WO2023051241A1 - Gsm射频前端功率校准方法及装置 - Google Patents

Gsm射频前端功率校准方法及装置 Download PDF

Info

Publication number
WO2023051241A1
WO2023051241A1 PCT/CN2022/118636 CN2022118636W WO2023051241A1 WO 2023051241 A1 WO2023051241 A1 WO 2023051241A1 CN 2022118636 W CN2022118636 W CN 2022118636W WO 2023051241 A1 WO2023051241 A1 WO 2023051241A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
sequence
factor
ramp
pcl
Prior art date
Application number
PCT/CN2022/118636
Other languages
English (en)
French (fr)
Inventor
何川
Original Assignee
展讯通信(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 展讯通信(深圳)有限公司 filed Critical 展讯通信(深圳)有限公司
Publication of WO2023051241A1 publication Critical patent/WO2023051241A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • H04B17/13Monitoring; Testing of transmitters for calibration of power amplifiers, e.g. gain or non-linearity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/21Monitoring; Testing of receivers for calibration; for correcting measurements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the invention relates to the technical field of power control, in particular to a method and device for calibrating the power of a radio frequency front end of a GSM system.
  • GSM Global System for Mobile Communications
  • the automatic power control (APC) calibration implementation method is to use the default power control factor (factor) sequence to transmit signals according to the calibration channel to see if it can meet the range from the maximum to the minimum power level.
  • the value of the factor is generally controlled by software. If it is not satisfied, adjust the factor value, and when the output power can meet the specification, store the factor value in a non-volatile memory (Non-Volatile Memory, NVRAM).
  • NVRAM Non-Volatile Memory
  • the power calibration can be completed as quickly as possible.
  • the quick calibration process the best expectation is that the device under test sends a pulse width modulated ramp amplitude signal (Ramp) in a predetermined way, and the calibration tool software sends a specified program to let the RF front-end scan high power to low by reducing the factor value in fixed steps. Power, after scanning, take some of them that meet the expected power of PCL, and take the slope of the Ramp signal in this interval to write a set of factor values into the device NVRAM by calculation to complete the calibration.
  • Puls pulse width modulated ramp amplitude signal
  • Ramp0 of all PCLs (Ramp0 refers to the Vramp with the highest correlation with the transmit power of the radio frequency module, the maximum value of the Ramp curve) is set to be consistent, which will lead to some small power output gains
  • a power amplifier with a relatively steep voltage cannot find a suitable factor value corresponding to a small power.
  • Embodiments of the present invention provide a method and device for calibrating the power of a radio frequency front end of a GSM system, so as to improve calibration efficiency and ensure calibration accuracy.
  • the embodiment of the present invention provides a kind of GSM radio frequency front-end power calibration method, and described method comprises:
  • performing a full power scan on the device under test according to the first set of standard Ramp curves, and obtaining a first scan power sequence and a corresponding first factor sequence according to the scan results include:
  • a first scanning power sequence and a corresponding first factor sequence are obtained according to the first power interval sequence and the second power interval sequence.
  • the first set of standard Ramp curves are the Ramp curves of all PCLs in each frequency band;
  • said determining the first Ramp maximum value according to the first group of standard Ramp curves includes: using the maximum value in the Ramp curves of all PCLs in each frequency band as the first Ramp maximum value; or using the maximum value in the Ramp curves of all PCLs in each frequency band The mean value of both the maximum value and the minimum value is used as the first Ramp maximum value; or the mean value of both the maximum value and the minimum value in the Ramp curves of all PCLs in each frequency band is calculated, and the maximum value of the Ramp curve closest to the mean value is used as the first Ramp maximum value.
  • performing a full power scan on the device under test according to the second set of standard Ramp curves and the first factor sequence to obtain a second scan power sequence includes:
  • performing a full power scan on the device under test according to the second set of standard Ramp curves and the first factor sequence to obtain a second scan power sequence includes:
  • interpolation calculates the measured power corresponding to other PCLs other than the specific PCL;
  • the second scanning power sequence is obtained according to the measurement power corresponding to each PCL.
  • the determining the target factor value corresponding to the PCL according to the first factor sequence, the first scanning power sequence, the second scanning power sequence, and the calibration power corresponding to each PCL includes:
  • the method further includes: writing the target factor value corresponding to each PCL into the NVRAM of the device under test.
  • the embodiment of the present invention also provides a GSM radio frequency front-end power calibration device, the device performs a calibration process for each frequency band of the device under test in turn, and the device includes:
  • the first scanning module is used to perform full power scanning according to the first set of standard Ramp curves for the current frequency band, and obtain the first scanning power sequence and the corresponding first factor sequence according to the scanning results;
  • the second scanning module is configured to scan the device under test with full power according to the second set of standard Ramp curves and the first factor sequence to obtain a second scanning power sequence;
  • a calculation module configured to determine a target factor value corresponding to the PCL according to the first factor sequence, the first scanning power sequence, the second scanning power sequence, and the target power corresponding to each PCL.
  • An embodiment of the present invention also provides a computer-readable storage medium, the computer-readable storage medium is a non-volatile storage medium or a non-transitory storage medium, and a computer program is stored thereon, and the computer program is run by a processor When performing the steps of the above method.
  • An embodiment of the present invention also provides an electronic device, including a memory and a processor, the memory stores a computer program that can run on the processor, and the processor executes the steps of the above method when running the computer program .
  • the GSM radio frequency front-end power calibration method and device provided by the embodiments of the present invention can quickly and effectively determine the target factor corresponding to each PCL through two sets of full power scans based on different Ramp maximum values, and then according to the power sequence and factor sequence obtained by scanning. value.
  • Fig. 1 is the Ramp curve schematic diagram of NV preservation in the embodiment of the present invention
  • Fig. 2 is a kind of flow chart of the GSM system radio frequency front-end power calibration method of the embodiment of the present invention
  • Fig. 3 is the flow chart that carries out full power scanning according to the first set of standard Ramp curves in the embodiment of the present invention
  • Fig. 5 is the flowchart of determining the target factor value corresponding to each PCL in the embodiment of the present invention.
  • Fig. 6 is a schematic diagram of segmental calculation of factor slope ⁇ n in an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of calculating the ramp slope in sections according to an embodiment of the present invention.
