WO2023051352A1 - 外转子电机以及自主智能机器 - Google Patents

外转子电机以及自主智能机器 Download PDF

Info

Publication number
WO2023051352A1
WO2023051352A1 PCT/CN2022/120234 CN2022120234W WO2023051352A1 WO 2023051352 A1 WO2023051352 A1 WO 2023051352A1 CN 2022120234 W CN2022120234 W CN 2022120234W WO 2023051352 A1 WO2023051352 A1 WO 2023051352A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer rotor
rotor motor
motor according
detection part
bearing
Prior art date
Application number
PCT/CN2022/120234
Other languages
English (en)
French (fr)
Inventor
符勇
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023051352A1 publication Critical patent/WO2023051352A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/22Optical devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/08Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using magnetic effect devices, e.g. Hall-plates, magneto-resistors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/10Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using light effect devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings

Definitions

  • the present application relates to the technical field of drive devices, in particular, to an external rotor motor and an autonomous intelligent machine.
  • the autonomous intelligent machine With the continuous development of autonomous intelligent machine technology, various driving devices are widely used in the field of autonomous intelligent machines. For example, servo motors or steering gear are widely used in the field of autonomous intelligent machines, which output power for autonomous The autonomous intelligent machine walks or changes its posture.
  • the autonomous intelligent machine can be an intelligent machine such as a humanoid machine, a robot cat or a robot dog.
  • the embodiment of the present application proposes an external rotor motor and an autonomous intelligent machine to solve the above problems.
  • the embodiment of the present application provides an outer rotor motor, which includes a housing, an outer rotor assembly, a limit bearing, and a position detection member.
  • the housing is provided with an installation cavity and a rotating hole communicating with the installation cavity.
  • the inner wall of the rotating hole, the outer rotor assembly is rotatably arranged in the installation cavity, the outer rotor assembly includes a rotor frame, the rotor frame includes a frame body and a rotating shaft part connected to the frame body, the rotating shaft part is rotatably assembled in the rotating hole, and the limit
  • the bearing is sleeved on the rotating shaft part and embedded between the rotating shaft part and the inner wall to prevent the outer rotor assembly from moving radially along the rotating hole.
  • the position detection part includes a first detection part and a second detection part.
  • the first detection part The first detection part is installed on the rotating shaft part, and the second detection part is arranged opposite to the first detection part, so as to detect the rotation position of the outer rotation self-assembly through the first detection part.
  • the embodiment of the present application further provides an autonomous intelligent machine, including the above-mentioned outer rotor motor.
  • Fig. 1 is a schematic structural diagram of an outer rotor motor provided in an embodiment of the present application in an assembled state.
  • Fig. 2 is an exploded schematic diagram of the outer rotor motor shown in Fig. 1 .
  • Fig. 3 is a schematic longitudinal cross-sectional view of the outer rotor motor shown in Fig. 1 .
  • Fig. 4 is a schematic structural view of the bottom case in the outer rotor motor shown in Fig. 2 .
  • Fig. 5 is a schematic structural view of the rotor frame, the limit bearing, the magnet and the fixing ring in the outer rotor motor shown in Fig. 2 in a disassembled state.
  • FIG. 6 is a partially enlarged schematic diagram of A in FIG. 3 .
  • Fig. 7 is a schematic structural view of the outer rotor assembly in the outer rotor motor shown in Fig. 2 in a disassembled state.
  • Fig. 8 is a schematic structural view of the second planet carrier in the outer rotor motor as shown in Fig. 2 .
  • Fig. 9 is a schematic structural view of the first planet carrier in the outer rotor motor as shown in Fig. 2 .
  • Fig. 10 is a schematic structural diagram of an autonomous intelligent machine provided by an embodiment of the present application.
  • This embodiment provides an outer rotor motor 200 , including a housing 210 , an outer rotor assembly 220 , a limit bearing 230 and a position detection member 240 .
  • the external rotor motor 200 can be applied to autonomous intelligent machines, which can be semi-autonomous or fully autonomous intelligent machines, for example, quadruped robots, humanoid machines, mechanical arms or multi-legged robots, etc., the embodiment of the present application is here No restrictions.
  • the external rotor motor 200 can be used to drive the autonomous intelligent machine to walk or change the action posture of the autonomous intelligent machine.
  • the outer rotor motor 200 may be an outer rotor brushless motor.
  • the casing 210 is provided with an installation cavity 2111 and a rotation hole 2112 communicating with the installation cavity 2111 .
  • the casing 210 includes an inner wall 2113 surrounding the rotation hole 2112 .
  • the outer rotor assembly 220 is rotatably disposed in the installation cavity 2111 .
  • the outer rotor assembly 220 includes a rotor frame 221 .
  • the rotor frame 221 includes a frame body 2212 and a shaft portion 2211 connected to the frame body 2212 .
  • the shaft portion 2211 is rotatably assembled in the rotation hole 2112 .
  • the limiting bearing 230 is sheathed on the rotating shaft portion 2211 and embedded between the rotating shaft portion 2211 and the inner wall 2113 to prevent the outer rotor assembly 220 from moving radially along the rotating hole 2112 .
  • the position detection part 240 includes a first detection part 241 and a second detection part 242, the first detection part 241 is mounted on the shaft part 2211, and the second detection part 242 is arranged opposite to the first detection part 241, so as to be detected by the first detection part 241 The rotational position of the outer rotor assembly 220 .
  • “relatively arranged” may mean that the orthographic projection of the signal emission surface of the first detection portion 241 along the axis of the shaft portion 2211 at least partially falls within the range of the signal incidence surface of the second detection portion 242 .
  • the first detection part 241 and the second detection part 242 can be arranged facing each other, that is, the signal emission surface of the first detection part 241 along the axial projection of the shaft part 2211 basically falls entirely on the second detection part 242. within the range where the signal incident surface is located, so as to enhance the signal intensity detected by the second detection part 242 .
  • the limit bearing 230 is sheathed on the outer periphery of the rotor frame 221, and the limit bearing 230 is embedded between the rotating shaft part 2211 and the inner wall 2113.
  • the limit bearing 230 can prevent the rotor frame 221 from The radial offset along the rotating hole 2112 prevents the rotor frame 221 from shifting relative to the axis of the rotating hole 2112 when rotating.
  • the first detecting part 241 when the first detecting part 241 is installed on the rotating shaft part 2211, the second detecting part 242 and the second detecting part 242 One detection part 241 is arranged oppositely, and the first detection part 241 will not shift relative to the second detection part 242, so that the first detection part 241 and the second detection part 242 maintain accurate alignment, and the second detection part 242 can pass through
  • the first detection part 241 accurately detects the rotational position of the outer rotor assembly, thereby realizing precise movement and control of the autonomous intelligent machine.
  • the casing 210 includes a bottom case 211 and a top case 212 , the top case 212 covers the bottom case 211 , and the bottom case 211 and the top case 212 are an assembled connection structure.
  • the top shell 212 and the bottom shell 211 jointly define an installation cavity 2111 , and the rotation hole 2112 penetrates through the bottom shell 211 .
  • connection structure between a certain part (such as part 1) and another part (such as part 2) described above and below is an assembled connection structure, which means that the two parts are assembled into one body by means of assembly, and the two Parts are assembled to achieve mating connection, and the two are non-integrated structures.
  • part 1 and part 2 can be assembled by clamping, screwing, nesting, bonding, welding or fasteners.
  • Part 1 and part 2 can be assembled together in a detachable assembly manner, and the two can be separated again after assembly.
  • the outer side of the bottom shell 211 is provided with the accommodating cavity 2114 communicating with the rotation hole 2112, and the accommodating cavity 2114 can be directed from the bottom wall of the bottom shell 211 toward the installation cavity 2111.
  • a depression is formed.
  • the accommodating cavity 2114 can be used for installing controllers, circuit boards and other structures.
  • the rotation hole 2112 may be disposed approximately at a middle position of the bottom wall of the bottom case 211 .
  • annular groove 2115 is provided inside the bottom shell 211 , and the annular groove 2115 is arranged around the rotation hole 2112 and communicates with the installation cavity 2111 .
  • the annular groove 2115 can be used to install the rotor frame 221 and provide a rotating space for the rotor frame 221 .
  • the rotor frame 221 is roughly in the shape of a hub.
  • the rotor frame 221 is rotatably installed in the accommodating cavity 2114.
  • the rotor frame 221 can rotate around the axis of the rotation hole 2112. axis to rotate.
  • the rotating shaft portion 2211 is approximately in the shape of a hollow column, and the rotating shaft portion 2211 is rotatably disposed in the rotating hole 2112 , and the axes of the rotating shaft portion 2211 and the rotating hole 2112 are roughly coincident.
  • One end of the rotating shaft part 2211 can extend into the accommodating cavity 2114 through the rotating hole 2112, so that the first detection part 241 can be installed on the end of the rotating shaft part 221 extending into the accommodating cavity 2114, and is arranged in the accommodating cavity 2114.
  • the second detection unit 242 performs accurate alignment.
  • the frame body 2212 includes a mounting portion 2213 and a connecting portion 2214 .
  • the installation part 2213 is substantially ring-shaped.
  • the installation part 2213 is disposed around the outer circumference of the shaft part 2211 and connected to the shaft part 2211 through the connection part 2214 .
  • the number of connecting parts 2214 can be multiple, and a plurality of connecting parts 2214 are arranged at intervals around the rotating shaft part 2211, and each connecting part 2214 is connected between the rotating shaft part 2211 and the mounting part 2213, by surrounding the rotating shaft part 2211 with a plurality of connecting parts 2214
  • the arrangement at intervals can not only save the material of the entire rotor frame 221 but also reduce the weight of the entire rotor frame 221 under the condition of ensuring the structural strength of the entire rotor frame 221 .
  • the mounting part 2213 , the connecting part 2214 and the shaft part 2211 can be integrally formed or connected in an assembled relationship.
  • the installation part 2213 , the connection part 2214 and the shaft part 2211 are integrally formed.
  • at least part of the mounting portion 2213 can be inserted into the annular groove 2115 and kept spaced from the inner sidewall and the outer sidewall of the annular groove 2115 to avoid interference with the bottom shell 211 during rotation.
  • the outer rotor assembly 220 includes a plurality of magnets 224 , and the plurality of magnets 224 are disposed on the frame body 2212 at intervals around the rotating shaft portion 2211 .
  • a plurality of magnets 224 may be evenly arranged on the installation part 2213 according to a certain rule, for example, a plurality of magnets 224 may be arranged on the outer or inner circumference of the installation part 2213 at equal intervals around the rotating shaft part 2211 .
  • the mounting portion 2213 of the frame body 2212 may be provided with a plurality of fixing grooves 2215, and the plurality of fixing grooves 2215 are arranged at intervals around the shaft portion 2211 on the outer periphery of the mounting portion 2213 of the frame body 2212.
  • the fixing grooves 2215 are used for The magnet 224 is fixed.
  • Each magnet 224 can be embedded in a fixing groove 2215, wherein the thickness of the magnet 224 can be less than or equal to the depth of the fixing groove 2215, so that the magnet 224 can be prevented from protruding from the outer circumference of the mounting part 2213, so as to reduce the diameter of the outer rotor assembly 220 to size.
