WO2020011049A1 - 一种功率控制方法及装置、计算机可读存储介质 - Google Patents

一种功率控制方法及装置、计算机可读存储介质 Download PDF

Info

Publication number
WO2020011049A1
WO2020011049A1 PCT/CN2019/094257 CN2019094257W WO2020011049A1 WO 2020011049 A1 WO2020011049 A1 WO 2020011049A1 CN 2019094257 W CN2019094257 W CN 2019094257W WO 2020011049 A1 WO2020011049 A1 WO 2020011049A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
antenna
terminal
radiation efficiency
control method
Prior art date
Application number
PCT/CN2019/094257
Other languages
English (en)
French (fr)
Inventor
徐超超
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2020011049A1 publication Critical patent/WO2020011049A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/283Power depending on the position of the mobile

Definitions

  • Embodiments of the present invention relate to, but are not limited to, a power control method and device, and a computer-readable storage medium.
  • the terminal After receiving the desired power sent by the base station, the terminal adjusts the conductive power of the antenna sent by the PA (Power Amplifier, power amplifier) to the terminal according to the desired power, so that the radiated power of the antenna reaches the desired power.
  • the conducted power sent by the PA to the antenna is not actually the power radiated by the antenna. Therefore, when the conducted power is changed according to the desired power and then the radiated power is changed, the terminal needs to make multiple adjustments to achieve the desired output of the antenna. low efficiency.
  • At least one embodiment of the present invention provides a power control method and device, and a computer-readable storage medium to improve power control efficiency.
  • At least one embodiment of the present invention provides a power control method, including: obtaining direction information of a base station relative to a terminal; determining at least the power of an antenna output to the terminal according to the direction information; and outputting the power to the antenna .
  • At least one embodiment of the present invention provides a power control device, including a memory and a processor.
  • the memory stores a program.
  • the power control according to any one of the embodiments is implemented. method.
  • At least one embodiment of the present invention provides a computer-readable storage medium, where the computer-readable storage medium stores one or more programs, and the one or more programs can be executed by one or more processors to implement any The power control method according to an embodiment.
  • the directional information of the base station with respect to the terminal is obtained, and the power of the antenna output to the terminal is determined according to the direction information, and the power is output to the antenna.
  • FIG. 1 is a flowchart of a power control method according to an embodiment of the present invention
  • FIG. 2 is a directional diagram of an antenna when the output power of a terminal PA is the same in the related art
  • FIG. 3 is a directional diagram of an antenna after a terminal adjusts PA output power according to an embodiment of the present invention
  • FIG. 4 is a block diagram of a power control apparatus according to an embodiment of the present invention.
  • the power output from the PA on the board to the antenna port is a certain value, OTA (Over The Air, wireless) dark room test (simulated far-field test), the power received at different positions on a sphere centered on the terminal is not Similarly, the ratio of the power received at each location to the power output by the PA to the antenna port is the radiation efficiency of the terminal.
  • the radiation efficiency of the terminal in different directions is different, and there is a one-to-one correspondence between the radiation efficiency and the spatial position (direction information).
  • the terminal antenna is determined, that is, the wiring form and grounding method are determined, and after the assembly of the whole machine, the characteristics (radiation efficiency) of the terminal radiating signals to space are determined.
  • the communication between the base station and the terminal belongs to far-field communication. There is a one-to-one correspondence between the direction information of the base station and the terminal and the radiation efficiency. Therefore, the power output from the PA to the antenna can be controlled according to the direction information to improve the power adjustment efficiency.
  • an embodiment of the present invention provides a power adjustment method, including:
  • Step 101 Obtain direction information of a base station relative to a terminal.
  • Step 102 Determine the power of the antenna output to the terminal according to at least the direction information.
  • Step 103 Output the power to the antenna.
  • the power output to the antenna is determined according to the direction information of the base station relative to the terminal. Since there is a corresponding relationship between the direction information and the radiation efficiency, determining the power of the antenna output to the terminal according to the direction information can more effectively achieve the required antenna output The target power improves the power adjustment efficiency.
  • the direction information of the base station relative to the terminal refers to the terminal-centric direction information of the base station relative to the terminal.
  • the direction information of the base station relative to the terminal can be obtained from a common channel that the base station and the terminal interact with.
  • the direction information can also be obtained from other ways, which is not limited in this application.
  • determining the power of the antenna output to the terminal based at least on the direction information includes:
  • the radiation efficiency of the antenna of the terminal in the direction is determined according to the direction information, and the power output to the antenna is determined according to the target power to be output by the antenna and the radiation efficiency.
  • the target power the power output to the antenna * radiation efficiency.
  • the power output from the PA to the antenna is directly used as the power radiated by the antenna for power adjustment.
  • the power input to the antenna can be adjusted according to the radiation efficiency of the antenna, reducing the number of power adjustments. , Which improves the efficiency of power adjustment.
  • the target power is an expected power delivered by the base station to the terminal, and is required to be radiated by the terminal.
  • the desired power is delivered to the terminal, for example, through a broadcast channel.
  • the target power may also be a power value preset by the terminal.
  • the base station when encountering a signal fluctuation, the base station feeds back an instruction to increase the transmission power to the terminal.
  • the conducted power of the terminal main board is radiated through the antenna, and the power transmitted by the PA each time is different from the antenna, which increases the number of times the terminal repeatedly adjusts the power and increases the power consumption.
  • power adjustment is performed according to the radiation efficiency of the antenna, which improves the interaction efficiency, reduces the number of interactions, and reduces power consumption.
  • the radiation efficiency of the antenna of the terminal in this direction is determined according to the following manner:
  • the correspondence table between the radiation efficiency and the direction is determined according to the following manner:
  • Output a fixed power to the antenna of the terminal, obtain the radiated power of the antenna in different directions, determine the radiation efficiency in different directions based on the radiated power in the different direction and the fixed power, and establish the radiation efficiency and direction Correspondence table.
  • a correspondence table of radiation efficiency and direction can be obtained by testing the antenna pattern.
  • the antenna pattern is obtained from the OTA test.
  • the direction diagram shows a three-dimensional perspective.
  • the diagram can be expressed in polar coordinates, and the direction of the three-dimensional space is expressed by parameters ( ⁇ , ⁇ , ⁇ ).
  • ⁇ , ⁇ , ⁇ respectively represent Angle
  • [ ⁇ 1 .... ⁇ n ] represents the radiation efficiency of the antenna in different directions
  • P p represents the conducted power output from the radio frequency PA on the motherboard to the antenna port.
  • the power in each direction actually tested is P 1 , ... P n . Due to the anisotropy of the radiation efficiency, when the conduction power of the main board is a fixed value, the radiation power of the antenna is different in each position (that is, in each direction) of the space. Expressed as a function:
  • ⁇ i is a fixed value. It can be seen from equation (1) that the power values measured in different directions change with the radiation efficiency of the antenna. Among them, when P p is fixed, P 1 .... P n can be measured, and then ⁇ 1 .... ⁇ n can be determined. Thereby, a correspondence table of radiation efficiency and direction can be established.
  • the radiation efficiency of the antenna of the terminal in the direction is: the radiation efficiency of the antenna of the terminal in the direction in the current frequency band.
  • the current frequency band refers to the current frequency band under the current standard of the terminal.
  • the current frequency band refers to the current operating frequency band of the terminal. Since the radiation efficiency in different systems and frequency bands may be different, it is necessary to obtain the radiation efficiency according to the system and frequency band.
  • the OTA test is performed to obtain the antenna pattern, the test is performed in the sub-system and frequency band.
  • the sub-system and frequency band are used to establish a correspondence table of radiation efficiency and direction, respectively. There is a correspondence table under one system and frequency band.
  • the standards are, for example, WCDMA (Wideband Code Division Multiple Access), CDMA (Code Division Multiple Access), LTE (Long Term Evolution), and GSM (Global System for Mobile Communication) , Global System for Mobile Communications) and so on.
  • the debugging goal of the motherboard is to achieve the transmitted emission and reception indicators, and usually rely on cable calibration.
  • the transmission power reaches the maximum expected power and all transmission indicators are normal, the maximum transmission power of the motherboard is determined, and the transmission power will not be exceeded during the use of the terminal.
  • the antenna is equivalent to an "impedance transformation" structure and does not involve the conduction characteristics of the board. This "independent" research and development process cannot fully utilize the potential performance of the antenna and the motherboard, and cannot make the terminal achieve the best performance.
  • the motherboard's conduction index meets the communication requirements, and there is sufficient margin, but it may not be able to communicate normally, because the maximum transmit power of the motherboard has been determined during the debugging stage and cannot be modified.
  • a special phenomenon occurs.
  • the transmitting power of the terminal is normal at a certain position, but the receiving sensitivity is not enough. After changing the test position, the receiving sensitivity index is normal and the transmitting power is not enough.
  • the motherboard's transmission and reception indicators under the cable meet the standards, and the OTA test indicators are normal. The root cause of the problem is that the motherboard and antenna are not working together.
  • parameters in the antenna test process are tapped to adjust the transmit power of the terminal, so that the motherboard and the antenna work together to improve the overall operating efficiency of the terminal.
  • the maximum transmission power of the terminal is determined according to the radiation efficiency of the antenna.
  • the determining the maximum transmission power of the terminal according to the radiation efficiency of the antenna includes:
  • a first power is determined, and the first power satisfies: when the first power is output to the antenna, a transmission parameter in a direction with a minimum radiation efficiency of the antenna meets a transmission parameter requirement, and the The first power is taken as the maximum transmission power of the terminal in the frequency band (that is, the power output to the antenna).
  • the maximum transmission power has nothing to do with the antenna performance. It may happen that the performance of the motherboard meets the standards, the antenna performance meets the standards, and the overall coupling performance does not meet the requirements.
  • the maximum transmission power of the terminal is determined in cooperation with the antenna, and the radiation efficiency of the antenna is considered, which can more accurately reflect the performance of the terminal.
  • the solution of this embodiment can reduce the maximum transmission power when the antenna performance in certain frequency bands is good (large radiation efficiency), thereby reducing Power consumption.
  • the board cable calibration needs to be performed. After calibration, there will be a larger range of transmit power under non-signaling.
  • the maximum transmit power is higher than the actual maximum transmit power of the terminal.
  • the following table 1 shows the calibration data of a certain LTE (Long Terminal Evolution, Long Term Evolution) band. It can be seen that the maximum transmit power of the terminal board can reach 29dBm.
  • LTE Long Terminal Evolution, Long Term Evolution
  • NV Nonvolatile value, radio frequency parameter stored in non-volatile memory
  • the main radiation performance parameters of the antenna are mainly divided into two categories: receiving parameters and transmitting parameters.
  • the transmission parameters include TRP (Total Radiated Power) and the reception parameters include TIS (Total Isotropic Sensitivity).
  • TRP reflects the radiated power of the terminal, which is related to the transmitted power of the terminal and the radiation performance of the antenna.
  • the power transmitted to the antenna is fixed. In this application, it is considered to change the power transmitted to the antenna.
  • the emission index can meet the 3GPP requirements.
  • input different powers [P p1 .... ... P pn ] to the antenna so that the output power of the antenna in different directions is the same, and the radiated power of the terminal becomes isotropic.
  • the TRP of the terminal can reach the expected value at all angles.
  • the antenna radiation efficiency can also be applied in the optimization design of the antenna.
  • the antenna design process there are often poor performances in certain frequency bands, and the TRP value cannot meet the requirements. It is necessary to increase the power input to the antenna. If you therefore replace the PA with a high-power amplifier, the cost is increased. At this time, You can adjust the routing space of antennas in different frequency bands.
  • the antenna design reduces the routing space of the frequency band, and increases the routing space for the frequency band with low radiation efficiency, thereby avoiding replacing the PA with a high-power amplifier. It should be noted that after adjusting the routing space, the radiation efficiency of the antenna in each frequency band has changed, and it is necessary to retest whether it can meet the demand. The above adjustment process may occur multiple times until the terminal requirements are reached.
  • an embodiment of the present invention provides a power control device 40 including a memory 410 and a processor 420.
  • the memory 410 stores a program.
  • the program When the program is read and executed by the processor 420, Perform the following operations: obtain the direction information of the base station relative to the terminal; determine at least the power of the antenna output to the terminal according to the direction information; and output the power to the antenna.
  • the power control method when the program is read and executed by the processor 420, the power control method according to any one of the foregoing embodiments is also implemented.
  • An embodiment of the present invention provides a computer-readable storage medium.
  • the computer-readable storage medium stores one or more programs.
  • the one or more programs can be executed by one or more processors, the foregoing tasks are implemented.
  • the power control method according to an embodiment.
  • the computer-readable storage medium includes: U disks, Read-Only Memory (ROM), Random Access Memory (RAM), mobile hard disks, magnetic disks, or optical disks, which can store various program codes The medium.
  • Computer storage medium includes both volatile and nonvolatile implementations in any method or technology used to store information such as computer-readable instructions, data structures, program modules or other data.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technologies, CD-ROM, digital versatile disk (DVD) or other optical disk storage, magnetic cartridges, magnetic tape, disk storage or other magnetic storage devices, or may Any other medium used to store desired information and which can be accessed by a computer.
  • a communication medium typically contains computer-readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transmission mechanism, and may include any information delivery medium .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种功率控制方法及装置、计算机可读存储介质。该功率控制方法包括:获取基站相对终端的方向信息;至少根据所述方向信息,确定输出至所述终端的天线的功率;输出所述功率至所述天线。