  • Fig. 8 is a kind of structural block diagram of the GSM system radio frequency front-end power calibration device of the embodiment of the present invention.
  • FIG. 9 is a schematic diagram of an application scenario of the GSM radio frequency front-end power calibration device of the present invention.
  • each interval takes a frequency point calibration channel.
  • GSM extended frequency band Extended GSM, EGSM
  • five calibration channels CH15, CH46, CH77, CH108 and CH999 and then calibrate 15 power levels for each calibration channel in turn.
  • the middle calibration channel CH77 is used to calibrate the factor values of 5 to 19 power levels, and the remaining 4 calibration channels only calibrate the factor values of the maximum power level 5, and the factor values of other power levels refer to the middle calibration channel CH77
  • the factor value of the corresponding power level is calculated through compensation.
  • the corresponding Ramp curve is shown in Figure 1, wherein, 847 is the curve value of the useful bit area (set the maximum curve value Vramp to 10 bits, and 847 is a decimal number), set it as Ramp0, and this value determines the maximum value of the Ramp curve.
  • the Vramp voltage value has the highest correlation with the transmit power.
  • the performance of power amplifiers will also be different.
  • the maximum value of Ramp that is, Ramp0.
  • Ramp0 the maximum value of Ramp
  • the value of Ramp0 is generally set between 900 and 990.
  • the device under test needs to send multiple Ramp signals corresponding to PCLs of different levels in turn. It will cause some power amplifiers with relatively steep low-power output gain voltage to be unable to find a suitable low-power factor value.
  • the embodiment of the present invention provides a GSM radio frequency front-end power calibration method and device. Through two sets of full power scans based on different Ramp maximum values, and then according to the power sequence and factor sequence obtained by scanning, each PCL can be quickly and effectively determined. The corresponding target factor value.
  • FIG. 2 it is a flow chart of a method for calibrating radio frequency front-end power of a GSM system according to an embodiment of the present invention.
  • the solution of this embodiment needs to perform a calibration process for each frequency band of the device under test in turn, and the calibration process includes the following steps:
  • Step 201 for the current frequency band, perform a full power scan according to the first set of standard Ramp curves, and obtain a first scan power sequence and a corresponding first factor sequence according to the scan results.
  • Step 202 perform a full power scan on the device under test according to the second set of standard Ramp curves and the first factor sequence to obtain a second scan power sequence.
  • the second set of standard Ramp curves may be the same Ramp curve as the first set of standard Ramp curves, or may be different, which is not limited in this embodiment of the present invention.
  • Step 203 according to the first factor sequence, the first scanning power sequence, the second scanning power sequence and the target power corresponding to each PCL, determine the target factor value corresponding to the PCL.
  • step 201 a specific process of performing full power scanning according to the first set of standard Ramp curves is shown in Figure 3, including the following steps:
  • Step 301 Determine the first maximum value of Ramp according to the first set of standard Ramp curves, and use the first maximum value of Ramp as the maximum value of Ramp for each PCL.
  • the first group of standard Ramp curves may be Ramp curves of all PCLs in each frequency band.
  • the following methods can be adopted:
  • PCL and target power of GSM900 are shown in Table 1 below.
  • Step 302 setting the first initial value of factor, and sending factor test sequence according to the first step-down method, performing full power scan on the device under test, and obtaining the first power interval sequence.
  • Step 303 setting a second initial value of factor, sending a factor test sequence in a second step-down manner to perform a full power scan on the device under test, and obtaining a second power range sequence.
  • the second initial value of factor can be set to be smaller than the first initial value of factor, and the second step is smaller than the first step.
  • the factor test sequence can also be sent in a step-up manner.
  • the second initial value of factor can be set to be greater than the first initial value of factor, and the second step is greater than the first step.
  • Step 304 Obtain a first scanning power sequence and a corresponding first factor sequence according to the first power interval sequence and the second power interval sequence.
  • the factor is interpolated to obtain the factor value corresponding to PCL14-PCL18.
  • the factor values corresponding to all PCLs can be obtained, that is, the first factor sequence.
  • the second set of standard Ramp curves and the first factor sequence can be used to perform full power scanning, that is, the above step 202 .
  • step 202 the process of performing full power scanning according to the second set of standard Ramp curves and the first factor sequence is shown in Figure 4, including the following steps:
  • Step 401 Determine a second maximum value of Ramp according to a second set of standard Ramp curves, and use the second maximum value of Ramp as the maximum value of Ramp for each PCL.
  • the second maximum value of Ramp may be greater than or smaller than the first maximum value of Ramp, which is not limited in this embodiment of the present invention.
  • Step 402 Select at least two factor values from the first factor sequence to perform a specific PCL scan on the device under test to obtain the corresponding measurement power.
  • Step 403 according to the first factor sequence and the measured power, interpolate and calculate the measured power corresponding to other PCLs except the specific PCL.
  • Step 404 obtaining a second scanning power sequence according to the measured power corresponding to each PCL.
  • the obtained second scanning power sequence and the previously obtained first scanning power sequence are shown in Table 3 below.
  • Step 501 determine a reference factor sequence according to the first factor sequence.
  • Step 502 Determine a reference PCL according to the reference factor sequence, and determine a first calibration coefficient according to the reference PCL and the second scanning power sequence.
  • Step 503 Calculate a reference factor value according to the target factor value of the reference PCL, the target power of the PCL to be calibrated, and the first calibration coefficient.
  • the reference factor value is a required factor value under the condition that the target power of the PCL to be calibrated corresponds to the second maximum value of Ramp.
  • Step 504 Determine a second calibration coefficient according to the first maximum value of Ramp, the second maximum value of Ramp, and the reference factor value.
  • Step 505 Calculate the target factor value of the PCL to be calibrated according to the factor value in the first factor sequence corresponding to the PCL to be calibrated, the target power of the PCL to be calibrated, and the second calibration coefficient.
  • the target factor value is a required factor value under the condition that the target power of the PCL to be calibrated corresponds to the actual set maximum value of Ramp.
  • the reference factor sequence described in the above step 501 is the factor sequence corresponding to PCL5 and PCL6.
  • the following example illustrates the process of determining the target factor value of the PCL7 to be calibrated based on the above reference factor sequence.
