RV进行所述配置授权PUSCH的编码;根据所述编码的结果进行重复的配置授权PUSCH的传输。
结合第一方面,在第一方面的某些实现方式中,所述初始时隙上承载的重复的RV为0。
结合第一方面,在第一方面的某些实现方式中,所述初始时隙上承载的重复的RV为RV序列中的第T个RV,T=floor(S/N)+1,S为初始时隙在一个配置授权周期内的有效时隙中的序号。
该技术方案可以确定初始时隙所使用的RV。
结合第一方面,在第一方面的某些实现方式中,在所述初始时隙承载的重复的RV不为0的情况下,所述配置授权PUSCH传输的所有重复至少存在一个重复使用的RV为0。
基于本申请实施例,RV0中基本包含全部系统比特,而其他的RV中可能只包括部分系统比特,如果仅发送其他的RV,可能导致无法译码。该技术方案可以提升提前译码的可能性。
结合第一方面,在第一方面的某些实现方式中,当所述第一参数为一个配置授权周期内的有效时隙数P,所述第二参数为所述每个重复中的有效时隙数N,且所述第一参数不为所述第二参数的整数倍,且参考有效时隙为所述一个配置授权周期内的有效时隙中的第一个时,最后P-floor(P/N)*N个有效时隙中不传输所述PUSCH;或者,所述方法还包括:根据第一RV序列和所述有效时隙数N进行所述配置授权PUSCH的编码,所述第一RV为最后P-floor(P/N)*N个有效时隙上承载的重复的RV;将所述编码的结果从前往后在最后P-floor(P/N)*N个有效时隙中传输。
该技术方案中,当不在最后不满一个重复的有效时隙中传输PUSCH时,使得配置授权周期内的PUSCH传输过程简单。当在最后不满一个重复的有效时隙中传输PUSCH时,使得资源利用率提高。
结合第一方面,在第一方面的某些实现方式中,当所述第一参数为一个配置授权周期内的有效时隙数P,第二参数为一个配置授权周期内的重复数量K,且所述第一参数不为所述第二参数的整数倍,且参考有效时隙为所述一个配置授权周期内的有效时隙中的第一个时,最后P-floor(P/K)*K个有效时隙中不传输所述PUSCH;或者,所述方法还包括:根据第一RV序列和所述重复数量K进行所述配置授权PUSCH的编码;根据所述编码的结果在所述不满一个重复的有效时隙中传输PUSCH。
该技术方案中,当不在最后不满一个重复的有效时隙中传输PUSCH时,使得配置授权周期内的PUSCH传输过程简单。当在最后不满一个重复的有效时隙中传输PUSCH时,使得资源利用率提高。
第二方面,提供一种通信装置,包括:
收发单元,用于接收网络设备发送的第一参数和第二参数;
处理单元,用于根据所述第一参数和所述第二参数确定配置授权物理上行共享信道PUSCH传输的初始时隙;
所述处理单元,还用于根据所述初始时隙,进行所述配置授权PUSCH传输。
结合第二方面,在第二方面的某些实现方式中,所述第一参数和所述第二参数承载在无线资源控制RRC信令中;或者,所述第一参数和所述第二参数承载在激活下行控制信息DCI中;或者,所述第一参数承载在RRC信令中,所述第二参数承载在激活DCI中;或者,所述第一参数承载在激活DCI中,所述第二参数承载在RRC信令中。
结合第二方面,在第二方面的某些实现方式中,当所述第一参数为所述一个配置授权周期内的有效时隙数P时,若所述第二参数为所述重复数量K,则所述一个配置授权周期内的有效时隙数P为所述重复数量K的整数倍;
若所述第二参数为所述每个重复中的有效时隙数N,则所述一个配置授权周期内的有效时隙数P为所述每个重复中的有效时隙数N的整数倍。
结合第二方面,在第二方面的某些实现方式中,当所述第一参数和所述第二参数为所述重复数量K和所述每个重复中的有效时隙数N时,则所述一个配置授权周期内的有效时隙数为K*N。
结合第二方面,在第二方面的某些实现方式中,所述初始时隙为一个配置授权周期内与参考有效时隙距离M*N1个有效时隙的有效时隙,其中,M为整数,当第一参数或第二参数为每个重复的有效时隙数N时,N1=N,当第一参数和第二参数中一个是一个配置授权周期内的有效时隙数P,另一个是一个配置授权周期内的重复的数量K时,N1=floor(P/K)或者N1=ceiling(P/K);或者,所述初始时隙为一个配置授权周期内与参考有效时隙距离M*N1-1个有效时隙的有效时隙,其中,M为大于或等于1的整数,当第一参数或第二参数为每个重复的有效时隙数N时,N1=N,当第一参数和第二参数中一个是一个配置授权周期内的有效时隙数P,另一个是一个配置授权周期内的重复的数量K时,N1=floor(P/K)或者N1=ceiling(P/K)。
结合第二方面,在第二方面的某些实现方式中,当所述第一参数和所述第二参数为一个配置授权周期内的重复数量K和每个重复中的有效时隙数N,或者,所述第一参数为一个配置授权周期内的有效时隙数P,且所述第一参数为所述第二参数的整数倍时,
所述参考有效时隙为所述一个配置授权周期内的有效时隙中的第一个,所述初始时隙为一个配置授权周期内与参考有效时隙距离M*N1个有效时隙的有效时隙。
结合第二方面,在第二方面的某些实现方式中,当所述第一参数为一个配置授权周期内的有效时隙数P,且所述第一参数不为所述第二参数的整数倍时,
所述参考有效时隙为所述一个配置授权周期内的有效时隙中的第一个,所述初始时隙为一个配置授权周期内与参考有效时隙距离M*N1个有效时隙的有效时隙,M为整数;或者,所述参考有效时隙为所述一个配置授权周期内的有效时隙中的最后一个,所述初始时隙为一个配置授权周期内与参考有效时隙距离M*N1-1个有效时隙的有效时隙,M为大于或等于1的整数。
结合第二方面,在第二方面的某些实现方式中,所述参考有效时隙为预设的;或者所述参考有效时隙是所述终端设备从所述网络设备接收的。
结合第二方面,在第二方面的某些实现方式中,所述处理单元具体用于:根据冗余版本RV序列和所述第一参数和所述第二参数确定配置授权物理上行共享信道PUSCH传输的初始时隙,所述冗余版本RV序列是所述终端设备从所述网络设备接收的。
结合第二方面,在第二方面的某些实现方式中,所述M=A1*N2,其中,A1为大于或等于0的整数,N2为所述RV的最小周期。
结合第二方面,在第二方面的某些实现方式中,一个重复使用一个RV,所述配置授权PUSCH传输的所有重复循环使用所述RV序列中的RV。
结合第二方面,在第二方面的某些实现方式中,所述初始时隙上承载的重复的RV为0。
结合第二方面,在第二方面的某些实现方式中,当所述第一参数或所述第二参数为一个配置授权周期内的重复数量K时,所述M大于或等于0,且小于或等于K-1,M为整数;或者,当所述第一参数和所述第二参数为一个配置授权周期内的有效时隙数P和每个重复中的有效时隙数N时,所述M大于或等于0,且小于或等于floor(P/N)-1,M为整数。
结合第二方面,在第二方面的某些实现方式中,所述处理单元具体用于:从所述初始时隙承载的重复开始,根据所述配置授权PUSCH传输的每个重复的RV进行所述配置授权PUSCH的编码;根据所述编码的结果进行所述配置授权PUSCH传输。
结合第二方面,在第二方面的某些实现方式中,所述初始时隙上承载的重复的RV为0。
结合第二方面,在第二方面的某些实现方式中,所述初始时隙上承载的重复的RV为RV序列中的第T个RV,T=floor(S/N)+1,S为初始时隙在一个配置授权周期内的有效时隙中的序号。
结合第二方面,在第二方面的某些实现方式中,在所述初始时隙承载的重复的RV不为0的情况下,所述配置授权PUSCH传输的所有重复至少存在一个重复使用的RV为0。
结合第二方面,在第二方面的某些实现方式中,当所述第一参数为一个配置授权周期内的有效时隙数P,所述第二参数为所述每个重复中的有效时隙数N,且所述第一参数不为所述第二参数的整数倍,且参考有效时隙为所述一个配置授权周期内的有效时隙中的第一个时,最后P-floor(P/N)*N个有效时隙中不传输所述PUSCH;或者所述处理单元还用于:
根据第一RV序列和所述有效时隙数N进行所述配置授权PUSCH的编码,所述第一RV为最后P-floor(P/N)*N个有效时隙上承载的重复的RV;
将所述编码的结果从前往后在最后P-floor(P/N)*N个有效时隙中传输。
结合第二方面,在第二方面的某些实现方式中,当所述第一参数为一个配置授权周期内的有效时隙数P,第二参数为一个配置授权周期内的重复数量K,且所述第一参数不为所述第二参数的整数倍,且参考有效时隙为所述一个配置授权周期内的有效时隙中的第一个时,最后P-floor(P/K)*K个有效时隙中不传输所述PUSCH;或者所述处理单元还用于:
根据第一RV序列和有效时隙数N进行所述配置授权PUSCH的编码,所述第一RV为最后P-floor(P/K)*K个有效时隙上承载的重复的RV;
将所述编码的结果从前往后在最后P-floor(P/K)*K个有效时隙中传输PUSCH。
第三方面,提供了一种通信装置,包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合,所述至少一个处理器用于执行所述至少一个存储器中存储的计算机程序或指令,使得如上述第一方面及其任一种可能的实现方式中所述的通信方法被执行。
第四方面,提供了一种芯片,所述芯片包括处理器和接口电路,所述处理器和所述接口电路之间相互耦合,所述接口电路用于与其他设备进行通信,所述处理器处理所述信号,使得如上述第一方面及其任一种可能的实现方式中所述的通信方法被执行。
