WO2023051150A1 - 一种稀土助剂及其制备方法 - Google Patents
一种稀土助剂及其制备方法 Download PDFInfo
- Publication number
- WO2023051150A1 WO2023051150A1 PCT/CN2022/116440 CN2022116440W WO2023051150A1 WO 2023051150 A1 WO2023051150 A1 WO 2023051150A1 CN 2022116440 W CN2022116440 W CN 2022116440W WO 2023051150 A1 WO2023051150 A1 WO 2023051150A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rare earth
- chloride
- coal
- additive
- nitrate
- Prior art date
Links
- 229910052761 rare earth metal Inorganic materials 0.000 title claims abstract description 146
- 150000002910 rare earth metals Chemical class 0.000 title claims abstract description 74
- 239000012752 auxiliary agent Substances 0.000 title claims abstract description 11
- 238000002360 preparation method Methods 0.000 title claims description 17
- -1 rare earth chloride Chemical class 0.000 claims abstract description 62
- 238000006243 chemical reaction Methods 0.000 claims abstract description 33
- 239000003245 coal Substances 0.000 claims abstract description 33
- 244000005700 microbiome Species 0.000 claims abstract description 30
- 239000000126 substance Substances 0.000 claims abstract description 25
- 238000005842 biochemical reaction Methods 0.000 claims abstract description 19
- 239000003077 lignite Substances 0.000 claims abstract description 18
- 239000002028 Biomass Substances 0.000 claims abstract description 7
- 229910002651 NO3 Inorganic materials 0.000 claims abstract description 6
- 239000002802 bituminous coal Substances 0.000 claims abstract description 5
- 239000003415 peat Substances 0.000 claims abstract description 4
- 239000000654 additive Substances 0.000 claims description 58
- 230000000996 additive effect Effects 0.000 claims description 38
- 239000000843 powder Substances 0.000 claims description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 15
- 239000000203 mixture Substances 0.000 claims description 10
- 239000002245 particle Substances 0.000 claims description 8
- HSJPMRKMPBAUAU-UHFFFAOYSA-N cerium(3+);trinitrate Chemical compound [Ce+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O HSJPMRKMPBAUAU-UHFFFAOYSA-N 0.000 claims description 6
- CNERRGRDMYRHEV-UHFFFAOYSA-H [Cl-].[La+3].[Ce+3].[Cl-].[Cl-].[Cl-].[Cl-].[Cl-] Chemical compound [Cl-].[La+3].[Ce+3].[Cl-].[Cl-].[Cl-].[Cl-].[Cl-] CNERRGRDMYRHEV-UHFFFAOYSA-H 0.000 claims description 4
- VYLVYHXQOHJDJL-UHFFFAOYSA-K cerium trichloride Chemical compound Cl[Ce](Cl)Cl VYLVYHXQOHJDJL-UHFFFAOYSA-K 0.000 claims description 4
- ATINCSYRHURBSP-UHFFFAOYSA-K neodymium(iii) chloride Chemical compound Cl[Nd](Cl)Cl ATINCSYRHURBSP-UHFFFAOYSA-K 0.000 claims description 4
- WTQUHLHXFJEOTI-UHFFFAOYSA-H trichloroneodymium;trichloropraseodymium Chemical compound Cl[Pr](Cl)Cl.Cl[Nd](Cl)Cl WTQUHLHXFJEOTI-UHFFFAOYSA-H 0.000 claims description 4
- CKLHRQNQYIJFFX-UHFFFAOYSA-K ytterbium(III) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Yb+3] CKLHRQNQYIJFFX-UHFFFAOYSA-K 0.000 claims description 4
- ICAKDTKJOYSXGC-UHFFFAOYSA-K lanthanum(iii) chloride Chemical compound Cl[La](Cl)Cl ICAKDTKJOYSXGC-UHFFFAOYSA-K 0.000 claims description 3
- FYDKNKUEBJQCCN-UHFFFAOYSA-N lanthanum(3+);trinitrate Chemical compound [La+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O FYDKNKUEBJQCCN-UHFFFAOYSA-N 0.000 claims description 2
- CFYGEIAZMVFFDE-UHFFFAOYSA-N neodymium(3+);trinitrate Chemical compound [Nd+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O CFYGEIAZMVFFDE-UHFFFAOYSA-N 0.000 claims description 2
- KUBYTSCYMRPPAG-UHFFFAOYSA-N ytterbium(3+);trinitrate Chemical compound [Yb+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O KUBYTSCYMRPPAG-UHFFFAOYSA-N 0.000 claims description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 22
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 20
- 239000001257 hydrogen Substances 0.000 abstract description 20
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 abstract description 18
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 abstract description 15
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 abstract description 12
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 abstract description 12
- 230000000694 effects Effects 0.000 abstract description 11
- QJZYHAIUNVAGQP-UHFFFAOYSA-N 3-nitrobicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid Chemical compound C1C2C=CC1C(C(=O)O)C2(C(O)=O)[N+]([O-])=O QJZYHAIUNVAGQP-UHFFFAOYSA-N 0.000 abstract description 9
- 239000004021 humic acid Substances 0.000 abstract description 9
- 238000000034 method Methods 0.000 abstract description 9
- 229910052799 carbon Inorganic materials 0.000 abstract description 8
- 239000005711 Benzoic acid Substances 0.000 abstract description 6
- 235000010233 benzoic acid Nutrition 0.000 abstract description 6
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 abstract description 6
- 235000019445 benzyl alcohol Nutrition 0.000 abstract description 5
- PUKLDDOGISCFCP-JSQCKWNTSA-N 21-Deoxycortisone Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)C)(O)[C@@]1(C)CC2=O PUKLDDOGISCFCP-JSQCKWNTSA-N 0.000 abstract description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 4
- FCYKAQOGGFGCMD-UHFFFAOYSA-N Fulvic acid Natural products O1C2=CC(O)=C(O)C(C(O)=O)=C2C(=O)C2=C1CC(C)(O)OC2 FCYKAQOGGFGCMD-UHFFFAOYSA-N 0.000 abstract description 4
- 239000002509 fulvic acid Substances 0.000 abstract description 4
- 229940095100 fulvic acid Drugs 0.000 abstract description 4
- 230000002708 enhancing effect Effects 0.000 abstract description 2
- 230000009467 reduction Effects 0.000 abstract description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 abstract 2
- 230000001737 promoting effect Effects 0.000 abstract 1
- 238000004519 manufacturing process Methods 0.000 description 35
- 239000010802 sludge Substances 0.000 description 17
- 230000000813 microbial effect Effects 0.000 description 15
- 238000002474 experimental method Methods 0.000 description 13
- 241000894006 Bacteria Species 0.000 description 11
- 239000007789 gas Substances 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 10
- 239000002994 raw material Substances 0.000 description 9
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 229910052500 inorganic mineral Inorganic materials 0.000 description 6
- 229910052746 lanthanum Inorganic materials 0.000 description 6
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000011707 mineral Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 5
- 230000009466 transformation Effects 0.000 description 5
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 230000001186 cumulative effect Effects 0.000 description 4
- 238000000855 fermentation Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 229910021536 Zeolite Inorganic materials 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 239000000440 bentonite Substances 0.000 description 3
- 229910000278 bentonite Inorganic materials 0.000 description 3
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 3
- 230000036983 biotransformation Effects 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 3
- 229910000514 dolomite Inorganic materials 0.000 description 3
- 239000010459 dolomite Substances 0.000 description 3
- 230000004151 fermentation Effects 0.000 description 3
- 239000003337 fertilizer Substances 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 238000009776 industrial production Methods 0.000 description 3
- 235000015097 nutrients Nutrition 0.000 description 3
- 239000005416 organic matter Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000010298 pulverizing process Methods 0.000 description 3
- 229910052706 scandium Inorganic materials 0.000 description 3
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000010865 sewage Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000002426 superphosphate Substances 0.000 description 3
- 229910052727 yttrium Inorganic materials 0.000 description 3
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 3
- 239000010457 zeolite Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000606125 Bacteroides Species 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 2