  • the actual maximum value of Ramp of PCL7 is 950
  • the maximum value of Ramp corresponding to the first power sequence is 1000
  • the maximum value of Ramp corresponding to the second power sequence is 800.
  • the reference PCL is determined according to the reference factor sequence
  • the first calibration coefficient is determined according to the reference PCL and the second scanning power sequence.
  • the first calibration coefficient can also be called the factor slope, denoted as ⁇ , and the calculation formula is as follows:
  • f is the factor value in the first factor sequence corresponding to the reference PCL
  • p is the power in the first scanning power sequence corresponding to the reference PCL
  • f 1 and p 1 are respectively in the first factor sequence corresponding to the PCL to be calibrated factor value and the corresponding power in the first sweep power sequence.
  • FIG. 6 shows a schematic diagram of calculating the factor slope ⁇ n by section.
  • the reference PCL is PCL6
  • the first calibration coefficient corresponding to PCL7 is:
  • a reference factor value is calculated according to the target factor value of the reference PCL, the target power of the PCL to be calibrated, and the first calibration coefficient.
  • the factor value required for the target power of PCL7 of 29dbm is calculated as follows:
  • p m1 is the target power of the PCL to be calibrated.
  • the reference factor value is:
  • the target factor value corresponding to the benchmark PCL such as the factor value required when PCL6 corresponds to the first Ramp maximum value of 1000
  • the reference factor value corresponding to the PCL to be calibrated such as PCL7 corresponding to the second Ramp
  • the factor value required in the case of the maximum value of 800 since the actual maximum value of the Ramp corresponding to the PCL to be calibrated is different from the second maximum value of the Ramp, it is also necessary to calculate the factor value in the case of the actual maximum value of the Ramp corresponding to the PCL to be calibrated
  • the required factor value that is, the target factor value.
  • the second calibration coefficient is determined according to the first Ramp maximum value and the second Ramp maximum value, and the second calibration coefficient can also be called the ramp slope, denoted as ⁇ , and the calculation formula is as follows:
  • V1 and V2 are respectively the first maximum value of Ramp and the second maximum value of Ramp.
  • FIG. 7 shows a schematic diagram of calculating the ramp slope by segment.
  • v represents the actual set maximum value of Ramp corresponding to the PCL to be calibrated.
  • the embodiment of the present invention also provides a GSM radio frequency front-end power calibration device, as shown in FIG. 8 , which is a structural block diagram of the device.
  • the GSM RF front-end power calibration device 80 includes the following modules:
  • the first scanning module 81 is used to perform full power scanning according to the first set of standard Ramp curves for the current frequency band, and obtain the first scanning power sequence and the corresponding first factor sequence according to the scanning results;
  • the second scanning module 82 is configured to perform full power scanning on the device under test according to the second set of standard Ramp curves and the first factor sequence to obtain a second scanning power sequence;
  • the calculation module 83 is configured to determine a target factor value corresponding to the PCL according to the first factor sequence, the first scanning power sequence, the second scanning power sequence, and the target power corresponding to each PCL.
  • the calibration process can be performed sequentially for each frequency band of the device to be tested.
  • the application scenario of the GSM RF front-end power calibration device is shown in Figure 9.
  • the GSM radio frequency front-end power calibration device of the present invention may further include: a storage module, which writes the target factor values corresponding to each PCL into the NVRAM of the device under test.
  • the above-mentioned GSM system radio frequency front-end power calibration device may correspond to a chip in a network device, such as a SoC (System-On-a-Chip, system on a chip), a baseband chip, a chip module, and the like.
  • SoC System-On-a-Chip, system on a chip
  • baseband chip a baseband chip
  • chip module a chip module
  • each module/unit contained in the product may be a software module/unit, or a hardware module/unit, or may be partly a software module/unit, partly is a hardware module/unit.
  • each module/unit contained therein may be realized by hardware such as a circuit, or at least some modules/units may be realized by a software program, and the software program Running on the integrated processor inside the chip, the remaining (if any) modules/units can be realized by means of hardware such as circuits; They are all realized by means of hardware such as circuits, and different modules/units can be located in the same component (such as chips, circuit modules, etc.) or different components of the chip module, or at least some modules/units can be realized by means of software programs, The software program runs on the processor integrated in the chip module, and the remaining (if any) modules/units can be realized by hardware such as circuits; Each unit/unit can be realized by means of hardware such as a circuit, and different modules/units can be located in the same component (such as a chip, a circuit module, etc.) or different components in the terminal, or at least some modules/units can be implemented in the form of a software program Real
  • An embodiment of the present invention also provides a computer-readable storage medium, the computer-readable storage medium is a non-volatile storage medium or a non-transitory storage medium, and a computer program is stored thereon, and the computer program is executed by a processor During operation, the steps of the method provided by the above-mentioned embodiment corresponding to FIG. 1 or FIG. 2 are executed.
  • the embodiment of the present invention also provides another GSM radio frequency front-end power calibration device, including a memory and a processor, the memory is stored with a computer program that can run on the processor, and the processor runs the computer program At this time, the steps of the method provided in the embodiment corresponding to the above-mentioned FIG. 2 or 3 or FIG. 4 or FIG. 5 are executed.
  • An embodiment of the present invention also provides an electronic device, including a memory and a processor, the memory stores a computer program that can run on the processor, and the processor executes the above-mentioned Figure 2 when running the computer program.
  • FIG. 3 or FIG. 4 or FIG. 5 corresponds to the steps of the method provided by the embodiment.
  • the disclosed methods, devices and systems can be implemented in other ways.
  • the device embodiments described above are only illustrative; for example, the division of the units is only a logical function division, and there may be other division methods in actual implementation; for example, multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, each unit may be physically included separately, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware, or in the form of hardware plus software functional units.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Nonlinear Science (AREA)
  • Transmitters (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种GSM射频前端功率校准方法及装置,依次对待测设备的每个频段进行校准过程,所述校准过程包括:针对当前频段,根据第一组标准Ramp曲线进行全功率扫描,根据扫描结果得到第一扫描功率序列及对应的第一factor序列;根据第二组标准Ramp曲线、以及所述第一factor序列对所述待测设备进行全功率扫描,得到第二扫描功率序列;根据所述第一factor序列、所述第一扫描功率序列、所述第二扫描功率序列以及各PCL对应的目标功率,确定各PCL对应的目标factor值。利用本发明,可以提高校准效率,保证校准精度。