第五方面,提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得如上述第一方面及其任一种可能的实现方式中所述的通信方法被执行。
第六方面,提供一种计算机程序产品,包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得如上述第一方面及其任一种可能的实现方式中所述的通信方法被执行。
附图说明
图1是本申请实施例中的通信系统的架构示意图。
图2是本申请实施例中的一种重复类型的示意图。
图3是本申请实施例中的另一种重复类型的示意图。
图4是本申请实施例中的多时隙传输块的示意图。
图5是本申请实施例中的时域资源配置的示意图。
图6是本申请实施例中的一种冗余版本序列的示意图。
图7是本申请实施例中的另一种冗余版本序列的示意图。
图8是本申请实施例中的另一种冗余版本序列的示意图。
图9是本申请实施例提供的一种通信方法的示意性交互图。
图10是本申请实施例提供的一种传输PUSCH的可能性的示意图。
图11是本申请实施例提供的另一种传输PUSCH的可能性的示意图。
图12是本申请实施例提供的另一种传输PUSCH的可能性的示意图。
图13是本申请实施例提供的另一种传输PUSCH的可能性的示意图。
图14是本申请实施例提供的另一种传输PUSCH的可能性的示意图。
图15是本申请实施例提供的一种通信装置的示意性框图。
具体实施方式
下面将结合附图,对本申请实施例中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯 (global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)系统或新无线(new radio,NR)等。
本申请实施例中的终端设备可以指用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台(mobile station,MS)、远方站、远程终端、移动设备、用户终端、终端、移动终端(mobile terminal,MT)、无线通信设备、用户代理或用户装置等。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等。终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等,本申请实施例对此并不限定。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是全球移动通讯(global system of mobile communication,GSM)系统或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的基站(nodeB,NB),还可以是LTE系统中的演进型基站(evolutional nodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、Wi-Fi系统中的接入节点、车载设备、可穿戴设备以及5G、6G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
图1是本申请实施例中的通信系统的架构示意图。
如图1所示,该通信系统可以包括核心网设备110、无线接入网设备120和至少一个终端设备131、132。终端设备131、132通过无线的方式与无线接入网设备120相连,无线接入网设备120通过无线或有线方式与核心网设备110连接。核心网设备110与无线接入网设备120可以是独立的不同的物理设备,也可以是 将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端设备131、132可以是固定位置的,也可以是可移动的。图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备(图1中未示出)。本申请的实施例对该移动通信系统中包括的核心网设备、无线接入网设备和终端设备的数量不做限定。
无线接入网设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和卫星上。本申请的实施例对无线接入网设备和终端设备的应用场景不做限定。
本申请的实施例可以适用于下行信号传输,也可以适用于上行信号传输,还可以适用于设备到设备(device to device,D2D)的信号传输。对于下行信号传输,发送设备是无线接入网设备,对应的接收设备是终端设备。对于上行信号传输,发送设备是终端设备,对应的接收设备是无线接入网设备。对于D2D的信号传输,发送设备是终端设备,对应的接收设备也是终端设备。本申请的实施例信号的传输方向不做限定。
无线接入网设备和终端设备之间以及终端设备和终端设备之间可以通过授权频谱(licensed spectrum)进行通信,也可以通过免授权频谱(unlicensed spectrum)进行通信,也可以同时通过授权频谱和免授权频谱进行通信。无线接入网设备和终端设备之间以及终端设备和终端设备之间可以通过6G以下的频谱进行通信,也可以通过6G以上的频谱进行通信,还可以同时使用6G以下的频谱和6G以上的频谱进行通信。本申请的实施例对无线接入网设备和终端设备之间所使用的频谱资源不做限定。
在NR中,一般有以下几种物理上行共享信道(physical uplink shared channel,PUSCH)的调度方式。
方式一:
用一个下行控制信息(downlink control information,DCI)中的上行授权动态调度PUSCH,其中,DCI为物理层信息。
这种情况下,终端设备接收到一次上行调度,就进行一次PUSCH传输。
方式二:
配置授权(configured grant,CG)类型1:由包含rrc-ConfiguredUplinkGrant的高层信息单元configuredGrantConfig半持续配置,不需要接收DCI中的上行授权。
这种情况下,高层配置了一些半持续资源,终端设备如果有上行数据需要发送,就可以使用这些资源进行PUSCH发送,如果没有上行数据需要发送,就不发送。
方式三:
配置授权类型2:先接收不包含rrc-ConfiguredUplinkGrant的高层信息单元configuredGrantConfig,再由有效激活DCI中的上行授权半持续调度。
这种情况下,高层配置了一些半持续资源,然后由物理层信令去激活,激活时终端设备如果有上行数据需要发送,就可以使用这些资源进行PUSCH发送,如果没有激活,这些资源是不能使用的。
一次PUSCH可以包含多个重复(repetition),每个重复都传输相同的传输块(transport block,TB),冗余版本可以相同或不同,一个重复中承载一个传输块循环冗余校验码(transport block cyclic redundancy check,TB CRC),另外速率匹配的单位也是一个重复。本申请的技术方案将针对多时隙传输块PUSCH传输。
图2是本申请实施例中的一种重复类型的示意图。
如图2中的(a)所示,设有k个重复(k=4),则k次传输机会对应连续的k个时隙(slot),每个时隙中的一个传输机会可以用来传输一个PUSCH的重复,每个传输机会(图2中的图案填充部分)在每个时隙中的起始符号和持续时间相同。
在时分复用(time-division duplexing,TDD)模式下,如果一次PUSCH重复的资源中的任一个符号是下行符号,或者PUSCH时频资源和取消指示(cancellation indication,CI)指示取消的资源有重叠,或者和高优先级的上行信道/信号传输重叠,则此次PUSCH重复取消发送,如图2中的(b)所示,在第二个重复中,重复的资源A为下行符号,则该第二个PUSCH重复取消发送。
然而,在一些情况下,可能存在来不及取消发送的情形,如图2中的(c)所示,当第二个PUSCH重复已经开始发送了,如在to时刻才解析出CI,发现有资源B重叠,此时,该第二PUSCH重复已经传输了部分,则只能取消部分PUSCH重复。
从上述内容可知,其重复类型中,一次PUSCH传输的K次重复是标称重复,也就是说一次PUSCH传输对应k个时隙,无论这k个时隙中的每个时隙是否可以真正用来发送PUSCH重复。
那么,在另一种重复类型中,引入了有效时隙(available slot)的概念。对于上述方式一中的PUSCH的调度方式,可以基于无线资源控制(radio resource control,RRC)配置和调度DCI确定K个有效时隙。对于上述方式二中的PUSCH的调度方式,可以基于RRC配置确定K个有效时隙。对上述方式三中的PUSCH的调度方式,可以基于RRC配置和激活DCI确定K个有效时隙。
前文中提到,一些原因会导致一次PUSCH发送的某个重复取消。一类是根据RRC配置确定的,第二类是根据动态指示确定的,即物理层指示导致的,例如CI。而有效时隙的确定可以只考虑RRC信令,而不考虑此次PUSCH调度DCI以外的其它物理层指示。
图3是本申请实施例中的另一种重复类型的示意图。如图3中的(a)所示,在第二个重复的时隙中存在一个RRC配置的高优先级上行信道/信号传输和本PUSCH资源重叠,则该时隙不是一个有效时隙。