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 229910052779 Neodymium Inorganic materials 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 229910052777 Praseodymium Inorganic materials 0.000 description 2
- 230000000789 acetogenic effect Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000003912 environmental pollution Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 230000003301 hydrolyzing effect Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000000696 methanogenic effect Effects 0.000 description 2
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 230000002195 synergetic effect Effects 0.000 description 2
- 241001148471 unidentified anaerobic bacterium Species 0.000 description 2
- 101710088194 Dehydrogenase Proteins 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 229910052693 Europium Inorganic materials 0.000 description 1
- 229910052688 Gadolinium Inorganic materials 0.000 description 1
- 229910052765 Lutetium Inorganic materials 0.000 description 1
- 229910052773 Promethium Inorganic materials 0.000 description 1
- 229910052772 Samarium Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 241000191967 Staphylococcus aureus Species 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229960000892 attapulgite Drugs 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000002210 biocatalytic effect Effects 0.000 description 1
- YYRMJZQKEFZXMX-UHFFFAOYSA-N calcium;phosphoric acid Chemical compound [Ca+2].OP(O)(O)=O.OP(O)(O)=O YYRMJZQKEFZXMX-UHFFFAOYSA-N 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000005660 chlorination reaction Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 238000005262 decarbonization Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- SHFGJEQAOUMGJM-UHFFFAOYSA-N dialuminum dipotassium disodium dioxosilane iron(3+) oxocalcium oxomagnesium oxygen(2-) Chemical compound [O--].[O--].[O--].[O--].[O--].[O--].[O--].[O--].[Na+].[Na+].[Al+3].[Al+3].[K+].[K+].[Fe+3].[Fe+3].O=[Mg].O=[Ca].O=[Si]=O SHFGJEQAOUMGJM-UHFFFAOYSA-N 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- OGPBJKLSAFTDLK-UHFFFAOYSA-N europium atom Chemical compound [Eu] OGPBJKLSAFTDLK-UHFFFAOYSA-N 0.000 description 1
- UIWYJDYFSGRHKR-UHFFFAOYSA-N gadolinium atom Chemical compound [Gd] UIWYJDYFSGRHKR-UHFFFAOYSA-N 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- OHSVLFRHMCKCQY-UHFFFAOYSA-N lutetium atom Chemical compound [Lu] OHSVLFRHMCKCQY-UHFFFAOYSA-N 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 230000037353 metabolic pathway Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 230000007269 microbial metabolism Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 235000006180 nutrition needs Nutrition 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000010815 organic waste Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 229910052625 palygorskite Inorganic materials 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000010451 perlite Substances 0.000 description 1
- 235000019362 perlite Nutrition 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- VQMWBBYLQSCNPO-UHFFFAOYSA-N promethium atom Chemical compound [Pm] VQMWBBYLQSCNPO-UHFFFAOYSA-N 0.000 description 1
- 229910001404 rare earth metal oxide Inorganic materials 0.000 description 1
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000002798 spectrophotometry method Methods 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000031068 symbiosis, encompassing mutualism through parasitism Effects 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 150000003722 vitamin derivatives Chemical class 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P5/00—Preparation of hydrocarbons or halogenated hydrocarbons
- C12P5/02—Preparation of hydrocarbons or halogenated hydrocarbons acyclic
- C12P5/023—Methane
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N1/00—Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
- C12N1/38—Chemical stimulation of growth or activity by addition of chemical compounds which are not essential growth factors; Stimulation of growth by removal of a chemical compound
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P3/00—Preparation of elements or inorganic compounds except carbon dioxide
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
Definitions
- the invention belongs to the technical field of rare earth resource utilization, and specifically relates to a rare earth additive.
- the invention also provides a preparation method of the rare earth additive suitable for industrial production.
- Rare earth elements are composed of 17 elements, and rare earth elements and their compounds have special physical and chemical properties.
- rare earth refers to the general name of 17 metal elements including lanthanides, scandium and yttrium.
- Rare earth elements are divided into "light rare earth elements" and "heavy rare earth elements”.
- Lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, and gadolinium are light rare earth elements; Scandium and yttrium are heavy rare earth elements.
- the atomic electron layer structure and physical and chemical properties of the two elements, as well as their symbiosis in minerals and ionic radius are all different.
- Rare earth elements are typical metal elements. Their metal activity is second only to alkali metals and alkaline earth metal elements, but more active than other metal elements. Among the 17 rare earth elements, they are arranged in the order of metal activity, increasing from scandium, yttrium, and lanthanum, and decreasing from lanthanum to lutetium, that is, lanthanum is the most active. Rare earth elements can form chemically stable oxides, halides, and sulfides. Rare earth elements can react with nitrogen, hydrogen, carbon, and phosphorus, and are easily soluble in hydrochloric acid, sulfuric acid, and nitric acid.
- rare earth As a non-renewable scarce strategic resource, rare earth is known as "industrial vitamin” and "mother of new materials". It is an important strategic resource and an indispensable raw material for industrial fields such as electronic equipment, aerospace and new materials. China's rare earth resources have the most basic characteristics of good ore-forming conditions, wide distribution, light rare earths in the north and heavy rare earths in the south, high content of valuable elements, and high comprehensive utilization value.
- Chinese invention patent CN200610057105.6 discloses a rare earth additive, rare earth superphosphate containing the additive and its preparation method.
- the main components are rare earth, dolomite powder, zeolite powder, at least one of citric acid or citrate, and
- the ingredients are bitter earth powder and bentonite; by weight percentage, the ratio is 10%-30% of rare earth, 10%-60% of dolomite powder, 10%-40% of zeolite powder, 1%-10% of citric acid or citrate, bitter 5%-10% of soil powder and 5%-10% of bentonite can be used to generate rare earth superphosphate. Compared with ordinary superphosphate, the available phosphorus, free acid and water content are not changed, and the dispersibility is improved.
- CN200710176223.3 discloses a slow release rare earth fertilizer additive and a preparation method thereof.
- the additive contains at least porous minerals and rare earth salts attached to the surface or pores of the minerals, wherein the porous minerals include at least one of zeolite, perlite, diatomite, bentonite, attapulgite, and dolomite, and the rare earth salts include nitric acid At least one of rare earth, rare earth chloride, rare earth sulfate, rare earth acetate and rare earth citrate, and the rare earth includes at least one of lanthanum, cerium, praseodymium, and neodymium.
- the porous minerals include at least one of zeolite, perlite, diatomite, bentonite, attapulgite, and dolomite
- the rare earth salts include nitric acid
- the preparation method of the additive is to crush the porous ore into particles with a particle size of 20-150 mesh, then put it into the aqueous solution of rare earth salt and stir evenly, react at room temperature -100°C for 5-96 hours, and then take out the rare earth ion adsorbed
- the slow-release rare earth fertilizer additive is prepared by drying the porous mineral particles.