Description

GSM射频前端功率校准方法及装置
本申请要求2021年9月29日提交中国专利局、申请号为202111155631.7、发明名称为“GSM射频前端功率校准方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及功率控制技术领域,具体地涉及一种GSM系统射频前端功率校准方法及装置。
背景技术
移动终端的全球移动通信(Global System for Mobile Communications,GSM)射频前端的发射功率如果比较低无法满足功率等级要求,一方面功率控制无法达成协议要求,另一方面上行信号功率过低会导致接入基站很难,无法维持语音通话质量,掉话现象频发;反之,如果发射功率过高,在相应的级别超出指标,虽然大功率能够更好地克服空口损耗,但由于单体终端发射杂散增大,会干扰同小区内其他用户的终端设备接收信号,造成其他用户无法正常使用GSM网络,从而降低了GSM的系统容量。过大的输出功率还会造成功耗大,移动设备的续航受到影响,固定工作设备则要增加散热设计。为此,需要通过功率校准将每个功率等级的功率控制等级(Power Control Levels,PCL)维持在协议要求的范围之内。
自动功率控制(Automatic Power Control,APC)校准实现方法为根据校准信道采用默认功率控制因子(factor)序列发射信号看是否能满足从最大到最小功率等级范围,factor的数值一般由软件控制。如不满足则调整factor值,输出功率能够满足规范时,将此factor值存入非易失性存储器(Non-Volatile Memory,NVRAM)。
在生产制造中,基于对产线效率的要求,希望用最快的速度完成 功率校准。在快速校准过程中,最佳预期是待测设备按照既定的方式发脉冲宽度调制斜坡幅度信号(Ramp),校准工具软件下发指定程序让射频前端按固定步进降低factor值扫描高功率到低功率,扫描完毕后取其中几个符合PCL期望功率,并取该区间的Ramp信号的斜率通过计算方式写入一组factor值到设备NVRAM中,完成校准。现有技术中,进行快速校准时,将所有PCL的Ramp0(Ramp0是指与射频模块发射功率相关性最高的Vramp,Ramp曲线的最大值)设为一致,这种方式会导致某些小功率输出增益电压比较陡峭的功率放大器无法找到合适的小功率对应的factor值。
发明内容
本发明实施例提供一种GSM系统射频前端功率校准方法及装置,以提高校准效率,保证校准精度。
为此,本发明实施例提供如下技术方案:
本发明实施例提供一种GSM射频前端功率校准方法,所述方法包括:
依次对待测设备的每个频段进行校准过程,所述校准过程包括:
针对当前频段,根据第一组标准Ramp曲线进行全功率扫描,根据扫描结果得到第一扫描功率序列及对应的第一factor序列;
根据第二组标准Ramp曲线、以及所述第一factor序列对所述待测设备进行全功率扫描,得到第二扫描功率序列;
根据所述第一factor序列、所述第一扫描功率序列、所述第二扫描功率序列以及各功率控制等级PCL对应的目标功率,确定所述PCL对应的目标factor值。
可选地,所述根据第一组标准Ramp曲线、对所述待测设备进行全功率扫描,根据扫描结果得到第一扫描功率序列及对应的第一factor序列包括:
根据第一组标准Ramp曲线确定第一Ramp最大值,将所述第一Ramp最大值作为各PCL的Ramp最大值;
设定factor第一起始值,并按照第一步进降低的方式发送factor测试序列,对所述待测设备进行全功率扫描,得到第一功率区间序列;
设定factor第二起始值,按照第二步进降低的方式发送factor测试序列对所述待测设备进行全功率扫描,得到第二功率区间序列;所述factor第二起始值小于所述factor第一起始值,所述第二步进小于第一步进;
根据第一功率区间序列和所述第二功率区间序列得到第一扫描功率序列及对应的第一factor序列。
可选地,所述第一组标准Ramp曲线为各频段所有PCL的Ramp曲线;
相应地,所述根据第一组标准Ramp曲线确定第一Ramp最大值包括:将各频段所有PCL的Ramp曲线中的最大值作为第一Ramp最大值;或者将各频段所有PCL的Ramp曲线中的最大值和最小值两者的均值作为第一Ramp最大值;或者计算各频段所有PCL的Ramp曲线中的最大值和最小值两者的均值,将与所述均值最接近的Ramp曲线的最大值作为第一Ramp最大值。
可选地,所述根据第二组标准Ramp曲线、以及所述第一factor序列对所述待测设备进行全功率扫描,得到第二扫描功率序列包括:
根据所述第二组标准Ramp曲线确定第二Ramp最大值,将所述第二Ramp最大值作为各PCL的Ramp最大值;
发送所述第一factor序列对所述待测设备进行全功率扫描,得到第二扫描功率序列。
可选地,所述根据第二组标准Ramp曲线、以及所述第一factor序列对所述待测设备进行全功率扫描,得到第二扫描功率序列包括:
根据所述第二组标准Ramp曲线确定第二Ramp最大值,将所述第二Ramp最大值作为各PCL的Ramp最大值;
从所述第一factor序列中选取至少两个factor值对所述待测设备进行特定PCL扫描,得到对应的测量功率;
根据所述第一factor序列及所述测量功率,插值计算所述特定PCL之外的其他PCL对应的测量功率;
根据各PCL对应的测量功率得到第二扫描功率序列。
可选地,所述根据所述第一factor序列、所述第一扫描功率序列、所述第二扫描功率序列以及各PCL对应的标定功率,确定所述PCL对应的目标factor值包括:
根据所述第一factor序列确定基准factor序列;
根据所述基准factor序列确定基准PCL,并根据所述基准PCL及所述第二扫描功率序列确定第一校准系数;
根据所述基准PCL的目标factor值、待校准PCL的目标功率、以及所述第一校准系数,计算参考factor值;
根据所述第一Ramp最大值和所述第二Ramp最大值、以及所述参考factor值,确定第二校准系数;
根据所述待校准PCL对应的所述第一factor序列中的factor值、所述待校准PCL的目标功率、以及所述第二校准系数,计算所述待校准PCL的目标factor值。
可选地,所述方法还包括:将各PCL对应的目标factor值写入所述待测设备的NVRAM。
本发明实施例还提供一种GSM射频前端功率校准装置,所述装置依次对待测设备的每个频段进行校准过程,所述装置包括:
第一扫描模块,用于针对当前频段,根据第一组标准Ramp曲线 进行全功率扫描,根据扫描结果得到第一扫描功率序列及对应的第一factor序列;
第二扫描模块,用于根据第二组标准Ramp曲线、以及所述第一factor序列对所述待测设备进行全功率扫描,得到第二扫描功率序列;
计算模块,用于根据所述第一factor序列、所述第一扫描功率序列、所述第二扫描功率序列以及各PCL对应的目标功率,确定所述PCL对应的目标factor值。
本发明实施例还提供一种计算机可读存储介质,所述计算机可读存储介质为非易失性存储介质或非瞬态存储介质,其上存储有计算机程序,所述计算机程序被处理器运行时执行上述方法的步骤。
本发明实施例还提供一种电子设备,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机程序,所述处理器运行所述计算机程序时执行上述方法的步骤。
本发明实施例提供的GSM射频前端功率校准方法及装置,通过两组基于不同Ramp最大值的全功率扫描,然后根据扫描得到的功率序列及factor序列,可以快速有效地确定各PCL对应的目标factor值。
进一步地,通过采用不同的步进幅度进行功率扫描,避免了固定步进幅度导致一些小功率输出增益电压比较陡峭的功率放大器无法找到合适的小功率Factor值的问题。
附图说明
图1是本发明实施例中NV保存的Ramp曲线示意图;
图2是本发明实施例GSM系统射频前端功率校准方法的一种流程图;
图3是本发明实施例中根据第一组标准Ramp曲线进行全功率扫描的流程图;
图4是本发明实施例中根据第二组标准Ramp曲线以及第一factor序列进行全功率扫描的流程图;
图5是本发明实施例中确定各PCL对应的目标factor值的流程图;
图6是本发明实施例中分区段计算factor斜率γn的示意图;
图7是本发明实施例中分区段计算ramp斜率的示意图;
图8是本发明实施例GSM系统射频前端功率校准装置的一种结构框图;
图9是本发明GSM射频前端功率校准装置的应用场景示意图。
具体实施方式