  • the outer rotor assembly 220 may further include a fixing ring 225, which is sleeved on the outer periphery of the mounting part 2213 and fixedly connected to the mounting part 2213 to limit the magnet 224 radially and prevent the rotor frame from The magnet 224 disengages from the rotor frame 221 when the rotor frame 221 rotates.
  • a fixing ring 225 which is sleeved on the outer periphery of the mounting part 2213 and fixedly connected to the mounting part 2213 to limit the magnet 224 radially and prevent the rotor frame from The magnet 224 disengages from the rotor frame 221 when the rotor frame 221 rotates.
  • the outer rotor motor 200 includes a stator assembly 250, the stator assembly 250 is spaced apart from the frame body 2212, and the stator assembly 250 is used to magnetically cooperate with the magnet 224 to drive the outer rotor assembly 220 turn.
  • the stator assembly 250 can be arranged on the inner periphery of the frame body 2212.
  • the stator assembly 250 includes a stator frame 251 and a plurality of sets of stator coils 252.
  • the stator frame 251 can be fixedly connected to the housing 210.
  • the stator frame 251 can be fixed on an annular In the groove 2115, for example, it can be fixed on the inner side wall of the annular groove 2115.
  • the stator frame 251 includes multiple layers of silicon steel sheets, which are sequentially stacked along the thickness direction of the annular groove 2115 , and the stator coil 252 is wound on the stack of multiple layers of silicon steel sheets according to certain rules.
  • each layer of silicon steel sheet may include a ring body and a plurality of fixing parts (not shown) connected to the ring body, the plurality of fixing parts are arranged at intervals along the circumferential direction of the ring body, and each fixing part is arranged along the radial direction of the ring body.
  • the multiple fixed portions of each layer of silicon steel sheets correspond to the multiple fixed portions of adjacent silicon steel sheets, and multiple sets of stator coils 252 can be respectively wound on the corresponding fixed portions.
  • the plurality of stator coils 252 When the plurality of sets of stator coils 252 are energized in a certain order, the plurality of stator coils 252 gradually become a plurality of electromagnets, which attract the corresponding magnets 224 on the rotor frame 221 successively, thereby driving the outer rotor assembly 220 to rotate.
  • the stator assembly 250 is spaced apart from the housing 210 to form a cooling gap 2116
  • the outer rotor motor 200 includes a cooling element 261 disposed in the cooling gap 2116
  • the stator assembly 250 may be spaced apart from the bottom of the annular groove 2115 to form a heat dissipation gap 2116
  • the heat sink 261 can include a heat conduction structure, which can be a heat conduction tube or heat conduction silica gel, etc.
  • the heat conduction structure can be arranged around the bottom of the annular groove 2115, and form heat conduction with the housing 210, and the heat conduction structure can conduct heat in the heat dissipation gap 2116 to the casing 210, and conduct heat to the outside through the casing 210, effectively reducing the temperature of the outer rotor motor 200 during operation.
  • the heat dissipation element 261 may also include heat dissipation fins and/or heat dissipation pipes.
  • the cooling element 261 can also include a cooling fan, which can be installed at the bottom of the casing 210, and the cooling fan can quickly dissipate the heat in the cooling gap 2116 to the outside.
  • the second detection part 242 is arranged opposite to the first detection part 241.
  • the first detection part 241 is installed on the rotating shaft part 2211 and is located in the accommodating cavity 2114.
  • the second detection part The portion 242 is disposed in the accommodating cavity 2114 .
  • the first detection part 241 may be a magnetic encoder, and the second detection part 242 may be a Hall sensor.
  • Magnetic encoders have excellent resistance to shock and vibration.
  • the magnetic encoder adopts a magnetoelectric design, and the change of the magnetic field of the magnetic encoder is detected by a Hall sensor, so as to detect the rotational position of the rotating shaft part 2211 .
  • the magnetic encoder can be a magnetic incremental encoder and a magnetic absolute encoder.
  • the first detection part 241 may include a ring encoder, and the ring encoder may be disposed around the shaft part 2211 .
  • the position detecting element 240 may include a photoelectric encoder, which is a sensor that converts the mechanical geometric displacement of the rotating structure into pulses or digital quantities through photoelectric conversion.
  • the first detection part 241 can be a grating disk
  • the second detection part 242 can be a photoelectric detection element.
  • the grating disk is coaxial with the rotating shaft part 2211 so that the rotation of the rotating shaft part 2211 drives the grating disk to rotate coaxially, and several pulses are output through the photoelectric detection part.
  • signal, and the current rotational speed of the rotor frame 221 can be calculated according to the number of pulses per second of the signal.
  • the position detection part 240 can also detect the rotation direction of the rotor frame 221.
  • the code disk of the photoelectric encoder outputs two optical codes with a phase difference of 90 degrees. The direction of rotation of the rotor frame 221 .
  • the position detector 240 includes a photoelectric encoder and a magnetic encoder, and the photoelectric encoder and the magnetic encoder are respectively arranged at both ends of the shaft portion 2211 in the axial direction, that is, at the input end and the end of the outer rotor motor 200.
  • a sensor is added to the output end, which eliminates the influence of the gap inconsistency between the meshing gears inside the outer rotor motor 200 , so that the rotation position of the outer rotor motor 200 can be detected more accurately.
  • the outer rotor motor 200 may further include a fixing member 262, which is approximately a hollow columnar structure, and one end of the fixing member 262 may be embedded in the shaft portion 2211, and It is arranged coaxially with the rotating shaft part 2211 .
  • the fixing part 262 can be embedded in one end of the shaft part 2211 with interference, so as to be fixed with the shaft part 2211 .
  • the end surface of the fixing part 262 facing the second detection part 242 can be provided with a fixing hole (not shown), the first detection part 241 can be embedded in the fixing hole, and the fixing hole and the rotating shaft part 2211 can be arranged coaxially, so that the embedded
  • the first detecting part 241 in the fixing hole may be installed approximately at the central area of the rotating shaft part 2211 .
  • the first detection part 241 may also be directly mounted on the shaft part 2211 .
  • the outer rotor motor 200 includes a control board 264 and a cover board 265, the control board 264 is installed in the accommodating cavity 2114, the second detection part 242 is installed on the control board 264, and is electrically connected with the control board 264,
  • the cover plate 265 is mounted on the bottom case 211 and covers the accommodating cavity 2114 .
  • the control board 264 can be loaded into the accommodating cavity 2114 from the outside of the casing 210 .
  • the control board 264 and the outer rotor assembly 220 are separated from each other by the housing 210, which can avoid heat concentration generated by the two during operation.
  • the cover plate 265 can be fixed on the bottom of the housing 210 through a plurality of first fasteners 2641 , and cover the accommodating cavity 2114 , so as to prevent the accommodating cavity 2114 from dust and protect the control board 264 .
  • the limit bearing 230 includes a bearing body 231 and a limit portion 232 , the bearing body 231 is sleeved on the shaft portion 2211 , and is aligned with the shaft portion 2211 in the axial direction of the shaft portion 2211 Limit fit.
  • the limiting part 232 is arranged around the outer periphery of the bearing body 231 and is limited to the bottom shell 211.
  • the limiting part 232 can be fixedly connected to the bottom shell 211.
  • the limit bearing 230 moves up and down relative to the bottom shell 211 in the axial direction, and further, the limit portion 232 also cooperates with the bottom shell 211 along its radial direction to limit the limit bearing 230 relative to the bottom shell along its radial direction. 211 offset.
  • the limit bearing 230 may be a sliding bearing or a rolling bearing 283 .
  • the rotating shaft part 2211 can rotate relative to the bottom shell 211 through the limiting bearing 230 .
  • the outer diameter of the limiting part 232 is larger than the outer diameter of the rotating hole 2112, so that the limiting part 232 can be limited on the outer circumference of the rotating hole 2112, and can be connected to the bottom shell 211, thereby limiting the limit bearing 230 along the rotating hole 2112. axial installation position.
  • the bearing body 231 can be tightly fitted between the inner wall 2113 of the rotation hole 2112 and the shaft portion 2211 to prevent the rotor frame 221 from shifting radially along the rotation hole 2112 . Since the bearing body 231 and the rotating shaft part 2211 are spaced and fitted along the axial direction of the rotating shaft part 2211, the bearing body 231 can limit the rotating shaft part 2211 from moving downward along the axial direction of the rotating hole 2112, and the bearing body 231 will meet the outer circumference of the rotating shaft part 2211 at the same time.
  • the rotor frame 221 will basically not move up and down along the axial direction of the rotation hole 2112 under the action of the pre-tightening force, ensuring accurate alignment between the first detection part 241 and the second detection part 242, and improving position detection.
  • the rotor frame 221 and the rolling bearing 283 can be kept coaxial to ensure the circular runout of the rotor frame 221, thereby making the entire transmission of the outer rotor motor 200 more precise, and avoiding that the rotor frame 221 is in a cantilever state. , resulting in the problem of inaccurate position sensing between the first detection part 241 and the second detection part 242 on the rotor frame 221 .
  • the outer rotor assembly 220 includes a planetary gear part 270, and the planetary gear part 270 may be an NW type planetary reducer, N means internal meshing, W means external meshing, and the planetary gear part 270 is used to change the transmission ratio and output torque of the outer rotor assembly 220 .
  • the planetary gear portion 270 includes a first planet carrier 271, a central pinion shaft 272, a plurality of planetary gears 273 and a ring gear 275, one end of the central pinion shaft 272 is fixedly connected to the rotating shaft portion 2211, and the first planetary carrier 271 surrounds the rotating shaft
  • the first planetary carrier 271 can rotate relative to the rotating shaft part 2211 .
  • the ring gear 275 is disposed around the center pinion shaft 272 and is spaced from the outer wall of the center pinion shaft 272 .
  • the ring gear 275 is fixed on the housing 210 .
  • the ring gear 275 can be fixed on the inner periphery of the top case 212 .
  • a plurality of planetary gears 273 are arranged at intervals around the central pinion shaft 272 , are rotatably connected to the first planetary carrier 271 , and meshed between the central pinion shaft 272 and the ring gear 275 .
  • a rack 2721 is disposed on the outer periphery of the central pinion 272 , and the rack 2721 is arranged around the outer periphery of the central pinion 272 and is approximately located in the middle of the central pinion 272 .
  • the central pinion shaft 272 is fixed on the shaft portion 2211 and coaxial with the shaft portion 2211 .
  • the central gear shaft 272 can be fixed on the end of the rotating shaft part 2211 away from the first detection part 121 , and the central pinion shaft 272 can be embedded in the hole of the rotating shaft part 2211 with interference.
  • the planetary gear part 270 further includes a pin shaft 276, and the pin shaft 276 can be fixed between the outer circumference of the central gear shaft 272 and the inner circumference of the rotating shaft part 2211, so that the planetary gear part 270 and the circumference of the rotating shaft part 2211 To form a fixed.
  • the outer circumference of the central pinion shaft 272 may be provided with a groove, and the inner wall 2113 may be provided with a recess corresponding to the groove, and the pin shaft 276 may be embedded in the groove and the recess at the same time to form a mortise and tenon structure, so that The center pinion 272 is fixed to the circumference of the rotor frame 221 to prevent the rotor frame 221 from slipping relative to the center pinion 272 , thereby ensuring the transmission performance of the entire outer rotor motor 200 .
