WO2023051224A1 - 自动驾驶车辆的纵向控制方法、装置、设备及介质 - Google Patents

自动驾驶车辆的纵向控制方法、装置、设备及介质 Download PDF

Info

Publication number
WO2023051224A1
WO2023051224A1 PCT/CN2022/118333 CN2022118333W WO2023051224A1 WO 2023051224 A1 WO2023051224 A1 WO 2023051224A1 CN 2022118333 W CN2022118333 W CN 2022118333W WO 2023051224 A1 WO2023051224 A1 WO 2023051224A1
Authority
WO
WIPO (PCT)
Prior art keywords
centripetal force
current
target vehicle
change value
maximum
Prior art date
Application number
PCT/CN2022/118333
Other languages
English (en)
French (fr)
Inventor
吴岗岗
杜建宇
王恒凯
曹天书
李超
李佳骏
王皓南
刘清宇
黄显晴
宋新丽
Original Assignee
中国第一汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国第一汽车股份有限公司 filed Critical 中国第一汽车股份有限公司
Publication of WO2023051224A1 publication Critical patent/WO2023051224A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0013Planning or execution of driving tasks specially adapted for occupant comfort
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2530/00Input parameters relating to vehicle conditions or values, not covered by groups B60W2510/00 or B60W2520/00
    • B60W2530/10Weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2720/00Output or target parameters relating to overall vehicle dynamics
    • B60W2720/10Longitudinal speed