为使本发明的上述目的、特征和有益效果能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
在进行功率校准时,通常会根据频率划分为五个区间,每个区间取一个频点校准信道,以GSM扩展频段(Extended GSM,EGSM)为例,采用5个校准信道CH15、CH46、CH77、CH108和CH999,再依次针对每个校准信道校准15个功率等级。为了提升校准效率,通常只对中间校准信道CH77全部校准5~19个功率等级的factor值,其余4个校准信道只校准最大功率等级5的factor值,其它功率等级的factor值参考中间校准信道CH77相应功率等级的factor值通过补偿计算得到。
在生产制造中,基于对产线效率的要求,希望用最快的速度完成功率校准。现有协议规范中规定指定的PCL目标功率±2dB都是符合协议要求的,同时由于GSM制式的功率放大器在某一段功率区间的Vramp和增益(Gain)曲线基本上是线性的,为此,校准工具会将15个功率等级分区,取分区中的3~5段校准PCL、以及Vramp和Gain的斜率,通过直线拟合计算快速校准省略掉的PCL的factor值,写入NVRAM。省略的PCL越多,校准速度就越快,校准精度就越低。
在校准过程中,需要设置Ramp曲线的调试参数,如下配置的一组Ramp曲线参数:
0,0,0,0,0,0,88,88,94,220,319,418,550,649,770,847
847,822,726,629,484,330,198,94,88,88,0,0,0,0,0,0
对应的Ramp曲线如图1所示,其中,847是有用比特区的曲线值(将曲线值Vramp最大设为10比特,847为十进制数字),设为Ramp0,这个值决定了此Ramp曲线最大的Vramp电压值,与发射功率相关性最高。
由于不同品牌设备射频模块的发射功率不同,功率放大器的性能也会有所差异,为达到输出信号具备最优的功率、功耗、调制谱、开关谱性能,除了优化Ramp曲线的上升沿下降沿之外,还可以调整Ramp的最大值,即Ramp0,比如有些场景下,需要将Ramp0提升到950甚至1023。为提升输出功率的最大值,Ramp0的值普遍在900~990之间设置。
在快速校准过程中,现有技术中待测设备需要轮发多个不同等级的PCL对应的Ramp信号,不同等级的PCL对应的Ramp0保持一致,并且采用固定步进factor进行功率扫描,这种方式会导致某些小功率输出增益电压比较陡峭的功率放大器无法找到合适的小功率factor值。
为此,本发明实施例提供一种GSM射频前端功率校准方法及装置,通过两组基于不同Ramp最大值的全功率扫描,然后根据扫描得到的功率序列及factor序列,可以快速有效地确定各PCL对应的目标factor值。
如图2所示,是本发明实施例GSM系统射频前端功率校准方法的一种流程图。
该实施例的方案需要依次对待测设备的每个频段进行校准过程,校准过程包括以下步骤:
步骤201,针对当前频段,根据第一组标准Ramp曲线进行全功率扫描,根据扫描结果得到第一扫描功率序列及对应的第一factor序列。
步骤202,根据第二组标准Ramp曲线、以及第一factor序列对待测设备进行全功率扫描,得到第二扫描功率序列。
需要说明的是,第二组标准Ramp曲线可以是和第一组标准Ramp曲线相同的Ramp曲线,也可以不同,对此本发明实施例不做限定。
步骤203,根据第一factor序列、第一扫描功率序列、第二扫描功率序列以及各PCL对应的目标功率,确定PCL对应的目标factor值。
在上述步骤201中,根据第一组标准Ramp曲线进行全功率扫描的一种具体流程如图3所示,包括以下步骤:
步骤301,根据第一组标准Ramp曲线确定第一Ramp最大值,将第一Ramp最大值作为各PCL的Ramp最大值。
其中,第一组标准Ramp曲线可以是各频段所有PCL的Ramp曲线。相应地,在确定第一Ramp最大值时,可以采用以下几种方式:
(1)将各频段所有PCL的Ramp曲线中的最大值作为第一Ramp最大值;
(2)将各频段所有PCL的Ramp曲线中的最大值和最小值两者的均值作为第一Ramp最大值;
(3)计算各频段所有PCL的Ramp曲线中的最大值和最小值两者的均值,将与所述均值最接近的Ramp曲线的最大值作为第一Ramp最大值。
例如,GSM900的PCL及目标功率如下表1所示。
表1
Figure PCTCN2022118636-appb-000001
比如,设定第一Ramp最大值为1000。
步骤302,设定factor第一起始值,并按照第一步进降低的方式发送factor测试序列,对待测设备进行全功率扫描,得到第一功率区间序列。
步骤303,设定factor第二起始值,按照第二步进降低的方式发送factor测试序列对所述待测设备进行全功率扫描,得到第二功率区间序列。
需要说明的是,在按照步进降低的方式发送factor测试序列的情况下,可以设置factor第二起始值小于factor第一起始值,第二步进小于第一步进。
当然,在实际应用中,也可以按照步进升高的方式发送factor测试序列。相应地,在这种方式下,可以设置factor第二起始值大于factor第一起始值,第二步进大于第一步进。
步骤304,根据第一功率区间序列和所述第二功率区间序列得到第一扫描功率序列及对应的第一factor序列。
假设Factor值最大为32767,设定factor第一起始值为32000,终点为17000,即factor值从32000至17000,以步进-1000扫描上述16个PCL。假设扫描结果覆盖了功率35dbm-16dbm,即PCL5-PCL13的目标功率,则可以计算出PCL5-PCL13对应的factor值。
然后降低步进继续扫描PCL14-PCL19的功率,比如设定factor 第二起始值为17000,以步进-500扫描上述16个PCL。假设扫描结果覆盖了功率16dbm-6dbm,但无法覆盖PCL19对应的目标功率5dbm。
按照PCL14-PCL18对应的上述扫描结果及目标功率值对factor进行插值计算,得到PCL14-PCL18对应的factor值。
至此,可以得到所有PCL对应的factor值,即第一factor序列。
假设第一factor序列如下表2所示。
表2
Figure PCTCN2022118636-appb-000002
在上述表格中,假设只有PCL5和PCL6对应的factor值是正确的(在扫描过程中通过仪表测量待测设备的输出功率,测量得到的输出功率在对应的目标功率范围内即可确定对应的factor值正确),为此还需要得到其它PCL对应的factor值。
为了得到其它PCL对应的factor值,在本发明实施例中,可以利用第二组标准Ramp曲线以及第一factor序列进行全功率扫描,即 上述步骤202。
在上述步骤202中,根据第二组标准Ramp曲线以及第一factor序列进行全功率扫描的过程如图4所示,包括以下步骤:
步骤401,根据第二组标准Ramp曲线确定第二Ramp最大值,将第二Ramp最大值作为各PCL的Ramp最大值。
需要说明的是,第二Ramp最大值可以大于或小于第一Ramp最大值,对此本发明实施例不做限定。
步骤402,从第一factor序列中选取至少两个factor值对待测设备进行特定PCL扫描,得到对应的测量功率。
步骤403,根据所述第一factor序列及所述测量功率,插值计算所述特定PCL之外的其他PCL对应的测量功率。
步骤404,根据各PCL对应的测量功率得到第二扫描功率序列。
继续上面的示例,假设第二Ramp最大值为800,得到的第二扫描功率序列与前面得到的第一扫描功率序列如下表3所示。
表3
Figure PCTCN2022118636-appb-000003
Figure PCTCN2022118636-appb-000004
基于上面得到的第一factor序列、所述第一扫描功率序列、所述第二扫描功率序列以及各PCL对应的目标功率,上述步骤203中确定各PCL对应的目标factor值的流程如图5所示,包括以下步骤:
步骤501,根据第一factor序列,确定基准factor序列。
步骤502,根据基准factor序列确定基准PCL,并根据基准PCL及第二扫描功率序列确定第一校准系数。
步骤503,根据基准PCL的目标factor值、待校准PCL的目标功率、以及第一校准系数,计算参考factor值。
所述参考factor值为待校准PCL的目标功率对应第二Ramp最大值情况下所需的factor值。
步骤504,根据第一Ramp最大值、第二Ramp最大值、以及所述参考factor值,确定第二校准系数。