  • the first planet carrier 271 is spaced apart from the outer circumference of the central pinion 272, and can rotate relative to the central pinion 272.
  • a plurality of planetary gears 273 form an external meshing structure with the rack 2721 of the central pinion 272.
  • Ring gear 275 groups of internal meshing structures.
  • the transmission ratio distribution of the entire outer rotor motor 200 is more reasonable, the strength of the gears is greater, the service life is longer, and the output torque of the entire outer rotor motor 200 is greater.
  • a limit bearing 277 may be provided between the first planet carrier 271 and the shaft portion 2211, and the limit bearing 277 may prevent the first planet carrier 271 from moving along its axis relative to the shaft portion 2211. radial offset.
  • the limiting bearing 277 can be a rolling bearing 283 , and the first planet carrier 271 can rotate relative to the rotating shaft portion 2211 through the limiting bearing 277 .
  • a limiting structure is provided on the outer periphery of the limiting bearing 277 , and the limiting structure can be stopped on the bottom side of the first planetary carrier 271 so as to limitly cooperate with the first planetary carrier 271 .
  • the first planet carrier 271 can be kept at a distance from the rotor frame 221 in the axial direction of the rotating shaft part 2211 under the action of the stopper of the position-limiting structure, so as to prevent the first planet carrier 271 and the rotor frame 221 from interfering with each other when rotating.
  • a stop bearing 277 is arranged between a planet carrier 271 and the rotor frame 221 to improve the coaxiality between the first planet carrier 271 and the central gear shaft 272 .
  • the outer rotor motor 200 includes a flange bearing 281 and a gland 282.
  • the flange bearing 281 is sleeved on the end of the central gear shaft 272 away from the rotor frame 221 and connected to the center
  • the pinion shaft 272 is limitedly fitted along the axial direction of the central pinion shaft 272 .
  • the gland 282 is used together with the flange bearing 281 and the limiting bearing 230 to limit the outer rotor assembly 220 between the flange bearing 281 and the limiting bearing 230 .
  • the outer rotor motor 200 further includes a second fastener 2821, the second fastener 2821 is connected to the gland 282 and the housing 210 to fix the gland 282 to the housing 210, and the second fastener 2821 is connected to the housing 210.
  • Fasteners 2821 may be bolts, pins, or the like.
  • a step portion (not shown) may be provided on the outer periphery of the central pinion shaft 272 , and the flange bearing 281 is sleeved on the central pinion shaft 272 and abuts against the step portion, so as to limit fit with the step portion.
  • the gland 282 After the gland 282 is fixedly connected to the housing 210, the gland 282 can directly press the flange bearing 281 on the stepped portion of the central gear shaft 272, or press the flange bearing 281 on the stepped portion through an intermediate structure .
  • the flange bearing 281 and the limit bearing 230 work together to limit the outer rotor assembly 220 between the flange bearing 281 and the limit bearing 230, that is, the flange bearing 281 and the limit bearing 230 can move the outer rotor assembly 220
  • the upper and lower sides are limited to effectively prevent the entire outer rotor assembly 220 from moving up and down along the axial direction of the rotation hole 2112 .
  • the outer rotor motor 200 does not need to be disassembled by snap ring pliers during the entire installation process, which makes the installation of the entire outer rotor motor 200 easier. Simple.
  • each planetary gear 273 includes a first transmission gear 2731 and a second transmission gear 2732, the first transmission gear 2731 and the second transmission gear 2732 are coaxially arranged, the first transmission gear 2731 meshes with the central gear shaft 272, the second transmission gear 2732 is fixedly connected to the first transmission gear 2731, and meshes with the ring gear 275, the diameter of the addendum circle of the second transmission gear 2732 is smaller than the diameter of the addendum circle of the first transmission gear 2731 , to increase the transmission ratio of the outer rotor assembly 220 .
  • the planetary gear part 270 also includes a gear shaft 278, the gear shaft 278 passes through the first transmission gear 2731 and the second transmission gear 2732, and is fixed on the first planet carrier 271, the first transmission gear 2731 and the second transmission gear 2732 can Rotating around the same gear shaft 287, the coaxiality between the first transmission gear 2731 and the second transmission gear 2732 can be improved through the gear shaft 278.
  • the planetary gear part 270 further includes a second planetary carrier 274, the second planetary carrier 274 is fixedly connected to the side of the planetary gear 273 away from the first planetary carrier 271, and the second The planet carrier 274 is sheathed on the outer periphery of the flange bearing 281 , and cooperates with the flange bearing 281 along the axial direction of the flange bearing 281 .
  • the outer rotor motor 200 also includes a rolling bearing 283.
  • the rolling bearing 283 is sheathed on the outer periphery of the second planetary carrier 274, and is limitedly matched with the second planetary carrier 274 along the axial direction of the second planetary carrier 274.
  • the gland 282 is pressed on the rolling bearing 283. the periphery.
  • the second planet carrier 274 can be used as an output flange of the entire outer rotor motor 200 .
  • the rolling bearing 283 may be a cross roller bearing.
  • the gland 282 when the gland 282 is fixedly connected to the housing 210, the gland 282 exerts a pressing force on the rolling bearing 283, so that the second planet carrier 274 is limited between the rolling bearing 283 and the flange bearing 281, avoiding the entire outer
  • the rotor assembly 220 moves axially along the axis of the rotating hole 2112 .
  • the planetary gear part 270 also includes a third fastener 279 (as shown in FIG. 2 ), the third fastener 279 is connected to the second planetary carrier 274 and the first planetary carrier 271, so as to realize the connection between the second planetary carrier 274 and the first planetary carrier 271. Fixed connection of the first planet carrier 271 .
  • the transmission ratio of the outer rotor motor 200 may be greater than or equal to 9 to output a larger torque.
  • specific adjustments can be made according to actual needs.
  • the second planet carrier 274 is provided with a guide portion 2743
  • the first planet carrier 271 is provided with a matching portion 2713 that matches the guide portion 2743
  • the guide portion 2743 and the matching portion 2713 interference fit are shown in FIG. 8 and FIG. 9 .
  • the guide part 2743 and the matching part 2713 can be limitedly matched, and the guide part 2743 and the matching part 2713 are interference fit to ensure that the second planetary carrier 274 and the first planetary carrier 271, so as to limit the circumferential direction of the second planetary carrier 274 and the first planetary carrier 271, so as to avoid the second
  • the planetary carrier 274 and the first planetary carrier 271 are relatively twisted due to an external force, which affects the degree of meshing between the meshed gear structures.
  • the matching portion 2713 includes a first guide post 2712 and a first guide hole 2711 provided on the first planet carrier 271
  • the guide portion 2743 includes a guide post 2712 provided on the second planet carrier 274 .
  • the first guide post 2712 is used for interference fit with the second guide hole 2741
  • the second guide post 2742 is used for interference fit with the first guide hole 2711, wherein the diameter of the first guide hole 2711 is larger than that of the second guide hole 2741 aperture.
  • the number of the first guide post 2712 and the first guide hole 2711 can be multiple, the number of the first guide post 2712 is the same as that of the second guide hole 2741, and each first guide post 2712 can be embedded in an interference inside the second guide hole 2741 to achieve a tight fit.
  • the number of the second guide posts 2742 can be the same as the number of the first guide holes 2711 , and each second guide post 2742 can fit into the first guide holes 2711 with an interference fit to achieve a tight fit. In this way, the circumferential limiting effect of the first planet carrier 271 and the second planet carrier 274 can be effectively realized.
  • the first guide hole 2711 is matched with the first guide hole 2711.
  • the aperture of the second guide post 2742 is larger than the aperture of the second guide hole 2741, so the second guide post 2742 can only be inserted into the first guide hole 2711, but cannot be inserted into the second guide hole 2741, thereby playing the role of foolproof.
  • the first planetary carrier 271 is provided with a limiting protrusion 2714 facing the second planetary carrier 274, and the limiting protrusion 2714 is provided with an arc groove 2715.
  • the center of the circumference where the arc groove 2715 is located roughly coincides with the center of the first planet carrier 271
  • the second planet carrier 274 is provided with a mating protrusion 2744 that is compatible with the arc groove 2715, and the mating protrusion 2744 is compatible with the arc groove 2715
  • the matching protrusion 2744 can be a circular arc structure, and the center of its circumference coincides with the center of the first planet carrier 271 roughly.
  • the axes of the first planetary carrier 271 and the second planetary carrier 274 are roughly located on the same axis, and they are mutually limited in the radial direction, and the second planetary carrier 274 is raised.
  • a magnetic encoder can also be provided on the second planetary carrier 274, and by combining the rotational position of the second planetary carrier 274, the rotational position of the outer rotor assembly 220 can be more accurately determined and the rotation of the outer rotor 220 can be controlled. Location.
  • the embodiment of the present application also provides an autonomous intelligent machine 300 , including the above-mentioned outer rotor motor 200 .
  • the external rotor motor 200 is used to output driving force to the autonomous intelligent machine 300 to drive the autonomous intelligent machine 300 to walk or change its posture.
  • the autonomous intelligent machine can be an intelligent machine that works semi-autonomously or fully autonomously, such as a quadruped robot, a humanoid machine , multi-legged robot or robotic arm, etc.
  • the following takes the autonomous intelligent machine as a quadruped robot as an example for illustration:
  • the autonomous intelligent machine 300 includes an autonomous intelligent machine body 310 and a walking leg assembly 320, the number of the walking leg assemblies 320 is four, and every two walking leg assemblies 320 are installed on opposite sides of the autonomous intelligent machine body 310 .
  • Each walking leg assembly 320 includes a first leg 321 and a second leg 322 , one end of the first leg 321 is movably connected to the autonomous intelligent machine body 310 , and the other end is movably connected to the second leg 322 .
  • There are multiple outer rotor motors 200 each first leg 321 is driven by an outer rotor motor 200 , and each second leg 322 is driven by an outer rotor motor 200 . By controlling the rotation state of each outer rotor motor 200 , the autonomous intelligent machine 300 is driven to walk or the posture of the autonomous intelligent machine 300 is changed.
  • the autonomous intelligent machine provided by the embodiment of the present application is equipped with the above-mentioned outer rotor motor 200, because the above-mentioned outer rotor motor 200 is provided with a limit bearing 230 on the outer periphery of the rotor frame 221, and the limit bearing 230 is embedded in the rotating shaft. Between the part 2211 and the inner wall 2113, the limit bearing 230 can prevent the radial deviation of the rotor frame 221 along the rotation hole 2112, so that the rotation of the rotor frame 221 relative to the rotation hole 2112 will not deviate.
  • the second detection part 242 is set opposite to the first detection part 241, and the first detection part 241 will not deviate relative to the second detection part 242, so that the first detection part 241 and the second detection part 241
  • the detection part 242 maintains accurate alignment, and the second detection part 242 can accurately detect the rotational position of the outer rotor assembly through the first detection part 241. Therefore, the autonomous intelligent machine can accurately detect its own motion state, and accurately perform self-rotation. exercise.