- the invention is simple, safe, outstanding in effect, low in cost and suitable for large-scale production.
- the invention also discloses a fertilizer containing the above-mentioned additive.
- Low-rank coal refers to coal in the low metamorphic stage, which can be divided into low metamorphic bituminous coal and lignite according to the degree of coalification.
- my country's proven coal resource reserves are 1,484.29 billion tons, of which low-rank coal accounts for 59%, about 875.73 billion tons.
- more than 90% of low-rank coal in my country is used for direct combustion of power generation, industrial boilers and civil fuels, which has caused a series of serious ecological and environmental pollution problems, and wasted the oil, gas and chemical energy contained in low-rank coal. product resources.
- the estimated contribution of my country's coal use to the annual average concentration of ambient PM2.5 was 56%.
- the object of the present invention is to provide a kind of rare earth additive, which is formed by combining rare earth chloride, mixed rare earth chloride, and rare earth nitrate, as an auxiliary agent for biochemical reactions between microorganisms and substances to be transformed, wherein the rare earth chloride is formed by chlorination Composed of lanthanum, cerium chloride, ytterbium chloride and neodymium chloride, mixed rare earth chlorides include at least one of lanthanum cerium chloride, praseodymium neodymium chloride, samarium europium gadolinium chloride; rare earth nitrates include rare earth lanthanum nitrate, rare earth At least one of cerium nitrate, rare earth ytterbium nitrate, and rare earth neodymium nitrate.
- the prepared rare earth additives can significantly improve the efficiency of microbial biotransformation, and promote the conversion of low-order coal and biomass into clean energy such as biomethane, biohydrogen, and bioethanol, or fulvic acid, water-soluble humic acid, benzoic acid, and benzaldehyde , benzyl alcohol and other high-value chemicals, and then realize the decarbonization transformation of high-carbon resources and reduce the consumption of high-carbon energy.
- the present invention provides a rare earth additive, in parts by weight,
- rare earth chlorides such as lanthanum chloride, cerium chloride, ytterbium chloride and neodymium chloride
- rare earth ions such as La 3+ and Nd 3+ can enhance the permeability of cell membranes, allowing microorganisms to better absorb and utilize nutrients substances; moreover, as a cofactor, rare earth elements can affect microbial metabolic pathways and enzymes in the metabolic process, thereby enhancing microbial metabolic capabilities and improving microbial biotransformation efficiency.
- the mixed rare earth chlorides include lanthanum cerium chloride, praseodymium neodymium chloride, samarium europium gadolinium chloride.
- rare earth chloride It has been verified in practice that lanthanum cerium chloride, praseodymium neodymium chloride, samarium europium gadolinium chloride all have high catalytic activity, and compounding with rare earth chloride can achieve synergistic catalytic ability. Because the compounds in rare earth ore are all mixtures, it is not easy to separate, and its separation cost accounts for a large proportion of the price of pure rare earth compounds. Therefore, directly using mixed rare earth chlorides as catalysts for biochemical reactions will have important practical applications in industry. value, it can be compounded with rare earth chlorides to improve the catalytic effect, and can effectively reduce the cost of separation and production.
- the rare earth nitrates include at least one of lanthanum nitrate, cerium nitrate, ytterbium nitrate and neodymium nitrate.
- rare earth nitrates have inhibitory effects on Escherichia coli and Staphylococcus aureus.
- the actual research of the present invention has found that rare earth nitrates are beneficial to enhance the activity of anaerobic microorganisms, and have a certain stimulating effect on the growth of anaerobic microorganisms.
- rare earth nitrates are compounded with rare earth chlorides and mixed rare earth chlorides Using it can further improve the transformation efficiency of microorganisms participating in biochemical reactions.
- rare earth nitrates are more soluble than rare earth chlorides, and are very easy to participate in the reaction in the form of a solution. The activation effect is stronger, and a better activation effect can be achieved under the condition of adding a small amount.
- the inventors also verified that rare earth oxides and rare earth carbonates are insoluble in water and cannot act on specific microorganisms and their microbial flora that can act on biochemical reactions. They use the action of microorganisms to promote chemical reactions, and there is no synergy with rare earth chlorides. effect.
- the biochemical reaction includes a process in which specific microorganisms and their microbial flora use the action of microorganisms to perform certain chemical reactions, preferably, microbial transformation or hydrolysis or gas production reactions.
- Biochemical reactions that is, biochemical reactions, refer to the chemical reactions carried out in living organisms, here refers to the chemical reactions carried out in plants and microorganisms. Biochemical reactions need to be catalyzed by enzymes, including the process in which specific microorganisms and their microbial flora use the action of microorganisms to carry out certain chemical reactions.
- the material to be converted includes low-rank coal and biomass, preferably, the low-rank coal includes peat, lignite, low-modified bituminous coal, weathered coal and coal gangue.
- the microorganisms include hydrolytic bacteria, fermentative bacteria, hydrogen-producing bacteria, acetogenic bacteria, methanogenic bacteria, ethanologenic Bacteroides and their flora.
- the biochemical reaction between the microorganism and the substance to be transformed is as follows: adding rare earth additives to the reaction system of the substance to be transformed and water, and then adding microorganisms to carry out the biochemical reaction.
- the rare earth additive, the substance to be converted and water are configured into a reaction system in a mass/mass/volume ratio of (1-10):100:(200-500),
- the biochemical reaction can be carried out by inoculating microorganisms again.
- the volume ratio of the reaction system to the microorganism donor is (0.1-10): 1, preferably, the volume ratio of the reaction system to the microorganism donor is (1-2): 1, more preferably , the volume ratio of the reaction system to the microbial donor is 1:1.
- the moisture content of the microorganism donor is greater than 40%, preferably, the moisture content is 40-98%.
- the microorganism donor is activated sludge.
- Activated sludge is a general term for microbial groups and the organic and inorganic substances they are attached to, and it comes from the semi-solid residual sludge discharged from sewage treatment plants.
- the aerobic flora can be eliminated under sealed anaerobic conditions and domesticated into anaerobic activated sludge, including obligate anaerobic bacteria and their flora, facultative anaerobic bacteria and their flora, Through a large number of microbial flora in anaerobic activated sludge, such as hydrolytic bacteria, fermentative bacteria, hydrogen-producing bacteria and acetogenic bacteria, methanogenic bacteria, ethanologenic Bacteroides, the microorganisms can quickly reproduce and ferment during the fermentation process, which is extremely It greatly improves the rate of anaerobic fermentation and the utilization rate of raw materials, and can ensure higher methane production, hydrogen production and higher raw material utilization rate.
- the domestication method is extensive and easy, greatly reducing production costs, and has great cost advantages in industrialized large-scale industrial operations, and can reduce waste emissions and effectively improve resource utilization.
- Another object of the present invention is to provide a rare earth additive. First, mix the rare earth chloride, mixed rare earth chloride, and rare earth nitrate, and then perform two-step pulverization to prepare a rare earth additive ultrafine powder, which is sealed for future use. Instantly.
- the preparation method of the rare earth additive of the present invention is simple and convenient, has no additional restrictions on production conditions and operators, has a simplified process, and is especially suitable for large-scale industrial production.
- the invention provides a kind of preparation method of rare earth additive, comprising the following steps:
- step S1 use a high-speed multifunctional pulverizer to pulverize and pass through a 400-mesh standard sieve; in step S2, use an air separation type superfine pulverizer to continue superfine pulverization.
