WO2023051031A1 - 连续纤维多层蜂窝夹层板及其一体化成形方法 - Google Patents
连续纤维多层蜂窝夹层板及其一体化成形方法 Download PDFInfo
- Publication number
- WO2023051031A1 WO2023051031A1 PCT/CN2022/110743 CN2022110743W WO2023051031A1 WO 2023051031 A1 WO2023051031 A1 WO 2023051031A1 CN 2022110743 W CN2022110743 W CN 2022110743W WO 2023051031 A1 WO2023051031 A1 WO 2023051031A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- honeycomb
- panel
- path
- core
- layer
- Prior art date
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 78
- 238000000034 method Methods 0.000 title claims abstract description 28
- 238000004519 manufacturing process Methods 0.000 claims abstract description 21
- 239000002131 composite material Substances 0.000 claims abstract description 16
- 238000010146 3D printing Methods 0.000 claims abstract description 9
- 239000011159 matrix material Substances 0.000 claims abstract description 4
- 239000010410 layer Substances 0.000 claims description 86
- 239000012792 core layer Substances 0.000 claims description 9
- 238000005516 engineering process Methods 0.000 abstract description 4
- 230000010354 integration Effects 0.000 abstract description 2
- 239000007921 spray Substances 0.000 abstract 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 8
- 239000004917 carbon fiber Substances 0.000 description 8
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 239000004760 aramid Substances 0.000 description 2
- 229920003235 aromatic polyamide Polymers 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229920000747 poly(lactic acid) Polymers 0.000 description 2
- 239000004626 polylactic acid Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/171—Processes of additive manufacturing specially adapted for manufacturing multiple 3D objects
- B29C64/176—Sequentially
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B3/00—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
- B32B3/10—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
- B32B3/12—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by a layer of regularly- arranged cells, e.g. a honeycomb structure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/02—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B5/00—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
- B32B5/22—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
- B32B5/24—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
- B32B5/26—Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y50/00—Data acquisition or data processing for additive manufacturing
- B33Y50/02—Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29L—INDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
- B29L2031/00—Other particular articles
- B29L2031/60—Multitubular or multicompartmented articles, e.g. honeycomb
- B29L2031/608—Honeycomb structures
Definitions
- the invention belongs to the field of composite material design and manufacture, and relates to a continuous fiber multilayer honeycomb sandwich panel and an integrated forming method thereof.
- honeycomb sandwich panels have the advantages of light weight and high bending stiffness, and are widely used in aerospace, automobile manufacturing and other fields.
- the honeycomb sandwich panel is composed of two parts: the panel and the core.
- the panel must have good tensile and compressive properties to withstand bending loads, while the core should have a good ability to withstand shear loads, and at the same time ensure that the overall structure have a sufficiently small density.
- high-end equipment puts forward higher requirements for structural performance, how to improve various mechanical performance indicators of sandwich panels without increasing the overall structural density has become the key to the manufacture of honeycomb sandwich panels.
- honeycomb sandwich panels include aluminum honeycomb panels and aramid paper honeycomb panels.
- Metal honeycomb panels have high performance but high density
- aramid paper honeycomb panels have low density but poor performance.
- the traditional manufacturing method usually adopts a split manufacturing process of core manufacturing, cutting, core/board bonding, and curing. Not only the manufacturing cycle is long, but also a large number of manufacturing defects are prone to occur, which seriously reduces the mechanical properties of the honeycomb sandwich panel.
- Yuan Jian et al. invented a carbon fiber honeycomb sandwich panel.
- the upper panel, lower panel and honeycomb core of the honeycomb sandwich panel are all made of carbon fiber composite materials, and each honeycomb core is integrated.
- Laying and forming guarantees the continuity of fibers to a certain extent, but it does not realize the integrated forming of the entire honeycomb panel, and still needs to be bonded and cured, and does not get rid of the traditional manufacturing method.
- Cheng Yunyong of Northwestern Polytechnical University and others invented a continuous carbon fiber reinforced honeycomb structure 3D printing preparation method, and proposed the main structure and printing parameters of the continuous carbon fiber 3D printing honeycomb structure printer, which solved the problem that the existing technology cannot be 3D printed continuously.
- the problem of carbon fiber reinforced honeycomb structure however, this method does not point out the difference between the forming mechanism of the honeycomb sandwich panel and the core, and lacks the specific forming process and forming method of the 3D printed honeycomb sandwich panel.
- the object of the present invention is to provide a continuous fiber composite multi-layer honeycomb sandwich panel and its integrated forming method to solve the above problems.
- a continuous fiber multi-layer honeycomb sandwich panel is characterized in that the multi-layer honeycomb sandwich panel comprises a lower panel 1, a honeycomb core 2, a middle panel 3 and an upper panel 4; the upper panel 4 and the lower panel 1 are respectively located At the upper and lower ends of the honeycomb core, at least 3 layers of fiber layers are laid, and the laying path adopts a one-way forming path or a multi-directional forming path; the honeycomb core 2 fiber layers are laid at least 2 layers, and the symmetrical path forming method or unit-by-unit forming is adopted.