Definitions

  • Embodiments of the present application relate to the technical field of autonomous vehicles, for example, to a longitudinal control method, device, device, and medium for autonomous vehicles.
  • the longitudinal control of intelligent driving vehicles can be understood as the automatic control of the vehicle's driving speed in the longitudinal direction.
  • related technologies usually use the combination of the load change of the autonomous driving vehicle during driving to perform longitudinal control of the vehicle.
  • the solution of the related art does not take into account the output results of the lateral control of the vehicle, and feeds back the longitudinal control. Therefore, the related art has the technical problem that the comfort of the longitudinal control is poor.
  • Embodiments of the present application provide a longitudinal control method, device, device, and medium for an autonomous vehicle, which can be combined with the centripetal force of the lateral control of the autonomous vehicle to perform longitudinal control of the vehicle and improve the comfort of the longitudinal control of the vehicle.
  • an embodiment of the present application provides a longitudinal control method of an autonomous vehicle, the method comprising:
  • the center corresponds to the maximum change value of the first centripetal force to adjust the longitudinal running speed of the target vehicle.
  • the embodiment of the present application also provides a longitudinal control device for an autonomous vehicle, the device comprising:
  • the first centripetal force determination module is configured to determine the current first centripetal force corresponding to the center of the front axle of the target vehicle and the change value of the current first centripetal force corresponding to the center of the front axle of the target vehicle in response to determining that the target vehicle is located in a turning condition;
  • the first longitudinal speed adjustment module is configured to be based on the current first centripetal force and a preset maximum first centripetal force corresponding to the center of the front axle of the target vehicle, and the current first centripetal force change value and a preset The maximum first centripetal force change value corresponding to the center of the front axle of the target vehicle is used to adjust the longitudinal running speed of the target vehicle.
  • the embodiment of the present application further provides an electronic device, the electronic device comprising:
  • processors one or more processors
  • storage means configured to store one or more programs
  • the one or more processors are made to implement the longitudinal control method for an autonomous vehicle provided in any embodiment of the present application.
  • the embodiment of the present application also provides a computer-readable storage medium, on which a computer program is stored, and when the program is executed by a processor, the longitudinal control method for an autonomous vehicle as provided in any embodiment of the present application is implemented.
  • FIG. 1A is a schematic flowchart of a longitudinal control method for an automatic driving vehicle provided by an embodiment of the present application
  • FIG. 1B is a schematic diagram of a vehicle turning condition provided by an embodiment of the present application.
  • FIG. 2A is a schematic flowchart of a longitudinal control method for an autonomous vehicle provided in another embodiment of the present application.
  • Fig. 2B is a schematic diagram of a vehicle turning condition provided by another embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a longitudinal control method for an autonomous vehicle provided in another embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a longitudinal control device for an automatic driving vehicle provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • this embodiment is applicable to longitudinal control of an automatic driving vehicle when the target vehicle is an automatic driving vehicle, or when the target vehicle is in an automatic driving mode. It is a longitudinal control method for autonomous vehicles. As unmanned driving technology matures, it will be necessary to combine horizontal and vertical control to form a closed-loop method for horizontal and vertical control.
  • Fig. 1A is a schematic flow chart of a longitudinal control method for an autonomous vehicle provided by an embodiment of the present application. This embodiment can be applied to an automatic driving vehicle in a cornering condition, according to the centripetal force currently required by the vehicle and the centripetal force change value.
  • vehicle longitudinal control the method may be executed by a vehicle longitudinal control device, which device may be implemented by hardware and/or software, and the method may include the following steps:
  • the turning conditions include but are not limited to the avoidance and obstacle avoidance conditions, the lateral adjustment posture conditions, and the path turning conditions.
  • this embodiment can detect the driving condition of the target vehicle based on the steering wheel angle, yaw rate or lateral acceleration of the target vehicle, and further determine the front axle of the target vehicle when it is detected that the driving condition of the target vehicle is a turning condition.
  • the current first centripetal force corresponding to the center and the current first centripetal force change value corresponding to the center of the front axle.
  • the current first centripetal force may be the centripetal force required by the target vehicle under the current center steering angle of the front wheels or the current turning radius.
  • the current front wheel center steering angle increases from 0 to ⁇ . The larger ⁇ is, the smaller the turning radius is.
  • the greater the centripetal acceleration required by the vehicle the greater the required first centripetal force.
  • the current change value of the first centripetal force may be the first centripetal force that is increased or decreased between the current period of the target vehicle and the previous period.
  • the first centripetal force change value will be generated.
  • the period may be 20ms, and the target vehicle may determine the current first centripetal force change value every 20ms.
  • the front wheel center steering angle of the target vehicle in the previous cycle is ⁇
  • the front wheel center steering angle increases/decreases from ⁇ to ⁇ in the current cycle
  • the current first centripetal force change value can be increased/decreased
  • the current first centripetal force in this embodiment can be calculated based on the instantaneous speed of the target vehicle and the center steering angle of the front wheels.
  • the current change value of the first centripetal force can be calculated according to the first centripetal force corresponding to the previous period and the current first centripetal force.
  • the determining the current first centripetal force corresponding to the center of the front axle of the target vehicle and the change value of the current first centripetal force corresponding to the center of the front axle includes: obtaining the instantaneous Speed, front wheel center steering angle, steering angle change angle, and front axle mass; based on the instantaneous speed, the front wheel center steering angle, and the front axle mass, determine the current No. A centripetal force; based on the instantaneous speed, the front wheel center steering angle, the steering angle change angle and the front axle mass, determine the current first centripetal force change value corresponding to the front axle center of the target vehicle.
  • the instantaneous speed can be the driving speed of the target vehicle at the current moment; it can also be the average speed of the target vehicle in the current period; for example, V F in FIG. 1B .
  • the front wheel center steering angle may be the steering angle at the center positions of the two front wheels of the target vehicle, eg, ⁇ in FIG. 1B .
  • the steering angle change angle can be the change angle of the current cycle of the target vehicle relative to the front wheel center steering angle of the previous cycle, for example, the front wheel center steering angle of the previous cycle is ⁇ , and the front wheel center steering angle of the current cycle is ⁇ , then the steering angle change angle can be ⁇ - ⁇ .
  • determining the current first centripetal force corresponding to the center of the front axle of the target vehicle may satisfy the following formula:
  • M represents the distribution quality of the preset position points in the current parts of the target vehicle. For example, if the current first centripetal force at the center point of the front axle is analyzed, then M represents the distribution quality of the outer part of this point based on the current research point.
  • V F is the instantaneous speed of the center wheel of the front axle of the target vehicle
  • is the steering angle of the center wheel of the front wheel
  • L is the front and rear wheelbase of the target vehicle
  • F F is the current first centripetal force corresponding to the center of the front axle of the target vehicle.
  • the steering angle ⁇ of the front wheel center is 0, and the current first centripetal force (required centripetal force) of the target vehicle is 0Nm; It can also be calculated by the above formula.
  • determining the current first centripetal force change value corresponding to the front axle center of the target vehicle may satisfy the following formula:
  • M represents the distribution quality of the preset position points in the current parts of the target vehicle. For example, if the current first centripetal force at the center point of the front axle is analyzed, then M represents the distribution quality of the outer part of this point based on the current research point.
  • V F is the instantaneous speed of the center wheel of the front axle of the target vehicle
  • is the steering angle of the center wheel of the front wheel
  • is the change angle of the steering angle
  • L is the front and rear wheelbase of the target vehicle
  • ⁇ F F is the corresponding to the center of the front axle of the target vehicle
  • the current first centripetal force change value is the instantaneous speed of the center wheel of the front axle of the target vehicle.
  • ⁇ F F when ⁇ F F is positive, it means that the first centripetal force required by the target vehicle increases, that is, the current first centripetal force is greater than the first centripetal force corresponding to the previous cycle; when ⁇ F F is negative, it means that the target vehicle requires The first centripetal force decreases, that is, the current first centripetal force is smaller than the first centripetal force corresponding to the previous cycle.
  • the current first centripetal force corresponding to the center of the front axle is determined through the instantaneous speed, the steering angle of the front wheel center, and the mass of the front axle; , determine the current first centripetal force change value corresponding to the front axle center, realize the accurate determination of the current first centripetal force and the current first centripetal force change value, and then improve the accuracy of the longitudinal control of the vehicle.
  • the preset maximum first centripetal force corresponding to the center of the front axle of the target vehicle may be the maximum centripetal force that the relevant components of the front axle of the target vehicle can bear.
  • the preset maximum first centripetal force corresponding to the center of the front axle of the target vehicle may be the maximum centripetal force that the tie rod can bear.
  • the number of the preset maximum first centripetal force corresponding to the center of the front axle of the target vehicle may be one; The maximum centripetal force that the shaft-related components can withstand.
  • the preset maximum first centripetal force change value corresponding to the center of the front axle of the target vehicle may be the maximum centripetal force fluctuation value that the components related to the front axle of the target vehicle can bear.
  • the preset maximum first centripetal force change value corresponding to the center of the front axle of the target vehicle may be the maximum centripetal force fluctuation value that the tie rod can bear.
  • the number of preset maximum first centripetal force change values corresponding to the center of the front axle of the target vehicle may also be one or more, that is, there may be a plurality of front The maximum centripetal force change value that the shaft-related components can withstand.
  • the maximum first centripetal force change value corresponding to the front axle center of the target vehicle, and adjusting the longitudinal running speed of the target vehicle includes: if the current first centripetal force is greater than the preset value corresponding to the front axle center of the target vehicle. The maximum first centripetal force, or the current first centripetal force change value is greater than the preset maximum first centripetal force change value corresponding to the front axle center of the target vehicle, then reduce the longitudinal travel speed of the target vehicle.
  • the longitudinal driving speed of the target vehicle can be actively reduced, so that V F decreases, thereby reducing the current first centripetal force.
  • the centripetal force is such that the current first centripetal force is less than the preset maximum first centripetal force corresponding to the center of the front axle of the target vehicle, and is within a reasonable range that the front axle components of the vehicle can bear.
  • the VF may be reduced by actively reducing the longitudinal speed of the target vehicle, thereby reducing the current first centripetal force change value, so that the current first centripetal force change value is less than the preset maximum first centripetal force change value corresponding to the front axle center of the target vehicle, and is within a reasonable range that the vehicle front axle components can bear .
  • the current first centripetal force when the current first centripetal force is greater than the maximum first centripetal force, or the current first centripetal force change value is greater than the maximum first centripetal force change value, by reducing the longitudinal travel speed of the target vehicle, the current first centripetal force or The change value of the first centripetal force makes the current first centripetal force and the change value of the first centripetal force within the range that the front axle components of the vehicle can bear, thereby reducing the loss of the front axle components of the vehicle and improving the driving comfort of the vehicle.
  • the maximum change value of the first centripetal force corresponding to the center of the front axle of the target vehicle to adjust the longitudinal running speed of the target vehicle may be: if the current first centripetal force is greater than the preset front The maximum first centripetal force corresponding to the axis center, then based on the maximum first centripetal force and the front wheel center steering angle, calculate the first longitudinal travel threshold of the target vehicle corresponding to the front wheel center steering angle, based on the first longitudinal travel adjusting the longitudinal speed of the target vehicle with a threshold value; and/or, if the current first centripetal force change value is greater than a preset maximum first centripetal force change value corresponding to the front axle center of the target vehicle, based on the The first maximum centripetal force change value, front wheel center steering angle
  • the front wheel center steering angle, the maximum first centripetal force, the front wheel center steering angle, the steering angle change angle, and the maximum first centripetal force change value can be substituted into the above two formulas to calculate the first a longitudinal travel threshold and a second longitudinal travel threshold.