- the particle size of the ultrafine powder is 0.214 ⁇ m-10 ⁇ m.
- the rare earth composition is mechanically pulverized first, and the large-grained minerals can be pulverized into a uniform and fine powder, and then the ultrafine pulverizer is used to crush the material particles, and the pulverization is below 10 ⁇ m, causing obvious changes in the microstructure and surface chemical properties of the rare earth additives.
- the finally prepared ultrafine powder of the rare earth composition has the characteristics of large specific surface area, porosity and surface energy.
- the material has unique physical and chemical properties such as high fluidity, high solubility, and high adsorption, which can enhance the permeability of the microbial cell membrane in the biochemical reaction system, so that the microorganisms can better absorb and utilize the nutrients in the fermentation reaction system, and meet the needs of microorganisms.
- the rare earth additives used in the present invention are precisely compounded with rare earth compounds as active ingredients, and the biocatalytic performance of the rare earth additives acts on low-order coal with organic matter and humic acid as the main components, so that the low-order coal Break specific chemical bonds, dissociate corresponding functional groups, and convert them into carbon sources for microorganisms required for biomethane, biohydrogen or bioethanol conversion, and then obtain corresponding clean energy.
- the rare earth additives used in biochemical reactions of the present invention utilize the synergistic effects of the components of the rare earth additives to ensure that they can maintain good activity in different reaction systems and adapt to various complex environmental factors , the rare earth additives are highly targeted and effective, and can accelerate special reactions under mild conditions, and are specially used for the production of biohydrogen using low-rank coals such as peat, lignite, low-modified bituminous coal, weathered coal, and coal gangue as raw materials , clean energy such as biomethane or bioethanol, or high-value chemicals such as fulvic acid, water-soluble humic acid, benzoic acid, benzaldehyde, and benzyl alcohol.
- low-rank coals such as peat, lignite, low-modified bituminous coal, weathered coal, and coal gangue as raw materials
- clean energy such as biomethane or bioethanol
- high-value chemicals such as fulvic acid, water-soluble humic acid, benzoic acid, benz
- the preparation method of the rare earth additives used in biochemical reactions according to the present invention is obtained only after the composition is fully mixed, and then pulverized into ultrafine powder for the second time.
- the preparation method is simple, suitable for large-scale industrial production and preparation, and can realize Large-scale continuous production, the prepared rare earth additives can be directly converted into actual commercial products with simple packaging.
- Fig. 1 is a comparative graph of methane gas production in Example 1 of the present invention and comparative experiment 1.
- Fig. 2 is a comparative graph of hydrogen gas production in Example 2 of the present invention and comparative experiment 2.
- parts by weight can be ⁇ g, mg, g, kg or other well-known weight units in the art, or multiples thereof, such as 1/10, 1/100, 10 times, 100 times, etc.
- the microorganism donor used is the remaining activated sludge discharged from the sewage treatment plant in Baotou City, with a water content of 60%.
- Methane gas production, the daily methane production and total methane production are measured by AMPTSII.
- the biomethane produced by the fermentation unit first passes through the NaOH adsorption unit, and finally only CH 4 can enter the gas volume measurement unit; pH value: measured by Lei Magnetic PHS-25pH meter
- Dehydrogenase activity adopt spectrophotometry to measure;
- Acetic acid mass concentration adopt Agilent-1260Infinity high-performance liquid chromatography to measure, and chromatographic column is Agilent Hi-PlexH (7.7mm * 300mm, 8 ⁇ m), and detector is differential detector, column temperature The setting was 60°C, the mobile phase was 0.005mol/L sulfuric acid solution, and the flow rate was 0.5mL/min.