步骤505,根据待校准PCL对应的第一factor序列中的factor值、待校准PCL的目标功率、以及所述第二校准系数,计算所述待校准PCL的目标factor值。
所述目标factor值为待校准PCL的目标功率对应Ramp实际设定最大值情况下所需的factor值。
继续以表3中的扫描结果为例,假设只有PCL5和PCL6对应的factor值是正确的,相应地,上述步骤501中所述的基准factor序列即为PCL5和PCL6对应的factor序列。
下面举例说明基于上述基准factor序列确定待校准PCL7的目标factor值的过程。
如表3所示,PCL7的Ramp实际设定最大值是950,第一功率 序列对应的Ramp最大值为1000,第二功率序列对应的Ramp最大值为800。
首先,根据基准factor序列确定基准PCL,根据基准PCL和第二扫描功率序列确定第一校准系数,所述第一校准系数也可称为factor斜率,记为γ,计算公式如下:
Figure PCTCN2022118636-appb-000005
其中,f为基准PCL对应的第一factor序列中的factor值,p为基准PCL对应的第一扫描功率序列中的功率;f 1和p 1分别为待校准PCL对应的第一factor序列中的factor值和对应的第一扫描功率序列中的功率。
图6示出了分区段计算factor斜率γn的示意图。
比如,对于待校准的PCL7,基准PCL为PCL6,PCL7对应的第一校准系数为:
Figure PCTCN2022118636-appb-000006
然后,根据基准PCL的目标factor值、待校准PCL的目标功率及第一校准系数,计算参考factor值。具体地,对于待校准的PCL7,计算Ramp最大值为800的情况下,PCL7的目标功率29dbm需要的factor值,记为f',计算如下:
f'=f-(p-p m1)×γ       (2)
其中,p m1为待校准PCL的目标功率。
对应于待校准的PCL7,参考factor值为:
Figure PCTCN2022118636-appb-000007
根据上述扫描及计算结果,可以得到基准PCL对应的目标factor值(如PCL6对应第一Ramp最大值1000情况下所需的factor值)、待校准PCL对应的参考factor值(如PCL7对应第二Ramp最大值800 情况下所需的factor值),由于待校准PCL对应的Ramp实际设定最大值与第二Ramp最大值不同,因此还需要计算待校准PCL对应的Ramp实际设定最大值情况下所需的factor值,即目标factor值。
具体地,根据第一Ramp最大值和第二Ramp最大值确定第二校准系数,所述第二校准系数也可称为ramp斜率,记为θ,计算公式如下:
Figure PCTCN2022118636-appb-000008
其中,V1和V2分别为第一Ramp最大值和第二Ramp最大值。
图7示出了分区段计算ramp斜率的示意图。
然后,根据待校准PCL对应的第一factor序列中的factor值、待校准PCL的目标功率、以及所述第二校准系数,计算所述待校准PCL的目标factor值。
f”=f 1+(V1-v)×θ        (4)
其中,v表示待校准PCL对应的Ramp实际设定最大值。
具体地,对于上述待校准的PCL7,其目标factor值为:
Figure PCTCN2022118636-appb-000009
需要说明的是,上述仅举例说明了计算待校准的PCL7的目标factor值的过程,其它待校准的PCL的目标factor值的计算过程与上述类似,比如,依据PCL6和PCL7的相关参数计算待校准的PCL8的目标factor值,然后依据PCL7和PCL8的相关参数计算待校准的PCL9的目标factor值,依次计算,最终得到所有PCL的目标factor值,将校准后的目标factor值写入待测设备的NVRAM。
相应地,本发明实施例还提供一种GSM射频前端功率校准装置,如图8所示,是该装置的一种结构框图。
在该实施例中,GSM射频前端功率校准装置80包括以下各模块:
第一扫描模块81,用于针对当前频段,根据第一组标准Ramp曲线进行全功率扫描,根据扫描结果得到第一扫描功率序列及对应的第一factor序列;
第二扫描模块82,用于根据第二组标准Ramp曲线、以及所述第一factor序列对所述待测设备进行全功率扫描,得到第二扫描功率序列;
计算模块83,用于根据所述第一factor序列、所述第一扫描功率序列、所述第二扫描功率序列以及各PCL对应的目标功率,确定所述PCL对应的目标factor值。
利用本发明实施例提供的GSM射频前端功率校准装置,可以依次对待测设备的每个频段进行校准过程。GSM射频前端功率校准装置的应用场景如图9所示,通过测试仪表及内置相应软件的配合,可以快速有效地确定各PCL对应的目标factor值。
上述GSM射频前端功率校准装置中各模块对相应功能的具体实现方式可参见前面本发明方法实施例中的描述,在此不再赘述。
进一步地,在本发明GSM射频前端功率校准装置另一实施例中,还可进一步包括:存储模块,将各PCL对应的目标factor值写入所述待测设备的NVRAM。
在具体实施中,上述GSM系统射频前端功率校准装置可以对应于网络设备中的芯片,例如SoC(System-On-a-Chip,片上系统)、基带芯片、芯片模组等。
在具体实施中,关于上述实施例中描述的各个装置、产品包含的各个模块/单元,其可以是软件模块/单元,也可以是硬件模块/单元,或者也可以部分是软件模块/单元,部分是硬件模块/单元。
例如,对于应用于或集成于芯片的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片内部 集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于芯片模组的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同的模块/单元可以位于芯片模组的同一组件(例如芯片、电路模块等)或者不同组件中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片模组内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于终端的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同的模块/单元可以位于终端内同一组件(例如,芯片、电路模块等)或者不同组件中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于终端内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现。
本发明实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质为非易失性存储介质或非瞬态存储介质,其上存储有计算机程序,所述计算机程序被处理器运行时执行上述图1或图2对应实施例提供的方法的步骤。
本发明实施例还提供了另一种GSM射频前端功率校准装置,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机程序,所述处理器运行所述计算机程序时执行上述图2或图3或图4或图5对应实施例所提供的方法的步骤。
本发明实施例还提供了一种电子设备,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机程序,所述处理器运行所述计算机程序时执行上述图2或图3或图4或图5对应实施例所提供的方法的步骤。
在本发明所提供的几个实施例中,应该理解到,所揭露的方法、装置和系统,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的;例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式;例如多个单元或组件可以 结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理包括,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用硬件加软件功能单元的形式实现。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (10)