Abstract

一种外转子电机以及自主智能机器,外转子电机(200)包括壳体(210)、外转子组件(220)、限位轴承(230)及位置检测件(240),壳体(210)设有安装腔(2111)及转动孔(2112),壳体(210)包括围成转动孔(2112)的内壁,外转子组件(220)包括转子架(221),转子架(221)包括架体(2212)及连接于架体(2212)的转轴部(2211),转轴部(2211)可转动地装配于转动孔(2112),限位轴承(230)套设于转轴部(2211),并嵌设于转轴部(2211)与所述内壁(2113)之间,以阻止外转子组件(220)沿转动孔(2112)的径向移动,位置检测件(240)包括第一检测部(241)以及第二检测部(242),第一检测部(241)安装于转轴部(2211),第二检测部(242)与第一检测部(241)相对设置,以通过第一检测部(241)检测外转子组件(220)的转动位置。因此,第一检测部(241)与第二检测部(242)能够保持准确对位,第二检测部(242)通过第一检测部(241)精准地检测到外转子组件(220)的转动位置,从而实现自主智能机器的精准运动和控制。

Description

外转子电机以及自主智能机器
相关申请的交叉引用
本申请要求于2021年09月29日提交中国专利局的申请号为CN 202111154286.5、名称为“外转子电机以及自主智能机器”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及驱动装置技术领域,具体而言,涉及一种外转子电机以及自主智能机器。
背景技术
随着自主智能机器技术的不断发展,各类驱动装置广泛地应用于自主智能机器领域,例如,目前伺服电机或舵机广泛地使用在自主智能机器领域,其为自主智能机器输出动力,以驱使自主智能机器行走或姿态改变,自主智能机器可以是仿人形机机器、机器猫或机器狗等智能机器。
发明内容
本申请实施例提出了一种外转子电机以及自主智能机器,以解决以上问题。
本申请实施例通过以下技术方案来实现上述目的。
第一方面,本申请实施例提供一种外转子电机,包括壳体、外转子组件、限位轴承以及位置检测件,壳体设有安装腔以及与安装腔连通的转动孔,壳体包括围成转动孔的内壁,外转子组件可转动地设置于安装腔,外转子组件包括转子架,转子架包括架体以及连接于架体的转轴部,转轴部可转动地装配于转动孔,限位轴承套设于转轴部,并嵌设于转轴部与所述内壁之间,以阻止外转子组件沿转动孔的径向移动,位置检测件包括第一检测部以及第二检测部,第一检测部安装于转轴部,第二检测部与第一检测部相对设置,以通过第一检测部检测外转自组件的转动位置。
第二方面,本申请实施例还提供一种自主智能机器,包括上述的外转子电机。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例提供的外转子电机在组装状态下的结构示意图。
图2是如图1所示的外转子电机的爆炸示意图。
图3是如图1所示的外转子电机的纵向截面示意图。
图4是如图2所示的外转子电机中的底壳的结构示意图。
图5是如图2所示的外转子电机中的转子架、限位轴承、磁体以及固定环在拆分状态下的结构示意图。
图6是图3中A处的局部放大示意图。
图7是如图2所示的外转子电机中的外转子组件在拆分状态下的结构示意图。
图8是如图2所示的外转子电机中的第二行星支架的结构示意图。
图9是如图2所示的外转子电机中的第一行星支架的结构示意图。
图10是本申请实施例提供的自主智能机器的结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
为了实现自主智能机器的精准运动和控制,通常需要在电机内部安装位置传感器来检测转子的转动位置。但由于现有电机结构的限制,位置传感器的检测位置容易发生偏移,从而导致无法精准地检测转子的转动位置。
请一并参阅图1和图2,本实施例提供一种外转子电机200,包括壳体210、外转子组件220、限位轴承230以及位置检测件240。外转子电机200可以应用于自主智能机器,自主智能机器可以是半自主或全自主工作的智能机器,例如,四足机器人、仿人形机器、机械臂或多足机器人等,本申请实施例在此不做限制。示例性地,外转子电机200可以用于驱使自主智能机器行走或者改变自主智能机器的动作姿态。外转子电机200可以是外转子无刷电机。
请一并参阅图2和图3,壳体210设有安装腔2111以及与安装腔2111连通的转动孔2112,壳体210包括围成转动孔2112的内壁2113。外转子组件220可转动地设置于安装腔2111。外转子组件220包括转子架221,转子架221包括架体2212以及连接于架体2212的转轴部2211,转轴部2211可转动地装配于转动孔2112。限位轴承230套设于转轴部2211,并嵌设于转轴部2211与内壁2113之间,以阻止外转子组件220沿转动孔2112的径向移动。位置检测件240包括第一检测部241以及第二检测部242,第一检测部241安装于转轴部2211,第二检测部242与第一检测部241相对设置,以通过第一检测部241检测外转子组件220的转动位置。
需要说明的是,“相对设置”可以是指第一检测部241的信号出射面大致沿转轴部2211的轴向正投影至少部分落在第二检测部242的信号入射面所在范围内。示例性地,第一检测部241与第二检测部242可以正对设置,也即第一检测部241的信号出射面沿转轴部2211的轴向正投影基本全部落在第二检测部242的信号入射面所在范围内,以增强第二检测部242检测到的信号强度。
本申请实施例提供的外转子电机200,通过在转子架221的外周套设限位轴承230,限位轴承230嵌设在转轴部2211与内壁2113之间,限位轴承230能够阻止转子架221沿转动孔2112的径向偏移,避免转子架221在转动时相对于转动孔2112的轴线发生偏移,因此,当第一检测部241安装于转轴部2211时,第二检测部242与第一检测部241相对设置,第一检测部241相对于第二检测部242不会发生偏移,以使第一检测部241与第二检测部242保持准确对位,第二检测部242可以通过第一检测部241精准地检测到外转子组件的转动位置,从而实现自主智能机器的精准运动和控制。
请参阅图2和图3,在本实施例中,壳体210包括底壳211以及顶壳212,顶壳212盖设于底壳211,底壳211与顶壳212为组装的连接结构。顶壳212与底壳211共同围成安装腔2111,转动孔2112贯穿底壳211。
需要说明的是,上文以及后文中所述的某个部件(如部件1)和另一个部件(如部件2)为组装的连接结构是指两个部件通过组装的方式装配于一体,两个部件通过组装实现配合连接,两者为非一体成型结构,例如部件1和部件2可以通过卡接、螺纹连接、嵌套、粘接、焊接或者通过紧固件的方式进行组装,示例性地,部件1和部件2可通过可拆卸地组装方式组装于一体,两者在组装后可以再次分离。
请参阅图3和图4,在本实施例中,底壳211的外侧设有与转动孔2112连通的容置腔2114,容置腔2114可以是由底壳211的底壁朝向安装腔2111方向凹陷形成。容置腔2114可以用于安装控制器、电路板等结构。转动孔2112可以大致设于底壳211的底壁的中间位置。
在本实施例中,底壳211的内部设有环形槽2115,环形槽2115环绕转动孔2112设置,并与安装腔2111连通。环形槽2115可用于安装转子架221,并为转子架221提供转动空间。
请再次参阅图2和图3,在本实施例中,转子架221大致呈轮毂状结构,转子架221可转动地安装于容置腔2114内,转子架221可以以转动孔2112的轴线为转动轴线进行转动。具体地,转轴部2211大致呈中空柱状结构,转轴部2211可转动地设置在转动孔2112,转轴部2211与转动孔2112的轴线大致重合。转轴部2211的一端可以通过转动孔2112伸入容置腔2114内,这样第一检测部241可以安装在转轴部221伸入容置腔2114的端部,并与设置在容置腔2114内的第二检测部242进行准确对位。
请参阅图2和图5,在本实施例中,架体2212包括安装部2213以及连接部2214。安装部2213大致呈环状结构,安装部2213环设于转轴部2211的外周设置,并通过连接部2214连接于转轴部2211。连接部2214的数量可以为多个,多个连接部2214围绕转轴部2211间隔设置,每个连接部2214连接于转轴部2211与安装部2213之间,通过将多个连接部2214围绕转轴部2211间隔设置,在保证整个转子架221的结构强度的情况下,不仅可以节省整个转子架221的材料,而且还降低了整个转子架221的重量。安装部2213、连接部2214以及转轴部2211可以为一体成型结构,或者为组装关系的连接结构。在本实施例中,安装部2213、连接部2214以及转轴部2211位一体成型结构。在本实施例中,安装部2213的至少部分可嵌入环形槽2115内,并与位于环形槽2115的内侧壁以及外侧壁保持间隔,以避免其在转动过程中与底壳211产生干涉。
请参阅图3和图5,在本实施例中,外转子组件220包括多个磁体224,多个磁体224围绕转轴部2211间隔地设置于架体2212。具体地,多个磁体224可以按照一定的规律均匀地排布在安装部2213上,例如,多个磁体224可以环绕转轴部2211等间隔地设置在安装部2213的外周或者内周。
在一些实施方式中,架体2212的安装部2213可以设有多个固定槽2215,多个固定槽2215环绕转轴部2211间隔地设置在架体2212的安装部2213的外周,固定槽2215用于固定磁体224。每个磁体224可以嵌设在一固定槽2215内,其中磁体224的厚度可以小于或等于固定槽2215的深度,这样可以避免磁体224突出于安装部2213的外周,以降低外转子组件220的径向尺寸。