- Hydrogen gas production the hydrogen production is measured by the drainage gas collection method.
- the preparation method of the rare earth additive is as follows: firstly mix the raw materials of the above rare earth additive, pulverize them, and pass through a 400-mesh sieve to obtain the rare earth additive powder; then ultrafinely pulverize the rare earth additive powder for 3-30 minutes to obtain the rare earth additive Powder ultrafine powder, ready to use.
- reaction system there are only pure water, 200mL of anaerobic activated sludge that has been heated at 100°C for 30 minutes to kill methanogens, and 60g of lignite crushed to 100 mesh. No rare earth additives are added, and pure water is added until the total reaction system is 450mL, and the pH is adjusted. 7.0, the hydrogen production experiment was carried out at 50°C, the hydrogen production reached the highest on the first day, the hydrogen production was 33.0mL, and then the hydrogen production gradually decreased until the hydrogen production stopped, and the cumulative total hydrogen production was 94.8mL.
- Crush 30g of lignite to 100 mesh add it to a 500mL reaction bottle, add 200mL of activated sludge, 200mL of pure water, and add a total of 1.5g of rare earth additives weighed and mixed in proportion to carry out the lignite humic acid degradation experiment.
- the concentration of humic acid reached a peak value of 545.60 mg/L on day 4
- the concentration of benzoic acid reached a peak value of 0.5491 mg/L on day 4
- the concentration of lignite benzyl alcohol reached a peak value of 1.3367 mg/L on day 3
- the concentration of benzaldehyde reached a peak value of 1.4605 on day 4 mg/L.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Microbiology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Tropical Medicine & Parasitology (AREA)
- Virology (AREA)
- Biomedical Technology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
提供一种稀土助剂,以及一种制备稀土助剂应用于生产清洁能源或高价值化学品的方法,实现低阶煤炭、生物质的资源化应用。该稀土助剂由稀土氯化物、混合稀土氯化物和稀土硝酸盐组成,可作为微生物与待转化物质进行生化反应的助剂,从而增强生化反应中微生物活性,促进低阶煤炭(泥炭、褐煤、低变质烟煤、风化煤、煤矸石)、生物质转化为清洁能源生物甲烷、生物氢气或生物乙醇和黄腐植酸、水溶性腐植酸、苯甲酸、苯甲醛、苯甲醇等高价值化学品,实现低阶煤炭、生物质等高碳资源降碳转化。
Description
本发明属于稀土资源化应用技术领域,具体涉及一种稀土助剂,本发明还提供了适合工业化生产的稀土助剂的制备方法。
稀土元素由17种元素组成,稀土元素及其化合物具有特殊的物理化学性质。在化学元素周期表中,稀土指的是镧系元素和钪、钇共17种金属元素的总称。稀土元素分为“轻稀土元素”和“重稀土元素”,镧、铈、镨、钕、钷、钐、铕、钆为轻稀土元素;铽、镝、钬、铒、铥、镱、镥、钪、钇为重稀土元素。二的元素原子电子层结构和物理化学性质,以及它们在矿物中共生情况和离子半径皆不同。
稀土元素是典型的金属元素。它们的金属活泼性仅次于碱金属和碱土金属元素,而比其他金属元素活泼。在17个稀土元素当中,按金属的活泼次序排列,由钪、钇、镧递增,由镧到镥递减,即镧元素最活泼。稀土元素能形成化学稳定的氧化物、卤化物、硫化物。稀土元素可以和氮、氢、碳、磷发生反应,易溶于盐酸、硫酸和硝酸中。
稀土作为不可再生的稀缺性战略资源,它有“工业维生素”“新材料之母”之称,是重要的战略资源,是电子设备、航空航天和新材料等工业领域必不可少的原料。中国稀土资源具有成矿条件好、分布面广、北轻稀土南重稀土、有价元素含量高、综合利用价值大等最基本的特点。
目前,由稀土元素生产的稀土永磁、发光、储氢、催化等功能材料已是先进装备制造业、新能源等高新技术产业不可缺少的原材料。中国发明专利CN200610057105.6公开了一种稀土添加剂和含该添加剂的稀土过磷酸钙及其 制备方法,主要成份为稀土、白云石粉、沸石粉,柠檬酸或柠檬酸盐中至少一种,次要成份为苦土粉及膨润土;按重量百分比,比例为稀土10%-30%、白云石粉10%-60%、沸石粉10%-40%、柠檬酸或柠檬酸盐1%-10%、苦土粉5%-10%、膨润土5%-10%,可用于生成稀土过磷酸钙,稀土过磷酸钙与普通过磷酸钙比较,有效磷、游离酸和水份没有改变,分散性提高。CN200710176223.3公开了一种缓释稀土的肥料添加剂及其制备方法。该添加剂至少含有多孔的矿物及在矿物表面或孔隙内部附着的稀土盐,其中多孔矿物包括沸石、珍珠岩、硅藻土、斑脱土、凹凸棒、白云石中至少一种,稀土盐包括硝酸稀土、氯化稀土、硫酸稀土、醋酸稀土和柠檬酸稀土中至少一种,稀土包括镧、铈、镨、钕中至少一种。该添加剂的制备方法是将多孔的矿石粉碎成粒度为20-150目的颗粒,然后放入稀土盐的水溶液中搅拌均匀,在室温-100℃温度下反应5-96小时,然后取出吸附稀土离子的多孔矿物颗粒烘干,即制得缓释稀土的肥料添加剂,本发明简单易行、安全、效果突出、成本低廉,且适合大规模生产。本发明还公开了一种含有上述添加剂的肥料。
以上专利都是将稀土添加剂应用于石油化工、农业等领域。而将稀土元素应用于微生物生化转化反应中的研究很缺乏。
低阶煤炭,是指处于低变质阶段的煤,根据煤化程度,可分为低变质烟煤和褐煤。我国探明煤炭资源储量14842.9亿吨,其中低阶煤占59%,约8757.3亿吨。当前,我国90%以上的低阶煤用作发电、工业锅炉和民用燃料直接燃烧,由此引发一系列严重的生态和环境污染问题,且白白浪费了低阶煤中蕴藏的油、气和化学品资源。2012年,我国煤炭使用对环境PM2.5年均浓度的贡献估算值为56%。这其中,约六成是由煤炭直接燃烧产生的,约四成是由使用煤炭的重点行业排放的。因此,治理燃煤污染,必须改变以往仅将煤炭作为燃料为主的利用方式,将煤炭作为燃料和原料并重分级转化、梯级利用是较为合理的方式。
对于低阶煤炭而言,由于其煤化程度低、挥发分高、水含量高,直接燃烧或气化效率低;而其有机质化学结构中侧链较多,有机质元素组成中氢氧含量较高,如果利用稀土元素帮助微生物转化低阶煤炭和生物质,则可以有 效提升物质利用效率,减少环境污染和生态问题。
发明内容
本发明的目的在于提供一种稀土助剂,将稀土氯化物、混合稀土氯化物、稀土硝酸盐组合而成,作为微生物与待转化物质进行生化反应的助剂,其中,稀土氯化物由氯化镧、氯化铈、氯化镱和氯化钕组成,混合稀土氯化物包括氯化镧铈、氯化镨钕、氯化钐铕钆中的至少一种;稀土硝酸盐包括稀土硝酸镧、稀土硝酸铈、稀土硝酸镱、稀土硝酸钕中的至少一种。
制备得到的稀土助剂,可以显著提升微生物生物转化效率,促进低阶煤炭、生物质转化为生物甲烷、生物氢气、生物乙醇等清洁能源或者黄腐植酸、水溶性腐植酸、苯甲酸、苯甲醛、苯甲醇等高价值化学品,进而实现高碳资源降碳转化,减少高碳能源消耗。
为实现上述目的,本发明提供了一种稀土助剂,按重量份数计,
其中,氯化镧、氯化铈、氯化镱和氯化钕等稀土氯化物中,稀土离子如La
3+、Nd
3+等能增强细胞膜的通透性,使得微生物更好吸收和利用营养物质;而且,稀土元素作为一个辅因子可以影响微生物代谢途径以及代谢过程中的酶,从而增强微生物代谢能力,提高微生物生物转化效率。
所述的混合稀土氯化物包括氯化镧铈、氯化镨钕、氯化钐铕钆。
经实际验证,氯化镧铈、氯化镨钕、氯化钐铕钆均具有高的催化活性,与稀土氯化物复配可以达到协同增效的催化能力。由于稀土矿中的化合物均为混合物,不易分离,其分离成本占纯稀土化合物价格中很大的比例,因此,直接将混合稀土氯化物用作生化反应的催化剂,在工业上将具有重要的实用价值,既可以与稀土氯化物复配提高催化效果,又可以有效降低分离生产的成本。