- the middle plate 3 is located between two layers of honeycomb cores 2, and its fiber layers are laid at least 2 layers, and the laying path adopts a multi-directional forming path; the lower panel 1, the honeycomb core 2, the middle panel 3 and the upper panel 4 are all It is formed by 3D printing using continuous fiber composite materials.
- the multi-layer honeycomb sandwich panel is a sandwich panel composed of multi-layer panels and multi-layer cores.
- the lower panel 1, the honeycomb core 2 of each layer, the middle panel 3 and the upper panel 4 of the multilayer honeycomb sandwich panel are all made of continuous fiber composite materials.
- the honeycomb core 2 is laid in at least two layers, and different core layers have different core sizes and different core types; the core types include hexagonal, quadrilateral, triangular and circular, and the core size is greater than 2mm.
- An integrated forming method for a continuous fiber multilayer honeycomb sandwich panel characterized in that it comprises the following steps:
- Step 1 The continuous fiber and the matrix material form a continuous multi-layer fiber multifilament.
- the lower panel 1 of the honeycomb sandwich panel is formed on the working platform; when the honeycomb sandwich panel has unidirectional performance requirements, the lower panel 1 is selected.
- One-way forming path the forming path of each layer of fiber multifilaments is along the direction required for high performance; otherwise, the lower panel 1 selects a multi-directional forming path, and each layer of fiber multifilaments adopts a different path forming direction, and the angle between each path changes;
- the nozzle of the forming equipment forms the honeycomb core layer on the completed lower panel 1 with the prescribed honeycomb path.
- the honeycomb core 2 is formed by stacking layers of multi-layer fibers and multifilaments; when the honeycomb sandwich panel has unidirectional performance When required, the honeycomb core 2 adopts a symmetrical path forming method; otherwise, the honeycomb core 2 adopts a unit-by-unit forming path;
- Step 3 Form the intermediate plate 3 on the completed honeycomb core 2.
- the intermediate plate 3 is laid by multi-layer fiber multifilaments; in order to ensure the accuracy of the periphery of the intermediate plate 3, the nozzles of the forming equipment are first laid according to the "back"-shaped path The mechanism lays at least one layer of fiber multifilaments on the honeycomb core 2, and then each layer of fiber multifilaments is laid on a multi-directional forming path, and the angles between the paths change to complete the forming of the middle plate 3;
- Step 4 then repeat step 2, if the number of core layers exceeds 2 layers, then alternately perform step 3 and step 2 until the uppermost honeycomb core 2 is formed;
- Step 5 Lay at least one layer of fiber multifilaments on the uppermost honeycomb core 2 in the shape of a "back", and then manufacture the upper panel 4; the upper panel 4 is formed by laying multiple layers of fiber multifilaments; when the honeycomb When the sandwich panel has unidirectional performance requirements, the upper panel 4 selects a unidirectional forming path, and the forming path of each layer of fiber multifilaments is along the direction of high performance requirements; otherwise, the upper panel 4 selects a multi-directional forming path, and each layer of fiber multifilaments uses For different path forming directions, the angle between each path changes; until the forming of the entire multi-layer honeycomb sandwich panel is completed.
- step 3 and step 5 when the aspect ratio of the honeycomb sandwich panel is greater than 3:2, the middle plate 3 and the upper panel 4 are laid according to the "back" font path laying mechanism; when the honeycomb sandwich panel When the aspect ratio is less than 3:2, the middle panel 3 and the upper panel 4 are paved by selecting multiple "back"-shaped paths according to the "back"-shaped path laying mechanism.
- angles of the different path forming directions are chosen to vary by 90° or 45°.
- the present invention combines the manufacture of multi-layer honeycomb sandwich panels with continuous fiber composite material 3D printing technology, which breaks away from the limitations of traditional manufacturing methods that are complicated in process and difficult to manufacture complex honeycomb structures, and realizes the integration of multi-layer honeycomb sandwich panel panels and cores Chemical forming avoids damage to the sandwich panel under multiple processes, reduces the occurrence of processing defects, improves the overall performance of the structure, and greatly improves production efficiency.
- the present invention uses the continuous fiber composite material as the material for the panel and the core of the sandwich panel, realizes the integrated manufacture of the panel and the core, and improves the overall strength of the structure while ensuring the lightweight of the structure.
- Fig. 1 is the structural representation of continuous fiber multilayer honeycomb sandwich panel of the present invention
- Fig. 2 is the flow chart of the integral forming method of continuous fiber multilayer honeycomb sandwich panel of the present invention
- Fig. 3 (a) is the schematic diagram of the unidirectional forming path of the present invention.
- Figure 3 (b) is a schematic diagram of the multi-directional forming path of the present invention.
- Figure 4(a) is a schematic diagram of the symmetrical forming path of the honeycomb core
- Figure 4(b) is a schematic diagram of the cell-by-cell forming path of the honeycomb core
- Fig. 5 (a) is a "back" shape path schematic diagram of the present invention.