在一些实施方式中,外转子组件220还可以包括固定环225,固定环225套设在安装部2213的外周,并与安装部2213固定连接,以对磁体224进行径向限位,防止转子架221转动时磁体224从转子架221 上脱离。
请再次参阅图2和图3,在本实施例中,外转子电机200包括定子组件250,定子组件250与架体2212间隔设置,定子组件250用于与磁体224磁力配合以驱动外转子组件220转动。定子组件250可以设置在架体2212的内周,例如,定子组件250包括定子架251以及多组定子线圈252,定子架251可以固定连接于壳体210,具体地,定子架251可以固定在环形槽2115内,例如可以固定在环形槽2115的内侧壁上。
在一些实施方式中,定子架251包括多层硅钢片,多层硅钢片沿环形槽2115的厚度方向依次叠置,定子线圈252按照一定的规律缠绕于多层硅钢片叠层上。示例性地,每层硅钢片可以包括圈体以及连接于圈体的多个固定部(图未示),多个固定部沿圈体的周向间隔设置,每个固定部沿圈体的径向凸出,每层硅钢片的多个固定部与相邻的硅钢片的多个固定部一一对应,多组定子线圈252可以分别缠绕在对应的固定部上。当按照一定顺序给多组定子线圈252通电后,多个定子线圈252逐次变成多个电磁铁,通过逐次吸引转子架221上对应的磁体224,从而带动外转子组件220进行转动。
在一些实施方式中,如图3所示,定子组件250与壳体210相间隔并形成散热间隙2116,外转子电机200包括散热件261,散热件261设置于散热间隙2116内。示例性地,定子组件250可以与环形槽2115的底部相间隔以形成散热间隙2116。散热件261可以包括导热结构,导热结构可以是导热管或导热硅胶等,导热结构可以环设在环形槽2115的底部,并与壳体210形成热传导,导热结构可以将散热间隙2116内的热量传导至壳体210,并通过壳体210将热量传导至外界,有效地降低外转子电机200在工作时的温度。
在另一些实施方式中,散热件261还可以包括散热片和/或散热管。此外,散热件261还可以包括散热风扇,散热风扇可以安装在壳体210的底部,散热风扇可以将散热间隙2116内的热量快速地散出至外界。
请再次参阅图2和图3,在本实施例中,第二检测部242与第一检测部241相对设置,第一检测部241安装于转轴部2211并位于容置腔2114内,第二检测部242设置于容置腔2114内。第一检测部241可以是磁编码器、第二检测部242可以是霍尔传感器。磁编码器具备优异的抗冲击和振动特点。磁编码器采用磁电式设计,通过霍尔传感器来检测磁编码器磁场的变化,从而检测转轴部2211的转动位置。磁编码器可以是磁电式增量编码器和磁电式绝对值编码器。此外,第一检测部241可以包括环形编码器,环形编码器可以环绕转轴部2211设置。
此外,位置检测件240可以包括光电编码器,光电编码器是一种通过光电转换将转动结构的机械几何位移量转换为脉冲或数字量的传感器。第一检测部241可以是光栅盘,第二检测部242可以是光电检测件,光栅盘与转轴部2211同轴致使转轴部2211的旋转带动光栅盘同轴旋转,经光电检测件输出若干个脉冲信号,根据该信号的每秒脉冲数便可计算当前转子架221的转速。此外,位置检测件240还可以检测转子架221的转动方向,例如,光电编码器的码盘输出两个相位差相差90度的光码,根据双通道输出光码的状态的改变便可判断出转子架221的旋转方向。
在一些实施方式中,位置检测件240包括光电编码器以及磁编码器,光电编码器以及磁编码器分别设置在转轴部2211轴向的两端,也即相当于在外转子电机200的输入端和输出端同时加上传感器,这样消除了外转子电机200内部的齿轮啮合之间的间隙不一致性的影响,使得检测出外转子电机200的转动位置更加准确。
在一些实施方式中,如图2和图3所示,外转子电机200还可以包括固定件262,固定件262大致呈 中空的柱状结构,固定件262的一端可以嵌设入转轴部2211,并与转轴部2211同轴设置。固定件262可以过盈地嵌设在转轴部2211的一端,以与转轴部2211形成固定。固定件262朝向第二检测部242的端面可以设有固定孔(图未示),第一检测部241可以嵌设在固定孔内,固定孔与转轴部2211可以同轴设置,以使得嵌设在固定孔内的第一检测部241可以大致安装在转轴部2211的中心区域。此外,第一检测部241也可以直接安装在转轴部2211。转子架221在转动时可以通过固定件262带动第一检测部241共同转动。
在本实施例中,外转子电机200包括控制板264以及盖板265,控制板264安装于容置腔2114内,第二检测部242安装于控制板264,并与控制板264电性连接,盖板265安装于底壳211,并遮盖住容置腔2114。控制板264可以从壳体210的外侧装入容置腔2114内。通过将控制板264安装在壳体210外侧的容置腔2114内,方便拆装和维护,成本低廉。而且控制板264与外转子组件220之间通过壳体210相互隔开,可避免两者在工作时产生的热量集中。盖板265可以通过多个第一紧固件2641固定在壳体210的底部,并遮盖容置腔2114,对容置腔2114起到防尘的作用,以及保护控制板264的作用。
请参阅图3和图6,在本实施例中,限位轴承230包括轴承体231以及限位部232,轴承体231套设于转轴部2211,并与转轴部2211沿转轴部2211的轴向限位配合。限位部232围设于轴承体231的外周并限位于底壳211,限位部232可以固定连接于底壳211上,限位部232沿其轴向与底壳211限位配合,以限止限位轴承230在轴向相对于底壳211上下蹿动,进一步地,限位部232还沿其径向与底壳211限位配合,以限止限位轴承230沿其径向相对于底壳211偏移。限位轴承230可以是滑动轴承或滚动轴承283。转轴部2211可以通过限位轴承230相对于底壳211进行转动。限位部232的外径大于转动孔2112的外径尺寸,这样限位部232可以限位在转动孔2112的外周,并可以连接在底壳211上,从而限定限位轴承230沿转动孔2112的轴向的安装位置。轴承体231可以紧配在位于转动孔2112的内壁2113与转轴部2211之间,以阻止转子架221沿转动孔2112的径向偏移。由于轴承体231与转轴部2211沿转轴部2211的轴向限位配合,因此,轴承体231可以限止转轴部2211沿转动孔2112的轴向下移,同时轴承体231会对转轴部2211的外周施加一定的预紧力,转子架221在预紧力的作用下基本不会沿转动孔2112的轴向上下蹿动,保证了一检测部241与第二检测部242准确对位,提高位置检测件240的对外转子组件220的检测精度。此外,通过设置限位轴承230可以使转子架221与滚动轴承283保持同轴,保证转子架221的圆跳动量,从而使得外转子电机200的整个传动更加精准,避免转子架221处于悬臂梁状态时,而导致转子架221上的第一检测部241和第二检测部242对位感应不准确的问题出现。
在一些实施方式中,如图2和图7所示,外转子组件220包括行星齿轮部270,行星齿轮部270可以是NW型行星减速器,N表示内啮合,W表示外啮合,行星齿轮部270用于改变外转子组件220的传动比和输出力矩。示例性地,行星齿轮部270包括第一行星支架271、中心齿轴272、多个行星齿轮273以及齿圈275,中心齿轴272的一端固定连接于转轴部2211,第一行星支架271环绕转轴部2211设置,并与转轴部2211的外壁间隔,第一行星支架271可以相对于转轴部2211转动。齿圈275环绕中心齿轴272设置,并与中心齿轴272的外壁间隔,齿圈275固定于壳体210,齿圈275可以固定在顶壳212的内周。多个行星齿轮273围绕中心齿轴272间隔设置,并转动连接于第一行星支架271,并啮合于中心齿轴272以及齿圈275之间。
在本实施例中,中心齿轴272的外周设有齿条2721,齿条2721环设在中心齿轴272的外周,并大致 位于中心齿轴272的中间位置。中心齿轴272固定于转轴部2211,并与转轴部2211同轴设置。具体地,中心齿轴272可以固定于转轴部2211远离第一检测部121的一端,中心齿轴272可以过盈地嵌设在转轴部2211的孔内。
在一些实施方式中,行星齿轮部270还包括销轴276,销轴276可以固定在中心齿轴272的外周与转轴部2211的内周之间,以使行星齿轮部270与转轴部2211的周向形成固定。示例性地,中心齿轴272的外周可以设有凹槽,内壁2113设有与凹槽相对应的凹部,可以将销轴276同时嵌紧在凹槽以及凹部内,从而形成榫卯结构,使得中心齿轴272与转子架221的周向形成固定,防止转子架221与中心齿轴272相对打滑,从而保证整个外转子电机200的传动性能。在本示例中,第一行星支架271与中心齿轴272的外周间隔设置,并相对于中心齿轴272可以转动,多个行星齿轮273与中心齿轴272的齿条2721组成外啮合结构,与齿圈275组内啮合结构。当转子架221在定子组件250的驱使下沿第一周向转动时,其可以带着中心齿轴272同步地沿第一周向转动,多个行星齿轮273在中心齿轴272的带动下沿第二周向转动,由于齿圈275固定在壳体210上不动,所以,行星齿轮273对齿圈275作用沿第二周向的扭力,齿圈275对行星小齿轮作用沿第一周向的反向扭力,从而带动第一行星支架271一起沿第一周向转动。第一周向可以是顺时针或逆时针。
通过设置上述的NW型行星减速器,使得整个外转子电机200的传动比分配更加合理,齿轮的强度更大,寿命更高,整个外转子电机200的输出力矩更大。