Description

一种功率控制方法及装置、计算机可读存储介质
交叉引用
本发明要求在2018年7月9日提交中国专利局、申请号为201810746157.7、发明名称为“一种功率控制方法及装置、计算机可读存储介质”的中国专利申请的优先权,该申请的全部内容通过引用结合在本发明中。
技术领域
本发明实施例涉及但不限于一种功率控制方法及装置,计算机可读存储介质。
背景技术
终端接收到基站发送的期望功率后,根据期望功率调整PA(Power Amplifier,功率放大器)发送到终端的天线的传导功率,使得天线的辐射功率到达期望功率。但是,PA发送到天线的传导功率实际上并不是天线实际辐射出去的功率,因此,根据期望功率改变传导功率进而改变辐射功率时,终端需要进行多次调整才能达到使得天线的输出达到期望功率,效率不高。
发明内容
本发明至少一实施例提供了一种功率控制方法及装置、计算机可读存储介质,提高功率控制效率。
本发明至少一实施例提供了一种功率控制方法,包括:获取基站相对终端的方向信息;至少根据所述方向信息,确定输出至所述终端的天线的功率;输出所述功率至所述天线。
本发明至少一实施例提供一种功率控制装置,包括存储器和处理器,所述存储器存储有程序,所述程序在被所述处理器读取执行时,实现任一实施例所述的功率控制方法。
本发明至少一实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现任一实施例所述的功率控制方法。
与相关技术相比,本发明至少一实施例中,获取基站相对所述终端的方向信息,根据所述方向信息,确定输出至所述终端的天线的功率,输出所述功率至所述天线。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本发明技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本发明的技术方案,并不构成对本发明技术方案的限制。
图1为本发明一实施例提供的功率控制方法流程图;
图2为相关技术中终端PA输出功率相同时天线的方向图;
图3为本发明一实施例提供的终端调整PA输出功率后天线的方向图;
图4为本发明一实施例提供的功率控制装置框图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下文中将结合附图对本发明的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
当单板上PA输出到天线端口的功率为一定值时,OTA(Over The Air,无线)暗室测试(模拟远场测试),在以终端为中心的一个球面上,不同位置接收到的功率不相同,各位置接收到的功率与PA输出到天线端口的功率的比值即为终端的辐射效率。终端在不同方向上的辐射效率不同,辐射效率与空间位置(方向信息)有一一对应关系。当终端天线确定,即走线形式、接地方式确定,组装成整机后,终端向空间辐射信号的特性(辐射效率)确定。基站与终端的通信属于远场通信,基站相对终端的方向信息与辐射效率存在一一对应关系,因此,可以根据方向信息来控制PA输出至天线的功率,提高功率调整效率。
如图1所示,本发明一实施例提供一种功率调整方法,包括:
步骤101,获取基站相对终端的方向信息;
步骤102,至少根据所述方向信息,确定输出至所述终端的天线的功率;
步骤103,输出所述功率至所述天线。
本实施例中,根据基站相对终端的方向信息确定输出至天线的功率,由于方向信息与辐射效率存在对应关系,因此,根据方向信息确定输出至终端的天线的功率能更有效的达到需要天线输出的目标功率,提高了功率调整效率。
在一实施例中,步骤101中,基站相对终端的方向信息是指以终端为中心,基站相对终端的方向信息。其中,基站相对终端的方向信息可以从基站和终端交互的公共信道中得到。当然,也可以从其他方式获得该方向信息,本申请对此不作限定。
在一实施例中,步骤102中,所述至少根据所述方向信息,确定输出至 所述终端的天线的功率包括:
根据所述方向信息确定所述终端的天线在该方向的辐射效率,根据所述天线需输出的目标功率和所述辐射效率确定输出至所述天线的功率。其中,目标功率=输出至所述天线的功率*辐射效率。相比相关技术中,直接将PA输出至天线的功率作为天线辐射出的功率来进行功率调整,本实施例中,可以根据天线的辐射效率来调整输入至天线的功率,减少了功率调整的次数,提高了功率调整效率。
在一实施例中,所述目标功率为所述基站下发给所述终端,要求所述终端辐射出的期望功率。期望功率比如通过广播信道下发给终端。当然,本申请不限于此,目标功率也可以是终端预置的一功率值。相关技术中,遇到信号波动时,基站反馈提高发射功率的指令给终端。终端主板的传导功率经过天线辐射出去,每次PA发出的功率经过天线的转化有所差异,增加了终端反复调整功率的次数,加大了功耗。本实施例中,根据天线的辐射效率进行功率调整,提高了交互效率,减少了交互次数,降低了功耗。
在一实施例中,所述终端的天线在该方向的辐射效率根据如下方式确定:
查找预先建立的天线辐射效率和方向的对应关系表,确定所述终端的天线在该方向的辐射效率。
在一实施例中,所述辐射效率和方向的对应关系表根据如下方式确定:
输出一固定功率至所述终端的天线,获取所述天线在不同方向的辐射功率,根据所述不同方向的辐射功率和所述固定功率,确定不同方向的辐射效率,建立所述辐射效率和方向的对应关系表。
其中,可以通过测试天线方向图的方式获得辐射效率和方向的对应关系表。当PA输出到天线口的功率大小确定时,从OTA测试得到天线方向图,如图2所示,可以看出在某些方向上,天线发出的信号很强,在某些方向上信号很弱,方向图为不规则的球型。方向图展示的是一个三维立体图,该图 可以以极坐标表示,用参数(α,β,θ)表示三维空间的方向,α,β,θ分别代表分别与x轴、y轴和z轴的角度,[η 1 .... η n]表示天线在不同方向对应的辐射效率,P p表示主板上射频PA输出到天线口的传导功率。实际测试到的每个方向上的功率为P 1,...P n。由于辐射效率的各向异性,导致在主板的传导功率为定值的情况下,天线的辐射功率在空间的各个位置(即各方向)不同。以函数的形式表示为:
Figure PCTCN2019094257-appb-000001
η i=f(α,β,θ),i=1...n(2)
天线走线形式确定后,η i即为固定值。由式(1)可以看出,不同方向测量到的功率值随天线的辐射效率变化。其中,P p固定时,P 1....P n可以测量得到,进而可以确定η 1 .... η n。从而,可以建立辐射效率和方向的对应关系表。
已知η 1 .... η n后,如果需要使得P 1 .... P n相同,可以反推得到不同方向下,输出至天线的功率,将每个方向对应的功率输出至天线时,天线的输出功率相同,此时的方向图如图3所示。
在一实施例中,所述终端的天线在该方向的辐射效率为:在当前频段下所述终端的天线在该方向的辐射效率。需要说明的是,所述当前频段是指终端当前制式下的当前频段。当前频段是指终端当前的工作频段。由于不同制式、不同频段下的辐射效率可能不同,因此,需要根据制式和频段来获得辐射效率。在进行OTA测试获取天线方向图时,分制式和频段来进行测试,分制式和频段来分别建立辐射效率和方向的对应关系表,一个制式和频段下存在一个对应关系表。其中,制式比如为WCDMA(Wideband Code Division Multiple Access,宽带码分多址)、CDMA(Code Division Multiple Access,码分多址)、LTE(Long Term Evolution,长期演进)、GSM(Global System for Mobile Communication,全球移动通信系统)等。
目前,在终端研发前期天线与主板的研发基本处于分离状态。主板的调试目标是达到传导的发射和接收指标,通常依靠线缆校准。当发射功率达到最大期望功率,同时各项发射指标正常,则主板的最大发射功率确定,终端使用过程中不会超过这个发射功率。天线相当于一个“阻抗变换”结构,不会涉及单板的传导特性。这种“独立”的研发过程,不能完全利用天线和主板的潜在性能,无法使终端达到最佳的性能。当天线性能不良,主板传导指标满足通信要求,且余量充足,却有可能无法正常通信,因为主板的最大发射功率已经在调试阶段确定,无法进行修改。在整机的耦合测试过程中,会出现一种特殊的现象,在某一位置终端的发射功率正常,但是接收灵敏度不够,更换测试位置后,接收灵敏度指标正常,发射功率不够。而主板在线缆下的发射、接收指标都达标,OTA的测试指标也正常。问题的根源在于主板和天线没有协同工作。在一实施例中,挖掘天线测试过程中的参数,以此去调整终端的发射功率,使得主板与天线协同工作,提高终端整体运作效率。具体的,在一实施例中,根据天线的辐射效率确定所述终端的最大发射功率。
在一实施例中,所述根据所述天线的辐射效率确定所述终端的最大发射功率包括:
对任一频段,确定第一功率,所述第一功率满足:将所述第一功率输出至所述天线时,所述天线的辐射效率最小的方向的发射参数满足发射参数需求,将所述第一功率作为该频段下该终端的最大发射功率(即输出至天线的功率)。相比相关技术中,最大发射功率与天线性能无关,可能出现主板性能达标,天线性能达标,而整机耦合性能不符合要求的情况。本实施例中,与天线协同共同确定终端的最大发射功率,考虑了天线的辐射效率,能更准确的反映终端的性能。另外,相比相关技术中不考虑天线性能设置最大发射功率的方案,本实施例的方案,在某些频段天线性能较好(辐射效率大)的情况下,可以减小最大发射功率,进而降低功耗。
终端主板射频部分匹配调试完成后,需要进行单板线缆校准。校准之后, 非信令下的发射功率会有一个较大的范围。其中最大发射功率要比终端实际工作的最大发射功率高,下表1为某LTE(Long Term Evolution,长期演进)频段的校准部分数据,可以看出终端单板最大的发射功率可以到29dBm。通常会用NV(Nonvolatile value,存储在非易失性存储器中的射频参数)配置将LTE的最大输出功率限定在22.5dBm。
终端天线调试完成后,组装成整机进行OTA测试。天线主要辐射性能参数主要分为两类:接收参数和发射参数。发射参数有TRP(Total Radiated Power,总辐射功率)、接收参数有TIS(Total Isotropic Sensitivity,总全向辐射灵敏度)。其中,TRP反映终端整机的辐射功率情况,与终端在传导情况下的发射功率和天线辐射性能有关。相关技术中,进行天线的参数测试时,固定发送至天线的功率,本申请中,则考虑改变发送至天线的功率。
例如,某项目LTE B5(B5代表B5频段)传导功率为22.5dBm时,ACLR(Adjacent Channel Leakage Ratio,相邻频道泄漏比)的值全部在-42以下,同时EVM(Error Vector Magnitude,误差向量幅度)、功率容限有很多余量,即使功率提升为24.5dBm时,发射指标也能满足3GPP要求。在不同方向上,输入不同的功率[P p1 .... ... P pn]至天线,使得天线在不同方向的输出功率一致,终端的辐射功率变成各向同性。假设传导的指标能无条件满足要求,则在各个角度上终端的TRP都能达到期望值。
表1 终端发射功率
Figure PCTCN2019094257-appb-000002
Figure PCTCN2019094257-appb-000003
另外,也可以将天线辐射效率应用在天线的优化设计中。在天线的设计过程中,往往会有某几个频段的性能不良,TRP的值无法到达要求,需要增大输入至天线的功率,如果因此将PA更换为大功率功放,提高了成本,此时,可以将不同的频段的天线的走线空间进行调整。在一实施例中,若在某频段辐射效率最高,则天线设计时减少该频段的走线空间,为辐射效率低的频段增加走线空间,从而避免了将PA更换为大功率功放。需要说明的是,调整了走线空间后,各频段下天线的辐射效率发生了改变,需要重新测试是否能满足需求。上述调整过程可能发生多次,直到达到终端需求。
如图4所示,本发明一实施例提供一种功率控制装置40,包括存储器410和处理器420,所述存储器410存储有程序,所述程序在被所述处理器420读取执行时,执行以下操作:获取基站相对终端的方向信息;至少根据所述 方向信息,确定输出至所述终端的天线的功率;输出所述功率至所述天线。
在其他实施例中,所述程序在被所述处理器420读取执行时,还实现上述任一实施例所述的功率控制方法。
本发明一实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行时,实现上述任一实施例所述的功率控制方法。
所述计算机可读存储介质包括:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他 传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。
虽然本发明所揭露的实施方式如上,但所述的内容仅为便于理解本发明而采用的实施方式,并非用以限定本发明。任何本发明所属领域内的技术人员,在不脱离本发明所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本发明的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (10)

  1. 一种功率控制方法,包括:
    获取基站相对终端的方向信息;
    至少根据所述方向信息,确定输出至所述终端的天线的功率;
    输出所述功率至所述天线。
  2. 根据权利要求1所述的功率控制方法,其特征在于,所述至少根据所述方向信息,确定输出至所述终端的天线的功率包括:
    根据所述方向信息确定所述终端的天线在该方向的辐射效率,根据所述天线需要输出的目标功率和所述辐射效率确定输出至所述天线的功率。
  3. 根据权利要求2所述的功率控制方法,其特征在于,所述目标功率为所述基站下发给所述终端,要求所述终端辐射出的期望功率。
  4. 根据权利要求2所述的功率控制方法,其特征在于,所述终端的天线在该方向的辐射效率根据如下方式确定:
    查找预先建立的辐射效率和方向的对应关系表,确定所述终端的天线在该方向的辐射效率。
  5. 根据权利要求4所述的功率控制方法,其特征在于,所述辐射效率和方向的对应关系表根据如下方式确定:
    输出一固定功率至所述终端的天线,获取所述天线在不同方向的辐射功率,根据所述不同方向的辐射功率和所述固定功率确定不同方向的辐射效率,建立所述辐射效率和方向的对应关系表。
  6. 根据权利要求4所述的功率控制方法,其特征在于,所述终端的天线在该方向的辐射效率为:在当前频段下所述终端的天线在该方向的辐射效率。
  7. 根据权利要求1所述的功率控制方法,其特征在于,所述方法还包括: 根据所述天线的辐射效率确定所述终端的最大发射功率。
  8. 根据权利要求7所述的功率控制方法,其特征在于,所述根据所述天线的辐射效率确定所述终端的最大发射功率包括:
    对任一频段,确定第一功率,所述第一功率满足:将所述第一功率输出至所述天线时,所述天线的辐射效率最小的方向的发射参数满足发射参数需求,将所述第一功率作为该频段下该终端的最大发射功率。
  9. 一种功率控制装置,其特征在于,包括存储器和处理器,所述存储器存储有程序,所述程序在被所述处理器读取执行时,实现根据权利要求1至8任一所述的功率控制方法。
  10. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有一个或者多个程序,所述一个或者多个程序可被一个或者多个处理器执行,以实现根据权利要求1至8任一所述的功率控制方法。
PCT/CN2019/094257 2018-07-09 2019-07-01 一种功率控制方法及装置、计算机可读存储介质 WO2020011049A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810746157.7A CN109151977B (zh) 2018-07-09 2018-07-09 一种功率控制方法及装置、计算机可读存储介质
CN201810746157.7 2018-07-09

Publications (1)

Publication Number Publication Date
WO2020011049A1 true WO2020011049A1 (zh) 2020-01-16

Family

ID=64800118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/094257 WO2020011049A1 (zh) 2018-07-09 2019-07-01 一种功率控制方法及装置、计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN109151977B (zh)
WO (1) WO2020011049A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109151977B (zh) * 2018-07-09 2020-09-04 南京中兴软件有限责任公司 一种功率控制方法及装置、计算机可读存储介质
CN114375031B (zh) * 2021-12-23 2024-04-30 中国电信股份有限公司 一种控制信号强度的方法、基站及介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1653643A (zh) * 2001-12-14 2005-08-10 诺基亚公司 控制无线电系统中传输的方法
CN102404031A (zh) * 2011-11-03 2012-04-04 上海交通大学 基于最大吞吐量的自适应用户调度方法
CN102413565A (zh) * 2011-12-06 2012-04-11 大唐移动通信设备有限公司 一种终端位置的确定方法和设备
US20130157729A1 (en) * 2011-12-16 2013-06-20 Joseph Akwo Tabe Energy harvesting computer device in association with a communication device configured with apparatus for boosting signal reception
US20150120189A1 (en) * 2013-10-28 2015-04-30 Skycross, Inc. Antenna structures and methods thereof for determining locations to improve wireless communications
CN109151977A (zh) * 2018-07-09 2019-01-04 中兴通讯股份有限公司 一种功率控制方法及装置、计算机可读存储介质

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2764140B1 (fr) * 1997-05-28 1999-08-06 Armand Levy Procede de communication entre une station de base a n antennes et un mobile et station de base permettant de mettre en oeuvre ce procede
CN2582302Y (zh) * 2001-11-29 2003-10-22 交互数字技术公司 对于无线通信信号使用动态射束形成的系统
US8918064B2 (en) * 2012-09-27 2014-12-23 Broadcom Corporation On-chip distributed power amplifier and on-chip or in-package antenna for performing chip-to-chip and other communications
TWI483568B (zh) * 2013-03-29 2015-05-01 Univ Nat Yunlin Sci & Tech Multi-input multi-output wireless signal transmission and power control system
EP3186995A1 (en) * 2014-08-28 2017-07-05 Telefonaktiebolaget LM Ericsson (publ) Methods receiving radiation pattern information and related network nodes and base stations
US9685981B2 (en) * 2015-03-06 2017-06-20 Apple Inc. Radio frequency system hybrid power amplifier systems and methods
US10158173B2 (en) * 2015-05-29 2018-12-18 Huawei Technologies Co., Ltd. Orthogonal-beam-space spatial multiplexing radio communication system and associated antenna array
KR102651467B1 (ko) * 2016-11-07 2024-03-27 삼성전자주식회사 전자 장치 및 그의 무선 신호 송신 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1653643A (zh) * 2001-12-14 2005-08-10 诺基亚公司 控制无线电系统中传输的方法
CN102404031A (zh) * 2011-11-03 2012-04-04 上海交通大学 基于最大吞吐量的自适应用户调度方法
CN102413565A (zh) * 2011-12-06 2012-04-11 大唐移动通信设备有限公司 一种终端位置的确定方法和设备
US20130157729A1 (en) * 2011-12-16 2013-06-20 Joseph Akwo Tabe Energy harvesting computer device in association with a communication device configured with apparatus for boosting signal reception
US20150120189A1 (en) * 2013-10-28 2015-04-30 Skycross, Inc. Antenna structures and methods thereof for determining locations to improve wireless communications
CN109151977A (zh) * 2018-07-09 2019-01-04 中兴通讯股份有限公司 一种功率控制方法及装置、计算机可读存储介质

Also Published As

Publication number Publication date
CN109151977B (zh) 2020-09-04
CN109151977A (zh) 2019-01-04

Similar Documents

Publication Publication Date Title
CN102300226B (zh) Wcdma移动终端功率校准的方法及校准系统
EP3282811B1 (en) Transmission power adjustment method and apparatus
US11368270B2 (en) Data transmission method, terminal device and network device
US20110263216A1 (en) User equipment apparatus for simultaneously transmitting signals via a plurality of wireless communication chips to which different wireless communication schemes are applied and method for controlling transmission power thereof
WO2020011049A1 (zh) 一种功率控制方法及装置、计算机可读存储介质
CN109347508B (zh) 一种移动终端及功率检测方法
CN112867129B (zh) 功率余量上报发送方法和装置
CN102324991A (zh) 一种校准移动终端发射gsm频段功率的方法
WO2023051241A1 (zh) Gsm射频前端功率校准方法及装置
CN110945894B (zh) 终端及通信方法
US20190349940A1 (en) Power control method and apparatus
US10359497B1 (en) Directional antenna orientation optimization
EP3095190B1 (en) Method and apparatus for adjusting peak power capability
KR101770203B1 (ko) 단말 및 단말의 전송 전력을 제어하는 방법
EP4152629A3 (en) Radio-frequency exposure beam management and selection in communications systems
CN111757447B (zh) 上行发射功率控制方法、装置、计算机设备和存储介质
US11070172B2 (en) Method and device for reducing power consumption of PA
US20130290744A1 (en) Method and apparatus for controlling terminal power
EP3883138A1 (en) Uplink beam training method, terminal device and network side device
CN114374968A (zh) 终端能力上报方法、装置及设备
CN109525333B (zh) 天线辐射性能的测试方法和测试系统
CN116746072A (zh) 增强物理上行链路信道可靠性的上行链路功率控制
CN105305031B (zh) 一种天线及其制造方法、含天线装置
CN117526990A (zh) 一种控制方法以及电子设备
WO2023165350A1 (zh) 一种功率余量上报方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19835113

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 18.05.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19835113

Country of ref document: EP

Kind code of ref document: A1