  1. 一种GSM射频前端功率校准方法,其特征在于,所述方法包括:
    依次对待测设备的每个频段进行校准过程,所述校准过程包括:
    针对当前频段,根据第一组标准脉冲宽度调制斜坡幅度信号Ramp曲线进行全功率扫描,根据扫描结果得到第一扫描功率序列及对应的第一功率控制因子factor序列;
    根据第二组标准Ramp曲线、以及所述第一factor序列对所述待测设备进行全功率扫描,得到第二扫描功率序列;
    根据所述第一factor序列、所述第一扫描功率序列、所述第二扫描功率序列以及各功率控制等级PCL对应的目标功率,确定所述PCL对应的目标factor值。
  2. 根据权利要求1所述的方法,其特征在于,所述根据第一组标准Ramp曲线、对所述待测设备进行全功率扫描,根据扫描结果得到第一扫描功率序列及对应的第一factor序列包括:
    根据第一组标准Ramp曲线确定第一Ramp最大值,将所述第一Ramp最大值作为各PCL的Ramp最大值;
    设定factor第一起始值,并按照第一步进降低的方式发送factor测试序列,对所述待测设备进行全功率扫描,得到第一功率区间序列;
    设定factor第二起始值,按照第二步进降低的方式发送factor测试序列对所述待测设备进行全功率扫描,得到第二功率区间序列;所述factor第二起始值小于所述factor第一起始值,所述第二步进小于第一步进;
    根据第一功率区间序列和所述第二功率区间序列得到第一扫描功率序列及对应的第一factor序列。
  3. 根据权利要求2所述的方法,其特征在于,所述第一组标准Ramp曲线为各频段所有PCL的Ramp曲线;
    所述根据第一组标准Ramp曲线确定第一Ramp最大值包括:
    将各频段所有PCL的Ramp曲线中的最大值作为第一Ramp最大值;或者
    将各频段所有PCL的Ramp曲线中的最大值和最小值两者的均值作为第一Ramp最大值;或者
    计算各频段所有PCL的Ramp曲线中的最大值和最小值两者的均值,将与所述均值最接近的Ramp曲线的最大值作为第一Ramp最大值。
  4. 根据权利要求2所述的方法,其特征在于,所述根据第二组标准Ramp曲线、以及所述第一factor序列对所述待测设备进行全功率扫描,得到第二扫描功率序列包括:
    根据所述第二组标准Ramp曲线确定第二Ramp最大值,将所述第二Ramp最大值作为各PCL的Ramp最大值;
    发送所述第一factor序列对所述待测设备进行全功率扫描,得到第二扫描功率序列。
  5. 根据权利要求1所述的方法,其特征在于,所述根据第二组标准Ramp曲线、以及所述第一factor序列对所述待测设备进行全功率扫描,得到第二扫描功率序列包括:
    根据所述第二组标准Ramp曲线确定第二Ramp最大值,将所述第二Ramp最大值作为各PCL的Ramp最大值;
    从所述第一factor序列中选取至少两个factor值对所述待测设备进行特定PCL扫描,得到对应的测量功率;
    根据所述第一factor序列及所述测量功率,插值计算所述特定 PCL之外的其他PCL对应的测量功率;
    根据各PCL对应的测量功率得到第二扫描功率序列。
  6. 根据权利要求4所述的方法,其特征在于,所述根据所述第一factor序列、所述第一扫描功率序列、所述第二扫描功率序列以及各PCL对应的标定功率,确定所述PCL对应的目标factor值包括:
    根据所述第一factor序列确定基准factor序列;
    根据所述基准factor序列确定基准PCL,并根据所述基准PCL及所述第二扫描功率序列确定第一校准系数;
    根据所述基准PCL的目标factor值、待校准PCL的目标功率、以及所述第一校准系数,计算参考factor值;
    根据所述第一Ramp最大值和所述第二Ramp最大值、以及所述参考factor值,确定第二校准系数;
    根据所述待校准PCL对应的所述第一factor序列中的factor值、所述待校准PCL的目标功率、以及所述第二校准系数,计算所述待校准PCL的目标factor值。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,所述方法还包括:
    将各PCL对应的目标factor值写入所述待测设备的NVRAM。
  8. 一种GSM射频前端功率校准装置,其特征在于,所述装置依次对待测设备的每个频段进行校准过程,所述装置包括:
    第一扫描模块,用于针对当前频段,根据第一组标准脉冲宽度调制斜坡幅度信号Ramp曲线进行全功率扫描,根据扫描结果得到第一扫描功率序列及对应的第一功率控制因子factor序列;
    第二扫描模块,用于根据第二组标准Ramp曲线、以及所述第一factor序列对所述待测设备进行全功率扫描,得到第二扫描功率序列;
    计算模块,用于根据所述第一factor序列、所述第一扫描功率序列、所述第二扫描功率序列以及各PCL对应的目标功率,确定所述PCL对应的目标factor值。
  9. 一种计算机可读存储介质,所述计算机可读存储介质为非易失性存储介质或非瞬态存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器运行时执行权利要求1至7中任一项所述方法的步骤。
  10. 一种电子设备,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机程序,其特征在于,所述处理器运行所述计算机程序时执行权利要求1至7中任一项所述方法的步骤。
PCT/CN2022/118636 2021-09-29 2022-09-14 Gsm射频前端功率校准方法及装置 WO2023051241A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111155631.7A CN113922893B (zh) 2021-09-29 2021-09-29 Gsm射频前端功率校准方法及装置
CN202111155631.7 2021-09-29