在一些实施方式中,如图3和图6所示,第一行星支架271与转轴部2211之间可以设有限止轴承277,限止轴承277可以阻止第一行星支架271相对于转轴部2211沿其径向偏移。限止轴承277可以是滚动轴承283,第一行星支架271可以通过限止轴承277相对于转轴部2211转动。示例性地,限止轴承277的外周设有限位结构,限位结构可以止挡在第一行星支架271的底侧,以与第一行星支架271限位配合。第一行星支架271在限位结构止挡的作用下,可以沿转轴部2211的轴向与转子架221保持间隔,避免第一行星支架271以及转子架221各自在转动时相互干涉,同时在第一行星支架271与转子架221之间设置有限止轴承277,可以提高第一行星支架271与中心齿轴272的同轴度。
在一些实施方式中,如图2和图7所示,外转子电机200包括法兰轴承281以及压盖282,法兰轴承281套设于中心齿轴272远离转子架221的一端,并与中心齿轴272沿中心齿轴272的轴向限位配合。压盖282用于与法兰轴承281以及限位轴承230共同将外转子组件220限位在法兰轴承281以及限位轴承230之间。当压盖282固定连接于壳体210时,压盖282可以沿中心齿轴272的轴向向法兰轴承281施压,以使得法兰轴承281紧配在中心齿轴272上。如图2所示,外转子电机200还包括第二紧固件2821,第二紧固件2821连接于压盖282以及壳体210,以将压盖282固定连接于壳体210上,第二紧固件2821可以是螺栓、销钉等。示例性地,中心齿轴272的外周可以设有台阶部(图未示),法兰轴承281套设于中心齿轴272并与台阶部相抵,以与台阶部限位配合。当压盖282固定连接于壳体210后,压盖282可以直接将法兰轴承281压紧在中心齿轴272的台阶部上,或者,通过中间结构将法兰轴承281压紧在台阶部上。法兰轴承281与限位轴承230共同作用,从而将外转子组件220限位在法兰轴承281以及限位轴承230之间,也即法兰轴承281以及限位轴承230可以对外转子组件220的上下两侧进行限位,有效地防止整个外转子组件220沿转动孔2112的轴向上下蹿动。相较于在中心齿轴272上设置卡簧来固定外转子组件220的方 案,外转子电机200在整个安装过程中,无需通过卡簧钳来进行拆装,使得整个外转子电机200的安装更加简单。
在一些实施方式中,如图2和图7,每个行星齿轮273包括第一传动齿轮2731以及第二传动齿轮2732,第一传动齿轮2731和第二传动齿轮2732同轴设置,第一传动齿轮2731与中心齿轴272啮合,第二传动齿轮2732固定连接于第一传动齿轮2731,并与齿圈275啮合,第二传动齿轮2732的齿顶圆直径小于第一传动齿轮2731的齿顶圆直径,以增大外转子组件220的传动比。行星齿轮部270还包括齿轮轴278,齿轮轴278穿设于第一传动齿轮2731以及第二传动齿轮2732,并固定在第一行星支架271上,第一传动齿轮2731以及第二传动齿轮2732可以围绕同一齿轮轴287转动,通过齿轮轴278可以提高第一传动齿轮2731与第二传动齿轮2732的同轴度。
在一些实施方式中,如图2和图3所示,行星齿轮部270还包括第二行星支架274,第二行星支架274固定连接于行星齿轮273远离第一行星支架271的一侧,第二行星支架274套设在法兰轴承281的外周,并与法兰轴承281沿法兰轴承281的轴向限位配合。外转子电机200还包括滚动轴承283,滚动轴承283套设于第二行星支架274的外周,并与第二行星支架274沿第二行星支架274的轴向限位配合,压盖282压合在滚动轴承283的外周。其中,第二行星支架274可以作为整个外转子电机200的输出法兰盘。滚动轴承283可以是交叉滚子轴承。通过将滚动轴承283紧配在第二行星支架274的外周,同时第二行星支架274还与法兰轴承281限位配合,滚动轴承283以及法兰轴承281可以分别对第二行星支架274的上下两侧进行限位,当压盖282固定连接于壳体210后,压盖282向滚动轴承283施加压紧力,从而使得第二行星支架274被限制在滚动轴承283以及法兰轴承281之间,避免整个外转子组件220沿转动孔2112的轴向轴向蹿动。此外,行星齿轮部270还包括第三紧固件279(如图2所示),第三紧固件279连接于第二行星支架274以及第一行星支架271,以实现第二行星支架274与第一行星支架271的固定连接。
在一些实施方式中,外转子电机200的传动比可以大于或等于9,以输出较大的力矩,示例性地,外转子电机200的传动比等于Na/Nh,其中Na为转子架的转速,Nh为第二行星支架274的转速,Na/Nh=1+(Zb+Zg)/(Za+Zf),其中,Zb为中心齿轴的齿条的齿顶圆直径,Zg为第一传动齿轮的齿顶圆直径,Zf为第二传动齿轮的齿顶圆直径,Zb为齿圈的齿顶圆直径。在实际设计中具体可以根据实际需求进行调整。
在一些实施方式中,如图8和图9所示,第二行星支架274设有导向部2743,第一行星支架271设有与导向部2743相配合的配合部2713,导向部2743与配合部2713过盈配合。第二行星支架274与第一行星支架271之间可以通过导向部2743与配合部2713限位配合,通过将导向部2743与配合部2713过盈配合,保证第二行星支架274与第一行星支架271的相对装配位置,从而对第二行星支架274以及第一行星支架271的周向进行限位,避免在将齿轮结构安装在第一行星支架271与第二行星支架274之间时,第二行星支架274以及第一行星支架271因外力发生相对扭转而影响相啮合的齿轮结构之间的啮合度。
在一些实施方式中,如图8和图9所示,配合部2713包括设置于第一行星支架271的第一导向柱2712以及第一导向孔2711,导向部2743包括设置于第二行星支架274的第二导向柱2742以及第二导向孔2741。第一导向柱2712用于与第二导向孔2741过盈配合,第二导向柱2742用于与第一导向孔2711过盈配合,其中,第一导向孔2711的孔径大于第二导向孔2741的孔径。示例性地,第一导向柱2712和第一导向孔 2711的数量均可以为多个,第一导向柱2712与第二导向孔2741的数量相同,每个第一导向柱2712可过盈地嵌入第二导向孔2741内,以实现紧配。第二导向柱2742的数量可以与第一导向孔2711的数量相同,每个第二导向柱2742可过盈地嵌入第一导向孔2711,以实现紧配。这样可以有效地实现第一行星支架271与第二行星支架274的周向限位作用,由于第一导向孔2711的孔径大于第二导向孔2741的孔径,与第一导向孔2711适配的第二导向柱2742的孔径大于第二导向孔2741的孔径,这样第二导向柱2742只能插入第一导向孔2711,无法插入第二导向孔2741内,从而起到防呆的作用。
此外,在一些实施方式中,如图8和图9所示,第一行星支架271设有朝向第二行星支架274的限位凸起2714,限位凸起2714设有圆弧槽2715,圆弧槽2715所在圆周的中心与第一行星支架271的中心大致重合,第二行星支架274设有与圆弧槽2715相适配的配合凸起2744,配合凸起2744与圆弧槽2715相适配,配合凸起2744可以是圆弧结构,其所在圆周的中心与第一行星支架271的中心大致重合。当配合凸起2744嵌设于圆弧槽2715内,第一行星支架271与第二行星支架274各自的轴心大致位于同一轴线上,并在径向上相互限位配合,提高第二行星支架274与第一行星支架271的同轴度。
在一些实施方式中,第二行星支架274上还可以设置磁编码器,通过结合第二行星支架274的转动位置,可以更加精确地确定外转子组件220的转动位置,以及控制外转子220的转动位置。
请参阅图10,本申请实施例还提供一种自主智能机器300,包括上述的外转子电机200。外转子电机200用于向自主智能机器300输出驱动力,以驱使自主智能机器300进行行走或者姿态改变,自主智能机器可以是半自主或全自主工作的智能机器,例如四足机器人、仿人形机器、多足机器人或机械臂等。以下以自主智能机器为四足机器人为例进行说明:
在一些实施方式中,自主智能机器300包括自主智能机器主体310以及行走腿组件320,行走腿组件320的数量为四个,每两个行走腿组件320安装于自主智能机器主体310的相对两侧。每个行走腿组件320包括第一腿部321和第二腿部322,第一腿部321的一端活动连接于自主智能机器主体310,另一端与第二腿部322活动连接。外转子电机200的数量为多个,每个第一腿部321通过一外转子电机200进行驱动,每个第二腿部322通过一外转子电机200进行驱动。通过控制每个外转子电机200的转动状态,以驱使自主智能机器300进行行走或者改变自主智能机器300的姿态。
本申请实施例提供的自主智能机器,通过配置有上述的外转子电机200,由于上述的外转子电机200是通过在转子架221的外周套设限位轴承230,限位轴承230嵌设在转轴部2211与内壁2113之间,限位轴承230能够阻止转子架221沿转动孔2112的径向偏移,这样转子架221相对于转动孔2112转动不会发生偏移,因此,当第一检测部241安装于转轴部2211时,第二检测部242与第一检测部241相对设置,第一检测部241相对于第二检测部242不会发生偏移,以使第一检测部241与第二检测部242保持准确对位,第二检测部242可以通过第一检测部241精准地检测到外转子组件的转动位置,因此,自主智能机器可以对自身运动状态进行精准检测,以及精准地进行自身的运动。
以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (20)