  • the maximum first centripetal force change value corresponding to the center of the front axle of the target vehicle to adjust the longitudinal running speed of the target vehicle may also be: if the current first centripetal force is greater than the preset value corresponding to the center of the front axle of the target vehicle. The maximum first centripetal force, based on the difference between the current first centripetal force and the maximum first centripetal force, calculate the target driving speed change value of the target vehicle, and adjust the longitudinal running speed of the target vehicle based on the target driving speed change value; And/or, if the current first centripetal force change value is greater than the preset maximum first centripetal force change value corresponding to the front axle center of the target vehicle, based on the current first centripetal force change value and
  • the lateral control of the target vehicle is determined.
  • the output results of the horizontal control are fed back to the longitudinal control.
  • the current first centripetal force and the preset maximum first centripetal force corresponding to the center of the front axle adjusts the longitudinal driving speed of the target vehicle, realizes the longitudinal control of the self-driving vehicle based on the vehicle lateral control information, improves the comfort of the vehicle longitudinal control, and, The centripetal force of the vehicle on lateral control can be reduced through the adjustment of the longitudinal driving speed, and the increase of the damage degree of the vehicle components caused by the excessive centripetal force can be avoided.
  • Fig. 2A is a schematic flowchart of a method for longitudinal control of an autonomous vehicle provided by another embodiment of the present application.
  • the method further includes: determining the passengers of the target vehicle The corresponding current second centripetal force and the current second centripetal force change value corresponding to the passenger; obtain the preset maximum second centripetal force corresponding to the passenger of the target vehicle and the preset maximum second centripetal force corresponding to the passenger of the target vehicle Second centripetal force change value: adjusting the longitudinal travel speed of the target vehicle based on the maximum second centripetal force, the current second centripetal force, the maximum second centripetal force change value, and the current second centripetal force change value.
  • the longitudinal control method of the self-driving vehicle includes the following steps:
  • the current second centripetal force may be the centripetal force required by the passengers on the target vehicle under the current center steering angle of the front wheels or the current turning radius.
  • the current front wheel center steering angle increases from 0 to ⁇ . The larger ⁇ is, the smaller the turning radius is.
  • the greater the centripetal acceleration required by passengers the greater the required second centripetal force.
  • the current change value of the second centripetal force may be an increase or decrease of the second centripetal force of the passenger between the current period and the previous period.
  • the passenger will generate the second centripetal force change value.
  • the period may be 20ms, and the current second centripetal force change value of the passenger may be determined every 20ms.
  • the front wheel center steering angle of the target vehicle in the previous cycle is ⁇
  • the front wheel center steering angle increases/decreases from ⁇ to ⁇ in the current cycle
  • the current second centripetal force change value can be increased/decreased
  • the current second centripetal force corresponding to each passenger can be calculated based on the instantaneous speed of the target vehicle, the steering angle of the passenger, and the mass of the passenger.
  • the current second centripetal force change value corresponding to each passenger can also be calculated based on the instantaneous speed of the target vehicle, the quality of the passenger, and the change angle of the passenger's steering angle.
  • the determining the current second centripetal force corresponding to the passenger of the target vehicle and the current second centripetal force change value corresponding to the passenger includes: obtaining the instantaneous speed of the target vehicle, the passenger's Steering angle, passenger's steering angle change angle, passenger's mass and passenger's turning radius; based on said instantaneous speed, said passenger's steering angle, said passenger's mass and said passenger's turning radius, determining said target vehicle The current second centripetal force corresponding to the passenger of the target vehicle; based on the instantaneous speed, the passenger's steering angle, the passenger's steering angle change angle and the quality of the passenger, determine the current second centripetal force corresponding to the passenger of the target vehicle change value.
  • the instantaneous speed can be the driving speed of the target vehicle at the current moment; it can also be the average speed of the target vehicle in the current period; for example, V F in FIG. 2B .
  • the steering angle of the passenger may be the steering angle at the center position of the two front wheels of the target vehicle, eg, ⁇ in FIG. 2B .
  • the steering angle change angle can be the change angle of the current cycle of the target vehicle relative to the front wheel center steering angle of the previous cycle, for example, the front wheel center steering angle of the previous cycle is ⁇ , and the front wheel center steering angle of the current cycle is ⁇ , then the steering angle change angle can be ⁇ - ⁇ .
  • the number of passengers can be multiple, such as 1, 2, 3, 4 in Fig. 2B.
  • the turning radius of the passenger can be the distance between the passenger and the center of the turning radius dot.
  • R1 in FIG. 2B is the turning radius of the passenger
  • OF is the turning radius dot center.
  • determining the current second centripetal force corresponding to the passenger of the target vehicle may satisfy the following formula:
  • m 1 represents the mass of the passenger
  • V F is the instantaneous speed of the target vehicle
  • is the steering angle of the passenger
  • R 1 is the turning radius of the passenger
  • L is the front and rear wheelbase of the target vehicle
  • F 1 is the current No. Two centripetal force.
  • the current second centripetal force change value corresponding to the passenger of the target vehicle which satisfies the following formula:
  • m X represents the mass of the passenger
  • V F is the instantaneous speed of the target vehicle
  • is the steering angle of the passenger
  • is the change angle of the steering angle
  • L is the front and rear wheelbase of the target vehicle
  • ⁇ F X is the current second position corresponding to the passenger. Centripetal force change value.
  • ⁇ F X when ⁇ F X is positive, it means that the second centripetal force required by passengers increases, that is, the current second centripetal force is greater than the second centripetal force corresponding to the previous cycle; when ⁇ F X is negative, it means that the second centripetal force required by passengers The centripetal force decreases, that is, the current second centripetal force is smaller than the second centripetal force corresponding to the previous cycle.
  • the current second centripetal force corresponding to the passenger is determined through the instantaneous speed, the steering angle of the passenger, the quality of the passenger and the turning radius of the passenger;
  • the mass of the passenger determines the current second centripetal force change value corresponding to the passenger, which realizes the accurate determination of the current second centripetal force and the current second centripetal force change value, thereby improving the accuracy of the longitudinal control of the vehicle.
  • the preset maximum second centripetal force corresponding to the passenger of the target vehicle may be the maximum centripetal force that the passenger's position can bear.
  • the preset maximum second centripetal force change value corresponding to the passenger of the target vehicle may be the maximum centripetal force fluctuation value that the passenger can bear. It should be noted that, in this embodiment, the preset maximum second centripetal force corresponding to the occupants of the target vehicle, and the preset maximum second centripetal force change value corresponding to the occupants of the target vehicle
  • the number can be one or multiple, that is, the maximum centripetal force and the maximum centripetal force change value corresponding to each passenger position can be respectively determined according to multiple passenger positions.
  • the adjusting the longitudinal running speed of the target vehicle based on the maximum second centripetal force, the current second centripetal force, the maximum second centripetal force change value and the current second centripetal force change value includes : If the current second centripetal force is greater than the maximum second centripetal force, or the current second centripetal force change value is greater than the second maximum centripetal force change value, then reduce the longitudinal travel speed of the target vehicle.
  • the longitudinal driving speed of the target vehicle can be actively reduced to reduce the VF , thereby reducing the current second centripetal force so that the current second centripetal force is less than the preset maximum second centripetal force corresponding to the passenger, and is within a reasonable range that the passenger can bear.
  • the longitudinal driving speed of the target vehicle can be actively reduced, so that V F is reduced, thereby reducing the current second centripetal force
  • the change value is such that the current change value of the second centripetal force is smaller than the preset maximum change value of the second centripetal force corresponding to the passenger, and is within a reasonable range that the passenger can bear.
  • the current second centripetal force when the current second centripetal force is greater than the maximum second centripetal force, or the current second centripetal force change value is greater than the maximum second centripetal force change value, by reducing the longitudinal travel speed of the target vehicle, the current second centripetal force or The change value of the second centripetal force makes the current second centripetal force and the change value of the second centripetal force within the range that the passengers can bear, thereby improving the comfort of the passengers.
  • the adjustment of the longitudinal direction of the target vehicle is based on the maximum second centripetal force, the current second centripetal force, the maximum second centripetal force change value, and the current second centripetal force change value.
  • the driving speed may be: if the current second centripetal force is greater than the preset maximum second centripetal force, then calculate the third longitudinal direction of the target vehicle corresponding to the steering angle based on the maximum second centripetal force and the passenger's steering angle a travel threshold, adjusting the longitudinal travel speed of the target vehicle based on the third longitudinal travel threshold; and/or, if the current second centripetal force change value is greater than a preset maximum second centripetal force change value, based on the The maximum second centripetal force change value, the passenger's steering angle and the steering angle change angle, calculate the fourth longitudinal travel threshold of the target vehicle corresponding to the steering angle change angle, and adjust the longitudinal direction of the target vehicle based on the fourth longitudinal travel threshold Driving speed.
  • the passenger's steering angle, maximum second centripetal force, steering angle change angle, and maximum second centripetal force change value can be substituted into the above two formulas to calculate the third longitudinal travel threshold and the fourth longitudinal travel threshold respectively. driving threshold.
  • S210-S220 in this embodiment can be executed before S230-S250, that is, first adjust the longitudinal driving speed of the target vehicle according to the current first centripetal force and the change value of the current first centripetal force, and then adjust the longitudinal speed of the target vehicle according to the current second centripetal force and the current first centripetal force.
  • Two centripetal force change values adjust the longitudinal running speed of the target vehicle; S210-S220 can also be executed after S230-S250 is executed, that is, first adjust the longitudinal running speed of the target vehicle according to the current second centripetal force and the current second centripetal force change value, and then according to The current first centripetal force and the current first centripetal force change value adjust the longitudinal running speed of the target vehicle; or, S210-S220 can be executed simultaneously with S230-S250, that is, simultaneously according to the current first centripetal force, the current first centripetal force change value, the current first centripetal force change value, the current first centripetal force The second centripetal force and the current change value of the second centripetal force adjust the longitudinal traveling speed of the target vehicle.
  • This embodiment can also calculate the current second centripetal force and the current second centripetal force change value corresponding to other components for other components on the vehicle, such as the trunk and the roof rack, and according to the current second centripetal force and the preset The maximum second centripetal force corresponding to other components, the current second centripetal force change value, and the preset maximum second centripetal force change value corresponding to other components, adjust the longitudinal speed of the target vehicle together, so that the required The centripetal force is within a reasonable range.
  • the current first centripetal force and the preset maximum first centripetal force corresponding to the center of the front axle, and the current first centripetal force change value and the preset adjusts the longitudinal driving speed of the target vehicle, realizes the longitudinal control of the self-driving vehicle based on the vehicle lateral control information, and improves the comfort of the vehicle longitudinal control.
  • Fig. 3 is a schematic flowchart of a method for longitudinal control of an automatic driving vehicle provided by another embodiment of the present application.
  • the method further includes: based on the maximum first centripetal force , the current first centripetal force, the maximum first centripetal force change value, the current first centripetal force change value, the maximum second centripetal force, the current second centripetal force, the maximum second centripetal force change value and the The current second centripetal force change value is used to adjust the longitudinal travel speed of the target vehicle.
  • the explanations of terms that are the same as or corresponding to those in the above-mentioned multiple embodiments will not be repeated here.
  • the longitudinal control method of the self-driving vehicle includes the following steps:
  • the maximum first centripetal force and the maximum first centripetal force change value may be the preset maximum centripetal force and the maximum centripetal force change value borne by the relevant components of the front axle center respectively.
  • the maximum second centripetal force and the maximum second centripetal force change value may be the preset maximum centripetal force and maximum centripetal force change value borne by passengers respectively.
  • the current first centripetal force is greater than the maximum first centripetal force; the current change value of the first centripetal force is greater than the maximum first centripetal force change value; the current second centripetal force is greater than the maximum second centripetal force; the current second centripetal force change value is greater than the maximum second centripetal force change value.