如图3中的(b)所示,在第二个重复的时隙中存在一个物理层指示的高优先级上行信道/信号传输和本PUSCH资源重叠,那么该时隙仍然是一个有效时隙。
在多时隙传输块PUSCH传输中,设有K个重复,则每个重复对应N个连续的时隙,K个传输机会共对应N*K个连续的时隙,每个时隙内的可用资源的起始符号和持续时间相同。一个重复中承载一个TB CRC,即N个时隙上至承载一个TB CRC,从而可以降低TB CRC的信令开销。
另外,速率匹配也可以以N个时隙为单位进行。需要注意的是,这里的时隙可以是所有时隙,也可以是有效时隙。
图4是本申请实施例中的多时隙传输块的示意图。如图4所示,设有k个重复(k=2),每个重复中可以理解为一个多时隙传输块,每个重复中包括4个有效时隙。
图5是本申请实施例中的时域资源配置的示意图。如图5所示,在配置授权PUSCH传输中,高层配置资源可以包含以下参数:
周期(periodicity):即表示相邻两组传输机会之间的间距,periodicity的取值最小是2个符号,最大可以是5120个时隙。
重复次数repK:即每组传输机会中包含的传输机会的个数,也就是重复次数,还可以是时隙数或有效时隙数。
应理解,repK可以简称为K,K的取值可以包括{1,2,4,8},未来可能支持的取值可以包括{1,2,3,4,7,8,12,16,20,24,28,32},K还可以取其他值,本申请实施例对此不予限定。
高层参数repK-RV指示K次重复传输中采用的冗余版本(redundancy version,RV)序列,针对K次传输中的第n次传输机会,采用RV序列中的第(mod(n-1,4)+1)个值,n=1,2,…,K。
repK-RV存在四种情况,分别为不配置、配置为{0,2,3,1}、配置为{0,3,0,3}、配置为{0,0,0,0}。
如果高层参数startingFromRV0配置为“off”,则一个传输块只能从K个重复的第一个传输机会开始传输,否则,一个传输块按下述描述传输:
当K=1时,ConfiguredGrantConfig不配置参数repK-RV,传输的RV版本设为0。
下面将结合图6-图8分别介绍余下的几种RV序列下的传输块的传输方式。
如果RV序列配置为{0,2,3,1},则初始传输只能在K次重复的第一个传输机会上,如图6所示,图6是本申请实施例中的一种冗余版本序列的示意图。
当K=2时,第一个重复中使用的RV为0,第二个重复中使用的RV为3。
应理解,若每个重复中包含N个时隙,则该N个时隙使用的RV均相同。
当K=4时,第一个重复中使用的RV为0,第二个重复中使用的RV为3,第三个重复中使用的RV为3,第四个重复中使用的RV为1。
应理解,若每个重复中包含N个时隙,则该N个时隙使用的RV均相同。
当K=8时,第一个重复中使用的RV为0,第二个重复中使用的RV为3,第三个重复中使用的RV为2,第四个重复中使用的RV为1,第五个重复中使用的RV为0,第六个重复中使用的RV为3,第七个重复中使用的RV为2,第 八个重复中使用的RV为1。
应理解,若每个重复中包含N个时隙,则该N个时隙使用的RV均相同。
还应理解,当K为其他值时,如K=16,则该16个重复可以按照RV序列{0,2,3,1}循环使用。
如果RV序列配置为{0,3,0,3},则初始传输可以发生在K次重复的传输机会中的任意一个对应RV=0的传输机会上,如图7所示,图7是本申请实施例中的另一种冗余版本序列的示意图。
当K=2时,第一个重复中使用的RV为0,第二重复使用的RV为3。
应理解,若每个重复中包含N个时隙,则该N个时隙使用的RV均相同。
当K=4时,重复的传输情况可能包括以下两种:
一种是初始传输从第一个重复开始,则第一重复使用的RV为0,第二个重复使用的RV为3,第三个重复使用的RV为0,第四个重复使用的RV为3。
另一种是第一个重复和第二个重复不传输PUSCH,初始传输从第三个重复开始,则第三个重复使用的RV为0,第四个重复使用的RV为3。
当K=8时,重复的传输情况可能包括以下四种:
第一种是初始传输从第一个重复开始,则第一个重复中使用的RV为0,第二个重复中使用的RV为3,第三个重复中使用的RV为0,第四个重复中使用的RV为3,第五个重复中使用的RV为0,第六个重复中使用的RV为3,第七个重复中使用的RV为0,第八个重复中使用的RV为3。
第二种是第一个重复和第二个重复不传输PUSCH,初始传输从第三个重复开始,则第三个重复使用的RV为0,第四个重复使用的RV为3,第五个重复中使用的RV为0,第六个重复中使用的RV为3,第七个重复中使用的RV为0,第八个重复中使用的RV为3。
第三种是第一个重复至第四个重复不传输PUSCH,初始传输从第五个重复开始,则第五个重复中使用的RV为0,第六个重复中使用的RV为3,第七个重复中使用的RV为0,第八个重复中使用的RV为3。
第四种是第一个重复至第六个重复不传输PUSCH,初始传输从第七个重复开始,第七个重复中使用的RV为0,第八个重复中使用的RV为3。
如果RV序列配置为{0,0,0,0},则初始传输可以发生在K次重复的传输机会的任意一个传输机会上;但是当K=8时,初始传输不能发生在最后一个传输机会上。如图8所示,图8是本申请实施例中的另一种冗余版本序列的示意图。
当K=2时,重复的传输情况可能包括以下两种:
一种是初始传输从第一个重复开始,则第一个重复使用的RV为0,第二重复使用的RV为0。
另一种是第一个重复不传输PUSCH,则第二个重复使用的RV为0。
当K=4时,重复的传输情况可能包括以下四种:
第一种是初始传输从第一个重复开始,则第一个重复至第四个重复使用的RV均为0。
第二种是第一个重复不传输PUSCH,初始传输从第二个重复开始,则第二个重复至第四个重复使用的RV均为0。
第三种是第一个重复、第二个重复不传输PUSCH,初始传输从第三个重复开始,则第三个重复至第四个重复使用的RV均为0。
第四种是第一个重复至第三个重复不传输PUSCH,初始传输从第四个重复开始,则第四个重复使用的RV均为0。
当K=8时,重复的传输情况可能包括以下七种:
第一种是初始传输从第一个重复开始,则第一个重复至第八个重复使用的RV均为0。
第二种是第一个重复不传输PUSCH,初始传输从第二个重复开始,则第二个重复至第八个重复使用的RV均为0。
第三种是第一个重复、第二个重复不传输PUSCH,初始传输从第三个重复开始,则第三个重复至第八个重复使用的RV均为0。
第四种是第一个重复至第三个重复不传输PUSCH,初始传输从第四个重复开始,则第四个重复至第八个重复使用的RV均为0。
第五种是第一个重复至第四个重复不传输PUSCH,初始传输从第五个重复开始,则第五个重复至第八个重复使用的RV均为0。
第六种是第一个重复至第五个重复不传输PUSCH,初始传输从第六个重复开始,则第六个重复至第八个重复使用的RV均为0。
第七种是第一个重复至第六个重复不传输PUSCH,初始传输从第七个重复开始,则第七个重复至第八个重复使用的RV均为0。
针对任意一种RV序列,重复传输的停止条件有三种,哪一种先达到都要停止传输:
(1)已经传输了K次。
(2)在周期periodicity内的K次重复的最后一个传输机会进行传输。
(3)在用DCI format0_0或0_1调度的相同进程的另一个PUSCH的起始符号上。
如前文所述,在一个传输机会上,如果终端设备有数据需要发送,就可以在配置的资源上发送;如果终端设备没有数据需要发送,就可以不发送。终端设备是否发送了数据,网络设备需要进行盲检。网络设备可以给不同的终端设备进行不同的解调参考信号(demodulation reference signal,DMRS)参数配置,这样,网络设备可以监测不同终端设备的不同DMRS,检测终端设备在此次传输机会上,是否有数据发送。
此外,在一个传输机会上,配置授权PUSCH可以从RV为0的重复开始PUSCH传输,这种情况下,网络设备在接收PUSCH时,需要判断终端设备从哪个RV为0的重复中开始发送的,从而增加了网络设备进行盲检的复杂度。
进一步地,网络设备采用DMRS判断传输机会上是否有数据发送,还可能会造成在一个传输机会上没有PUSCH发送,盲检的结果为有PUSCH发送;或 者,在一个传输机会上有PUSCH发送时,盲检的结果为没有PUSCH发送,从而导致PUSCH接收性能下降。
为了增强上行覆盖,可以考虑在多个时隙上承载一个PUSCH重复,在多个时隙上承载一个传输块循环冗余校验码。在这种新的传输方式下,在考虑资源利用效率和网络侧设备的盲检复杂度的情况下,如何确定PUSCH传输的初始时隙,如何设定每个PUSCH重复的RV,成为了新的PUSCH传输方式应用于配置授权资源需要解决的问题。
有鉴于此,本申请实施例提供一种通信方法,以期降低网络设备进行盲检的复杂度,并提升PUSCH的接收性能。
图9是本申请实施例提供的一种通信方法的示意性交互图。如图9所示,该方法可以包括步骤910至步骤940。
910,网络设备向终端设备发送第一参数和第二参数,其中,所述第一参数和所述第二参数为如下参数中的任意两个:一个配置授权周期内的有效时隙数P;一个配置授权周期内的重复数量K;每个重复的有效时隙数N,N为大于或等于2的整数,所述每个重复中承载一个传输块循环冗余校验码TB CRC。