Publications (1)

Publication Number Publication Date
WO2023051241A1 true WO2023051241A1 (zh) 2023-04-06

Family

ID=79237144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/118636 WO2023051241A1 (zh) 2021-09-29 2022-09-14 Gsm射频前端功率校准方法及装置

Country Status (2)

Country Link
CN (1) CN113922893B (zh)
WO (1) WO2023051241A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113922893B (zh) * 2021-09-29 2023-06-23 展讯通信(深圳)有限公司 Gsm射频前端功率校准方法及装置
CN115277331B (zh) * 2022-06-17 2023-09-12 哲库科技(北京)有限公司 信号补偿方法及装置、调制解调器、通信设备、存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1507294A (zh) * 2002-12-10 2004-06-23 深圳市中兴通讯股份有限公司 Gsm移动终端机发射功率的控制方法
TW200631337A (en) * 2005-02-23 2006-09-01 Benq Corp Output power modification methods and apparatuses for mobile communication devices
CN1983854A (zh) * 2005-12-20 2007-06-20 威盛电子股份有限公司 产生输出功率斜坡的传送器及其控制方法
CN101521934A (zh) * 2008-02-28 2009-09-02 展讯通信(上海)有限公司 自动计算gsm功率放大器的ramp参数的方法和装置
WO2013164167A1 (en) * 2012-04-30 2013-11-07 St-Ericsson Sa Minimizing unwanted spectral emission of a wireless communication transmitter
CN112003652A (zh) * 2020-08-20 2020-11-27 上海移远通信科技有限公司 终端设备的射频调试方法、装置及计算机可读存储介质
CN113922893A (zh) * 2021-09-29 2022-01-11 展讯通信(深圳)有限公司 Gsm射频前端功率校准方法及装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105611559B (zh) * 2016-02-17 2019-02-12 Oppo广东移动通信有限公司 一种终端射频的调试方法及调试系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1507294A (zh) * 2002-12-10 2004-06-23 深圳市中兴通讯股份有限公司 Gsm移动终端机发射功率的控制方法
TW200631337A (en) * 2005-02-23 2006-09-01 Benq Corp Output power modification methods and apparatuses for mobile communication devices
CN1983854A (zh) * 2005-12-20 2007-06-20 威盛电子股份有限公司 产生输出功率斜坡的传送器及其控制方法
CN101521934A (zh) * 2008-02-28 2009-09-02 展讯通信(上海)有限公司 自动计算gsm功率放大器的ramp参数的方法和装置
WO2013164167A1 (en) * 2012-04-30 2013-11-07 St-Ericsson Sa Minimizing unwanted spectral emission of a wireless communication transmitter
CN112003652A (zh) * 2020-08-20 2020-11-27 上海移远通信科技有限公司 终端设备的射频调试方法、装置及计算机可读存储介质
CN113922893A (zh) * 2021-09-29 2022-01-11 展讯通信(深圳)有限公司 Gsm射频前端功率校准方法及装置

Also Published As

Publication number Publication date
CN113922893A (zh) 2022-01-11
CN113922893B (zh) 2023-06-23

Similar Documents

Publication Publication Date Title
WO2023051241A1 (zh) Gsm射频前端功率校准方法及装置
CN111478737B (zh) 射频测试方法、装置、电子装置及存储介质
US9537519B2 (en) Systems and methods for performing power amplifier bias calibration
US20130034139A1 (en) Group delay calibration method for power amplifier envelope tracking
CN103036623B (zh) 一种移动终端功率控制测试校准方法及移动终端
JP7001704B2 (ja) 通信方法およびデバイス
CN108650035B (zh) 电子设备校准方法、装置、电子设备和存储介质
WO2018152709A1 (zh) 一种通信方法及移动终端
CN108650034A (zh) 一种射频设备的增益校准方法及装置
WO2010069203A1 (zh) 多载波系统中功率定标的方法与系统
CN111614409B (zh) 功率校准方法及装置
WO2024041378A1 (zh) 一种无线设备的射频功率校准控制方法、装置及终端设备
US9871538B2 (en) Method and apparatus for adjusting peak power capability
EP3965482A1 (en) Transmitting power determination method and apparatus and communication device
WO2022179439A1 (zh) Agc校准预处理方法及装置、存储介质、终端
WO2020020250A1 (zh) 一种测量方法和装置
KR102342396B1 (ko) 무선 단말의 수신기의 무선 성능을 측정하는 방법, 장치 및 컴퓨터 판독가능 저장 매체
WO2020011049A1 (zh) 一种功率控制方法及装置、计算机可读存储介质
WO2020107361A1 (zh) 一种射频通道的校准方法和装置
CN111224723B (zh) 射频前端模块的校准方法、系统、电子设备及存储介质
US20210306082A1 (en) Method for measuring power of non-constant envelope modulated signal, and electronic device
CN111757447B (zh) 上行发射功率控制方法、装置、计算机设备和存储介质
CN108965559B (zh) 波动校准方法和装置
CN111294122B (zh) 功率放大器输入功率的确定方法及装置、存储介质、终端
US11924656B2 (en) Automatic RF transmit power control for over the air testing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22874628

Country of ref document: EP

Kind code of ref document: A1