  • this embodiment can also sort the maximum first centripetal force and the maximum second centripetal force, determine the maximum centripetal force with the smallest value, adjust the longitudinal speed of the target vehicle based on the maximum centripetal force with the smallest value, and avoid The centripetal force sequentially adjusts the longitudinal driving speed to increase the efficiency of the longitudinal control of the vehicle.
  • the largest first centripetal force change value and the second largest centripetal force change value may also be sorted to determine the largest centripetal force change value with the smallest value, and adjust the longitudinal driving speed of the target vehicle based on the largest centripetal force change value with the smallest value.
  • the target driving speed change value is calculated based on the formula provided in the above embodiment, and the longitudinal driving of the target vehicle is adjusted based on the target driving speed change value speed.
  • the method provided in this embodiment may include the following steps:
  • ⁇ F vehicle [ ⁇ F F ⁇ F R ...]
  • F vehiclemax [F Fmax F Rmax ...]
  • ⁇ F vehiclemax [ ⁇ F Fmax ⁇ F Rmax ...]
  • ⁇ F passenger [ ⁇ F 1 ⁇ F 2 ...];
  • F passengermax [F 1max F 2max ...]
  • ⁇ F passengermax [ ⁇ F 1max ⁇ F 2max ...]
  • the technical solution of this embodiment combines the centripetal force required by passengers and the maximum centripetal force that passengers can bear, the change value of centripetal force required by passengers and the maximum change value of centripetal force that passengers can bear, the centripetal force required by the center of the front axle and the front axle.
  • the maximum centripetal force that the center can withstand, the change value of the centripetal force required by the center of the front axle, and the maximum change value of the centripetal force that the center of the front axle can bear carry out the longitudinal control of the self-driving vehicle, and avoid the situation that the life of the vehicle components is reduced by the influence of the centripetal force. Also, passenger comfort is improved.
  • Fig. 4 is a schematic structural diagram of a longitudinal control device for an automatic driving vehicle provided by an embodiment of the present application. This embodiment can be applied to the automatic driving vehicle in turning conditions, according to the centripetal force currently required by the vehicle and the change value of the centripetal force.
  • the device includes: a first centripetal force determination module 410 and a first longitudinal speed adjustment module 420 .
  • the first centripetal force determination module 410 is configured to determine the current first centripetal force corresponding to the front axle center of the target vehicle and the current first centripetal force change value corresponding to the front axle center when the target vehicle is detected to be in a turning condition;
  • the first longitudinal speed adjustment module 420 is configured to be based on the current first centripetal force and a preset maximum first centripetal force corresponding to the center of the front axle of the target vehicle, and the current first centripetal force change value and a preset The maximum first centripetal force change value corresponding to the center of the front axle of the target vehicle is determined, and the longitudinal running speed of the target vehicle is adjusted.
  • the first centripetal force determination module 410 includes a driving information acquisition unit, a first centripetal force determination unit and a first centripetal force change value determination unit; wherein,
  • the driving information acquisition unit is configured to acquire the instantaneous speed, front wheel center steering angle, steering angle change angle and front axle mass of the target vehicle;
  • the first centripetal force determination unit is configured to determine the current first centripetal force corresponding to the center of the front axle of the target vehicle based on the instantaneous speed, the center steering angle of the front wheels, and the mass of the front axle;
  • the first centripetal force change value determining unit is configured to determine the current sixth value corresponding to the center of the front axle of the target vehicle based on the instantaneous speed, the center steering angle of the front wheels, the change angle of the steering angle, and the mass of the front axle. A centripetal change value.
  • the first longitudinal speed adjustment module 420 is set to:
  • the longitudinal running speed of the target vehicle is reduced.
  • the device also includes a second centripetal force determination module, a set maximum value acquisition module and a second longitudinal speed adjustment module; wherein,
  • the second centripetal force determination module is configured to determine the current second centripetal force corresponding to the passenger of the target vehicle and the current second centripetal force change value corresponding to the passenger;
  • Set the maximum value acquisition module configured to acquire a preset maximum second centripetal force corresponding to the passengers of the target vehicle and a preset maximum second centripetal force change value corresponding to the passengers of the target vehicle;
  • a second longitudinal speed adjustment module configured to adjust the longitudinal running of the target vehicle based on the maximum second centripetal force, the current second centripetal force, the maximum second centripetal force change value, and the current second centripetal force change value speed.
  • the device further includes a third longitudinal speed adjustment module, the third longitudinal speed adjustment module is configured to be based on the maximum first centripetal force, the current first centripetal force, the maximum first centripetal force change value, the The current first centripetal force change value, the maximum second centripetal force, the current second centripetal force, the maximum second centripetal force change value, and the current second centripetal force change value adjust the longitudinal travel speed of the target vehicle.
  • the second centripetal force determining module is set to:
  • the instantaneous speed of the target vehicle, the steering angle of the passenger, the angle of change of the steering angle of the passenger, the mass of the passenger, and the turning radius of the passenger based on the instantaneous speed, the steering angle of the passenger, the mass of the passenger, and the The turning radius of the passenger is determined to determine the current second centripetal force corresponding to the passenger of the target vehicle; based on the instantaneous speed, the steering angle of the passenger, the change angle of the steering angle of the passenger and the quality of the passenger, determine the The current second centripetal force change value corresponding to the passenger of the target vehicle.
  • the second longitudinal speed adjustment module is set to:
  • the current first centripetal force corresponding to the center of the front axle of the target vehicle and the change value of the current first centripetal force corresponding to the center of the front axle of the target vehicle are determined by the first centripetal force determination module to determine the target
  • the output result of the lateral control of the vehicle is used to feed back the output result of the lateral control to the longitudinal control.
  • the longitudinal speed adjustment module according to the current first centripetal force and the preset maximum first center corresponding to the center of the front axle Centripetal force, and the current first centripetal force change value and the preset maximum first centripetal force change value corresponding to the center of the front axle, adjust the longitudinal driving speed of the target vehicle, and realize the longitudinal control of the self-driving vehicle based on the vehicle lateral control information,
  • the comfort of the longitudinal control of the vehicle is improved, and the centripetal force of the vehicle on the lateral control can be reduced through the adjustment of the longitudinal driving speed, and the increase of the damage degree of the vehicle components caused by the excessive centripetal force is avoided.
  • the longitudinal control device of the self-driving vehicle provided in the embodiment of the present application can execute the longitudinal control method of the self-driving vehicle provided in any embodiment of the present application, and has corresponding functional modules and beneficial effects for executing the method.
  • FIG. 5 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 5 shows a block diagram of an exemplary electronic device 12 suitable for implementing embodiments of the present application.
  • the electronic device 12 shown in FIG. 5 is only an example, and should not limit the functions and scope of use of the embodiment of the present application.
  • Device 12 is typically an electronic device that assumes the longitudinal control functions of the autonomous vehicle.
  • electronic device 12 takes the form of a general-purpose computing device.
  • Components of electronic device 12 may include, but are not limited to: one or more processors or processing units 16, memory 28, bus 18 connecting the various components including memory 28 and processing unit 16.
  • Bus 18 represents one or more of several types of bus structures, including a memory bus or memory controller, a peripheral bus, an accelerated graphics port, a processor, or a local bus using any of a variety of bus structures.
  • these architectures include but are not limited to Industry Standard Architecture (Industry Standard Architecture, ISA) bus, Micro Channel Architecture (Micro Channel Architecture, MCA) bus, Enhanced ISA bus, Video Electronics Standards Association (Video Electronics Standards Association, VESA) local bus and peripheral component interconnect (Peripheral Component Interconnect, PCI) bus.
  • Electronic device 12 typically includes a variety of computer-readable media. These media can be any available media that can be accessed by electronic device 12 and include both volatile and nonvolatile media, removable and non-removable media.
  • Memory 28 may include computer device-readable media in the form of volatile memory, such as Random Access Memory (RAM) 30 and/or cache memory 32 .
  • the electronic device 12 may further include other removable/non-removable, volatile/nonvolatile computer storage media.
  • storage device 34 may be used to read from and write to non-removable, non-volatile magnetic media (not shown in FIG. 5, commonly referred to as a "hard drive").
  • a disk drive for reading and writing to a removable non-volatile disk may be provided, as well as a removable non-volatile disk (such as a Compact Disc- Read Only Memory, CD-ROM), Digital Video Disc (Digital Video Disc-Read Only Memory, DVD-ROM) or other optical media) CD-ROM drive.
  • each drive may be connected to bus 18 via one or more data media interfaces.
  • Memory 28 may include at least one program product 40 having a set of program modules 42 configured to perform the functions of various embodiments of the present application.
  • Program product 40 which may be stored, for example, in memory 28.
  • Such program modules 42 include, but are not limited to, one or more application programs, other program modules, and program data, each or some combination of which may include a network environment realization.
  • the program modules 42 generally perform the functions and/or methods of the embodiments described herein.
  • the electronic device 12 may also communicate with one or more external devices 14 (such as a keyboard, mouse, camera, etc., and a display), and may also communicate with one or more devices that enable a user to interact with the electronic device 12, and/or Any device (eg, network card, modem, etc.) that enables the electronic device 12 to communicate with one or more other computing devices. Such communication may occur through input/output (I/O) interface 22 .
  • the electronic device 12 can also communicate with one or more networks (such as a local area network (Local Area Network, LAN), a wide area network, Wide Area Network, WAN) and/or a public network, such as the Internet, through the network adapter 20.
  • networks such as a local area network (Local Area Network, LAN), a wide area network, Wide Area Network, WAN) and/or a public network, such as the Internet
  • network adapter 20 communicates with other modules of electronic device 12 via bus 18 .
  • other hardware and/or software modules may be used in conjunction with electronic device 12, including but not limited to: microcode, device drivers, redundant processing units, external disk drive arrays, disk arrays (Redundant Arrays) of Independent Disks, RAID) devices, tape drives, and data backup storage devices.
  • the processor 16 executes a variety of functional applications and data processing by running the program stored in the memory 28, such as implementing the longitudinal control method of the self-driving vehicle provided in the above-mentioned embodiments of the present application, including:
  • the center corresponds to the maximum change value of the first centripetal force to adjust the longitudinal running speed of the target vehicle.
  • processor can also implement the technical solution of the longitudinal control method for an automatic driving vehicle provided in any embodiment of the present application.
  • Embodiment 6 of the present application also provides a computer-readable storage medium on which a computer program is stored.
  • the program is executed by a processor, the steps of the longitudinal control method for an autonomous vehicle as provided in any embodiment of the present application are implemented.
  • the method include:
  • the center corresponds to the maximum change value of the first centripetal force to adjust the longitudinal running speed of the target vehicle.
  • the computer storage medium in the embodiments of the present application may use any combination of one or more computer-readable media.
  • the computer readable medium may be a computer readable signal medium or a computer readable storage medium.
  • a computer readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any combination thereof. More specific examples (non-exhaustive list) of computer readable storage media include: electrical connections with one or more leads, portable computer disks, hard disks, random access memory (RAM), read only memory (ROM), Erasable programmable read-only memory (EPROM or flash memory), optical fiber, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • a computer-readable storage medium may be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device.
  • the computer readable storage medium may be a non-transitory computer
  • a computer readable signal medium may include a data signal carrying computer readable program code in baseband or as part of a carrier wave. Such propagated data signals may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • a computer-readable signal medium may also be any computer-readable medium other than a computer-readable storage medium, which can send, propagate, or transmit a program for use by or in conjunction with an instruction execution system, apparatus, or device. .
  • Program code embodied on a computer readable medium may be transmitted using any appropriate medium, including - but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
  • Computer program codes for performing the operations of the embodiments of the present application may be written in one or more programming languages or combinations thereof, the programming languages including object-oriented programming languages—such as Java, Smalltalk, C++, including A conventional procedural programming language - such as "C" or a similar programming language.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer can be connected to the user computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or it can be connected to an external computer (such as through an Internet service provider). Internet connection).