- Fig. 5 (b) is a schematic diagram of two "back" shaped paths of the present invention.
- Fig. 6 is a comparison chart of the compressive strength of the continuous fiber multilayer honeycomb panel of the present invention and other honeycomb panels.
- the multilayer honeycomb sandwich panel includes a lower panel 1, a honeycomb core 2, a middle panel 3 and an upper panel 4; the upper panel 4 and the lower panel 1 are respectively located For the upper and lower ends of the honeycomb sandwich panel, at least 3 layers of fiber layers are laid, and the laying path adopts a unidirectional forming path or a multi-directional forming path; the 2 fiber layers of the honeycomb core are laid at least 2 layers, and the symmetrical path forming method or Unit-by-unit forming path method; the middle plate 3 is located between two layers of honeycomb cores 2, and its fiber layers are laid at least 2 layers, and the laying path adopts a multi-directional forming path; the lower panel 1, the honeycomb core 2, the middle plate 3 and the upper Panel 4 is formed by 3D printing using continuous fiber composite material.
- the multi-layer honeycomb sandwich panel is a sandwich panel composed of multi-layer panels and multi-layer cores.
- the lower panel 1, the honeycomb core 2 of each layer, the middle panel 3 and the upper panel 4 of the multilayer honeycomb sandwich panel are all made of continuous fiber composite materials.
- the honeycomb core 2 is laid in at least two layers, and different core layers have different core sizes and different core types; the core types include hexagonal, quadrilateral, triangular and circular, and the core size is greater than 2mm.
- 1K continuous carbon fiber and polyetheretherketone wire are used as raw materials to form a three-layer honeycomb sandwich panel with a length of 200 mm and a width of 75 mm, and the overall performance of the sandwich panel in the x direction is high.
- the forming speed is set to 200mm/min
- the heating temperature of the nozzle of the forming equipment is 400°C
- the diameter of the wire outlet is 0.8mm.
- Step 1 The continuous fiber and matrix material are impregnated in the nozzle of the forming equipment, and then the lower panel 1 of the honeycomb sandwich panel is formed on the surface of the workbench through the silk outlet.
- the lower panel 1 is composed of three layers of fibers stacked. The performance requirements of the panel in the x direction is higher, so the forming path of each layer is along the x direction, as shown in Fig. 3(a);
- step 2 the nozzle of the forming equipment forms the honeycomb core 2 on the completed lower panel 1 with the specified honeycomb path. Since the performance requirements of the core in the x direction are relatively high, in order to ensure that the fibers are distributed along the x direction as much as possible, the honeycomb core 2 The path is formed symmetrically along the y direction, as shown in Figure 4(a);
- Step 3 forming the middle plate 3 on the completed honeycomb core 2, the middle plate 3 is formed by stacking two layers of fibers, the aspect ratio of the face plate is greater than 3:2, in order to ensure the accuracy of the periphery of the face plate, as shown in Figure 5(a)
- the nozzle of the forming equipment first directly lays a layer of fibers on the honeycomb core 2 according to the "back" shape path, and then lays a layer of fibers distributed along the x direction to complete the forming of the middle plate 3;
- Step 4 then repeat step 2 to form the second layer of honeycomb core, and then alternately perform steps 3 and 2 to complete the forming of the three-layer honeycomb core 2;
- Step 5 the upper panel 4 is stacked by 3 layers of fibers, and a layer of fibers is first laid on the uppermost honeycomb core 2 in a "back"-shaped path.
- the panel has higher performance requirements in the x direction, and the next two layers are Laying along the forming path along the x direction completes the forming of the entire multi-layer honeycomb sandwich panel.
- the prepreg wire of continuous carbon fiber reinforced polylactic acid is used as the raw material, and the integrated forming of the double-layer honeycomb sandwich panel with a length of 200mm and a width of 160mm is carried out, and the sandwich panel has high requirements on the performance of all directions .
- the forming speed is set to 240 mm/min
- the heating temperature of the nozzle of the forming equipment is 210° C.
- the diameter of the wire outlet is 1 mm.
- Step 1 After the continuous carbon fiber reinforced polylactic acid wire is heated by the nozzle of the forming equipment, the lower panel 1 of the honeycomb sandwich panel is formed on the surface of the workbench.
- the lower panel 1 is composed of 4 layers of fibers stacked, which has high requirements for performance in all directions. Fiber The distribution directions are 0°, 45°, 90°, 135°;
- Step 2 The nozzle of the forming equipment forms the honeycomb core layer 2 on the completed lower panel 1 with the specified honeycomb path.
- the performance of the honeycomb core 2 in all directions has high requirements.
- the path is shaped unit by unit, as shown in Figure 4(b);
- Step 3 form the middle plate 3 on the completed honeycomb core 2, the middle plate 3 is stacked by 3 layers of fibers, the aspect ratio of the face plate is less than 3:2, in order to ensure the accuracy of the periphery of the face plate, as shown in Figure 5(b)
- the nozzle of the forming equipment first directly lays a layer of fibers on the honeycomb core 2 according to the double "back" path, and then lays the layers according to the fiber directions of 0° and 90° to complete the forming of the middle plate 3;
- Step 4 then repeat step 2 to complete the forming of the uppermost honeycomb core 2;
- Step 5 the upper panel 4 is made of 4 layers of fibers stacked, and a layer of fibers is laid on the uppermost honeycomb core 2 in a double "back" path, because the panel has high requirements for performance in all directions, as shown in the figure As shown in 3b), continue laying according to the fiber distribution directions of 0°, 45°, and 90°, respectively, to complete the forming of the entire multi-layer honeycomb sandwich panel.
- a continuous fiber composite multilayer honeycomb sandwich panel and its integrated forming method according to the present invention apply continuous fiber composite material 3D printing technology to the manufacture of multilayer honeycomb sandwich panels, and realize multilayer honeycomb sandwich panel panels and honeycomb cores
- the integrated forming of the son simplifies the production process and improves the production efficiency.
- the multi-layer honeycomb sandwich panel manufactured by this method greatly improves the overall strength of the structure while ensuring the lightweight of the structure.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Optics & Photonics (AREA)
- Laminated Bodies (AREA)
Abstract
本发明属于复合材料设计制造领域,公开了一种连续纤维多层蜂窝夹层板及其一体化成形方法,多层蜂窝夹层板包括下面板、蜂窝芯子、中间板和上面板,上、下面板分别位于蜂窝夹层板的上下两端,中间板位于两层蜂窝芯子之间,夹层板整体采用连续纤维复合材料经3D打印实现一体化成形。制造过程中连续纤维与基体材料经设备喷头加热后连续挤出成形,喷头在工作台表面成形蜂窝夹层板的下面板,然后在下面板上进行蜂窝芯子的成形,随后在蜂窝芯子上成形中间板,之后多次进行蜂窝芯子和中间板的成形,最后在最上层的蜂窝芯子上成形蜂窝夹层板的上面板。本发明通过将连续纤维复合材料与3D打印技术相结合,实现了多层蜂窝夹层板质量一体化成形。
Description
本发明属于复合材料设计制造领域,涉及一种连续纤维多层蜂窝夹层板及其一体化成形方法。
蜂窝夹层板具有质量轻、弯曲刚度大等优势,广泛应用于航空航天,汽车制造等领域。蜂窝夹层板由面板和芯子两部分组成,面板需具有良好的拉伸压缩性能,用于承受弯曲载荷,而芯子则应具有较好的承受剪切载荷的能力,同时还要保证整体结构具有足够小的密度。随着高端装备对结构性能提出了更高要求,如何在不增加整体结构密度的前提下,提高夹层板的各项力学性能指标,成为蜂窝夹层板制造的关键。
目前常用的蜂窝夹层板有铝蜂窝板和芳纶纸蜂窝板,金属蜂窝板性能高但密度较大,芳纶纸蜂窝板虽然密度小但其性能较差。并且传统制造方式通常采用芯子制造、切割,芯/板粘接、固化的分体式制造工艺,不仅制造周期长,还容易产生大量制造缺陷,严重降低蜂窝夹层板的力学性能。
据此,众多学者开展了广泛研究,袁健等发明了一种碳纤维蜂窝夹层板,蜂窝夹层板的上面板、下面板和蜂窝芯均采用碳纤维复合材料,并且实现了每个蜂窝芯子的一体铺设成形,一定程度上保证了纤维的连续性,但其并没有实现整个蜂窝板的一体化成形,且仍需要进行粘接固化,没有摆脱传统的制造方式。西北工业大学程云勇等发明了一种连续碳纤维增强蜂窝结构的3D打印制备方法,提出了连续碳纤维3D打印蜂窝结构打印机的主要结构和各项打印参数,一定程度上解决了现有技术无法3D打印连续碳纤维增强蜂窝结构的问题,然而该方法没有指出蜂窝夹层板面板和芯子成形机制的区别,并且缺少3D打印蜂窝夹层板具体的成形过程和成形方法。
本发明的目的在于提供一种连续纤维复合材料多层蜂窝夹层板及其一体化成形方法,以解决上述问题。
一种连续纤维多层蜂窝夹层板,其特征在于,该多层蜂窝夹层板包括下面板1、蜂窝芯子2、中间板3和上面板4;上面板4和下面板1分别位于蜂窝夹层板的上下两端,二者纤维层数均至少铺设3层,铺设路径采用单向成型路径或多向成型路径;蜂窝芯子2纤维层数至少铺设2层,采用对称路径成形方式或逐单元成形路径方式;中间板3位于两层蜂窝芯子2之间,其纤维层数至少铺设2层,铺设路径采用多向成形路径;下面板1、蜂窝芯子2、中间板3和上面板4均采用连续纤维复合材料经3D打印成形。
多层蜂窝夹层板是由多层面板和多层芯子组成的夹层板。
多层蜂窝夹层板的下面板1、各层蜂窝芯子2、中间板3和上面板4均采用连续纤维复合材料制成。
所述蜂窝芯子2至少铺设两层,不同芯子层为不同芯子尺寸和不同芯子类型;芯子类型包括六边形、四边形、三角形和圆形,芯子尺寸大于2mm。
一种连续纤维多层蜂窝夹层板的一体化成形方法,其特征在于,包括以下步骤:
步骤1、连续纤维与基体材料组成连续多层纤维复丝,经成形设备喷头加热后在工作平台上成形蜂窝夹层板的下面板1;当蜂窝夹层板具有单向性能要求时,下面板1选择单向成形路径,每层纤维复丝的成形路径均沿高性能要求方向;否则,下面板1选择多向成形路径,每层纤维复丝采用不同的路径成形方向,各路径间呈角度变化;
步骤2、成形设备喷头以规定的蜂窝状路径在已完成的下面板1上成形蜂窝芯子层,蜂窝芯子2由多层纤维复丝层层堆积而成;当蜂窝夹层板具有单向性能要求时,蜂窝芯子2采用对称路径成形方式;否则,蜂窝芯子2采用逐单元成形路径方式;
步骤3、在已完成的蜂窝芯子2上成形中间板3,中间板3由多层纤维复丝铺设而成;为保证中间板3外围的精度,成形设备喷头先按照“回”字形路径铺设机制在蜂窝芯子2上铺设至少一层纤维复丝,之后每层纤维复丝选择多向成形路径铺设,各路径间呈角度变化,完成中间板3的成形;
步骤4、之后重复步骤2,如果芯子层数超过2层,则不断交替进行步骤3和步骤2,直到最上层的蜂窝芯子2成形完成;
步骤5、在最上层的蜂窝芯子2上先以“回”字形路径铺设至少一层纤维复丝,之后进行上面板4的制造;上面板4由多层纤维复丝铺设而成;当蜂窝夹层板具有单向性能要求时,上面板4选择单向成形路径,每层纤维复丝的成形路径均沿高性能要求方向;否则,上面板4选择多向成形路径,每层纤维复丝采用不同的路径成形方向,各路径间呈角度变化;直至完成整个多层蜂窝夹层板的成形。
所述步骤3和步骤5中,当蜂窝夹层板长宽比大于3:2时,中间板3和上面板4按照“回”字形路径铺设机制选择一个“回”字形路径铺设;当蜂窝夹层板长宽比小于3:2时,中间板3和上面板4按照“回”字形路径铺设机制选择多个“回”字形路径相连铺设。
所述步骤1至步骤5中,不同路径成形方向的角度选择成90°变化或45°变化。
本发明将多层蜂窝夹层板的制造与连续纤维复合材料3D打印技术相结合,摆脱了传统制造方式工艺复杂,难以制造复杂蜂窝结构的限制,实现了多层蜂窝夹层板面板和芯子的一体化成形,避免了多道工序下对夹层板的损伤,减少了加工缺陷的产生,提升了结构的整体性能,同时也极大地提高了生产效率。
另一方面,本发明使用连续纤维复合材料作为夹层板面板和芯子的用材,实现了面板和芯子的同材一体化制造,在保证了结构轻量化的同时提高了结构的整体强度。
图1为本发明的连续纤维多层蜂窝夹层板结构示意图;
图2为本发明连续纤维多层蜂窝夹层板一体化成形方法流程图;
图3(a)为本发明的单向成形路径示意图;
图3(b)为本发明的多向成形路径示意图;
图4(a)为蜂窝芯子对称成形路径示意图;
图4(b)为蜂窝芯子逐单元成形路径示意图;
图5(a)为本发明的一个“回”形路径示意图;
图5(b)为本发明的双个“回”形路径示意图;
图6为本发明连续纤维多层蜂窝板与其他蜂窝板的压缩强度对比图。
下面结合附图和实施例对本发明进一步说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实例中的特征可以相互任意组合。
实施例一
一种连续纤维复合材料多层蜂窝夹层板的一体化成形方法,该多层蜂窝夹层板包括下面板1、蜂窝芯子2、中间板3和上面板4;上面板4和下面板1分别位于蜂窝夹层板的上下两端,二者纤维层数均至少铺设3层,铺设路径采用单向成型路径或多向成型路径;蜂窝芯子2纤维层数至少铺设2层,采用对称路径成形方式或逐单元成形路径方式;中间板3位于两层蜂窝芯子2之间,其纤维层数至少铺设2层,铺设路径采用多向成形路径;下面板1、蜂窝芯子2、中间板3和上面板4均采用连续纤维复合材料经3D打印成形。
多层蜂窝夹层板是由多层面板和多层芯子组成的夹层板。
多层蜂窝夹层板的下面板1、各层蜂窝芯子2、中间板3和上面板4均采用连续纤维复合材料制成。
所述蜂窝芯子2至少铺设两层,不同芯子层为不同芯子尺寸和不同芯子类型;芯子类型包括六边形、四边形、三角形和圆形,芯子尺寸大于2mm。
在本实施例中,采用1K连续碳纤维和聚醚醚酮丝材作为原材料,进行长200mm,宽75mm三层蜂窝夹层板的一体化成形,且该夹层板整体对x方向的性能要求高。
在本实施例中,设置成形速度为200mm/min,成形设备喷头加热温度为400℃,出丝口直径为0.8mm.
本实施例多层蜂窝夹层板的一体化成形方法的具体步骤如下:
步骤1,连续纤维与基体材料在成形设备喷头内浸渍后经出丝口在工作台表面成形蜂窝夹层板的下面板1,下面板1由3层纤维堆叠而成,面板对x方向的性能要求较高,因此每层的成形路径均沿x方向,如图3(a)所示;
步骤2,成形设备喷头以规定的蜂窝状路径在已完成的下面板1上成形蜂窝芯子2,由于芯子x方向的性能要求较高,为保证纤维尽可能沿x方向分布,蜂窝芯子2路径采用沿y方向对称成形的方式,如图4(a)所示;
步骤3,在已完成的蜂窝芯子2上成形中间板3,中间板3由两层纤维堆叠而成,面板长宽比大于3:2,为保证面板外围的精度,如图5(a)所示,成形设备喷头先按照“回”字形路径在蜂窝芯子2上直接铺设一层纤维,之后再铺设一层沿x方向分布的纤维,完成中间板3的成形;
步骤4,之后重复步骤2,成形第二层蜂窝芯子,再交替进行步骤3和步骤2,完成三层蜂窝芯子2的成形;
步骤5,上面板4由3层纤维堆叠而成,在最上层的蜂窝芯子2上先以“回”字形路径铺设一层纤维,面板对x方向有较高性能要求,之后的两层均采用沿x方向的成形路径铺设,完成整个多层蜂窝夹层板的成形。
实施例二
在本实施例中,采用连续碳纤维增强聚乳酸的预浸丝材作为原材料,进行长200mm,宽160mm双层蜂窝夹层板的一体化成形,且该夹层板对各方向的性能均有较高要求。
在本实施例中,设置成形速度为240mm/min,成形设备喷头加热温度为210℃,出丝口直径为1mm。
本实施例多层蜂窝夹层板的一体化成形方法的具体步骤如下:
步骤1,连续碳纤维增强聚乳酸丝材经成形设备喷头加热后在工作台表面成形蜂窝夹层板的下面板1,下面板1由4层纤维堆叠而成,对各方向性能均有高要求,纤维分布方向分别为0°、45°、90°、135°;
步骤2,成形设备喷头以规定的蜂窝状路径在已完成的下面板1上成形蜂窝芯子层2,蜂窝芯子2各方向性能均有较高要求,为确保平面内各方向均有纤维分布,路径采用逐单元成形的方式,如图4(b)所示;
步骤3,在已完成的蜂窝芯子2上成形中间板3,中间板3由3层纤维堆叠而成,面板长宽比小于3:2,为保证面板外围的精度,如图5(b)所示,成形设备喷头先按照双“回”字形路径在蜂窝芯子2上直接铺设一层纤维,之后按照0°和90°的纤维方向进行铺层,完成中间板3的成形;
步骤4,之后重复进行步骤2,完成最上层的蜂窝芯子2的成形;
步骤5,上面板4由4层纤维堆叠而成,在最上层的蜂窝芯子2上先以双“回”字形路径铺设一层纤维,由于面板对各方向性能均有较高要求,如图3b)所示,分别按照0°、45°、90°的纤维分布方向继续进行铺层,完成整个多层蜂窝夹层板的成形。
本发明的一种连续纤维复合材料多层蜂窝夹层板及其一体化成形方法,将连续纤维复合材料3D打印技术应用于多层蜂窝夹层板的制造,实现了多层蜂窝夹层板面板和蜂窝芯子的一体化成形,简化了生产工艺,提高了生产效率。同时,如图6所示,该方法制造的多层蜂窝夹层板,在保证了结构轻量化的同时极大地提高了结构的整体强度。
Claims (6)
- 一种连续纤维多层蜂窝夹层板,其特征在于,该多层蜂窝夹层板包括下面板(1)、蜂窝芯子(2)、中间板(3)和上面板(4);上面板(4)和下面板(1)分别位于蜂窝夹层板的上下两端,二者纤维层数均至少铺设3层,铺设路径采用单向成型路径或多向成型路径;蜂窝芯子(2)采用对称路径成形方式或逐单元成形路径方式;中间板(3)位于两层蜂窝芯子(2)之间,其纤维层数至少铺设2层,铺设路径采用多向成形路径;下面板(1)、蜂窝芯子(2)、中间板(3)和上面板(4)均采用连续纤维复合材料经3D打印成形。
- 一种连续纤维多层蜂窝夹层板的一体化成形方法,其特征在于,包括以下步骤:步骤1、连续纤维与基体材料组成连续多层纤维复丝,经成形设备喷头加热后在工作平台上成形蜂窝夹层板的下面板(1);当蜂窝夹层板具有单向性能要求时,下面板(1)选择单向成形路径,每层纤维复丝的成形路径均沿高性能要求方向;否则,下面板(1)选择多向成形路径,每层纤维复丝采用不同的路径成形方向,各路径间呈角度变化;步骤2、成形设备喷头以规定的蜂窝状路径在已完成的下面板(1)上成形蜂窝芯子层,蜂窝芯子(2)由多层纤维复丝铺设而成;当蜂窝夹层板具有单向性能要求时,蜂窝芯子(2)采用对称路径成形方式;否则,蜂窝芯子(2)采用逐单元成形路径方式;步骤3、在已完成的蜂窝芯子(2)上成形中间板(3),中间板(3)由多层纤维复丝铺设而成;成形设备喷头先按照“回”字形路径铺设机制在蜂窝芯子(2)上铺设至少一层纤维复丝,之后每层纤维复丝选择多向成形路径铺设,各路径间呈角度变化,完成中间板(3)的成形;步骤4、之后重复步骤2,如果芯子层数超过2层,则不断交替进行步骤3和步骤2,直到最上层的蜂窝芯子(2)成形完成;步骤5、在最上层的蜂窝芯子(2)上先以“回”字形路径铺设至少一层纤维复丝,之后进行上面板(4)的制造;上面板(4)由多层纤维复丝铺设而成;当蜂窝夹层板具有单向性能要求时,上面板(4)选择单向成形路径,每层纤维复丝的成形路径均沿高性能要求方向;否则,上面板(4)选择多向成形路径,每层纤维复丝采用不同的路径成形方向,各路径间呈角度变化;直至完成整个多层蜂窝夹层板的成形。
- 根据权利要求中2所述的一种连续纤维多层蜂窝夹层板的一体化成形方法,其特征在于,步骤3和步骤5中,当蜂窝夹层板长宽比大于3:2时,中间板(3)和上面板(4)按照“回”字形路径铺设机制选择一个“回”字形路径铺设;当蜂窝夹层板长宽比小于3:2时,中间板(3)和上面板(4)按照“回”字形路径铺设机制选择多个“回”字形路径相连铺设。
- 根据权利要求中2或3所述的一种连续纤维多层蜂窝夹层板的一体化成形方法,其特征在于,步骤1至步骤5中,不同路径成形方向的角度选择成90°变化或45°变化。
- 根据权利要求2或3中所述的一种连续纤维多层蜂窝夹层板的一体化成形方法,其特征在于,所述蜂窝芯子(2)至少铺设两层,不同芯子层为不同芯子尺寸和不同芯子类型;芯子类型包括六边形、四边形、三角形和圆形,芯子尺寸大于2mm。
- 根据权利要求4中所述的一种连续纤维多层蜂窝夹层板的一体化成形方法,其特征在于,所述蜂窝芯子(2)至少铺设两层,不同芯子层为不同芯子尺寸和不同芯子类型;芯子类型包括六边形、四边形、三角形和圆形,芯子尺寸大于2mm。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111140451.1 | 2021-09-28 | ||
CN202111140451.1A CN113858614B (zh) | 2021-09-28 | 2021-09-28 | 连续纤维多层蜂窝夹层板及其一体化成形方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023051031A1 true WO2023051031A1 (zh) | 2023-04-06 |
Family
ID=78991524
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/110743 WO2023051031A1 (zh) | 2021-09-28 | 2022-08-08 | 连续纤维多层蜂窝夹层板及其一体化成形方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113858614B (zh) |
WO (1) | WO2023051031A1 (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113858614B (zh) * | 2021-09-28 | 2023-11-24 | 大连理工大学 | 连续纤维多层蜂窝夹层板及其一体化成形方法 |
CN115923137B (zh) * | 2022-11-30 | 2023-12-19 | 南京衍构科技有限公司 | 一种用于增材制造的层间连续路径生成方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105015047A (zh) * | 2014-04-24 | 2015-11-04 | 沈阳航空航天大学 | 一种树脂蜂窝夹芯结构及其复合材料结构的制备方法 |
CN204820473U (zh) * | 2015-06-15 | 2015-12-02 | 清华大学 | 复合蜂窝夹芯板 |
KR20170006771A (ko) * | 2015-07-09 | 2017-01-18 | 기술융합협동조합 | 3차원 인쇄방법을 이용한 판넬 및 이의 제조방법 |
CN110315747A (zh) * | 2019-07-26 | 2019-10-11 | 航天特种材料及工艺技术研究所 | 高强度蜂窝结构及其3d打印成型方法 |
CN111300943A (zh) * | 2020-03-25 | 2020-06-19 | 西北工业大学 | 一种厚壁蜂窝夹层结构及方法 |
CN112549670A (zh) * | 2020-11-27 | 2021-03-26 | 西安交通大学 | 一种基于3d打印的变刚度夹芯复合材料结构及其成型方法 |
CN113858614A (zh) * | 2021-09-28 | 2021-12-31 | 大连理工大学 | 连续纤维多层蜂窝夹层板及其一体化成形方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1524105B1 (de) * | 2003-10-17 | 2009-12-09 | Euro-Composites S.A. | Leichtbau-Verbundmaterial sowie Verfahren zu dessen Herstellung |
US9845600B2 (en) * | 2011-07-01 | 2017-12-19 | Embry-Riddle Aeronautical University, Inc. | Highly vented truss wall honeycomb structures |
CN106777498B (zh) * | 2016-11-18 | 2020-10-09 | 上海卫星工程研究所 | 快速创建蜂窝夹层板三维模型的方法 |
CN110293678A (zh) * | 2019-06-28 | 2019-10-01 | 西北工业大学 | 一种连续碳纤维增强蜂窝结构的3d打印制备方法 |
CN112705709B (zh) * | 2020-12-21 | 2022-10-14 | 北京航星机器制造有限公司 | 一种蜂窝夹层件及其增材制造方法 |
-
2021
- 2021-09-28 CN CN202111140451.1A patent/CN113858614B/zh active Active
-
2022
- 2022-08-08 WO PCT/CN2022/110743 patent/WO2023051031A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105015047A (zh) * | 2014-04-24 | 2015-11-04 | 沈阳航空航天大学 | 一种树脂蜂窝夹芯结构及其复合材料结构的制备方法 |
CN204820473U (zh) * | 2015-06-15 | 2015-12-02 | 清华大学 | 复合蜂窝夹芯板 |
KR20170006771A (ko) * | 2015-07-09 | 2017-01-18 | 기술융합협동조합 | 3차원 인쇄방법을 이용한 판넬 및 이의 제조방법 |
CN110315747A (zh) * | 2019-07-26 | 2019-10-11 | 航天特种材料及工艺技术研究所 | 高强度蜂窝结构及其3d打印成型方法 |
CN111300943A (zh) * | 2020-03-25 | 2020-06-19 | 西北工业大学 | 一种厚壁蜂窝夹层结构及方法 |
CN112549670A (zh) * | 2020-11-27 | 2021-03-26 | 西安交通大学 | 一种基于3d打印的变刚度夹芯复合材料结构及其成型方法 |
CN113858614A (zh) * | 2021-09-28 | 2021-12-31 | 大连理工大学 | 连续纤维多层蜂窝夹层板及其一体化成形方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113858614B (zh) | 2023-11-24 |
CN113858614A (zh) | 2021-12-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023051031A1 (zh) | 连续纤维多层蜂窝夹层板及其一体化成形方法 | |
JP5617788B2 (ja) | 繊維強化複合材料 | |
CN108869167B (zh) | 风机叶片大梁及其制备方法 | |
CN106739292B (zh) | 一种加强型蜂窝复合板 | |
US20150239200A1 (en) | Composite sandwich panel with differential resin layers | |
RU2009102192A (ru) | Способ изготовления конструктивного компонента для авиационно-космических летательных аппаратов | |
US8871126B2 (en) | Manufacturing method for trumpet spar and other curved objects | |
CN109228404A (zh) | 一种用于连续纤维增强复合材料结构成型的多维度增材制造方法 | |
CN106988022A (zh) | 一种无纺布 | |
JP5731392B2 (ja) | 航空機の平面部材およびその製造方法 | |
CN116100828A (zh) | 一种提高碳纤维增强树脂基复合材料纤维间强度的方法 | |
CN104924678A (zh) | 复合蜂窝夹芯板 | |
CN214190063U (zh) | 一种隐身飞机的复合材料混杂结构 | |
CA3036014A1 (en) | Composite toughening using three dimensional printed thermoplastic pins | |
CN109112442A (zh) | 一种多尺度增强低/负热膨胀镁基复合材料及其制备方法 | |
CN108363828A (zh) | 一种变刚度复合材料的建模方法 | |
CN116176002A (zh) | 一种增强单向碳纤维复合材料纤维间强度的快速制备方法 | |
CN110126401A (zh) | 耐疲劳高强度纤维增强树脂基复合材料型材及其制备方法 | |
CN102416716A (zh) | 带有泡沫夹芯梁的金字塔型点阵芯材及其制备工艺 | |
CN112477294B (zh) | 一种多孔均质夹层结构及其制作方法 | |
CN203611507U (zh) | 一种具有碳纤维纸钢面板的蜂窝夹层板 | |
CN112644100A (zh) | 一种大曲率蜂窝夹层复合材料结构及其一体化成型方法 | |
WO2023217048A1 (zh) | 零泊松比芯材及其制备方法、复合材料 | |
CN109514754B (zh) | 一种连续纤维的变刚度复合材料铺层 | |
CN203267325U (zh) | 具有抗分层特性的复合材料构件单元及含该单元复合材料 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22874427 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22874427 Country of ref document: EP Kind code of ref document: A1 |