  1. 一种外转子电机,其特征在于,包括:
    壳体,设有安装腔以及与所述安装腔连通的转动孔,所述壳体包括围成所述转动孔的内壁;
    外转子组件,可转动地设置于所述安装腔,所述外转子组件包括转子架,所述转子架包括架体以及连接于所述架体的转轴部,所述转轴部可转动地装配于所述转动孔;
    限位轴承,所述限位轴承套设于所述转轴部,并嵌设于所述转轴部与所述内壁之间,以阻止所述外转子组件沿所述转动孔的径向移动;以及
    位置检测件,包括第一检测部以及第二检测部,所述第一检测部安装于所述转轴部,所述第二检测部与所述第一检测部相对设置,以通过所述第一检测部检测所述外转子组件的转动位置。
  2. 根据权利要求1所述的外转子电机,其特征在于,所述第一检测部的信号出射面沿所述转轴部的轴向正投影至少部分落在所述第二检测部的信号入射面所在范围内。
  3. 根据权利要求1所述的外转子电机,其特征在于,所述壳体包括底壳以及顶壳,所述顶壳盖设于所述底壳,并与所述底壳共同围成所述安装腔,所述转动孔贯穿所述底壳,所述底壳的外侧设有与所述转动孔连通的容置腔,所述转轴部的一端通过所述转动孔伸入所述容置腔内,所述第一检测部安装于所述转轴部并位于所述容置腔内,所述第二检测部设置于所述容置腔内。
  4. 根据权利要求3所述的外转子电机,其特征在于,所述底壳的内部设有环形槽,所述环形槽环绕所述转动孔设置,所述架体至少部分嵌入所述环形槽内。
  5. 根据权利要求3所述的外转子电机,其特征在于,所述限位轴承包括轴承体以及限位部,所述轴承体套设于所述转轴部,并与所述转轴部沿所述转轴部的轴向限位配合,所述限位部连接于所述轴承体的外壁,并限位于所述底壳。
  6. 根据权利要求3所述的外转子电机,其特征在于,所述外转子电机包括控制板以及盖板,所述控制板安装于所述容置腔内,所述第二检测部安装于所述控制板,并与所述控制板电性连接,所述盖板安装于所述底壳,并遮盖住所述容置腔。
  7. 根据权利要求1-6任一项所述的外转子电机,其特征在于,所述外转子组件还包括行星齿轮部,所述行星齿轮部包括第一行星支架、中心齿轴、多个行星齿轮以及齿圈,所述中心齿轴的一端固定连接于所述转轴部,第一行星支架环绕所述转轴部设置,并与所述转轴部的外壁间隔,所述齿圈环绕于所述中心齿轴设置,并与所述中心齿轴的外壁间隔,多个所述行星齿轮围绕所述中心齿轴间隔设置,并转动连接于所述第一行星支架,且所述行星齿轮啮合于所述中心齿轴以及所述齿圈之间。
  8. 根据权利要求7所述的外转子电机,其特征在于,所述外转子电机还包括法兰轴承以及压盖,所述法兰轴承套设于所述中心齿轴远离所述转子架的一端,并与所述中心齿轴沿所述中心齿轴的轴向限位配合,所述压盖用于与所述法兰轴承以及所述限位轴承共同将所述外转子组件限位在所述法兰轴承以及所述限位轴承之间。
  9. 根据权利要求8所述的外转子电机,其特征在于,所述行星齿轮部还包括第二行星支架,所述第二行星支架固定连接于多个所述行星齿轮远离所述第一行星支架的一侧,并与所述法兰轴承沿所述法兰轴承的轴向限位配合,所述外转子电机还包括滚动轴承,所述滚动轴承套设于所述第二行星支架的外周,并与所述第二行星支架限位配合,所述压盖压合在所述滚动轴承的外周。
  10. 根据权利要求9所述的外转子电机,其特征在于,所述第二行星支架设有导向部,所述第一行星支架设有与所述导向部相配合的配合部,所述导向部与所述配合部过盈配合。
  11. 根据权利要求10所述的外转子电机,其特征在于,所述配合部包括第一导向柱以及第一导向孔,所述导向部包括第二导向柱以及第二导向孔,所述第一导向柱用于与所述第二导向孔过盈配合,所述第二导向柱用于与所述第一导向孔过盈配合,其中,所述第一导向孔的孔径大于所述第二导向孔的孔径。
  12. 根据权利要求7所述的外转子电机,其特征在于,每个所述行星齿轮包括第一传动齿轮以及第二传动齿轮,所述第一传动齿轮和所述第二传动齿轮同轴设置,所述第一传动齿轮与所述中心齿轴啮合,所述第二传动齿轮固定连接于所述第一传动齿轮,并与所述齿圈啮合,所述第二传动齿轮的齿顶圆直径小于所述第一传动齿轮的齿顶圆直径。
  13. 根据权利要求1~12中任一项所述的外转子电机,其特征在于,所述外转子组件包括多个磁体,多个所述磁体围绕所述转轴部间隔地设置于所述架体,所述外转子电机还包括定子组件,所述定子组件与所述架体间隔设置,所述定子组件用于与所述磁体磁力配合以驱动所述外转子组件转动。
  14. 根据权利要求13所述的外转子电机,其特征在于,所述架体设置有多个固定槽,多个所述固定槽环绕所述转轴部间隔地设置在所述架体的外周,每个所述磁体嵌设于一所述固定槽内。
  15. 根据权利要求13所述的外转子电机,其特征在于,所述外转子组件还包括固定环,所述固定环套设于所述架体的外周并与所述架体连接,所述固定环对所述多个磁体进行径向限位。
  16. 根据权利要求13所述的外转子电机,其特征在于,所述定子组件与所述壳体相间隔并形成散热间隙,所述外转子电机还包括散热件,所述散热件设置于所述散热间隙内。
  17. 根据权利要求16所述的外转子电机,其特征在于,所述散热件包括导热结构,所述导热结构与所述壳体形成热传导。
  18. 根据权利要求1-17任一项所述的外转子电机,其特征在于,第一检测部为磁编码器,所述第二检测部为霍尔传感器。
  19. 根据权利要求1任一项所述的外转子电机,其特征在于,第一检测部为光栅盘,所述第二检测部为光电检测件。
  20. 一种自主智能机器,其特征在于,包括如权利要求1~19中任一项所述的外转子电机。
PCT/CN2022/120234 2021-09-29 2022-09-21 外转子电机以及自主智能机器 WO2023051352A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111154286.5A CN115882668A (zh) 2021-09-29 2021-09-29 外转子电机以及自主智能机器
CN202111154286.5 2021-09-29