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

一种自动驾驶车辆的纵向控制方法、装置、设备及介质。该方法包括:响应于确定目标车辆位于转弯工况,通过确定目标车辆的前轴中心对应的当前第一向心力以及前轴中心对应的当前第一向心力变化值,确定目标车辆在横向控制上的输出结果,以将横向控制上的输出结果反馈于纵向控制,根据当前第一向心力和预先设定的与前轴中心对应的最大第一向心力,以及,当前第一向心力变化值和预先设定的与前轴中心对应的最大第一向心力变化值,调整目标车辆的纵向行驶速度。

Description

自动驾驶车辆的纵向控制方法、装置、设备及介质
本申请要求在2021年9月29日提交中国专利局、申请号为202111149878.8的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及自动驾驶车辆技术领域,例如涉及一种自动驾驶车辆的纵向控制方法、装置、设备及介质。
背景技术
智能驾驶车辆纵向控制,可以理解为自动控制车辆在纵向上的行驶速度。在目前智能驾驶领域纵向控制中,相关技术通常采用结合自动驾驶车辆在行驶过程中的载重变化,进行车辆的纵向控制。相关技术的方案没有考虑到结合车辆横向控制上的输出结果,反馈进行纵向控制,因此,相关技术存在纵向控制的舒适性较差的技术问题。
发明内容
本申请实施例提供了一种自动驾驶车辆的纵向控制方法、装置、设备及介质,以结合自动驾驶车辆横向控制的向心力进行车辆纵向控制,提高车辆纵向控制的舒适性。
第一方面,本申请实施例提供了一种自动驾驶车辆的纵向控制方法,所述方法包括:
响应于确定检测出目标车辆位于转弯工况,确定所述目标车辆的前轴中心对应的当前第一向心力以及前轴中心对应的当前第一向心力变化值;
基于所述当前第一向心力和预先设定的与所述目标车辆的前轴中心对应的最大第一向心力,以及所述当前第一向心力变化值和预先设定的与所述目标车辆的前轴中心对应的最大第一向心力变化值,调整所述目标车辆的纵向行驶速度。
第二方面,本申请实施例还提供了一种自动驾驶车辆的纵向控制装置,所述装置包括:
第一向心力确定模块,设置为响应于确定检测出目标车辆位于转弯工况,确定所述目标车辆的前轴中心对应的当前第一向心力以及前轴中心对应的当前第一向心力变化值;
第一纵向速度调整模块,设置为基于所述当前第一向心力和预先设定的与所述目标车辆的前轴中心对应的最大第一向心力,以及所述当前第一向心力变化值和预先设定的与所述目标车辆的前轴中心对应的最大第一向心力变化值,调整所述目标车辆的纵向行驶速度。
第三方面,本申请实施例还提供了一种电子设备,所述电子设备包括:
一个或多个处理器;
存储装置,设置为存储一个或多个程序,
当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如本申请任意实施例提供的自动驾驶车辆的纵向控制方法。
第四方面,本申请实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如本申请任意实施例提供的自动驾驶车辆的纵向控制方法。
附图说明
图1A为本申请一实施例所提供的一种自动驾驶车辆的纵向控制方法的流程示意图;
图1B为本申请一实施例所提供的一种车辆转弯工况示意图;
图2A为本申请另一实施例所提供的一种自动驾驶车辆的纵向控制方法的流程示意图;
图2B为本申请另一实施例所提供的一种车辆转弯工况示意图;
图3为本申请另一实施例所提供的一种自动驾驶车辆的纵向控制方法的流程示意图;
图4为本申请一实施例所提供的一种自动驾驶车辆的纵向控制装置的结构示意图;
图5为本申请一实施例所提供的一种电子设备的结构示意图。
具体实施方式
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本申请,而非对本申请的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本申请相关的部分而非全部结构。
例如,本实施例适用于目标车辆为自动驾驶车辆,或目标车辆处于自动驾驶模式时的自动驾驶车辆纵向控制。为一种关于自动驾驶车辆的纵向控制方法。随着无人驾驶技术日趋成熟,会需要将横纵向控制结合,形成横纵向控制闭环的方法。
图1A为本申请实施例提供的一种自动驾驶车辆的纵向控制方法的流程示意图,本实施例可适用于自动驾驶车辆在转弯工况时,根据车辆当前所需的向心力以及向心力变化值,进行车辆纵向控制的情况,该方法可以由车辆纵向控制装置来执行,该装置可以由硬件和/或软件来实现,该方法包括如下步骤:
S110、在检测出目标车辆位于转弯工况时,确定所述目标车辆的前轴中心对应的当前第一向心力以及前轴中心对应的当前第一向心力变化值。
其中,转弯工况包括但不限于避让避障工况、横向调整位姿工况以及路径转弯工况。例如,本实施例可以基于目标车辆的方向盘转角、横摆角速度或横向加速度,检测目标车辆的行驶工况,在检测出目标车辆的行驶工况为转弯工况时,进一步确定目标车辆的前轴中心对应的当前第一向心力以及前轴中心对应的当前第一向心力变化值。
例如,当前第一向心力可以是目标车辆在当前前轮中心转向角或当前转弯半径下所需的向心力。如,当前前轮中心转向角由0增加至β,β越大,转弯半径越小,在同一车速下,车辆所需要的向心加速度越大,所需要的第一向心力越大。
在本实施例中,当前第一向心力变化值可以是目标车辆的当前周期相对于前一个周期之间所增加或减少的第一向心力。例如,目标车辆在当前周期相对于前一个周期的前轮中心转向角增加或减少时,均会产生第一向心力变化值。例如,周期可以是20ms,目标车辆可以每间隔20ms确定一次当前第一向心力变化值。示例性的,目标车辆在前一个周期的前轮中心转向角为β,在当前周期前轮中心转向角由β增加/减少至β±α,则当前第一向心力变化值可以是增加/减少的角度α所产生的第一向心力变化值。
本实施例中的当前第一向心力可以基于目标车辆的瞬时速度、前轮中心转向角计算得出。当前第一向心力变化值可以根据前一周期对应的第一向心力以及当前第一向心力计算得出。
又或者,在一种示例实施方式中,所述确定所述目标车辆的前轴中心对应的当前第一向心力以及前轴中心对应的当前第一向心力变化值,包括:获取所述目标车辆的瞬时速度、前轮中心转向角、转向角变化角度以及前轴质量;基于所述瞬时速度、所述前轮中心转向角以及所述前轴质量,确定所述目标车辆的前轴中心对应的当前第一向心力;基于所述瞬时速度、 所述前轮中心转向角、所述转向角变化角度以及所述前轴质量,确定所述目标车辆的前轴中心对应的当前第一向心力变化值。
示例性的,如图1B所示,展示了一种车辆转弯工况示意图。瞬时速度可以是当前时刻目标车辆的行驶速度;也可以是当前周期目标车辆的平均速度;如,图1B中的V F。前轮中心转向角可以是目标车辆两个前轮中心位置处的转向角,如,图1B中的β。转向角变化角度可以是目标车辆的当前周期相对于前一个周期的前轮中心转向角的变化角度,如,前一个周期的前轮中心转向角为γ,当前周期的前轮中心转向角为β,则转向角变化角度可以是β-γ。
例如,基于所述瞬时速度、所述前轮中心转向角以及所述前轴质量,确定所述目标车辆的前轴中心对应的当前第一向心力,可以满足如下公式:
Figure PCTCN2022118333-appb-000001
其中,M表示目标车辆的当前零部件中预设位置点的分布质量。例如,若分析前轴中心点的当前第一向心力,则M代表此点外侧部分基于当前研究点的分布质量。V F为目标车辆的前轴中心轮的瞬时速度,β为前轮中心轮转向角,L为目标车辆的前后轴距,F F为目标车辆的前轴中心对应的当前第一向心力。当目标车辆处于直线行驶时,前轮中心转向角β为0,目标车辆的当前第一向心力(所需的向心力)为0Nm;当目标车辆位于转弯工况时,前轴中心所需增加的向心力也可以通过上述公式计算得出。
例如,基于所述瞬时速度、所述前轮中心转向角、所述转向角变化角度以及所述前轴质量,确定所述目标车辆的前轴中心对应的当前第一向心力变化值,可以满足如下公式:
Figure PCTCN2022118333-appb-000002
其中,M表示目标车辆的当前零部件中预设位置点的分布质量。例如,若分析前轴中心点的当前第一向心力,则M代表此点外侧部分基于当前研究点的分布质量。V F为目标车辆的前轴中心轮的瞬时速度,β为前轮中心轮转向角,α为转向角变化角度,L为目标车辆的前后轴距,ΔF F为目标车辆的前轴中心对应的当前第一向心力变化值。需要说明的是,ΔF F为正时,表示目标车辆所需的第一向心力增加,即当前第一向心力比上一周期对应的第一向心力大,ΔF F为负时,表示目标车辆所需的第一向心力减少,即当前第一向心力比上一周期对应的第一向心力小。
在该示例实施方式中,通过瞬时速度、前轮中心转向角以及前轴质量,确定前轴中心对应的当前第一向心力;通过瞬时速度、前轮中心转向角、转向角变化角度以及前轴质量,确定前轴中心对应的当前第一向心力变化值,实现了当前第一向心力以及当前第一向心力变化值的准确确定,进而提高了车辆纵向控制的精度。
S120、基于所述当前第一向心力和预先设定的与所述目标车辆的前轴中心对应的最大第一向心力,以及所述当前第一向心力变化值和预先设定的与所述目标车辆的前轴中心对应的最大第一向心力变化值,调整所述目标车辆的纵向行驶速度。
其中,预先设定的与所述目标车辆的前轴中心对应的最大第一向心力,可以是目标车辆前轴相关部件所能承受的最大向心力。例如,预先设定的与所述目标车辆的前轴中心对应的最大第一向心力可以是转向横拉杆能承受的最大向心力。需要说明的是,在本实施例中,预先设定的与所述目标车辆的前轴中心对应的最大第一向心力的数量可以是一个;也可以是多个,即,可以分别是多个前轴相关部件所能承受的最大向心力。
预先设定的与所述目标车辆的前轴中心对应的最大第一向心力变化值,可以是目标车辆的前轴相关部件所能承受的最大向心力波动值。例如,预先设定的与所述目标车辆的前轴中 心对应的最大第一向心力变化值可以是转向横拉杆能承受的最大向心力波动值。需要说明的是,在本实施例中,预先设定的与所述目标车辆的前轴中心对应的最大第一向心力变化值的数量也可以是一个或多个,即,可以分别是多个前轴相关部件所能承受的最大向心力变化值。
示例性的,所述基于所述当前第一向心力和预先设定的与所述目标车辆的前轴中心对应的最大第一向心力,以及所述当前第一向心力变化值和预先设定的与所述目标车辆的前轴中心对应的最大第一向心力变化值,调整所述目标车辆的纵向行驶速度,包括:若所述当前第一向心力大于预先设定的与所述目标车辆的前轴中心对应的最大第一向心力,或者,所述当前第一向心力变化值大于预先设定的与所述目标车辆的前轴中心对应的最大第一向心力变化值,则降低所述目标车辆的纵向行驶速度。
例如,在当前第一向心力大于预先设定的与所述目标车辆的前轴中心对应的最大第一向心力时,可以通过主动降低目标车辆的纵向行驶速度,使得V F降低,从而降低当前第一向心力,使得当前第一向心力小于预先设定的与所述目标车辆的前轴中心对应的最大第一向心力,处于车辆前轴部件所能承受的合理范围内。或者,在当前第一向心力变化值大于预先设定的与所述目标车辆的前轴中心对应的最大第一向心力变化值时,可以通过主动降低目标车辆的纵向行驶速度,使得V F降低,从而降低当前第一向心力变化值,使得当前第一向心力变化值小于预先设定的与所述目标车辆的前轴中心对应的最大第一向心力变化值,处于车辆前轴部件所能承受的合理范围内。当然,还可以是通过降低目标车辆的纵向行驶速度,使得当前第一向心力不超过最大第一向心力,且当前第一向心力变化值不超过最大第一向心力变化值。
在该示例的实施方式中,在当前第一向心力大于最大第一向心力,或当前第一向心力变化值大于最大第一向心力变化值时,通过降低目标车辆的纵向行驶速度,降低当前第一向心力或第一向心力变化值,使得当前第一向心力和第一向心力变化值均处于车辆前轴部件所能承受的范围内,进而降低车辆前轴部件的损耗,并且,提高车辆行驶舒适性。
在另一种实施方式中,基于所述当前第一向心力和预先设定的与所述目标车辆的前轴中心对应的最大第一向心力,以及所述当前第一向心力变化值和预先设定的与所述目标车辆的前轴中心对应的最大第一向心力变化值,调整所述目标车辆的纵向行驶速度,可以是:若所述当前第一向心力大于预先设定的与所述目标车辆的前轴中心对应的最大第一向心力,则基于所述最大第一向心力以及前轮中心转向角,计算所述前轮中心转向角对应的目标车辆的第一纵向行驶阈值,基于所述第一纵向行驶阈值调整所述目标车辆的纵向行驶速度;和/或,若所述当前第一向心力变化值大于预先设定的与所述目标车辆的前轴中心对应的最大第一向心力变化值,则基于所述最大第一向心力变化值、前轮中心转向角以及转向角变化角度,计算所述转向角变化角度对应的目标车辆的第二纵向行驶阈值,基于所述第二纵向行驶阈值调整所述目标车辆的纵向行驶速度。
例如,可以基于上述两公式,将前轮中心转向角、最大第一向心力、前轮中心转向角、转向角变化角度、最大第一向心力变化值、代入至上述两公式中,分别计算出第一纵向行驶阈值和第二纵向行驶阈值。