需要说明的是,全文中的有效时隙可以替换为时隙,也就是不区分是否有效。
需要说明的是,每个重复的有效时隙数为N是指每个重复在N个有效时隙上传输。
示例性地,该第一参数为一个配置授权周期内的有效时隙数P,该第二参数为一个配置授权周期内的重复数量K;或者,该第一参数为一个配置授权周期内的有效时隙数P,该第二参数为每个重复的有效时隙数N;或者,该第一参数为一个配置授权周期内的有效时隙数P,该第二参数为每个重复的有效时隙数N。
应理解,该第一参数和第二参数可以承载在无线资源控制RRC信令中;或者,第一参数和第二参数承载在激活下行控制信息DCI中;或者,第一参数承载在RRC信令中,第二参数承载在激活DCI中;或者,第一参数承载在激活DCI中,第二参数承载在RRC信令中,本申请实施例对此不予限定。当第一参数和第二参数分别承载在RRC信令和激活DCI中时,网络设备可以根据实时传输情况进行参数调整,从而可以增加网络设备调度的灵活性,进一步地,也可以减少物理层的信令开销。
需要说明的是,这里的激活下行控制信息DCI是指配置授权类型2的PUSCH传输的激活下行控制信息。
在一些实现方式中,当所述第一参数为所述一个配置授权周期内的有效时隙数P时,若所述第二参数为所述重复数量K,则所述一个配置授权周期内的有效时隙数P为所述重复数量K的整数倍;
若所述第二参数为所述每个重复中的有效时隙数N,则所述一个配置授权周期内的有效时隙数P为所述每个重复中的有效时隙数N的整数倍。
当一个配置授权周期内的有效时隙数P为一个配置授权周期内的重复的数量K或每个重复包括的有效时隙数N的整数倍时,有利于减小计算初始时隙的 复杂度。
这种情况下,协议可以规定一个配置授权周期内的有效时隙数P为一个配置授权周期内的重复的数量K或每个重复包括的有效时隙数N的整数倍,当该一个配置授权周期内的有效时隙数P不为一个配置授权周期内的重复的数量K或每个重复包括的有效时隙数N的整数倍时,终端设备可以认为是无效配置。
在另一些实现方式中,当所述第一参数和所述第二参数为所述重复数量K和所述每个重复中的有效时隙数N时,则所述一个配置授权周期内的有效时隙数为K*N。
在这种情况下,一个配置授权周期内的有效时隙数P可以通过第一参数和第二参数计算得到,即P=K*N。
920,终端设备根据所述第一参数和所述第二参数确定配置授权PUSCH传输的初始时隙。
应理解,该初始时隙指的是终端设备开始传输PUSCH的时隙。该初始时隙可以是一个配置授权周期内的有效时隙中的第一个,也可以是一个配置授权周期内的有效时隙中的最后一个,还可以是一个配置授权周期内的有效时隙的其他时隙,本申请实施例对此不予限定。
在一种可能的实现方式中,所述初始时隙为一个配置授权周期内与参考有效时隙距离M*N1个有效时隙的有效时隙,M为整数,当第一参数或第二参数为每个重复的有效时隙数N时,N1=N,当第一参数和第二参数中一个是一个配置授权周期内的有效时隙数P,另一个是一个配置授权周期内的重复的数量K时,N1=floor(P/K)或者N1=ceiling(P/K);或者,所述初始时隙为一个配置授权周期内与参考有效时隙距离M*N1-1个有效时隙的有效时隙,其中,M为大于或等于1的整数,当第一参数或第二参数为每个重复的有效时隙数N时,N1=N,当第一参数和第二参数中一个是一个配置授权周期内的有效时隙数P,另一个是一个配置授权周期内的重复的数量K时,N1=floor(P/K)或者N1=ceiling(P/K)。
需要说明的是:初始时隙为与参考有效时隙距离M*N1个有效时隙是指有效时隙的序号相差M*N1个,可以是初始时隙的序号比参考有效时隙的序号大M*N1,也可以是参考有效时隙的序号比初始时隙的序号大M*N1。
其中,所述终端设备根据所述第一参数和所述第二参数确定配置授权物理上行共享信道PUSCH传输的初始时隙,包括:
所述终端设备根据冗余版本RV序列和所述第一参数和所述第二参数确定配置授权物理上行共享信道PUSCH传输的初始时隙,所述冗余版本RV序列是所述终端设备从所述网络设备接收的。
应理解,终端设备可以根据第一参数、第二参数确定初始时隙,并根据RV序列确定该初始时隙承载的重复使用的RV。
应理解,该RV序列可以是终端设备从网络设备接收的。该RV序列可以是前文中的{0,0,0,0}、{0,2,3,1}、{0,3,0,3}等。
930,终端设备根据所述初始时隙,进行所述配置授权PUSCH传输。
其中,终端设备根据所述初始时隙,从该初始时隙开始,进行配置授权PUSCH传输。
具体地,该终端设备从该初始时隙上承载的重复开始,根据所述配置授权PUSCH传输的每个重复的RV进行所述配置授权PUSCH的编码;并根据编码的结果进行配置授权PUSCH的传输。
可选地,所述初始时隙上承载的重复的RV为0。
示例性地,参见图10中的(a),图10是本申请实施例提供的一种传输PUSCH的可能性的示意图。一个配置授权周期内的重复数量K为2,每个重复中包括的有效时隙数N为4,则一个配置授权周期内的有效时隙P=K*N=8,RV序列为{0,3,0,3}。
在可能性A中,初始时隙为配置授权周期内的有效时隙中的第一个,则第一个重复即第一个时隙至第四个时隙编码使用的RV为0,第二个重复即第五个时隙至第八个时隙编码使用的RV为3,则终端设备可以对编码后的重复进行配置授权PUSCH传输。
在可能性B中,初始时隙为配置授权周期内的有效时隙中的第五个,即不在第一个重复传输PUSCH,第五个时隙至第八个时隙编码使用的RV为0,则终端设备可以对编码后的第二个重复进行配置授权PUSCH传输。
可选地,一个重复使用一个RV,所述配置授权PUSCH传输的所有重复循环使用所述RV序列中的RV。
示例性地,参见图10中的(c),一个配置授权周期内的有效时隙数P为16,每个重复包括的有效时隙的数量N为4,可知,该配置授权周期内的重复数量K为4,RV序列为{0,3,0,3}。
在可能性A中,初始时隙为配置授权周期内的有效时隙中的第一个,则第一个重复中包括的第一个有效时隙至第四个有效时隙使用的RV相同,即RV为0,第二个重复使用的RV为3,第三个重复使用的RV为0,第四个重复使用的RV为3。应理解,若该配置授权周期拥有更多个重复,则余下的重复可以根据该RV序列循环使用RV。
940,网络设备进行盲检。
应理解,网络设备在进行盲检时,可以从多种可能的初始时隙开始,采用DMRS判断一个配置授权调度上是否有数据发送。当确定在一种可能的初始时隙上有数据发送时,可以根据RV序列对初始时隙上承载的重复进行译码。
示例性地,当一个初始时隙上有数据发送时,且网络设备确定初始时隙上承载的重复的RV为0,则可以直接用RV0进行译码。
其中,网络设备可以在接收到配置授权PUSCH后,可以确定PUSCH传输的初始时隙,从而可以减低网络设备盲检的复杂度。
基于本申请实施例,网络设备向终端设备发送第一参数和第二参数,终端设备可以根据该第一参数和第二参数确定配置授权PUSCH传输的初始时隙,并根据该初始时隙进行配置授权PUSCH传输,从而有利于降低网络设备盲检的复杂 度。
可选地,当所述第一参数和所述第二参数为一个配置授权周期内的重复的数量K和每个重复中的有效时隙数N,或者,所述第一参数为一个配置授权周期内的有效时隙数P,且所述第一参数为所述第二参数的整数倍时,
所述参考有效时隙为所述一个配置授权周期内的有效时隙中的第一个,所述初始时隙为一个配置授权周期内与参考有效时隙距离M*N1个有效时隙的有效时隙。
在一个示例性中,参见图10中的(a),该第一参数可以是一个配置授权周期内的重复的数量K,K=2,该第二参数可以是每个重复中的有效时隙数N,N=4。
当M=0时,对应于可能性A,则该参考有效时隙为一个配置授权周期内的有效时隙中的第一个,该初始时隙为与参考有效时隙距离0*4个有效时隙的有效时隙,即该初始时隙为该参考有效时隙,即一个配置授权周期内的有效时隙中的第一个。
当M=1时,对应于可能性B,该参考有效时隙为配置授权周期内的有效时隙中的第一个,该初始时隙为与参考有效时隙距离1*4个有效时隙的有效时隙,即该初始时隙为第五个有效时隙。
在另一个示例中,参见图10中的(b),该第一参数可以是一个配置授权周期内的有效时隙的数量P,P=16,该第二参数可以是每个重复中包括的有效时隙的数量N,N=4,则一个配置授权周期内的有效时隙的数量P为每个重复中的有效时隙的数量N的整数倍。
当M=0时,对应于可能性A,该参考有效时隙为一个配置授权周期内的有效时隙中的第一个,该初始时隙为与参考有效时隙距离0*4个有效时隙的有效时隙,即该初始时隙也为参考有效时隙,即一个配置授权周期内的有效时隙中的第一个。
当M=1时,对应于可能性B,该参考有效时隙为一个配置授权周期内的有效时隙中的第一个,该初始时隙为与参考有效时隙距离1*4个有效时隙的有效时隙,即该初始时隙为第五个有效时隙。
当M=2时,对应于可能性C,该参考有效时隙为一个配置授权周期内的有效时隙中的第一个,该初始时隙为与参考有效时隙距离2*4个有效时隙的有效时隙,即该初始时隙为第九个有效时隙。
当M=3时,对应于可能性D,该参考有效时隙为一个配置授权周期内的有效时隙中的第一个,该初始时隙为与参考有效时隙距离3*4个有效时隙的有效时隙,即该初始时隙为第十三个有效时隙。
可选地,当所述第一参数为一个配置授权周期内的有效时隙数P,且所述第一参数不为所述第二参数的整数倍时,