所述的稀土硝酸盐包括硝酸镧、硝酸铈、硝酸镱、硝酸钕中的至少一种。
有文献报道稀土硝酸盐对大肠杆菌、金黄色葡萄球菌有抑制作用。但经本发明实际研究发现,稀土硝酸盐有利于增强厌氧微生物活性,对厌氧微生物生长有一定的刺激作用,利用这一特性,将稀土硝酸盐与稀土氯化物和混合稀土氯化物复配使用,可以进一步提升微生物参与生化反应的转化效能。而且,稀土硝酸盐相比于稀土氯化物溶解度更强,极易以溶液形式参与反应,活化效果更强,少量添加的条件下,即可达到更好的活化效果。
发明人另验证了稀土氧化物和稀土碳酸盐,两类物质均不溶于水,不能作用于生化反应的特定微生物及其微生物菌群利用微生物的作用促进化学反应,与稀土氯化物也无协同作用。
在一优选的实施方式中,所述生化反应包括特定微生物及其微生物菌群利用微生物的作用进行某种化学反应的过程,优选的,进行微生物转化或水解或产气反应。
生化反应即生物化学反应,就是指在生物体内进行的化学反应,此处指植物、微生物体内进行的化学反应。生化反应需要有酶的催化,包括特定微生物及其微生物菌群利用微生物的作用进行某种化学反应的过程。
在一优选的实施方式中,所述待转化物质包括低阶煤炭和生物质,优选的,所述低阶煤炭包括泥炭、褐煤、低变质烟煤、风化煤和煤矸石。
在一优选的实施方式中,所述微生物包括水解细菌、发酵细菌、产氢细菌和产乙酸菌、产甲烷菌、产乙醇拟杆菌及其菌群。
在一优选的实施方式中,所述微生物与待转化物质进行生化反应方法为,将稀土助剂加入待转化物质和水的反应体系,再添加微生物进行生化反应。
在一优选的实施方式中,使用时,将稀土助剂、待转化物质和水,按质量/质量/体积比为(1-10):100:(200-500)的比例配置成反应体系,再接种微生物即可进行生化反应。
在一优选的实施方式中,反应体系与微生物供体按体积比为(0.1-10):1,优选的,反应体系与微生物供体的体积比为(1-2):1,更优选的,反应体系与微生物供体的体积比为1:1。
在一优选的实施方式中,微生物供体含水率大于40%,优选的,含水率为40-98%。
在一优选的实施方式中,所述的微生物供体为活性污泥。活性污泥是微生物群体及它们所依附的有机物质和无机物质的总称,来自于污水处理厂排出的半固态的剩余污泥。
实验室容器内加水稀释后在密封的厌氧条件下可淘汰好氧菌群,驯化为厌氧活性污泥,包含专性厌氧菌及其菌群、兼性厌氧菌及其菌群,通过厌氧活性污泥中大量的微生物菌群,如水解细菌、发酵细菌、产氢细菌和产乙酸菌、产甲烷菌、产乙醇拟杆菌,使微生物能够快速在发酵过程中繁殖和发酵,极大的提高了厌氧发酵的速率和对原料的利用率,能够保证较高的甲烷产量、氢气产量、较高的原料利用率。剩余污泥驯化为厌氧活性污泥,不需要配制特定的培养基或营养液,得到菌群而不是单一细菌,可以按需要搭配助剂进行微生物生物转化,从而生成清洁能源或高价值化学品。
使用本发明制备的生化反应的助剂,处理污水处理厂的有机废弃物,驯化方式粗放易行,极大降低生产成本,在工业化大规模产业运营中具有极大的成本优势,而且可以减少废弃物排放,有效提高资源利用率。
本发明的另一目的在于提供一种稀土助剂,先将稀土氯化物、混合稀土氯化物、稀土硝酸盐混匀,再进行两步粉碎,制备成稀土助剂超微粉体,密 封备用,即得。
本发明的稀土助剂制备方法简单方便,对生产条件和操作人员没有额外限制要求,工艺精简,尤其适合大规模工业化生产。
为实现上述目的,本发明提供了一种稀土助剂的制备方法,包括以下步骤:
S1.将稀土氯化物、混合稀土氯化物、稀土硝酸盐混匀,粉碎,过40-200目标准筛,得到40-200目稀土助剂粉体;
S2.将稀土助剂粉体超微粉碎3-30分钟,得到稀土助剂粉体超微粉体,即得。
在一优选的实施方式中,步骤S1中使用高速多功能粉碎机粉碎,过400目标准筛;步骤S2中,使用空气分离式超微粉碎机继续进行超微粉碎。
在一优选的实施方式中,所述超微粉体粒径为0.214μm-10μm。
先将稀土组合物机械粉碎,可以将大颗粒矿物粉碎成均匀细致粉体,再利用超微粉碎机,破碎物料颗粒,粉碎到10μm以下,引起稀土助剂的微观结构和表面化学性质发生明显变化,最终制备得到的稀土组合物超微粉体,具有比表面积、孔隙率和表面能大等特点。从而使物料具有高流动性、高溶解性、高吸附性等独特的物理化学性质,能增强生化反应体系微生物细胞膜的通透性,使得微生物更好吸收和利用发酵反应体系的营养物质,满足微生物生长、繁殖的营养需要,进而促进微生物代谢,得到清洁能源和高值化学品。经实际验证,若稀土组合物粒径大于10μm,则催化微生物反应的能力显著下降,化学转化能力变弱,若稀土组合物粒径小于0.214μm,粉碎成本上升,且催化能力无进一步提升,出于成本和效果的考量,将超微粉体粒径限定为0.214μm-10μm。
与现有技术相比,根据本发明的一种稀土助剂及其制备方法具有如下优点:
1、本发明所述用于稀土助剂,以稀土化合物为有效成分进行精确复配,稀土助剂的生物催化性能作用于以有机质和腐植酸为主要成分的低阶煤炭,从而将低阶煤炭特定化学键断裂、解离相应官能团,转化为生物甲烷生物氢气或生物乙醇转化所需微生物的碳源,进而得到相应的清洁能源,还可以将低阶煤炭所含腐植酸的特定化学键断裂、解离相应官能团,转化为黄腐植酸、水溶性腐植酸、苯甲酸、苯甲醛、苯甲醇等高价值化学品,实现低阶煤炭的高碳资源的降碳转化或无碳转化,对中国低阶煤炭资源的高值化利用具有重大意义。
2、本发明所述用于生化反应的稀土助剂,利用稀土助剂各组分之间的相互协同发挥效用,确保在不同的反应体系中,能保持良好的活性,适应各种复杂环境因素,所述稀土助剂针对性强、作用效果明显,可以在温和条件下加速特别的反应,专用于以低阶煤炭如泥炭、褐煤、低变质烟煤、风化煤、煤矸石为原料,生产生物氢气、生物甲烷或生物乙醇等清洁能源或者黄腐植酸、水溶性腐植酸、苯甲酸、苯甲醛、苯甲醇等高价值化学品。
3、本发明所述用于生化反应的稀土助剂的制备方法,仅将组合物充分混合后,二次粉碎成超微粉体即得,制备方法简单,适合大规模工业化生产制备,可以实现大批量连续生产,制备出的稀土助剂简单包装即可直接转化为实际商业产品。
图1是本发明实施例1和对比实验1的甲烷产气量对比曲线图。
图2是本发明实施例2和对比实验2的氢气产气量对比曲线图。
若未特别指明,实施例中所用技术手段为本领域技术人员所熟知的常规手段,所用原料均为市售商品。
除非另有特别说明,本发明中用到的各种原材料、试剂、仪器和设备等均可通过市场购买得到或者可通过现有方法制备得到。
在本发明中,重量份可以是μg、mg、g、kg等本领域公知的重量单位,也可以是其倍数,如1/10、1/100、10倍、100倍等。
本发明实施例中,所用的微生物供体为包头市污水处理厂排出的剩余活性污泥,含水率为60%。
检测方法:
甲烷产气量,通过AMPTSII测定日产甲烷量和总产甲烷量,发酵单元产生的生物甲烷首先通过NaOH吸附单元,最后只有CH
4才能进入气体体积测量单元;pH值:采用雷磁PHS-25pH计测定;脱氢酶活性:采用分光光度法测定;乙酸质量浓度:采用Agilent-1260Infinity高效液相色谱仪测定,色谱柱为Agilent Hi-PlexH(7.7mmX300mm,8μm),检测器为示差检测器,柱温设置为60"C,流动相采用0.005mol/L硫酸溶液,流速为0.5mL/min。
氢气产气量:排水集气法测定氢气产量。
实施例1
本实施例所述稀土助剂包括如下质量含量的组分:
稀土助剂制备方法为:先将上述稀土助剂原料混匀,粉碎,过400目筛,得到稀土助剂粉体;再将稀土助剂粉体超微粉碎3-30分钟,得到稀土助剂粉 体超微粉体,即得。
将60g褐煤粉碎至100目,加入500mL厌氧反应瓶中,添加200mL厌氧活性污泥,再添加按比例称取、混匀的总计3g稀土助剂,补充纯净水直到总反应体系为450mL,调节pH为7.0,在50℃高温进行产甲烷实验,第17天的产气量最多,为176.7mL,35天累积总产气量为1151.6mL。
对比实验1:
厌氧活性污泥+褐煤,不添加稀土助剂
将200mL厌氧活性污泥和60g粉碎至100目的褐煤,不添加稀土助剂,补充纯净水直到总反应体系为450mL,与实施例1同样的方法,调节pH为7.0,在50℃高温进行产甲烷实验,第20天产气量达到最大为144.2mL,累积总产气量为822.5mL。
实施例1和对比实验1的甲烷产气量对比曲线如图1所示。
实施例2
本实施例所述稀土助剂包括如下质量含量的组分:
稀土助剂制备方法同实施例1,
将60g褐煤粉碎至100目,加入500mL厌氧反应瓶中,添加200mL经过 100℃加热30min杀死产甲烷菌的厌氧活性污泥,再添加按比例称取、混匀的总计3g稀土助剂,补充纯净水直到总反应体系为450mL,调节pH为7.0,在50℃进行产氢气实验,产氢气量在第1天达到了最高,产氢气量为93.7mL,之后产氢气量逐步下降,直至停止产氢气,30天累积总产氢气量为262.1mL。
对比实验2:
经过100℃加热30min杀死产甲烷菌的厌氧活性污泥+褐煤,不添加稀土助剂
反应体系中只有纯净水、200mL经过100℃加热30min杀死产甲烷菌的厌氧活性污泥和60g粉碎至100目褐煤,不添加稀土助剂,补充纯净水直到总反应体系为450mL,调节pH为7.0,在50℃进行产氢气实验,产氢气量在第1天达到了最高,产氢气量为33.0mL,之后产氢气量逐步下降,直至停止产氢气,累积总产氢气量为94.8mL。
实施例2和对比实验2的氢气产气量对比曲线如图2所示。
实施例3
本实施例所述稀土助剂包括如下质量含量的组分:
稀土助剂制备方法同实施例1,
粉碎至100目褐煤30g,加入500mL反应瓶中,添加200mL活性污泥,200mL纯净水,再添加按比例称取、混匀的总计1.5g稀土助剂,进行褐煤腐植酸降解实验,在第4天腐植酸浓度达到峰值545.60mg/L,在第4天苯甲酸浓度达到峰值0.5491mg/L,在第3天褐煤苯甲醇浓度达到峰值1.3367mg/L,在第4天苯甲醛浓度达到峰值1.4605mg/L。
对比实验3:厌氧活性污泥+褐煤
反应体系中只有200mL纯净水、200mL活性污泥和30g粉碎至100目褐煤,不添加稀土助剂,进行褐煤腐植酸降解实验,在第4天腐植酸浓度达到峰值435.16mg/L,在第4天苯甲酸浓度达到峰值0.3382mg/L,在第3天褐煤苯甲醇浓度达到峰值1.1367mg/L,在第4天苯甲醛浓度达到峰值1.3634mg/L。