又或者,基于所述当前第一向心力和预先设定的与所述目标车辆的前轴中心对应的最大第一向心力,以及所述当前第一向心力变化值和预先设定的与所述目标车辆的前轴中心对应的最大第一向心力变化值,调整所述目标车辆的纵向行驶速度,还可以是:若所述当前第一向心力大于预先设定的与所述目标车辆的前轴中心对应的最大第一向心力,则基于当前第一向心力与最大第一向心力之间的差值,计算目标车辆的目标行驶速度变化值,基于所述目标行驶速度变化值调整所述目标车辆的纵向行驶速度;和/或,若所述当前第一向心力变化值大于预先设定的与所述目标车辆的前轴中心对应的最大第一向心力变化值,则基于当前第一向 心力变化值与最大第一向心力变化值之间的差值,计算目标车辆的目标行驶速度变化值,基于所述目标行驶速度变化值调整所述目标车辆的纵向行驶速度。
需要说明的是,若预先设定的最大第一向心力或预先设定的最大第一向心力变化值的数量为多个,则可以针对每一个最大第一向心力或每一个最大第一向心力变化值,均进行所述目标车辆的纵向行驶速度的调整,直至目标车辆的纵向行驶速度对应的第一向心力不超过多个最大第一向心力,或,目标车辆的纵向行驶速度对应的第一向心力变化值不超过多个最大第一向心力变化值。
本实施例的技术方案,在目标车辆位于转弯工况时,通过确定目标车辆的前轴中心对应的当前第一向心力以及前轴中心对应的当前第一向心力变化值,确定目标车辆在横向控制上的输出结果,以将横向控制上的输出结果反馈于纵向控制,进一步的,根据当前第一向心力和预先设定的与前轴中心对应的最大第一向心力,以及,当前第一向心力变化值和预先设定的与前轴中心对应的最大第一向心力变化值,调整目标车辆的纵向行驶速度,实现基于车辆横向控制信息的自动驾驶车辆的纵向控制,提高了车辆纵向控制的舒适性,并且,通过纵向行驶速度的调整可以减少车辆在横向控制上的向心力,避免了因向心力过大所产生的车辆部件受损程度的增加。
图2A为本申请另一实施例提供的一种自动驾驶车辆的纵向控制方法的流程示意图,本实施例在上述实施例的基础上,例如,所述方法还包括:确定所述目标车辆的乘客对应的当前第二向心力以及乘客对应的当前第二向心力变化值;获取预先设定的与所述目标车辆的乘客对应的最大第二向心力以及预先设定的与所述目标车辆的乘客对应的最大第二向心力变化值;基于所述最大第二向心力、所述当前第二向心力、所述最大第二向心力变化值以及所述当前第二向心力变化值,调整所述目标车辆的纵向行驶速度。其中与上述多个实施例相同或相应的术语的解释在此不再赘述。参见图2A,本实施例提供的自动驾驶车辆的纵向控制方法包括以下步骤:
S210、在检测出目标车辆位于转弯工况时,确定所述目标车辆的前轴中心对应的当前第一向心力以及前轴中心对应的当前第一向心力变化值。
S220、基于所述当前第一向心力和预先设定的与所述目标车辆的前轴中心对应的最大第一向心力,以及所述当前第一向心力变化值和预先设定的与所述目标车辆的前轴中心对应的最大第一向心力变化值,调整所述目标车辆的纵向行驶速度。
S230、确定所述目标车辆的乘客对应的当前第二向心力以及乘客对应的当前第二向心力变化值。
其中,当前第二向心力可以是目标车辆上的乘客在当前前轮中心转向角或当前转弯半径下所需的向心力。如,当前前轮中心转向角由0增加至β,β越大,转弯半径越小,在同一车速下,乘客所需要的向心加速度越大,所需要的第二向心力越大。
在本实施例中,当前第二向心力变化值可以是乘客在当前周期相对于前一个周期之间所增加或减少的第二向心力。例如,乘客在当前周期相对于前一个周期的前轮中心转向角增加或减少时,均会产生第二向心力变化值。例如,周期可以是20ms,可以每间隔20ms确定一次乘客的当前第二向心力变化值。示例性的,目标车辆在前一个周期的前轮中心转向角为β,在当前周期前轮中心转向角由β增加/减少至β±α,则当前第二向心力变化值可以是增加/减少的角度α所产生的第二向心力变化值。
本实施例可以基于目标车辆的瞬时速度、乘客的转向角、乘客的质量分别计算出每个乘客对应的当前第二向心力。还可以基于目标车辆的瞬时速度、乘客的质量、乘客的转向角变 化角度分别计算出每个乘客对应的当前第二向心力变化值。
又或者,在一种示例实施方式中,所述确定所述目标车辆的乘客对应的当前第二向心力以及乘客对应的当前第二向心力变化值,包括:获取所述目标车辆的瞬时速度、乘客的转向角、乘客的转向角变化角度、乘客的质量以及乘客的转弯半径;基于所述瞬时速度、所述乘客的转向角、所述乘客的质量以及所述乘客的转弯半径,确定所述目标车辆的乘客对应的当前第二向心力;基于所述瞬时速度、所述乘客的转向角、所述乘客的转向角变化角度以及所述乘客的质量,确定所述目标车辆的乘客对应的当前第二向心力变化值。
示例性的,如图2B所示,展示了一种车辆转弯工况示意图。瞬时速度可以是当前时刻目标车辆的行驶速度;也可以是当前周期目标车辆的平均速度;如,图2B中的V F。所述乘客的转向角可以是目标车辆两个前轮中心位置处的转向角,如,图2B中的β。转向角变化角度可以是目标车辆的当前周期相对于前一个周期的前轮中心转向角的变化角度,如,前一个周期的前轮中心转向角为γ,当前周期的前轮中心转向角为β,则转向角变化角度可以是β-γ。当然,乘客的数量可以是多个,如图2B中的1、2、3、4。乘客的转弯半径可以是乘客到转弯半径圆点中心之间的距离,如,图2B中的R1为乘客的转弯半径,O F为转弯半径圆点中心。
例如,基于所述瞬时速度、所述乘客的转向角、所述乘客的质量以及所述乘客的转弯半径,确定所述目标车辆的乘客对应的当前第二向心力,可以满足如下公式:
Figure PCTCN2022118333-appb-000003
其中,m 1表示乘客的质量,V F为目标车辆的瞬时速度,β为乘客的转向角,R 1为乘客的转弯半径,L为目标车辆的前后轴距,F 1为乘客对应的当前第二向心力。
例如,基于所述瞬时速度、所述乘客的转向角、所述乘客的转向角变化角度以及所述乘客的质量,确定所述目标车辆的乘客对应的当前第二向心力变化值,满足如下公式:
Figure PCTCN2022118333-appb-000004
其中,m X表示乘客的质量,V F为目标车辆的瞬时速度,β为乘客的转向角,α为转向角变化角度,L为目标车辆的前后轴距,ΔF X为乘客对应的当前第二向心力变化值。需要说明的是,ΔF X为正时,表示乘客所需的第二向心力增加,即当前第二向心力比上一周期对应的第二向心力大,ΔF X为负时,表示乘客所需的第二向心力减少,即当前第二向心力比上一周期对应的第二向心力小。
在该示例实施方式中,通过瞬时速度、乘客的转向角、乘客的质量以及乘客的转弯半径,确定乘客对应的当前第二向心力;通过瞬时速度、乘客的转向角、乘客的转向角变化角度以及乘客的质量,确定乘客对应的当前第二向心力变化值,实现了当前第二向心力以及当前第二向心力变化值的准确确定,进而提高了车辆纵向控制的精度。
S240、获取预先设定的与所述目标车辆的乘客对应的最大第二向心力以及预先设定的与所述目标车辆的乘客对应的最大第二向心力变化值。
其中,预先设定的与所述目标车辆的乘客对应的最大第二向心力,可以是乘客位置所能承受的最大向心力。预先设定的与所述目标车辆的乘客对应的最大第二向心力变化值,可以是乘客所能承受的最大向心力波动值。需要说明的是,在本实施例中,预先设定的与所述目标车辆的乘客对应的最大第二向心力,以及预先设定的与所述目标车辆的乘客对应的最大第二向心力变化值的数量可以是一个;也可以是多个,即,可以根据多个乘客位置,分别确定出每个乘客位置对应的所能承受的最大向心力以及所能承受的最大向心力变化值。
S250、基于所述最大第二向心力、所述当前第二向心力、所述最大第二向心力变化值以 及所述当前第二向心力变化值,调整所述目标车辆的纵向行驶速度。
示例性的,所述基于所述最大第二向心力、所述当前第二向心力、所述最大第二向心力变化值以及所述当前第二向心力变化值,调整所述目标车辆的纵向行驶速度,包括:若所述当前第二向心力大于所述最大第二向心力,或者,所述当前第二向心力变化值大于所述最大第二向心力变化值,则降低所述目标车辆的纵向行驶速度。
即,在当前第二向心力大于预先设定的与乘客对应的最大第二向心力时,可以通过主动降低目标车辆的纵向行驶速度,使得V F降低,从而降低当前第二向心力,使得当前第二向心力小于预先设定的与所述乘客对应的最大第二向心力,处于乘客所能承受的合理范围内。或者,在当前第二向心力变化值大于预先设定的与所述乘客对应的最大第二向心力变化值时,可以通过主动降低目标车辆的纵向行驶速度,使得V F降低,从而降低当前第二向心力变化值,使得当前第二向心力变化值小于预先设定的与所述乘客对应的最大第二向心力变化值,处于乘客所能承受的合理范围内。当然,还可以是通过降低目标车辆的纵向行驶速度,使得当前第二向心力不超过最大第二向心力,且当前第二向心力变化值不超过最大第二向心力变化值。
在该示例的实施方式中,在当前第二向心力大于最大第二向心力,或当前第二向心力变化值大于最大第二向心力变化值时,通过降低目标车辆的纵向行驶速度,降低当前第二向心力或第二向心力变化值,使得当前第二向心力和第二向心力变化值处于乘客所能承受的范围内,进而提高乘客的舒适性。
在另一种实施方式中,所述基于所述最大第二向心力、所述当前第二向心力、所述最大第二向心力变化值以及所述当前第二向心力变化值,调整所述目标车辆的纵向行驶速度,可以是:若所述当前第二向心力大于预先设定的最大第二向心力,则基于所述最大第二向心力以及乘客的转向角,计算所述转向角对应的目标车辆的第三纵向行驶阈值,基于所述第三纵向行驶阈值调整所述目标车辆的纵向行驶速度;和/或,若所述当前第二向心力变化值大于预先设定的最大第二向心力变化值,则基于所述最大第二向心力变化值、乘客的转向角以及转向角变化角度,计算所述转向角变化角度对应的目标车辆的第四纵向行驶阈值,基于所述第四纵向行驶阈值调整所述目标车辆的纵向行驶速度。
例如,可以基于上述两公式,将乘客的转向角、最大第二向心力、转向角变化角度、最大第二向心力变化值、代入至上述两公式中,分别计算出第三纵向行驶阈值和第四纵向行驶阈值。
需要说明的是,若预先设定的最大第二向心力或预先设定的最大第二向心力变化值的数量为多个,则可以针对每一个最大第二向心力或每一个最大第二向心力变化值,均进行所述目标车辆的纵向行驶速度的调整,直至目标车辆的纵向行驶速度对应的第二向心力不超过多个最大第二向心力,或,目标车辆的纵向行驶速度对应的第二向心力变化值不超过多个最大第二向心力变化值。
此外,本实施例中的S210-S220,可以在S230-S250之前执行,即先根据当前第一向心力以及当前第一向心力变化值调整目标车辆的纵向行驶速度,再根据当前第二向心力以及当前第二向心力变化值调整目标车辆的纵向行驶速度;S210-S220也可以在S230-S250执行之后再执行,即先根据当前第二向心力以及当前第二向心力变化值调整目标车辆的纵向行驶速度,再根据当前第一向心力以及当前第一向心力变化值调整目标车辆的纵向行驶速度;或者,S210-S220,可以与S230-S250同时执行,即同时根据当前第一向心力、当前第一向心力变化值、当前第二向心力、当前第二向心力变化值调整目标车辆的纵向行驶速度。
本实施例还可以针对车辆上的其它部件,如后备箱、车顶行李架,计算出其它部件对应的当前第二向心力以及当前第二向心力变化值,并根据当前第二向心力、预先设定的其它部 件对应的最大第二向心力、当前第二向心力变化值、预先设定的其它部件对应的最大第二向心力变化值,一并对目标车辆的纵向行驶速度进行调整,以使多个部件所需的向心力处于合理范围内。
本实施例的技术方案,在目标车辆位于转弯工况时,通过当前第一向心力和预先设定的与前轴中心对应的最大第一向心力,以及,当前第一向心力变化值和预先设定的与前轴中心对应的最大第一向心力变化值,调整目标车辆的纵向行驶速度,实现基于车辆横向控制信息的自动驾驶车辆的纵向控制,提高了车辆纵向控制的舒适性,通过纵向行驶速度的调整可以减少车辆在横向控制上的向心力,避免了因向心力过大所产生的车辆部件受损程度的增加;并且,通过当前第二向心力和预先设定的与乘客对应的最大第二向心力,以及当前第二向心力变化值和预先设定的与乘客对应的最大第二向心力变化值,调整目标车辆的纵向行驶速度,实现基于车辆横向控制信息的车辆纵向控制,进一步提高了乘客的舒适性。
图3为本申请另一实施例提供的一种自动驾驶车辆的纵向控制方法的流程示意图,本实施例在上述实施例的基础上,例如,所述方法还包括:基于所述最大第一向心力、所述当前第一向心力、所述最大第一向心力变化值、所述当前第一向心力变化值、所述最大第二向心力、所述当前第二向心力、所述最大第二向心力变化值以及所述当前第二向心力变化值,调整所述目标车辆的纵向行驶速度。其中与上述多个实施例相同或相应的术语的解释在此不再赘述。参见图3,本实施例提供的自动驾驶车辆的纵向控制方法包括以下步骤:
S310、在检测出目标车辆位于转弯工况时,确定所述目标车辆的前轴中心对应的当前第一向心力以及前轴中心对应的当前第一向心力变化值。
S320、确定所述目标车辆的乘客对应的当前第二向心力以及乘客对应的当前第二向心力变化值。
S330、获取预先设定的与所述目标车辆的前轴中心对应的最大第一向心力、预先设定的与所述目标车辆的前轴中心对应的最大第一向心力变化值、预先设定的与所述目标车辆的乘客对应的最大第二向心力、预先设定的与所述目标车辆的乘客对应的最大第二向心力变化值。
其中,最大第一向心力、最大第一向心力变化值可以分别是预先设置的前轴中心相关部件所承受的最大向心力和最大向心力变化值。最大第二向心力、最大第二向心力变化值可以分别是预先设置的乘客所承受的最大向心力和最大向心力变化值。
S340、基于所述最大第一向心力、所述当前第一向心力、所述最大第一向心力变化值、所述当前第一向心力变化值、所述最大第二向心力、所述当前第二向心力、所述最大第二向心力变化值以及所述当前第二向心力变化值,调整所述目标车辆的纵向行驶速度。