所述参考有效时隙为所述一个配置授权周期内的有效时隙中的第一个,所述初始时隙为一个配置授权周期内与参考有效时隙距离M*N1个有效时隙的有效时隙,M为整数;或者,所述参考有效时隙为所述一个配置授权周期内的有效 时隙中的最后一个,所述初始时隙为一个配置授权周期内与参考有效时隙距离M*N1-1个有效时隙的有效时隙,M为大于或等于1的整数。
需要说明的是:初始时隙为与参考有效时隙距离M*N1-1个有效时隙是指有效时隙的序号相差M*N1-1个,可以是初始时隙的序号比参考有效时隙的序号大M*N1-1,也可以是参考有效时隙的序号比初始时隙的序号大M*N1-1。
在一个示例中,参见图11中的(a),图11是本申请实施例提供的另一种PUSCH传输的可能性的示意图,第一参数可以为一个配置授权周期内的有效时隙数P,P=16,第二参数为每个重复中的有效时隙数N,N=3,则P不为N的整数倍,所述参考有效时隙为所述一个配置授权周期内的有效时隙中的第一个,则所述初始时隙为一个配置授权周期内与参考有效时隙距离M*N个有效时隙的有效时隙。
当M=0时,对应于可能性A,初始时隙为一个配置授权周期内与参考有效时隙距离0*3个有效时隙的有效时隙,即该初始时隙为第一个有效时隙。
当M=1时,对应于可能性B,初始时隙为一个配置授权周期内与参考有效时隙距离1*3个有效时隙的有效时隙,即该初始时隙为第四个有效时隙。
当M=2时,对应于可能性C,初始时隙为一个配置授权周期内与参考有效时隙距离2*3个有效时隙的有效时隙,即该初始时隙为第七个有效时隙。
当M=3时,对应于可能性D,初始时隙为一个配置授权周期内与参考有效时隙距离3*3个有效时隙的有效时隙,即该初始时隙为第十个有效时隙。
当M=4时,对应于可能性E,初始时隙为一个配置授权周期内与参考有效时隙距离4*3个有效时隙的有效时隙,即该初始时隙为第十三个有效时隙。
在另一个示例中,参见图12中的(a),图12是本申请实施例提供的另一种PUSCH传输的可能性的示意图,第一参数可以为一个配置授权周期内的有效时隙数P,P=16,第二参数为每个重复中的有效时隙数N,N=3,则P不为N的整数倍,所述参考有效时隙为所述一个配置授权周期内的有效时隙中的最后一个,即第16个有效时隙,所述初始时隙为一个配置授权周期内与参考有效时隙距离M*N-1个有效时隙的有效时隙,M为大于或等于1的整数。
当M=1时,对应于可能性E,初始时隙为一个配置授权周期内与参考有效时隙距离1*3-1个有效时隙的有效时隙,即该初始时隙为第十四个有效时隙。
当M=2时,对应于可能性D,初始时隙为一个配置授权周期内与参考有效时隙距离2*3-1个有效时隙的有效时隙,即该初始时隙为第十一个有效时隙。
当M=3时,对应于可能性C,初始时隙为一个配置授权周期内与参考有效时隙距离3*3-1个有效时隙的有效时隙,即该初始时隙为第八个有效时隙。
当M=4时,对应于可能性B,初始时隙为一个配置授权周期内与参考有效时隙距离4*3-1个有效时隙的有效时隙,即该初始时隙为第五个有效时隙。
当M=5时,对应于可能性A,初始时隙为一个配置授权周期内与参考有效时隙距离5*3-1个有效时隙的有效时隙,即该初始时隙为第二个有效时隙。
可选地,所述参考有效时隙为预设的;或者所述参考有效时隙是所述终端设 备从所述网络设备接收的。
应理解,该参考有效时隙为预设的,可以理解为该参考有效时隙为协议规定的。
可选地,所述M=A1*N2,其中,A1为大于或等于0的整数,N2为所述RV的最小周期。
应理解,该N2为RV的最小周期,该最小周期指的是,RV序列中相邻两个相同RV的距离。示例性地,当RV序列为{0,0,0,0}时,该RV的最小周期为1,当RV序列为{0,3,0,3},该RV的最小周期为2,当RV序列为{0,3,2,1}时,该RV的最小周期为4。
示例性地,参见图10中的(c),该RV的序列为{0,3,0,3},则该最小周期N2=2,则该M=A1*2,当A1=0时,M=0,则初始时隙为距离参考时隙0*4个有效时隙的有效时隙,即一个配置授权周期内的第一个有效时隙,对应于可能性A。
当A1=1时,M=1*2,则初始时隙为距离参考时隙2*4个有效时隙的有效时隙,即一个配置授权周期内的第九个有效时隙,对应于可能性B。
可选地,当所述第一参数或所述第二参数为一个配置授权周期内的重复数量K时,所述M大于或等于0,且小于或等于K-1,M为整数;或者,当所述第一参数和所述第二参数为一个配置授权周期内的有效时隙数P和每个重复中的有效时隙数N时,所述M大于或等于0,且小于或等于floor(P/N)-1,M为整数。
可选地,所述初始时隙上承载的重复的RV为0。
示例性地,参见图12中的(a)、(b),初始时隙上承载的重复使用的RV为0。
该技术方案中,当初始时隙上承载的重复使用的RV为0时,由于RV0里基本包含了全部系统比特,如果从RV0开始发送,则可以提升提前译码成功的可能性。
可选地,所述初始时隙上承载的重复的RV为RV序列中的第T个RV,T=floor(S/N)+1,S为初始时隙在一个配置授权周期内的有效时隙中的序号。
应理解,S可以从0开始,T可以从1开始。一个配置授权周期中的所有有效时隙从0开始标号,这里所说的所有有效时隙是指所有P个有效时隙或者所有N*K个有效时隙。
示例性地,参见图13,图13是本申请实施例提供的另一种PUSCH传输的可能性的示意图。一个配置授权周期内的有效时隙数P=16,每个重复中包括的有效时隙数N=4,则该一个配置授权周期内包括4个重复,该RV序列为{0,3,0,3}。
对于可能性A,该初始时隙为一个配置授权周期内的第一个有效时隙,则T=floor(0/4)+1,则初始时隙所在的第一个重复的RV为RV序列中的第1个RV,即RV为0。
对于可能性B,该初始时隙在一个配置授权周期内的有效时隙中的序号为5, 则T=floor(4/4)+1=2,则初始时隙所在的第二个重复的RV为RV序列中的第2个RV,即RV为3。
同样的,当初始时隙在一个配置授权周期内的有效时隙中的序号为9时,该初始时隙所在的第三个重复的RV为RV序列中的第3个RV,即RV为0。
示例性地,参见图14,图14是是本申请实施例提供的另一种PUSCH传输的可能性的示意图。
对于图14中的(a),参考有效时隙为一个配置授权周期内的有效时隙中的第一个,且一个配置授权周期内的有效时隙P(P=16)不为一个重复中包括的有效时隙数N(N=3)的整数倍,RV序列为{0,3,0,3}。
对于可能性A,该初始时隙为一个配置授权周期内的第一个有效时隙,即该初始时隙在一个配置授权周期内的有效时隙中的序号为0,则T=floor(0/3)+1,则初始时隙对应的有效时隙所在的第一个重复的RV为RV序列中的第1个RV,即RV为0。
对于可能性B,该初始时隙在一个配置授权周期内的有效时隙中的序号为4,则T=floor(3/3)+1=2,则初始时隙对应的有效时隙所在的第一个重复的RV为RV序列中的第2个RV,即RV为3。
同样的,对于可能性C,该初始时隙所在的第三个重复的RV为RV序列中的第3个RV,即RV为0。对于可能性D,该初始时隙所在的第四个重复的RV为RV序列中的第4个RV,即RV为3。对于可能性E,该初始时隙所在的第五个重复的RV为RV序列中的第1个RV,即RV为0。
对于图14中的(b),参考有效时隙为一个配置授权周期内的有效时隙中的最后一个,且一个配置授权周期内的有效时隙P(P=16)不为一个重复中包括的有效时隙数N(N=3)的整数倍,RV序列为{0,3,0,3}。
对于可能性A,该初始时隙为一个配置授权周期内的第一个有效时隙,即该初始时隙在一个配置授权周期内的有效时隙中的序号为1,则T=floor(1/3)+1,则初始时隙所在的第一个重复的RV为RV序列中的第1个RV,即RV为0。
对于可能性B,该初始时隙在一个配置授权周期内的有效时隙中的序号为4,则T=floor(4/3)+1,则初始时隙所在的第一个重复的RV为RV序列中的第2个RV,即RV为3。
同样的,对于可能性C、D、E,可以根据上述方式进行计算,为了简洁,不再赘述。
应理解,当P为其他值,如P为20、24、28、32或其他值时,本申请实施例中的技术方案同样是适用的,具体可以参见上述的相关描述,为了简洁,不再赘述。
该技术方案可以根据初始时隙的位置来确定初始时隙所在的重复的RV,从而简化了终端设备传输PUSCH的复杂度。
可选地,在所述初始时隙上承载的重复的RV不为0的情况下,所述配置授权PUSCH传输的所有重复中至少存在一个重复使用的RV为0。
示例性地,参见图13,不存在可能性D的情况。
RV0中基本包含全部系统比特,而除RV0以外其他的RV中可能只包括部分系统比特,如果仅发送其他的RV,可能导致无法译码。该技术方案可以提升提前译码的可能性。
此外,当初始时隙上承载的重复的RV不为0时,可以保证在不同的可能性中,在相同的有效时隙中传输PUSCH使用的RV是相同的,从而可以减小网络设备进行盲检的复杂度。
可选地,当所述第一参数为一个配置授权周期内的有效时隙数P,所述第二参数为所述每个重复中的有效时隙数N,且所述第一参数不为所述第二参数的整数倍,且参考有效时隙为所述一个配置授权周期内的有效时隙中的第一个时,最后P-floor(P/N)*N个有效时隙中不传输所述PUSCH;或者所述方法还包括:
根据第一RV和所述有效时隙数N进行编码,所述第一RV为最后P-floor(P/N)*N个有效时隙上承载的重复的RV;
将所述编码的结果从前往后在最后P-floor(P/N)*N个有效时隙中传输。
需要说明的是,这里的将所述编码的结果从前往后在最后P-floor(P/N)*N个有效时隙中传输,指的是,从最后P-floor(P/N)*N个有效时隙中第一个有效时隙开始传输。
示例性地,参见图14中的(a),该第一参数可以为一个配置授权周期内的有效时隙数P(P=16),该第二参数可以为每个重复中的有效时隙数N(N=4),即第一参数不为第二参数的整数倍,参考有效时隙为配置授权周期内的第一个有效时隙。
则最后P-floor(P/N)*N=16-floor(16/3)*3=1个有效时隙不传输PUSCH;
或者,终端设备根据第一RV对所述有效时隙数N进行配置授权PUSCH的编码,该最后P-floor(P/N)*N=16-floor(16/3)*3=1个有效时隙上承载的重复的RV为3,即该第一RV为3,则对于最后1个有效时隙也进行配置授权PUSCH的编码,并将编码的结果在最后一个有效时隙中也传输,此时,传输的可能是部分内容,从而可以有效的利用资源,提升资源利用率。可选地,当所述第一参数为一个配置授权周期内的有效时隙数P,第二参数为一个配置授权周期内的重复的数量K,且所述第一参数不为所述第二参数的整数倍,且参考有效时隙为所述一个配置授权周期内的有效时隙中的第一个时,最后P-floor(P/K)*K个有效时隙中不传输所述PUSCH,或者所述方法还包括:
根据第一RV和有效时隙数N进行所述配置授权PUSCH的编码,所述第一RV为最后P-floor(P/K)*K个有效时隙上承载的重复的RV;
将所述编码的结果从前往后在最后P-floor(P/K)*K个有效时隙中传输。
该技术方案可以参见前文中的相关描述,为了简洁,不再赘述。
图15是本申请实施例提供的一种通信装置的示意性框图。如图15所示,该通信装置1500可以包括收发单元1510和处理单元1520。
该收发单元1510,用于接收网络设备发送的第一参数和第二参数;该处理 单元1520,用于根据所述第一参数和所述第二参数确定配置授权物理上行共享信道PUSCH传输的初始时隙;该处理单元1520,还用于根据所述初始时隙,进行所述配置授权PUSCH传输,其中,所述第一参数和所述第二参数为如下参数中的任意两个:一个配置授权周期内的有效时隙数P;一个配置授权周期内的重复的数量K;每个重复的有效时隙数N,N为大于或等于2的整数,所述每个重复中承载一个传输块循环冗余校验码。。
可选地,所述第一参数和所述第二参数承载在无线资源控制RRC信令中;或者,所述第一参数和所述第二参数承载在激活下行控制信息DCI中;或者,所述第一参数承载在RRC信令中,所述第二参数承载在激活DCI中;或者,所述第一参数承载在激活DCI中,所述第二参数承载在RRC信令中。
可选地,当所述第一参数为所述一个配置授权周期内的有效时隙数P时,若所述第二参数为所述重复数量K,则所述一个配置授权周期内的有效时隙数P为所述重复数量K的整数倍;
若所述第二参数为所述每个重复中的有效时隙数N,则所述一个配置授权周期内的有效时隙数P为所述每个重复中的有效时隙数N的整数倍。
可选地,当所述第一参数和所述第二参数为所述重复数量K和所述每个重复中的有效时隙数N时,则所述一个配置授权周期内的有效时隙数为K*N。
可选地,所述初始时隙为一个配置授权周期内与参考有效时隙距离M*N1个有效时隙的有效时隙,M为整数,当第一参数或第二参数为每个重复的有效时隙数N时,N1=N,当第一参数和第二参数中一个是一个配置授权周期内的有效时隙数P,另一个是一个配置授权周期内的重复的数量K时,N1=floor(P/K)或者N1=ceiling(P/K);或者,所述初始时隙为一个配置授权周期内与参考有效时隙距离M*N1-1个有效时隙的有效时隙,其中,M为大于或等于1的整数,当第一参数或第二参数为每个重复的有效时隙数N时,N1=N,当第一参数和第二参数中一个是一个配置授权周期内的有效时隙数P,另一个是一个配置授权周期内的重复的数量K时,N1=floor(P/K)或者N1=ceiling(P/K)。
可选地,当所述第一参数和所述第二参数为一个配置授权周期内的重复数量K和每个重复中的有效时隙数N,或者,所述第一参数为一个配置授权周期内的有效时隙数P,且所述第一参数为所述第二参数的整数倍时,
所述参考有效时隙为所述一个配置授权周期内的有效时隙中的第一个,所述初始时隙为一个配置授权周期内与参考有效时隙距离M*N1个有效时隙的有效时隙。
可选地,当所述第一参数为一个配置授权周期内的有效时隙数P,且所述第一参数不为所述第二参数的整数倍时,
所述参考有效时隙为所述一个配置授权周期内的有效时隙中的第一个,所述初始时隙为一个配置授权周期内与参考有效时隙距离M*N1个有效时隙的有效时隙,M为整数;或者,所述参考有效时隙为所述一个配置授权周期内的有效时隙中的最后一个,所述初始时隙为一个配置授权周期内与参考有效时隙距离 M*N1-1个有效时隙的有效时隙,M为大于或等于1的整数。
可选地,所述参考有效时隙为预设的;或者所述参考有效时隙是所述终端设备从所述网络设备接收的。
可选地,所述处理单元1520具体用于:根据冗余版本RV序列和所述第一参数和所述第二参数确定配置授权物理上行共享信道PUSCH传输的初始时隙,所述冗余版本RV序列是所述终端设备从所述网络设备接收的。
可选地,所述M=A1*N2,其中,A1为大于或等于0的整数,N2为所述RV的最小周期。
可选地,一个重复使用一个RV,所述配置授权PUSCH传输的所有重复循环使用所述RV序列中的RV。
可选地,所述初始时隙上承载的重复的RV为0。
可选地,当所述第一参数或所述第二参数为一个配置授权周期内的重复数量K时,所述M大于或等于0,且小于或等于K-1,M为整数;或者,当所述第一参数和所述第二参数为一个配置授权周期内的有效时隙数P和每个重复中的有效时隙数N时,所述M大于或等于0,且小于或等于floor(P/N)-1,M为整数。
可选地,所述处理单元1520具体用于:从所述初始时隙承载的重复开始,根据所述配置授权PUSCH传输的每个重复的RV进行所述配置授权PUSCH的编码;根据所述编码的结果进行所述置授权PUSCH传输。
可选地,所述初始时隙上承载的重复的RV为0。
可选地,所述初始时隙上承载的重复的RV为RV序列中的第T个RV,T=floor(S/N)+1,S为初始时隙在一个配置授权周期内的有效时隙中的序号。
可选地,当所述第一参数为一个配置授权周期内的有效时隙数P,所述第二参数为所述每个重复中的有效时隙数N,且所述第一参数不为所述第二参数的整数倍,且参考有效时隙为所述一个配置授权周期内的有效时隙中的第一个时,最后P-floor(P/N)*N个有效时隙中不传输所述PUSCH;或者所述处理单元1520还用于:
根据第一RV和所述有效时隙数N进行所述配置授权PUSCH的编码,所述第一RV为最后P-floor(P/N)*N个有效时隙上承载的重复的RV;
将所述编码的结果从前往后在最后P-floor(P/N)*N个有效时隙中传输。
可选地,当所述第一参数为一个配置授权周期内的有效时隙数P,第二参数为一个配置授权周期内的重复数量K,且所述第一参数不为所述第二参数的整数倍,且参考有效时隙为所述一个配置授权周期内的有效时隙中的第一个时,最后P-floor(P/K)*K个有效时隙中不传输所述PUSCH;或者所述处理单元1520还用于:
根据第一RV和有效时隙数N进行所述配置授权PUSCH的编码,所述第一RV为最后P-floor(P/K)*K个有效时隙上承载的重复的RV;
将所述编码的结果从前往后在最后P-floor(P/K)*K个有效时隙中传输。
本申请实施例还提供一种通信装置,包括至少一个处理器,所述至少一个处 理器与至少一个存储器耦合,所述至少一个处理器用于执行所述至少一个存储器中存储的计算机程序或指令,使得如前文实施例中任一项所述的通信方法被执行。
本申请实施例还提供一种芯片,所述芯片包括处理器和接口电路,所述处理器和所述接口电路之间相互耦合,所述接口电路用于与其他设备进行通信,所述处理器处理所述信号,使得如前文实施例中任一项所述的通信方法被执行。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机指令,当计算机指令在计算机上运行时,使得如前文实施例中任一项所述的通信方法被执行。
本申请实施例还提供一种计算机程序产品,包括计算机程序代码,当所述计算机程序代码在计算机上运行时,使得如前文实施例中任一项所述的通信方法被执行。
另外,本申请的实施例还提供一种装置,这个装置具体可以是芯片,组件或模块,该装置可包括相连的处理器和存储器;其中,存储器用于存储计算机执行指令,当装置运行时,处理器可执行存储器存储的计算机执行指令,以使芯片执行上述各方法实施例中的权限检查的方法。
其中,本实施例提供的通信装置、计算机可读存储介质、计算机程序产品或芯片均用于执行上文所提供的对应的方法,因此,其所能达到的有益效果可参考上文所提供的对应的方法中的有益效果,此处不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也 可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (23)

  1. 一种通信方法,其特征在于,包括:
    终端设备接收网络设备发送的第一参数和第二参数;
    所述终端设备根据所述第一参数和所述第二参数确定配置授权物理上行共享信道PUSCH传输的初始时隙;
    所述终端设备根据所述初始时隙,进行所述配置授权PUSCH传输;
    其中,所述第一参数和所述第二参数为如下参数中的任意两个:
    一个配置授权周期内的有效时隙数P;
    一个配置授权周期内的重复的数量K;
    每个重复的有效时隙数N,N为大于或等于2的整数,所述每个重复中承载一个传输块循环冗余校验码。
  2. 根据权利要求1所述的方法,其特征在于,所述第一参数和所述第二参数承载在无线资源控制RRC信令中;或者,所述第一参数和所述第二参数承载在激活下行控制信息DCI中;或者,所述第一参数承载在RRC信令中,所述第二参数承载在激活DCI中;或者,所述第一参数承载在激活DCI中,所述第二参数承载在RRC信令中。
  3. 根据权利要求1或2所述的方法,其特征在于,当所述第一参数为所述一个配置授权周期内的有效时隙数P时,若所述第二参数为所述重复数量K,则所述一个配置授权周期内的有效时隙数P为所述重复数量K的整数倍;
    若所述第二参数为所述每个重复中的有效时隙数N,则所述一个配置授权周期内的有效时隙数P为所述每个重复中的有效时隙数N的整数倍。
  4. 根据权利要求1或2所述的方法,其特征在于,当所述第一参数和所述第二参数为所述重复数量K和所述每个重复中的有效时隙数N时,则所述一个配置授权周期内的有效时隙数为K*N。
  5. 根据权利要求1或2所述的方法,其特征在于,所述初始时隙为一个配置授权周期内与参考有效时隙距离M*N1个有效时隙的有效时隙,其中,M为整数,当所述第一参数或所述第二参数为每个重复的有效时隙数N时,N1=N,当所述第一参数和所述第二参数为一个配置授权周期内的有效时隙数P和一个配置授权周期内的重复的数量K时,N1=floor(P/K)或者N1=ceiling(P/K);或者,所述初始时隙为一个配置授权周期内与参考有效时隙距离M*N1-1个有效时隙的有效时隙,其中,M为大于或等于1的整数,当所述第一参数或所述第二参数为每个重复的有效时隙数N时,N1=N,当所述第一参数和所述第二参数为一个配置授权周期内的有效时隙数P和一个配置授权周期内的重复的数量K时,N1=floor(P/K)或者N1=ceiling(P/K)。
  6. 根据权利要求5所述的方法,其特征在于,当所述第一参数和所述第二参数为一个配置授权周期内的重复的数量K和每个重复中的有效时隙数N,或者,所述第一参数为一个配置授权周期内的有效时隙数P,且所述第一参数为所述第二参数的整数倍时,
    所述参考有效时隙为所述一个配置授权周期内的有效时隙中的第一个,所述初始时隙为一个配置授权周期内与参考有效时隙距离M*N1个有效时隙的有效时隙。
  7. 根据权利要求5所述的方法,其特征在于,当所述第一参数为一个配置授权周期内的有效时隙数P,且所述第一参数不为所述第二参数的整数倍时,
    所述参考有效时隙为所述一个配置授权周期内的有效时隙中的第一个,所述初始时隙为一个配置授权周期内与参考有效时隙距离M*N1个有效时隙的有效时隙,M为整数;或者,所述参考有效时隙为所述一个配置授权周期内的有效时隙中的最后一个,所述初始时隙为一个配置授权周期内与参考有效时隙距离M*N1-1个有效时隙的有效时隙,M为大于或等于1的整数。
  8. 根据权利要求7所述的方法,其特征在于,所述参考有效时隙为预设的;或者所述参考有效时隙是所述终端设备从所述网络设备接收的。
  9. 根据权利要求1所述的方法,其特征在于,所述终端设备根据所述第一参数和所述第二参数确定配置授权PUSCH传输的初始时隙,包括:
    所述终端设备根据冗余版本RV序列和所述第一参数和所述第二参数确定配置授权物理上行共享信道PUSCH传输的初始时隙,所述冗余版本RV序列是所述终端设备从所述网络设备接收的。
  10. 根据权利要求5-9中任一项所述的方法,其特征在于,所述M=A1*N2,其中,A1为大于或等于0的整数,N2为所述RV的最小周期。
  11. 根据权利要求5-10中任一项所述的方法,其特征在于,所述初始时隙上承载的重复的RV为0。
  12. 根据权利要求5-8中任一项所述的方法,其特征在于,当所述第一参数或所述第二参数为一个配置授权周期内的重复数量K时,所述M大于或等于0,且小于或等于K-1,M为整数;或者,当所述第一参数和所述第二参数为一个配置授权周期内的有效时隙数P和每个重复中的有效时隙数N时,所述M大于或等于0,且小于或等于floor(P/N)-1,M为整数。
  13. 根据权利要求12所述的方法,其特征在于,所述初始时隙上承载的重复的RV为0。
  14. 根据权利要求12所述的方法,其特征在于,所述初始时隙上承载的重复的RV为RV序列中的第T个RV,T=floor(S/N)+1,S为初始时隙在一个配置授权周期内的有效时隙中的序号。
  15. 根据权利要求14所述的方法,在所述初始时隙承载的重复的RV不为0的情况下,所述配置授权PUSCH传输的所有重复中至少存在一个重复使用的RV为0。
  16. 根据权利要求1-15中任一项所述的方法,其特征在于,一个重复使用一个RV,所述配置授权PUSCH传输的所有重复循环使用所述RV序列中的RV。
  17. 根据权利要求1-16中任一项所述的方法,其特征在于,所述根据所述初始时隙,进行所述配置授权PUSCH传输,包括:
    从所述初始时隙承载的重复开始,根据所述配置授权PUSCH传输的每个重复的RV进行所述配置授权PUSCH的编码;
    根据所述编码的结果进行所述配置授权PUSCH的传输。
  18. 根据权利要求5-17中任一项所述的方法,其特征在于,当所述第一参数为一个配置授权周期内的有效时隙数P,所述第二参数为所述每个重复中的有效时隙数N,且所述第一参数不为所述第二参数的整数倍,且参考有效时隙为所述一个配置授权周期内的有效时隙中的第一个时,最后P-floor(P/N)*N个有效时隙中不传输所述PUSCH;或者所述方法还包括:
    根据第一RV和所述有效时隙数N进行所述配置授权PUSCH的编码,所述第一RV为最后P-floor(P/N)*N个有效时隙上承载的重复的RV;
    将所述编码的结果从前往后在最后P-floor(P/N)*N个有效时隙中传输。
  19. 根据权利要求5-17中任一项所述的方法,其特征在于,当所述第一参数为一个配置授权周期内的有效时隙数P,第二参数为一个配置授权周期内的重复数量K,且所述第一参数不为所述第二参数的整数倍,且参考有效时隙为所述一个配置授权周期内的有效时隙中的第一个时,最后P-floor(P/K)*K个有效时隙中不传输所述PUSCH,或者所述方法还包括:
    根据第一RV和所述有效时隙数N进行所述配置授权PUSCH的编码,所述第一RV为最后P-floor(P/K)*K个有效时隙上承载的重复的RV;
    将所述编码的结果从前往后在最后P-floor(P/K)*K个有效时隙中传输。
  20. 一种通信装置,其特征在于,包括:
    用于实现如权利要求1-19中任一项所述方法的模块。
  21. 一种通信装置,其特征在于,其特征在于,包括至少一个处理器,所述至少一个处理器与至少一个存储器耦合,所述至少一个处理器用于执行所述至少一个存储器中存储的计算机程序或指令,使得如权利要求1-19中任一项所述的通信方法被执行。
  22. 一种芯片,其特征在于,所述芯片包括处理器和接口电路,所述处理器和所述接口电路之间相互耦合,所述接口电路用于与其他设备进行通信,所述处理器处理所述信号,使得如权利要求1-19中任一项所述的通信方法被执行。
  23. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,使得如权利要求1-19中任一项所述的通信方法被执行。
PCT/CN2022/122931 2021-09-30 2022-09-29 通信方法和通信装置 WO2023051744A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111160969.1 2021-09-30
CN202111160969.1A CN115913489A (zh) 2021-09-30 2021-09-30 通信方法和通信装置

Publications (1)

Publication Number Publication Date
WO2023051744A1 true WO2023051744A1 (zh) 2023-04-06

Family

ID=85729460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/122931 WO2023051744A1 (zh) 2021-09-30 2022-09-29 通信方法和通信装置

Country Status (2)

Country Link
CN (1) CN115913489A (zh)
WO (1) WO2023051744A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021155513A1 (en) * 2020-02-05 2021-08-12 Qualcomm Incorporated Early termination of multi-slot pusch using an uplink grant dci
WO2021168777A1 (en) * 2020-02-28 2021-09-02 Qualcomm Incorporated Transport block size determination for multi-slot transmission

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021155513A1 (en) * 2020-02-05 2021-08-12 Qualcomm Incorporated Early termination of multi-slot pusch using an uplink grant dci
WO2021168777A1 (en) * 2020-02-28 2021-09-02 Qualcomm Incorporated Transport block size determination for multi-slot transmission

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Discussion on TB processing over multi-slot PUSCH", 3GPP DRAFT; R1-2106496, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. E-meeting; 20210816 - 20210827, 7 August 2021 (2021-08-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052037824 *
HUAWEI, HISILICON: "Discussion on TB processing over multi-slot PUSCH", 3GPP DRAFT; R1-2108739, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20211011 - 20211019, 2 October 2021 (2021-10-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052057836 *
MODERATOR (NOKIA, NOKIA SHANGHAI BELL): "Final FL summary of TB processing over multi-slot PUSCH (AI 8.8.1.2)", 3GPP DRAFT; R1-2108545, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210816 - 20210827, 27 August 2021 (2021-08-27), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052042814 *

Also Published As

Publication number Publication date
CN115913489A (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
US11184907B2 (en) Method and apparatus for transmitting a transport block in a transmission occasion
JP7313347B2 (ja) 通信方法および装置
KR102421611B1 (ko) Lte 업링크 송신들의 레이턴시를 감소시키기 위한 방법 및 장치
KR102308624B1 (ko) Lte 업링크 송신들의 레이턴시를 감소시키기 위한 방법 및 장치
JP7010977B2 (ja) 繰り返し送信のための方法および端末デバイス
CN110621075B (zh) 一种传输数据的方法和装置
WO2018082414A1 (zh) 免授权传输的方法、终端和网络设备
CN107135046B (zh) 一种信息传输方法及装置
CN109672506B (zh) 数据传输的确认方法及设备
TW202127949A (zh) 在上行鏈路共享通道傳輸上多工上行鏈路控制資訊
JP7416923B2 (ja) 論理チャネルとconfigured grant(CG)設定との間のマッピング
JP2019507969A (ja) 通信方法、端末デバイス及びネットワークデバイス
CN110035519B (zh) 一种上行数据传输方法及装置
WO2019137483A1 (zh) 数据包的传输方法及通信装置
TWI706649B (zh) 傳輸數據的方法、網絡設備和終端設備
CN111699648B (zh) 无线通信方法、装置及系统
WO2023051744A1 (zh) 通信方法和通信装置
JP2021514159A (ja) 複数送信のスケジューリング
CN111684747B (zh) 传输信息的方法和终端设备
CN115336347A (zh) 用于选择频带的物理下行链路和上行链路共享信道传输块的缩放
WO2018166472A1 (zh) 数据发送方法、装置、终端设备和网络设备
KR20240073093A (ko) 통신 방법 및 통신 장치
WO2019158096A1 (zh) 随机接入过程中传输数据的方法和装置
CN116602040A (zh) 一种通信方法及装置
CN116057969A (zh) 无线通信系统中用于发送/接收用于组播的信号的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22875125

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022875125

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022875125

Country of ref document: EP

Effective date: 20240408