前述对本发明的具体示例性实施方案的描述是为了说明和例证的目的。这些描述并非想将本发明限定为所公开的精确形式,并且很显然,根据上述教导,可以进行很多改变和变化。对示例性实施例进行选择和描述的目的在于解释本发明的特定原理及其实际应用,从而使得本领域的技术人员能够实现并利用本发明的各种不同的示例性实施方案以及各种不同的选择和改变。本发明的范围意在由权利要求书及其等同形式所限定。
Claims (7)
- 一种稀土助剂,其特征在于,由稀土氯化物、混合稀土氯化物、稀土硝酸盐组成,作为微生物与待转化物质进行生化反应的助剂;其中,稀土氯化物由氯化镧、氯化铈、氯化镱和氯化钕组成,混合稀土氯化物包括氯化镧铈、氯化镨钕、氯化钐铕钆中的至少一种;稀土硝酸盐包括硝酸镧、硝酸铈、硝酸镱、硝酸钕中的至少一种。
- 如权利要求1所述的稀土助剂,其特征在于,按重量份数计,氯化镧 5-15份;氯化铈 30-40份;氯化镱 30-40份;氯化钕 20-30份;混合稀土氯化物 1-5份;稀土硝酸盐 1-5份。
- 如权利要求1所述的稀土助剂,其特征在于,所述待转化物质包括低阶煤炭和生物质。
- 如权利要求3所述的稀土助剂,其特征在于,所述低阶煤炭包括泥炭、褐煤、低变质烟煤、风化煤和煤矸石。
- 如权利要求1所述的稀土助剂,其特征在于,使用时,将稀土助剂、待转化物质和水,按质量/质量/体积比为(1-10):100:(200-500)的比例,配置成反应体系,再接种微生物即可提高生化反应能力。
- 如权利要求1所述的稀土助剂的制备方法,其特征在于,包括以下步骤:S1.将稀土氯化物、混合稀土氯化物、稀土硝酸盐混匀,粉碎,过400目筛,得到稀土助剂粉体;S2.将稀土助剂粉体超微粉碎3-30分钟,得到稀土助剂粉体超微粉体,即得。
- 如权利要求6所述的稀土助剂的制备方法,其特征在于,所述超微粉体粒径为0.214μm-10μm。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111164384.7A CN113817781B (zh) | 2021-09-30 | 2021-09-30 | 一种稀土助剂及其制备方法 |
CN202111164384.7 | 2021-09-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023051150A1 true WO2023051150A1 (zh) | 2023-04-06 |
Family
ID=78919889
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/116440 WO2023051150A1 (zh) | 2021-09-30 | 2022-09-01 | 一种稀土助剂及其制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113817781B (zh) |
WO (1) | WO2023051150A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113817781B (zh) * | 2021-09-30 | 2024-03-26 | 内蒙古科技大学 | 一种稀土助剂及其制备方法 |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6312604B1 (en) * | 1998-10-23 | 2001-11-06 | Zodiac Pool Care, Inc. | Lanthanide halide water treatment compositions and methods |
CN101172891A (zh) * | 2007-10-23 | 2008-05-07 | 北京有色金属研究总院 | 一种缓释稀土的肥料添加剂及其制备方法 |
CN101560539A (zh) * | 2008-04-18 | 2009-10-21 | 华东理工大学 | 稀土元素在红霉素发酵中的用途 |
CN103820508A (zh) * | 2014-01-27 | 2014-05-28 | 广东省微生物研究所 | 稀土元素在地衣芽孢杆菌发酵产生γ-聚谷氨酸中的应用 |
CN103877988A (zh) * | 2012-12-20 | 2014-06-25 | 大连凯特利催化工程技术有限公司 | 一种宽温高效氨选择性催化还原脱除NOx催化剂及其制备方法 |
KR20180134061A (ko) * | 2017-06-08 | 2018-12-18 | 주식회사 우지 | 희토류 원소를 함유한 동물 사료용 사료첨가제 및 그의 제조방법 |
CN109761657A (zh) * | 2019-03-19 | 2019-05-17 | 湖州灵粮生态农业有限公司 | 一种微生物腐植酸肥料及制备方法 |
CN110066742A (zh) * | 2019-05-28 | 2019-07-30 | 内蒙古科技大学 | 一种用于低阶煤生产生物燃气的复合微生物菌剂及其应用 |
CN113121080A (zh) * | 2021-04-25 | 2021-07-16 | 四川瑞泽科技有限责任公司 | 一种生物刺激底泥修复剂及其制备方法 |
CN113817781A (zh) * | 2021-09-30 | 2021-12-21 | 内蒙古科技大学 | 一种稀土助剂及其制备方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100120104A1 (en) * | 2008-11-06 | 2010-05-13 | John Stuart Reed | Biological and chemical process utilizing chemoautotrophic microorganisms for the chemosythetic fixation of carbon dioxide and/or other inorganic carbon sources into organic compounds, and the generation of additional useful products |
US20120223022A1 (en) * | 2011-03-01 | 2012-09-06 | Molycorp Minerals, Llc | Contaminant removal from waters using rare earths |
CN104437563A (zh) * | 2013-09-25 | 2015-03-25 | 中国石油化工股份有限公司 | 一种煤催化气化催化剂及其制备方法和用途 |
CN104959139A (zh) * | 2015-06-15 | 2015-10-07 | 昆明理工大学 | 一种催化剂及其应用 |
CN106587559A (zh) * | 2016-12-29 | 2017-04-26 | 王恩琦 | 一种污泥厌氧消化的方法 |
CN108773991B (zh) * | 2018-07-03 | 2020-12-18 | 界首市富涛家庭农场 | 一种提升沼气产气量的方法 |
CN110499339B (zh) * | 2019-08-19 | 2021-08-31 | 内蒙古科技大学 | 提升厌氧消化产甲烷效率的方法 |
-
2021
- 2021-09-30 CN CN202111164384.7A patent/CN113817781B/zh active Active
-
2022
- 2022-09-01 WO PCT/CN2022/116440 patent/WO2023051150A1/zh active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6312604B1 (en) * | 1998-10-23 | 2001-11-06 | Zodiac Pool Care, Inc. | Lanthanide halide water treatment compositions and methods |
CN101172891A (zh) * | 2007-10-23 | 2008-05-07 | 北京有色金属研究总院 | 一种缓释稀土的肥料添加剂及其制备方法 |
CN101560539A (zh) * | 2008-04-18 | 2009-10-21 | 华东理工大学 | 稀土元素在红霉素发酵中的用途 |
CN103877988A (zh) * | 2012-12-20 | 2014-06-25 | 大连凯特利催化工程技术有限公司 | 一种宽温高效氨选择性催化还原脱除NOx催化剂及其制备方法 |
CN103820508A (zh) * | 2014-01-27 | 2014-05-28 | 广东省微生物研究所 | 稀土元素在地衣芽孢杆菌发酵产生γ-聚谷氨酸中的应用 |
KR20180134061A (ko) * | 2017-06-08 | 2018-12-18 | 주식회사 우지 | 희토류 원소를 함유한 동물 사료용 사료첨가제 및 그의 제조방법 |
CN109761657A (zh) * | 2019-03-19 | 2019-05-17 | 湖州灵粮生态农业有限公司 | 一种微生物腐植酸肥料及制备方法 |
CN110066742A (zh) * | 2019-05-28 | 2019-07-30 | 内蒙古科技大学 | 一种用于低阶煤生产生物燃气的复合微生物菌剂及其应用 |
CN113121080A (zh) * | 2021-04-25 | 2021-07-16 | 四川瑞泽科技有限责任公司 | 一种生物刺激底泥修复剂及其制备方法 |
CN113817781A (zh) * | 2021-09-30 | 2021-12-21 | 内蒙古科技大学 | 一种稀土助剂及其制备方法 |
Non-Patent Citations (4)
Title |
---|
DONG, LICHAO ET AL.: "Effect of Rare Earth Compounds on Domestication of Methane Inoculum in Lignite", JOURNAL OF THE CHINESE SOCIETY OF RARE EARTHS, vol. 38, no. 1, 29 February 2020 (2020-02-29), pages 112 - 120, XP009545162 * |
HAO, SIWEN ET AL.: "Enhanced Methane Production from Peat with Rare Earth Compounds", JOURNAL OF THE CHINESE SOCIETY OF RARE EARTHS, vol. 39, no. 2, 30 April 2021 (2021-04-30), pages 294 - 301, XP009545161 * |
LIN, SHIXIN ET AL.: "Comparison of the effects of lanthanum, cerium and praseodymium on rumen fermentation, nutrient digestion and plasma biochemical parameters in beef cattle", ARCHIVES OF ANIMAL NUTRITION, vol. 69, no. 1, 9 January 2015 (2015-01-09), pages 46 - 56, XP009544969, DOI: 10.1080/1745039X.2014.998458 * |
MA, LITONG ET AL.: "Effect of Rare Earth Elements on Lignite Biomethanation", COAL CONVERSION, vol. 43, no. 6, 30 November 2020 (2020-11-30), pages 33 - 39, XP009545160 * |
Also Published As
Publication number | Publication date |
---|---|
CN113817781A (zh) | 2021-12-21 |
CN113817781B (zh) | 2024-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ajay et al. | Review of impact of nanoparticle additives on anaerobic digestion and methane generation | |
Zhong et al. | Magnetite nanoparticles enhanced glucose anaerobic fermentation for bio-hydrogen production using an expanded granular sludge bed (EGSB) reactor | |
Wu et al. | Evaluating the effect of biochar on mesophilic anaerobic digestion of waste activated sludge and microbial diversity | |
Paritosh et al. | Additives as a support structure for specific biochemical activity boosts in anaerobic digestion: a review | |
Zhao et al. | Comparison of mesophilic and thermophilic biohydrogen production amended by nickel-doped magnetic carbon | |
Lu et al. | Enhanced production of short-chain fatty acids from waste activated sludge by addition of magnetite under suitable alkaline condition | |
Di et al. | Effect of nano-Fe3O4 biochar on anaerobic digestion of chicken manure under high ammonia nitrogen concentration | |
CN109626375B (zh) | 一种锰掺杂磁性炭及其制备和在暗发酵制氢中的应用 | |
Jin et al. | Role and significance of co-additive of biochar and nano-magnetite on methane production from waste activated sludge: non-synergistic rather than synergistic effects | |
Zhang et al. | Improved biohydrogen evolution through calcium ferrite nanoparticles assisted dark fermentation | |
Zheng et al. | Development of an oyster shell and lignite modified zeolite (OLMZ) fixed bioreactor coupled with intermittent light stimulation for high efficient ammonium-rich anaerobic digestion process | |
WO2023051150A1 (zh) | 一种稀土助剂及其制备方法 | |
Tratzi et al. | Sustainable additives for the regulation of NH3 concentration and emissions during the production of biomethane and biohydrogen: a review | |
Nie et al. | Chitosan-Fe3O4 composites enhance anaerobic digestion of liquor wastewater under acidic stress | |
Feng et al. | A review of application of combined biochar and iron-based materials in anaerobic digestion for enhancing biogas productivity: Mechanisms, approaches and performance | |
Yang et al. | Enhanced thermophilic dark fermentation of hydrogen production from food waste by Fe-modified biochar | |
NL2026413A (en) | Method for anaerobic digestion of organic wastes | |
CN112142284A (zh) | 一种提高污泥厌氧消化甲烷产气量同时降低重金属生态毒性的方法 | |
CN109626376B (zh) | 一种钴掺杂磁性炭及其制备和在厌氧消化中的应用 | |
CN114410695A (zh) | 一种羟基磷灰石及其制备方法和在暗发酵制氢中的应用 | |
Huang et al. | Improving methane production from hydrogenogenic effluent with magnetic leaf biochar | |
Xu et al. | Granulation of partial denitrification sludge: Advances in mechanism understanding, technologies development and perspectives | |
Liu et al. | Enhanced performances of anaerobic digestion processes treating organic wastes: Role of iron and carbon based nanomaterials | |
Zhang et al. | Harnessing Carbonaceous materials' multifaceted roles for enhanced anaerobic digestion performance | |
Ji et al. | Comprehensive insight into synergistic enhancement of nickel and iron doped lanthanum manganese oxide for biohydrogen production via anaerobic fermentation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22874541 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22874541 Country of ref document: EP Kind code of ref document: A1 |