例如,可以是出现下述至少一种情况时,降低目标车辆的纵向行驶速度:
当前第一向心力大于最大第一向心力;当前第一向心力变化值大于最大第一向心力变化值;当前第二向心力大于最大第二向心力;当前第二向心力变化值大于最大第二向心力变化值。
示例性的,本实施例还可以对最大第一向心力和最大第二向心力进行排序,确定出数值最小的最大向心力,基于该数值最小的最大向心力调整目标车辆的纵向行驶速度,避免根据多个最大向心力依次对纵向行驶速度进行调整,增加车辆纵向控制的效率。相应的,也可以对最大第一向心力变化值和最大第二向心力变化值进行排序,确定出数值最小的最大向心力变化值,基于该数值最小的最大向心力变化值调整目标车辆的纵向行驶速度。
例如,还可以根据最大第一向心力和当前第一向心力之间的差异,或最大第一向心力变化值和当前第一向心力变化值之间的差距,或最大第二向心力和当前第二向心力之间的差异, 或最大第二向心力变化值和当前第二向心力变化值之间的差距,基于上述实施例提供的公式计算出目标行驶速度变化值,基于该目标行驶速度变化值调整目标车辆的纵向行驶速度。
示例性的,本实施例提供的方法可以包括如下步骤:
计算出多个前轴中心对应的当前第一向心力:
F vehicle=[F F F R…];
计算多个前轴中心对应的当前第一向心力变化值:
ΔF vehicle=[ΔF F ΔF R…];
获取多个前轴中心对应的最大第一向心力和最大第一向心力变化值:
F vehiclemax=[F Fmax F Rmax…],ΔF vehiclemax=[ΔF Fmax ΔF Rmax…];
计算出每个乘客对应的当前第二向心力:
F passenger=[F 1 F 2…];
计算出每个乘客对应的当前第二向心力变化值:
ΔF passenger=[ΔF 1 ΔF 2…];
获取每个乘客对应的最大第二向心力和最大第二向心力变化值:
F passengermax=[F 1max F 2max…],ΔF passengermax=[ΔF 1max ΔF 2max…]
设置多种行驶工况对应的最低车速值,当不满足以下任一条件(F vehicle<F vehiclemax、ΔF vehicle<ΔF vehiclemax、F passenger<F passengermax、ΔF passenger<ΔF passengermax),且车速不低于当前行驶工况对应的最低车速值时,降低目标车辆的纵向行驶速度,以提高车辆自动驾驶时舒适性。
本实施例的技术方案,结合乘客所需的向心力和乘客所能承受的最大向心力、乘客所需的向心力变化值和乘客所能承受的最大向心力变化值、前轴中心所需的向心力和前轴中心所能承受的最大向心力、前轴中心所需的向心力变化值和前轴中心所能承受的最大向心力变化值,进行自动驾驶车辆的纵向控制,避免了车辆部件受向心力影响减少寿命的情况,并且,提高了乘客的舒适性。
图4为本申请实施例提供的一种自动驾驶车辆的纵向控制装置的结构示意图,本实施例可适用于自动驾驶车辆在转弯工况时,根据车辆当前所需的向心力以及向心力变化值,进行车辆纵向控制的情况,该装置包括:第一向心力确定模块410和第一纵向速度调整模块420。
第一向心力确定模块410,设置为在检测出目标车辆位于转弯工况时,确定所述目标车辆的前轴中心对应的当前第一向心力以及前轴中心对应的当前第一向心力变化值;
第一纵向速度调整模块420,设置为基于所述当前第一向心力和预先设定的与所述目标车辆的前轴中心对应的最大第一向心力,以及所述当前第一向心力变化值和预先设定的与所述目标车辆的前轴中心对应的最大第一向心力变化值,调整所述目标车辆的纵向行驶速度。
例如,所述第一向心力确定模块410包括行驶信息获取单元、第一向心力确定单元和第一向心力变化值确定单元;其中,
行驶信息获取单元,设置为获取所述目标车辆的瞬时速度、前轮中心转向角、转向角变化角度以及前轴质量;
第一向心力确定单元,设置为基于所述瞬时速度、所述前轮中心转向角以及所述前轴质量,确定所述目标车辆的前轴中心对应的当前第一向心力;
第一向心力变化值确定单元,设置为基于所述瞬时速度、所述前轮中心转向角、所述转向角变化角度以及所述前轴质量,确定所述目标车辆的前轴中心对应的当前第一向心力变化值。
例如,所述第一纵向速度调整模块420设置为:
若所述当前第一向心力大于预先设定的与所述目标车辆的前轴中心对应的最大第一向心力,或者,所述当前第一向心力变化值大于预先设定的与所述目标车辆的前轴中心对应的最大第一向心力变化值,则降低所述目标车辆的纵向行驶速度。
例如,所述装置还包括第二向心力确定模块、设定最大值获取模块和第二纵向速度调整模块;其中,
第二向心力确定模块,设置为确定所述目标车辆的乘客对应的当前第二向心力以及乘客对应的当前第二向心力变化值;
设定最大值获取模块,设置为获取预先设定的与所述目标车辆的乘客对应的最大第二向心力以及预先设定的与所述目标车辆的乘客对应的最大第二向心力变化值;
第二纵向速度调整模块,设置为基于所述最大第二向心力、所述当前第二向心力、所述最大第二向心力变化值以及所述当前第二向心力变化值,调整所述目标车辆的纵向行驶速度。
例如,所述装置还包括第三纵向速度调整模块,所述第三纵向速度调整模块,设置为基于所述最大第一向心力、所述当前第一向心力、所述最大第一向心力变化值、所述当前第一向心力变化值、所述最大第二向心力、所述当前第二向心力、所述最大第二向心力变化值以及所述当前第二向心力变化值,调整所述目标车辆的纵向行驶速度。
例如,所述第二向心力确定模块设置为:
获取所述目标车辆的瞬时速度、乘客的转向角、乘客的转向角变化角度、乘客的质量以及乘客的转弯半径;基于所述瞬时速度、所述乘客的转向角、所述乘客的质量以及所述乘客的转弯半径,确定所述目标车辆的乘客对应的当前第二向心力;基于所述瞬时速度、所述乘客的转向角、所述乘客的转向角变化角度以及所述乘客的质量,确定所述目标车辆的乘客对应的当前第二向心力变化值。
例如,所述第二纵向速度调整模块设置为:
若所述当前第二向心力大于所述最大第二向心力,或者,所述当前第二向心力变化值大于所述最大第二向心力变化值,则降低所述目标车辆的纵向行驶速度。
在本实施例中,在目标车辆位于转弯工况时,通过第一向心力确定模块,确定目标车辆的前轴中心对应的当前第一向心力以及前轴中心对应的当前第一向心力变化值,确定目标车辆在横向控制上的输出结果,以将横向控制上的输出结果反馈于纵向控制,进一步的,通过纵向速度调整模块,根据当前第一向心力和预先设定的与前轴中心对应的最大第一向心力,以及,当前第一向心力变化值和预先设定的与前轴中心对应的最大第一向心力变化值,调整目标车辆的纵向行驶速度,实现基于车辆横向控制信息的自动驾驶车辆的纵向控制,提高了车辆纵向控制的舒适性,并且,通过纵向行驶速度的调整可以减少车辆在横向控制上的向心力,避免了因向心力过大所产生的车辆部件受损程度的增加。
本申请实施例所提供的自动驾驶车辆的纵向控制装置可执行本申请任意实施例所提供的自动驾驶车辆的纵向控制方法,具备执行方法相应的功能模块和有益效果。
值得注意的是,上述系统所包括的多个单元和模块只是按照功能逻辑进行划分的,但并不局限于上述的划分,只要能够实现相应的功能即可;另外,多个功能单元的具体名称也只是为了便于相互区分,并不用于限制本申请实施例的保护范围。
图5是本申请实施例提供的一种电子设备的结构示意图。图5示出了适于用来实现本申请实施方式的示例性电子设备12的框图。图5显示的电子设备12仅仅是一个示例,不应对本申请实施例的功能和使用范围带来任何限制。设备12典型的是承担自动驾驶车辆的纵向控 制功能的电子设备。
如图5所示,电子设备12以通用计算设备的形式表现。电子设备12的组件可以包括但不限于:一个或者多个处理器或者处理单元16,存储器28,连接不同组件(包括存储器28和处理单元16)的总线18。
总线18表示几类总线结构中的一种或多种,包括存储器总线或者存储器控制器,外围总线,图形加速端口,处理器或者使用多种总线结构中的任意总线结构的局域总线。举例来说,这些体系结构包括但不限于工业标准体系结构(Industry Standard Architecture,ISA)总线,微通道体系结构(Micro Channel Architecture,MCA)总线,增强型ISA总线、视频电子标准协会(Video Electronics Standards Association,VESA)局域总线以及外围组件互连(Peripheral Component Interconnect,PCI)总线。
电子设备12典型地包括多种计算机可读介质。这些介质可以是任何能够被电子设备12访问的可用介质,包括易失性和非易失性介质,可移动的和不可移动的介质。
存储器28可以包括易失性存储器形式的计算机装置可读介质,例如随机存取存储器(Random Access Memory,RAM)30和/或高速缓存存储器32。电子设备12可以进一步包括其它可移动/不可移动的、易失性/非易失性计算机存储介质。仅作为举例,存储装置34可以用于读写不可移动的、非易失性磁介质(图5未显示,通常称为“硬盘驱动器”)。尽管图5中未示出,可以提供用于对可移动非易失性磁盘(例如“软盘”)读写的磁盘驱动器,以及对可移动非易失性光盘(例如只读光盘(Compact Disc-Read Only Memory,CD-ROM)、数字视盘(Digital Video Disc-Read Only Memory,DVD-ROM)或者其它光介质)读写的光盘驱动器。在这些情况下,每个驱动器可以通过一个或者多个数据介质接口与总线18相连。存储器28可以包括至少一个程序产品40,该程序产品40具有一组程序模块42,这些程序模块被配置以执行本申请多个实施例的功能。程序产品40,可以存储在例如存储器28中,这样的程序模块42包括但不限于一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中可能包括网络环境的实现。程序模块42通常执行本申请所描述的实施例中的功能和/或方法。
电子设备12也可以与一个或多个外部设备14(例如键盘、鼠标、摄像头等和显示器)通信,还可与一个或者多个使得用户能与该电子设备12交互的设备通信,和/或与使得该电子设备12能与一个或多个其它计算设备进行通信的任何设备(例如网卡,调制解调器等等)通信。这种通信可以通过输入/输出(I/O)接口22进行。并且,电子设备12还可以通过网络适配器20与一个或者多个网络(例如局域网(Local Area Network,LAN),广域网Wide Area Network,WAN)和/或公共网络,例如因特网)通信。如图所示,网络适配器20通过总线18与电子设备12的其它模块通信。应当明白,尽管图中未示出,可以结合电子设备12使用其它硬件和/或软件模块,包括但不限于:微代码、设备驱动器、冗余处理单元、外部磁盘驱动阵列、磁盘阵列(Redundant Arrays of Independent Disks,RAID)装置、磁带驱动器以及数据备份存储装置等。
处理器16通过运行存储在存储器28中的程序,从而执行多种功能应用以及数据处理,例如实现本申请上述实施例所提供的自动驾驶车辆的纵向控制方法,包括:
在检测出目标车辆位于转弯工况时,确定所述目标车辆的前轴中心对应的当前第一向心力以及前轴中心对应的当前第一向心力变化值;
基于所述当前第一向心力和预先设定的与所述目标车辆的前轴中心对应的最大第一向心力,以及所述当前第一向心力变化值和预先设定的与所述目标车辆的前轴中心对应的最大第一向心力变化值,调整所述目标车辆的纵向行驶速度。
当然,本领域技术人员可以理解,处理器还可以实现本申请任意实施例所提供的自动驾驶车辆的纵向控制方法的技术方案。
本申请实施例六还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如本申请任意实施例所提供的自动驾驶车辆的纵向控制方法步骤,该方法包括:
在检测出目标车辆位于转弯工况时,确定所述目标车辆的前轴中心对应的当前第一向心力以及前轴中心对应的当前第一向心力变化值;
基于所述当前第一向心力和预先设定的与所述目标车辆的前轴中心对应的最大第一向心力,以及所述当前第一向心力变化值和预先设定的与所述目标车辆的前轴中心对应的最大第一向心力变化值,调整所述目标车辆的纵向行驶速度。
本申请实施例的计算机存储介质,可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本文件中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。计算机可读存储介质可以为非暂态计算机可读存储介质。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括——但不限于无线、电线、光缆、RF等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或其组合来编写用于执行本申请实施例操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言——诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。