Publications (1)

Publication Number Publication Date
WO2023051352A1 true WO2023051352A1 (zh) 2023-04-06

Family

ID=85756378

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/120234 WO2023051352A1 (zh) 2021-09-29 2022-09-21 外转子电机以及自主智能机器

Country Status (2)

Country Link
CN (1) CN115882668A (zh)
WO (1) WO2023051352A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014087170A (ja) * 2012-10-24 2014-05-12 Seiko Epson Corp 電気機械装置、並びに、これを備える移動体およびロボット
CN106972692A (zh) * 2017-04-05 2017-07-21 中山市朗宇模型有限公司 一种传动机构内置于定子的外转子无刷减速电机
CN211606327U (zh) * 2020-04-13 2020-09-29 深圳市时代方舟智能科技有限公司 一种磁编码伺服控制器与轮毂电机一体化集成结构
CN111828549A (zh) * 2019-04-17 2020-10-27 深圳市智擎新创科技有限公司 一种四足机器人关节动力模组
CN112910184A (zh) * 2021-03-19 2021-06-04 深圳鹏行智能有限公司 动力模组和机器人
CN113001533A (zh) * 2021-03-15 2021-06-22 哈尔滨工业大学 一种四足机器人关节动力单元
CN113305877A (zh) * 2021-06-08 2021-08-27 南方科技大学 电驱动关节模组和机器人

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014087170A (ja) * 2012-10-24 2014-05-12 Seiko Epson Corp 電気機械装置、並びに、これを備える移動体およびロボット
CN106972692A (zh) * 2017-04-05 2017-07-21 中山市朗宇模型有限公司 一种传动机构内置于定子的外转子无刷减速电机
CN111828549A (zh) * 2019-04-17 2020-10-27 深圳市智擎新创科技有限公司 一种四足机器人关节动力模组
CN211606327U (zh) * 2020-04-13 2020-09-29 深圳市时代方舟智能科技有限公司 一种磁编码伺服控制器与轮毂电机一体化集成结构
CN113001533A (zh) * 2021-03-15 2021-06-22 哈尔滨工业大学 一种四足机器人关节动力单元
CN112910184A (zh) * 2021-03-19 2021-06-04 深圳鹏行智能有限公司 动力模组和机器人
CN113305877A (zh) * 2021-06-08 2021-08-27 南方科技大学 电驱动关节模组和机器人

Also Published As

Publication number Publication date
CN115882668A (zh) 2023-03-31

Similar Documents

Publication Publication Date Title
CN111113477B (zh) 机器人关节结构及机器人
JP7435335B2 (ja) クラッチ装置
US9293962B2 (en) Hollow driving module
KR101208406B1 (ko) 중공구동모듈
CN211565962U (zh) 机器人关节结构及机器人
CN111113398B (zh) 舵机及机器人
JP6815852B2 (ja) 電動アクチュエータ用回転駆動源および電動アクチュエータ
US20220226985A1 (en) Robot and its servo motor
CN210525142U (zh) 用于机器人的关节执行器和机器人
KR101194313B1 (ko) 중공구동모듈
KR101194316B1 (ko) 중공구동모듈
KR101943568B1 (ko) 중공형 통합 구동 모듈 구조
JP2014092446A (ja) トルクセンサ、駆動ユニットおよび電動アシスト自転車
CN114800602B (zh) 一种具有柔性元件的紧凑型变刚度关节模组
KR102185388B1 (ko) 인히비터 통합형 액추에이터 변속제어장치
WO2023051352A1 (zh) 外转子电机以及自主智能机器
CN210431137U (zh) 一种集成减速器、编码器的大扭矩电机
CN111064314A (zh) 一种应用在机器人手臂上的外转子电机和机器人手臂
CN211590111U (zh) 舵机及机器人
KR102151386B1 (ko) 위치 피드백 장치가 내장된 감속기
KR20210016151A (ko) Sbw 구동 액추에이터
CN116032072A (zh) 外转子电机以及自主智能机器
KR102288868B1 (ko) 기어 모터
JP2014217240A (ja) モータ装置
CN117013767A (zh) 电机以及自主智能机器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22874739

Country of ref document: EP

Kind code of ref document: A1