Claims (10)

  1. 一种自动驾驶车辆的纵向控制方法,包括:
    响应于确定检测出目标车辆位于转弯工况,确定所述目标车辆的前轴中心对应的当前第一向心力以及前轴中心对应的当前第一向心力变化值;
    基于所述当前第一向心力和预先设定的与所述目标车辆的前轴中心对应的最大第一向心力,以及所述当前第一向心力变化值和预先设定的与所述目标车辆的前轴中心对应的最大第一向心力变化值,调整所述目标车辆的纵向行驶速度。
  2. 根据权利要求1所述的方法,其中,所述确定所述目标车辆的前轴中心对应的当前第一向心力以及前轴中心对应的当前第一向心力变化值,包括:
    获取所述目标车辆的瞬时速度、前轮中心转向角、转向角变化角度以及前轴质量;
    基于所述瞬时速度、所述前轮中心转向角以及所述前轴质量,确定所述目标车辆的前轴中心对应的当前第一向心力;
    基于所述瞬时速度、所述前轮中心转向角、所述转向角变化角度以及所述前轴质量,确定所述目标车辆的前轴中心对应的当前第一向心力变化值。
  3. 根据权利要求1所述的方法,其中,所述基于所述当前第一向心力和预先设定的与所述目标车辆的前轴中心对应的最大第一向心力,以及所述当前第一向心力变化值和预先设定的与所述目标车辆的前轴中心对应的最大第一向心力变化值,调整所述目标车辆的纵向行驶速度,包括:
    响应于确定所述当前第一向心力大于预先设定的与所述目标车辆的前轴中心对应的最大第一向心力,或者,所述当前第一向心力变化值大于预先设定的与所述目标车辆的前轴中心对应的最大第一向心力变化值,降低所述目标车辆的纵向行驶速度。
  4. 根据权利要求1所述的方法,还包括:
    确定所述目标车辆的乘客对应的当前第二向心力以及乘客对应的当前第二向心力变化值;
    获取预先设定的与所述目标车辆的乘客对应的最大第二向心力以及预先设定的与所述目标车辆的乘客对应的最大第二向心力变化值;
    基于所述最大第二向心力、所述当前第二向心力、所述最大第二向心力变化值以及所述当前第二向心力变化值,调整所述目标车辆的纵向行驶速度。
  5. 根据权利要求4所述的方法,还包括:
    基于所述最大第一向心力、所述当前第一向心力、所述最大第一向心力变化值、所述当前第一向心力变化值、所述最大第二向心力、所述当前第二向心力、所述最大第二向心力变化值以及所述当前第二向心力变化值,调整所述目标车辆的纵向行驶速度。
  6. 根据权利要求4所述的方法,其中,所述确定所述目标车辆的乘客对应的当前第二向心力以及乘客对应的当前第二向心力变化值,包括:
    获取所述目标车辆的瞬时速度、乘客的转向角、乘客的转向角变化角度、乘客的质量以及乘客的转弯半径;
    基于所述瞬时速度、所述乘客的转向角、所述乘客的质量以及所述乘客的转弯半径,确定所述目标车辆的乘客对应的当前第二向心力;
    基于所述瞬时速度、所述乘客的转向角、所述乘客的转向角变化角度以及所述乘客的质量,确定所述目标车辆的乘客对应的当前第二向心力变化值。
  7. 根据权利要求4所述的方法,其中,所述基于所述最大第二向心力、所述当前第二向心力、所述最大第二向心力变化值以及所述当前第二向心力变化值,调整所述目标车辆的 纵向行驶速度,包括:
    响应于确定所述当前第二向心力大于所述最大第二向心力,或者,所述当前第二向心力变化值大于所述最大第二向心力变化值,降低所述目标车辆的纵向行驶速度。
  8. 一种自动驾驶车辆的纵向控制装置,包括:
    第一向心力确定模块,设置为响应于确定检测出目标车辆位于转弯工况,确定所述目标车辆的前轴中心对应的当前第一向心力以及前轴中心对应的当前第一向心力变化值;
    第一纵向速度调整模块,设置为基于所述当前第一向心力和预先设定的与所述目标车辆的前轴中心对应的最大第一向心力,以及所述当前第一向心力变化值和预先设定的与所述目标车辆的前轴中心对应的最大第一向心力变化值,调整所述目标车辆的纵向行驶速度。
  9. 一种电子设备,包括:
    一个或多个处理器;
    存储装置,设置为存储一个或多个程序,
    当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如权利要求1-7中任一所述的自动驾驶车辆的纵向控制方法。
  10. 一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1-7中任一所述的自动驾驶车辆的纵向控制方法。
PCT/CN2022/118333 2021-09-29 2022-09-13 自动驾驶车辆的纵向控制方法、装置、设备及介质 WO2023051224A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111149878.8 2021-09-29
CN202111149878.8A CN113665592A (zh) 2021-09-29 2021-09-29 自动驾驶车辆的纵向控制方法、装置、设备及介质

Publications (1)

Publication Number Publication Date
WO2023051224A1 true WO2023051224A1 (zh) 2023-04-06

Family

ID=78550430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/118333 WO2023051224A1 (zh) 2021-09-29 2022-09-13 自动驾驶车辆的纵向控制方法、装置、设备及介质

Country Status (2)

Country Link
CN (1) CN113665592A (zh)
WO (1) WO2023051224A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113665592A (zh) * 2021-09-29 2021-11-19 中国第一汽车股份有限公司 自动驾驶车辆的纵向控制方法、装置、设备及介质
CN114132231B (zh) * 2021-12-28 2023-01-20 上海洛轲智能科技有限公司 一种车辆的座椅调节方法、装置及车辆

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108137039A (zh) * 2015-10-30 2018-06-08 日立汽车系统株式会社 车辆运动控制装置及其方法
CN110949370A (zh) * 2019-03-18 2020-04-03 长城汽车股份有限公司 自动驾驶车辆的安全监测方法、系统及运动控制系统
CN111204348A (zh) * 2020-01-21 2020-05-29 腾讯云计算(北京)有限责任公司 调节车辆行驶参数方法、装置、车辆及存储介质
CN113665592A (zh) * 2021-09-29 2021-11-19 中国第一汽车股份有限公司 自动驾驶车辆的纵向控制方法、装置、设备及介质

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5123497A (en) * 1990-12-20 1992-06-23 Ford Motor Company Automotive apparatus and method for dynamically determining centripetal force of a vehicle
KR970015172A (ko) * 1995-09-12 1997-04-28 한승준 자동차 의자의 회전균형장치 및 그 제어방법
DE10122654A1 (de) * 2001-05-10 2002-12-05 Bosch Gmbh Robert Verfahren und System zur Regelung des Fahrverhaltens eines Fahrzeugs
JP4513659B2 (ja) * 2005-06-14 2010-07-28 トヨタ自動車株式会社 車両の操舵装置
DE102009022170A1 (de) * 2009-05-20 2010-01-14 Daimler Ag Verfahren zur Fahrgeschwindigkeitsregelung eines Fahrzeuges
TWI436911B (zh) * 2011-06-29 2014-05-11 Univ Nat Taiwan Science Tech 汽車全自主座椅系統及其執行方法
CN103808959B (zh) * 2012-11-14 2016-12-21 威润科技股份有限公司 一种感测系统及其方法
CN106740830B (zh) * 2016-12-22 2019-03-12 江苏萝卜交通科技有限公司 四轮电动车的防侧翻控制方法
CN110040147B (zh) * 2019-04-23 2020-12-04 吉林大学 一种自动驾驶汽车侧向饱和约束下的行驶速度优化的方法
CN110979026B (zh) * 2019-12-31 2021-08-13 厦门金龙联合汽车工业有限公司 一种基于实时路况的分布式驱动公交车转矩分配方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108137039A (zh) * 2015-10-30 2018-06-08 日立汽车系统株式会社 车辆运动控制装置及其方法
CN110949370A (zh) * 2019-03-18 2020-04-03 长城汽车股份有限公司 自动驾驶车辆的安全监测方法、系统及运动控制系统
CN111204348A (zh) * 2020-01-21 2020-05-29 腾讯云计算(北京)有限责任公司 调节车辆行驶参数方法、装置、车辆及存储介质
CN113665592A (zh) * 2021-09-29 2021-11-19 中国第一汽车股份有限公司 自动驾驶车辆的纵向控制方法、装置、设备及介质

Also Published As

Publication number Publication date
CN113665592A (zh) 2021-11-19

Similar Documents

Publication Publication Date Title
WO2023051224A1 (zh) 自动驾驶车辆的纵向控制方法、装置、设备及介质
US11124190B2 (en) Vehicle-following speed control method, apparatus, system, computer device, and storage medium
US11614737B2 (en) Vehicle controlling method and apparatus, computer device, and storage medium
WO2023024879A1 (zh) 电控后轮转向方法、装置、电子设备及存储介质
WO2022001975A1 (zh) 车辆转向控制方法、装置及系统
WO2023005742A1 (zh) 应用于无人车的行驶轨迹控制方法、装置、设备及介质
WO2023130944A1 (zh) 主动稳定杆控制方法、装置、设备及介质
WO2019024402A1 (zh) 复合制动方法、装置和自适应巡航控制器
WO2020177571A1 (zh) 建立车辆纵向运动模型的方法、装置及计算机系统
CN112046494B (zh) 一种车辆控制方法、装置、设备及存储介质
WO2024051661A1 (zh) 路面不平度的分类识别方法、装置、车辆及存储介质
WO2023045791A1 (zh) 车道保持方法、装置、设备、介质及系统
CN112373460B (zh) 基于场景变化动态调整阈值的车辆侧翻预警方法及系统
CN113792265A (zh) 一种坡度估计方法、装置、电子设备以及存储介质
WO2024001758A1 (zh) 一种代客泊车车速的确定方法、装置、设备及介质
CN110850878B (zh) 智能车辆控制方法、装置、设备及介质
WO2023241556A1 (zh) 泊车控制方法、装置、设备和存储介质
WO2023005681A1 (zh) 纵向跟车控制方法、装置、电子设备及存储介质
KR102095673B1 (ko) 실시간 운전성향 검출 장치 및 방법
CN110654458B (zh) 车辆方向盘控制方法、装置、计算机设备及车辆
CN114604148B (zh) 座椅调节方法、装置、车载终端、车辆及介质
CN111552283A (zh) 一种自动驾驶减速停车方法、电子设备及存储介质
CN114919577B (zh) 一种车辆驾驶控制方法、装置、设备、介质
WO2023123176A1 (zh) 一种车辆控制方法、车辆控制装置以及控制系统
WO2024065081A1 (zh) 车辆的控制方法及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22874611

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE